PCA9535 [TI]

REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS; 远程16位I2C和SMBus低功耗I / O扩展器,带有中断输出和配置寄存器
PCA9535
型号: PCA9535
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS
远程16位I2C和SMBus低功耗I / O扩展器,带有中断输出和配置寄存器

输出元件
文件: 总35页 (文件大小:835K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
FEATURES  
Low Standby-Current Consumption of  
1 µA Max  
I2C to Parallel Port Expander  
Open-Drain Active-Low Interrupt Output  
5-V Tolerant I/O Ports  
Polarity Inversion Register  
Latched Outputs With High-Current Drive  
Capability for Directly Driving LEDs  
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
ESD Protection Exceeds JESD 22  
Compatible With Most Microcontrollers  
400-kHz Fast I2C Bus  
2000-V Human-Body Model (A114-A)  
1000-V Charged-Device Model (C101)  
Address by Three Hardware Address Pins for  
Use of up to Eight Devices  
DB, DBQ, DGV, DW, OR PW PACKAGE  
(TOP VIEW)  
RGE PACKAGE  
(TOP VIEW)  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
INT  
A1  
V
CC  
2
SDA  
SCL  
A0  
24 23 22 21 20 19  
3
A2  
P00  
P01  
P02  
P03  
P04  
P05  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
A0  
4
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
GND  
P17  
P16  
P15  
P14  
P13  
5
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
6
7
8
9
7
8 9 10 11 12  
10  
11  
12  
DESCRIPTION/ORDERING INFORMATION  
ORDERING INFORMATION  
TA  
PACKAGE(1)  
ORDERABLE PART NUMBER  
PCA9535DBR  
TOP-SIDE MARKING  
Reel of 2000  
SSOP – DB  
PD9535  
Tube of 60  
PCA9535DB  
QSOP – DBQ  
TVSOP – DGV  
Reel of 2500  
Reel of 2000  
Tube of 25  
PCA9535DBQR  
PCA9535DGVR  
PCA9535DW  
PCA9535DWR  
PCA9535PW  
PCA9535  
PD9535  
–40°C to 85°C  
SOIC – DW  
PCA9535  
Reel of 2000  
Tube of 60  
TSSOP – PW  
QFN – RGE  
PD9535  
PD9535  
Reel of 2000  
Reel of 3000  
PCA9535PWR  
PCA9535RGER  
(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/sc/package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2005–2007, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
DESCRIPTION/ORDERING INFORMATION (CONTINUED)  
This 16-bit I/O expander for the two-line bidirectional bus (I2C) is designed for 2.3-V to 5.5-V VCC operation. It  
provides general-purpose remote I/O expansion for most microcontroller families via the I2C interface [serial  
clock (SCL), serial data (SDA)].  
The PCA9535 consists of two 8-bit Configuration (input or output selection), Input Port, Output Port, and Polarity  
Inversion (active-high or active-low operation) registers. At power on, the I/Os are configured as inputs. The  
system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data  
for each input or output is kept in the corresponding Input or Output Port register. The polarity of the Input Port  
register can be inverted with the Polarity Inversion register. All registers can be read by the system master.  
The system master can reset the PCA9535 in the event of a timeout or other improper operation by utilizing the  
power-on reset feature, which puts the registers in their default state and initializes the I2C/SMBus state  
machine.  
The PCA9535 open-drain interrupt (INT) output is activated when any input state differs from its corresponding  
Input Port register state and is used to indicate to the system master that an input state has changed.  
INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the  
remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via  
the I2C bus. Thus, the PCA9535 can remain a simple slave device.  
The device outputs (latched) have high-current drive capability for directly driving LEDs. The device has low  
current consumption.  
Although pin-to-pin and I2C address compatible with the PCF8575, software changes are required due to the  
enhancements.  
The PCA9535 is identical to the PCA9555, except for the removal of the internal I/O pullup resistor, which  
greatly reduces power consumption when the I/Os are held low.  
Three hardware pins (A0, A1, and A2) are used to program and vary the fixed I2C address and allow up to eight  
devices to share the same I2C bus or SMBus. The fixed I2C address of the PCA9535 is the same as the  
PCA9555, PCF8575, PCF8575C, and PCF8574, allowing up to eight of these devices in any combination to  
share the same I2C bus or SMBus.  
2
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
TERMINAL FUNCTIONS  
NO.  
SOIC (D),  
SSOP (DB),  
NAME  
DESCRIPTION  
QSOP (DBQ),  
TSSOP (PW), AND  
TVSOP (DGV)  
QFN (RGE)  
1
22  
23  
24  
1
INT  
A1  
Interrupt output. Connect to VCC through a pullup resistor.  
Address input. Connect directly to VCC or ground.  
Address input. Connect directly to VCC or ground.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
Ground  
2
3
A2  
4
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
GND  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
A0  
5
2
6
3
7
4
8
5
9
6
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
Address input. Connect directly to VCC or ground.  
Serial clock bus. Connect to VCC through a pullup resistor.  
Serial data bus. Connect to VCC through a pullup resistor.  
Supply voltage  
SCL  
SDA  
VCC  
3
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
LOGIC DIAGRAM (POSITIVE LOGIC)  
PCA9535  
1
Interrupt  
Logic  
LP Filter  
INT  
21  
2
A0  
A1  
A2  
P07−P00  
P17−P10  
3
22  
23  
SCL  
SDA  
2
Input  
Filter  
I C Bus  
Shift  
Register  
I/O  
Port  
16 Bits  
Control  
Write Pulse  
Read Pulse  
24  
12  
V
Power-On  
Reset  
CC  
GND  
A. Pin numbers shown are for DB, DBQ, DGV, DW, and PW packages.  
B. All I/Os are set to inputs at reset.  
4
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
SIMPLIFIED SCHEMATIC OF P-PORT I/Os(1)  
Data From  
Output Port  
Shift Register  
Register Data  
Configuration  
Register  
V
CC  
Q1  
Data From  
Shift Register  
D
Q
FF  
CLK  
D
Q
Q
Write Configuration  
Pulse  
Q
FF  
CLK  
I/O Pin  
GND  
Write Pulse  
Output Port  
Register  
Q2  
Input Port  
Register  
D
Q
Input Port  
Register Data  
FF  
CLK  
Read Pulse  
Q
To INT  
Data From  
Shift Register  
Polarity  
Register Data  
D
Q
Q
FF  
CLK  
Write Polarity  
Pulse  
Polarity Inversion  
Register  
(1) At power-on reset, all registers return to default values.  
I/O Port  
When an I/O is configured as an input, FETs Q1 and Q2 are off, which creates a high-impedance input. The  
input voltage may be raised above VCC to a maximum of 5.5 V.  
If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the Output Port register. In  
this case, there are low-impedance paths between the I/O pin and either VCC or GND. The external voltage  
applied to this I/O pin should not exceed the recommended levels for proper operation.  
5
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
I2C Interface  
The bidirectional I2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be  
connected to a positive supply via a pullup resistor when connected to the output stages of a device. Data  
transfer may be initiated only when the bus is not busy.  
I2C communication with this device is initiated by a master sending a Start condition, a high-to-low transition on  
the SDA input/output while the SCL input is high (see Figure 1). After the Start condition, the device address  
byte is sent, MSB first, including the data direction bit (R/W). This device does not respond to the general call  
address.  
After receiving the valid address byte, this device responds with an ACK, a low on the SDA input/output during  
the high of the ACK-related clock pulse. The address inputs (A0–A2) of the slave device must not be changed  
between the Start and Stop conditions.  
On the I2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control  
commands (Start or Stop) (see Figure 2).  
A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the  
master (see Figure 1).  
Any number of data bytes can be transferred from the transmitter to the receiver between the Start and the Stop  
conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before  
the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK  
clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see  
Figure 3). When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly,  
the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold  
times must be met to ensure proper operation.  
A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK)  
after the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line  
high. In this event, the transmitter must release the data line to enable the master to generate a Stop condition.  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
Figure 1. Definition of Start and Stop Conditions  
SDA  
SCL  
Data Line  
Stable;  
Data Valid  
Change  
of Data  
Allowed  
Figure 2. Bit Transfer  
6
Submit Documentation Feedback  
 
 
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
Data Output  
by Transmitter  
NACK  
Data Output  
by Receiver  
ACK  
SCL From  
Master  
1
2
8
9
S
Start  
Clock Pulse for  
Condition  
Acknowledgment  
Figure 3. Acknowledgment on I2C Bus  
Interface Definition  
BIT  
BYTE  
7 (MSB)  
6
5
4
3
2
1
0 (LSB)  
I2C slave address  
P0x I/O data bus  
P1x I/O data bus  
L
H
L
L
A2  
A1  
A0  
R/W  
P00  
P10  
P07  
P17  
P06  
P16  
P05  
P15  
P04  
P14  
P03  
P13  
P02  
P12  
P01  
P11  
7
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
Device Address  
Figure 4 shows the address byte of the PCA9535.  
R/W  
Slave Address  
A2 A1 A0  
0
1
0
0
Fixed  
Programmable  
Figure 4. PCA9535 Address  
Address Reference  
INPUTS  
I2C BUS SLAVE ADDRESS  
A2  
L
A1  
L
A0  
L
32 (decimal), 20 (hexadecimal)  
33 (decimal), 21 (hexadecimal)  
34 (decimal), 22 (hexadecimal)  
35 (decimal), 23 (hexadecimal)  
36 (decimal), 24 (hexadecimal)  
37 (decimal), 25 (hexadecimal)  
38 (decimal), 26 (hexadecimal)  
39 (decimal), 27 (hexadecimal)  
L
L
H
L
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
The last bit of the slave address defines the operation (read or write) to be performed. A high (1) selects a read  
operation, while a low (0) selects a write operation.  
Control Register and Command Byte  
Following the successful acknowledgment of the address byte, the bus master sends a command byte that is  
stored in the control register in the PCA9535. Three bits of this data byte state the operation (read or write) and  
the internal register (input, output, polarity inversion or configuration) that will be affected. This register can be  
written or read through the I2C bus. The command byte is sent only during a write transmission.  
Once a command byte has been sent, the register that was addressed continues to be accessed by reads until  
a new command byte has been sent.  
0
0
0
0
0
B2 B1 B0  
Figure 5. Control Register Bits  
Control Register  
CONTROL REGISTER BITS  
COMMAND  
BYTE (HEX)  
POWER-UP  
DEFAULT  
REGISTER  
PROTOCOL  
B2  
B1  
0
B0  
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
Input Port 0  
Input Port 1  
Read byte  
xxxx xxxx  
xxxx xxxx  
1111 1111  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
0
Read byte  
1
Output Port 0  
Read/write byte  
Read/write byte  
Read/write byte  
Read/write byte  
Read/write byte  
Read/write byte  
1
Output Port 1  
0
Polarity Inversion Port 0  
Polarity Inversion Port 1  
Configuration Port 0  
Configuration Port 1  
0
1
1
8
Submit Documentation Feedback  
 
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
Register Descriptions  
The Input Port registers (registers 0 and 1) reflect the incoming logic levels of the pins, regardless of whether the  
pin is defined as an input or an output by the Configuration Register. It only acts on read operation. Writes to  
these registers have no effect. The default value, X, is determined by the externally applied logic level.  
Before a read operation, a write transmission is sent with the command byte to let the I2C device know that the  
Input Port registers will be accessed next.  
Registers 0 and 1 (Input Port Registers)  
Bit  
I0.7  
X
I0.6  
X
I0.5  
X
I0.4  
X
I0.3  
X
I0.2  
X
I0.1  
X
I0.0  
X
Default  
Bit  
I1.7  
X
I1.6  
X
I1.5  
X
I1.4  
X
I1.3  
X
I1.2  
X
I1.1  
X
I1.0  
X
Default  
The Output Port registers (registers 2 and 3) show the outgoing logic levels of the pins defined as outputs by the  
Configuration register. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this  
register reflect the value that is in the flip-flop controlling the output selection, not the actual pin value.  
Registers 2 and 3 (Output Port Registers)  
Bit  
O0.7  
1
O0.6  
1
O0.5  
1
O0.4  
1
O0.3  
1
O0.2  
1
O0.1  
1
O0.0  
1
Default  
Bit  
O1.7  
1
O1.6  
1
O1.5  
1
O1.4  
1
O1.3  
1
O1.2  
1
O1.1  
1
O1.0  
1
Default  
The Polarity Inversion registers (registers 4 and 5) allow polarity inversion of pins defined as inputs by the  
Configuration register. If a bit in this register is set (written with 1), the corresponding pin's polarity is inverted. If  
a bit in this register is cleared (written with a 0), the corresponding pin's original polarity is retained.  
Registers 4 and 5 (Polarity Inversion Registers)  
Bit  
N0.7  
0
N0.6  
0
N0.5  
0
N0.4  
0
N0.3  
0
N0.2  
0
N0.1  
0
N0.0  
0
Default  
Bit  
N1.7  
0
N1.6  
0
N1.5  
0
N1.4  
0
N1.3  
0
N1.2  
0
N1.1  
0
N1.0  
0
Default  
The Configuration registers (registers 6 and 7) configure the directions of the I/O pins. If a bit in this register is  
set to 1, the corresponding port pin is enabled as an input with a high-impedance output driver. If a bit in this  
register is cleared to 0, the corresponding port pin is enabled as an output.  
Registers 6 and 7 (Configuration Registers)  
Bit  
C0.7  
1
C0.6  
1
C0.5  
1
C0.4  
1
C0.3  
1
C0.2  
1
C0.1  
1
C0.0  
1
Default  
Bit  
C1.7  
1
C1.6  
1
C1.5  
1
C1.4  
1
C1.3  
1
C1.2  
1
C1.1  
1
C1.0  
1
Default  
Power-On Reset  
When power (from 0 V) is applied to VCC, an internal power-on reset holds the PCA9535 in a reset condition  
until VCC has reached VPOR. At that point, the reset condition is released, and the PCA9535 registers and  
I2C/SMBus state machine initialize to their default states. After that, VCC must be lowered to below 0.2 V and  
then back up to the operating voltage for a power-reset cycle.  
9
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
Interrupt (INT) Output  
An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time, tiv, the  
signal INT is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original  
setting or data is read from the port that generated the interrupt or in a Stop event. Resetting occurs in the read  
mode at the acknowledge (ACK) bit or not acknowledge (NACK) bit after the falling edge of the SCL signal. In a  
Stop event, INT is cleared after the rising edge of SDA. Interrupts that occur during the ACK or NACK clock  
pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Each change of the  
I/Os after resetting is detected and is transmitted as INT.  
Reading from or writing to another device does not affect the interrupt circuit, and a pin configured as an output  
cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur, if the  
state of the pin does not match the contents of the Input Port register. Because each 8-bit port is read  
independently, the interrupt caused by port 0 is not cleared by a read of port 1, or vice versa.  
INT has an open-drain structure and requires a pullup resistor to VCC  
.
Bus Transactions  
Data is exchanged between the master and the PCA9535 through write and read commands.  
Writes  
Data is transmitted to the PCA9535 by sending the device address and setting the least-significant bit to a logic  
0 (see Figure 4 for device address). The command byte is sent after the address and determines which register  
receives the data that follows the command byte.  
The eight registers within the PCA9535 are configured to operate as four register pairs. The four pairs are Input  
Ports, Output Ports, Polarity Inversions, and Configurations. After sending data to one register, the next data  
byte is sent to the other register in the pair (see Figure 6 and Figure 7). For example, if the first byte is sent to  
Output Port 1 (register 3), the next byte is stored in Output Port 0 (register 2).  
There is no limitation on the number of data bytes sent in one write transmission. In this way, each 8-bit register  
may be updated independently of the other registers.  
SCL  
SDA  
1
2
3
4
5
6
7
8
9
Command Byte  
Data to Port 0  
Data 0  
Data to Port 1  
Data 1  
Slave Address  
A
P
1.0  
S
0
1
0
0
A2 A1 A0  
0
A
0
0
0
0
0
0
1
0
A
A
1.7  
0.7  
0.0  
Acknowledge  
From Slave  
Acknowledge  
From Slave  
Acknowledge  
From Slave  
R/W  
Start Condition  
Write to Port  
Data Out from Port 0  
t
pv  
Data Out from Port 1  
Data Valid  
t
pv  
Figure 6. Write to Output Port Registers  
<br/>  
10  
Submit Documentation Feedback  
 
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
1
2
3
4
5
6
7
8
9
1
0
2
0
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
SCL  
SDA  
Slave Address  
Command Byte  
Data to Register  
Data 0  
Data to Register  
Data1  
MSB  
LSB  
MSB  
LSB  
S
0
1
0
0
A2 A1 A0  
0
A
0
0
0
1
1
0
A
A
A
P
Acknowledge  
From Slave  
Acknowledge  
From Slave  
R/W  
Acknowledge  
From Slave  
Start Condition  
Figure 7. Write to Configuration Registers  
Reads  
The bus master first must send the PCA9535 address with the least-significant bit set to a logic 0 (see Figure 4  
for device address). The command byte is sent after the address and determines which register is accessed.  
After a restart, the device address is sent again, but this time, the least-significant bit is set to a logic 1. Data  
from the register defined by the command byte then is sent by the PCA9535 (see Figure 8 through Figure 10).  
After a restart, the value of the register defined by the command byte matches the register being accessed when  
the restart occurred. For example, if the command byte references Input Port 1 before the restart, and the restart  
occurs when Input Port 0 is being read, the stored command byte changes to reference Input Port 0. The  
original command byte is forgotten. If a subsequent restart occurs, Input Port 0 is read first. Data is clocked into  
the register on the rising edge of the ACK clock pulse. After the first byte is read, additional bytes may be read,  
but the data now reflect the information in the other register in the pair. For example, if Input Port 1 is read, the  
next byte read is Input Port 0.  
Data is clocked into the register on the rising edge of the ACK clock pulse. There is no limitation on the number  
of data bytes received in one read transmission, but when the final byte is received, the bus master must not  
acknowledge the data  
Data From Lower  
or Upper Byte  
Slave Address  
Slave Address  
of Register  
Acknowledge  
From Slave  
Acknowledge  
From Slave  
Acknowledge  
From Slave  
Acknowledge  
From Master  
S
0
1
0
0
A2 A1 A0  
0
A
Data  
Command Byte  
A
S
0
1
0
0
A2 A1 A0  
1
A
MSB  
LSB  
A
First Byte  
R/W  
R/W  
At this moment, master  
transmitter becomes master  
receiver, and slave receiver  
becomes slave transmitter.  
Data From Upper  
or Lower Byte  
of Register  
No Acknowledge  
From Master  
MSB  
LSB NA  
P
Data  
Last Byte  
Figure 8. Read From Register  
<br/>  
11  
Submit Documentation Feedback  
 
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
1
2
3
4
5
6
7
8
9
SCL  
SDA  
I0.x  
I1.x  
I0.x  
I1.x  
3
S
0
1
0
0
A2 A1 A0  
1
A
7
6
5
4
3
2
1
0
A
7
6
5
4
3
2
1
0
A
7
6
5
4
3
2
1
0
A
7
6
5
4
2
1
0
1
P
Acknowledge  
From Master  
R/W  
Acknowledge  
From Master  
Acknowledge  
From Master  
Acknowledge  
From Slave  
No Acknowledge  
From Master  
Read From Port 0  
Data Into Port 0  
Read From Port 1  
Data Into Port 1  
INT  
t
t
ir  
iv  
A. Transfer of data can be stopped at any time by a Stop condition. When this occurs, data present at the latest  
acknowledge phase is valid (output mode). It is assumed that the command byte previously has been set to 00 (read  
Input Port register).  
B. This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address  
call and actual data transfer from P port (see Figure 8 for these details).  
Figure 9. Read Input Port Register, Scenario 1  
<br/>  
1
2
3
4
5
6
7
8
9
SCL  
I0.x  
I1.x  
I0.x  
I1.x  
S
0
1
0
0
A2 A1 A0  
1
A
00  
A
10  
A
03  
A
1
P
SDA  
12  
Acknowledge  
From Slave  
Acknowledge  
From Master  
Acknowledge  
From Master  
Acknowledge  
From Master  
No Acknowledge  
From Master  
R/W  
t
ph  
t
ps  
Read From Port 0  
Data Into Port 0  
Data 00  
Data 01  
Data 02  
Data 03  
t
ps  
t
ph  
Read From Port 1  
11  
12  
Data  
Data 10  
Data  
Data Into Port 1  
INT  
t
iv  
t
ir  
A. Transfer of data can be stopped at any time by a Stop condition. When this occurs, data present at the latest  
acknowledge phase is valid (output mode). It is assumed that the command byte previously has been set to 00 (read  
Input Port register).  
B. This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address  
call and actual data transfer from P port (see Figure 8 for these details).  
Figure 10. Read Input Port Register, Scenario 2  
12  
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
6
UNIT  
V
VCC  
VI  
Supply voltage range  
Input voltage range(2)  
Output voltage range(2)  
6
V
VO  
IIK  
6
V
Input clamp current  
VI < 0  
–20  
–20  
±20  
50  
mA  
mA  
mA  
mA  
mA  
IOK  
IIOK  
IOL  
IOH  
Output clamp current  
VO < 0  
Input/output clamp current  
Continuous output low current  
Continuous output high current  
Continuous current through GND  
Continuous current through VCC  
VO < 0 or VO > VCC  
VO = 0 to VCC  
VO = 0 to VCC  
–50  
–250  
160  
63  
ICC  
mA  
DB package  
DBQ package  
DGV package  
DW package  
PW package  
RGE package  
RGE package  
61  
86  
θJA  
Package thermal impedance, junction to free air(3)  
°C/W  
46  
88  
45  
θJP  
Package thermal impedance, junction to pad  
Storage temperature range  
1.5  
150  
°C/W  
°C  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The package thermal impedance is calculated in accordance with JESD 51-7.  
Recommended Operating Conditions  
MIN  
2.3  
MAX  
5.5  
UNIT  
VCC  
VIH  
Supply voltage  
V
SCL, SDA  
0.7 × VCC  
0.7 × VCC  
–0.5  
5.5  
High-level input voltage  
V
V
A2–A0, P07–P00, P17–P10  
SCL, SDA  
5.5  
0.3 × VCC  
0.3 × VCC  
–10  
VIL  
Low-level input voltage  
A2–A0, P07–P00, P17–P10  
P07–P00, P17–P10  
P07–P00, P17–P10  
–0.5  
IOH  
IOL  
TA  
High-level output current  
Low-level output current  
Operating free-air temperature  
mA  
mA  
°C  
25  
–40  
85  
13  
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
II = –18 mA  
VCC  
2.3 V to 5.5 V  
VPOR  
MIN TYP(1)  
MAX UNIT  
VIK  
Input diode clamp voltage  
Power-on reset voltage  
–1.2  
1.5  
1.8  
2.6  
4.1  
1.7  
2.5  
4
V
VPOR  
VI = VCC or GND, IO = 0  
1.65  
V
2.3 V  
IOH = –8 mA  
3 V  
4.75 V  
VOH  
P-port high-level output voltage(2)  
V
2.3 V  
IOH = –10 mA  
3 V  
4.75 V  
SDA  
VOL = 0.4 V  
VOL = 0.5 V  
VOL = 0.7 V  
VOL = 0.4 V  
2.3 V to 5.5 V  
2.3 V to 5.5 V  
2.3 V to 5.5 V  
2.3 V to 5.5 V  
3
8
10  
3
20  
24  
IOL  
P port(3)  
mA  
INT  
SCL, SDA  
A2–A0  
P port  
P port  
±1  
±1  
1
II  
VI = VCC or GND  
2.3 V to 5.5 V  
µA  
IIH  
IIL  
VI = VCC  
2.3 V to 5.5 V  
2.3 V to 5.5 V  
5.5 V  
µA  
µA  
VI = GND  
–1  
200  
75  
50  
1
100  
30  
VI = VCC or GND, IO = 0,  
I/O = inputs, fSCL = 400 kHz  
Operating mode  
3.6 V  
2.7 V  
20  
ICC  
µA  
5.5 V  
0.5  
0.4  
0.25  
VI = GND, IO = 0, I/O = inputs,  
fSCL = 0 kHz  
Standby mode  
3.6 V  
0.9  
0.8  
2.7 V  
One input at VCC – 0.6 V,  
Other inputs at VCC or GND  
ICC  
Additional current in standby mode  
2.3 V to 5.5 V  
2.3 V to 5.5 V  
200  
µA  
CI  
SCL  
VI = VCC or GND  
3
3
7
7
pF  
SDA  
P port  
Cio  
VIO = VCC or GND  
2.3 V to 5.5 V  
pF  
3.7  
9.5  
(1) All typical values are at nominal supply voltage (2.5-V, 3.3-V, or 5-V VCC) and TA = 25°C.  
(2) Each I/O must be limited externally to a maximum of 25 mA, and each octal (P07–P00 and P17–P10) must be limited to a maximum  
current of 100 mA, for a device total of 200 mA.  
(3) The total current sourced by all I/Os must be limited to 160 mA (80 mA for P07–P00 and 80 mA for P17–P10).  
14  
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
I2C Interface Timing Requirements  
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 11)  
MIN  
0
MAX  
UNIT  
kHz  
µs  
fscl  
I2C clock frequency  
I2C clock high time  
I2C clock low time  
400  
tsch  
tscl  
0.6  
1.3  
µs  
tsp  
I2C spike time  
50  
ns  
tsds  
tsdh  
ticr  
I2C serial-data setup time  
I2C serial-data hold time  
I2C input rise time  
I2C input fall time  
I2C output fall time  
100  
ns  
0
ns  
(1)  
20 + 0.1Cb  
300  
300  
300  
ns  
(1)  
(1)  
ticf  
20 + 0.1Cb  
20 + 0.1Cb  
ns  
tocf  
10-pF to 400-pF bus  
ns  
tbuf  
I2C bus free time between Stop and Start  
I2C Start or repeated Start condition setup  
I2C Start or repeated Start condition hold  
I2C Stop condition setup  
Valid-data time  
1.3  
0.6  
0.6  
0.6  
50  
µs  
tsts  
µs  
tsth  
µs  
tsps  
tvd(Data)  
tvd(ack)  
Cb  
µs  
SCL low to SDA output valid  
ns  
Valid-data time of ACK condition  
I2C bus capacitive load  
ACK signal from SCL low to SDA (out) low  
0.1  
0.9  
µs  
400  
pF  
(1) Cb = total capacitance of one bus line in pF  
Switching Characteristics  
over recommended operating free-air temperature range, CL 100 pF (unless otherwise noted) (see Figure 12 and  
Figure 13)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
MIN  
MAX UNIT  
tiv  
Interrupt valid time  
Interrupt reset delay time  
Output data valid  
P port  
SCL  
INT  
INT  
4
4
µs  
µs  
ns  
ns  
µs  
tir  
tpv  
tps  
tph  
SCL  
P port  
SCL  
SCL  
200  
Input data setup time  
Input data hold time  
P port  
P port  
150  
1
15  
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS  
TA = 25°C (unless otherwise noted)  
SUPPLY CURRENT  
vs  
TEMPERATURE  
STANDBY SUPPLY CURRENT  
SUPPLY CURRENT  
vs  
vs  
TEMPERATURE  
SUPPLY VOLTAGE  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
SCL = VCC  
fSCL = 400 kHz  
I/Os Unloaded  
VCC = 5 V  
fSCL = 400 kHz  
I/Os Unloaded  
VCC = 5 V  
VCC = 3.3 V  
VCC = 3.3 V  
VCC = 2.5 V  
VCC = 2.5 V  
0
0
-50  
-25  
0
25  
50  
75  
100  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-50  
-25  
0
25  
50  
75  
100  
TA – Free-Air Temperature – °C  
VCC – Supply Voltage – V  
TA – Free-Air Temperature – °C  
I/O SINK CURRENT  
vs  
OUTPUT LOW VOLTAGE  
I/O SINK CURRENT  
vs  
OUTPUT LOW VOLTAGE  
I/O SINK CURRENT  
vs  
OUTPUT LOW VOLTAGE  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
VCC = 5 V  
VCC = 3.3 V  
VCC = 2.5 V  
TA = –40°C  
TA = –40°C  
TA = –40°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 125°C  
TA = 125°C  
TA = 125°C  
0
0
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
VOL – Output Low Voltage – V  
V
OL – Output Low Voltage – V  
VOL – Output Low Voltage – V  
I/O OUTPUT LOW VOLTAGE  
I/O SOURCE CURRENT  
vs  
OUTPUT HIGH VOLTAGE  
I/O SOURCE CURRENT  
vs  
OUTPUT HIGH VOLTAGE  
vs  
TEMPERATURE  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VCC = 2.5 V, ISINK = 10 mA  
VCC = 3.3 V  
VCC = 2.5 V  
TA = –40°C  
TA = –40°C  
TA = 25°C  
TA = 25°C  
VCC = 5 V, ISINK = 10 mA  
TA = 125°C  
VCC = 2.5 V, ISINK = 1 mA  
VCC = 5 V, ISINK = 1 mA  
TA = 125°C  
50  
25  
0
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
-50  
-25  
0
25  
50  
75  
100  
(VCC – VOH) – V  
(VCC – VOH) – V  
TA – Free-Air Temperature – °C  
16  
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS (continued)  
TA = 25°C (unless otherwise noted)  
I/O SOURCE CURRENT  
vs  
OUTPUT HIGH VOLTAGE  
I/O HIGH VOLTAGE  
vs  
TEMPERATURE  
OUTPUT HIGH VOLTAGE  
vs  
SUPPLY VOLTAGE  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
6
5
4
3
2
1
0
75  
VCC = 5 V  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
TA = 25°C  
VCC = 2.5 V, IOL = 10 mA  
TA = –40°C  
IOH = –8 mA  
TA = 25°C  
VCC = 5 V, IOL = 10 mA  
IOH = –10 mA  
TA = 125°C  
50  
25  
0
0
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
-50  
-25  
0
25  
50  
75  
100  
VCC – Supply Voltage – V  
(VCC – VOH) – V  
TA – Free-Air Temperature – °C  
17  
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
R
L
= 1 k  
SDA  
DUT  
C
L
= 50 pF  
(see Note A)  
SDA LOAD CONFIGURATION  
Three Bytes for Complete  
Device Programming  
Stop  
Condition Condition  
(P) (S)  
Start  
Address  
Bit 7  
(MSB)  
R/W  
Bit 0  
(LSB)  
Data  
Bit 7  
(MSB)  
Data  
Bit 0 Condition  
(LSB)  
Stop  
Address  
Bit 6  
Address  
Bit 1  
ACK  
(A)  
(P)  
t
scl  
t
sch  
0.7 × V  
0.3 × V  
CC  
SCL  
SDA  
CC  
t
icr  
t
sts  
t
PHL  
t
icf  
t
buf  
t
t
sp  
PLH  
0.7 × V  
0.3 × V  
CC  
CC  
t
icf  
t
icr  
t
sdh  
t
sps  
t
sth  
t
sds  
Repeat  
Start  
Condition  
Stop  
Condition  
Start or  
Repeat  
Start  
Condition  
VOLTAGE WAVEFORMS  
BYTE  
1
DESCRIPTION  
2
I C address  
2, 3  
P-port data  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 11. I2C Interface Load Circuit and Voltage Waveforms  
18  
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
CC  
R
L
= 4.7 kΩ  
INT  
DUT  
C
L
= 100 pF  
(see Note A)  
INTERRUPT LOAD CONFIGURATION  
ACK  
From Slave  
ACK  
From Slave  
Start  
Condition  
8 Bits  
(One Data Byte)  
From Port  
R/W  
Slave Address  
Data From Port  
Data 2  
Data 1  
A
1
P
S
0
1
0
0
A2 A1 A0  
1
A
1
2
3
4
5
6
7
8
A
A
t
ir  
B
B
t
ir  
INT  
A
t
iv  
t
sps  
A
Data  
Into  
Port  
Address  
Data 1  
Data 2  
0.7 × V  
0.3 × V  
CC  
0.7 × V  
0.3 × V  
CC  
SCL  
INT  
Pn  
R/W  
A
CC  
CC  
t
iv  
t
ir  
0.7 × V  
0.3 × V  
0.7 × V  
0.3 × V  
CC  
CC  
INT  
CC  
CC  
View A−A  
A. CL includes probe and jig capacitance.  
View B−B  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 12. Interrupt Load Circuit and Voltage Waveforms  
19  
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
PARAMETER MEASUREMENT INFORMATION (continued)  
Pn  
500 W  
DUT  
2 × V  
CC  
C
= 50 pF  
L
500 W  
(see Note A)  
P-PORT LOAD CONFIGURATION  
0.7 × V  
CC  
SCL  
P0  
A
P3  
0.3 × V  
CC  
Slave  
ACK  
SDA  
Pn  
t
pv  
(see Note B)  
Last Stable Bit  
Unstable  
Data  
WRITE MODE (R/W = 0)  
0.7 × V  
0.3 × V  
CC  
SCL  
Pn  
P0  
A
P3  
CC  
t
ph  
t
ps  
0.7 × V  
0.3 × V  
CC  
CC  
READ MODE (R/W = 1)  
A. CL includes probe and jig capacitance.  
B. tpv is measured from 0.7 × VCC on SCL to 50% I/O (Pn) output.  
C. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
D. The outputs are measured one at a time, with one transition per measurement.  
E. All parameters and waveforms are not applicable to all devices.  
Figure 13. P-Port Load Circuit and Voltage Waveforms  
20  
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
CC  
Pn  
500 W  
R
L
= 1 kΩ  
DUT  
2 × V  
CC  
SDA  
DUT  
C
L
= 50 pF  
500 W  
(see Note A)  
C
L
= 50 pF  
(see Note A)  
SDA LOAD CONFIGURATION  
P-PORT LOAD CONFIGURATION  
Start  
SCL  
ACK or Read Cycle  
SDA  
0.3 y V  
CC  
t
RESET  
RESET  
V /2  
CC  
t
REC  
t
w
Pn  
V /2  
CC  
t
RESET  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. The outputs are measured one at a time, with one transition per measurement.  
D. I/Os are configured as inputs.  
E. All parameters and waveforms are not applicable to all devices.  
Figure 14. Reset Load Circuits and Voltage Waveforms  
21  
Submit Documentation Feedback  
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
APPLICATION INFORMATION  
Figure 15 shows an application in which the PCA9535 can be used.  
Subsystem 1  
(e.g., Temperature  
Sensor)  
INT  
V
CC  
(5 V)  
Subsystem 2  
(e.g., Counter)  
24  
2 kW  
100 kW  
100 kW  
V
10 kW 10 kW  
10 kW 10 kW  
CC  
V
DD  
100 kW  
RESET  
A
22  
23  
4
P00  
SCL  
SDA  
INT  
SCL  
5
Master  
Controller  
P01  
P02  
P03  
SDA  
INT  
6
7
1
GND  
ENABLE  
8
9
P04  
P05  
B
PCA9535  
V
CC  
10  
Controlled Switch  
(e.g., CBT Device)  
P06  
11  
13  
14  
15  
16  
17  
18  
19  
20  
P07  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
3
A2  
2
ALARM  
A1  
A0  
Keypad  
Subsystem 3  
(e.g., Alarm)  
21  
GND  
12  
A. Device address is configured as 0100100 for this example.  
B. P00, P02, and P03 are configured as outputs.  
C. P01, P04–P07, and P10–P17 are configured as inputs.  
D. Pin numbers shown are for DB, DBQ, DGV, DW, and PW packages.  
Figure 15. Typical Application  
22  
Submit Documentation Feedback  
 
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
Minimizing ICC When I/O Is Used to Control LED  
When an I/O is used to control an LED, normally it is connected to VCC through a resistor as shown in Figure 15.  
Because the LED acts as a diode, when the LED is off, the I/O VIN is about 1.2 V less than VCC. The ICC  
parameter in Electrical Characteristics shows how ICC increases as VIN becomes lower than VCC. For  
battery-powered applications, it is essential that the voltage of I/O pins is greater than or equal to VCC, when the  
LED is off, to minimize current consumption.  
Figure 16 shows a high-value resistor in parallel with the LED. Figure 17 shows VCC less than the LED supply  
voltage by at least 1.2 V. Both of these methods maintain the I/O VIN at or above VCC and prevent additional  
supply-current consumption when the LED is off.  
V
CC  
LED  
100 kW  
V
CC  
Pn  
Figure 16. High-Value Resistor in Parallel With LED  
3.3 V  
5 V  
V
CC  
LED  
Pn  
Figure 17. Device Supplied by Lower Voltage  
23  
Submit Documentation Feedback  
 
 
PCA9535  
REMOTE 16-BIT I2C AND SMBus, LOW-POWER I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
www.ti.com  
SCPS129EAUGUST 2005REVISED FEBRUARY 2007  
THERMAL PAD MECHANICAL DATA  
RGE (S-PQFP-N24)  
24  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Feb-2007  
PACKAGING INFORMATION  
Orderable Device  
PCA9535DB  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SSOP  
DB  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PCA9535DBQR  
PCA9535DBQRG4  
PCA9535DBR  
PCA9535DGVR  
PCA9535DW  
SSOP/  
QSOP  
DBQ  
DBQ  
DB  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1YEAR  
no Sb/Br)  
SSOP/  
QSOP  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1YEAR  
no Sb/Br)  
SSOP  
TVSOP  
SOIC  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DGV  
DW  
DW  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PCA9535DWR  
PCA9535PW  
SOIC  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
QFN  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PCA9535PWE4  
PCA9535PWR  
PCA9535PWRE4  
PCA9535RGER  
PCA9535RHLR  
PW  
60 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
RGE  
RHL  
3000 Green (RoHS & CU NIPDAU Level-2-260C-1YEAR  
no Sb/Br)  
QFN  
1000  
TBD  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Feb-2007  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000  
DGV (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
24 PINS SHOWN  
0,23  
0,13  
M
0,07  
0,40  
24  
13  
0,16 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
0°ā8°  
0,75  
1
12  
0,50  
A
Seating Plane  
0,08  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
38  
48  
56  
DIM  
A MAX  
A MIN  
3,70  
3,50  
3,70  
3,50  
5,10  
4,90  
5,10  
4,90  
7,90  
7,70  
9,80  
9,60  
11,40  
11,20  
4073251/E 08/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.  
D. Falls within JEDEC: 24/48 Pins – MO-153  
14/16/20/56 Pins – MO-194  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
28 PINS SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,25  
0,09  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°ā8°  
0,95  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
14  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
6,90  
9,90  
12,30  
4040065 /E 12/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to  
discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete. All products are sold  
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent  
TI deems necessary to support this warranty. Except where mandated by government requirements, testing  
of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible  
for their products and applications using TI components. To minimize the risks associated with customer  
products and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent  
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,  
or process in which TI products or services are used. Information published by TI regarding third-party  
products or services does not constitute a license from TI to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or  
other intellectual property of the third party, or a license from TI under the patents or other intellectual  
property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.  
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not  
responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service  
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Interface  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Military  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Logic  
Power Mgmt  
Microcontrollers  
Low Power Wireless  
power.ti.com  
microcontroller.ti.com  
www.ti.com/lpw  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY