PCA9554DWR [TI]

REMOTE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS; 远程8位I2C和SMBus I / O扩展器,带有中断输出和配置寄存器
PCA9554DWR
型号: PCA9554DWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

REMOTE 8-BIT I2C AND SMBus I/O EXPANDER WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS
远程8位I2C和SMBus I / O扩展器,带有中断输出和配置寄存器

并行IO端口 微控制器和处理器 外围集成电路 光电二极管 输出元件 时钟
文件: 总36页 (文件大小:933K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Not Recommended for New Designs  
PCA9554  
www.ti.com ........................................................................................................................................................ SCPS128BJULY 2006REVISED AUGUST 2008  
REMOTE 8-BIT I2C AND SMBus I/O EXPANDER  
WITH INTERRUPT OUTPUT AND CONFIGURATION REGISTERS  
1
FEATURES  
I2C to Parallel Port Expander  
Power-Up With All Channels Configured as  
Inputs  
Open-Drain Active-Low Interrupt Output  
No Glitch On Power Up  
Operating Power-Supply Voltage Range of  
2.3 V to 5.5 V  
Latched Outputs With High-Current Drive  
Maximum Capability for Directly Driving LEDs  
5-V Tolerant I/Os  
400-kHz Fast I2C Bus  
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
Three Hardware Address Pins Allow up to  
Eight Devices on the I2C/SMBus  
ESD Protection Exceeds JESD 22  
2000-V Human-Body Model (A114-A)  
200-V Machine Model (A115-A)  
Input/Output Configuration Register  
Polarity Inversion Register  
Internal Power-On Reset  
1000-V Charged-Device Model (C101)  
DB, DBQ, DGV, DW, OR PW PACKAGE  
(TOP VIEW)  
RGV PACKAGE  
(TOP VIEW)  
RGT PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A0  
A1  
VCC  
SDA  
SCL  
INT  
P7  
16 15 14 13  
16 15 14 13  
12  
1
12  
11  
10  
A2  
P0  
P1  
SCL  
INT  
P7  
1
2
3
4
A2  
P0  
P1  
SCL  
INT  
A2  
P0  
P1  
P2  
2
3
4
11  
10 P7  
9
P2  
P6  
P6  
P5  
9
P2  
P6  
5
6
7
8
P3  
5
6
7
8
GND  
P4  
DESCRIPTION/ORDERING INFORMATION  
This 8-bit I/O expander for the two-line bidirectional bus (I2C) is designed for 2.3-V to 5.5-V VCC operation. It  
provides general-purpose remote I/O expansion for most microcontroller families via the I2C interface [serial clock  
(SCL), serial data (SDA)].  
The PCA9554 consists of one 8-bit Configuration (input or output selection), Input, Output, and Polarity Inversion  
(active high or active low) registers. At power on, the I/Os are configured as inputs with a weak pullup to VCC  
.
However, the system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration  
bits. The data for each input or output is kept in the corresponding Input or Output register. The polarity of the  
Input Port register can be inverted with the Polarity Inversion register. All registers can be read by the system  
master.  
The system master can reset the PCA9554 in the event of a timeout or other improper operation by utilizing the  
power-on reset feature, which puts the registers in their default state and initializes the I2C/SMBus state machine.  
The PCA9554 open-drain interrupt (INT) output is activated when any input state differs from its corresponding  
Input Port register state and is used to indicate to the system master that an input state has changed.  
INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the  
remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via  
the I2C bus. Thus, the PCA9554 can remain a simple slave device.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
UNLESS OTHERWISE NOTED this document contains  
Copyright © 2006–2008, Texas Instruments Incorporated  
PRODUCTION DATA information current as of publication date.  
Products conform to specifications per the terms of Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
PCA9554  
Not Recommended for New Designs  
SCPS128BJULY 2006REVISED AUGUST 2008 ........................................................................................................................................................ www.ti.com  
DESCRIPTION/ORDERING INFORMATION (CONTINUED)  
The device's outputs (latched) have high-current drive capability for directly driving LEDs and low current  
consumption.  
Three hardware pins (A0, A1, and A2) are used to program and vary the fixed I2C address and allow up to eight  
devices to share the same I2C bus or SMBus.  
The PCA9554 is pin-to-pin and I2C address compatible with the PCF8574. However, software changes are  
required, due to the enhancements in the PCA9554 over the PCF8574.  
The PCA9554 and PCA9554A are identical except for their fixed I2C address. This allows for up to 16 of these  
devices (eight of each) on the same I2C/SMBus.  
ORDERING INFORMATION  
TA  
PACKAGE(1)(2)  
ORDERABLE PART NUMBER  
PCA9554RGTR  
PCA9554RGVR  
PCA9554DBQR  
PCA9554DW  
TOP-SIDE MARKING  
PREVIEW  
QFN – RGT  
QFN – RGV  
QSOP – DBQ  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Tube of 40  
PREVIEW  
PD554  
SOIC – DW  
SSOP – DB  
PCA9554  
PD554  
Reel of 2000  
Tube of 80  
PCA9554DWR  
–40°C to 85°C  
PCA9554DB  
Reel of 2000  
Tube of 90  
PCA9554DBR  
PCA9554PW  
TSSOP – PW  
TVSOP – DGV  
PD554  
PD554  
Reel of 2000  
Reel of 2000  
PCA9554PWR  
PCA9554DGVR  
(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
2
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
www.ti.com ........................................................................................................................................................ SCPS128BJULY 2006REVISED AUGUST 2008  
TERMINAL FUNCTIONS  
NO.  
QSOP (DBQ)  
SOIC (DW),  
SSOP (DB),  
TSSOP (PW), AND  
TVSOP (DGV)  
NAME  
DESCRIPTION  
QFN (RGT) AND  
QFN (RGV)  
1
2
15  
16  
1
A0  
A1  
Address input. Connect directly to VCC or ground.  
Address input. Connect directly to VCC or ground.  
Address input. Connect directly to VCC or ground.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
Ground  
3
A2  
4
2
P0  
5
3
P1  
6
4
P2  
7
5
P3  
8
6
GND  
P4  
9
7
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
Interrupt output. Connect to VCC through a pullup resistor.  
Serial clock bus. Connect to VCC through a pullup resistor.  
Serial data bus. Connect to VCC through a pullup resistor.  
Supply voltage  
10  
11  
12  
13  
14  
15  
16  
8
P5  
9
P6  
10  
11  
12  
13  
14  
P7  
INT  
SCL  
SDA  
VCC  
FUNCTIONAL BLOCK DIAGRAM  
13  
Interrupt  
Logic  
LP Filter  
INT  
1
A0  
2
A1  
3
A2  
14  
P7−P0  
SCL  
2
Input  
Filter  
I C Bus  
Control  
Shift  
Register  
I/O  
Port  
15  
8 Bits  
SDA  
Write Pulse  
Read Pulse  
16  
V
Power-On  
Reset  
CC  
8
GND  
A. Pin numbers shown are for the DB, DBQ, DGV, DW, N, or PW package.  
B. All I/Os are set to inputs at reset.  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
SCPS128BJULY 2006REVISED AUGUST 2008 ........................................................................................................................................................ www.ti.com  
Simplified Schematic of P0 to P7  
Data From  
Shift Register  
Output Port  
Register Data  
Configuration  
Register  
V
CC  
Data From  
Shift Register  
Q1  
D
Q
FF  
K
100 kW  
Write Configuration  
Pulse  
D
C
Q
C
Q
FF  
P0 to P7  
GND  
Write Pulse  
Q
K
Q2  
Output Port  
Register  
Input Port  
Register  
Input Port  
Register Data  
D
Q
FF  
Read Pulse  
C
K
Q
INT  
Data From  
Shift Register  
Polarity  
Register Data  
D
C
Q
FF  
Write Polarity  
Pulse  
Q
K
Polarity  
Inversion  
Register  
A. At power-on reset, all registers return to default values.  
I/O Port  
When an I/O is configured as an input, FETs Q1 and Q2 are off, which creates a high-impedance input with a  
weak pullup (100 ktyp) to VCC. The input voltage may be raised above VCC to a maximum of 5.5 V.  
If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the output port register. In  
this case, there are low-impedance paths between the I/O pin and either VCC or GND. The external voltage  
applied to this I/O pin should not exceed the recommended levels for proper operation.  
I2C Interface  
The bidirectional I2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be  
connected to a positive supply through a pullup resistor when connected to the output stages of a device. Data  
transfer may be initiated only when the bus is not busy.  
I2C communication with this device is initiated by a master sending a start condition, a high-to-low transition on  
the SDA input/output while the SCL input is high (see Figure 1). After the start condition, the device address byte  
is sent, MSB first, including the data direction bit (R/W).  
After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA  
input/output during the high of the ACK-related clock pulse. The address inputs (A0–A2) of the slave device must  
not be changed between the start and the stop conditions.  
On the I2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control  
commands (start or stop) (see Figure 2).  
4
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
www.ti.com ........................................................................................................................................................ SCPS128BJULY 2006REVISED AUGUST 2008  
A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the  
master (see Figure 1).  
Any number of data bytes can be transferred from the transmitter to the receiver between the start and the stop  
conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before  
the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK  
clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see  
Figure 3). When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly,  
the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold  
times must be met to ensure proper operation.  
A master receiver will signal an end of data to the slave transmitter by not generating an acknowledge (NACK)  
after the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line  
high. In this event, the transmitter must release the data line to enable the master to generate a Stop condition.  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
Figure 1. Definition of Start and Stop Conditions  
SDA  
SCL  
Data Line  
Stable;  
Data Valid  
Change  
of Data  
Allowed  
Figure 2. Bit Transfer  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): PCA9554  
 
PCA9554  
Not Recommended for New Designs  
SCPS128BJULY 2006REVISED AUGUST 2008 ........................................................................................................................................................ www.ti.com  
Data Output  
by Transmitter  
NACK  
Data Output  
by Receiver  
ACK  
SCL From  
1
2
8
9
Master  
S
Start  
Clock Pulse for  
Condition  
Acknowledgment  
Figure 3. Acknowledgment on the I2C Bus  
Interface Definition  
BIT  
BYTE  
7 (MSB)  
6
H
5
L
4
L
3
2
1
0 (LSB)  
R/W  
I2C slave address  
Px I/O data bus  
L
A2  
P3  
A1  
P2  
A0  
P1  
P7  
P6  
P5  
P4  
P0  
6
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
www.ti.com ........................................................................................................................................................ SCPS128BJULY 2006REVISED AUGUST 2008  
Device Address  
Figure 4 shows the address byte for the PCA9554.  
Slave Address  
0
0
1
0
A2 A1  
R/W  
A0  
Hardware  
Selectable  
Fixed  
Figure 4. PCA9554 Address  
Address Reference  
INPUTS  
I2C BUS SLAVE ADDRESS  
A2  
L
A1  
L
A0  
L
32 (decimal), 20 (hexadecimal)  
33 (decimal), 21 (hexadecimal)  
34 (decimal), 22 (hexadecimal)  
35 (decimal), 23 (hexadecimal)  
36 (decimal), 24 (hexadecimal)  
37 (decimal), 25 (hexadecimal)  
38 (decimal), 26 (hexadecimal)  
39 (decimal), 27 (hexadecimal)  
L
L
H
L
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
The last bit of the slave address defines the operation (read or write) to be performed. When it is high (1), a read  
is selected, while a low (0) selects a write operation.  
Control Register and Command Byte  
Following the successful acknowledgment of the address byte, the bus master sends a command byte that is  
stored in the control register in the PCA9554. Two bits of this command byte state the operation (read or write)  
and the internal register (input, output, polarity inversion or configuration) that will be affected. This register can  
be written or read through the I2C bus. The command byte is sent only during a write transmission.  
Once a command byte has been sent, the register that was addressed continues to be accessed by reads until a  
new command byte has been sent.  
0
0
0
0
0
0
B1 B0  
Figure 5. Control Register Bits  
Command Byte  
CONTROL REGISTER BITS  
COMMAND BYTE  
(HEX)  
POWER-UP  
DEFAULT  
REGISTER  
PROTOCOL  
B1  
0
B0  
0
0x00  
0x01  
0x02  
0x03  
Input Port Register  
Output Port Register  
Read byte  
XXXX XXXX  
1111 1111  
0000 0000  
1111 1111  
0
1
Read/write byte  
Read/write byte  
Read/write byte  
1
0
Polarity Inversion Register  
Configuration Register  
1
1
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): PCA9554  
 
PCA9554  
Not Recommended for New Designs  
SCPS128BJULY 2006REVISED AUGUST 2008 ........................................................................................................................................................ www.ti.com  
Register Descriptions  
The Input Port register (register 0) reflects the incoming logic levels of the pins, regardless of whether the pin is  
defined as an input or an output by the Configuration register. It only acts on read operation. Writes to these  
registers have no effect. The default value, X, is determined by the externally applied logic level.  
Before a read operation, a write transmission is sent with the command byte to indicate to the I2C device that the  
Input Port register will be accessed next.  
Register 0 (Input Port Register) Table  
BIT  
I7  
X
I6  
X
I5  
X
I4  
X
I3  
X
I2  
X
I1  
X
I0  
X
DEFAULT  
The Output Port register (register 1) shows the outgoing logic levels of the pins defined as outputs by the  
Configuration register. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this  
register reflect the value that is in the flip-flop controlling the output selection, not the actual pin value.  
Register 1 (Output Port Register) Table  
BIT  
O7  
1
O6  
1
O5  
1
O4  
1
O3  
1
O2  
1
O1  
1
O0  
1
DEFAULT  
The Polarity Inversion register (register 2) allows polarity inversion of pins defined as inputs by the Configuration  
register. If a bit in this register is set (written with 1), the corresponding port pin polarity is inverted. If a bit in this  
register is cleared (written with a 0), the corresponding port pin's original polarity is retained.  
Register 2 (Polarity Inversion Register) Table  
BIT  
N7  
0
N6  
0
N5  
0
N4  
0
N3  
0
N2  
0
N1  
0
N0  
0
DEFAULT  
The Configuration register (register 3) configures the directions of the I/O pins. If a bit in this register is set to 1,  
the corresponding port pin is enabled as an input with high impedance output driver. If a bit in this register is  
cleared to 0, the corresponding port pin is enabled as an output.  
Register 3 (Configuration Register) Table  
BIT  
C7  
1
C6  
1
C5  
1
C4  
1
C3  
1
C2  
1
C1  
1
C0  
1
DEFAULT  
Power-On Reset  
When power (from 0 V) is applied to VCC, an internal power-on reset holds the PCA9554 in a reset condition until  
VCC has reached VPOR. At that point, the reset condition is released and the PCA9554 registers and I2C/SMBus  
state machine initialize to their default states. After that, VCC must be lowered to below 0.2 V and then back up to  
the operating voltage for a power-reset cycle.  
8
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
www.ti.com ........................................................................................................................................................ SCPS128BJULY 2006REVISED AUGUST 2008  
Interrupt Output (INT)  
An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time tiv, the signal  
INT is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original setting,  
and data is read from the port that generated the interrupt or in a Stop event. Resetting occurs in the read mode  
at the acknowledge (ACK) bit or not acknowledge (NACK) bit after the rising edge of the SCL signal. Interrupts  
that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt  
during this pulse. Each change of the I/Os after resetting is detected and is transmitted as INT.  
Reading from or writing to another device does not affect the interrupt circuit, and a pin configured as an output  
cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur if the  
state of the pin does not match the contents of the Input Port register.  
INT has an open-drain structure and requires a pullup resistor to VCC  
.
Bus Transactions  
Data is exchanged between the master and PCA9554 through write and read commands.  
Writes  
Data is transmitted to the PCA9554 by sending the device address and setting the least-significant bit to a logic 0  
(see Figure 4 for device address). The command byte is sent after the address and determines which register  
receives the data that follows the command byte. There is no limitation on the number of data bytes sent in one  
write transmission.  
SCL  
1
2
3
4
5
6
7
8
9
Slave Address  
Command Byte  
Data to Port  
Data 1  
S
0
1
0
0 A2 A1 A0  
0
A
0
0
0
0
0
0
0
1
A
A
P
SDA  
ACK From Slave  
ACK From Slave  
R/W ACK From Slave  
Start Condition  
Write to Port  
Data Out  
From Port  
Data 1 Valid  
t
pv  
Figure 6. Write to Output Port Register  
<br/>  
SCL  
1
2
3
4
5
6
7
8
0
9
Slave Address  
Command Byte  
Data to Register  
Data  
SDA  
S
0
1
0
0
A2 A1 A0  
A
0
0
0
0
0
0
1
1/0  
A
A
P
Start Condition  
R/W ACK From Slave  
ACK From Slave  
ACK From Slave  
Data to  
Register  
Figure 7. Write to Configuration or Polarity Inversion Registers  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
SCPS128BJULY 2006REVISED AUGUST 2008 ........................................................................................................................................................ www.ti.com  
Reads  
The bus master first must send the PCA9554 address with the least-significant bit set to a logic 0 (see Figure 4  
for device address). The command byte is sent after the address and determines which register is accessed.  
After a restart, the device address is sent again but, this time, the least-significant bit is set to a logic 1. Data  
from the register defined by the command byte then is sent by the PCA9554 (see Figure 8 and Figure 9). After a  
restart, the value of the register defined by the command byte matches the register being accessed when the  
restart occurred. Data is clocked into the register on the rising edge of the ACK clock pulse. There is no limitation  
on the number of data bytes received in one read transmission, but when the final byte is received, the bus  
master must not acknowledge the data  
ACK From  
Master  
ACK From  
Slave  
ACK From  
Slave  
ACK From  
Slave  
Data from Register  
Data  
Slave Address  
Slave Address  
Command Byte  
A
S
A
0
1
0
0
A2 A1 A0  
1
A
S
0
1
0
0
A2 A1 A0 0  
A
R/W  
R/W  
NACK From  
Master  
Data from Register  
Data  
P
NA  
Last Byte  
Figure 8. Read From Register  
<br/>  
1
2
3
4
5
6
7
8
9
SCL  
SDA  
Data From Port  
Data 1  
Slave Address  
Data From Port  
Data 4  
S
0
1
0
0
A2 A1 A0  
R/W  
1
A
P
A
NA  
Start  
Condition  
NACK From  
Master  
ACK From  
Slave  
ACK From  
Master  
Stop  
Condition  
Read From  
Port  
Data Into  
Port  
Data 2  
Data 3  
Data 4  
Data 5  
t
ph  
t
ps  
INT  
t
iv  
t
ir  
A. This figure assumes the command byte has previously been programmed with 00h.  
B. Transfer of data can be stopped at any moment by a Stop condition.  
C. This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address  
call and actual data transfer from P port. See Figure 8 for these details.  
Figure 9. Read From Input Port Register  
10  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9554  
 
 
PCA9554  
Not Recommended for New Designs  
www.ti.com ........................................................................................................................................................ SCPS128BJULY 2006REVISED AUGUST 2008  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
–0.5  
MAX UNIT  
VCC  
VI  
Supply voltage range  
Input voltage range(2)  
Output voltage range(2)  
6
6
V
V
VO  
IIK  
6
V
Input clamp current  
VI < 0  
–20  
–20  
±20  
50  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IOK  
IIOK  
IOL  
IOH  
Output clamp current  
VO < 0  
Input/output clamp current  
Continuous output low current  
Continuous output high current  
Continuous current through GND  
Continuous current through VCC  
VO < 0 or VO > VCC  
VO = 0 to VCC  
VO = 0 to VCC  
–50  
–250  
160  
82  
ICC  
DB package  
DBQ package  
DGV package  
DW package  
N package  
90  
120  
57  
θJA  
Package thermal impedance(3)  
°C/W  
67  
PW package  
RGT package  
RGV package  
108  
TBD  
TBD  
150  
Tstg  
Storage temperature range  
–65  
°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The package thermal impedance is calculated in accordance with JESD 51-7.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
2.3  
MAX  
5.5  
UNIT  
VCC  
VIH  
Supply voltage  
V
SCL, SDA  
A2–A0, P7–P0  
SCL, SDA  
A2–A0, P7–P0  
P7–P0  
0.7 × VCC  
2
5.5  
High-level input voltage  
V
V
5.5  
–0.5  
0.3 × VCC  
0.8  
VIL  
Low-level input voltage  
–0.5  
IOH  
IOL  
TA  
High-level output current  
Low-level output current  
Operating free-air temperature  
–10  
mA  
mA  
°C  
P7–P0  
25  
–40  
85  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
SCPS128BJULY 2006REVISED AUGUST 2008 ........................................................................................................................................................ www.ti.com  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
2.3 V to 5.5 V  
VPOR  
MIN  
TYP(1)  
MAX UNIT  
VIK  
Input diode clamp voltage II = –18 mA  
–1.2  
V
VPOR  
Power-on reset voltage  
VI = VCC or GND, IO = 0  
1.5  
1.65  
V
2.3 V  
1.8  
2.6  
3.1  
4.1  
1.7  
2.5  
3
3 V  
IOH = –8 mA  
4.5 V  
4.75 V  
2.3 V  
P-port high-level output  
voltage(2)  
VOH  
V
3 V  
IOH = –10 mA  
VOL = 0.4 V  
VOL = 0.5 V  
4.5 V  
4.75 V  
2.3 V to 5.5 V  
2.3 V  
4
SDA  
3
8
10  
14  
17  
35  
13  
19  
24  
45  
10  
8
3 V  
8
4.5 V  
8
4.75 V  
2.3 V  
8
IOL  
P port(3)  
mA  
10  
10  
10  
10  
3
3 V  
VOL = 0.7 V  
4.5 V  
4.75 V  
2.3 V to 5.5 V  
INT  
VOL = 0.4 V  
SCL, SDA  
A2–A0  
P port  
P port  
±1  
±1  
II  
VI = VCC or GND  
2.3 V to 5.5 V  
µA  
IIH  
IIL  
VI = VCC  
2.3 V to 5.5 V  
2.3 V to 5.5 V  
5.5 V  
1
µA  
µA  
VI = GND  
–100  
175  
90  
104  
50  
VI = VCC, IO = 0, I/O = inputs,  
fscl = 400 kHz, No load  
3.6 V  
2.7 V  
20  
65  
Operating mode  
5.5 V  
60  
150  
40  
VI = VCC, IO = 0, I/O = inputs,  
fscl = 100 kHz, No load  
3.6 V  
15  
2.7 V  
8
20  
ICC  
µA  
5.5 V  
450  
300  
225  
0.25  
0.2  
0.1  
700  
600  
500  
1
VI = GND, IO = 0, I/O = inputs,  
fscl = 0 kHz, No load  
3.6 V  
2.7 V  
Standby mode  
5.5 V  
VI = VCC, IO = 0, I/O = inputs,  
fscl = 0 kHz, No load  
3.6 V  
0.9  
0.8  
2.7 V  
One input at VCC – 0.6 V,  
Other inputs at VCC or GND  
2.3 V to 5.5 V  
1.5  
1
Additional current in  
standby mode  
ΔICC  
mA  
Every LED I/O at VI = 4.3 V,  
fscl = 0 kHz  
5.5 V  
Ci  
SCL  
VI = VCC or GND  
2.3 V to 5.5 V  
4
5.5  
8
5
6.5  
9.5  
pF  
pF  
SDA  
P port  
Cio  
VIO = VCC or GND  
2.3 V to 5.5 V  
(1) All typical values are at nominal supply voltage (2.5-V, 3.3-V, or 5-V VCC) and TA = 25°C.  
(2) The total current sourced by all I/Os must be limited to 85 mA.  
(3) Each I/O must be externally limited to a maximum of 25 mA, and the P port (P0 to P7) must be limited to a maximum current of 200 mA.  
12  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
www.ti.com ........................................................................................................................................................ SCPS128BJULY 2006REVISED AUGUST 2008  
I2C INTERFACE TIMING REQUIREMENTS  
over operating free-air temperature range (unless otherwise noted) (see Figure 10)  
STANDARD MODE  
I2C BUS  
FAST MODE  
I2C BUS  
UNIT  
MIN  
0
MAX  
MIN  
0
MAX  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
I2C clock high time  
I2C clock low time  
I2C spike time  
I2C serial-data setup time  
I2C serial-data hold time  
I2C input rise time  
I2C input fall time  
100  
400  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
4
0.6  
1.3  
4.7  
50  
50  
tsds  
tsdh  
ticr  
250  
0
100  
0
(1)  
1000  
300  
20 + 0.1Cb  
300  
300  
300  
(1)  
(1)  
ticf  
20 + 0.1Cb  
20 + 0.1Cb  
tocf  
tbuf  
tsts  
tsth  
tsps  
I2C output fall time  
10-pF to 400-pF bus  
300  
I2C bus free time between stop and start  
I2C start or repeated start condition setup  
I2C start or repeated start condition hold  
I2C stop condition setup  
4.7  
4.7  
4
1.3  
0.6  
0.6  
0.6  
4
SCL low to SDA output  
valid  
tvd(data)  
Valid data time  
300  
0.3  
50  
ns  
ACK signal from SCL low  
to SDA (out) low  
tvd(ack)  
Cb  
Valid data time of ACK condition  
I2C bus capacitive load  
3.45  
400  
0.1  
0.9  
µs  
400  
ns  
(1) Cb = Total capacitive load of one bus in pF  
SWITCHING CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted) (see Figure 11 and Figure 12)  
STANDARD MODE  
FAST MODE  
I2C BUS  
I2C BUS  
MIN  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MAX  
4
MIN  
MAX  
tiv  
Interrupt valid time  
Interrupt reset delay time  
Output data valid  
P port  
SCL  
INT  
INT  
4
4
µs  
µs  
ns  
ns  
µs  
tir  
4
tpv  
tps  
tph  
SCL  
P7–P0  
SCL  
200  
200  
Input data setup time  
Input data hold time  
P port  
P port  
100  
1
100  
1
SCL  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
SCPS128BJULY 2006REVISED AUGUST 2008 ........................................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
TEMPERATURE  
QUIESCENT SUPPLY CURRENT  
vs  
TEMPERATURE  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VCC = 5 V  
VCC = 5 V  
VCC = 3.3 V  
fSCL = 400 kHz  
I/Os unloaded  
VCC = 3.3 V  
VCC = 2.5 V  
VCC = 2.5 V  
SCL = VCC  
60  
0
0
-40  
-15  
10  
35  
85  
-40  
-15  
10  
35  
60  
85  
TA – Free-Air Temperature – °C  
TA – Free-Air Temperature – °C  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs  
NUMBER OF I/Os HELD LOW  
70  
60  
50  
40  
30  
20  
10  
0
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
fSCL = 400 kHz  
I/Os unloaded  
VCC = 5 V  
TA = –40°C  
TA = 25°C  
TA = 85°C  
0
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
0
1
2
3
4
5
6
7
8
VCC – Supply Voltage – V  
Number of I/Os Held Low  
14  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
www.ti.com ........................................................................................................................................................ SCPS128BJULY 2006REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS (continued)  
I/O OUTPUT LOW VOLTAGE  
I/O SINK CURRENT  
vs  
OUTPUT LOW VOLTAGE  
vs  
TEMPERATURE  
30  
25  
20  
15  
10  
5
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
VCC = 2.5 V  
VCC = 2.5 V, ISINK = 10 mA  
TA = –40°C  
TA = 25°C  
VCC = 5 V, ISINK = 10 mA  
TA = 85°C  
VCC = 2.5 V, ISINK = 1 mA  
VCC = 5 V, ISINK = 1 mA  
50  
25  
0
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
-40  
-15  
10  
35  
60  
85  
VOL – Output Low Voltage – V  
T
A – Free-Air Temperature – °C  
I/O SINK CURRENT  
vs  
OUTPUT LOW VOLTAGE  
I/O SINK CURRENT  
vs  
OUTPUT LOW VOLTAGE  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
VCC = 5 V  
VCC = 3.3 V  
TA = –40°C  
TA = –40°C  
TA = 25°C  
TA = 25°C  
TA = 85°C  
TA = 85°C  
0
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
VOL – Output Low Voltage – V  
VOL – Output Low Voltage – V  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
SCPS128BJULY 2006REVISED AUGUST 2008 ........................................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
I/O OUTPUT HIGH VOLTAGE  
I/O SOURCE CURRENT  
vs  
OUTPUT HIGH VOLTAGE  
vs  
TEMPERATURE  
35  
30  
25  
20  
15  
10  
5
275  
250  
225  
200  
175  
150  
125  
100  
75  
VCC = 2.5 V  
VCC = 2.5 V, IOL = 10 mA  
TA = –40°C  
TA = 25°C  
VCC = 5 V, IOL = 10 mA  
VCC = 2.5 V, IOL = 1 mA  
TA = 85°C  
VCC = 5 V, IOL = 1 mA  
50  
25  
0
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
-40  
-15  
10  
35  
60  
85  
(VCC – VOH) – Output High Voltage – V  
TA – Free-Air Temperature – °C  
I/O SOURCE CURRENT  
vs  
OUTPUT HIGH VOLTAGE  
I/O SOURCE CURRENT  
vs  
OUTPUT HIGH VOLTAGE  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VCC = 3.3 V  
VCC = 5 V  
TA = –40°C  
TA = –40°C  
TA = 25°C  
TA = 25°C  
TA = 85°C  
TA = 85°C  
0
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
(VCC – VOH) – Output High Voltage – V  
(VCC – VOH) – Output High Voltage – V  
16  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
www.ti.com ........................................................................................................................................................ SCPS128BJULY 2006REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS (continued)  
OUTPUT HIGH VOLTAGE  
vs  
SUPPLY VOLTAGE  
6
TA = 25°C  
5
4
IOH = –8 mA  
3
IOH = –10 mA  
2
1
0
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VCC – Supply Voltage – V  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
SCPS128BJULY 2006REVISED AUGUST 2008 ........................................................................................................................................................ www.ti.com  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
R
L
= 1 k  
SDA  
DUT  
C
L
= 50 pF  
(see Note A)  
SDA LOAD CONFIGURATION  
Three Bytes for Complete  
Device Programming  
Stop  
Condition Condition  
(P) (S)  
Start  
Address  
Bit 7  
(MSB)  
R/W  
Bit 0  
(LSB)  
Data  
Bit 07  
(MSB)  
Data  
Bit 10 Condition  
(LSB)  
Stop  
Address  
Bit 6  
Address  
Bit 1  
ACK  
(A)  
(P)  
t
scl  
t
sch  
0.7 × V  
0.3 × V  
CC  
SCL  
SDA  
CC  
t
icr  
t
sts  
t
PHL  
t
icf  
t
buf  
t
t
sp  
PLH  
0.7 × V  
0.3 × V  
CC  
CC  
t
icf  
t
icr  
t
sdh  
t
sps  
t
sth  
t
sds  
Repeat  
Start  
Condition  
Stop  
Condition  
Start or  
Repeat  
Start  
Condition  
VOLTAGE WAVEFORMS  
BYTE  
1
DESCRIPTION  
2
I C address  
2, 3  
P-port data  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 10. I2C Interface Load Circuit and Voltage Waveforms  
18  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
www.ti.com ........................................................................................................................................................ SCPS128BJULY 2006REVISED AUGUST 2008  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
CC  
R
L
= 4.7 kΩ  
INT  
DUT  
C
L
= 100 pF  
(see Note A)  
INTERRUPT LOAD CONFIGURATION  
ACK  
From Slave  
ACK  
From Slave  
Start  
Condition  
8 Bits  
(One Data Bytes)  
From Port  
R/W  
Slave Address  
Data From Port  
Data 2  
S
0
1
0
0
A2 A1 A0  
1
A
Data 1  
A
1
P
1
2
3
4
5
6
7
8
A
A
t
ir  
B
B
t
ir  
INT  
A
t
iv  
t
sps  
A
Data  
Into  
Port  
Address  
Data 1  
Data 2  
0.7 ×V  
0.3 ×V  
CC  
CC  
0.7 × V  
0.3 ×V  
CC  
SCL  
R/W  
INT  
A
CC  
t
iv  
t
ir  
0.7 ×V  
1.5 V  
0.3 ×V  
0.7 ×V  
0.3 ×V  
CC  
CC  
CC  
INT  
P
n
CC  
View A−A  
A. CL includes probe and jig capacitance.  
View B−B  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 11. Interrupt Load Circuit and Voltage Waveforms  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
SCPS128BJULY 2006REVISED AUGUST 2008 ........................................................................................................................................................ www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
Pn  
500 W  
2 ×V  
DUT  
CC  
C
= 50 pF  
L
500 W  
(see Note A)  
P-PORT LOAD CONFIGURATION  
0.7 × V  
CC  
SCL  
SDA  
P0  
A
P7  
0.3 ×V  
CC  
Slave  
ACK  
t
pv  
(see Note B)  
P
n
Last Stable Bit  
Unstable  
Data  
WRITE MODE (R/W = 0)  
0.7 ×V  
0.3 ×V  
CC  
CC  
SCL  
P0  
A
P7  
t
ps  
t
ph  
0.7 ×V  
1.5 V  
0.3 ×V  
CC  
CC  
P
n
READ MODE (R/W = 1)  
A. CL includes probe and jig capacitance.  
B. tpv is measured from 0.7 × VCC on SCL to 50% I/O pin output.  
C. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
D. The outputs are measured one at a time, with one transition per measurement.  
E. All parameters and waveforms are not applicable to all devices.  
Figure 12. P-Port Load Circuit and Voltage Waveforms  
20  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
www.ti.com ........................................................................................................................................................ SCPS128BJULY 2006REVISED AUGUST 2008  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
CC  
R
L
= 1 kΩ  
Pn  
500 W  
2 × V  
SDA  
DUT  
CC  
DUT  
C
= 50 pF  
L
500 W  
C
L
= 50 pF  
(see Note A)  
(see Note A)  
SDA LOAD CONFIGURATION  
P-PORT LOAD CONFIGURATION  
Start  
SCL  
ACK or Read Cycle  
SDA  
0.3 y V  
CC  
t
RESET  
RESET  
V /2  
CC  
t
REC  
t
w
Pn  
V /2  
CC  
t
RESET  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 13. Reset Load Circuits and Voltage Waveforms  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): PCA9554  
PCA9554  
Not Recommended for New Designs  
SCPS128BJULY 2006REVISED AUGUST 2008 ........................................................................................................................................................ www.ti.com  
APPLICATION INFORMATION  
Figure 14 shows an application in which the PCA9554 can be used.  
V
CC  
100 kW  
(y3)  
(5 V)  
2 kW  
10 kW  
10 kW  
10 kW  
V
CC  
V
CC  
Subsystem 1  
(e.g., temperature sensor)  
SDA  
SCL  
INT  
SDA  
P0  
P1  
Master  
SCL  
INT  
Controller  
GND  
INT  
P2  
P3  
RESET  
Subsystem 2  
(e.g., counter)  
PCA9554  
P4  
A
P5  
P6  
P7  
Controlled Device  
(e.g., CBT device)  
A2  
ENABLE  
A1  
A0  
B
GND  
ALARM  
Subsystem 3  
(e.g., alarm system)  
V
CC  
A. Device address is configured as 0100000 for this example.  
B. P0, P2, and P3 are configured as outputs.  
C. P1, P4, and P5 are configured as inputs.  
D. P6 and P7 are not used and and have internal 100-kpullup resistors to protect them from floating.  
Figure 14. Typical Application  
22  
Submit Documentation Feedback  
Copyright © 2006–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9554  
 
PCA9554  
Not Recommended for New Designs  
www.ti.com ........................................................................................................................................................ SCPS128BJULY 2006REVISED AUGUST 2008  
Minimizing ICC When I/Os Control LEDs  
When the I/Os are used to control LEDs, they are normally connected to VCC through a resistor as shown in  
Figure 14. The LED acts as a diode, so when the LED is off, the I/O VIN is about 1.2 V less than VCC. ΔICC in  
Electrical Characteristics shows how ICC increases as VIN becomes lower than VCC  
.
For battery-powered applications, it is essential that the voltage of I/O pins is greater than or equal to VCC when  
the LED is off to minimize current consumption. Figure 15 shows a high-value resistor in parallel with the LED.  
Figure 16 shows VCC less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O  
VIN at or above VCC and prevent additional supply-current consumption when the LED is off.  
V
CC  
LED  
100 kW  
V
CC  
LEDx  
Figure 15. High-Value Resistor in Parallel With LED  
5 V  
3.3 V  
LED  
V
CC  
LEDx  
Figure 16. Device Supplied by a Lower Voltage  
Copyright © 2006–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): PCA9554  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-May-2013  
PACKAGING INFORMATION  
Orderable Device  
PCA9554DB  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
NRND  
SSOP  
SSOP  
DB  
16  
16  
80  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
PD554  
PCA9554DBG4  
NRND  
DB  
80  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
-40 to 85  
PD554  
PCA9554DBQ  
PCA9554DBQR  
PCA9554DBR  
NRND  
NRND  
NRND  
SSOP  
SSOP  
SSOP  
DBQ  
DBQ  
DB  
16  
16  
16  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
-40 to 85  
PD554  
PD554  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
PCA9554DBRG4  
NRND  
SSOP  
DB  
16  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
PD554  
PCA9554DGV  
NRND  
NRND  
TVSOP  
TVSOP  
DGV  
DGV  
16  
16  
TBD  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
PCA9554DGVR  
2000  
2000  
40  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
PD554  
PCA9554DGVRG4  
PCA9554DW  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
TVSOP  
SOIC  
DGV  
DW  
DW  
DW  
DW  
PW  
PW  
PW  
PW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
PD554  
Green (RoHS  
& no Sb/Br)  
PCA9554  
PCA9554  
PCA9554  
PCA9554  
PD554  
PCA9554DWG4  
PCA9554DWR  
PCA9554DWRG4  
PCA9554PW  
SOIC  
40  
Green (RoHS  
& no Sb/Br)  
SOIC  
2000  
2000  
90  
Green (RoHS  
& no Sb/Br)  
SOIC  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
Green (RoHS  
& no Sb/Br)  
PCA9554PWG4  
PCA9554PWR  
PCA9554PWRG4  
90  
Green (RoHS  
& no Sb/Br)  
PD554  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
PD554  
Green (RoHS  
& no Sb/Br)  
PD554  
PCA9554RGTR  
PCA9554RGVR  
NRND  
NRND  
QFN  
RGT  
RGV  
16  
16  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
VQFN  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-May-2013  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PCA9554DBR  
PCA9554DGVR  
PCA9554DWR  
PCA9554PWR  
SSOP  
TVSOP  
SOIC  
DB  
DGV  
DW  
PW  
16  
16  
16  
16  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
16.4  
12.4  
16.4  
12.4  
8.2  
6.8  
6.6  
4.0  
2.5  
1.6  
2.7  
1.6  
12.0  
8.0  
16.0  
12.0  
16.0  
12.0  
Q1  
Q1  
Q1  
Q1  
10.75 10.7  
6.9 5.6  
12.0  
8.0  
TSSOP  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
PCA9554DBR  
PCA9554DGVR  
PCA9554DWR  
PCA9554PWR  
SSOP  
TVSOP  
SOIC  
DB  
DGV  
DW  
PW  
16  
16  
16  
16  
2000  
2000  
2000  
2000  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
38.0  
35.0  
38.0  
35.0  
TSSOP  
Pack Materials-Page 2  
MECHANICAL DATA  
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
28 PINS SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,25  
0,09  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°ā8°  
0,95  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
14  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
6,90  
9,90  
12,30  
4040065 /E 12/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY