PCA9557DT [TI]

REMOTE 8-BIT I2C AND SMBus LOW-POWER I/O EXPANDER WITH RESET AND CONFIGURATION REGISTERS; 远程8位I2C和SMBus低功耗I / O扩展器,带有复位和配置寄存器
PCA9557DT
型号: PCA9557DT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

REMOTE 8-BIT I2C AND SMBus LOW-POWER I/O EXPANDER WITH RESET AND CONFIGURATION REGISTERS
远程8位I2C和SMBus低功耗I / O扩展器,带有复位和配置寄存器

文件: 总36页 (文件大小:1174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCA9557  
www.ti.com.................................................................................................................................................... SCPS133IDECEMBER 2005REVISED JUNE 2008  
REMOTE 8-BIT I2C AND SMBus LOW-POWER I/O EXPANDER  
WITH RESET AND CONFIGURATION REGISTERS  
1
FEATURES  
Low Standby Current Consumption of  
1 µA Max  
I2C to Parallel Port Expander  
Internal Power-On Reset  
High-Impedance Open Drain on P0  
Power Up With All Channels Configured as  
Inputs  
Operating Power-Supply Voltage Range of  
2.3 V to 5.5 V  
No Glitch on Power Up  
5-V Tolerant I/O Ports  
400-kHz Fast I2C Bus  
Noise Filter on SCL/SDA Inputs  
Latched Outputs With High Current Drive  
Maximum Capability for Directly Driving LEDs  
Three Hardware Address Pins Allow for Use of  
up to Eight Devices on I2C/SMBus  
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
Lower-Voltage Higher-Performance Migration  
Path for PCA9556  
ESD Protection Exceeds JESD 22  
Input/Output Configuration Register  
Polarity Inversion Register  
Active-Low Reset Input  
2000-V Human-Body Model (A114-A)  
200-V Machine Model (A115-A)  
1000-V Charged-Device Model (C101)  
RGV PACKAGE  
(TOP VIEW)  
RGY PACKAGE  
(TOP VIEW)  
D, DB, DGV, OR PW PACKAGE  
(TOP VIEW)  
VCC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SCL  
SDA  
A0  
16 15 14 13  
1
16  
2
3
4
5
6
7
15  
14  
13  
12  
11  
10  
SDA  
A0  
RESET  
P7  
RESET  
P7  
1
2
3
4
12  
11  
10  
9
A0  
A1  
A2  
P0  
P7  
P6  
P5  
P4  
A1  
P6  
A1  
P6  
A2  
P5  
A2  
P5  
P0  
P4  
P0  
P4  
P1  
P3  
8
9
P1  
P3  
5
6
7
8
GND  
P2  
DESCRIPTION/ORDERING INFORMATION  
This 8-bit I/O expander for the two-line bidirectional bus (I2C) is designed for 2.3-V to 5.5-V VCC operation. The  
device provides general-purpose remote I/O expansion for most microcontroller families via the I2C interface  
[serial clock (SCL) and serial data (SDA)].  
The PCA9557 consists of one 8-bit configuration (input or output selection), input port, output port, and polarity  
inversion (active-high) registers. At power on, the I/Os are configured as inputs. However, the system master can  
enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data for each input or  
output is kept in the corresponding input or output register. The polarity of the input port register can be inverted  
with the polarity inversion register. All registers can be read by the system master.  
The device outputs (latched) have high-current drive capability for directly driving LEDs. The device has low  
current consumption.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
PCA9557  
SCPS133IDECEMBER 2005REVISED JUNE 2008.................................................................................................................................................... www.ti.com  
DESCRIPTION/ORDERING INFORMATION (CONTINUED)  
The system master can reset the PCA9557 in the event of a timeout or other improper operation by asserting a  
low in the active-low reset (RESET) input. The power-on reset puts the registers in their default state and  
initializes the I2C/SMBus state machine. Asserting RESET causes the same reset/initialization to occur without  
depowering the part.  
Three hardware pins (A0, A1, and A2) are used to program and vary the fixed I2C address, allowing up to eight  
devices to share the same I2C bus or SMBus.  
ORDERING INFORMATION  
TA  
PACKAGE(1)(2)  
ORDERABLE PART NUMBER  
PCA9557RGVR  
PCA9557RGYR  
PCA9557DR  
TOP-SIDE MARKING  
PD557  
QFN – RGV  
QFN – RGY  
Reel of 2000  
Reel of 1000  
Reel of 2500  
Reel of 250  
Tube of 40  
PD557  
SOIC – D  
PCA9557DT  
PCA9557  
PD557  
PCA9557D  
–40°C to 85°C  
Reel of 2000  
Tube of 80  
PCA9557DBR  
PCA9557DB  
SSOP – DB  
Reel of 2000  
Reel of 250  
Tube of 90  
PCA9557PWR  
PCA9557PWT  
PCA9557PW  
TSSOP – PW  
TVSOP – DGV  
PD557  
PD557  
Reel of 2000  
PCA9557DGVR  
(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
TERMINAL FUNCTIONS  
NO.  
QFN (RGY)  
SOIC (D),  
SSOP (DB),  
TSSOP (PW),  
AND  
NAME  
DESCRIPTION  
QFN (RGV)  
TVSOP (DGV)  
1
2
3
4
5
15  
16  
1
SCL  
SDA  
A0  
Serial clock bus. Connect to VCC through a pullup resistor.  
Serial data bus. Connect to VCC through a pullup resistor.  
Address input. Connect directly to VCC or ground.  
Address input. Connect directly to VCC or ground.  
Address input. Connect directly to VCC or ground.  
2
A1  
3
A2  
P-port input/output. High impedance open-drain design structure. Connect to VCC  
through a pullup resistor.  
6
4
P0  
7
5
6
P1  
GND  
P2  
P-port input/output. Push-pull design structure.  
Ground  
8
9
7
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
P-port input/output. Push-pull design structure.  
10  
11  
12  
13  
14  
8
P3  
9
P4  
10  
11  
12  
P5  
P6  
P7  
Active-low reset input. Connect to VCC through a pullup resistor if no active  
connection is used.  
15  
16  
13  
14  
RESET  
VCC  
Supply voltage  
2
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9557  
PCA9557  
www.ti.com.................................................................................................................................................... SCPS133IDECEMBER 2005REVISED JUNE 2008  
LOGIC DIAGRAM (POSITIVE LOGIC)  
3
A0  
4
A1  
5
A2  
1
2
P7−P0  
SCL  
SDA  
2
Input  
Filter  
I C-Bus  
Shift  
Register  
I/O  
Port  
Control  
8 Bits  
Write Pulse  
Read Pulse  
16  
15  
V
Power-On  
Reset  
CC  
RESET  
8
GND  
A. Pin numbers shown are for the D, DB, DGV, PW, and RGY packages.  
B. All I/Os are set to inputs at reset.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): PCA9557  
PCA9557  
SCPS133IDECEMBER 2005REVISED JUNE 2008.................................................................................................................................................... www.ti.com  
SIMPLIFIED SCHEMATIC DIAGRAM OF P0  
Data From  
Shift Register  
Configuration  
Register  
Data From  
Shift Register  
Q
D
Output Port  
Register Data  
FF  
Write Configuration  
Pulse  
D
Q
C
K
Q
FF  
P0  
Write Pulse  
C
K
Q
ESD Protection Diode  
Output  
Port  
Register  
Input  
Port  
GND  
Register  
Input Port  
Register Data  
D
Q
FF  
Read Pulse  
C
K
Q
Data From  
Shift Register  
Polarity  
Register Data  
D
Q
FF  
Write Polarity Pulse  
C
K
Q
Polarity  
Inversion  
Register  
A. On power up or reset, all registers return to default values.  
4
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9557  
PCA9557  
www.ti.com.................................................................................................................................................... SCPS133IDECEMBER 2005REVISED JUNE 2008  
SIMPLIFIED SCHEMATIC DIAGRAM OF P7–P1  
Data From  
Shift Register  
Output Port  
Register Data  
Configuration  
Register  
V
CC  
Data From  
Shift Register  
Q
D
FF  
Write Configuration  
Pulse  
D
Q
C
K
Q
FF  
P7−P1  
Write Pulse  
C
K
Q
ESD Protection Diode  
Output  
Port  
Register  
Input  
Port  
GND  
Register  
Input Port  
Register Data  
D
Q
FF  
Read Pulse  
C
K
Q
Data From  
Shift Register  
Polarity  
Register Data  
D
Q
FF  
Write Polarity Pulse  
C
K
Q
Polarity  
Inversion  
Register  
A. On power up or reset, all registers return to default values.  
I2C Interface  
The bidirectional I2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be  
connected to a positive supply through a pullup resistor when connected to the output stages of a device. Data  
transfer may be initiated only when the bus is not busy.  
I2C communication with this device is initiated by a master sending a start condition, a high-to-low transition on  
the SDA input/output while the SCL input is high (see Figure 1). After the start condition, the device address byte  
is sent, most-significant bit (MSB) first, including the data direction bit (R/W).  
After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA  
input/output during the high of the ACK-related clock pulse. The address (A2–A0) inputs of the slave device must  
not be changed between the start and the stop conditions.  
On the I2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control  
commands (start or stop) (see Figure 2).  
A stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the  
master (see Figure 1).  
Any number of data bytes can be transferred from the transmitter to the receiver between the Start and the Stop  
conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before  
the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK  
clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock period (see  
Figure 3). When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly,  
the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold  
times must be met to ensure proper operation.  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): PCA9557  
PCA9557  
SCPS133IDECEMBER 2005REVISED JUNE 2008.................................................................................................................................................... www.ti.com  
A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after  
the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high.  
In this event, the transmitter must release the data line to enable the master to generate a stop condition.  
SDA  
SCL  
S
P
Stop Condition  
Start Condition  
Figure 1. Definition of Start and Stop Conditions  
SDA  
SCL  
Data Line Change  
Figure 2. Bit Transfer  
Data Output  
by Transmitter  
NACK  
Data Output  
by Receiver  
ACK  
SCL From  
Master  
1
2
8
9
S
Start  
Clock Pulse for  
Condition  
Acknowledgment  
Figure 3. Acknowledgment on the I2C Bus  
Interface Definition  
BIT  
BYTE  
7 (MSB)  
6
L
5
H
4
H
3
2
1
0 (LSB)  
I2C slave address  
Px I/O data bus  
L
A2  
P3  
A1  
P2  
A0  
P1  
R/W  
P0  
P7  
P6  
P5  
P4  
6
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9557  
PCA9557  
www.ti.com.................................................................................................................................................... SCPS133IDECEMBER 2005REVISED JUNE 2008  
Device Address  
The address of the PCA9557 is shown in Figure 4.  
Slave Address  
0
0
1
1 A2 A1 A0  
R/W  
Fixed  
Programmable  
Figure 4. PCA9557 Address  
Address Reference  
INPUTS  
I2C BUS SLAVE ADDRESS  
A2  
L
A1  
L
A0  
L
24 (decimal), 18 (hexadecimal)  
25 (decimal), 19 (hexadecimal)  
26 (decimal), 1A (hexadecimal)  
27 (decimal), 1B (hexadecimal)  
28 (decimal), 1C (hexadecimal)  
29 (decimal), 1D (hexadecimal)  
30 (decimal), 1E (hexadecimal)  
31 (decimal), 1F (hexadecimal)  
L
L
H
L
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
The last bit of the slave address defines the operation (read or write) to be performed. A high (1) selects a read  
operation, while a low (0) selects a write operation.  
Control Register and Command Byte  
Following the successful acknowledgment of the address byte, the bus master sends a command byte that is  
stored in the control register in the PCA9557. Two bits of this data byte state the operation (read or write) and  
the internal registers (input, output, polarity inversion or configuration) that will be affected. This register can be  
written or read through the I2C bus. The command byte is sent only during a write transmission.  
Once a new command byte has been sent, the register that was addressed continues to be accessed by reads  
until a new command byte has been sent.  
0
0
0
0
0
0
B1 B0  
Figure 5. Control Register Bits  
Command Byte  
CONTROL REGISTER BITS  
COMMAND BYTE  
(HEX)  
POWER-UP  
DEFAULT  
REGISTER  
PROTOCOL  
B1  
0
B0  
0
0x00  
0x01  
0x02  
0x03  
Input Port  
Output Port  
Read byte  
xxxx xxxx  
0000 0000  
1111 0000  
1111 1111  
0
1
Read/write byte  
Read/write byte  
Read/write byte  
1
0
Polarity Inversion  
Configuration  
1
1
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): PCA9557  
 
PCA9557  
SCPS133IDECEMBER 2005REVISED JUNE 2008.................................................................................................................................................... www.ti.com  
Register Descriptions  
The input port register (register 0) reflects the incoming logic levels of the pins, regardless of whether the pin is  
defined as an input or an output by the configuration register. It only acts on read operation. Writes to these  
registers have no effect. The default value, X, is determined by the externally applied logic level.  
Before a read operation, a write transmission is sent with the command byte to signal the I2C device that the  
input port register will be accessed next.  
Register 0 (Input Port Register)  
BIT  
I7  
X
I6  
X
I5  
X
I4  
X
I3  
X
I2  
X
I1  
X
I0  
X
DEFAULT  
The output port register (register 1) shows the outgoing logic levels of the pins defined as outputs by the  
configuration register. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this  
register reflect the value that is in the flip-flop controlling the output selection, not the actual pin value.  
Register 1 (Output Port Register)  
BIT  
O7  
0
O6  
0
O5  
0
O4  
0
O3  
0
O2  
0
O1  
0
O0  
0
DEFAULT  
The polarity inversion register (register 2) allows polarity inversion of pins defined as inputs by the configuration  
register. If a bit in this register is set (written with 1), the corresponding port pin's polarity is inverted. If a bit in this  
register is cleared (written with a 0), the corresponding port pin's original polarity is retained.  
Register 2 (Polarity Inversion Register)  
BIT  
N7  
1
N6  
1
N5  
1
N4  
1
N3  
0
N2  
0
N1  
0
N0  
0
DEFAULT  
The configuration register (register 3) configures the directions of the I/O pins. If a bit in this register is set to 1,  
the corresponding port pin is enabled as an input with high impedance output driver. If a bit in this register is  
cleared to 0, the corresponding port pin is enabled as an output.  
Register 3 (Configuration Register)  
BIT  
C7  
1
C6  
1
C5  
1
C4  
1
C3  
1
C2  
1
C1  
1
C0  
1
DEFAULT  
Power-On Reset  
When power (from 0 V) is applied to VCC, an internal power-on reset holds the PCA9557 in a reset condition until  
VCC has reached VPOR. At that time, the reset condition is released, and the PCA9557 registers and I2C/SMBus  
state machine initialize to their default states. After that, VCC must be lowered to below 0.2 V and back up to the  
operating voltage for a power-reset cycle. The RESET input can be asserted to reset the system, while keeping  
the VCC at its operating level.  
RESET  
A reset can be accomplished by holding the RESET pin low for a minimum of tW. The PCA9557 registers and  
I2C/SMBus state machine are held in their default states until RESET again is high. This input requires a pullup  
resistor to VCC if no active connection is used.  
8
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9557  
PCA9557  
www.ti.com.................................................................................................................................................... SCPS133IDECEMBER 2005REVISED JUNE 2008  
Bus Transactions  
Data is exchanged between the master and PCA9557 through write and read commands.  
Writes  
Data is transmitted to the PCA9557 by sending the device address and setting the least-significant bit (LSB) to a  
logic 0 (see Figure 4 for device address). The command byte is sent after the address and determines which  
register receives the data that follows the command byte. There is no limitation on the number of data bytes sent  
in one write transmission (see Figure 6 and Figure 7).  
SCL  
1
2
3
4
5
6
7
8
9
Slave Address  
Command Byte  
Data to Port  
Data 1  
0
SDA  
S
0
1
1
A2 A1 A0  
0
A
0
0
0
0
0
0
0
1
A
A
P
Start Condition  
R/W ACK From Slave  
ACK From Slave  
ACK From Slave  
Write to Port  
Data Out  
From Port  
Data 1 Valid  
t
pv  
Figure 6. Write to Output Port Register  
<br/>  
SCL  
9
1
2
3
4
5
6
7
8
0
Slave Address  
Command Byte  
Data to Register  
Data  
SDA  
S
0
0
1
1 A2 A1 A0  
A
0
0
0
0
0
0
0
1/0  
A
A
P
Start Condition  
R/W ACK From Slave  
ACK From Slave  
ACK From Slave  
Figure 7. Write to Configuration or Polarity Inversion Registers  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): PCA9557  
 
 
PCA9557  
SCPS133IDECEMBER 2005REVISED JUNE 2008.................................................................................................................................................... www.ti.com  
Reads  
The bus master first must send the PCA9557 address with the LSB set to a logic 0 (see Figure 4 for device  
address). The command byte is sent after the address and determines which register is accessed. After a restart,  
the device address is sent again but, this time, the LSB is set to a logic 1. Data from the register defined by the  
command byte then is sent by the PCA9557 (see Figure 8 and Figure 9). After a restart, the value of the register  
defined by the command byte matches the register being accessed when the restart occurred. Data is clocked  
into the register on the rising edge of the ACK clock pulse. There is no limitation on the number of data bytes  
received in one read transmission, but when the final byte is received, the bus master must not acknowledge the  
data.  
ACK From  
Master  
ACK From  
Slave  
ACK From  
Slave  
ACK From  
Slave  
Data from Register  
Slave Address  
Slave Address  
Command Byte  
A
S
A
0
0
1
1 A2 A1 A0  
1
A
Data  
S
0
0
1
1 A2 A1 A0  
0
A
First Byte  
R/W  
R/W  
At this moment, master-transmitter  
becomes master-receiver, and  
slave-receiver becomes  
slave-transmitter  
NACK From  
Master  
Data from Register  
Data  
NA P  
Last Byte  
Figure 8. Read From Register  
<br/>  
1
2
3
4
5
6
7
8
9
SCL  
SDA  
Data From Port  
Data 1  
Slave Address  
Data From Port  
Data 4  
S
0
0
1
1
A2 A1 A0  
R/W  
1
A
A
NA P  
Start  
Condition  
NACK From  
Master  
ACK From  
Slave  
ACK From  
Master  
Stop  
Condition  
Read From  
Port  
Data Into  
Port  
Data 2  
Data 3  
Data 4  
Data 5  
t
ph  
t
ps  
A. This figure assumes the command byte has been previously programmed with 00h.  
B. Transfer of data can be stopped at any moment by a stop condition. When this occurs, data present at the last  
acknowledge phase is valid (output mode). Input data is lost.  
C. This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address  
call and actual data transfer from the P port (see Figure 8).  
Figure 9. Read Input Port Register  
10  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9557  
 
 
PCA9557  
www.ti.com.................................................................................................................................................... SCPS133IDECEMBER 2005REVISED JUNE 2008  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
6
UNIT  
V
VCC  
VI  
Supply voltage range  
Input voltage range(2)  
Output voltage range(2)  
6
V
VO  
IIK  
6
V
Input clamp current  
VI < 0  
–20  
–20  
–20  
50  
mA  
mA  
µA  
mA  
mA  
IOK  
IIOK  
IOL  
IOH  
Output clamp current  
VO < 0  
Input/output clamp current  
Continuous output low current  
Continuous output high current  
Continuous current through GND  
Continuous current through VCC  
VO < 0 or VO > VCC  
VO = 0 to VCC  
VO = 0 to VCC  
–50  
–250  
160  
73  
ICC  
mA  
D package  
DB package  
DGV package  
PW package  
RGV package  
RGY package  
82  
120  
108  
51  
θJA  
Package thermal impedance(3)  
°C/W  
°C  
47  
Tstg  
Storage temperature range  
–65  
150  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The package thermal impedance is calculated in accordance with JESD 51-7.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
2.3  
MAX  
5.5  
UNIT  
VCC  
VIH  
Supply voltage  
V
SCL, SDA  
0.7 × VCC  
2
5.5  
High-level input voltage  
V
V
A2–A0, P7–P0, RESET  
SCL, SDA  
5.5  
–0.5  
0.3 × VCC  
0.8  
VIL  
Low-level input voltage  
A2–A0, P7–P0, RESET  
P7–P1  
–0.5  
IOH  
IOL  
TA  
High-level output current  
Low-level output current  
Operating free-air temperature  
–10  
mA  
mA  
°C  
P7–P0  
25  
–40  
85  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): PCA9557  
PCA9557  
SCPS133IDECEMBER 2005REVISED JUNE 2008.................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
II = –18 mA  
VCC  
2.3 V to 5.5 V  
VPOR  
MIN TYP(1)  
MAX UNIT  
VIK  
Input diode clamp voltage  
Power-on reset voltage  
–1.2  
1.65  
1.8  
2.6  
3
V
VPOR  
VI = VCC or GND, IO = 0  
2.1  
V
2.3 V  
3 V  
IOH = –8 mA  
4.5 V  
4.75 V  
2.3 V  
4.1  
1.5  
2.5  
3
VOH  
P-port high-level output voltage(2)  
V
3 V  
IOH = –10 mA  
4.5 V  
4.75 V  
2.3 V to 5.5 V  
4
SDA  
VOL = 0.4 V  
VOL = 0.5 V  
VOL = 0.55 V  
VOL = 0.7 V  
VOH = 2.3 V  
VOH = 4.6 V  
VOH = 3.3 V  
3
8
8
20  
20  
24  
IOL  
mA  
P port(3)  
2.3 V to 5.5 V  
10  
–4  
P port, except for P0(3)  
P0(3)  
2.3 V to 5.5 V  
4.6 V to 5.5 V  
3.3 V to 5.5 V  
mA  
IOH  
1
1
µA  
SCL, SDA  
A2–A0, RESET  
P port  
±1  
±1  
1
II  
VI = VCC or GND  
2.3 V to 5.5 V  
µA  
IIH  
IIL  
VI = VCC  
2.3 V to 5.5 V  
2.3 V to 5.5 V  
5.5 V  
µA  
µA  
P port  
VI = GND  
1
19  
12  
25  
22  
20  
5
VI = VCC or GND, IO = 0,  
I/O = inputs, fSCL = 400 kHz  
3.6 V  
2.7 V  
8
Operating mode  
5.5 V  
1.5  
1
VI = VCC or GND, IO = 0,  
I/O = inputs, fSCL = 100 kHz  
ICC  
3.6 V  
4
µA  
2.7 V  
0.6  
0.25  
0.25  
0.2  
3
5.5 V  
1
VI = VCC or GND, IO = 0,  
I/O = inputs, fSCL = 0 kHz  
Standby mode  
3.6 V  
0.9  
0.8  
2.7 V  
One input at VCC – 0.6 V,  
Other inputs at VCC or GND  
2.3 V to 5.5 V  
0.2  
0.4  
ΔICC  
Additional current in Standby mode  
mA  
Every LED I/O at VI = 4.3 V,  
fSCL = 0 kHz  
5.5 V  
CI  
SCL  
VI = VCC or GND  
2.3 V to 5.5 V  
4
5.5  
7.5  
6
8
pF  
pF  
SDA  
P port  
Cio  
VIO = VCC or GND  
2.3 V to 5.5 V  
9.5  
(1) All typical values are at nominal supply voltage (2.5-V, 3.3-V, or 5-V VCC) and TA = 25°C.  
(2) The total current sourced by all I/Os must be limited to 85 mA per bit.  
(3) Each I/O must be externally limited to a maximum of 25 mA, and the P port (P7–P0) must be limited to a maximum current of 200 mA.  
12  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9557  
PCA9557  
www.ti.com.................................................................................................................................................... SCPS133IDECEMBER 2005REVISED JUNE 2008  
I2C INTERFACE TIMING REQUIREMENTS  
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 10)  
STANDARD MODE  
I2C BUS  
FAST MODE  
I2C BUS  
UNIT  
MIN  
0
MAX  
MIN  
0
MAX  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
I2C clock high time  
I2C clock low time  
I2C spike time  
I2C serial data setup time  
I2C serial data hold time  
I2C input rise time  
100  
400  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
4
0.6  
1.3  
4.7  
50  
50  
tsds  
tsdh  
ticr  
250  
0
100  
0
(1)  
1000  
300  
20 + 0.1Cb  
300  
300  
300  
(1)  
(1)  
ticf  
I2C input fall time  
20 + 0.1Cb  
20 + 0.1Cb  
tocf  
tbuf  
tsts  
tsth  
tsps  
I2C output fall time, 10-pF to 400-pF bus  
I2C bus free time between Stop and Start  
I2C Start or repeated Start condition setup time  
I2C Start or repeated Start condition hold time  
I2C Stop condition setup time  
300  
4.7  
4.7  
4
1.3  
0.6  
0.6  
0.6  
4
tvd(data) Valid data time, SCL low to SDA output valid  
1
1
0.9  
0.9  
Valid data time of ACK condition, ACK signal from SCL low to  
SDA (out) low  
tvd(ack)  
µs  
Cb  
I2C bus capacitive load  
400  
400  
pF  
(1) Cb = total capacitance of one bus line in pF  
RESET TIMING REQUIREMENTS  
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 13)  
STANDARD MODE  
I2C BUS  
FAST MODE  
I2C BUS  
UNIT  
MIN  
16  
MAX  
MIN  
16  
MAX  
tW  
Reset pulse duration(1)  
Reset recovery time  
Time to reset(2)  
ns  
ns  
ns  
tREC  
tRESET  
0
0
400  
400  
(1) A pulse duration of 16 ns minimum must be applied to RESET to return the PCA9557 to its default state.  
(2) The PCA9557 requires a minimum of 400 ns to be reset.  
SWITCHING CHARACTERISTICS  
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 10)  
STANDARD MODE  
I2C BUS  
FAST MODE  
I2C BUS  
PARAMETER  
FROM  
TO  
UNIT  
MIN  
MAX  
250  
MIN  
MAX  
250  
SCL  
SCL  
P0  
P1–P7  
SCL  
tpv Output data valid  
ns  
200  
200  
tps Input data setup time  
tph Input data hold time  
P port  
P port  
0
0
ns  
ns  
SCL  
200  
200  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): PCA9557  
PCA9557  
SCPS133IDECEMBER 2005REVISED JUNE 2008.................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
TEMPERATURE  
STANDBY SUPPLY CURRENT  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
vs  
TEMPERATURE  
20  
15  
10  
5
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
SCL = VCC  
VCC = 5 V  
fSCL = 400 kHz  
I/Os unloaded  
fSCL = 400 kHz  
I/Os unloaded  
VCC = 5 V  
VCC = 3.3 V  
VCC = 3.3 V  
VCC = 2.5 V  
VCC = 2.5 V  
0
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
TA - Free-Air Temperature - °C  
TA - Free-Air Temperature - °C  
VCC – Supply Voltage – V  
I/O SINK CURRENT  
vs  
OUTPUT LOW VOLTAGE  
I/O SINK CURRENT  
vs  
OUTPUT LOW VOLTAGE  
I/O SINK CURRENT  
vs  
OUTPUT LOW VOLTAGE  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
VCC = 5 V  
VCC = 3.3 V  
VCC = 2.5 V  
TA = –40°C  
TA = –40°C  
TA = –40°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 85°C  
TA = 85°C  
TA = 85°C  
0
0
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
VOL – Output Low Voltage – V  
VOL – Output Low Voltage – V  
VOL – Output Low Voltage – V  
I/O SOURCE CURRENT  
I/O SOURCE CURRENT  
I/O SOURCE CURRENT  
vs  
vs  
vs  
OUTPUT HIGH VOLTAGE  
(P7–P1)  
OUTPUT HIGH VOLTAGE  
(P7–P1)  
OUTPUT HIGH VOLTAGE  
(P7–P1)  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
VCC = 5 V  
VCC = 3.3 V  
VCC = 2.5 V  
TA = –40°C  
TA = –40°C  
TA = –40°C  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TA = 85°C  
TA = 85°C  
TA = 85°C  
0
0
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
(VCC – VOH) – Output High Voltage – V  
(VCC – VOH) – Output High Voltage – V  
(VCC – VOH) – Output High Voltage – V  
14  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9557  
PCA9557  
www.ti.com.................................................................................................................................................... SCPS133IDECEMBER 2005REVISED JUNE 2008  
TYPICAL CHARACTERISTICS (continued)  
OUTPUT HIGH VOLTAGE  
OUTPUT HIGH VOLTAGE  
vs  
vs  
OUTPUT LOW VOLTAGE  
vs  
SUPPLY VOLTAGE  
(P7–P1)  
TEMPERATURE  
(P7–P1)  
TEMPERATURE  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
6
5
4
3
2
1
0
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
VCC = 2.5 V, ISINK = 10 mA  
TA = 25°C  
VCC = 2.5 V, ISOURCE = 10  
IOH = –4 mA  
VCC = 5 V, ISINK = 10 mA  
VCC = 5 V, ISOURCE = 10  
IOH = –8 mA  
VCC = 2.5 V, ISINK = 1 mA  
VCC = 5 V, ISINK = 1 mA  
IOH = –10 mA  
VCC = 2.5 V, ISOURCE = 1 mA  
VCC = 5 V, ISOURCE = 1 mA  
50  
25  
0
0
-50  
-25  
0
25  
50  
75  
100  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
-50  
-25  
0
25  
50  
75  
100  
TA – Free-Air Temperature – °C  
VCC – Supply Voltage – V  
TA – Free-Air Temperature – °C  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): PCA9557  
PCA9557  
SCPS133IDECEMBER 2005REVISED JUNE 2008.................................................................................................................................................... www.ti.com  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
R
L
= 1 k  
SDA  
DUT  
C
L
= 50 pF  
(see Note A)  
SDA LOAD CONFIGURATION  
Three Bytes for Complete  
Device Programming  
Stop  
Condition Condition  
(P) (S)  
Start  
Address  
Bit 7  
(MSB)  
R/W  
Bit 0  
(LSB)  
Data  
Bit 07  
(MSB)  
Data  
Bit 10 Condition  
(LSB)  
Stop  
Address  
Bit 6  
Address  
Bit 1  
ACK  
(A)  
(P)  
t
scl  
t
sch  
0.7 × V  
0.3 × V  
CC  
SCL  
SDA  
CC  
t
icr  
t
sts  
t
PHL  
t
icf  
t
buf  
t
t
sp  
PLH  
0.7 × V  
0.3 × V  
CC  
CC  
t
icf  
t
icr  
t
sdh  
t
sps  
t
sth  
t
sds  
Repeat  
Start  
Condition  
Stop  
Condition  
Start or  
Repeat  
Start  
Condition  
VOLTAGE WAVEFORMS  
BYTE  
1
DESCRIPTION  
2
I C address  
2, 3  
P-port data  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 10. I2C Interface Load Circuit and Voltage Waveforms  
16  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9557  
PCA9557  
www.ti.com.................................................................................................................................................... SCPS133IDECEMBER 2005REVISED JUNE 2008  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
CC  
R
L
= 4.7 kΩ  
INT  
DUT  
C
L
= 100 pF  
(see Note A)  
INTERRUPT LOAD CONFIGURATION  
ACK  
From Slave  
ACK  
From Slave  
Start  
Condition  
8 Bits  
(One Data Bytes)  
From Port  
R/W  
Slave Address  
Data From Port  
Data 2  
S
0
0
1
1
A2 A1 A0  
1
A
Data 1  
A
1
P
1
2
3
4
5
6
7
8
A
A
t
ir  
B
B
t
ir  
INT  
A
t
iv  
t
sps  
A
Data  
Into  
Port  
Address  
Data 1  
Data 2  
0.7 × V  
0.3 × V  
CC  
0.7 × V  
0.3 × V  
CC  
SCL  
R/W  
INT  
A
CC  
CC  
t
iv  
t
ir  
0.7 × V  
0.7 × V  
0.3 × V  
CC  
CC  
INT  
1.5 V  
Pn  
0.3 × V  
CC  
CC  
View A−A  
A. CL includes probe and jig capacitance.  
View B−B  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
Figure 11. Interrupt Load Circuit and Voltage Waveforms  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): PCA9557  
PCA9557  
SCPS133IDECEMBER 2005REVISED JUNE 2008.................................................................................................................................................... www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
Pn  
500 W  
2 × V  
DUT  
CC  
C
= 50 pF  
L
500 W  
(see Note A)  
P-PORT LOAD CONFIGURATION  
0.7 × V  
CC  
SCL  
P0  
A
P7  
0.3 × V  
CC  
Slave  
ACK  
SDA  
Pn  
t
pv  
(see Note B)  
Last Stable Bit  
Unstable  
Data  
WRITE MODE (R/W = 0)  
0.7 × V  
0.3 × V  
CC  
SCL  
Pn  
P0  
A
P7  
CC  
t
ps  
t
ph  
0.7 × V  
1.5 V  
CC  
0.3 × V  
CC  
READ MODE (R/W = 1)  
A. CL includes probe and jig capacitance.  
B. tpv is measured from 0.7 × VCC on SCL to 50% I/O (Pn) output.  
C. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
D. The outputs are measured one at a time, with one transition per measurement.  
E. All parameters and waveforms are not applicable to all devices.  
Figure 12. P-Port Load Circuit and Voltage Waveforms  
18  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9557  
PCA9557  
www.ti.com.................................................................................................................................................... SCPS133IDECEMBER 2005REVISED JUNE 2008  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
CC  
R = 1 kΩ  
L
Pn  
500 W  
2 × V  
SDA  
DUT  
CC  
DUT  
C = 50 pF  
L
(see Note A)  
500 W  
C = 50 pF  
L
(see Note A)  
SDA LOAD CONFIGURATION  
P-PORT LOAD CONFIGURATION  
Start  
SCL  
ACK or Read Cycle  
SDA  
0.3 y V  
CC  
t
RESET  
RESET  
V /2  
CC  
t
REC  
t
w
Pn  
V /2  
CC  
t
RESET  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. I/Os are configured as inputs.  
D. All parameters and waveforms are not applicable to all devices.  
Figure 13. Reset Load Circuits and Voltage Waveforms  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): PCA9557  
PCA9557  
SCPS133IDECEMBER 2005REVISED JUNE 2008.................................................................................................................................................... www.ti.com  
APPLICATION INFORMATION  
Figure 14 shows an application in which the PCA9557 can be used.  
V
CC  
(5 V)  
620 Ω  
100 kΩ (X 5)  
V
CC  
1.8 kΩ  
1.8 kΩ  
2 kΩ  
2 kΩ  
V
CC  
SCL  
SDA  
SCL  
SDA  
P0  
Subsystem 1  
INT  
Master  
Controller  
P1  
RESET  
RESET  
P2  
P3  
RESET  
Subsystem 2  
(e.g., Counter)  
GND  
PCA9557  
P4  
P5  
P6  
P7  
A
A2  
Controlled Switch  
(e.g., CBT Device)  
ENABLE  
A1  
A0  
B
GND  
ALARM  
Subsystem 3  
(e.g., Alarm System)  
GND  
10 kΩ  
A. Device address is configured as 0011100 for this example.  
B. P1, P4, and P5 are configured as inputs.  
C. P0, P2, and P3 are configured as outputs.  
D. P6 and P7 are not used and must be configured as outputs.  
Figure 14. Typical Application  
20  
Submit Documentation Feedback  
Copyright © 2005–2008, Texas Instruments Incorporated  
Product Folder Link(s): PCA9557  
 
PCA9557  
www.ti.com.................................................................................................................................................... SCPS133IDECEMBER 2005REVISED JUNE 2008  
Minimizing ICC When I/O Is Used to Control LED  
When an I/O is used to control an LED, normally it is connected to VCC through a resistor as shown in Figure 14.  
The LED acts as a diode so, when the LED is off, the I/O VIN is about 1.2 V less than VCC. The ΔICC parameter in  
Electrical Characteristics shows how ICC increases as VIN becomes lower than VCC. Designs needing to minimize  
current consumption, such as battery power applications, should consider maintaining the I/O pins greater than  
or equal to VCC when the LED is off.  
Figure 15 shows a high-value resistor in parallel with the LED. Figure 16 shows VCC less than the LED supply  
voltage by at least 1.2 V. Both of these methods maintain the I/O VIN at or above VCC and prevent additional  
supply-current consumption when the LED is off.  
V
CC  
100 kW  
LED  
V
CC  
Pn  
Figure 15. High-Value Resistor in Parallel With the LED  
3.3 V  
5 V  
LED  
V
CC  
Pn  
Figure 16. Device Supplied by a Low Voltage  
Copyright © 2005–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): PCA9557  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Jan-2008  
PACKAGING INFORMATION  
Orderable Device  
PCA9557D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PCA9557DB  
SSOP  
SSOP  
SSOP  
SSOP  
SOIC  
DB  
DB  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PCA9557DBG4  
PCA9557DBR  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DB  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PCA9557DBRG4  
PCA9557DG4  
DB  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PCA9557DGVR  
PCA9557DGVRG4G4  
PCA9557DR  
TVSOP  
TVSOP  
SOIC  
DGV  
DGV  
D
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PCA9557DRG4  
PCA9557DT  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PCA9557DTG4  
PCA9557PW  
SOIC  
D
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
QFN  
PW  
PW  
PW  
PW  
PW  
PW  
RGV  
RGV  
RGY  
RGY  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PCA9557PWG4  
PCA9557PWR  
PCA9557PWRG4  
PCA9557PWT  
PCA9557PWTG4  
PCA9557RGVR  
PCA9557RGVRG4  
PCA9557RGYR  
PCA9557RGYRG4  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
1000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
QFN  
1000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Jan-2008  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Mar-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
PCA9557DBR  
PCA9557DGVR  
PCA9557DR  
SSOP  
TVSOP  
SOIC  
DB  
DGV  
D
16  
16  
16  
16  
16  
16  
2000  
2000  
2500  
2000  
2500  
1000  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
16.4  
12.4  
16.4  
12.4  
12.4  
12.4  
8.2  
6.8  
6.5  
7.0  
4.3  
3.8  
6.6  
4.0  
10.3  
5.6  
4.3  
4.3  
2.5  
1.6  
2.1  
1.6  
1.5  
1.5  
12.0  
8.0  
8.0  
8.0  
8.0  
8.0  
16.0  
12.0  
16.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q2  
Q1  
PCA9557PWR  
PCA9557RGVR  
PCA9557RGYR  
TSSOP  
QFN  
PW  
RGV  
RGY  
QFN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Mar-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
PCA9557DBR  
PCA9557DGVR  
PCA9557DR  
SSOP  
TVSOP  
SOIC  
DB  
DGV  
D
16  
16  
16  
16  
16  
16  
2000  
2000  
2500  
2000  
2500  
1000  
346.0  
346.0  
346.0  
346.0  
346.0  
190.5  
346.0  
346.0  
346.0  
346.0  
346.0  
212.7  
33.0  
29.0  
33.0  
29.0  
29.0  
31.8  
PCA9557PWR  
PCA9557RGVR  
PCA9557RGYR  
TSSOP  
QFN  
PW  
RGV  
RGY  
QFN  
Pack Materials-Page 2  
MECHANICAL DATA  
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
28 PINS SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,25  
0,09  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°ā8°  
0,95  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
14  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
6,90  
9,90  
12,30  
4040065 /E 12/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000  
DGV (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
24 PINS SHOWN  
0,23  
0,13  
M
0,07  
0,40  
24  
13  
0,16 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
0°ā8°  
0,75  
1
12  
0,50  
A
Seating Plane  
0,08  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
38  
48  
56  
DIM  
A MAX  
A MIN  
3,70  
3,50  
3,70  
3,50  
5,10  
4,90  
5,10  
4,90  
7,90  
7,70  
9,80  
9,60  
11,40  
11,20  
4073251/E 08/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.  
D. Falls within JEDEC: 24/48 Pins – MO-153  
14/16/20/56 Pins – MO-194  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY