PCI1451GJG [TI]

PC Card Controller; PC卡控制器
PCI1451GJG
型号: PCI1451GJG
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PC Card Controller
PC卡控制器

总线控制器 微控制器和处理器 PC
文件: 总141页 (文件大小:577K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCI1451 GJG  
PC Card Controller  
Data Manual  
1999  
PCIBus Solutions  
Printed in U.S.A.  
11/99  
SCPS054  
PCI1451  
PC Card Controller  
Data Manual  
Literature Number: SCPS054  
November 1999  
Printed on Recycled Paper  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products  
or to discontinue any product or service without notice, and advise customers to obtain the latest  
version of relevant information to verify, before placing orders, that information being relied on  
is current and complete. All products are sold subject to the terms and conditions of sale supplied  
at the time of order acknowledgement, including those pertaining to warranty, patent  
infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the  
time of sale in accordance with TI’s standard warranty. Testing and other quality control  
techniquesareutilizedtotheextentTIdeemsnecessarytosupportthiswarranty. Specifictesting  
of all parameters of each device is not necessarily performed, except those mandated by  
government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE  
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR  
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR  
PRODUCTS ARENOTDESIGNED, AUTHORIZED, ORWARRANTED TOBESUITABLEFOR  
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.  
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY  
AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and  
operating safeguards must be provided by the customer to minimize inherent or procedural  
hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not  
warrantorrepresentthatanylicense, eitherexpressorimplied, isgrantedunderanypatentright,  
copyright, mask work right, or other intellectual property right of TI covering or relating to any  
combination, machine, or process in which such semiconductor products or services might be  
or are used. TI’s publication of information regarding any third party’s products or services does  
not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1  
1.2  
1.3  
1.4  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2  
2 Terminal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
3 Feature/Protocol Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1  
3.2  
3.3  
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
Clamping Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
Peripheral Component Interconnect (PCI) Interface . . . . . . . . . . . . . . 3–2  
3.3.1  
3.3.2  
PCI Bus Lock (LOCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
Loading The Subsystem Identification  
(EEPROM Interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3  
3.3.3  
Serial Bus EEPROM Application . . . . . . . . . . . . . . . . . . . . . . 3–5  
3.4  
PC Card Applications Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.4.5  
3.4.6  
3.4.7  
3.4.8  
3.4.9  
3.4.10  
3.4.11  
3.4.12  
PC Card Insertion/Removal and Recognition . . . . . . . . . . . 3–6  
P C Power Switch Interface (TPS2202A/2206) . . . . . . . . . 3–7  
2
Zoomed Video Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
Zoomed Video Auto Detect . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
Ultra Zoomed Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11  
D3_STAT Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11  
Internal Ring Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11  
Integrated Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12  
SPKROUT Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12  
LED Socket Activity Indicators . . . . . . . . . . . . . . . . . . . . . . . . 3–13  
PC Card 16 DMA Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14  
3.5  
3.6  
Programmable Interrupt Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14  
3.5.1  
3.5.2  
3.5.3  
PC Card Functional And Card Status Change Interrupts . 3–15  
Interrupt Masks And Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16  
Using Parallel PCI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 3–16  
Power Management Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
3.6.5  
CLKRUN Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17  
CardBus PC Card Power Management . . . . . . . . . . . . . . . . 3–17  
PCI Bus Power Management . . . . . . . . . . . . . . . . . . . . . . . . . 3–17  
CardBus Device Class Power Management . . . . . . . . . . . . 3–18  
Master List Of PME Context Bits and Global  
Reset Only Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18  
iii  
3.6.6  
System Diagram Implementing CardBus Device Class  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19  
3.6.7  
3.6.8  
3.6.9  
Suspend Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–20  
Requirements For SUSPEND . . . . . . . . . . . . . . . . . . . . . . . . 3–20  
Ring Indicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–20  
4 PC Card Controller Programming Model . . . . . . . . . . . . . . . . . . . . . . 4–1  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
PCI Configuration Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . . 4–1  
Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2  
Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2  
Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
PCI Class Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
Cache Line Size Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5  
Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6  
4.10 Header Type Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6  
4.11 BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6  
4.12 CardBus Socket/ExCA Base-Address Register . . . . . . . . . . . . . . . . . . 4–7  
4.13 Capability Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7  
4.14 Secondary Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
4.15 PCI Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4.16 CardBus Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4.17 Subordinate Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9  
4.18 CardBus Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
4.19 Memory Base Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10  
4.20 Memory Limit Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.21 I/O Base Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11  
4.22 I/O Limit Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.23 Interrupt Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12  
4.24 Interrupt Pin Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13  
4.25 Bridge Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
4.26 Subsystem Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15  
4.27 Subsystem ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15  
4.28 PC Card 16-Bit I/F Legacy Mode Base Address Register . . . . . . . . . 4–16  
4.29 System Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17  
4.30 Multimedia Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20  
4.31 General Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–21  
4.32 General-Purpose Event Status Register . . . . . . . . . . . . . . . . . . . . . . . . 4–22  
4.33 General-Purpose Event Enable Register . . . . . . . . . . . . . . . . . . . . . . . 4–22  
4.34 General-Purpose Input Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4.35 General-Purpose Output Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4.36 Multifunction Routing Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24  
4.37 Retry Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4.38 Card Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  
iv  
4.39 Device Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  
4.40 Diagnostic Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4.41 Socket DMA Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30  
4.42 Socket DMA Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–31  
4.43 Capability ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32  
4.44 Next Item Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–32  
4.45 Power Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . 4–33  
4.46 Power Management Control/Status Register . . . . . . . . . . . . . . . . . . . . 4–34  
4.47 Power Management Control/Status Register Bridge  
Support Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–35  
4.48 General-Purpose Event Control/Status Register . . . . . . . . . . . . . . . . . 4–36  
5 ExCA Compatibility Registers (Functions 0 and 1) . . . . . . . . . . . . . 5–1  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
ExCA Identification and Revision Register (Index 00h) . . . . . . . . . . . 5–5  
ExCA Interface Status Register (Index 01h) . . . . . . . . . . . . . . . . . . . . . 5–6  
ExCA Power Control Register (Index 02h) . . . . . . . . . . . . . . . . . . . . . . 5–7  
ExCA Interrupt and General Control Register (Index 03h) . . . . . . . . . 5–8  
ExCA Card Status-Change Register (Index 04h) . . . . . . . . . . . . . . . . . 5–9  
ExCA Card Status-Change Interrupt Configuration Register  
(Index 05h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–10  
5.7  
5.8  
5.9  
ExCA Address Window Enable Register (Index 06h) . . . . . . . . . . . . . 5–11  
ExCA I/O Window Control Register (Index 07h) . . . . . . . . . . . . . . . . . 5–12  
ExCA I/O Windows 0 and 1 Start-Address Low-Byte Registers  
(Index 08h, 0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–13  
5.10 ExCA I/O Windows 0 and 1 Start-Address High-Byte Registers  
(Index 09h, ODh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–13  
5.11 ExCA I/O Windows 0 and 1 End-Address Low-Byte Registers  
(Index 0Ah, 0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–14  
5.12 ExCA I/O Windows 0 and 1 End-Address High-Byte Registers  
(Index 0Bh, 0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–14  
5.13 ExCA Memory Windows 0–4 Start-Address Low-Byte  
Registers (Index 10h/18h/20h/28h/30h) . . . . . . . . . . . . . . . . . . . . . . . . 5–15  
5.14 ExCA Memory Windows 0–4 Start-Address High-Byte  
Registers (Index 11h/19h/21h/29h/31h) . . . . . . . . . . . . . . . . . . . . . . . . 5–16  
5.15 ExCA Memory Windows 0–4 End-Address Low-Byte Registers  
(Index 12h/1Ah/22h/2Ah/32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–17  
5.16 ExCA Memory Windows 0–4 End-Address High-Byte Registers  
(Index 13h/1Bh/23h/2Bh/33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–18  
5.17 ExCA Memory Windows 0–4 Offset-Address Low-Byte Registers  
(Index 14h/1Ch/24h/2Ch/34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–19  
5.18 ExCA Memory Windows 0–4 Offset-Address High-Byte Registers  
(Index 15h/1Dh/25h/2Dh/35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–20  
5.19 ExCA I/O Windows 0 and 1 Offset-Address Low-Byte Registers  
(Index 36h, 38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–21  
5.20 ExCA I/O Windows 0 and 1 Offset-Address High-Byte Registers  
(Index 37h, 39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–21  
5.21 ExCA Card Detect and General Control Register (Index 16h) . . . . . . 5–22  
5.22 ExCA Global Control Register (Index 1Eh) . . . . . . . . . . . . . . . . . . . . . . 5–23  
v
5.23 ExCA Memory Windows 0–4 Page Registers (Index 40h, 41h,  
42h, 43h, 44h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–24  
6 CardBus Socket Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . 6–1  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Socket Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2  
Socket Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3  
Socket Present State Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–4  
Socket Force Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–6  
Socket Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7  
Socket Power Management Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–8  
7 Distributed DMA (DDMA) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
DMA Current Address/Base Address Register . . . . . . . . . . . . . . . . . . . 7–2  
DMA Page Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–2  
DMA Current Count/Base Count Register . . . . . . . . . . . . . . . . . . . . . . . 7–3  
DMA Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3  
DMA Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4  
DMA Request Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4  
DMA Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5  
DMA Master Clear Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5  
DMA Multichannel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6  
8 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1  
8.1  
8.2  
8.3  
Absolute Maximum Ratings Over Operating Temperature Ranges . 8–1  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 8–2  
Electrical Characteristics Over Recommended  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3  
8.4  
8.5  
PCI Clock/Reset Timing Requirements Over  
Recommended Ranges of Supply Voltage and Operating  
Free-Air Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3  
PCI Timing Requirements Over Recommended Ranges of  
Supply Voltage and Operating Free-Air Temperature . . . . . . . . . . . . . 8–4  
8.6  
8.7  
8.8  
8.9  
Parameter Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . . . 8–5  
PCI Bus Parameter Measurement Information . . . . . . . . . . . . . . . . . . . 8–6  
PC Card Cycle Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6  
Timing Requirements Over Recommended Ranges of  
Supply Voltage and Operating Free-Air Temperature,  
Memory Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–8  
8.10 Timing Requirements Over Recommended Ranges of  
Supply Voltage and Operating Free-Air Temperature, I/O Cycles . . . 8–8  
8.11 Switching Characteristics Over Recommended Ranges of  
Supply Voltage and Operating Free-Air Temperature,  
Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9  
8.12 PC Card Parameter Measurement Information . . . . . . . . . . . . . . . . . . 8–9  
9 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–1  
vi  
List of Illustrations  
Figure  
2–1  
3–1  
3–2  
3–3  
3–4  
3–5  
3–6  
3–7  
3–8  
3–9  
Title  
Page  
PCI1451 GJG Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
PCI1451 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3-State Bidirectional Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2  
Serial EEPROM Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3  
EEPROM Interface Subsystem Data Collection . . . . . . . . . . . . . . . . . . . . . 3–4  
Serial EEPROM Start/Stop Conditions and BIt Transfers . . . . . . . . . . . . . 3–4  
Serial EEPROM Protocol – Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5  
EEPROM Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6  
TPS2206 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
TPS2206 Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8  
3–10 Zoomed Video Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9  
3–11 Zoomed Video With Auto Detect Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10  
3–12 SPKROUT Connection to Speaker Driver . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12  
3–13 Simplified Test Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13  
3–14 Two Sample LED Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13  
3–15 System Diagram Implementing CardBus Device Class Power  
Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19  
3–16 SUSPEND Functional Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–20  
3–17 RI_OUT Functional Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–21  
5–1  
5–2  
6–1  
8–1  
8–2  
8–3  
8–4  
8–5  
8–6  
8–7  
ExCA Register Access Through I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2  
ExCA Register Access Through Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2  
Accessing CardBus Socket Registers Through PCI Memory . . . . . . . . . . 6–1  
Load Circuit and Voltage Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–5  
PCLK Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6  
RSTIN Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6  
Shared Signals Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6  
PC Card Memory Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9  
PC Card I/O Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–10  
Miscellaneous PC Card Delay Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–10  
vii  
List of Tables  
Table  
Title  
Page  
2–1  
2–2  
GJG Terminals Sorted Alphanumerically for CardBus // 16-Bit Signals . 2–2  
CardBus PC Card Signal Names Sorted Alphanumerically to GJG  
Terminal Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4  
2–3  
16-Bit PC Card Signal Names Sorted Alphanumerically to GJG  
Terminal Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6  
2–4  
2–5  
2–6  
2–7  
2–8  
2–9  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8  
PC Card Power Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8  
PCI System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8  
PCI Address and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9  
PCI Interface Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10  
System Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11  
2–10 PC/PCI DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11  
2–11 Zoomed Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12  
2–12 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13  
2–13 16-Bit PC Card Address and Data (slots A and B) . . . . . . . . . . . . . . . . . . . 2–14  
2–14 16-Bit PC Card Interface Control (slots A and B) . . . . . . . . . . . . . . . . . . . . 2–15  
2–15 CardBus PC Card Interface System (slots A and B) . . . . . . . . . . . . . . . . . 2–16  
2–16 CardBus PC Card Address and Data (slots A and B) . . . . . . . . . . . . . . . . 2–17  
2–17 CardBus PC Card Interface Control (slots A and B) . . . . . . . . . . . . . . . . . 2–18  
3–1  
3–2  
3–3  
3–4  
3–5  
3–6  
3–7  
4–1  
4–2  
4–3  
4–4  
4–5  
4–6  
4–7  
4–8  
4–9  
Registers and Bits Loadable Through Serial EEPROM . . . . . . . . . . . . . . . . . . . 3–5  
PC Card – Card Detect and Voltage Sense Connections . . . . . . . . . . . . . 3–7  
Distributed DMA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14  
PC Card Interrupt Events and Description . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15  
PCI1451 Interrupt Masks and Flags Registers . . . . . . . . . . . . . . . . . . . . . . 3–16  
Interrupt Pin Register Cross Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17  
Functions 0 and 1 PCI Configuration Register Map . . . . . . . . . . . . . . . . . . 4–1  
PCI Command Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3  
Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4  
Secondary Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8  
Interrupt Pin Register Cross Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13  
Bridge Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14  
System Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17  
Multimedia Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20  
General Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–21  
4–10 General-Purpose Event Status Register Description . . . . . . . . . . . . . . . . . 4–22  
4–11 General-Purpose Event Enable Register Description . . . . . . . . . . . . . . . . 4–22  
4–12 General-Purpose Input Register Description . . . . . . . . . . . . . . . . . . . . . . . . 4–23  
4–13 General-Purpose Output Register Description . . . . . . . . . . . . . . . . . . . . . . 4–23  
viii  
4–14 Multifunction Routing Status Register Description . . . . . . . . . . . . . . . . . . . 4–24  
4–15 Retry Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26  
4–16 Card Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27  
4–17 Device Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28  
4–18 Diagnostic Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29  
4–19 Socket DMA Register 0 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30  
4–20 Socket DMA Register 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–31  
4–21 Power Management Capabilities Register Description . . . . . . . . . . . . . . . 4–33  
4–22 Power Management Control/Status Register Description . . . . . . . . . . . . . 4–34  
4–23 Power Management Control/Status Register Bridge  
Support Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–35  
4–24 GPE Control/Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 4–36  
5–1  
5–2  
5–3  
5–4  
5–5  
5–6  
5–7  
5–8  
5–9  
ExCA Registers and Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3  
ExCA Identification and Revision Register Description . . . . . . . . . . . . . . . 5–5  
ExCA Interface Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . 5–6  
ExCA Power Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7  
ExCA Interrupt and General Control Register Description . . . . . . . . . . . . 5–8  
ExCA Card Status-Change Register Description . . . . . . . . . . . . . . . . . . . 5–9  
ExCA Card Status-Change Interrupt Register Description . . . . . . . . . . . 5–10  
ExCA Address Window Enable Register Description . . . . . . . . . . . . . . . . 5–11  
ExCA I/O Window Control Register Description . . . . . . . . . . . . . . . . . . . . 5–12  
5–10 ExCA Memory Windows 0–4 Start-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–16  
5–11 ExCA Memory Windows 0–4 End-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–18  
5–12 ExCA Memory Windows 0–4 Offset-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–20  
5–13 ExCA Card Detect and General Control Register Description . . . . . . . . . 5–22  
5–14 ExCA Global Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 5–23  
6–1  
6–2  
6–3  
6–4  
6–5  
6–6  
6–7  
7–1  
7–2  
7–3  
7–4  
7–5  
8–1  
8–2  
8–3  
8–4  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1  
Socket Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2  
Socket Mask Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3  
Socket Present State Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 6–4  
Socket Force Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 6–6  
Socket Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7  
Socket Power Management Register Description . . . . . . . . . . . . . . . . . . . 6–8  
Distributed DMA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1  
DDMA Command Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3  
DMA Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4  
DDMA Mode Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5  
DDMA Multichannel Mask Register Description . . . . . . . . . . . . . . . . . . . . . 7–6  
PC Card Address Setup Time, t  
, 8-Bit and 16-Bit PCI Cycles . . . . . 8–7  
su(A)  
PC Card Command Active Time, t  
PC Card Command Active Time, t  
, 8-Bit PCI Cycles . . . . . . . . . . . . . 8–7  
, 16-Bit PCI Cycles . . . . . . . . . . . . 8–7  
c(A)  
c(A)  
PC Card Address Hold Time, t  
, 8-Bit and 16-Bit PCI Cycles . . . . . . . 8–7  
h(A)  
ix  
x
1 Introduction  
1.1 Description  
The Texas Instruments PCI1451 is a high-performance PC Card controller with a 32-bit PCI interface. The  
device supports two independent PC Card sockets compliant with the 1997 PC Card Standard and the PCI Bus  
Interface Specification for PCI-to-CardBus Bridges. The PCI1451 provides features which make it the best  
choice for bridging between PCI and PC Cards in both notebook and desktop computers. The 1995 and 1997  
PC Cardt Standards retain the 16-bit PC Card specification defined in PCMCIA Release 2.1, and define the  
new 32-bit PC Card, CardBus, capable of full 32-bit data transfers at 33 MHz. The PCI1451 supports any  
combination of 16-bit and CardBus PC Cards in the two sockets, powered at 5 Vdc or 3.3 Vdc as required.  
The PCI1451 is compliant with the latest PCI Bus Power Management Specification. It is also compliant with  
the PCI Local Bus Specification, and its PCI interface can act as either a PCI master device or a PCI slave  
device. The PCI bus mastering is initiated during 16-bit PC Card DMA transfers, or CardBus PC Card bridging  
transactions.  
All card signals are internally buffered to allow hot insertion and removal. The PCI1451 is register compatible  
with the Intel 82365SL-DF ExCA controller. The PCI1451 internal data-path logic allows the host to access 8-,  
16-, and 32-bit cards using full 32-bit PCI cycles for maximum performance. Independent buffering and a  
pipeline architecture provide an unsurpassed performance level with sustained bursting. The PCI1451 can also  
be programmed to accept fast posted writes to improve system bus utilization.  
The PCI1451 provides an internally buffered zoom video (ZV) path. This reduces the design effort of PC board  
manufacturers to add a ZV compatible solution and ensures compliance with the CardBus loading  
specifications. Multiple system interrupt signaling options are provided: Serial ISA/Serial PCI, Serial  
ISA/Parallel PCI, Parallel ISA/Parallel PCI, and PCI Only interrupts. Furthermore, general-purpose inputs and  
outputs (GPIOs) are provided for the board designer to implement sideband functions. Many other features are  
designed into the PCI1451 such as socket activity LED outputs, and are discussed in detail throughout the  
design specification.  
An advanced complementary metal-oxide semiconductor (CMOS) process achieves low system power  
consumption while operating at PCI clock rates up to 33 MHz. Several low-power modes allow the host power  
management system to further reduce power consumption.  
Unused PCI1451 inputs must be pulled up using a 43-kW resistor.  
1.2 Features  
The PCI1451 supports the following features:  
Ultra zoomed video  
Zoomed video auto-detect  
Advanced filtering on card detect lines provide 90 microseconds of noise immunity.  
Programmable D3 status pin  
Internal ring oscillator  
3.3-V core logic with universal PCI interfaces compatible with 3.3-V and 5-V PCI signaling environments  
TI is a trademark of Texas Instruments.  
1–1  
Mix-and-match 5-V/3.3-V PC Card16 cards and 3.3-V CardBus cards  
Two PC Card or CardBus slots with hot insertion and removal  
Serial interface to TI TPS2206 dual power switch  
132 Mbyte/sec. burst transfers to maximize data throughput on both the PCI bus and the CardBus bus  
Serialized IRQ with PCI interrupts  
Eight programmable multifunction pins  
Interrupt modes supported: serial ISA/serial PCI, serial ISA/parallel PCI, parallel PCI only.  
Serial EEPROM interface for loading subsystem ID and subsystem vendor ID  
Zoomed video with internal buffering  
Dedicated pin for PCI CLKRUN  
Four general-purpose event registers  
Multifunction PCI device with separate configuration space for each socket  
Five PCI memory windows and two I/O windows available to each PC Card16 socket  
Two I/O windows and two memory windows available to each CardBus socket  
ExCA -compatible registers are mapped in memory or I/O space  
Distributed DMA and PC/PCI DMA  
Intel 82365SL-DF register compatible  
16-bit DMA on both PC Card sockets  
Ring indicate, SUSPEND, and PCI CLKRUN  
Advanced submicron, low-power CMOS technology  
Provides VGA/palette memory and I/O, and subtractive decoding options  
Socket activity LED pins  
PCI bus lock (LOCK)  
Packaged in a 257-pin Micro-Star BGA  
1.3 Related Documents  
1997 PC Card Standard  
PCI Bus Power Management Interface Specification (Revision 1.1)  
Advanced Configuration and Power Interface (ACPI) Specification (Revision 2.0)  
PCI Local Bus Specification (Revision 2.2)  
PC 98/99  
PCI Bus Interface Specification for PCI-to-CardBus Bridges  
PCI Bus Power Management Specification for PCI to CardBus Bridges Specification  
1.4 Ordering Information  
ORDERING NUMBER  
NAME  
VOLTAGE  
PACKAGE  
PCI1451  
PC Card Controller  
3.3 V, 5-V tolerant I/Os  
257-ball Micro-Star BGA  
1–2  
2 Terminal Descriptions  
The PCI1451 is packaged in a 257-ball MicroStar BGA package.  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19  
10 12 14 16 18  
2
4
6
8
Figure 2–1. PCI1451 GJG Terminal Diagram  
Table 2–1 shows the GJG terminal assignments for the CardBus and 16-bit PC Card signal names.  
Table 2–2 shows the CardBus PC Card signal names sorted alphanumerically to the GJG terminal number.  
Table 2–3 shows the 16-bit PC Card signal names sorted alphanumerically to the GJG terminal number.  
2–1  
Table 2–1. GJG Terminals Sorted Alphanumerically for CardBus // 16-Bit Signals  
SIGNAL NAME  
CARDBUS  
16-BIT  
SIGNAL NAME  
CARDBUS  
16-BIT  
SIGNAL NAME  
CARDBUS  
16-BIT  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
A2  
A3  
A_CC/BE1  
GND  
A_ADDR8  
GND  
D5  
D6  
A_CAD13  
A_CC/BE0  
A_CAD5  
GND  
A_IORD  
A_CE1  
F14  
F15  
F16  
F18  
F19  
G1  
B_CAD15  
B_CAD12  
B_CAD13  
B_IOWR  
B_ADDR11  
B_IORD  
A4  
A_CAD12  
A_CAD10  
A_CAD8  
A_CAD3  
A_CAD0  
B_CAD29  
A_ADDR11  
A_CE2  
D7  
A_DATA6  
GND  
A5  
D8  
V
CCB  
V
CCB  
A6  
A_DATA15  
A_DATA5  
A_DATA3  
B_DATA1  
D9  
B_RSVD  
B_CCD2  
B_CAD26  
B_CAD24  
B_CAD23  
B_DATA2  
B_CD2  
B_CAD11  
GND  
B_OE  
A7  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D18  
D19  
E1  
GND  
A8  
B_ADDR0  
B_ADDR2  
B_ADDR3  
G2  
A_CAD18  
A_CAD19  
A_CAD17  
A_CC/BE2  
A_CAD4  
B_CAD7  
B_CAD10  
B_CAD9  
B_CC/BE0  
B_CAD8  
GND  
A_ADDR7  
A_ADDR25  
A_ADDR24  
A_ADDR12  
A_DATA12  
B_DATA7  
B_CE2  
A9  
G4  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
B1  
B_CSTSCHG B_BVD1(STSCHG/RI)  
G5  
V
CC  
V
CC  
V
CC  
V
CC  
G6  
B_CC/BE3  
B_CREQ  
B_CVS2  
B_CAD17  
GND  
B_REG  
B_CFRAME  
B_CBLOCK  
B_RSVD  
B_ADDR23  
B_ADDR19  
B_ADDR18  
B_ADDR8  
G7  
B_INPACK  
B_VS2  
G13  
G14  
G15  
G16  
G18  
G19  
H1  
B_ADDR24  
GND  
B_CC/BE1  
B_ADDR10  
B_CE1  
V
CC  
V
CC  
B_CCLK  
B_ADDR16  
E2  
A_CCLK  
A_CGNT  
A_ADDR16  
A_WE  
B_DATA15  
GND  
B_CDEVSEL B_ADDR21  
E4  
A_CPAR  
A_RSVD  
A_CAD16  
A_CAD15  
A_CAD11  
A_ADDR13  
A_ADDR18  
A_ADDR17  
A_IOWR  
E5  
A_CDEVSEL A_ADDR21  
A_CAD20  
A_CRST  
A_CAD21  
A_CAD22  
A_CVS2  
B_CAD4  
B_RSVD  
B_CAD5  
B_CAD6  
B_CAD3  
A_CAD23  
A_CC/BE3  
A_CREQ  
A_CAD24  
A_CAD25  
A_ADDR6  
A_RESET  
A_ADDR5  
A_ADDR4  
A_VS2  
B2  
E6  
V
CC  
V
CC  
H2  
B3  
E7  
A_RSVD  
A_CAD1  
A_DATA14  
A_DATA4  
H4  
B4  
E8  
H5  
B5  
A_OE  
E9  
B_CAD31  
B_CAD27  
B_CINT  
B_DATA10  
B_DATA0  
H6  
B6  
V
CCA  
V
CCA  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E18  
E19  
F1  
H14  
H15  
H16  
H18  
H19  
J1  
B_DATA12  
B_DATA14  
B_DATA6  
B_DATA13  
B_DATA5  
A_ADDR3  
A_REG  
B7  
A_CAD6  
A_CAD2  
B_CAD30  
A_DATA13  
A_DATA11  
B_DATA9  
B_READY(IREQ)  
B_ADDR1  
B_ADDR5  
B_ADDR25  
B_ADDR12  
B_ADDR17  
B_ADDR9  
B8  
B_CAD25  
B_CAD21  
B_CAD19  
B_CC/BE2  
B_CAD16  
B_CAD14  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
C1  
B_CCLKRUN B_WP(IOIS16)  
B_CVS1 B_VS1  
V
CCB  
V
CCB  
J2  
B_CAD22  
B_CAD20  
B_CAD18  
B_CIRDY  
B_CTRDY  
B_CGNT  
B_CSTOP  
GND  
B_ADDR4  
B_ADDR6  
B_ADDR7  
B_ADDR15  
B_ADDR22  
B_WE  
J4  
A_INPACK  
A_ADDR2  
A_ADDR1  
V
V
V
V
J5  
CC  
CC  
J6  
CCA  
CCA  
F2  
A_CFRAME  
A_CIRDY  
A_CTRDY  
A_CAD9  
A_CAD7  
A_CCD1  
B_CAD28  
B_CAUDIO  
B_CSERR  
GND  
A_ADDR23  
A_ADDR15  
A_ADDR22  
A_ADDR10  
A_DATA7  
A_CD1  
J14  
J15  
J16  
J18  
J19  
K1  
V
CC  
V
CC  
F4  
B_CAD1  
B_CAD2  
B_CAD0  
B_CCD1  
A_CVS1  
A_CINT  
B_DATA4  
B_DATA11  
B_DATA3  
B_CD1  
F5  
B_ADDR20  
GND  
F6  
F7  
C2  
A_CBLOCK  
B_CPERR  
B_CPAR  
A_ADDR19  
B_ADDR14  
B_ADDR13  
A_ADDR14  
A_ADDR20  
A_ADDR9  
F8  
A_VS1  
C18  
C19  
D1  
F9  
B_DATA8  
B_BVD2(SPKR)  
B_WAIT  
K2  
A_READY(IREQ)  
A_WAIT  
F10  
F11  
F12  
F13  
K4  
A_CSERR  
A_CPERR  
A_CSTOP  
A_CAD14  
K5  
V
CCA  
V
CCA  
D2  
GND  
K6  
A_CAD26  
GNT  
A_ADDR0  
GNT  
D4  
B_CRST  
B_RESET  
K14  
2–2  
Table 2–1. GJG Terminals Sorted Alphanumerically for CardBus // 16-Bit Signals (continued)  
SIGNAL NAME  
CARDBUS  
16-BIT  
SIGNAL NAME  
CARDBUS  
16-BIT  
SIGNAL NAME  
CARDBUS  
16-BIT  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
K15  
K18  
K19  
L1  
PCLK  
PCLK  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P18  
P19  
R1  
MFUNC2  
MFUNC1  
GRST  
MFUNC2  
MFUNC1  
GRST  
T18  
T19  
U1  
FRAME  
IRDY  
FRAME  
IRDY  
CLKRUN  
PRST  
CLKRUN  
PRST  
ZV_UV3  
ZV_UV6  
TRDY  
ZV_UV3  
ZV_UV6  
TRDY  
A_CSTSCHG  
A_CCLKRUN  
A_CCD2  
A_CAD27  
A_CAUDIO  
REQ  
A_BVD1(STSCHG/RI)  
A_WP(IOIS16)  
A_CD2  
IRQSER  
AD6  
IRQSER  
AD6  
U2  
L2  
U18  
U19  
V1  
L4  
AD9  
AD9  
DEVSEL  
ZV_UV5  
ZV_SCLK  
ZV_LRCLK  
ZV_PCLK  
RSVD  
DEVSEL  
ZV_UV5  
ZV_SCLK  
ZV_LRCLK  
ZV_PCLK  
RSVD  
L5  
A_DATA0  
A_BVD2(SPKR)  
REQ  
V
CC  
V
CC  
L6  
AD19  
AD19  
V2  
L14  
L15  
L16  
L18  
L19  
M1  
M2  
M4  
M5  
M6  
M14  
M15  
M16  
M18  
M19  
N1  
AD21  
AD21  
V3  
AD31  
AD31  
AD20  
AD20  
V4  
AD28  
AD28  
ZV_Y7  
ZV_UV0  
ZV_UV2  
MFUNC6  
RSVD  
RSVD  
RSVD  
MFUNC3  
SUSPEND  
RI_OUT  
AD2  
ZV_Y7  
ZV_UV0  
ZV_UV2  
MFUNC6  
RSVD  
RSVD  
RSVD  
MFUNC3  
SUSPEND  
RI_OUT  
AD2  
V5  
AD30  
AD30  
R2  
V6  
RSVD  
RSVD  
AD29  
AD29  
R4  
V7  
RSVD  
RSVD  
A_CAD29  
GND  
A_DATA1  
GND  
R5  
V8  
RSVD  
RSVD  
R6  
V9  
SCL  
SCL  
A_CAD30  
A_RSVD  
A_CAD28  
C/BE3  
A_DATA9  
A_DATA2  
A_DATA8  
C/BE3  
R7  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
V
CC  
V
CC  
R8  
DATA  
AD0  
DATA  
AD0  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R18  
R19  
T1  
V
CC  
V
CC  
AD27  
AD27  
GND  
GND  
AD26  
AD26  
AD11  
AD11  
AD25  
AD25  
AD5  
AD5  
AD14  
AD14  
AD24  
AD24  
AD8  
AD8  
PAR  
PAR  
ZV_HREF  
ZV_VSYNC  
ZV_Y0  
ZV_HREF  
ZV_VSYNC  
ZV_Y0  
AD16  
AD16  
PERR  
PERR  
N2  
C/BE2  
AD18  
C/BE2  
AD18  
STOP  
STOP  
N4  
ZV_UV7  
ZV_MCLK  
ZV_SDATA  
MFUNC5  
RSVD  
ZV_UV7  
ZV_MCLK  
ZV_SDATA  
MFUNC5  
RSVD  
N5  
ZV_Y1  
ZV_Y1  
AD17  
AD17  
N6  
ZV_Y2  
ZV_Y2  
ZV_UV1  
ZV_UV4  
GND  
ZV_UV1  
ZV_UV4  
GND  
N7  
A_CAD31  
AD3  
A_DATA10  
AD3  
T2  
N13  
N14  
N15  
N16  
N18  
N19  
P1  
T4  
AD22  
AD22  
T5  
V
CC  
V
CC  
RSVD  
RSVD  
AD23  
AD23  
T6  
RSVD  
GND  
RSVD  
GND  
RSVD  
RSVD  
GND  
GND  
T7  
SDA  
SDA  
V
CCP  
V
CCP  
T8  
RSVD  
MFUNC4  
SPKROUT  
CLOCK  
AD1  
RSVD  
MFUNC4  
SPKROUT  
CLOCK  
AD1  
MFUNC0  
LATCH  
GND  
MFUNC0  
LATCH  
GND  
IDSEL/MFUNC7 IDSEL/MFUNC7  
T9  
V
CC  
V
CC  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
P2  
ZV_Y3  
ZV_Y4  
ZV_Y5  
ZV_Y6  
RSVD  
RSVD  
ZV_Y3  
ZV_Y4  
ZV_Y5  
ZV_Y6  
RSVD  
RSVD  
V
CCP  
V
CCP  
P4  
AD7  
AD7  
P5  
AD4  
AD4  
AD10  
AD13  
AD15  
SERR  
AD10  
AD13  
AD15  
SERR  
P6  
C/BE0  
AD12  
C/BE0  
AD12  
P7  
P8  
C/BE1  
C/BE1  
2–3  
Table 2–2. CardBus PC Card Signal Names Sorted Alphanumerically to GJG Terminal Number  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
A_CAD0  
A8  
E8  
B8  
A7  
G7  
D7  
B7  
F7  
A6  
F6  
A5  
B5  
A4  
D5  
D4  
B4  
B3  
G5  
G2  
G4  
H1  
H4  
H5  
J1  
A_CFRAME  
F2  
E4  
AD26  
M16  
M15  
L16  
L19  
L18  
L15  
J18  
J15  
J16  
H19  
H14  
H16  
H18  
G13  
G18  
G15  
G14  
F19  
F15  
F16  
E18  
F14  
E16  
A15  
B15  
E14  
B14  
E13  
B13  
D13  
D12  
E12  
D11  
E10  
F9  
B_CC/BE3  
A12  
J19  
D10  
A17  
B10  
A18  
D15  
B18  
E11  
B16  
C19  
C18  
A13  
F13  
F11  
B19  
A10  
B17  
B11  
A14  
D9  
A_CAD1  
A_CGNT  
A_CINT  
A_CIRDY  
A_CPAR  
A_CPERR  
A_CREQ  
A_CRST  
A_CSERR  
A_CSTOP  
A_CSTSCHG  
A_CTRDY  
A_CVS1  
A_CVS2  
A_RSVD  
A_RSVD  
A_RSVD  
AD0  
AD27  
B_CCD1  
B_CCD2  
B_CCLK  
B_CCLKRUN  
B_CDEVSEL  
B_CFRAME  
B_CGNT  
B_CINT  
B_CIRDY  
B_CPAR  
B_CPERR  
B_CREQ  
B_CRST  
B_CSERR  
B_CSTOP  
B_CSTSCHG  
B_CTRDY  
B_CVS1  
B_CVS2  
B_RSVD  
B_RSVD  
B_RSVD  
C/BE0  
A_CAD2  
K2  
AD28  
A_CAD3  
F4  
AD29  
A_CAD4  
B1  
AD30  
A_CAD5  
D1  
AD31  
A_CAD6  
J4  
B_CAD0  
B_CAD1  
B_CAD2  
B_CAD3  
B_CAD4  
B_CAD5  
B_CAD6  
B_CAD7  
B_CAD8  
B_CAD9  
B_CAD10  
B_CAD11  
B_CAD12  
B_CAD13  
B_CAD14  
B_CAD15  
B_CAD16  
B_CAD17  
B_CAD18  
B_CAD19  
B_CAD20  
B_CAD21  
B_CAD22  
B_CAD23  
B_CAD24  
B_CAD25  
B_CAD26  
B_CAD27  
B_CAD28  
B_CAD29  
B_CAD30  
B_CAD31  
B_CAUDIO  
B_CBLOCK  
B_CC/BE0  
B_CC/BE1  
B_CC/BE2  
A_CAD7  
H2  
A_CAD8  
K4  
A_CAD9  
D2  
A_CAD10  
A_CAD11  
A_CAD12  
A_CAD13  
A_CAD14  
A_CAD15  
A_CAD16  
A_CAD17  
A_CAD18  
A_CAD19  
A_CAD20  
A_CAD21  
A_CAD22  
A_CAD23  
A_CAD24  
A_CAD25  
A_CAD26  
A_CAD27  
A_CAD28  
A_CAD29  
A_CAD30  
A_CAD31  
A_CAUDIO  
A_CBLOCK  
A_CC/BE0  
A_CC/BE1  
A_CC/BE2  
A_CC/BE3  
A_CCD1  
L1  
F5  
K1  
H6  
B2  
E7  
M5  
V12  
T12  
R12  
N13  
T13  
R13  
P13  
W14  
R14  
P14  
W15  
V15  
T15  
W16  
V16  
W17  
R15  
R19  
R18  
P16  
P19  
P18  
N14  
N15  
M19  
M18  
AD1  
AD2  
AD3  
AD4  
D18  
H15  
T14  
T16  
R16  
M14  
K18  
T11  
V11  
U19  
T18  
A3  
AD5  
AD6  
J5  
AD7  
C/BE1  
J6  
AD8  
C/BE2  
K6  
L5  
AD9  
C/BE3  
AD10  
CLKRUN  
CLOCK  
DATA  
M6  
M1  
M4  
N7  
L6  
AD11  
AD12  
AD13  
DEVSEL  
FRAME  
GND  
AD14  
AD15  
C2  
D6  
A2  
G6  
J2  
AD16  
GND  
A16  
C1  
AD17  
GND  
AD18  
A9  
GND  
D8  
AD19  
B9  
GND  
F12  
G1  
AD20  
E9  
GND  
F8  
L4  
AD21  
F10  
D16  
G16  
D19  
E15  
GND  
G19  
M2  
A_CCD2  
AD22  
GND  
A_CCLK  
E2  
L2  
AD23  
GND  
N16  
T4  
A_CCLKRUN  
A_CDEVSEL  
AD24  
GND  
E5  
AD25  
GND  
T7  
2–4  
Table 2–2. CardBus PC Card Signal Names Sorted Alphanumerically to GJG Terminal Number  
(continued)  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
CC  
SIGNAL NAME  
GND  
V14  
W12  
K14  
P11  
N19  
T19  
P12  
W11  
W10  
P10  
P9  
RSVD  
P7  
P8  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
A11  
D14  
E1  
ZV_PCLK  
V4  
V2  
W4  
R2  
T1  
R4  
U1  
T2  
V1  
U2  
W2  
N2  
N4  
N5  
N6  
P2  
P4  
P5  
P6  
R1  
GND  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
SCL  
ZV_SCLK  
ZV_SDATA  
ZV_UV0  
ZV_UV1  
ZV_UV2  
ZV_UV3  
ZV_UV4  
ZV_UV5  
ZV_UV6  
ZV_UV7  
ZV_VSYNC  
ZV_Y0  
CC  
GNT  
R6  
CC  
GRST  
R7  
E6  
CC  
IDSEL/MFUNC7  
IRDY  
R8  
E19  
J14  
P1  
CC  
T6  
CC  
IRQSER  
LATCH  
MFUNC0  
MFUNC1  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
PAR  
T8  
CC  
V5  
P15  
T5  
CC  
V6  
CC  
V7  
V10  
V13  
B6  
CC  
V8  
CC  
R9  
W6  
W7  
W8  
V9  
CCA  
CCA  
CCA  
CCB  
CCB  
CCP  
CCP  
T9  
F1  
W5  
K5  
ZV_Y1  
R5  
B12  
F18  
N18  
W13  
N1  
ZV_Y2  
V17  
K15  
V18  
K19  
L14  
R11  
SDA  
W9  
W18  
T10  
V19  
R10  
U18  
ZV_Y3  
PCLK  
SERR  
SPKROUT  
STOP  
SUSPEND  
TRDY  
ZV_Y4  
PERR  
ZV_Y5  
PRST  
ZV_HREF  
ZV_LRCLK  
ZV_MCLK  
ZV_Y6  
REQ  
V3  
ZV_Y7  
RI_OUT  
W3  
2–5  
Table 2–3. 16-Bit PC Card Signal Names Sorted Alphanumerically to GJG Terminal Number  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
A_ADDR0  
K6  
J6  
A_DATA11  
B8  
G7  
AD26  
M16  
M15  
L16  
L19  
L18  
L15  
D11  
E12  
D12  
D13  
B13  
E13  
B14  
B15  
D19  
E18  
G15  
F15  
E15  
C19  
C18  
B16  
A17  
E16  
D18  
D16  
B19  
A18  
B17  
D15  
A15  
E14  
A10  
F10  
J19  
D10  
G16  
G14  
E10  
A9  
B_DATA5  
H19  
H16  
G13  
F9  
A_ADDR1  
A_ADDR2  
A_ADDR3  
A_ADDR4  
A_ADDR5  
A_ADDR6  
A_ADDR7  
A_ADDR8  
A_ADDR9  
A_ADDR10  
A_ADDR11  
A_ADDR12  
A_ADDR13  
A_ADDR14  
A_ADDR15  
A_ADDR16  
A_ADDR17  
A_ADDR18  
A_ADDR19  
A_ADDR20  
A_ADDR21  
A_ADDR22  
A_ADDR23  
A_ADDR24  
A_ADDR25  
A_BVD1(STSCHG/RI)  
A_BVD2(SPKR)  
A_CD1  
A_DATA12  
A_DATA13  
A_DATA14  
A_DATA15  
A_INPACK  
A_IORD  
A_IOWR  
A_OE  
AD27  
B_DATA6  
B_DATA7  
B_DATA8  
B_DATA9  
B_DATA10  
B_DATA11  
B_DATA12  
B_DATA13  
B_DATA14  
B_DATA15  
B_INPACK  
B_IORD  
B_IOWR  
B_OE  
J5  
B7  
AD28  
J1  
E7  
AD29  
H5  
H4  
H1  
G2  
A2  
D4  
F6  
A4  
G6  
B1  
D1  
F4  
E2  
B3  
B2  
C2  
D2  
E5  
F5  
F2  
G5  
G4  
L1  
A6  
AD30  
B9  
J4  
AD31  
E9  
D5  
B_ADDR0  
B_ADDR1  
B_ADDR2  
B_ADDR3  
B_ADDR4  
B_ADDR5  
B_ADDR6  
B_ADDR7  
B_ADDR8  
B_ADDR9  
B_ADDR10  
B_ADDR11  
B_ADDR12  
B_ADDR13  
B_ADDR14  
B_ADDR15  
B_ADDR16  
B_ADDR17  
B_ADDR18  
B_ADDR19  
B_ADDR20  
B_ADDR21  
B_ADDR22  
B_ADDR23  
B_ADDR24  
B_ADDR25  
B_BVD1(STSCHG/RI)  
B_BVD2(SPKR)  
B_CD1  
J16  
H14  
H18  
H15  
G18  
A13  
F16  
F14  
F19  
E11  
A12  
F13  
B11  
A14  
F11  
B18  
B10  
T14  
T16  
R16  
M14  
K18  
T11  
V11  
U19  
T18  
A3  
B4  
B5  
A_READY(IREQ)  
A_REG  
A_RESET  
A_VS1  
A_VS2  
A_WAIT  
A_WE  
A_WP(IOIS16)  
AD0  
K2  
J2  
H2  
K1  
H6  
K4  
E4  
B_READY(IREQ)  
B_REG  
B_RESET  
B_VS1  
L2  
V12  
T12  
R12  
N13  
T13  
R13  
P13  
W14  
R14  
P14  
W15  
V15  
T15  
W16  
V16  
W17  
R15  
R19  
R18  
P16  
P19  
P18  
N14  
N15  
M19  
M18  
AD1  
AD2  
B_VS2  
AD3  
B_WAIT  
B_WE  
AD4  
AD5  
B_WP(IOIS16)  
C/BE0  
AD6  
AD7  
C/BE1  
AD8  
C/BE2  
AD9  
C/BE3  
L6  
AD10  
CLKRUN  
CLOCK  
DATA  
F8  
L4  
AD11  
A_CD2  
AD12  
A_CE1  
D6  
A5  
L5  
AD13  
DEVSEL  
FRAME  
GND  
A_CE2  
AD14  
A_DATA0  
AD15  
A_DATA1  
M1  
M5  
A8  
E8  
A7  
D7  
F7  
M6  
M4  
N7  
AD16  
GND  
A16  
C1  
A_DATA2  
AD17  
GND  
A_DATA3  
AD18  
B_CD2  
GND  
D8  
A_DATA4  
AD19  
B_CE1  
GND  
F12  
G1  
A_DATA5  
AD20  
B_CE2  
GND  
A_DATA6  
AD21  
B_DATA0  
B_DATA1  
B_DATA2  
B_DATA3  
B_DATA4  
GND  
G19  
M2  
A_DATA7  
AD22  
GND  
A_DATA8  
AD23  
D9  
GND  
N16  
T4  
A_DATA9  
AD24  
J18  
J15  
GND  
A_DATA10  
AD25  
GND  
T7  
2–6  
Table 2–3. 16-Bit PC Card Signal Names Sorted Alphanumerically to GJG Terminal Number (continued)  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
CC  
SIGNAL NAME  
GND  
V14  
W12  
K14  
P11  
N19  
T19  
P12  
W11  
W10  
P10  
P9  
RSVD  
P7  
P8  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
A11  
D14  
E1  
ZV_PCLK  
V4  
V2  
W4  
R2  
T1  
R4  
U1  
T2  
V1  
U2  
W2  
N2  
N4  
N5  
N6  
P2  
P4  
P5  
P6  
R1  
GND  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
SCL  
ZV_SCLK  
ZV_SDATA  
ZV_UV0  
ZV_UV1  
ZV_UV2  
ZV_UV3  
ZV_UV4  
ZV_UV5  
ZV_UV6  
ZV_UV7  
ZV_VSYNC  
ZV_Y0  
CC  
GNT  
R6  
CC  
GRST  
R7  
E6  
CC  
IDSEL/MFUNC7  
IRDY  
R8  
E19  
J14  
P1  
CC  
T6  
CC  
IRQSER  
LATCH  
MFUNC0  
MFUNC1  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
PAR  
T8  
CC  
V5  
P15  
T5  
CC  
V6  
CC  
V7  
V10  
V13  
B6  
CC  
V8  
CC  
R9  
W6  
W7  
W8  
V9  
CCA  
CCA  
CCA  
CCB  
CCB  
CCP  
CCP  
T9  
F1  
W5  
K5  
ZV_Y1  
R5  
B12  
F18  
N18  
W13  
N1  
ZV_Y2  
V17  
K15  
V18  
K19  
L14  
R11  
SDA  
W9  
W18  
T10  
V19  
R10  
U18  
ZV_Y3  
PCLK  
SERR  
SPKROUT  
STOP  
SUSPEND  
TRDY  
ZV_Y4  
PERR  
ZV_Y5  
PRST  
ZV_HREF  
ZV_LRCLK  
ZV_MCLK  
ZV_Y6  
REQ  
V3  
ZV_Y7  
RI_OUT  
W3  
2–7  
TheterminalsaregroupedintablesbyfunctionalitysuchasPCIsystemfunction, powersupplyfunction, etc., forquick  
reference. The terminal numbers are also listed for convenient reference.  
Table 2–4. Power Supply  
TERMINAL  
FUNCTION  
NAME  
NO.  
A3, A16, C1, D8,  
F12, G1, G19, M2,  
N16, T4, T7, V14,  
W12  
GND  
Device ground terminals  
A11, D14, E1, E6,  
E19, J14, P1, P15,  
T5, V10, V13  
Power supply terminal for core logic (3.3 Vdc)  
V
CC  
B6, F1, K5  
B12, F18  
N18, W13  
Clamp voltage for PC Card A interface. Indicates Card A signaling environment.  
Clamp voltage for PC Card B interface. Indicates Card B signaling environment.  
Clamp voltage for PCI signaling (3.3 Vdc or 5 Vdc)  
V
CCA  
V
CCB  
V
CCP  
Table 2–5. PC Card Power Switch  
TERMINAL  
I/O  
FUNCTION  
NAME  
NO.  
3-line power switch clock. Information on the DATA line is sampled at the rising edge of CLOCK. This  
terminal defaults as an input which means an external clock source must be used. If the internal ring  
oscillator is used, then an external CLOCK source is not required. The internal oscillator may be enabled  
by setting bit 27 (P2CCLK) of the system control register (PCI offset 80h, see Section 4.29) to a 1b.  
CLOCK  
T11  
I/O  
A 43-kW pulldown resistor should be tied to this terminal.  
3-line power switch data. DATA is used to serially communicate socket power-control information to the  
power switch.  
DATA  
V11  
O
O
3-line power switch latch. LATCH is asserted by the PCI4450 to indicate to the PC Card power switch that  
the data on the DATA line is valid.  
LATCH  
W11  
Table 2–6. PCI System  
TERMINAL  
I/O  
I/O  
I
FUNCTION  
NAME  
NO.  
PCI clock run. CLKRUN is used by the central resource to request permission to stop the PCI clock or to  
slow it down, and the PCI4450 responds accordingly. If CLKRUN is not implemented, then this termomal  
should be tied low. CLKRUN is enabled by default by bit 1 (KEEPCLK) in the system control register (PCI  
offset 80h, see Section 4.29).  
K18  
CLKRUN  
PCLK  
PCI bus clock. PCLK provides timing for all transactions on the PCI bus. All PCI signals are sampled at  
the rising edge of PCLK.  
K15  
K19  
PCI bus reset. When the PCI bus reset is asserted, PRST causes the PCI4450 to place all output buffers  
inahigh-impedancestateandresetallinternalregisters. WhenPRSTis asserted, the device is completely  
nonfunctional. After PRST is deasserted, the PCI4450 is in its default state. When the SUSPEND mode  
is enabled, the device is protected from the PRST and the internal registers are preserved. All outputs are  
placed in a high-impedance state, but the contents of the registers are preserved.  
I
I
PRST  
GRST  
Global reset. When the global reset is asserted, the GRST signal causes the PCI4450 to place all output  
buffers in a high-impedance state and reset all internal registers. When GRST is asserted, the device is  
completely in its default state. For systems that require wake-up from D3, GRST will normally be asserted  
onlyduringinitialboot. PRSTshouldbeassertedfollowinginitialbootsothatPMEcontextisretainedwhen  
transitioning from D3 to D0. For systems that do not require wake-up from D3, GRST should be tied to  
PRST.  
P11  
2–8  
Table 2–7. PCI Address and Data  
TERMINAL  
NAME  
I/O  
FUNCTION  
NO.  
L15  
L18  
L19  
L16  
M15  
M16  
M18  
M19  
N15  
N14  
P18  
P19  
P16  
R18  
R19  
R15  
W17  
V16  
W16  
T15  
V15  
W15  
P14  
R14  
W14  
P13  
R13  
T13  
N13  
R12  
T12  
V12  
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
PCIaddress/databus. ThesesignalsmakeupthemultiplexedPCIaddressanddatabusontheprimaryinterface.  
During the address phase of a primary bus PCI cycle, AD31–AD0 contain a 32-bit address or other destination  
information. During the data phase, AD31–AD0 contain data.  
I/O  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
PCI bus commands and byte enables. These signals are multiplexed on the same PCI terminals. During the  
address phase of a primary bus PCI cycle, C/BE3–C/BE0 define the bus command. During the data phase, this  
4-bit bus is used as byte enables. The byte enables determine which byte paths of the full 32-bit data bus carry  
meaningful data. C/BE0 applies to byte 0 (AD7–AD0), C/BE1 applies to byte 1 (AD15–AD8), C/BE2 applies to  
byte 2 (AD23–AD16), and C/BE3 applies to byte 3 (AD31–AD24).  
M14  
R16  
T16  
T14  
C/BE3  
C/BE2  
C/BE1  
C/BE0  
I/O  
I/O  
PCI bus parity. In all PCI bus read and write cycles, the PCI4450 calculates even parity across the AD31–AD0  
and C/BE3–C/BE0 buses. As an initiator during PCI cycles, the PCI4450 outputs this parity indicator with a  
one-PCLK delay. As a target during PCI cycles, the calculated parity is compared to the initiator’s parity indicator.  
A compare error results in the assertion of a parity error (PERR).  
PAR  
V17  
2–9  
Table 2–8. PCI Interface Control  
TERMINAL  
NAME  
I/O  
FUNCTION  
NO.  
PCI device select. The PCI4450 asserts DEVSEL to claim a PCI cycle as the target device. As a PCI  
initiator on the bus, the PCI4450 monitors DEVSEL until a target responds. If no target responds before  
timeout occurs, then the PCI4450 terminates the cycle with an initiator abort.  
U19  
I/O  
DEVSEL  
FRAME  
GNT  
PCI cycle frame. FRAME is driven by the initiator of a bus cycle. FRAME is asserted to indicate that a  
bus transaction is beginning, and data transfers continue while this signal is asserted. When FRAME  
is deasserted, the PCI bus transaction is in the final data phase.  
T18  
K14  
I/O  
I
PCI bus grant. GNT is driven by the PCI bus arbiter to grant the PCI4450 access to the PCI bus after  
the current data transaction has completed. GNT may or may not follow a PCI bus request, depending  
on the PCI bus parking algorithm.  
PCI bus lock. MFUNC7/LOCK can be configured as PCI LOCK and used to gain exclusive access  
downstream. Since this functionality is not typically used, other functions may be accessed through this  
terminal. MFUNC7/LOCK defaults to and can be configured through the multifunction routing status  
register (PCI offset 8Ch, see Section 4.36).  
LOCK  
N19  
I/O  
(MFUNC7)  
Initializationdeviceselect. IDSELselectsthePCI4450duringconfigurationspaceaccesses. IDSELcan  
beconnected to one of the upper 24 PCI address lines on the PCI bus. If the LATCHterminal(W12/W11)  
has an external pulldown resistor, then this terminal is configurable as MFUNC7 and IDSEL defaults to  
the AD23 terminal.  
IDSEL/MFUNC7  
IRDY  
N19  
T19  
I
PCI initiator ready. IRDY indicates the PCI bus initiator’s ability to complete the current data phase of  
the transaction. A data phase is completed on a rising edge of PCLK where both IRDY and TRDY are  
asserted. Until IRDY and TRDY are both sampled asserted, wait states are inserted.  
I/O  
PCI parity error indicator. PERR is driven by a PCI device to indicate that calculated parity does not  
match PAR when PERR is enabled through bit 6 of the command register (PCI offset 04h, see  
Section 4.4).  
V18  
L14  
I/O  
O
PERR  
REQ  
PCI bus request. REQ is asserted by the PCI4450 to request access to the PCI bus as an initiator.  
PCI system error. SERR is an output that is pulsed from the PCI4450 when enabled through bit 8 of the  
command register (PCI offset 04h, see Section 4.4), indicating a system error has occurred. The  
PCI4450 need not be the target of the PCI cycle to assert this signal. When SERR is enabled by bit 1  
in the bridge control register (PCI offset 3Eh, see Section 4.25), this signal also pulses, indicating that  
an address parity error has occurred on a CardBus interface.  
W18  
O
SERR  
PCI cycle stop signal. STOP is driven by a PCI target to request the initiator to stop the current PCI bus  
transaction. STOP is used for target disconnects and is commonly asserted by target devices that do  
not support burst data transfers.  
V19  
U18  
I/O  
I/O  
STOP  
TRDY  
PCI target ready. TRDY indicates the primary bus target’s ability to complete the current data phase of  
the transaction. A data phase is completed on a rising edge of PCLK when both IRDY and TRDY are  
asserted. Until both IRDY and TRDY are asserted, wait states are inserted.  
2–10  
Table 2–9. System Interrupt  
TERMINAL  
NAME  
I/O  
FUNCTION  
NO.  
Parallel PCI interrupt. INTA can be mapped to MFUNC0 when parallel PCI interrupts are used.  
INTA  
(MFUNC0)  
W10  
I/O  
See Section 3.5, Programmable Interrupt Subsystem, for details on interrupt signaling. MFUNC0/INTA  
defaults to a general-purpose input.  
Parallel PCI interrupt. INTB can be mapped to MFUNC1 when parallel PCI interrupts are used.  
INTB  
(MFUNC1)  
P10  
P12  
I/O  
I/O  
See Section 3.5, Programmable Interrupt Subsystem, for details on interrupt signaling. MFUNC1/INTB  
defaults to a general-purpose input.  
Serial interrupt signal. IRQSER provides the IRQSER-style serial interrupting scheme. Serialized PCI  
interrupts can also be sent in the IRQSER stream. See Section 3.5, Programmable Interrupt Subsystem,  
for details on interrupt signaling.  
IRQSER  
MFUNC6  
MFUNC5  
MFUNC4  
MFUNC4  
MFUNC3  
MFUNC3  
MFUNC2  
MFUNC1  
MFUNC0  
R5  
W5  
T9  
Interrupt request/secondary functions multiplexed. The primary function of these terminals is to provide  
programmable options supported by the PCI4450. These interrupt multiplexer outputs can be mapped to  
various functions. See Section 4.36, Multifunction Routing Status Register, for options.  
T9  
All of these terminals have secondary functions, such as PCI interrupts, PC/PCI DMA, GPE request/grant,  
ring indicate output, and zoomed video status, that can be selected with the appropriate programming of  
this register. When the secondary functions are enabled, the respective terminals are not available for  
multifunction routing.  
R9  
O
O
R9  
P9  
See Section 4.36, Multifunction Routing Status Register, for programming options.  
P10  
W10  
Ring indicate out and power management event output. Terminal provides an output to the system for  
ring-indicate or PME signals. Alternately, RI_OUT can be routed on MFUNC7.  
RI_OUT/PME  
R11  
Table 2–10. PC/PCI DMA  
TERMINAL  
I/O  
FUNCTION  
NAME  
NO.  
PCGNT  
(MFUNC2)  
P9  
PC/PCI DMA grant. PCGNT is used to grant the DMA channel to a requester in a system supporting the  
PC/PCI DMA scheme. PCGNT, is available on MFUNC2 or MFUNC3.  
I/O  
PCGNT  
(MFUNC3)  
R9  
N19  
T9  
This terminal is also used for the serial EEPROM interface.  
PCREQ  
(MFUNC7)  
PC/PCI DMA request. PCREQ is used to request DMA transfers as DREQ in a system supporting the  
PC/PCI DMA scheme. PCREQ is available on MFUNC7, MFUNC4, or MFUNC0.  
PCREQ  
(MFUNC4)  
O
This terminal is also used for the serial EEPROM interface.  
PCREQ  
(MFUNC0)  
W10  
2–11  
Table 2–11. Zoomed Video  
TERMINAL  
NAME  
I/O AND MEMORY  
INTERFACE SIGNAL  
I/O  
FUNCTION  
NO.  
N1  
A10  
A11  
O
O
ZV_HREF  
Horizontal sync to the zoomed video port  
Vertical sync to the zoomed video port  
N2  
ZV_VSYNC  
ZV_Y7  
ZV_Y6  
R1  
P6  
P5  
P4  
P2  
N6  
N5  
N4  
W2  
U2  
V1  
T2  
U1  
R4  
T1  
R2  
V2  
W3  
V4  
V3  
W4  
A20  
A14  
A19  
A13  
A18  
A8  
ZV_Y5  
ZV_Y4  
O
Video data to the zoomed video port in YV:4:2:2 format  
ZV_Y3  
ZV_Y2  
ZV_Y1  
A17  
A9  
ZV_Y0  
ZV_UV7  
ZV_UV6  
ZV_UV5  
ZV_UV4  
ZV_UV3  
ZV_UV2  
ZV_UV1  
ZV_UV0  
ZV_SCLK  
ZV_MCLK  
ZV_PCLK  
ZV_LRCLK  
ZV_SDATA  
A25  
A12  
A24  
A15  
A23  
A16  
A22  
A21  
A7  
O
Video data to the zoomed video port in YV:4:2:2 format  
O
O
O
O
O
Audio SCLK PCM  
A6  
Audio MCLK PCM  
IOIS16  
INPACK  
SPKR  
Pixel clock to the zoomed video port  
Audio LRCLK PCM  
Audio SDATA PCM  
2–12  
Table 2–12. Miscellaneous  
TERMINAL  
NAME  
I/O  
I/O  
I/O  
I/O  
I/O  
FUNCTION  
NO.  
Multifunctionterminal 0. Defaults as a general-purpose input (GPI0), and can be programmed to perform  
various functions. See Section 4.36, Multifunction Routing Status Register, for configuration details.  
MFUNC0  
MFUNC1  
MFUNC2  
MFUNC3  
W10  
Multifunctionterminal 1. Defaults as a general-purpose input (GPI1), and can be programmed to perform  
various functions. See Section 4.36, Multifunction Routing Status Register, for configuration details.  
P10  
P9  
Multifunctionterminal 2. Defaults as a general-purpose input (GPI2), and can be programmed to perform  
various functions. See Section 4.36, Multifunction Routing Status Register, for configuration details.  
Multifunctionterminal 3. Defaults as a general-purpose input (GPI3), and can be programmed to perform  
various functions. See Section 4.36, Multifunction Routing Status Register, for configuration details.  
R9  
Multifunction terminal 4. Defaults as a high–impedance reserved input, and can be programmed to  
perform various functions. See Section 4.36, Multifunction Routing Status Register, for configuration  
details.  
T9  
W5  
R5  
I/O  
I/O  
I/O  
I/O  
MFUNC4  
MFUNC5  
Multifunction terminal 5. Defaults as a high-impedance reserved input, and can be programmed to  
perform various functions. See Section 4.36, Multifunction Routing Status Register, for configuration  
details.  
Multifunction terminal 6. Defaults as a high-impedance reserved input, and can be programmed to  
perform various functions. See Section 4.36, Multifunction Routing Status Register, for configuration  
details.  
MFUNC6  
IDSEL and multifunction terminal 7. Defaults as IDSEL, but may be used as a multifunction terminal. See  
Section 4.36, Multifunction Routing Status Register and Section 3.4, PC Card Applications Overview, for  
configuration details.  
IDSEL/MFUNC7  
N19  
Serial ROM clock. This terminal provides the SCL serial clock signaling in a two-wire serial ROM  
implementation, and is sensed at reset for serial ROM detection.  
SCL  
SDA  
V9  
I/O  
I/O  
Serial ROM data. This terminal provides the SDA serial data signaling in a two-wire serial ROM  
implementation.  
W9  
Speaker output. SPKROUT is the output to the host system that can carry SPKR or CAUDIO through the  
PCI4450 from the PC Card interface. SPKROUT is driven as the XOR combination of card  
SPKR//CAUDIO inputs.  
T10  
R10  
O
I
SPKROUT  
SUSPEND  
Suspend. SUSPEND is used to protect the internal registers from clearing when PRST is asserted. See  
Section 3.6.7, Suspend Mode for details.  
2–13  
Table 2–13. 16-Bit PC Card Address and Data (slots A and B)  
TERMINAL  
NO.  
SLOT SLOT  
I/O  
FUNCTION  
NAME  
A
B
A25  
A24  
A23  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
G4  
G5  
F2  
F5  
E5  
D2  
C2  
B2  
B3  
E2  
F4  
D1  
B1  
G6  
A4  
F6  
D4  
A2  
G2  
H1  
H4  
H5  
J1  
E14  
A15  
D15  
B17  
A18  
B19  
D16  
D18  
E16  
A17  
B16  
C18  
C19  
E15  
F15  
G15  
E18  
D19  
B15  
B14  
E13  
B13  
D13  
D12  
E12  
D11  
G18  
H15  
H18  
H14  
J16  
E9  
O
PC Card address. 16-bit PC Card address lines. A25 is the most significant bit.  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
J5  
A1  
J6  
A0  
K6  
A6  
E7  
B7  
G7  
B8  
N7  
M4  
M6  
F7  
D7  
A7  
E8  
A8  
M5  
M1  
L5  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
B9  
D8  
F9  
I/O  
PC Card data. 16-bit PC Card data lines. D15 is the most significant bit.  
D7  
G13  
H16  
H19  
J15  
J18  
D9  
D6  
D5  
D4  
D3  
D2  
D1  
A9  
D0  
E10  
Terminal name for slot A is preceded with A_. For example, the full name for terminal G2 is A_ADDR25.  
Terminal name for slot B is preceded with B_. For example, the full name for terminal A16 is B_ADDR25.  
2–14  
Table 2–14. 16-Bit PC Card Interface Control (slots A and B)  
TERMINAL  
NO.  
SLOT SLOT  
I/O  
FUNCTION  
NAME  
A
B
Batteryvoltagedetect1. BVD1isgeneratedby16-bitmemoryPCCardsthatincludebatteries. BVD1  
and BVD2 indicate the condition of the batteries on a memory PC Card. Both BVD1 and BVD2 are  
kept high when the battery is good. When BVD2 is low and BVD1 is high, the battery is weak and  
should be replaced. When BVD1 is low, the battery is no longer serviceable and the data in the  
memory PC Card is lost. See Section 5.6, ExCA Card Status-Change Interrupt Configuration  
Register, for the enable bits. See Section 5.5, ExCA Card Status-Change Register and Section 5.2,  
ExCA Interface Status Register, for the status bits for this signal.  
BVD1  
(STSCHG/RI)  
L1  
A10  
I
Status change. STSCHG is used to alert the system to a change in the READY, write protect, or  
battery voltage dead condition of a 16-bit I/O PC Card.  
Ring indicate. RI is used by 16-bit modem cards to indicate a ring detection.  
Batteryvoltagedetect2. BVD2isgeneratedby16-bitmemoryPCCardsthatincludebatteries. BVD2  
and BVD1 indicate the condition of the batteries on a memory PC Card. Both BVD1 and BVD2 are  
high when the battery is good. When BVD2 is low and BVD1 is high, the battery is weak and should  
be replaced. When BVD1 is low, the battery is no longer serviceable and the data in the memory PC  
Card is lost. See Section 5.6, ExCA Card Status-Change Interrupt Configuration Register, for the  
enable bits. See Section 5.5, ExCA Card Status-Change Register and Section 5.2, ExCA Interface  
Status Register, for the status bits for this signal.  
BVD2  
(SPKR)  
L6  
F10  
I
Speaker. SPKR is an optional binary audio signal available only when the card and socket have been  
configured for the 16-bit I/O interface. The audio signals from cards A and B are combined by the  
PCI4450 and are output on SPKROUT.  
DMA request. BVD2 can be used as the DMA request signal during DMA operations to a 16-bit  
PC Card that supports DMA. The PC Card asserts BVD2 to indicate a request for a DMA operation.  
PC Card detect 1 and PC Card detect 2. CD1 and CD2 are internally connected to ground on the PC  
Card. When a PC Card is inserted into a socket, CD1 and CD2 are pulled low. For signal status, see  
Section 5.2, ExCA Interface Status Register.  
F8  
L4  
J19  
CD1  
CD2  
I
D10  
D6  
A5  
G16  
G14  
CE1  
CE2  
Cardenable1andcardenable2. CE1andCE2enableeven-andodd-numberedaddressbytes.CE1  
enables even-numbered address bytes, and CE2 enables odd-numbered address bytes.  
O
Input acknowledge. INPACK is asserted by the PC Card when it can respond to an I/O read cycle  
at the current address.  
INPACK  
J4  
A13  
I
DMA request. INPACK can be used as the DMA request signal during DMA operations from a 16-bit  
PC Card that supports DMA. If used as a strobe, then the PC Card asserts this signal to indicate a  
request for a DMA operation.  
I/O read. IORD is asserted by the PCI4450 to enable 16-bit I/O PC Card data output during host I/O  
read cycles.  
D5  
B4  
B5  
F16  
F14  
F19  
O
O
O
IORD  
IOWR  
OE  
DMA write. IORD is used as the DMA write strobe during DMA operations from a 16-bit PC Card that  
supports DMA. The PCI4450 asserts IORD during DMA transfers from the PC Card to host memory.  
I/O write. IOWR is driven low by the PCI4450 to strobe write data into 16-bit I/O PC Cards during host  
I/O write cycles.  
DMA read. IOWR is used as the DMA write strobe during DMA operations from a 16-bit PC Card that  
supports DMA. The PCI4450 asserts IOWR during transfers from host memory to the PC Card.  
Outputenable. OE is driven low by the PCI4450 to enable 16-bit memory PC Card data output during  
host memory read cycles.  
DMA terminal count. OE is used as terminal count (TC) during DMA operations to a 16-bit PC Card  
that supports DMA. The PCI4450 asserts OE to indicate TC for a DMA write operation.  
Ready. The ready function is provided by READY when the 16-bit PC Card and the host socket are  
configured for the memory-only interface. READY is driven low by the 16-bit memory PC Cards to  
indicate that the memory card circuits are busy processing a previous write command. READY is  
driven high when the 16-bit memory PC Card is ready to accept a new data transfer command.  
READY  
(IREQ)  
K2  
E11  
I
Interrupt request. IREQ is asserted by a 16-bit I/O PC Card to indicate to the host that a device on  
the 16-bit I/O PC Card requires service by the host software. IREQ is high (deasserted) when no  
interrupt is requested.  
Terminal name for slot A is preceded with A_. For example, the full name for terminal B5 is A_OE.  
Terminal name for slot B is preceded with B_. For example, the full name for terminal F19 is B_OE.  
2–15  
Table 2–14. 16-Bit PC Card Interface Control (slots A and B) (continued)  
TERMINAL  
NO.  
SLOT SLOT  
I/O  
FUNCTION  
NAME  
A
B
Attribute memory select. REG remains high for all common memory accesses. When REG is asserted,  
access is limited to attribute memory (OE or WE active) and to the I/O space (IORD or IOWR active).  
Attribute memory is a separately accessed section of card memory and is generally used to record card  
capacity and other configuration and attribute information.  
J2  
A12  
O
REG  
DMA acknowledge. REG is used as a DMA acknowledge (DACK) during DMA operations to a 16-bit PC  
Card that supports DMA. The PCI4450 asserts REG to indicate a DMA operation. REG is used in  
conjunction with the DMA read (IOWR) or DMA write (IORD) strobes to transfer data.  
RESET  
WAIT  
H2  
K4  
F13  
F11  
O
I
PC Card reset. RESET forces a hard reset to a 16-bit PC Card.  
Bus cycle wait. WAIT is driven by a 16-bit PC Card to delay the completion of (i.e., extend) the memory  
or I/O cycle in progress.  
Write enable. WE is used to strobe memory write data into 16-bit memory PC Cards. WE is also used  
for memory PC Cards that employ programmable memory technologies.  
DMA terminal count. WE is used as TC during DMA operations to a 16-bit PC Card that supports DMA.  
The PCI4450 asserts WE to indicate TC for a DMA read operation.  
WE  
E4  
B18  
O
Write protect. WP applies to 16-bit memory PC Cards. WP reflects the status of the write-protect switch  
on 16-bit memory PC Cards. For 16-bit I/O cards, WP is used for the 16-bit port (IOIS16) function.  
I/O is 16 bits. IOIS16 applies to 16-bit I/O PC Cards. IOIS16 is asserted by the 16-bit PC Card when the  
address on the bus corresponds to an address to which the 16-bit PC Card responds, and the I/O port  
that is addressed is capable of 16-bit accesses.  
WP  
(IOIS16)  
L2  
B10  
I
DMA request. WP can be used as the DMA request signal during DMA operations to a 16-bit PC Card  
that supports DMA. If used, the PC Card asserts WP to indicate a request for a DMA operation.  
VS1  
VS2  
K1  
H6  
B11  
A14  
Voltage sense 1 and voltage sense 2. VS1 and VS2, when used in conjunction with each other,  
determine the operating voltage of the 16-bit PC Card.  
I/O  
Terminal name for slot A is preceded with A_. For example, the full name for terminal C1 is A_WE.  
Terminal name for slot B is preceded with B_. For example, the full name for terminal A19 is B_WE.  
Table 2–15. CardBus PC Card Interface System (slots A and B)  
TERMINAL  
NO.  
I/O  
FUNCTION  
NAME  
SLOT SLOT  
A
B
CardBus PC Card clock. CCLK provides synchronous timing for all transactions on the CardBus  
interface. All signals except CRST, CCLKRUN, CINT, CSTSCHG, CAUDIO, CCD2, CCD1, and  
CVS2–CVS1 are sampled on the rising edge of CCLK, and all timing parameters are defined with the  
rising edge of this signal. CCLK operates at the PCI bus clock frequency, but it can be stopped in the  
low state or slowed down for power savings.  
CCLK  
E2  
A17  
O
CardBus PC Card clock run. CCLKRUN is used by a CardBus PC Card to request an increase in the  
CCLK frequency, and by the PCI4450 to indicate that the CCLK frequency is decreased. CardBus clock  
run (CCLKRUN) follows the PCI clock run (CLKRUN).  
L2  
B10  
F13  
O
CCLKRUN  
CRST  
CardBus PC Card reset. CRST is used to bring CardBus PC Card-specific registers, sequencers, and  
signals to a known state. When CRST is asserted, all CardBus PC Card signals must be placed in a  
high-impedance state, and the PCI4450 drives these signals to a valid logic level. Assertion can be  
asynchronous to CCLK, but deassertion must be synchronous to CCLK.  
H2  
I/O  
Terminal name for slot A is preceded with A_. For example, the full name for terminal E3 is A_CCLK.  
Terminal name for slot B is preceded with B_. For example, the full name for terminal B17 is B_CCLK.  
2–16  
Table 2–16. CardBus PC Card Address and Data (slots A and B)  
TERMINAL  
NO.  
SLOT SLOT  
I/O  
FUNCTION  
NAME  
A
B
CAD31  
CAD30  
CAD29  
CAD28  
CAD27  
CAD26  
CAD25  
CAD24  
CAD23  
CAD22  
CAD21  
CAD20  
CAD19  
CAD18  
CAD17  
CAD16  
CAD15  
CAD14  
CAD13  
CAD12  
CAD11  
CAD10  
CAD9  
N7  
M4  
M1  
M6  
L5  
E9  
B9  
A9  
F9  
E10  
D11  
E12  
D12  
D13  
B13  
E13  
B14  
E14  
B15  
A15  
E16  
F14  
E18  
F16  
F15  
F19  
G14  
G15  
G18  
G13  
H18  
H16  
H14  
H19  
J16  
J15  
J18  
K6  
J6  
J5  
J1  
H5  
H4  
H1  
G4  
G2  
G5  
B3  
B4  
D4  
D5  
A4  
B5  
A5  
F6  
A6  
F7  
B7  
D7  
G7  
A7  
B8  
E8  
A8  
PC Card address and data. These signals make up the multiplexed CardBus address and data bus on  
the CardBus interface. During the address phase of a CardBus cycle, CAD31–CAD0 contain a 32-bit  
address. During the data phase of a CardBus cycle, CAD31–CAD0 contain data. CAD31 is the most  
significant bit.  
I/O  
CAD8  
CAD7  
CAD6  
CAD5  
CAD4  
CAD3  
CAD2  
CAD1  
CAD0  
CardBus bus commands and byte enables. CC/BE3–CC/BE0 are multiplexed on the same CardBus  
terminals. During the address phase of a CardBus cycle, CC/BE3–CC/BE0 defines the bus command.  
Duringthedataphase, this4-bitbusisusedasbyteenables. Thebyteenablesdeterminewhichbytepaths  
of the full 32-bit data bus carry meaningful data. CC/BE0 applies to byte 0 (CAD7–CAD0), CC/BE1applies  
to byte 1 (CAD15–CAD8), CC/BE2 applies to byte 2 (CAD23–CAD16), and CC/BE3 applies to byte 3  
(CAD31–CAD24).  
J2  
G6  
A2  
D6  
A12  
E15  
D19  
G16  
CC/BE3  
CC/BE2  
CC/BE1  
CC/BE0  
I/O  
I/O  
CardBus parity. In all CardBus read and write cycles, the PCI4450 calculates even parity across the CAD  
and CC/BE buses. As an initiator during CardBus cycles, the PCI4450 outputs CPAR with a one-CCLK  
delay. AsatargetduringCardBuscycles, thecalculatedparityiscomparedtotheinitiator’sparityindicator;  
a compare error results in a parity error assertion.  
CPAR  
B1  
C19  
Terminal name for slot A is preceded with A_. For example, the full name for terminal C2 is A_CPAR.  
Terminal name for slot B is preceded with B_. For example, the full name for terminal B20 is B_CPAR.  
2–17  
Table 2–17. CardBus PC Card Interface Control (slots A and B)  
TERMINAL  
NO.  
SLOT SLOT  
I/O  
FUNCTION  
NAME  
A
B
CardBus audio. CAUDIO is a digital input signal from a PC Card to the system speaker. The PCI4450  
supports the binary audio mode and outputs a binary signal from the card to SPKROUT.  
CAUDIO  
CBLOCK  
L6  
F10  
D16  
I
C2  
I/O  
CardBus lock. CBLOCK is used to gain exclusive access to a target.  
CCD1  
CCD2  
F8  
L4  
J19  
CardBus detect 1 and CardBus detect 2. CCD1 and CCD2 are used in conjunction with CVS1 and  
CVS2 to identify card insertion and interrogate cards to determine the operating voltage and card type.  
I
D10  
CardBusdevice select. The PCI4450 asserts CDEVSEL to claim a CardBus cycle as the target device.  
As a CardBus initiator on the bus, the PCI4450 monitors CDEVSEL until a target responds. If no target  
responds before time-out occurs, then the PCI4450 terminates the cycle with an initiator abort.  
E5  
F2  
A18  
D15  
I/O  
CDEVSEL  
CFRAME  
CardBus cycle frame. CFRAME is driven by the initiator of a CardBus bus cycle. CFRAME is asserted  
to indicate that a bus transaction is beginning, and data transfers continue while this signal is asserted.  
When CFRAME is deasserted, the CardBus bus transaction is in the final data phase.  
I/O  
CardBusbusgrant. CGNTisdrivenbythePCI4450tograntaCardBusPCCardaccesstotheCardBus  
bus after the current data transaction has been completed.  
E4  
K2  
B18  
E11  
I
I
CGNT  
CINT  
CardBus interrupt. CINT is asserted low by a CardBus PC Card to request interrupt servicing from the  
host.  
CardBus initiator ready. CIRDY indicates the CardBus initiator’s ability to complete the current data  
phase of the transaction. A data phase is completed on a rising edge of CCLK when both CIRDY and  
CTRDY are asserted. Until CIRDY and CTRDY are both sampled asserted, wait states are inserted.  
F4  
B16  
I/O  
CIRDY  
CardBus parity error. CPERR reports parity errors during CardBus transactions, except during special  
cycles. It is driven low by a target two clocks following that data when a parity error is detected.  
D1  
J4  
C18  
A13  
I/O  
I
CPERR  
CREQ  
CardBus request. CREQ indicates to the arbiter that the CardBus PC Card desires use of the CardBus  
bus as an initiator.  
CardBus system error. CSERR reports address parity errors and other system errors that could lead  
to catastrophic results. CSERR is driven by the card synchronous to CCLK, but deasserted by a weak  
pullup, and may take several CCLK periods. The PCI4450 can report CSERR to the system by  
assertion of SERR on the PCI interface.  
K4  
F11  
I
CSERR  
CardBus stop. CSTOP is driven by a CardBus target to request the initiator to stop the current CardBus  
transaction. CSTOP is used for target disconnects, and is commonly asserted by target devices that  
do not support burst data transfers.  
D2  
L1  
F5  
B19  
A10  
B17  
I/O  
I
CSTOP  
CSTSCHG  
CTRDY  
CardBus status change. CSTSCHG alerts the system to a change in the card’s status and is used as  
a wake-up mechanism.  
CardBustargetready. CTRDYindicatestheCardBustarget’sabilitytocompletethecurrentdataphase  
of the transaction. A data phase is completed on a rising edge of CCLK, when both CIRDY and CTRDY  
are asserted; until this time, wait states are inserted.  
I/O  
CardBus voltage sense 1 and CardBus voltage sense 2. CVS1 and CVS2 are used in conjunction with  
CCD1andCCD2toidentifycardinsertionandinterrogatecardstodeterminetheoperatingvoltageand  
card type.  
K1  
H6  
B11  
A14  
CVS1  
CVS2  
I/O  
Terminal name for slot A is preceded with A_. For example, the full name for terminal M1 is A_CAUDIO.  
Terminal name for slot B is preceded with B_. For example, the full name for terminal C11 is B_CAUDIO.  
2–18  
3 Feature/Protocol Descriptions  
Figure 3–1 shows a simplified system implementation example using the PCI1451. The PCI interface includes all  
address/data and control signals for PCI protocol. Highlighted in this diagram is the functionality supported by the  
PCI1451. The PCI1451 supports PC/PCI DMA, PCI Way DMA (distributed DMA), PME wake-up from D3  
through  
cold  
D0, 4 interrupt modes, an integrated zoomed video port, and 12 multifunction pins (8 MFUNC and 4 GPIO pins) that  
can be programmed for a wide variety of functions.  
PCI Bus  
Real Time  
Clock  
Activity LED’s  
CLKRUN  
South Bridge  
IRQSER  
PCI1451  
Clock  
2
TPS2206  
Power  
ZV  
Enable  
DMA  
PME  
Switch  
Embedded  
Controller  
Zoomed Video  
PC Card  
Socket A  
VGA  
Controller  
68  
19 Video  
4 Audio  
23 for ZV  
(See Note)  
PC Card  
Socket B  
68  
Audio  
Codec  
23 for ZV  
4 Audio  
Interrupt Routing Options:  
1) Serial ISA/Serial PCI  
2) Serial ISA/Parallel PCI  
3) Parallel PCI/Parallel ISA  
4) Parallel PCI Only  
NOTE: The PC Card interface is 68 pins for CardBus and 16-bit PC Cards. In zoomed-video mode 23 pins are used for routing  
the zoomed video signals to the VGA controller.  
Figure 3–1. PCI1451 System Block Diagram  
3.1 I/O Characteristics  
Figure 3–2 shows a 3-state bidirectional buffer. Section 8.2, Recommended Operating Conditions, provides the  
electrical characteristics of the inputs and outputs. The PCI1451 meets the ac specifications of the 1995 PC Card  
Standard and the PCI Local Bus Specification.  
3–1  
V
CCP  
Tied for Open Drain  
OE  
Pad  
Figure 3–2. 3-State Bidirectional Buffer  
3.2 Clamping Voltages  
The I/O sites can be pulled through a clamping diode to a voltage rail for protection. The 3.3-V core power supply  
is independent of the clamping voltages. The clamping (protection) diodes are required if the signaling environment  
on an I/O is system dependent. For example, PCI signaling can be either 3.3 Vdc or 5 Vdc, and the PCI1451 must  
reliablyaccommodatebothvoltagelevels.Thisisaccomplishedbyusinga3.3-VbufferwithaclampingdiodetoV  
.
CCP  
If a system design requires a 5-V PCI bus, then the V  
would be connected to the 5-V power supply.  
CCP  
A standard die has only one clamping voltage for the sites as shown in Figure 3–2. After the terminal assignments  
are fixed, the fabrication facility will support a design by splitting the clamping voltage for customization. The PCI1451  
requires three separate clamping voltages since it supports a wide range of features. The three voltages are listed  
and defined in Section 8.2, Recommended Operating Conditions.  
3.3 Peripheral Component Interconnect (PCI) Interface  
This section describes the PCI interface of the PCI1451, and how the device responds to and participates in PCI bus  
cycles. ThePCI1451providesallrequiredsignalsforPCImaster/slavedevicesandmayoperateineither5-Vor3.3-V  
PCI signaling environments by connecting the V  
terminals to the desired signaling level.  
CCP  
3.3.1 PCI Bus Lock (LOCK)  
The bus locking protocol defined in the PCI Local Bus Specification is not highly recommended, but is provided on  
the PCI1451 as an additional compatibility feature. The PCI LOCK terminal is multiplexed with GPIO2, and the  
terminal function defaults to a general-purpose input (GPI). The use of LOCK is only supported by PCI-to-CardBus  
bridges in the downstream direction (away from the processor).  
PCILOCK indicates an atomic operation that may require multiple transactions to complete. When LOCK is asserted,  
nonexclusive transactions may proceed to an address that is not currently locked. A grant to start a transaction on  
the PCI bus does not guarantee control of LOCK; control of LOCK is obtained under its own protocol. It is possible  
for different initiators to use the PCI bus while a single master retains ownership of LOCK. To avoid confusion with  
the PCI bus clock, the CardBus signal for this protocol is CBLOCK.  
An agent may need to do an exclusive operation because a critical memory access to memory might be broken into  
severaltransactions, butthemasterwantsexclusiverightstoaregionofmemory. Thegranularityofthelockisdefined  
by PCI to be 16 bytes aligned. The lock protocol defined by PCI allows a resource lock without interfering with  
nonexclusive, real-time data transfer, such as video.  
The PCI bus arbiter may be designed to support only complete bus locks using the LOCK protocol. In this scenario  
the arbiter will not grant the bus to any other agent (other than the LOCK master) while LOCK is asserted. A complete  
bus lock may have a significant impact on the performance of the video. The arbiter that supports complete bus lock  
must grant the bus to the cache to perform a writeback due to a snoop to a modified line when a locked operation  
is in progress.  
The PCI1451 supports all LOCK protocol associated with PCI-to-PCI bridges, as also defined for PCI-to-CardBus  
bridges. This includes disabling write posting while a locked operation is in progress, which can solve a potential  
deadlock when using devices such as PCI-to-PCI bridges. The potential deadlock can occur if a CardBus target  
3–2  
supports delayed transactions and blocks access as the target until it completes a delayed read. This target  
characteristic is prohibited by the PCI Local Bus Specification, and the issue is resolved by the PCI master using  
LOCK.  
3.3.2 Loading The Subsystem Identification (EEPROM Interface)  
The subsystem vendor ID register (see Section 4.26) and subsystem ID register (see Section 4.27) make up a double  
word of PCI configuration space located at offset 40h for functions 0 and 1. This doubleword register, used for system  
and option card (mobile dock) identification purposes, is required by some operating systems. Implementation of this  
unique identifier register is a PC 97 requirement.  
The PCI1451 offers two mechanisms to load a read-only value into the subsystem registers. The first mechanism  
relies upon the system BIOS providing the subsystem ID value. The default access mode to the subsystem registers  
is read-only, but the access mode may be made read/write by clearing bit 5 (SUBSYSRW) in the system control  
register (PCI offset 80h, see Section 4.29). Once this bit is cleared (0), the BIOS may write a subsystem identification  
value into the registers at PCI offset 40h. The BIOS must set the SUBSYSRW bit such that the subsystem vendor  
ID register and subsystem ID register are limited to read-only access. This approach saves the added cost of  
implementing the serial EEPROM.  
In some conditions, such as in a docking environment, the subsystem vendor ID register and subsystem ID register  
must be loaded with a unique identifier through a serial EEPROM interface. The PCI1451 loads the doubleword of  
data from the serial EEPROM after a reset of the primary bus. The SUSPEND input gates the PRST and GRST from  
the entire PCI1451 core, including the serial EEPROM state machine (see Section 3.6.7, Suspend Mode, for details  
on using SUSPEND). The PCI1451 provides a two-line serial bus interface to the serial EEPROM.  
The system designer must implement a pullup resistor on the PCI1451 SDA terminal to indicate the serial EEPROM  
mode. Only when this pullup resistor is present will the PCI1451 attempt to load data through the serial EEPROM  
interface. Note that a pullup resistor is also required on the SCL terminal to implement the EEPROM interface  
correctly. The serial EEPROM interface is a two-pin interface with one data signal (SDA) and one clock signal (SCL).  
Figure 3–3 illustrates a typical PCI1451 application using the serial EEPROM interface.  
V
CC  
Serial  
EEPROM  
A0  
SCL  
SDA  
A1 SCL  
A2 SDA  
PCI1451  
Figure 3–3. Serial EEPROM Application  
As stated above, when the PCI1451 is reset by GRST, the subsystem data is read automatically from the EEPROM.  
The PCI1451 masters the serial EEPROM bus and reads four bytes as described in Figure 3–4.  
3–3  
Slave Address  
Word Address  
Slave Address  
S
b6 b5 b4 b3 b2 b1 b0  
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
S
b6 b5 b4 b3 b2 b1 b0  
1
A
R/W  
Restart  
Data Byte 3  
R/W  
Data Byte 0  
M
Data Byte 1  
M
Data Byte 2  
M
M
P
S/P – Start/Stop Condition  
A – Slave Acknowledgment  
M – Master Acknowledgment  
Figure 3–4. EEPROM Interface Subsystem Data Collection  
The EEPROM is addressed at word address 00h, as indicated in Figure 3–4, and the address autoincrements after  
each byte transfers according to the protocol. Thus, to provide the subsystem register with data AABBCCDDh the  
EEPROM should be programmed with address 0 = AAh, 1 = BBh, 2 = CCh, and 3 = DDh.  
The serial EEPROM is addressed at slave address 1010000b by the PCI1451. All hardware address bits for the  
EEPROM should be tied to the appropriate level to achieve this address. The serial EEPROM chip in the sample  
application circuit, Figure 3–3, assumes the 1010b high address nibble. The lower three address bits are terminal  
inputs to the chip, and the sample application shows these terminal inputs tied to GND.  
The serial EEPROM interface signals require pullup resistors. The serial EEPROM protocol allows bidirectional  
transfers. Both the SCL and SDA signals are placed in a high-impedance state and pulled high when the bus is not  
active. When the SDA line transitions to a logic low, this signals a start condition (S). A low-to-high transition of SDA  
while SCL is high is defined as the stop condition (P). One bit is transferred during each clock pulse. The data on the  
SDA line must remain stable during the high period of the clock pulse, as changes in the data line at this time will be  
interpretedasacontrolsignal. Dataisvalidandstableduringtheclockhighperiod. Figure35illustratesthisprotocol.  
SDA  
SCL  
Start  
Stop  
Change of  
Condition  
Condition  
Data Allowed  
Data Line Stable,  
Data Valid  
Figure 3–5. Serial EEPROM Start/Stop Conditions and BIt Transfers  
Eachaddress byte and data transfer is followed by an acknowledge bit, as indicated in Figure 3–4. When the PCI1451  
transmits the addresses, it returns the SDA signal to the high state and places the line in a high-impedance state.  
The PCI1451 then generates an SCL clock cycle and expects the EEPROM to pull down the SDA line during the  
acknowledge pulse. This procedure is referred to as a slave acknowledge with the PCI1451 transmitter and the  
EEPROM receiver. Figure 3–6 illustrates general acknowledges.  
During the data byte transfers from the serial EEPROM to the PCI1451, the EEPROM clocks the SCL signal. After  
the EEPROM transmits the data to the PCI1451, it returns the SDA signal to the high state and places the line in a  
high-impedance state. The EEPROM then generates an SCL clock cycle and expects the PCI1451 to pull down the  
SDA line during the acknowledge pulse. This procedure is referred to as a master acknowledge with the EEPROM  
transmitter and the PCI1451 receiver. Figure 3–6 illustrates general acknowledges.  
3–4  
SCL From  
Master  
1
2
3
7
8
9
SDA Output  
By Transmitter  
SDA Output  
By Receiver  
Figure 3–6. Serial EEPROM Protocol – Acknowledge  
EEPROM interface status information is communicated through the general status register (PCI offset 85h, see  
Section 4.31). Bit 2 (EEDETECT) in this register indicates whether or not the PCI1451 serial EEPROM circuitry  
detects the pullup resistor on SDA. An error condition, such as a missing acknowledge, results in bit 1 (DATAERR)  
being set. Bit 0 (EEBUSY) is set while the subsystem ID register is loading (serial EEPROM interface is busy).  
3.3.3 Serial Bus EEPROM Application  
When the PCI bus is reset and the serial bus interface is detected, the PCI1451 attempts to read the subsystem  
identification and other register defaults from a serial EEPROM. The registers and corresponding bits that may be  
loaded with defaults through the EEPROM are provided in Table 3–1.  
Table 3–1. Registers and Bits Loadable Through Serial EEPROM  
PCI  
OFFSET  
EEPROM OFFSET  
REFERENCE  
BITS LOADED FROM EEPROM TO  
CORRESPONDING BITS IN REGISTER  
REGISTER NAME  
PCI 43h  
PCI 42h  
PCI 41h  
PCI 40h  
PCI 80h  
PCI 81h  
PCI 82h  
PCI 83h  
PCI 86h  
PCI 89h  
PCI 8Bh  
PCI 8Ch  
PCI 8Dh  
PCI 8Eh  
PCI 8Fh  
PCI 91h  
PCI 92h  
PCI 93h  
PCI A2h  
ExCA 00h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
Subsystem ID (see Section 4.27)  
Byte 1  
Subsystem ID (see Section 4.27)  
Byte 0  
Subsystem vendor ID (see Section 4.26)  
Subsystem vendor ID (see Section 4.26)  
System control (see Section 4.29)  
Byte 1  
Byte 0  
Byte 0, bits 6, 5, 4, 3, 1, 0  
Byte 1, bits 7, 6  
Byte 2, bits 6–0  
Byte 3, bits 7, 6, 5, 3, 2, 0  
No bits loaded  
Bits 7, 6, 3, 2, 1, 0  
Bits 3–0  
System control (see Section 4.29)  
System control (see Section 4.29)  
System control (see Section 4.29)  
Reserved  
General-purpose event enable (see Section 4.33)  
General-purpose output (see Section 4.35)  
Multifunction routing status (see Section 4.36)  
Multifunction routing status (see Section 4.36)  
Multifunction routing status (see Section 4.36)  
Multifunction routing status (see Section 4.36)  
Card control (see Section 4.38)  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Bits 7, 2, 1  
Bits 7–0  
Device control (see Section 4.39)  
Diagnostic (see Section 4.40)  
Bits 7, 4–0  
Bit 15  
Power management capabilities (see Section 4.45)  
ExCA identificaton and revision (see Section 5.1)  
Bits 7–0  
TheEEPROMdataformatisdetailedinFigure3–7. ThisformatmustbefollowedforthePCI1451toloadinitializations  
properly from a serial EEPROM. Any undefined condition results in a terminated load and sets the DATAERR bit in  
the general status register (see Section 4.31).  
3–5  
Slave Address = 1010 0000b  
PCI Offset  
Word Address 21h  
Reference(0)  
PCI Offset  
Reference(n)  
Byte 3 (0)  
Byte 2 (0)  
Byte 1 (0)  
Byte 0 (0)  
RSVD  
Word Address 22h  
Word Address 23h  
Word Address 24h  
Word Address 25h  
Word Address 8 × (n+3) + 1  
Byte 3 (n)  
Byte 2 (n)  
Byte 1 (n)  
Byte 0 (n)  
RSVD  
Word Address 8 × (n+3) + 2  
Word Address 8 × (n+3) + 3  
Word Address 8 × (n+3) + 4  
Word Address 8 × (n+3) + 5  
RSVD  
RSVD  
RSVD  
PCI Offset  
Reference(1)  
Word Address 29h  
RSVD  
EOL = FFh  
Word Address 8 × (n+4) + 1  
Figure 3–7. EEPROM Data Format  
The byte at EEPROM word address 00h must contain either a valid PCI offset, as listed in Table 3–1, or an end-of-list  
(EOL) indicator. The EOL indicator is a byte value of FFh, and indicates the end of the data to load from the EEPROM.  
Only doubleword registers are loaded from the EEPROM, and all bit fields must be considered when programming  
the EEPROM.  
The serial EEPROM is addressed at slave address 1010 0000b by the PCI1451. All hardware addres bits for the  
EEPROM should be tied to the appropriate level to achieve this address. The serial EEPROM chip in the sample  
application circuit (Figure 3–3) assumes the 1010b high-address nibble. The lower three address bits are terminal  
inputs to the chip, and the sample application shows these terminal inputs tied to GND.  
When a valid offset reference is read, four bytes are read from the EEPROM, MSB first, as illustrated in Figure 3–4.  
The address autoincrements after every byte transfer according to the doubleword read protocol. Note that the word  
addresses align with the data format illustrated in Figure 3–7. The PCI1451 continues to load data from the serial  
EEPROMuntil an end-of-list indicator is read. Three reserved bytes are stuffed to maintain eight-byte data structures.  
Note that the eight-byte data structure is important to provide correct addressing per the doubleword read format  
shown in Figure 3–4. In addition, the reference offsets must be loaded in the EEPROM in sequential order, that is,  
01h, 02h, 03h, 04h. If the offsets are not sequential, the registers may be loaded incorrectly.  
3.4 PC Card Applications Overview  
This section describes the PC Card interfaces of the PCI1451. A discussion on PC Card recognition details the card  
2
interrogation procedure. The card powering procedure is also discussed, including the protocol of the P C power  
switch interface. The internal ZV buffering provided by the PCI1451 and programming model is also detailed. Also,  
standardPCCardregistermodelsaredescribed, aswellasabriefdiscussionofthePCCardsoftwareprotocollayers.  
3.4.1 PC Card Insertion/Removal and Recognition  
The 1995 PC Card Standard addresses the card detection and recognition process through an interrogation  
procedure that the socket must initiate upon card insertion into a cold, unpowered socket. Through this interrogation,  
card voltage requirements and interface (16-bit vs. CardBus) are determined.  
The scheme uses the CD1, CD2, VS1, and VS2 signals (CCD1, CCD2, CVS1, CVS2 for CardBus). A PC Card  
designer connects these four pins in a certain configuration depending on the type of card and the supply voltage.  
The encoding scheme for this, defined in the 1997 PC Card Standard, is shown in Table 3–2.  
3–6  
Table 3–2. PC Card – Card Detect and Voltage Sense Connections  
CD2//CCD2  
Ground  
CD1//CCD1  
Ground  
VS2//CVS2  
Open  
VS1//CVS1  
Open  
Key  
5 V  
5 V  
Interface  
Voltage  
5 V  
16-bit PC Card  
16-bit PC Card  
Ground  
Ground  
Open  
Ground  
5 V and 3.3 V  
5 V, 3.3 V, and  
X.X V  
Ground  
Ground  
Ground  
Ground  
5 V  
16-bit PC Card  
Ground  
Ground  
Ground  
Connect to CVS1  
Ground  
Open  
Open  
Ground  
Connect to CCD1  
Ground  
LV  
LV  
LV  
LV  
16-bit PC Card  
CardBus PC Card  
16-bit PC Card  
3.3 V  
3.3 V  
Ground  
Ground  
3.3 V and X.X V  
3.3 V and X.X V  
Connect to CVS2  
Ground  
Connect to CCD2  
Ground  
CardBus PC Card  
3.3 V, X.X V, and  
Y.Y V  
Connect to CVS1  
Ground  
Ground  
Connect to CCD2  
LV  
CardBus PC Card  
Ground  
Connect to CVS2  
Ground  
Ground  
Ground  
Ground  
Connect to CCD2  
Connect to CCD1  
Open  
Open  
Open  
LV  
LV  
LV  
LV  
16-bit PC Card  
CardBus PC Card  
CardBus PC Card  
CardBus PC Card  
Reserved  
Y.Y V  
Y.Y V  
Connect to CVS2  
Ground  
Open  
X.X V and Y.Y V  
Y.Y V  
Connect to CVS1  
Ground  
Connect to CCD2  
Connect to CCD1  
Ground  
Connect to CVS1  
Connect to CVS2  
Ground  
Ground  
Connect to CCD1  
Reserved  
2
3.4.2 P C Power Switch Interface (TPS2202A/2206)  
2
A power switch with a PCMCIA-to-peripheral control (P C) interface is required for the PC Card powering interface.  
2
TheTITPS2206(orTPS2202A)Dual-SlotPCCardPower-InterfaceSwitchprovidestheP CinterfacetotheCLOCK,  
DATA, and LATCH terminals of the PCI1451. Figure 3–8 shows the terminal assignments of the TPS2206. Figure 3–9  
illustrates a typical application where the PCI1451 represents the PCMCIA controller.  
There are two ways to provide a clock source to the power switch interface. The first method is to provide an external  
clock source such as a 32 kHz real time clock to the CLOCK terminal. The second method is to use the internal ring  
oscillator. If the internal ring oscillator is used, then the PCI1451 provides its own clock source for the PC Card  
interrogation logic and the power switch interface. The mode of operation is determined by the setting of bit 27  
(P2CCLK) of the system control register (PCI offset 80h). This bit is encoded as follows:  
0 = CLOCK terminal is an input (default).  
1 = CLOCK terminal is an output that utilizes the internal oscillator.  
A 43 kW pulldown resistor should be tied to the CLOCK pin.  
3–7  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
5V  
5V  
5V  
NC  
NC  
NC  
NC  
NC  
12V  
BVPP  
BVCC  
BVCC  
BVCC  
NC  
OC  
3.3V  
3.3V  
2
3
DATA  
CLOCK  
LATCH  
RESET  
12V  
AVPP  
AVCC  
AVCC  
AVCC  
GND  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
NC  
RESET  
3.3V  
NC – No internal connection  
Figure 3–8. TPS2206 Terminal Assignments  
Power Supply  
PC Card A  
PP1  
TPS2206  
V
12 V  
5 V  
12 V  
5 V  
AVPP  
V
V
V
PP2  
3.3 V  
3.3 V  
AVCC  
AVCC  
AVCC  
CC  
CC  
Supervisor  
RESET  
PC Card B  
V
PP1  
BVPP  
V
V
V
PP2  
BVCC  
BVCC  
BVCC  
CC  
3
CC  
PCI1451  
Serial I/F  
PC Card Interface (68 pins/socket)  
Figure 3–9. TPS2206 Typical Application  
3.4.3 Zoomed Video Support  
The zoomed video (ZV) port on the PCI1451 provides an internally buffered 16-bit ZV PC Card data path. This internal  
routing is programmed through the multimedia control register. Figure 3–9 summarizes the zoomed video subsystem  
implemented in the PCI1451, and details the bit functions found in the multimedia control register.  
Anoutputport(PORTSEL)isalwaysselected. ThePCI1451defaultstosocket0(seethemultimediacontrolregister).  
When ZVOUTEN is enabled, the zoomed video output terminals are enabled and allow the PCI1451 to route the  
zoomed video data. However, no data is transmitted unless either bit 0 (ZVEN0) or bit 1 (ZVEN1) is enabled in the  
multimedia control register. If the PORTSEL maps to a card port that is disabled (ZVEN =0 or ZVEN1 = 0), then the  
zoomed video port is driven low (i.e., no data is transmitted).  
3–8  
Zoomed Video Subsystem  
Card Output  
Enable Logic  
ZVEN0  
ZVOUTEN  
PC Card  
PC Card  
Socket 0  
I/F  
ZVSTAT†  
23  
VGA  
19 Video Signals  
PORTSEL  
PC Card  
Socket 1  
PC Card  
I/F  
Audio  
Codec  
4 Audio Signals  
ZVEN1  
Card Output  
Enable Logic  
ZVSTATmustbeenabledthroughtheGPIOControlRegister.  
Figure 3–10. Zoomed Video Subsystem  
3.4.4 Zoomed Video Auto Detect  
Zoomed video auto detect, when enabled, allows the PCI1451 to automatically detect zoomed video data by sensing  
the pixel clock from each socket and/or from a third zoomed video source that may exist on the motherboard. The  
PCI1451 automatically switches the internal zoomed video MUX to route the zoomed video stream to the PCI1451’s  
zoomed video output port. This eliminates the need for software to switch the internal MUX using the multimedia  
control register (PCI offset 84h, bits 6 and 7).  
The PCI1451 can be programmed to switch a third zoomed video source by programming MFUNC2 or MFUNC3 as  
a zoomed video pixel clock sense pin and connecting this pin to the pixel clock of the third zoomed video source.  
ZVSTAT may then be programmed onto MFUNC4, MFUNC1, or MFUNC0 and this signal may switch the zoomed  
video buffers from the third zoomed video source. To account for the possibility of several zoomed video sources  
being enabled at the same time, a programmable priority scheme may be enabled.  
3–9  
Zoomed Video Subsystem  
Card Output  
Enable Logic  
3rd Zoomed Video Source  
ZVEN0  
Pixel Clock Sense  
Programmed on  
23  
MFUNC2 or MFUNC3  
PC Card  
I/F  
PC Card  
Socket 0  
Buffers  
Enable  
23  
ZVSTAT  
Pixel Clock Sense  
23  
23  
23  
23  
Auto Z/V Arbiter  
and Buffer  
VGA  
19 Video Signals  
ZV Data  
Pixel Clock Sense  
23  
PC Card  
Socket 1  
Audio  
Codec  
PC Card  
I/F  
4 Audio Signals  
ZVEN1  
Card Output  
Enable Logic  
Figure 3–11. Zoomed Video With Auto Detect Enabled  
The PCI1451 defaults with zoomed video auto-detect disabled so that it will function exactly like the PCI1250A and  
PCI1451. To enable zoomed video auto-detect and the programmable priority scheme, the following bits must be set:  
Multimedia control register (PCI offset 84h) bit 5: Writing a 1b enables zoomed video auto-detect  
Multimedia control register (PCI offset 84h) bits 4–2: Set the programmable priority scheme  
000 = Slot A, Slot B, External Source  
001 = Slot A, External Source, Slot B  
010 = Slot B, Slot A, External Source  
011 = Slot B, External Source, Slot A  
100 = External Source, Slot A, Slot B  
101 = External Source, Slot B, Slot A  
110 = External Source, Slot B, Slot A  
111 = Reserved  
3–10  
If it is desired to switch a third zoomed video source, then the following bits must also be set:  
MFUNC routing register (PCI offset 8Ch), bits 14–12 or 10–8: Write 111b to program MFUNC3 or MFUNC2  
as a pixel clock input pin.  
MFUNC routing register (PCI offset 8Ch), bits 18–16, 6–4, or 2–0: Write 111b to program MFUNC4,  
MFUNC1, or MFUNC0 pin.  
3.4.5 Ultra Zoomed Video  
Ultra zoomed video is an enhancement to the PCI1451’s DMA engine and is intended to improve the 16-bit bandwidth  
for MPEG I and MPEG II decoder PC Cards. This enhancement allows the 1451 to fetch 32 bits of data from memory  
versus the 11XX/12XX 16-bit fetch capability. This enhancement allows a higher sustained throughput to the 16-bit  
PC Card, because the 1451 prefetches an extra 16 bits (32 bits total) during each PCI read transaction. If the PCI  
Bus becomes busy, then the 1451 has an extra 16 bits of data to perform back-to-back 16-bit transactions to the PC  
Card before having to fetch more data. This feature is built into the DMA engine and software is not required to enable  
this enhancement.  
NOTE:The 11XX and 12XX series CardBus controllers have enough 16-bit bandwidth to  
support MPEG II PC Card decoders. But it was decided to improve the bandwidth even more  
in the 14XX series CardBus controllers.  
3.4.6 D3_STAT Terminal  
Additional functionality added for the 1451 versus the 1250A/1251 series is the D3_STAT (D3 status) terminal. This  
terminal is asserted under the following two conditions (both conditions must be true before D3_STAT is asserted):  
Function 0 and Function 1 are placed in D3  
PME is enabled on either function  
TheintentofincludingthisfeatureinthePCI1451istousethispintoswitchanexternalV /V  
switch. Thisfeature  
CC AUX  
can be programmed on MFUNC7, MFUNC6, MFUNC2, or MFUNC1 by writing 100b to the appropriate multifunction  
routing status register bits (PCI offset 8Ch).  
3.4.7 Internal Ring Oscillator  
The internal ring oscillator provides an internal clock source for the PCI1451 so that neither the PCI clock nor an  
external clock is required in order for the PCI1451 to power down a socket or interrogate a PC Card. This internal  
oscillator operates nominally at 16 kHz and can be enabled by setting bit 27 (P2CCLK) of the system control register  
(PCI offset 80h) to a 1b. This function is disabled by default.  
3–11  
3.4.8 Integrated Pullup Resistors  
The 1997 PC Card Standard requires pullup resistors on various terminals to support both CardBus and 16-bit card  
configurations. Unlike the PCI1450/4450 which required external pullup resistors, the PCI1451 has integrated all of  
these pullup resistors, except for the WP(IOIS16)/CLKRUN pullup resistor.  
GJG PIN NUMBER  
SIGNAL NAME  
SOCKET A  
SOCKET B  
C18  
E11  
ADDR14/CPERR  
READY/CINT  
D1  
K2  
F4  
F8  
K1  
C2  
D2  
E5  
F5  
H6  
H2  
K4  
J4  
ADDR15/CIRDY  
CD1/CCD1  
B16  
J19  
VS1/CVS1  
B11  
ADDR19/CBLOCK  
ADDR20/CSTOP  
ADDR21/CDEVSEL  
ADDR22/CTRDY  
VS2/CVS2  
D16  
B19  
A18  
B17  
A14  
F13  
RESET/CRST  
WAIT/CSERR  
F11  
INPACK/CREQ  
A13  
F10  
BVD2(SPKR)/CAUDIO  
BVD1(STSCHG)/CSTSCHG  
CD2/CCD2  
L6  
L1  
L4  
A10  
D10  
L2  
B10  
WP(IOIS16)/CLKRUN  
This pin requires pullup, but the PCI1451 lacks an integrated pullup  
resistor.  
3.4.9 SPKROUT Usage  
The SPKROUT signal carries the digital audio signal from the PC Card to the system. When a 16-bit PC Card is  
configured for I/O mode, the BVD2 pin becomes SPKR. This terminal, also used in CardBus applications, is referred  
to as CAUDIO. SPKR passes a TTL level digital audio signal to the PCI1451. The CardBus CAUDIO signal also can  
pass a single amplitude, binary waveform. The binary audio signals from the two PC Card sockets are XOR’ed in the  
PCI1451 to produce SPKROUT. Figure 3–12 illustrates the SPKROUT connection.  
Bit 1, Card Control Register (offset 91h)  
Card A SPKROUT Enable  
Card A SPKR  
SPKROUT  
Speaker  
Driver  
Bit 1, Card Control Register (offset 91h)  
Card B SPKROUT Enable  
Card B SPKR  
Card A SPKROUT Enable  
Card B SPKROUT Enable  
Figure 3–12. SPKROUT Connection to Speaker Driver  
The SPKROUT signal is typically driven only by PC modem cards. To verify the SPKROUT on the PCI1451, a sample  
circuit was constructed, and this simplified schematic is provided below. The PCI1130/1131 required a pullup resistor  
on the SUSPEND/SPKROUT terminal. Since the PCI1451 does not multiplex any other function on SPKROUT, this  
terminal does not require a pullup resistor.  
3–12  
V
CC  
V
CC  
SPKROUT  
6
3
7
2
Speaker  
1
8
+
4
LM386  
Figure 3–13. Simplified Test Schematic  
3.4.10 LED Socket Activity Indicators  
The socket activity LEDs indicate when an access is occurring to a PC Card. The LED signals are programmable  
via the MFUNC register. When configured for LED outputs, these terminals output an active high signal to indicate  
socket activity. LEDA1 indicates socket 0 (card A) activity, and LEDA2 indicates socket 1 (card B) activity.  
The active-high LED signal is driven for 64 ms durations. When the LED is not being driven high, then it is driven to  
a low state. Either of the two circuits illustrated in Figure 3–14 can be implemented to provide the LED signaling, and  
it is left for the board designer to implement the circuit to best fit the application.  
Current Limiting  
R 500  
PCI1451  
LED  
Current Limiting  
R 500 Ω  
Application-  
Specific Delay  
PCI1451  
LED  
Figure 3–14. Two Sample LED Circuits  
As indicated, the LED signals are driven for 64 ms, and this is accomplished by a counter circuit. To avoid the  
possibility of the LEDs appearing to be stuck when the PCI clock is stopped, the LED signaling is cut off when either  
the SUSPEND signal is asserted or when the PCI clock is to be stopped per the CLKRUN protocol.  
Furthermore, if any additional socket activity occurs during this counter cycle, then the counter is reset and the LED  
signalremainsdriven. Ifsocketactivityisfrequent(atleastonceevery64ms), thentheLEDsignalswillremaindriven.  
3.4.11 PC Card 16 DMA Support  
The PCI1451 supports both PC/PCI (centralized) DMA and a distributed DMA slave engine for 16-bit PC Card DMA  
support. The distributed DMA (DDMA) slave register set provides the programmability necessary for the slave DDMA  
engine. Table 3–3 provides the DDMA register configuration.  
3–13  
Table 3–3. Distributed DMA Registers  
REGISTER NAME  
DMA BASE  
ADDRESS OFFSET  
TYPE  
R
W
R
Current address  
00h  
04h  
08h  
0Ch  
Reserved  
Reserved  
Page  
Base address  
Current count  
Reserved  
W
R
Base count  
N/A  
Mode  
N/A  
Request  
N/A  
Status  
Reserved  
Reserved  
W
R
Command  
Multichannel  
Mask  
Reserved  
W
Master clear  
3.4.12 CardBus Socket Registers  
The PCI1451 contains all registers for compatibility with the 1997 PC Card Standard. These registers exist as the  
CardBus socket registers, and are listed in Table 3–4.  
Table 3–4. CardBus Socket Registers  
OFFSE  
REGISTER NAME  
T
Socket event  
Socket mask  
00h  
04h  
08h  
0Ch  
10h  
14h  
18h  
1Ch  
20h  
Socket present state  
Socket force event  
Socket control  
Reserved  
Reserved  
Reserved  
Socket power management  
3.5 Programmable Interrupt Subsystem  
Interrupts provide a way for I/O devices to let the microprocessor know that they require servicing. The dynamic  
nature of PC Cards, and the abundance of PC Card I/O applications require substantial interrupt support from the  
PCI1451. The PCI1451 provides several interrupt signaling schemes to accommodate the needs of a variety of  
platforms. The different mechanisms for dealing with interrupts in this device are based upon various specifications  
and industry standards. The ExCA register set provides interrupt control for some 16-bit PC Card functions, and the  
CardBus socket register set provides interrupt control for the CardBus PC Card functions. The PCI1451 is therefore  
backward compatible with existing interrupt control register definitions, and new registers have been defined where  
required.  
The PCI1451 detects PC Card interrupts and events at the PC Card interface and notifies the host controller via one  
of several interrupt signaling protocols. To simplify the discussion of interrupts in the PCI1451, PC Card interrupts  
are classified as either card status change (CSC) or as functional interrupts.  
The method by which any type of PCI1451 interrupt is communicated to the host interrupt controller varies from  
system to system. The PCI1451 offers system designers the choice of using parallel PCI interrupt signaling, parallel  
ISA type IRQ interrupt signaling, or the IRQSER serialized ISA and/or PCI interrupt protocol. Traditional ISA IRQ  
signaling is provided through eight IRQMUX terminals. It is possible to use the parallel PCI interrupts in combination  
with either parallel IRQs or serialized IRQs, as detailed in the sections that follow.  
3–14  
3.5.1 PC Card Functional And Card Status Change Interrupts  
PC Card functional interrupts are defined as requests from a PC Card application for interrupt service. They are  
indicated by asserting specially defined signals on the PC Card interface. Functional interrupts are generated by  
16-bit I/O PC Cards and by CardBus PC Cards.  
Card status change (CSC) type interrupts, defined as events at the PC Card interface which are detected by the  
PCI1451, may warrant notification of host card and socket services software for service. CSC events include both  
card insertion and removal from PC Card sockets, as well as transitions of certain PC Card signals.  
Table 3–5 summarizes the sources of PC Card interrupts and the type of card associated with them. CSC and  
functional interrupt sources are dependent upon the type of card inserted in the PC Card socket. The three types of  
cards that may be inserted into any PC Card socket are: 16-bit memory card, 16-bit I/O card, and CardBus cards.  
Functional interrupt events are valid only for 16-bit I/O and CardBus cards, that is, the functional interrupts are not  
valid for 16-bit memory cards. Furthermore, card insertion and removal type CSC interrupts are independent of the  
card type.  
Table 3–5. PC Card Interrupt Events and Description  
Card Type  
Event  
Type  
Signal  
Description  
BVD1 (STSCHG) //  
CSTSCHG  
A transition on the BVD1 signal indicates a change in the  
PC Card battery conditions.  
CSC  
Battery conditions  
(BVD1, BVD2)  
A transition on the BVD2 signal indicates a change in the  
PC Card battery conditions.  
CSC  
CSC  
BVD2 (SPKR) // CAUDIO  
READY (IREQ) // CINT  
16-bit Memory  
Wait states  
(READY)  
A transition on the READY signal indicates a change in the  
ability of the memory PC Card to accept or provide data.  
Change in card status  
(STSCHG)  
BVD1 (STSCHG) //  
CSTSCHG  
The assertion of the STSCHG signal indicates a status  
change on the PC Card.  
CSC  
16-bit I/O  
CardBus  
Interrupt request  
(IREQ)  
The assertion of the IREQ signal indicates an interrupt  
request from the PC Card.  
Functional  
CSC  
READY (IREQ) // CINT  
Change in card status  
(CSTSCHG)  
BVD1 (STSCHG) //  
CSTSCHG  
The assertion of the CSTSCHG signal indicates a status  
change on the PC Card.  
Interrupt request  
(CINT)  
The assertion of the CINT signal indicates an interrupt  
request from the PC Card.  
Functional  
CSC  
READY (IREQ) // CINT  
N/A  
An interrupt is generated when a PC Card power-up cycle  
has completed.  
Power cycle complete  
A transition on either the CD1//CCD1 signal or the  
CD2//CCD2 signal indicates an insertion or removal of a  
16-bit // CardBus PC Card.  
Card insertion or  
removal  
CD1 // CCD1,  
CD2 // CCD2  
CSC  
CSC  
All PC Cards  
An interrupt is generated when a PC Card power-up cycle  
has completed.  
Power cycle complete  
N/A  
The signal naming convention for PC Card signals describes the function for 16-bit memory and I/O cards, as well  
as CardBus. For example, the READY(IREQ)//CINT signal includes the READY signal for 16-bit memory cards, the  
IREQ signal for 16-bit I/O cards, and the CINT signal for CardBus cards. The 16-bit memory card signal name is first,  
with the I/O card signal name second enclosed in parentheses. The CardBus signal name follows after a forward  
double slash (//).  
The PC Card Standard describes the power-up sequence that must be followed by the PCI1451 when an insertion  
event occurs and the host requests that the socket V  
and V  
be powered. Upon completion of this power-up  
CC  
PP  
sequence, the PCI1451 interrupt scheme may be used to notify the host system, as in indicated in Table 3–5, denoted  
by the power cycle complete event. This interrupt source is considered a PCI1451 internal event because it does not  
depend on a signal change at the PC Card interface, but rather the completion of applying power to the socket.  
3–15  
3.5.2 Interrupt Masks And Flags  
Host software may individually mask, or disable, most of the potential interrupt sources listed in Table 3–6 by setting  
the appropriate bits in the PCI1451. By individually masking the interrupt sources listed in these tables, software can  
control which events will cause a PCI1451 interrupt. Host software has some control over which system interrupt the  
PCI1451 will assert by programming the appropriate routing registers. The PCI1451 allows host software to route  
PC Card CSC and PC Card functional interrupts to separate system interrupts. Interrupt routing is somewhat specific  
to the interrupt signaling method used. This will be discussed in more detail in the following sections.  
When an interrupt is signaled by the PCI1451, the interrupt service routine must be able to discern which of the events  
in Table 3–6 caused the interrupt. Internal registers in the PCI1451 provide flags which report which of the interrupt  
sources was the cause of an interrupt. By reading these status bits, the interrupt service routine can determine which  
action is to be taken.  
Table 3–6 details the registers and bits associated with masking and reporting potential interrupts. All interrupts may  
be masked except the functional PC Card interrupts, and an interrupt status flag is available for all types of interrupts.  
Table 3–6. PCI1451 Interrupt Masks and Flags Registers  
Card Type  
Event  
Mask  
Flag  
Battery conditions  
(BVD1, BVD2)  
ExCA Offset 05h/45h/805h  
Bits 1 and 0  
ExCA Offset 04h/44h/804h  
Bits 1 and 0  
16-bit Memory  
Wait states  
(READY)  
ExCA Offset 05h/45h/805h  
Bit 2  
ExCA Offset 04h/44h/804h  
Bit 2  
Change in card status  
(STSCHG)  
ExCA Offset 05h/45h/805h  
Bit 0  
ExCA Offset 04h/44h/804h  
Bit 0  
16-bit I/O  
Interrupt request  
(IREQ)  
PCI Configuration Offset 91h  
Bit 0  
Always enabled  
ExCA Offset 05h/45h/805h  
Bit 3  
ExCA Offset 04h/44h/804h  
Bit 3  
All 16-bit PC Cards  
Power cycle complete  
Change in card status  
(CSTSCHG)  
Socket mask register  
Bit 0  
Socket event register  
Bit 0  
Interrupt request  
(CINT)  
PCI Configuration Offset 91h  
Bit 0  
Always enabled  
CardBus  
Socket mask register  
Bit 3  
Socket event register  
Bit 3  
Power cycle complete  
Socket mask register  
Bits 2 and 1  
Socket event register  
Bits 2 and 1  
Card insertion or removal  
There is no mask bit to stop the PCI1451 from passing PC Card functional interrupts through to the appropriate  
interrupt scheme. Functional interrupts should not be fired until the PC Card is initialized and powered.  
There are various methods of clearing the interrupt flag bits listed in Table 3–6. The flag bits in the ExCA registers  
(16-bit PC Card related interrupt flags) may be cleared by two different methods. One method is an explicit write of  
1 to the flag bit to clear, and the other is a reading of the flag bit register. The selection of flag bit clearing is made  
by bit 2 in the global control register (ExCA offset 1Eh/5Eh/81Eh), and defaults to the flag cleared on read method.  
The CardBus related interrupt flags can only be cleared by an explicit write of 1 to the interrupt flag in the socket event  
register. AlthoughsomeofthefunctionalityissharedbetweentheCardBusregistersandtheExCAregisters, software  
should not program the chip through both register sets when a CardBus card is functioning.  
3.5.3 Using Parallel PCI Interrupts  
Parallel PCI interrupts are available when in pure parallel PCI interrupt mode and are routed on MFUNC0–MFUNC2.  
The PCI interrupt signaling is dependent upon the interrupt mode and is summarized in Table 3–7. The interrupt mode  
is selected in the device control register (92h).  
3–16  
Table 3–7. Interrupt Pin Register Cross Reference  
INTPIN  
INTPIN  
Function 1  
Interrupt Signaling Mode  
Function 0  
0x01 (INTA)  
0x01 (INTA)  
0x01 (INTA)  
0x01 (INTA)  
Parallel PCI interrupts only  
0x02 (INTB)  
0x02 (INTB)  
0x01 (INTA)  
0x02 (INTB)  
Reserved  
IRQ serialized (IRQSER) & parallel PCI interrupts  
IRQ & PCI serialized (IRQSER) interrupts (default)  
3.6 Power Management Overview  
In addition to the low-power CMOS technology process used for the PCI1451, various features are designed into the  
device to allow implementation of popular power saving techniques. These features and techniques are discussed  
in this section.  
3.6.1 CLKRUN Protocol  
CLKRUN is the primary method of power management on the PCI bus side of the PCI1451. Since some chipsets  
do not implement CLKRUN, this is not always available to the system designer, and alternate power savings features  
are provided.  
If CLKRUN is not implemented, then the CLKRUN pin should be tied low. CLKRUN is enabled by default via bit 1  
(KEEPCLK) in the system control register (80h).  
3.6.2 CardBus PC Card Power Management  
The PCI1451 implements its own card power management engine that can turn off the CCLK to a socket when there  
is no activity to the CardBus PC Card. The CCLK can also be configured as divide by 16 instead of stopped. The  
CLKRUN protocol is followed on the CardBus interface to control this clock management.  
3.6.3 PCI Bus Power Management  
The PCI Bus Power Management Interface Specification (PCIPM) establishes the infrastructure required to let the  
operating system control the power of PCI functions. This is done by defining a standard PCI interface and operations  
to manage the power of PCI functions on the bus. The PCI bus and the PCI functions can be assigned one of four  
software visible power management states, which result in varying levels of power savings.  
The four power management states of PCI functions are: D0 - Fully On state, D1 and D2 - intermediate states, and  
D3 - Off state. Similarly, bus power states of the PCI bus are B0–B3. The bus power states B0–B3 are derived from  
the device power state of the upstream bridge device.  
For the operating system to manage the device power states on the PCI bus, the PCI function should support four  
power management operations. The four operations are: capabilities reporting; power status reporting; setting the  
power state; and system wake-up. The operating system identifies the capabilities of the PCI function by traversing  
the new capabilities list. The presence of new capabilities is indicated by a 1b in bit 4 of the status register (PCI offset  
06h). When software determines that the device has a capabilities list by seeing that bit 4 of the status register is set,  
it will read the capability pointer register at PCI offset 14h. This value in the register points the location in PCI  
configuration space of the capabilities linked list.  
The first byte of each capability register block is required to be a unique ID of that capability. PCI power management  
has been assigned an ID of 01h. The next byte is a pointer to the next pointer item in the list of capabilities. If there  
are no more items in the list, then the next item pointer should be set to 0. The registers following the next item pointer  
are specific to the function’s capability. The PCIPM capability implements the following register block:  
Power Management Register Block  
Power management capabilities (PMC)  
Data PMCSR bridge support extensions  
Next item pointer  
Capability ID  
Offset = 0  
Offset = 4  
Power management control status (CSR)  
3–17  
The power management capabilities (PMC) register is a static read-only register that provides information on the  
capabilities of the function, related to power management. The PMCSR register enables control of power  
management states and enables/monitors power management events. The data register is an optional register that  
provides a mechanism for state-dependent power measurements such as power consumed or heat dissipation.  
3.6.4 CardBus Device Class Power Management  
The PCI Bus Interface Specification for PCI-to-CardBus Bridges was approved by PCMCIA in December of 1997.  
This specification follows the device and bus state definitions provided in the PCI Bus Power Management Interface  
Specification published by the PCI Special Interest Group (SIG). The main issue addressed in the PCI Bus Interface  
SpecificationforPCI-to-CardBusBridges is wake-up fromD3 orD3  
PME context).  
withoutlosingwake-upcontext(alsocalled  
hot  
cold  
The specific issues addressed by the PCI Bus Interface Specification for PCI-to-CardBus Bridges for D3 wake-up  
are as follows:  
Preservation of device context: The PCI Power Management Specification version 1.0 states that PRST  
must be asserted when transitioning from D3 to D0. Some method to preserve wake-up context must  
be implemented so that PRST does not clear the PME context registers.  
cold  
Power source in D3 if wake-up support is required from this state.  
cold  
The Texas Instruments PCI1451 addresses these D3 wake-up issues in the following manner:  
Preservation of device context: When PRST is asserted, bits required to preserve PME context are not  
cleared. To clear all bits in the PCI1451, another reset pin is defined: GRST (global reset). GRST is normally  
only asserted during the initial power-on sequence. After the initial boot, PRST should be asserted so that  
PMEcontext is retained for D3-to-D0 transitions. Bits cleared by GRST, but not cleared by PRST (if the PME  
enable bit is set), are referred to as PME context bits. Please refer to the master list of PME context bits  
in Section 3.6.5.  
Power source in D3  
auxiliary power source must be switched to the PCI1451 V  
break type of switch, so that V  
if wake-up support is required from this state. Since V  
is removed in D3  
, an  
cold  
CC  
cold  
pins. This switch should be a make before  
CC  
to the PCI1451 is not interrupted.  
CC  
3.6.5 Master List Of PME Context Bits and Global Reset Only Bits  
PME context bit means that the bit is cleared only by the assertion of GRST when the PME enable bit is set (PCI offset  
A4h, bit 8). If PME is not enabled, then these bits are cleared when either PRST or GRST is asserted.  
Global reset only bits, as the name implies, are only cleared by GRST. These bits are never cleared by PRST  
regardlessofthesettingofthePMEenablebit. (PCIoffsetA4h, bit8). TheGRSTsignalisgatedonlybytheSUSPEND  
signal. This means that assertion of SUSPEND blocks the GRST signal internally, thus preserving all register  
contents.  
Global reset only bits:  
Subsystem ID/subsystem vendor ID (PCI offset 40h): bits 31–0  
PC Card 16-bit legacy mode base address register (PCI offset 44h): bits 31–1  
System control register (PCI offset 80h): bits 31–29, 27–24, 22–14, 6–3, 1, 0  
Multimedia control register (PCI offset 84h): bits 7–0  
General status register (PCI offset 85h): bits 2–0  
General-purpose event status register (PCI offset 88h): bits 7, 6, 3–0  
General-purpose event enable register (PCI offset 89h): bits 7, 6, 3–0  
General-purpose input register (PCI offset 8Ah): bits 3–0  
General-purpose output register (PCI offset 8Bh): bits 3–0  
MFUNC routing register (PCI offset 8Ch): bits 31–0  
Retry status register (PCI offset 90h): bits 7–1  
3–18  
Card control register (PCI offset 91h): bits 7, 6, 2, 1, 0  
Device control register (PCI offset 92h): bits 7–0  
Diagnostic register (PCI offset 93h): bits 7–0  
Socket DMA register 0 (PCI offset 94h): bits 1–0  
Socket DMA register 1 (PCI offset 98h): bits 15–0  
GPE control/status register (PCI offset A8h): bits 10, 9, 8, 2, 1, 0  
PME context bits  
Bridge control register (PCI offset 3Eh): bit 6  
Power management capabilities register (PCI offset A2h): bit 15  
Power management control/status register (PCI offset A4h): bits 15, 8  
ExCA power control register (ExCA 802h/842h): bits 7, 4, 3, 1, 0  
ExCA interrupt and general control (ExCA 803h/843h): bit 6, 5  
ExCA card status change register (ExCA 804h/844h): bits 3–0  
ExCA card status change interrupt register (ExCA 805h/845h): bits 3–0  
CardBus socket event register (CardBus offset 00h): bits 3–0  
CardBus socket mask register (CardBus offset 04h): bits 3–0  
CardBus socket control register (CardBus offset 10h): bits 6, 5, 4, 2, 1, 0  
3.6.6 System Diagram Implementing CardBus Device Class Power Management  
PCI Bus  
Real Time  
Clock‡  
South Bridge  
PRST  
GRST†  
Clock  
CLKRUN  
TPS2206  
PCI1451  
2
Power  
Switch  
Embedded  
Controller  
PME  
Vcc  
System Vcc  
PC Card  
Socket A  
68  
68  
D3  
Status  
V
aux  
PC Card  
Socket B  
Make before  
break switch  
The system connection to GRST is implementation specific. GRST should be applied whenever V is applied to the PCI1451. PRST should be  
cc  
applied for subsequent warm resets.  
Not required if internal oscillator is used.  
Figure 3–15. System Diagram Implementing CardBus Device Class Power Management  
3–19  
3.6.7 Suspend Mode  
The SUSPEND signal, provided for backward compatibility, gates the PRST (PCI reset) signal and the GRST (global  
reset) signal from the PCI1451. Besides gating PRST and GRST, SUSPEND also gates PCLK inside the PCI1451  
in order to minimize power consumption.  
Gating PCLK does not create any issues with respect to the power switch interface in the PCI1451. This is because  
the PCI1451 does not depend on the PCI clock to clock the power switch interface. There are two methods to clock  
the power switch interface in the PCI1451:  
Use an external clock to the PCI1451 CLOCK pin  
Use the internal oscillator  
It should also be noted that asynchronous signals, such as card status change interrupts and RI_OUT, can be passed  
to the host system without a PCI clock. However, if card status change interrupts are routed over the serial interrupt  
stream, thenthePCIclockwillhavetoberestartedinordertopasstheinterrupt, becauseneithertheinternaloscillator  
nor an external clock is routed to the serial interrupt state machine.  
PRST  
GRST  
PCI1451  
Core  
SUSPEND  
GNT  
PCLK  
Figure 3–16. SUSPEND Functional Illustration  
3.6.8 Requirements For SUSPEND  
A requirement for implementing suspend mode is that the PCI bus must not be parked on the PCI1451 when  
SUSPEND is asserted. The PCI1451 responds to SUSPEND being asserted by placing the REQ pin in a high  
impedance state. The PCI1451 will also gate the internal clock and reset.  
The GPIOs, MFUNC signals, and RI_OUT signals are all active during SUSPEND, unless they are disabled in the  
appropriate PCI1451 registers.  
3.6.9 Ring Indicate  
The RI_OUT output is an important feature used in legacy power management. It is used so that a system can go  
into a suspended mode and wake up on modem rings and other card events. The RI_OUT signal on the PCI1451  
may be asserted under any of the following conditions:  
A 16-bit PC Card modem in a powered socket asserts RI to indicate an incoming call to the system.  
A powered down CardBus card asserts CSTSCHG (CBWAKE) requesting system and interface wake up.  
A card status change (CSC) event, such as insertion/removal of cards, battery voltage levels, occurs.  
A CSTSCHG signal from a powered CardBus card is indicated as a CSC event, not as a CBWAKE event. These two  
RI_OUT events are enabled separately. The following figure details various enable bits for the PCI1451 RI_OUT  
function; however, it does not illustrate the masking of CSC events. See interrupt masks and flags for a detailed  
description of CSC interrupt masks and flags.  
RI_OUT is multiplexed on the same pin with PME. The default is for RI_OUT to be signaled on this pin. In PCI power  
managed systems, the PME signal should be enabled by setting bit 0 (RI_OUT/PME) in the system control register  
(80h) and clearing bit 7 (RIENB) in the card control register (91h).  
3–20  
RI_OUT Function  
PC Card  
Socket 0  
Card  
I/F  
16-bit  
Card  
Bus  
CSC  
RI  
CBWAKE  
RIENB  
RICSC(A)  
RICSC(B)  
RI_OUT  
CSC  
CBWAKE  
RI  
PC Card  
Socket 1  
Card  
I/F  
16-bIt  
Card  
Bus  
Figure 3–17. RI_OUT Functional Illustration  
Routing of CSC events to the RI_OUT signal, enabled on a per-socket basis, is programmed by the RICSC bit in the  
card control register. This bit is socket dependent (not shared), as illustrated in Figure 3–17.  
The RI signal from the 16-bit PC Card interface is masked by the ExCA control bit RINGEN in the ExCA interrupt and  
general control register. This is programmed on a per-socket basis, and is only applicable when a 16-bit card is  
powered in the socket.  
The CBWAKE signaling to RI_OUT is enabled through the same mask as the CSC event for CSTSCHG. The mask  
bit, CSTSMASK, is programmed through the socket mask register in the CardBus socket registers.  
3–21  
3–22  
4 PC Card Controller Programming Model  
This chapter describes the PCI1451 PCI configuration registers that make up the 256-byte PCI configuration header  
for each PCI1451 function. As noted below, some bits are global in nature and should be accessed only through  
function 0.  
4.1 PCI Configuration Registers (Functions 0 and 1)  
The PCI1451 is a multifunction PCI device, and the PC Card controller is integrated as PCI functions 0 and 1. The  
configuration header, compliant with the PCI Local Bus Specification as a CardBus bridge header, is PC 98/PC 99  
compliant as well. Table 4–1 illustrates the PCI configuration header, which includes both the predefined portion of  
the configuration space and the user definable registers.  
Table 4–1. Functions 0 and 1 PCI Configuration Register Map  
REGISTER NAME  
OFFSET  
00h  
Device ID  
Status  
Vendor ID  
Command  
04h  
Class code  
Header type  
Revision ID  
08h  
BIST  
Latency timer  
Cache line size  
0Ch  
10h  
CardBus socket/ExCA base address  
Reserved  
Secondary status  
Capability pointer  
PCI bus number  
14h  
CardBus latency timer  
Subordinate bus number  
CardBus bus number  
18h  
CardBus memory base register 0  
CardBus memory limit register 0  
CardBus memory base register 1  
CardBus memory limit register 1  
CardBus I/O base register 0  
CardBus I/O limit register 0  
1Ch  
20h  
24h  
28h  
2Ch  
30h  
CardBus I/O base register 1  
CardBus I/O limit register 1  
34h  
38h  
Bridge control  
Subsystem ID  
Interrupt pin  
Interrupt line  
3Ch  
40h  
Subsystem vendor ID  
PC Card 16-bit I/F legacy mode base address  
44h  
Reserved  
48h–7Fh  
80h  
System control  
Reserved  
Reserved  
General-purpose input  
Multifunction routing status  
Device control Card control  
Socket DMA register 0  
General status  
Multimedia control  
84h  
General-purpose output  
General-purpose event enable General-purpose event status  
88h  
8Ch  
90h  
Diagnostic  
Retry status  
94h  
Socket DMA register 1  
Reserved  
98h  
9Ch  
A0h  
A4h  
A8h  
Power management capabilities  
Next pointer item  
Capability ID  
Data (Reserved)  
PMCSR bridge support extensions  
Reserved  
Power management control/status  
GPE control/status  
4–1  
4.2 Vendor ID Register  
The vendor ID register contains a value allocated by the PCI SIG that identifies the manufacturer of the PCI device.  
The vendor ID assigned to Texas Instruments is 104Ch.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
0
Register:  
Type:  
Vendor ID  
Read-only  
Offset:  
Default:  
00h (Functions 0, 1)  
104Ch  
4.3 Device ID Register  
The device ID register contains a value assigned to the PCI1451 by Texas Instruments. The device identification for  
the PCI1451 is AC52h.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID  
R
1
R
0
R
1
R
0
R
1
R
1
R
0
R
0
R
0
R
1
R
0
R
1
R
0
R
0
R
1
R
0
Register:  
Type:  
Device ID  
Read-only  
Offset:  
Default:  
02h (Functions 0, 1)  
AC52h  
4–2  
4.4 Command Register  
The command register provides control over the PCI1451 interface to the PCI bus. All bit functions adhere to the  
definitions in the PCI Local Bus Specification, see Table 4–2. None of the bit functions in this register are shared  
between the two PCI1451 PCI functions. Two command registers exist in the PCI1451, one for each function.  
Software manipulates the two PCI1451 functions as separate entities when enabling functionality through the  
command register. The SERR_EN (bit 8) and PERR_EN (bit 6) enable bits in this register are internally wired OR  
between the two functions, and these control bits appear separate per function to software.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Command  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Command  
Read-only, Read/Write  
Offset:  
Default:  
04h  
0000h  
Table 4–2. PCI Command Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
15–10  
RSVD  
R
Reserved. Bits 15–10 return 0s when read.  
Fast back-to-back enable. The PCI1451 does not generate fast back-to-back transactions; therefore, bit 9returns  
0 when read.  
9
8
FBB_EN  
R
System error (SERR) enable. Bit 8 controls the enable for the SERR driver on the PCI interface. SERR can be  
asserted after detecting an address parity error on the PCI bus. Both bits 8 and 6 must be set for the PCI1451  
to report address parity errors.  
SERR_EN  
R/W  
0 = Disables the SERR output driver (default).  
1 = Enables the SERR output driver.  
Address/data stepping control. The PCI1451 does not support address/data stepping; therefore, bit 7 is  
hardwired to 0.  
7
6
STEP_EN  
PERR_EN  
R
Parity error response enable. Bit 6 controls the PCI1451’s response to parity errors through PERR. Data parity  
errors are indicated by asserting PERR, while address parity errors are indicated by asserting SERR.  
0 = PCI1451 ignores detected parity error (default).  
R/W  
1 = PCI1451 responds to detected parity errors.  
VGA palette snoop. When bit 5 is set to 1, palette snooping is enabled (that is, the PCI1451 does not respond  
5
VGA_EN  
R/W to palette register writes and snoops the data). When this bit is 0, the PCI1451 treats all palette accesses like all  
other accesses.  
Memory write and invalidate enable. Bit 4 controls whether a PCI initiator device can generate memory write and  
4
3
MWI_EN  
SPECIAL  
R
R
invalidate commands. The PCI1451 controller does not support memory write and invalidate commands, it uses  
memory write commands instead; therefore, this bit is hardwired to 0.  
Special cycles. Bit 3 controls whether or not a PCI device ignores PCI special cycles. The PCI1451 does not  
respond to special cycle operations; therefore, this bit is hardwired to 0.  
Bus master control. Bit 2 controls whether or not the PCI1451 can act as a PCI bus initiator (master). The PCI1451  
can take control of the PCI bus only when this bit is set.  
2
MAST_EN  
R/W  
0 = Disables the PCI1451’s ability to generate PCI bus accesses (default).  
1 = Enables the PCI1451’s ability to generate PCI bus accesses.  
Memory space enable. Bit 1 controls whether or not the PCI1451 may claim cycles in PCI memory space.  
0 = Disables the PCI1451’s response to memory space accesses (default).  
1 = Enables the PCI1451’s response to memory space accesses.  
1
0
MEM_EN  
IO_EN  
R/W  
R/W  
I/O space control. Bit 0 controls whether or not the PCI1451 may claim cycles in PCI I/O space.  
0 = Disables the PCI1451 from responding to I/O space accesses (default).  
1 = Enables the PCI1451 to respond to I/O space accesses.  
4–3  
4.5 Status Register  
The status register provides device information to the host system. Bits in this register may be read normally. A bit  
in the status register is reset when a 1 is written to that bit location; a 0 written to a bit location has no effect. All bit  
functions adhere to the definitions in the PCI Local Bus Specification. PCI bus status is shown through each function.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Status  
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R
0
R
1
R/C  
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Status  
Read-only, Read/Write to Clear  
06h (Functions 0, 1)  
0210h  
Table 4–3. Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Detected parity error. Bit 15 is set when a parity error (either address or data) is detected. Write a 1 to clear  
this bit.  
15  
PAR_ERR  
R/C  
Signaledsystem error. Bit 14 is set when SERRis enabled and the PCI1451 signals a system error to the host.  
Write a 1 to clear this bit.  
14  
13  
SYS_ERR  
MABORT  
R/C  
R/C  
R/C  
R/C  
R
Receivedmaster abort. Bit 13 is set when a cycle initiated by the PCI1451 on the PCI bus has been terminated  
by a master abort. Write a 1 to clear this bit.  
Received target abort. Bit 12 is set when a cycle initiated by the PCI1451 on the PCI bus was terminated by  
a target abort. Write a 1 to clear this bit.  
12  
TABT_REC  
TABT_SIG  
PCI_SPEED  
Signaledtarget abort. Bit 11 is set by the PCI1451 when it terminates a transaction on the PCI bus with a target  
abort. Write a 1 to clear this bit.  
11  
DEVSEL timing. Bits 10 and 9 encode the timing of DEVSEL and are hardwired to 01b indicating that the  
PCI1451 asserts this signal at a medium speed on nonconfiguration cycle accesses.  
10–9  
Data parity error detected. Write a 1 to clear this bit.  
0 = The conditions for setting this bit have not been met.  
1 = A data parity error occurred and the following conditions were met:  
a. PERR was asserted by any PCI device including the PCI1451.  
b. The PCI1451 was the bus master during the data parity error.  
c. Bit 6 (PERR_EN) is set in the command register (PCI offset 04h, see Section 4.4).  
8
DATAPAR  
R/C  
Fast back-to-back capable. The PCI1451 cannot accept fast back-to-back transactions; therefore, bit 7 is  
hardwired to 0.  
7
6
5
FBB_CAP  
UDF  
R
R
R
User-definable feature support. The PCI1451 does not support the user definable features; therefore, bit 6  
is hardwired to 0.  
66-MHz capable. The PCI1451 operates at a maximum PCLK frequency of 33 MHz; therefore, bit 5 is  
hardwired to 0.  
66MHZ  
Capabilities list. Bit 4 returns 1 when read. This bit indicates that capabilities in addition to standard PCI  
capabilities are implemented. The linked list of PCI power management capabilities is implemented in this  
function.  
4
CAPLIST  
RSVD  
R
R
3–0  
Reserved. Bits 3–0 return 0s when read.  
4–4  
4.6 Revision ID Register  
The revision ID register indicates the slicon revision of the PCI1451.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Revision ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Type:  
Revision ID  
Read-only  
Offset:  
Default:  
08h (Functions 0, 1)  
02h  
4.7 PCI Class Code Register  
The PCI class code register recognizes the PCI1451 functions 0 and 1 as a bridge device (06h) and CardBus bridge  
device (07h) with a 00h programming interface.  
Bit  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Byte  
Name  
Type  
Default  
Base Class  
Sub Class  
Programming Interface  
PCI class code  
R
0
R
0
R
0
R
0
R
0
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
PCI class code  
Read-only  
Offset:  
Default:  
09h (Functions 0, 1)  
060700h  
4.8 Cache Line Size Register  
The cache line size register is programmed by host software to indicate the system cache line size.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Cache line size  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Cache line size  
Read/Write  
Offset:  
Default:  
0Ch (Functions 0, 1)  
00h  
4–5  
4.9 Latency Timer Register  
The latency timer register specifies the latency timer for the PCI1451, in units of PCI clock cycles. When the PCI1451  
is a PCI bus initiator and asserts FRAME, the latency timer begins counting from zero. If the latency timer expires  
before the PCI1451 transaction has terminated, then the PCI1451 terminates the transaction when its GNT is  
deasserted.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Latency timer  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Latency timer  
Read/Write  
0Dh  
00h  
4.10 Header Type Register  
The header type register returns 82h when read, indicating that the PCI1451 functions 0 and 1 configuration spaces  
adhere to the CardBus bridge PCI header. The CardBus bridge PCI header ranges from PCI register 0 to 7Fh, and  
80h–FFh are user-definable extension registers.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Header type  
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Type:  
Header type  
Read-only  
Offset:  
Default:  
0Eh (Functions 0, 1)  
82h  
4.11 BIST Register  
Since the PCI1451 does not support a built-in self-test (BIST), this register returns the value of 00h when read. This  
register returns 0s for the two PCI1451 functions.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
BIST  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
BIST  
Read-only  
Offset:  
Default:  
0Fh (Functions 0, 1)  
00h  
4–6  
4.12 CardBus Socket/ExCA Base-Address Register  
This register is programmed with a base address referencing the CardBus socket registers and the memory-mapped  
ExCA register set. Bits 31–12 are read/write and allow the base address to be located anywhere in the 32-bit PCI  
memory address space on a 4-Kbyte boundary. Bits 11–0 are read-only, returning 0s when read. When software  
writes all 1s to this register, the value read back will be FFFF F000h, indicating that at least 4K bytes of memory  
address space are required. The CardBus registers start at offset 000h, and the memory-mapped ExCA registers  
begin at offset 800h. This register is not shared by functions 0 and 1, mapping each socket control register separately.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CardBus socket/ExCA base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus socket/ExCA base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
CardBus socket/ExCA base address  
Read-only, Read/Write  
10h  
0000 0000h  
4.13 Capability Pointer Register  
ThecapabilitypointerregisterprovidesapointerintothePCIconfigurationheaderwherethePCIpowermanagement  
register block resides. PCI header doublewords at A0h and A4h provide the power management (PM) registers. Each  
socket has its own capability pointer register. This register returns A0h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability pointer  
R
1
R
0
R
1
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Capability pointer  
Read-only  
14h  
A0h  
4–7  
4.14 Secondary Status Register  
The secondary status register is compatible with the PCI-PCI bridge secondary status register and indicates CardBus  
related device information to the host system. This register is very similar to the status register (offset 06h, see  
Section 4.5), and status bits are cleared by a writing a 1. This register is not shared by the two socket functions, but  
is accessed on a per socket basis.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Secondary status  
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R
0
R
1
R/C  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Secondary status  
Read-only, Read/Write to Clear  
Offset:  
Default:  
16h  
0200h  
Table 4–4. Secondary Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Detected parity error. Bit 15 is set when a CardBus parity error (either address or data) is detected.  
Write a 1 to clear this bit.  
15  
CBPARITY  
R/C  
Signaled system error. Bit 14 is set when CSERR is signaled by a CardBus card. The PCI1451 does  
not assert the CSERR signal. Write a 1 to clear this bit.  
14  
13  
CBSERR  
CBMABORT  
REC_CBTA  
SIG_CBTA  
CB_SPEED  
R/C  
R/C  
R/C  
R/C  
R
Received master abort. Bit 13 is set when a cycle initiated by the PCI1451 on the CardBus bus has  
been terminated by a master abort. Write a 1 to clear this bit.  
Received target abort. Bit 12 is set when a cycle initiated by the PCI1451 on the CardBus bus was  
terminated by a target abort. Write a 1 to clear this bit.  
12  
Signaled target abort. Bit 11 is set by the PCI1451 when it terminates a transaction on the CardBus  
bus with a target abort. Write a 1 to clear this bit.  
11  
CDEVSEL timing. Bits 10 and 9 encode the timing of CDEVSEL and are hardwired to 01b, indicating  
that the PCI1451 asserts this signal at a medium speed.  
10–9  
CardBus data parity error detected. Write a 1 to clear this bit.  
0 = The conditions for setting this bit have not been met.  
1 = A data parity error occurred and the following conditions were met:  
a. CPERR was asserted on the CardBus interface.  
8
CB_DPAR  
R/C  
b. The PCI1451 was the bus master during the data parity error.  
c. Bit 0 (CPERREN) is set in the bridge control register (PCI offset 3Eh, see Section 4.25).  
Fast back-to-back capable. The PCI1451 cannot accept fast back-to-back transactions; therefore, bit 7  
is hardwired to 0.  
7
6
CBFBB_CAP  
CB_UDF  
R
R
User-definable feature support. The PCI1451 does not support the user-definable features; therefore,  
bit 6 is hardwired to 0.  
66 MHz capable. The PCI1451 CardBus interface operates at a maximum CCLK frequency of 33 MHz;  
therefore, bit 5 is hardwired to 0.  
5
CB66MHZ  
RSVD  
R
R
4–0  
Reserved. Bits 4–0 return 0s when read.  
4–8  
4.15 PCI Bus Number Register  
The PCI bus number register is programmed by the host system to indicate the bus number of the PCI bus to which  
the PCI1451 is connected. The PCI1451 uses this register, in conjunction with the CardBus bus number and  
subordinate bus number registers, to determine when to forward PCI configuration cycles to its secondary buses.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI bus number  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
PCI bus number  
Read/Write  
Offset:  
Default:  
18h (Functions 0, 1)  
00h  
4.16 CardBus Bus Number Register  
The CardBus bus number register is programmed by the host system to indicate the bus number of the CardBus bus  
to which the PCI1451 is connected. The PCI1451 uses this register, in conjunction with the PCI bus number and  
subordinate bus number registers, to determine when to forward PCI configuration cycles to its secondary buses.  
This register is separate for each PCI1451 controller function.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus bus number  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
CardBus bus number  
Read/Write  
19h  
00h  
4.17 Subordinate Bus Number Register  
The subordinate bus number register is programmed by the host system to indicate the highest numbered bus below  
the CardBus bus. The PCI1451 uses this register, in conjunction with the PCI bus number and CardBus bus number  
registers, to determine when to forward PCI configuration cycles to its secondary buses. This register is separate for  
each CardBus controller function.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subordinate bus number  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Subordinate bus number  
Read/Write  
1Ah  
00h  
4–9  
4.18 CardBus Latency Timer Register  
The CardBus latency timer register is programmed by the host system to specify the latency timer for the PCI1451  
CardBus interface, in units of CCLK cycles. When the PCI1451 is a CardBus initiator and asserts CFRAME, the  
CardBus latency timer begins counting. If the latency timer expires before the PCI1451 transaction has terminated,  
then the PCI1451 terminates the transaction at the end of the next data phase. A recommended minimum value for  
this register of 20h allows most transactions to be completed.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus latency timer  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
CardBus latency timer  
Read/Write  
Offset:  
Default:  
1Bh (Functions 0, 1)  
00h  
4.19 Memory Base Registers 0, 1  
The memory base registers indicate the lower address of a PCI memory address range. These registers are used  
by the PCI1451 to determine when to forward a memory transaction to the CardBus bus and when to forward a  
CardBus cycle to the PCI bus. Bits 31–12 of these registers are read/write and allow the memory base to be located  
anywhere in the 32-bit PCI memory space on 4-Kbyte boundaries. Bits 11–0 are read-only and always return 0s. Write  
transactions to these bits have no effect. Bits 8 (PREFETCH0) and 9 (PREFETCH1) of the bridge control register  
(PCI offset 3Eh, see Section 4.25) specify whether memory windows 0 and 1 are prefetchable or nonprefetchable.  
The memory base register or the memory limit register must be nonzero in order for the PCI1451 to claim any memory  
transactions through CardBus memory windows (that is, these windows are not enabled by default to pass the first  
4K bytes of memory to CardBus).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Memory base registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Memory base registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Memory base registers 0, 1  
Read-only, Read/Write  
1Ch, 24h  
0000 0000h  
4–10  
4.20 Memory Limit Registers 0, 1  
The memory limit registers indicate the upper address of a PCI memory address range. These registers are used  
by the PCI1451 to determine when to forward a memory transaction to the CardBus bus and when to forward a  
CardBus cycle to the PCI bus. Bits 31–12 of these registers are read/write and allow the memory base to be located  
anywhere in the 32-bit PCI memory space on 4-Kbyte boundaries. Bits 11–0 are read-only and always return 0s. Write  
transactions to these bits have no effect. Bits 8 (PREFETCH0) and 9 (PREFETCH1) of the bridge control register  
(PCI offset 3Eh, see Section 4.25) specify whether memory windows 0 and 1 are prefetchable or nonprefetchable.  
The memory base register or the memory limit register must be nonzero in order for the PCI1451 to claim any memory  
transactions through CardBus memory windows (that is, these windows are not enabled by default to pass the first  
4K bytes of memory to CardBus).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Memory limit registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Memory limit registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Memory limit registers 0, 1  
Read-only, Read/Write  
20h, 28h  
0000 0000h  
4.21 I/O Base Registers 0, 1  
The I/O base registers indicate the lower address of a PCI I/O address range. These registers are used by the  
PCI1451 to determine when to forward an I/O transaction to the CardBus bus and when to forward a CardBus cycle  
to the PCI bus. The lower 16 bits of this register locate the bottom of the I/O window within a 64-Kbyte page and the  
upper 16 bits (31–16) are all 0s which locate this 64-Kbyte page in the first page of the 32-bit PCI I/O address space.  
Bits31–16andbits10areread-onlyandalwaysreturn0s, forcingI/Owindowstobealignedonanaturaldoubleword  
boundary in the first 64-Kbyte page of PCI I/O address space. These I/O windows are enabled when either the I/O  
base register or the I/O limit register are nonzero. The I/O windows are not enabled by default to pass the first  
doubleword of I/O to CardBus.  
Either the I/O base or the I/O limit register must be nonzero to enable any I/O transactions.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
I/O base registers 0, 1  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
I/O base registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
I/O base registers 0, 1  
Read-only, Read/Write  
2Ch, 34h  
0000 0000h  
4–11  
4.22 I/O Limit Registers 0, 1  
TheI/OlimitregistersindicatetheupperaddressofaPCII/Oaddressrange. TheseregistersareusedbythePCI1451  
to determine when to forward an I/O transaction to the CardBus bus and when to forward a CardBus cycle to the PCI  
bus. The lower 16 bits of this register locate the top of the I/O window within a 64-Kbyte page and the upper 16 bits  
are a page register which locates this 64-Kbyte page in 32-bit PCI I/O address space. Bits 15–2 are read/write and  
allow the I/O limit address to be located anywhere in the 64-Kbyte page (indicated by bits 31–16 of the appropriate  
I/O base register) on doubleword boundaries.  
Bits 31–16 are read-only and always return 0s when read. The page is set in the I/O base register. Bits 1–0 are  
read-only and always return 0s, forcing I/O windows to be aligned on a natural doubleword boundary. Writes to  
read-only bits have no effect. The PCI1451 assumes that the lower 2 bits of the limit address are 1s.  
TheseI/OwindowsareenabledwheneithertheI/ObaseregisterortheI/Olimitregisterarenonzero. TheI/Owindows  
are not enabled by default to pass the first doubleword of I/O to CardBus.  
Either the I/O base or the I/O limit register must be nonzero to enable any I/O transactions.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
I/O limit registers 0, 1  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
I/O limit registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
I/O limit registers 0, 1  
Read-only, Read/Write  
30h, 38h  
0000 0000h  
4.23 Interrupt Line Register  
The interrupt line register communicates interrupt line routing information to the host system. This register is not used  
bythePCI1451, sincetherearemanyprogrammableinterruptsignalingoptions. Thisregisterisconsideredreserved;  
however, host software may read and write to this register. Each PCI1451 function has an interrupt line register.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt line  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Register:  
Type:  
Offset:  
Default:  
Interrupt line  
Read/Write  
3Ch  
FFh  
4–12  
4.24 Interrupt Pin Register  
The value read from this register is function dependent and depends on bit 29 (INTRTIE) bit in the system control  
register (PCI offset 80h, see Section 4.29) and bits 2 and 1 (INTMODE field) in the device control register (PCI offset  
92h, see Section 4.39). When the INTRTIE bit is set, this register will read 0x01 (INTA) for both functions. The  
PCI1450 defaults to signaling PCI & IRQ interrupts through the IRQSER serial interrupt terminal. Refer to Table 4–5  
for a complete description of the register contents.  
PCI function 0  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt pin – PCI function 0  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
PCI function 1  
Bit  
7
6
5
4
3
2
1
0
Name  
Interrupt pin – PCI function 1  
Type  
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
Default  
Register:  
Type:  
Offset:  
Default:  
Interrupt pin  
Read-only  
3Dh  
The default depends on the interrupt signaling mode.  
Table 4–5. Interrupt Pin Register Cross Reference  
INTPIN  
INTPIN  
INTERRUPT SIGNALING MODE  
INTRTIE BIT  
FUNCTION 0  
0x01 (INTA)  
0x01 (INTA)  
0x01 (INTA)  
0x01 (INTA)  
0x01 (INTA)  
0x01 (INTA)  
0x01 (INTA)  
0x01 (INTA)  
FUNCTION 1  
0x02 (INTB)  
0x02 (INTB)  
0x02 (INTB)  
0x02 (INTB)  
0x01 (INTA)  
0x01 (INTA)  
0x01 (INTA)  
0x01 (INTA)  
Parallel PCI interrupts only  
0
0
0
0
1
1
1
1
Parallel IRQ & parallel PCI interrupts  
IRQ serialized (IRQSER) & parallel PCI Interrupts  
IRQ & PCI serialized (IRQSER) interrupts (default)  
Parallel PCI interrupts only  
Parallel IRQ & parallel PCI interrupts  
IRQ serialized (IRQSER) & parallel PCI interrupts  
IRQ & PCI serialized (IRQSER) interrupts (default)  
4–13  
4.25 Bridge Control Register  
The bridge control register provides control over various PCI1451 bridging functions. Bit 5 in this register is global  
in nature and is accessed only through function 0.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Bridge control  
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Bridge control  
Read-only, Read/Write  
3Eh (Function 0, 1)  
0340h  
Table 4–6. Bridge Control Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
15–11  
RSVD  
R
Reserved. Bits 15–11 return 0s when read.  
Write posting enable. Enables write posting to and from the CardBus sockets. Write posting enables  
posting of write data on burst cycles. Operating with write posting disabled inhibits performance on burst  
cycles. Note that bursted write data can be posted, but various write transactions may not. Bit 10 is socket  
dependent and is not shared between functions 0 and 1.  
10  
9
POSTEN  
PREFETCH1  
PREFETCH0  
INTR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Memory window 1 type. This bit specifies whether or not memory window 1 is prefetchable. Bit 9 is socket  
dependent. This bit is encoded as:  
0 = Memory window 1 is nonprefetchable.  
1 = Memory window 1 is prefetchable (default).  
Memory window 0 type. This bit specifies whether or not memory window 0 is prefetchable. Bit 8 is  
encoded as:  
8
0 = Memory window 0 is nonprefetchable.  
1 = Memory window 0 is prefetchable (default).  
PCI interrupt – IREQ routing enable. Bit 7 selects whether PC Card functional interrupts are routed to PCI  
interrupts or to the IRQ specified in the ExCA registers.  
7
0 = Functional interrupts are routed to PCI interrupts (default).  
1 = Functional interrupts are routed by ExCA registers.  
CardBus reset. When bit 6 is set, the CRST signal is asserted on the CardBus interface. The CRST signal  
may also be asserted by passing a PRST assertion to CardBus.  
0 = CRST is deasserted.  
6
CRST  
1 = CRST is asserted (default).  
Master abort mode. Bit 5 controls how the PCI1451 responds to a master abort when the PCI1451 is an  
initiator on the CardBus interface. This bit is common between each socket.  
0 = Master aborts not reported (default).  
5
MABTMODE  
1 = Signal target abort on PCI and signal SERR, if enabled.  
4
3
RSVD  
R
Reserved. Bit 4 returns 0 when read.  
VGA enable. Bit 3 affects how the PCI1451 responds to VGA addresses. When this bit is set, accesses  
to VGA addresses are forwarded.  
VGAEN  
R/W  
ISA mode enable. Bit 2 affects how the PCI1451 passes I/O cycles within the 64-Kbyte ISA range. This  
bit is not common between sockets. When this bit is set, the PCI1451 does not forward the last 768 bytes  
of each 1K I/O range to CardBus.  
2
1
ISAEN  
R/W  
R/W  
CSERR enable. Bit 1 controls the response of the PCI1451 to CSERR signals on the CardBus bus. This  
bit is separate for each socket.  
CSERREN  
0 = CSERR is not forwarded to PCI SERR.  
1 = CSERR is forwarded to PCI SERR.  
CardBusparityerrorresponseenable. Bit0controlstheresponseofthePCI1451toCardBusparityerrors.  
This bit is separate for each socket.  
0
CPERREN  
R/W  
0 = CardBus parity errors are ignored.  
1 = CardBus parity errors are reported using CPERR.  
4–14  
4.26 Subsystem Vendor ID Register  
The subsystem vendor ID register, used for system and option card identification purposes, may be required for  
certain operating systems. This register is read-only or read/write, depending on the setting of bit 5 (SUBSYSRW)  
in the system control register (PCI offset 80h, see Section 4.29).  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Subsystem vendor ID  
Read-only (Read/Write if enabled by SUBSYSRW)  
Offset:  
Default:  
40h (Functions 0, 1)  
0000h  
4.27 Subsystem ID Register  
The subsystem ID register, used for system and option card identification purposes, may be required for certain  
operating systems. This register is read-only or read/write, depending on the setting of bit 5 (SUBSYSRW) in the  
system control register (PCI offset 80h, see Section 4.29). If an EEPROM is present, then the subsystem ID and  
subsystem vendor ID will be loaded from EEPROM after a reset.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Subsystem ID  
Read-only (Read/Write if enabled by SUBSYSRW)  
Offset:  
Default:  
42h (Functions 0, 1)  
0000h  
4–15  
4.28 PC Card 16-Bit I/F Legacy Mode Base Address Register  
The PCI1451 supports the index/data scheme of accessing the ExCA registers, which is mapped by this register. An  
address written to this register is the address for the index register and the address+1 is the data address. Using this  
access method, applications requiring index/data ExCA access can be supported. The base address can be mapped  
anywhere in 32-bit I/O space on a word boundary; hence, bit 0 is read-only, returning 1 when read. As specified in  
the Yenta specification, this register is shared by functions 0 and 1. See Chapter 5, ExCA Compatibility Registers,  
for register offsets.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PC Card 16-bit I/F legacy mode base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PC Card 16-bit I/F legacy mode base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
1
Register:  
Type:  
PC Card 16-bit I/F legacy mode base address  
Read-only, Read/Write  
Offset:  
Default:  
44h (Functions 0, 1)  
0000 0001h  
4–16  
4.29 System Control Register  
System-level initializations are performed through programming this doubleword register. Bits 31–29, 27, 26, 24, 15,  
14, 6–3, 1, and 0 are global in nature and are accessed only through function 0.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
System control  
R/W  
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
7
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
6
5
4
3
2
1
0
Name  
Type  
Default  
System control  
R/W  
1
R/W  
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
System control  
Read-only, Read/Write  
80h (Functions 0, 1)  
0044 9060h  
Table 4–7. System Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Serialized PCI interrupt routing step. Bits 31 and 30 configure the serialized PCI interrupt stream  
signalingandaccomplishanevendistributionofinterruptssignaledonthefourPCIinterruptslots. These  
bits are global to both PCI1451 functions.  
00 = INTA/INTB signal in INTA/INTB IRQSER slots (default)  
01 = INTA/INTB signal in INTB/INTC IRQSER slots  
31–30  
SER_STEP  
R/W  
10 = INTA/INTB signal in INTC/INTD IRQSER slots  
11 = INTA/INTB signal in INTD/INTA IRQSER slots  
Tie internal PCI interrupts. When bit 29 is set, the INTA and INTB signals are tied together internally and  
are signaled as INTA. INTA may then be shifted by using bits 31 and 30 (SER_STEP). This bit is global  
to both PCI1451 functions.  
29  
28  
INTRTIE  
RSVD  
R/W  
R
0 = INTA and INTB are not tied together internally (default).  
1 = INTA and INTB are tied together internally.  
Reserved. Bit 28 returns 0 when read.  
P2C power switch CLOCK. Bit 27 determines whether the CLOCK terminal (terminal U12) is an input  
that requires an external clock source or if this terminal is an output that uses the internal oscillator.  
0 = CLOCK terminal (terminal U12) is an input (default) (disabled).  
27  
P2CCLK  
R/W  
1 = CLOCK terminal is an output, the PCI1451 generated CLOCK.  
A 43kW pulldown resistor should be tied to this terminal.  
SMI interrupt routing. Bit 26 is shared between functions 0 and 1, and selects whether IRQ2 or CSC is  
signaled when a write occurs to power a PC Card socket.  
26  
25  
SMIROUTE  
SMISTATUS  
R/W  
R/W  
0 = PC Card power change interrupts routed to IRQ2 (default).  
1 = A CSC interrupt is generated on PC Card power changes.  
SMI interrupt status. This socket dependent bit is set when bit 24 (SMIENB) is set and a write occurs  
to set the socket power. Writing a 1 to bit 25 clears the status.  
0 = SMI interrupt is signaled.  
1 = SMI interrupt is not signaled.  
SMI interrupt mode enable. When bit 24 is set, the SMI interrupt signaling generates an interrupt when  
a write to the socket power control occurs. This bit is shared and defaults to 0 (disabled).  
0 = SMI interrupt mode is disabled (default).  
24  
23  
SMIENB  
RSVD  
R/W  
R
1 = SMI interrupt mode is enabled.  
Reserved. Bit 23 returns 0 when read.  
4–17  
Table 4–7. System Control Register Description (continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
CardBus reserved terminals signaling. When bit 22 is set, the RSVD CardBus terminals are driven low  
when a CardBus card is inserted. When bit 22 is low, as default, these signals are placed in a  
high-impedance state.  
22  
CBRSVD  
R/W  
0 = Place the CardBus RSVD terminals in a high-impedance state  
1 = Drive the Cardbus RSVD terminals low (default).  
V
protection enable. This bit is socket dependent.  
CC  
0 = V  
21  
20  
VCCPROT  
R/W  
R/W  
protection is enabled for 16-bit cards (default).  
protection is disabled for 16-bit cards.  
CC  
CC  
1 = V  
Reduced zoomed video enable. When bit 20 is enabled, terminals A25–A22 of the card interface for  
PC Card 16 cards is placed in the high impedance state. This bit is encoded as:  
0 = Reduced zoomed video is disabled (default).  
REDUCEZV  
1 = Reduced zoomed video is enabled.  
PC/PCI DMA card enable. When bit 19 is set, the PCI1451 allows 16-bit PC Cards to request PC/PCI  
DMA using the DREQ signaling. DREQ is selected through the socket DMA register 0 (PCI offset 94h,  
see Section 4.41).  
19  
CDREQEN  
R/W  
0 = Ignore DREQ signaling from PC Cards (default).  
1 = Signal DMA request on DREQ.  
PC/PCI DMA channel assignment. Bits 18–16 are encoded as:  
0–3 = 8-bit DMA channels  
18–16  
15  
CDMACHAN  
MRBURSTDN  
MRBURSTUP  
R/W  
R/W  
R/W  
4 = PCI master; not used (default)  
5–7 = 16-bit DMA channels  
Memory read burst enable downstream. When bit 15 is set, memory read transactions are allowed to  
burst downstream.  
0 = Downstream memory read burst is disabled.  
1 = Downstream memory read burst is enabled (default).  
Memoryreadburstenableupstream. Whenbit14isset, thePCI1451allowsmemoryreadtransactions  
to burst upstream.  
14  
0 = Upstream memory read burst is disabled (default).  
1 = Upstream memory read burst is enabled.  
Socket activity status. When set, bit 13 indicates access has been performed to or from a PC Card,  
and is cleared upon read of this status bit. This bit is socket dependent.  
0 = No socket activity (default)  
13  
12  
SOCACTIVE  
RSVD  
R
R
1 = Socket activity  
Reserved. This bit returns 1 when read. This is the clamping voltage bit in functions 0 and 1.  
Power stream in progress status bit. When set, bit 11 indicates that a power stream to the power switch  
is in progress and a powering change has been requested. This bit is cleared when the power stream  
is complete.  
11  
10  
9
PWRSTREAM  
DELAYUP  
R
R
R
0 = Power stream is complete, delay has expired.  
1 = Power stream is in progress.  
Power-updelay in progress status bit. When set, bit 10 indicates that a power-up stream has been sent  
tothepowerswitchandproperpowermaynotyetbestable.Thisbitisclearedwhenthepower-updelay  
has expired.  
0 = Power-up delay has expired.  
1 = Power-up stream sent to switch. Power might not be stable.  
Power-downdelay in progress status bit. When set, bit 9 indicates that a power-down stream has been  
sent to the power switch and proper power may not yet be stable. This bit is cleared when the  
power-down delay has expired.  
DELAYDOWN  
0 = Power-down delay has expired.  
1 = Power-down stream sent to switch. Power might not be stable.  
Interrogation in progress. When set, bit 8 indicates an interrogation is in progress and clears when the  
interrogation completes. This bit is socket dependent.  
0 = Interrogation not in progress (default)  
8
7
INTERROGATE  
RSVD  
R
R
1 = Interrogation in progress  
Reserved. Bit 7 returns 0 when read.  
4–18  
Table 4–7. System Control Register Description (continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Power savings mode enable. When bit 6 is set, the PCI1451 will consume less power with no  
performance loss. This bit is shared between the two PCI1451 functions.  
0 = Power savings mode disabled  
6
PWRSAVINGS  
R/W  
1 = Power savings mode enabled (default)  
Subsystem ID (see Section 4.27), subsystem vendor ID (see Section 4.26), and the ExCA  
identification and revision (see Section 5.1) registers read/write enable. Bit 5 is shared by functions 0  
and 1.  
0 = Subsystem ID, subsystem vendor ID, and the ExCA identification and revision registers are  
read/write.  
1 = Subsystem ID, subsystem vendor ID, and the ExCA identification and revision registers are  
read-only (default).  
5
4
SUBSYSRW  
CB_DPAR  
R/W  
R/W  
CardBus data parity SERR signaling enable.  
0 = CardBus data parity not signaled on PCI SERR signal (default)  
1 = CardBus data parity signaled on PCI SERR signal  
PC/PCI DMA enable. Enables PC/PCI DMA when set. When PC/PCI DMA is enabled, PCREQ and  
PCGNT should be routed to a multifunction routing terminal. See multifunction routing status register  
(PCI offset 8Ch, see Section 4.36) for options.  
3
2
CDMA_EN  
RSVD  
R/W  
R
0 = Centralized DMA disabled (default)  
1 = Centralized DMA enabled  
Reserved. Bit 2 returns 0 when read.  
Keep clock. When bit 1 is set, the PCI1451 will always follow CLKRUN protocol to maintain the system  
PCLK and the CCLK (CardBus clock). This bit is global to the PCI1451 functions.  
0 = Allow system PCLK and CCLK to stop (default)  
1 = Never allow system PCLK or CCLK clock to stop  
1
0
KEEPCLK  
R/W  
R/W  
Note that the functionality of this bit has changed versus the PCI12XX series of TI CardBus controllers.  
In these CardBus controllers, setting this bit would only maintain the PCI clock, not the CCLK. In the  
PCI1451, setting this bit maintains both the PCI clock and the CCLK.  
PME/RI_OUT select bit. When bit 0 is 1, the PME signal is routed on to the RI_OUT/PME terminal.  
When this bit is 0 and bit 7 (RIENB) of the card control register (PCI offset 91h, see Section 4.38) is  
1, the RI_OUT signal is routed on to the RI_OUT/PME terminal. If this bit is 0 and bit 7 (RIENB) of the  
card control register is 0, then the output on the RI_OUT/PME terminal is placed in a high-impedance  
state. This terminal is encoded as:  
RIMUX  
0 = RI_OUT signal is routed to the RI_OUT/PME terminal if bit 7 of the card control register is 1  
(default).  
1 = PME signal is routed on to the RI_OUT/PME terminal of the PCI1451 controller.  
4–19  
4.30 Multimedia Control Register  
The multimedia control register provides port mapping for the PCI1451 zoomed video/data ports. See Section 3.4.3,  
Zoomed Video Support, for details on the PCI1451 zoomed video support. Access this register only through  
function 0.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Multimedia control  
R/W R/W  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
0
0
Register:  
Type:  
Multimedia control  
Read/Write  
Offset:  
Default:  
84h (Functions 0, 1)  
00h  
Table 4–8. Multimedia Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
ZV output enable. Bit 7 enables the output for the PCI1451 outsourcing ZV terminals. When this bit is  
reset, these terminals are in a high-impedance state.  
7
ZVOUTEN  
R/W  
0 = PCI1451 ZV output terminals disabled (default)  
1 = PCI1451 ZV output terminals enabled  
ZV port select. Bit 6 controls the multiplexing control over which PC Card ZV port data is driven to the  
outsourcing PCI1451 ZV port.  
6
5
PORTSEL  
ZVAUTO  
R/W  
R/W  
0 = Output card 0 ZV if enabled (default)  
1 = Output card 1 ZV if enabled  
Zoomed video auto-detect. Bit 5 enables the zoomed video auto-detect feature. This bit is encoded as:  
0 = Zoomed video auto detect disabled (default)  
1 = Zoomed video auto detect enabled  
Auto-detectpriority encoding. Bits 4–2 have meaning only if bit 5 (ZVAUTO) is enabled. If bit 5 is enabled,  
then bits 4–2 are encoded as follows:  
000 = Slot A, Slot B, External Source  
001 = Slot A, External Source, Slot B  
010 = Slot B, Slot A, External Source  
011 = Slot B, External Source, Slot A  
100 = External Source, Slot A, Slot B  
101 = External Source, Slot B, Slot A  
110 = Reserved  
4–2  
AUTODETECT  
R/W  
111 = Reserved  
PC Card 1 ZV mode enable. Enables the zoomed video mode for socket 1. When bit 1 set, the PCI1451  
inputs ZV data from the PC Card interface, and disables output drivers on ZV terminals.  
0 = PC Card 1 ZV disabled (default)  
1
0
ZVEN1  
ZVEN0  
R/W  
R/W  
1 = PC Card 1 ZV enabled  
PC Card 0 ZV mode enable. Enables the zoomed video mode for socket 0. When bit 0 set, the PCI1451  
inputs ZV data from the PC Card interface, and disables output drivers on ZV terminals.  
0 = PC Card 0 ZV disabled (default)  
1 = PC Card 0 ZV enabled  
4–20  
4.31 General Status Register  
Thegeneralstatusregisterprovidesthegeneraldevicestatusinformation. ThestatusoftheserialEEPROMinterface  
is provided through this register. Bits 2–0 are global in nature and are accessed only through function 0.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General status  
R
0
R
0
R
0
R
0
R
0
R
X
R/C  
0
R
0
Register:  
Type:  
Offset:  
Default:  
General status  
Read-only, Read/Clear  
85h (Functions 0)  
00h  
Table 4–9. General Status Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
7–3  
RSVD  
R
Reserved. Bits 7–3 return 0s when read.  
Serial EEPROM detect. When bit 2 is cleared, it indicates that the PCI1450 serial EEPROM circuitry has  
detected an EEPROM. A pullup resistor must be implemented on the SDA terminal for this bit to be set.  
This status bit is encoded as:  
2
EEDETECT  
R
0 = EEPROM not detected (default)  
1 = EEPROM detected  
Serial EEPROM data error status. Bit 1 indicates when a data error occurs on the serial EEPROM  
interface. This bit will be set due to a missing acknowledge. This bit is cleared by a writeback of 1.  
0 = No error detected. (default)  
1
0
DATAERR  
EEBUSY  
R/C  
R
1 = Data error detected.  
Serial EEPROM busy status. Bit 0 indicates the status of the PCI1451 serial EEPROM circuitry. This bit  
is set during the loading of the subsystem ID value.  
0 = Serial EEPROM circuitry is not busy (default).  
1 = Serial EEPROM circuitry is busy.  
4–21  
4.32 General-Purpose Event Status Register  
The general-pupose event status register contains status bits that are set when general events occur and may be  
programmed to generate general-purpose event signalling through GPE.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose event status  
RCU  
0
RCU  
0
R
0
R
0
RCU  
0
RCU  
0
RCU  
0
RCU  
0
Register:  
Type:  
General-purpose event status  
Read/Clear/Update  
Offset:  
Default:  
88h  
00h  
Table 4–10. General-Purpose Event Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7
PWR_STS  
RCU  
Power change status. Bit 7 is set when software changes the V  
or V  
power state of either socket.  
PP  
CC  
12V V  
for either socket.  
request status. Bit 6 is set when software has changed the requested V level to or from 12 V  
PP  
PP  
6
5–4  
3
VPP12_STS  
RSVD  
RCU  
R
Reserved. Bits 5 and 4 return 0s when read.  
GPI3 status. Bit 3 is set on a change in status of the MFUNC3 terminal input level if configured as a  
general-purpose input, GPI3.  
GP3_STS  
RCU  
GPI2 status. Bit 2 is set on a change in status of the MFUNC2 terminal input level if configured as a  
general-purpose input, GPI2.  
2
1
0
GP2_STS  
GP1_STS  
GP0_STS  
RCU  
RCU  
RCU  
GPI1 status. Bit 1 is set on a change in status of the MFUNC1 terminal input level if configured as a  
general-purpose input, GPI1.  
GPI0 status. Bit 0 is set on a change in status of the MFUNC0 terminal input level if configured as a  
general-purpose input, GPI0.  
4.33 General-Purpose Event Enable Register  
The general-purpose event enable register contains bits that are set to enable GPE signals.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose event enable  
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
General-purpose event enable  
Read-only, Read/Write  
Offset:  
Default:  
89h  
00h  
Table 4–11. General-Purpose Event Enable Register Description  
BIT  
7
SIGNAL  
PWR_EN  
VPP12_EN  
RSVD  
TYPE  
R/W  
R/W  
R
FUNCTION  
Power change GPE enable. When bit 7 is set, GPE is signaled on PWR_STS events.  
12-Volt V GPE enable. When bit 6 is set, GPE is signaled on VPP12_STS events.  
6
PP  
5–4  
3
Reserved. Bits 5 and 4 return 0s when read.  
GP3_EN  
GP2_EN  
GP1_EN  
GP0_EN  
R/W  
R/W  
R/W  
R/W  
GPI3 GPE enable. When bit 3 is set, GPE is signaled on GP3_STS events.  
GPI2 GPE enable. When bit 2 is set, GPE is signaled on GP2_STS events.  
GPI1 GPE enable. When bit 1 is set, GPE is signaled on GP1_STS events.  
GPI0 GPE enable. When bit 0 is set, GPE is signaled on GP0_STS events.  
2
1
0
4–22  
4.34 General-Purpose Input Register  
The general-purpose input register contains GPI terminal status.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose input  
R
0
R
0
R
0
R
0
RU  
x
RU  
x
RU  
x
RU  
x
Register:  
Type:  
Offset:  
Default:  
General-purpose input  
Read/Update  
8Ah  
00h  
Table 4–12. General-Purpose Input Register Description  
BIT  
7–4  
3
SIGNAL  
RSVD  
TYPE  
FUNCTION  
R
Reserved. Bits 7–4 return 0s when read.  
GPI3_DATA  
GPI2_DATA  
GPI1_DATA  
GPI0_DATA  
RU  
RU  
RU  
RU  
GPI3 data input. Bit 3 represents the logical value of the data input from GPI3.  
GPI2 data input. Bit 2 represents the logical value of the data input from GPI2.  
GPI1 data input. Bit 1 represents the logical value of the data input from GPI1.  
GPI0 data input. Bit 0 represents the logical value of the data input from GPI0.  
2
1
0
4.35 General-Purpose Output Register  
The general-purpose output register is used to drive the GPO3–GPO0 outputs.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose output  
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
General-purpose output  
Read-only, Read/Write  
Offset:  
Default:  
8Bh  
00h  
Table 4–13. General-Purpose Output Register Description  
BIT  
7–4  
3
SIGNAL  
RSVD  
TYPE  
FUNCTION  
R
Reserved. Bits 7–4 return 0s when read.  
GPO3_DATA  
GPO2_DATA  
GPO1_DATA  
GPO0_DATA  
R/W  
R/W  
R/W  
R/W  
Bit 3 represents the logical value of the data driven to GPO3.  
Bit 2 represents the logical value of the data driven to GPO2.  
Bit 1 represents the logical value of the data driven to GPO1.  
Bit 0 represents the logical value of the data driven to GPO0.  
2
1
0
4–23  
4.36 Multifunction Routing Status Register  
The multifunction routing status register is used to configure MFUNC7–MFUNC0 terminals. These terminals may be  
configured for various functions. This register is intended to be programmed once at power-on initialization. The  
default value for this register may also be loaded through a serial ROM.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Multifunction routing status  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Multifunction routing status  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Multifunction routing status  
Read/Write  
8Ch  
0000 0000h  
Table 4–14. Multifunction Routing Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31  
RSVD  
R
Reserved. Bit 31 returns 0 when read.  
MFUNC7 select. Bits 30–28 control the mapping of MFUNC7 as follows:  
000 = IDSEL  
001 = RI_OUT  
010 = RSVD  
011 = PCREQ  
100 = D3_STAT  
101 = LOCK  
110 = RSVD  
111 = RSVD  
30–28  
27  
MFUNC7_SEL  
RSVD  
R/W  
R
Reserved. Bit 27 returns 0 when read.  
MFUNC6 select. Bits 26–24 control the mapping of MFUNC6 as follows:  
000 = RSVD  
001 = RSVD  
010 = RSVD  
011 = RSVD  
100 = D3_STAT  
101 = RSVD  
110 = CAUDPWM  
111 = PCGNT  
26–24  
23  
MFUNC6_SEL  
RSVD  
R/W  
R
Reserved. Bit 23 returns 0 when read.  
MFUNC5 select. Bits 22–20 control the mapping of MFUNC5 as follows:  
000 = RSVD  
001 = RSVD  
010 = RSVD  
011 = RSVD  
100 = RSVD  
101 = GPE  
110 = CAUDPWM  
111 = PCREQ  
22–20  
19  
MFUNC5_SEL  
RSVD  
R/W  
R
Reserved. Bit 19 returns 0 when read.  
MFUNC4 select. Bits 18–16 control the mapping of MFUNC4 as follows:  
000 = RSVD  
001 = RSVD  
010 = LEDA1  
011 = PCREQ  
100 = RSVD  
101 = GPE  
110 = RSVD  
111 = ZV_STAT  
18–16  
15  
MFUNC4_SEL  
RSVD  
R/W  
R
Reserved. Bit 15 returns 0 when read.  
MFUNC3 select. Bits 14–12 control the mapping of MFUNC3 as follows:  
000 = GPI3  
100 = RSVD  
101 = LOCK  
110 = RSVD  
111 = C_ZVCLK  
14–12  
11  
MFUNC3_SEL  
RSVD  
R/W  
R
001 = GPO3  
010 = LEDA2  
011 = PCGNT  
Reserved. Bit 11 returns 0 when read.  
4–24  
Table 4–14. Multifunction Routing Status Register Description (continued)  
BIT  
10–8  
7
SIGNAL  
MFUNC2_SEL  
RSVD  
TYPE  
R/W  
R
FUNCTION  
MFUNC2 select. Bits 10–8 control the mapping of MFUNC2 as follows:  
000 = GPI2  
001 = GPO2  
010 = INTC  
011 = PCGNT  
100 = D3_STAT  
101 = RSVD  
110 = RSVD  
111 = C_ZVCLK  
Reserved. Bit 7 returns 0 when read.  
MFUNC1 select. Bits 6–4 control the mapping of MFUNC1 as follows:  
000 = GPI1  
001 = GPO1  
010 = INTB  
100 = D3_STAT  
101 = LOCK  
110 = CAUDPWM  
111 = ZV_STAT  
6–4  
3
MFUNC1_SEL  
RSVD  
R/W  
R
011 = TEST_MUX  
Reserved. Bit 3 returns 0 when read.  
MFUNC0 select. Bits 2–0 control the mapping of MFUNC0 as follows:  
000 = GPI0  
001 = GPO0  
010 = INTA  
011 = PCREQ  
100 = RSVD  
101 = GPE  
110 = RSVD  
111 = ZV_STAT  
2–0  
MFUNC0_SEL  
R/W  
4–25  
4.37 Retry Status Register  
The retry status register enables the retry time-out counters and displays the retry expiration status. The flags are  
15  
set when the PCI1451 retries a PCI or CardBus master request and the master does not return within 2 PCI clock  
cycles. The flags are cleared by writing a 1 to the bit. These bits are expected to be incorporated into the command  
register (see Section 4.4), status register (see Section 4.5), and bridge control register (see Section 4.25) by the PCI  
SIG. Access this register only through function 0.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Retry status  
R/W  
1
R/W  
1
R/C  
0
R
0
R/C  
0
R
0
R/C  
0
R
0
Register:  
Type:  
Retry status  
Read-only, Read/Write, Read/Write to Clear  
Offset:  
Default:  
90h (Functions 0, 1)  
C0h  
Table 4–15. Retry Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PCI retry time-out counter enable. Bit 7 is encoded as:  
0 = PCI retry counter disabled  
7
PCIRETRY  
R/W  
1 = PCI retry counter enabled (default)  
CardBus retry time-out counter enable. Bit 6 is encoded as:  
0 = CardBus retry counter disabled  
6
CBRETRY  
R/W  
1 = CardBus retry counter enabled (default)  
CardBus target B retry expired. Write a 1 to clear this bit.  
0 = Inactive (default)  
5
4
3
2
1
0
TEXP_CBB  
RSVD  
R/C  
R
1 = Retry has expired.  
Reserved. Bit 4 returns 0 when read.  
CardBus target A retry expired. Write a 1 to clear this bit.  
0 = Inactive (default)  
TEXP_CBA  
RSVD  
R/C  
R
1 = Retry has expired.  
Reserved. Bit 2 returns 0 when read.  
PCI target retry expired. Write a 1 to clear this bit.  
0 = Inactive (default)  
TEXP_PCI  
RSVD  
R/C  
R
1 = Retry has expired.  
Reserved. Bit 0 returns 0 when read.  
4–26  
4.38 Card Control Register  
The card control register is provided for PCI1130 compatibility. The contents provide the PC Card function interrupt  
flag (IFG) and an alias for the ZVEN0 and ZVEN1 bits found in the PCI1451 multimedia control register (see  
Section 4.30). When this register is accessed by function 0, the ZVEN0 bit will alias with bit 6 (ZVENABLE). When  
this register is accessed by function 1, the ZVEN1 bit will alias with bit 6 (ZVENABLE). Setting bit 6 only places the  
PC Card socket interface ZV terminals in a high impedance state, but does not enable the PCI1451 to drive ZV data  
onto the ZV terminals.  
The RI_OUT signal is enabled through this register, and bit 7 (RIENB) is shared between functions 0 and 1.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Card control  
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Card control  
Read-only, Read/Write  
Offset:  
Default:  
91h  
00h  
Table 4–16. Card Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Ring indicate enable. When bit 7 is 1, the RI_OUT output is enabled. This bit is global in nature and should  
be accessed only through function 0. This bit defaults to 0.  
7§  
RIENB  
R/W  
Compatibility ZV mode enable. When bit 6 is 1, the corresponding PC Card socket interface ZV terminals  
will enter a high impedance state. This bit defaults to 0.  
6
ZVENABLE  
R/W  
5
RSVD  
RSVD  
R/W  
R
Reserved.  
4–3  
Reserved. These bits default to 0.  
CardBus Audio-to-MFUNC. When bit 2 is set, the CAUDIO CardBus signal must be routed through an  
MFUNC terminal. If this bit is set for both functions, then function 0 gets routed.  
2
1
AUD2MUX  
R/W  
0 = CAUDIO set to CAUDPWM on MFUNC terminal (default)  
1 = CAUDIO is not routed.  
Speaker output enable. When bit 1 is 1, it enables SPKR on the PC Card and routes it to SPKROUT on  
the PCI bus. The SPKR signal from socket 0 is XOR’ed with the SPKR signal from socket 1 and sent to  
SPKROUT. The SPKROUT terminal only drives data then either function’s SPKROUTEN bit is set. This  
bit is encoded as:  
SPKROUTEN  
R/W  
0 = SPKR to SPKROUT not enabled (default)  
1 = SPKR to SPKROUT enabled  
Interrupt flag. Bit 0 is the interrupt flag for 16-bit I/O PC Cards and for CardBus cards. This bit is set when  
a functional interrupt is signaled from a PC Card interface, and is socket dependent (that is, not global).  
Write back a 1 to clear this bit.  
0
IFG  
R/W  
0 = No PC Card functional interrupt detected (default)  
1 = PC Card functional interrupt detected  
§
These bits are global in nature and should be accessed only through function 0.  
4–27  
4.39 Device Control Register  
The device control register is provided for PCI1130 compatibility. It contains bits which are shared between functions  
0 and 1. The interrupt mode select and the socket-capable force bits are programmed through this register. Bits 6  
and 3–0 are global in nature and should be accessed only through function 0.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device control  
R/W  
0
R/W  
1
R/W  
1
R
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Device control  
Read-only, Read/Write  
92h (Functions 0, 1)  
66h  
Table 4–17. Device Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Socketpowerlockbit. Whenbit7issetto1, softwarewillnotbeabletopowerdownthePCCardsocket  
while in D3. This may be necessary to support wake on LAN or RING if the operating system is  
programmed to power down a socket when the CardBus controller is placed in the D3 state.  
7
SKTPWR_LOCK  
R/W  
3-V socket capable force bit.  
0 = Not 3-V capable  
6
3VCAPABLE  
R/W  
1 = 3-V capable (default)  
5
4
3
IO16R2  
RSVD  
TEST  
R/W  
R
Diagnostic bit. Bit 5 defaults to 1.  
Reserved. Bit 4 returns 0 when read. A write has no effect.  
TI test bit. Write only 0 to this bit. This bit can be set to shorten the interrogation counter.  
R/W  
Interrupt mode. Bits 2–1 select the interrupt signaling mode. The interrupt mode bits are encoded:  
00 = Parallel PCI interrupts only  
01 = Reserved  
2–1  
0
INTMODE  
RSVD  
R/W  
R/W  
10 = IRQ serialized interrupts & parallel PCI interrupts INTA and INTB  
11 = IRQ & PCI serialized interrupts (default)  
Reserved. NAND tree enable bit. There is a NAND tree diagnostic structure in the PCI1451, and it tests  
only the terminals that are inputs or I/Os. Any output only terminal on the PCI1451 is excluded from  
the NAND tree test.  
4–28  
4.40 Diagnostic Register  
The diagnostic register is provided for internal Texas Instruments test purposes.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Diagnostic  
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
Register:  
Type:  
Diagnostic  
Read/Write  
Offset:  
Default:  
93h (Functions 0, 1)  
61h  
Table 4–18. Diagnostic Register Description  
FUNCTION  
BIT  
7
SIGNAL  
TRUE_VAL  
RSVD  
TYPE  
R/W  
R/W  
R/W  
This bit defaults to 0. This bit is encoded as:  
0 = Reads true values in vendor ID (see Section 4.2) and device ID (see Section 4.3) registers  
(default).  
1 = Reads all ones in reads to the PCI vendor ID and PCI device ID registers.  
6
Reserved.  
CSC interrupt routing control  
0 = CSC interrupts routed to PCI if ExCA 803 (see Section 5.4) bit 4 = 1.  
1 = CSC Interrupts routed to PCI if ExCA 805 (see Section 5.6) bits 7–4 = 0000b. (Default)  
In this case, the setting of ExCA 803 bit 4 is a “don’t care.”  
5
CSC  
4
3
2
1
DIAG4  
DIAG3  
DIAG2  
DIAG1  
R/W  
R/W  
R/W  
R/W  
Diagnostic RETRY_DIS. Delayed transaction disable.  
Diagnostic RETRY_EXT. Extends the latency from 16 to 64.  
10  
15  
15  
Diagnostic DISCARD_TIM_SEL_CB. Set = 2 , Reset = 2  
10  
Diagnostic DISCARD_TIM_SEL_PCI. Set = 2 , Reset = 2  
Asynchronous interrupt generation.  
0
ASYNC_CSC  
R/W  
0 = CSC interrupt not generated asynchronously  
1 = CSC interrupt is generated asynchronously (default)  
4–29  
4.41 Socket DMA Register 0  
Socket DMA register 0 provides control over the PC Card DREQ (DMA request) signaling.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket DMA register 0  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket DMA register 0  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
DMA socket register 0  
Read-only, Read/Write  
94h (Functions 0, 1)  
0000 0000h  
Table 4–19. Socket DMA Register 0 Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31–2  
RSVD  
R
Reserved. Bits 31–2 return 0s when read.  
DMA request (DREQ) terminal. Bits 1 and 0 indicate which terminal on the 16-bit PC Card interface  
acts as the DREQ during DMA transfers. This field is encoded as:  
00 = Socket not configured for DMA (default)  
01 = DREQ uses SPKR  
1–0  
DREQPIN  
R/W  
10 = DREQ uses IOIS16  
11 = DREQ uses INPACK  
4–30  
4.42 Socket DMA Register 1  
Socket DMA register 1 provides control over the distributed DMA (DDMA) registers and the PCI portion of DMA  
transfers. The DMA base address locates the DDMA registers in a 16-byte region within the first 64K bytes of PCI  
I/O address space. Note that 32-bit transfers to the 16-bit PC Card interface are not supported; the maximum transfer  
possible to the PC Card interface is 16 bits. However, 32 bits of data are prefetched from the PCI bus, thus allowing  
back-to-back 16-bit transfers to the PC Card interface.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket DMA register 1  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket DMA register 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
DMA socket register 1  
Read-only, Read/Write  
98h (Functions 0, 1)  
0000 0000h  
Table 4–20. Socket DMA Register 1 Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31–16  
RSVD  
R
Reserved. Bits 31–16 return 0s when read.  
DMA base address. Locates the socket’s DMA registers in PCI I/O space. This field represents a 16-bit  
PCII/Oaddress. Theupper16bitsoftheaddressarehardwiredto0, forcingthiswindowtowithinthelower  
64K bytes of I/O address space. The lower 4 bits are hardwired to 0, and are included in the address  
decode. Thus, the window is aligned to a natural 16-byte boundary.  
15–4  
3
DMABASE  
EXTMODE  
R/W  
R
Extended addressing. This feature is not supported by the PCI1451, and always returns a 0.  
Transfersize. Bits2and1specifythewidthoftheDMAtransferonthePCCardinterface, andareencoded  
as:  
00 = Transfers are 8 bits (default).  
01 = Transfers are 16 bits.  
10 = Reserved  
2–1  
XFERSIZE  
DDMAEN  
R/W  
R/W  
11 = Reserved  
DDMA registers decode enable. Enables the decoding of the distributed DMA registers based upon the  
value of bits 15–4 (DMABASE field).  
0
0 = Disabled (default)  
1 = Enabled  
4–31  
4.43 Capability ID Register  
The capability ID register identifies the linked list item as the register for PCI power management. The register returns  
01h when read, which is the unique ID assigned by the PCI SIG for the PCI location of the capabilities pointer and  
the value.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Capability ID  
Read-only  
A0h  
01h  
4.44 Next Item Pointer Register  
The contents of this register indicate the next item in the linked list of the PCI power management capabilities. Since  
the PCI1451 functions only include one capabilities item, this register returns 0s when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Next item pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Next item pointer  
Read-only  
A1h  
00h  
4–32  
4.45 Power Management Capabilities Register  
The power management capabilities register contains information on the capabilities of the PC Card function related  
to power management. Both PCI1451 CardBus bridge functions support D0, D1, D2, and D3 power states.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management capabilities  
R/W  
1
R
1
R
1
R
1
R
1
R
1
R
1
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Power management capabilities  
Read-only, Read/Write  
A2h (Functions 0, 1)  
FE11h  
Table 4–21. Power Management Capabilities Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME support. This 5-bit field indicates the power states from which the PCI1451 device functions may  
assert PME. A 0b (zero) for any bit indicates that the function cannot assert the PME signal while in  
that power state. These five bits return 0Fh when read. Each of these bits is described below:  
PME_Support  
PME_Support  
15  
R/W  
R
Bit 15 – defaults to a 1 indicating the PME signal can be asserted from the D3  
state. This bit is  
is contingent on the system providing an auxiliary  
cold  
read/write because wake-up support from D3  
cold  
terminals. If the system designer chooses not to provide an auxiliary power  
power source to the V  
source to the V  
CC  
CC  
terminals for D3  
cold  
wake-up support, then BIOS should write a 0 to this bit.  
14–11  
Bit 14 – contains the value 1 to indicate that the PME signal can be asserted from the D3  
hot  
state.  
Bit 13 – contains the value 1 to indicate that the PME signal can be asserted from the D2 state.  
Bit 12 – contains the value 1 to indicate that the PME signal can be asserted from the D1 state.  
Bit 11 – contains the value 1 to indicate that the PME signal can be asserted from the D0 state.  
D2 support. Bit 10 returns a 1 when read, indicating that the CardBus function supports the D2 device  
power state.  
10  
9
D2_Support  
D1_Support  
R
R
D1 support. Bit 9 returns a 1 when read, indicating that the CardBus function supports the D1 device  
power state.  
8–6  
5
RSVD  
DSI  
R
R
Reserved. Bits 8–6 return 000b when read.  
Device specific initialization. Bit 5 returns 0 when read.  
Auxiliary power source. Bit 4 is meaningful only if bit 15 (PME_Support, D3  
set, it indicates that support for PME in D3  
cold  
of a proprietary delivery vehicle. When bit 4 is 0, it indicates that the function supplies its own auxiliary  
power source.  
) is set. When bit 4 is  
requires auxiliary power supplied by the system by way  
cold  
4
AUX_PWR  
R
When bit 3 is 1, it indicates that the function relies on the presence of the PCI clock for PME operation.  
When bit 3 is 0, it indicates that no PCI clock is required for the function to generate PME.  
3
PMECLK  
VERSION  
R
R
Version. Bits 2–0 return 001b when read, indicating that there are 4 bytes of general-purpose power  
management (PM) registers as described in the PCI Bus Power Management Interface Specification.  
2–0  
4–33  
4.46 Power Management Control/Status Register  
The power management control/status register determines and changes the current power state of the PCI1451  
CardBus function. The contents of this register are not affected by the internally generated reset caused by the  
transition from the D3  
to D0 state.  
hot  
All PCI registers, ExCA registers, and CardBus registers are reset as a result of a D3 -to-D0 state transition, with  
hot  
the exception of the PME context bits (if PME is enabled) and the GRST only bits.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control/status  
R/C  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
Power management control/status  
Read-only, Read/Write, Read/Write to Clear  
Offset:  
Default:  
A4h (Functions 0, 1)  
0000h  
Table 4–22. Power Management Control/Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME status. Bit 15 is set when the CardBus function would normally assert the PME signal,  
independent of the state of bit 8 (PME_EN). Bit 15 is cleared by a write back of 1, and this also  
clears the PME signal if PME was asserted by this function. Writing a 0 to this bit has no effect.  
15  
PMESTAT  
R/C  
Data scale. This 2-bit field returns 0s when read. The CardBus function does not return any  
dynamic data, as indicated by bit 4 (DYN_DATA_PME_EN).  
14–13  
12–9  
DATASCALE  
DATASEL  
R
R
Data select. This 4-bit field returns 0s when read. The CardBus function does not return any  
dynamic data, as indicated by bit 4 (DYN_DATA_PME_EN).  
PME enable. Bit 8 enables the function to assert PME. If this bit is cleared, then assertion of PME  
is disabled.  
8
PME_EN  
RSVD  
R/W  
R
7–5  
4
Reserved. Bits 7–5 return 0s when read.  
Dynamic data PME enable. Bit 4 returns 0 when read since the CardBus function does not report  
dynamic data.  
DYN_DATA_PME_EN  
RSVD  
R
3–2  
R
Reserved. Bits 3 and 2 return 0s when read.  
Power state. This 2-bit field is used both to determine the current power state of a function and  
to set the function into a new power state. This field is encoded as:  
00 = D0  
01 = D1  
10 = D2  
1–0  
PWRSTATE  
R/W  
11 = D3  
hot  
4–34  
4.47 Power Management Control/Status Register Bridge Support Extensions  
This register supports PCI bridge specific functionality. It is required for all PCI-to-PCI bridges.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control/status register bridge support extensions  
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Power management control/status register bridge support extensions  
Read-only  
Offset:  
Default:  
A6h (Functions 0, 1)  
C0h  
Table 4–23. Power Management Control/Status Register Bridge Support Extensions  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Bus power/clock control enable. This bit returns 1 when read. This bit is encoded as:  
0 = Bus power/clock control is disabled.  
1 = Bus power/clock control is enabled (default).  
A0indicatesthatthebuspower/clockcontrolpoliciesdefinedinthePCIBusPowerManagementInterface  
Specification are disabled. When the bus power/clock control enable mechanism is disabled, the bridge’s  
power management control/status register power state field (see Section 4.46, bits 1–0) cannot be used  
by the system software to control the power or the clock of the bridge’s secondary bus. A 1 indicates that  
the bus power/clock control mechanism is enabled.  
7
BPCC_EN  
R
B2/B3 support for D3 . The state of this bit determines the action that is to occur as a direct result of  
hot  
programmingthefunctiontoD3 . Thisbitisonlymeaningfulifbit7(BPCC_EN)isa1. Thisbitisencoded  
hot  
as:  
6
B2_B3  
RSVD  
R
R
0 = When the bridge is programmed to D3 , its secondary bus will have its power removed (B3).  
hot  
1 = When the bridge function is programmed to D3 , its secondary bus’s PCI clock is stopped (B2).  
hot  
(Default)  
5–0  
Reserved. Bits 5–0 return 0s when read.  
4–35  
4.48 General-Purpose Event Control/Status Register  
If the GPE (general-purpose event) function is programmed onto the MFUNC5 terminal by writing 101b to bits 22–20  
of the multifunction routing status register (PCI offset 8Ch, see Section 4.36), then this register may be used to  
program which events will cause GPE to be asserted and report the status.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
GPE control/status  
R
0
R
0
R
0
R
0
R
0
R/C  
0
R/C  
0
R/C  
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
General-purpose event control/status  
Read-only, Read/Write, Read/Write to Clear  
Offset:  
Default:  
A8h  
0001h  
Table 4–24. GPE Control/Status Register Description  
BIT  
15–11  
10  
SIGNAL  
TYPE  
R
FUNCTION  
Reserved. Bits 15–11 return 0s when read.  
RSVD  
ZV1_STS  
ZV0_STS  
R/C  
R/C  
PC Card socket 1 status. Bit 10 is set on a change in status of the ZVENABLE bit in function 1.  
PC Card socket 0 status. Bit 9 is set on a change in status of the ZVENABLE bit in function 0.  
9
12-volt V  
PP  
request status. Bit 8 is set when software has changed the requested V  
from 12 volts from either socket.  
level to or  
PP  
8
7–3  
2
VPP12_STS  
RSVD  
R/C  
R
Reserved. Bits 7–3 return 0s when read.  
PC Card socket 1 zoomed video event enable. When bit 2 is set, GPE is signaled on a change in  
status of the ZVENABLE bit in function 1 of the PC Card controller.  
ZV1_EN  
R/W  
PC Card socket 0 zoomed video event enable. When bit 1 is set, GPE is signaled on a change in  
status of the ZVENABLE bit in function 0 of the PC Card controller.  
1
0
ZV0_EN  
R/W  
R/W  
12 Volt V  
request event enable. When bit 0 is set, a GPE is signaled when software has changed  
level to or from 12 Volts for either socket.  
PP  
VPP12_EN  
the requested V  
PP  
4–36  
5 ExCA Compatibility Registers (Functions 0 and 1)  
The ExCA (exchangeable card architecture) registers implemented in the PCI1451 are register-compatible with the  
Intel 82365SL-DF PCMCIA controller. ExCA registers are identified by an offset value, which is compatible with the  
legacy I/O index/data scheme used on the Intel 82365 ISA controller. The ExCA registers are accessed through this  
scheme by writing the register offset value into the index register (I/O base), and reading or writing the data register  
(I/O base + 1). The I/O base address used in the index/data scheme is programmed in the PC Card 16-bit I/F legacy  
mode base address register (see Section 4.28), which is shared by both card sockets. The offsets from this base  
address run contiguously from 00h to 3Fh for socket A, and from 40h to 7Fh for socket B. Refer to Figure 5–1 for an  
ExCA I/O mapping illustration. Table 5–1 identifies each ExCA register and its respective ExCA offset.  
The TI PCI1451 also provides a memory-mapped alias of the ExCA registers by directly mapping them into PCI  
memory space. They are located through the CardBus socket/ExCA base address register (PCI register 10h, see  
Section 4.12) at memory offset 800h. Each socket has a separate base address programmable by function. Refer  
to Figure 5–2 for an ExCA memory mapping illustration. Note that memory offsets are 800h–844h for both functions  
0 and 1. This illustration also identifies the CardBus socket register mapping, which is mapped into the same 4K  
window at memory offset 0h.  
The interrupt registers, as defined by the 82365SL Specification, in the ExCA register set control such card functions  
as reset, type, interrupt routing, and interrupt enables. Special attention must be paid to the interrupt routing registers  
and the host interrupt signaling method selected for the PCI1451 to ensure that all possible PCI1451 interrupts can  
potentially be routed to the programmable interrupt controller. The ExCA registers that are critical to the interrupt  
signaling are at memory address ExCA offset 803h and 805h.  
Access to I/O mapped 16-bit PC Cards is available to the host system via two ExCA I/O windows. These are regions  
of host I/O address space into which the card I/O space is mapped. These windows are defined by start, end, and  
offset addresses programmed in the ExCA registers described in this section. I/O windows have byte granularity.  
Access to memory mapped 16-bit PC Cards is available to the host system via five ExCA memory windows. These  
are regions of host memory space into which the card memory space is mapped. These windows are defined by start,  
end, and offset addresses programmed in the ExCA registers described in this section. Memory windows have 4K  
byte granularity.  
5–1  
Offset  
00h  
Host I/O Space  
PCI1451 Configuration Registers  
PC Card A  
ExCA  
Registers  
Card Bus Socket / ExCA Base Address 10h  
Index  
Data  
3Fh  
40h  
16–bit Legacy Mode Base Address  
44h  
PC Card B  
ExCA  
Registers  
7Fh  
Note: The 16–bit legacy mode base address  
register is shared by function 0 and 1 as  
indicated by the shading.  
Offset of desired register is placed in the Index register and  
the data from that location is returned in the data register.  
Figure 5–1. ExCA Register Access Through I/O  
Host  
Host  
Memory Space  
Memory Space  
PCI1451 Configuration Registers  
Offset  
Offset  
00h  
.
.
.
CardBus  
Socket A  
Registers  
CardBus Socket/ExCA Base Address  
10h  
44h  
Offset  
00h  
20h  
.
.
CardBus  
Socket B  
Registers  
800h  
ExCA  
Registers  
Card A  
16-bit Legacy-Mode Base Address  
20h  
.
.
844h  
800h  
.
ExCA  
Registers  
Card B  
Note: The CardBus Socket/ExCA Base  
Address Mode Register is separate for  
functions 0 and 1.  
844h  
Offsets are from the CardBus socket/ExCA base  
Address register’s base address  
Figure 5–2. ExCA Register Access Through Memory  
5–2  
Table 5–1. ExCA Registers and Offsets  
PCI MEMORY  
ADDRESS OFFSET  
EXCA OFFSET EXCA OFFSET  
REGISTER NAME  
(CARD A)  
(CARD B)  
Identification and revision  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
80A  
80B  
80C  
80D  
80E  
80F  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
81A  
81B  
81C  
81D  
81E  
81F  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
82A  
00  
40  
Interface status  
01  
41  
Power control  
02  
42  
Interrupt and general control  
03  
43  
Card status change  
04  
44  
Card status change interrupt configuration  
Address window enable  
05  
45  
06  
46  
I / O window control  
07  
47  
I / O window 0 start-address low-byte  
I / O window 0 start-address high-byte  
I / O window 0 end-address low-byte  
I / O window 0 end-address high-byte  
I / O window 1 start-address low-byte  
I / O window 1 start-address high-byte  
I / O window 1 end-address low-byte  
I / O window 1 end-address high-byte  
Memory window 0 start-address low-byte  
Memory window 0 start-address high-byte  
Memory window 0 end-address low-byte  
Memory window 0 end-address high-byte  
Memory window 0 offset-address low-byte  
Memory window 0 offset-address high-byte  
Card detect and general control  
Reserved  
08  
48  
09  
49  
0A  
0B  
0C  
0D  
0E  
0F  
10  
4A  
4B  
4C  
4D  
4E  
4F  
50  
11  
51  
12  
52  
13  
53  
14  
54  
15  
55  
16  
56  
17  
57  
Memory window 1 start-address low-byte  
Memory window 1 start-address high-byte  
Memory window 1 end-address low-byte  
Memory window 1 end-address high-byte  
Memory window 1 offset-address low-byte  
Memory window 1 offset-address high-byte  
Global control  
18  
58  
19  
59  
1A  
1B  
1C  
1D  
1E  
1F  
20  
5A  
5B  
5C  
5D  
5E  
5F  
60  
Reserved  
Memory window 2 start-address low-byte  
Memory window 2 start-address high-byte  
Memory window 2 end-address low-byte  
Memory window 2 end-address high-byte  
Memory window 2 offset-address low-byte  
Memory window 2 offset-address high-byte  
Reserved  
21  
61  
22  
62  
23  
63  
24  
64  
25  
65  
26  
66  
Reserved  
27  
67  
Memory window 3 start-address low-byte  
Memory window 3 start-address high-byte  
Memory window 3 end-address low-byte  
28  
68  
29  
69  
2A  
6A  
5–3  
Table 5–1. ExCA Registers and Offsets (Continued)  
PCI MEMORY  
ADDRESS OFFSET  
EXCA OFFSET EXCA OFFSET  
REGISTER NAME  
(CARD A)  
(CARD B)  
Memory window 3 end-address high-byte  
Memory window 3 offset-address low-byte  
Memory window 3 offset-address high-byte  
Reserved  
82B  
82C  
82D  
82E  
82F  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
83A  
83B  
83C  
83D  
83E  
83F  
840  
841  
842  
843  
844  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
-
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
-
Reserved  
Memory window 4 start-address low-byte  
Memory window 4 start-address high-byte  
Memory window 4 end-address low-byte  
Memory window 4 end-address high-byte  
Memory window 4 offset-address low-byte  
Memory window 4 offset-address high-byte  
I/O window 0 offset-address low-byte  
I/O window 0 offset-address high-byte  
I/O window 1 offset-address low-byte  
I/O window 1 offset-address high-byte  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Memory window page register 0  
Memory window page register 1  
Memory window page register 2  
Memory window page register 3  
Memory window page register 4  
-
-
-
-
-
-
-
-
5–4  
5.1 ExCA Identification and Revision Register (Index 00h)  
This register provides the host software with information on 16-bit PC Card support and 82365SL-DF compatibility.  
NOTE: If bit 5 (SUBSYRW) in the system control register (see Section 4.29) is 1, then this  
register is read-only.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA identification and revision  
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
Register:  
Type:  
ExCA identification and revision  
Read/Write  
Offset:  
CardBus Socket Address + 800h:  
Card A ExCA Offset 00h  
Card B ExCA Offset 40h  
Default:  
84h  
Table 5–2. ExCA Identification and Revision Register Description  
BIT  
7–6  
5–4  
3–0  
SIGNAL  
IFTYPE  
RSVD  
FUNCTION  
TYPE  
R/W  
R/W  
R/W  
Interface type. These bits, which are hardwired as 10b, identify the 16-bit PC Card support provided by the  
PCI1451. The PCI1451 supports both I/O and memory 16-bit PC Cards.  
These bits can be used for 82365SL emulation.  
82365SL revision. This field stores the 82365SL revision supported by the PCI1451. Host software may read  
this field to determine compatibility to the 82365SL register set. This field defaults to 0100b upon reset.  
365REV  
5–5  
5.2 ExCA Interface Status Register (Index 01h)  
This register provides information on current status of the PC Card interface. An x in the default bit values indicates  
that the value of the bit after reset depends on the state of the PC Card interface.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA interface status  
R
0
R
0
R
x
R
x
R
x
R
x
R
x
R
x
Register:  
Type:  
ExCA interface status  
Read-only  
Offset:  
CardBus Socket Address + 801h:  
Card A ExCA Offset 01h  
Card B ExCA Offset 41h  
Default:  
00XX XXXXb  
Table 5–3. ExCA Interface Status Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
7
RSVD  
R
This bit returns 0 when read. A write has no effect.  
Cardpower. This bit indicates the current power status of the PC Card socket. This bit reflects how the ExCA  
power control register has been programmed (see Section 5.3). The bit is encoded as:  
6
5
CARDPWR  
READY  
R
R
0 = V  
1 = V  
and V  
and V  
to the socket is turned off (default).  
to the socket is turned on.  
CC  
CC  
PP  
PP  
This bit indicates the current status of the READY signal at the PC Card interface.  
0 = PC Card is not ready for a data transfer.  
1 = PC Card is ready for a data transfer.  
Card write protect. This bit indicates the current status of the WP signal at the PC Card interface. This signal  
reports to the PCI1451 whether or not the memory card is write protected. Further, write protection for an  
entirePCI145116-bitmemorywindowisavailablebysettingtheappropriatebitintheExCAmemorywindow  
offset-address high byte register (see Section 5.18).  
4
CARDWP  
R
0 = WP signal is 0. PC Card is R/W.  
1 = WP signal is 1. PC Card is read-only.  
Card detect 2. This bit indicates the status of the CD2 signal at the PC Card interface. Software may use  
this and CDETECT1 to determine if a PC Card is fully seated in the socket.  
3
2
CDETECT2  
CDETECT1  
R
R
0 = CD2 signal is 1. No PC Card inserted.  
1 = CD2 signal is 0. PC Card at least partially inserted.  
Card detect 1. This bit indicates the status of the CD1 signal at the PC Card interface. Software may use  
this and CDETECT2 to determine if a PC Card is fully seated in the socket.  
0 = CD1 signal is 1. No PC Card inserted.  
1 = CD1 signal is 0. PC Card at least partially inserted.  
Battery voltage detect. When a 16-bit memory card is inserted, the field indicates the status of the battery  
voltage detect signals (BVD1, BVD2) at the PC Card interface, where bit 0 reflects the BVD1 status, and  
bit 1 reflects BVD2.  
00 = Battery is dead.  
01 = Battery is dead.  
10 = Battery is low; warning.  
11 = Battery is good.  
1–0  
BVDSTAT  
R
When a 16-bit I/O card is inserted, this field indicates the status of the SPKR (bit 1) signal and the STSCHG  
(bit 0) at the PC Card interface. In this case, the two bits in this field directly reflect the current state of these  
card outputs.  
5–6  
5.3 ExCA Power Control Register (Index 02h)  
This register provides PC Card power control. Bit 7 of this register controls the 16-bit output enables on the socket  
interface, and can be used for power management in 16-bit PC Card applications.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA power control  
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA power control  
Read-only, Read/Write  
Offset:  
CardBus Socket Address + 802h:  
Card A ExCA Offset 02h  
Card B ExCA Offset 42h  
Default:  
00h  
Table 5–4. ExCA Power Control Register Description  
BIT  
7
SIGNAL  
COE  
TYPE  
R/W  
R
FUNCTION  
Card output enable. This bit controls the state of all of the 16-bit outputs on the PCI1451. This bit is encoded  
as:  
0 = 16-bit PC Card outputs are disabled (default).  
1 = 16-bit PC Card outputs are enabled.  
6–5  
RSVD  
These bits return 0s when read. Writes have no effect.  
V
CC  
. These bits are used to request changes to card V . This field is encoded as:  
CC  
00 = 0 V (default)  
01 = 0 V Reserved  
10 = 5 V  
4–3  
2
EXCAVCC  
RSVD  
R/W  
R
11 = 3 V  
This bit returns 0 when read. A write has no effect.  
V
. These bits are used to request changes to card V . The PCI1451 ignores this field unless V  
to the  
PP PP CC  
socket is enabled (i.e., 5 Vdc or 3.3 Vdc). This field is encoded as:  
00 = 0 V (default)  
1–0  
EXCAVPP  
R/W  
01 = V  
CC  
10 = 12 V  
11 = 0 V Reserved  
5–7  
5.4 ExCA Interrupt and General Control Register (Index 03h)  
This register controls interrupt routing for I/O interrupts as well as other critical 16-bit PC Card functions.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA interrupt and general control  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA interrupt and general control  
Read/Write  
Offset:  
CardBus Socket Address + 803h:  
Card A ExCA Offset 03h  
Card B ExCA Offset 43h  
Default:  
00h  
Table 5–5. ExCA Interrupt and General Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Card ring indicate enable. Enables the ring indicate function of the BVD1/RI pins. This bit is encoded as:  
7
RINGEN  
R/W  
0 = Ring indicate disabled (default)  
1 = Ring indicate enabled  
Cardreset. Thisbitcontrolsthe16-bitPCCardRESETsignal, andallowshostsoftwaretoforceacardreset.  
This bit affects 16-bit cards only. This bit is encoded as:  
6
5
RESET  
R/W  
R/W  
0 = RESET signal asserted (default)  
1 = RESET signal deasserted.  
Card type. This bit indicates the PC Card type. This bit is encoded as:  
CARDTYPE  
0 = Memory PC Card is installed (default)  
1 = I/O PC Card is installed  
PCI interrupt – CSC routing enable bit. This bit has meaning only if the CSC interrupt routing control bit (PCI  
offset 93h, bit 5) is 0b. In this case, when this bit is set (high), the card status–change interrupts are routed  
to PCI interrupts. When low, the card status–change interrupts are routed, using bits 7–4 in the ExCA card  
status change interrupt configuration register (see Section 5.6). This bit is encoded as:  
4
CSCROUTE  
R/W  
0 = CSC interrupts routed by ExCA registers (default)  
1 = CSC interrupts routed to PCI interrupts  
If the CSC interrupt routing control bit (PCI offset 93h, bit 5) is set to 1b, this bit has no meaning which is  
the default case.  
Card interrupt select for I/O PC Card functional interrupts. These bits select the interrupt routing for I/O PC  
Card functional interrupts. This field is encoded as:  
0000 = No ISA interrupt routing (default). CSC interrupts routed to PCI Interrupts.  
0001 = IRQ1 enabled  
0010 = SMI enabled  
0011 = IRQ3 enabled  
0100 = IRQ4 enabled  
0101 = IRQ5 enabled  
0110 = IRQ6 enabled  
0111 = IRQ7 enabled  
3–0  
INTSELECT  
R/W  
1000 = IRQ8 enabled  
1001 = IRQ9 enabled  
1010 = IRQ10 enabled  
1011 = IRQ11 enabled  
1100 = IRQ12 enabled  
1101 = IRQ13 enabled  
1110 = IRQ14 enabled  
1111 = IRQ15 enabled  
5–8  
5.5 ExCA Card Status-Change Register (Index 04h)  
This register reflects the status of PC Card CSC interrupt sources. The ExCA card status change interrupt  
configuration register (see Section 5.6) enables these interrupt sources to generate an interrupt to the host. When  
the interrupt source is disabled, the corresponding bit in this register always reads as 0. When an interrupt source  
is enabled and that particular event occurs, the corresponding bit in this register is set to indicate the interrupt source.  
After generating the interrupt to the host, the interrupt service routine must read this register to determine the source  
of the interrupt. The interrupt service routine is responsible for resetting the bits in this register, as well. Resetting a  
bit is accomplished by one of two methods: a read of this register, or an explicit write back of 1 to the status bit. The  
choice of these two methods is based on the interrupt flag clear mode select, bit 2, in the ExCA global control register  
(see Section 5.22).  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA card status-change  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
ExCA card status-change  
Read-only  
Offset:  
CardBus Socket Address + 804h:  
Card A ExCA Offset 04h  
Card B ExCA Offset 44h  
Default:  
00h  
Table 5–6. ExCA Card Status-Change Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7–4  
RSVD  
R
These bits return 0s when read. Writes have no effect.  
Card detect change. This bit indicates whether a change on the CD1 or CD2 signals occurred at the  
PC Card interface. A read of this bit or writing a 1 to this bit clears it. This bit is encoded as:  
3
2
CDCHANGE  
R
R
0 = No change detected on either CD1 or CD2  
1 = A change was detected on either CD1 or CD2  
Ready change. When a 16-bit memory is installed in the socket, this bit includes whether the source  
of a PCI1451 interrupt was due to a change on the READY signal at the PC Card interface indicating  
that PC Card is now ready to accept new data. A read of this bit or writing a 1 to this bit clears it. This  
bit is encoded as:  
READYCHANGE  
0 = No low-to-high transition detected on READY (default)  
1 = Detected a low-to-high transition on READY  
When a 16-bit I/O card is installed, this bit is always 0.  
Batterywarningchange. Whena16-bitmemorycardisinstalledinthesocket, thisbitindicateswhether  
thesource of a PCI1451 interrupt was due to a battery low warning condition. A read of this bit or writing  
a 1 to this bit clears it. This bit is encoded as:  
1
0
BATWARN  
BATDEAD  
R
R
0 = No battery warning condition (default)  
1 = Detected a battery warning condition  
When a 16-bit I/O card is installed, this bit is always 0.  
Battery dead or status change. When a 16-bit memory card is installed in the socket, this bit indicates  
whether the source of a PCI1451 interrupt was due to a battery dead condition. A read of this bit or  
writing a 1 to this bit clears it. This bit is encoded as:  
0 = STSCHG deasserted (default)  
1 = STSCHG asserted  
Ring indicate. When the PCI1451 is configured for ring indicate operation this bit indicates the status  
of the RI pin.  
5–9  
5.6 ExCA Card Status-Change Interrupt Configuration Register (Index 05h)  
This register controls interrupt routing for CSC interrupts, as well as masks/unmasks CSC interrupt sources.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA card status-change interrupt configuration  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA card status-change interrupt configuration  
Read/Write  
Offset:  
CardBus Socket Address + 805h:  
Card A ExCA Offset 05h  
Card B ExCA Offset 45h  
Default:  
00h  
Table 5–7. ExCA Card Status-Change Interrupt Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Interrupt select for card status change. These bits select the interrupt routing for card status change  
interrupts. This field is encoded as:  
0000 = CSC interrupts routed to PCI interrupts if bit 5 of the diagnostic register (PCI offset 93h) (see  
Section 4.40) is set to 1b. In this case bit 4 of ExCA 803 is a don’t care. This is the default  
setting.  
0000 = No ISA interrupt routing if bit 5 of the diagnostic register (PCI offset 93h) (see Section 4.40) is  
set to 0b. In this case, CSC interrupts are routed to PCI interrupts by setting bit 4 of ExCA 803h  
to 1b.  
0001 = IRQ1 enabled  
0010 = SMI enabled  
0011 = IRQ3 enabled  
0100 = IRQ4 enabled  
0101 = IRQ5 enabled  
0110 = IRQ6 enabled  
0111 = IRQ7 enabled  
1000 = IRQ8 enabled  
1001 = IRQ9 enabled  
1010 = IRQ10 enabled  
1011 = IRQ11 enabled  
1100 = IRQ12 enabled  
1101 = IRQ13 enabled  
1110 = IRQ14 enabled  
1111 = IRQ15 enabled  
7–4  
CSCSELECT  
R/W  
Card detect enable. Enables interrupts on CD1 or CD2 changes. This bit is encoded as:  
3
2
CDEN  
R/W  
R/W  
0 = Disables interrupts on CD1 or CD2 line changes (default)  
1 = Enables interrupts on CD1 or CD2 line changes  
Readyenable. Thisbitenables/disablesalow-to-hightransitiononthePCCardREADYsignaltogenerate  
a host interrupt. This interrupt source is considered a card status change. This bit is encoded as:  
READYEN  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
Battery warning enable. This bit enables/disables a battery warning condition to generate a CSC interrupt.  
This bit is encoded as:  
1
0
BATWARNEN  
BATDEADEN  
R/W  
R/W  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
Batterydead enable. This bit enables/disables a battery dead condition on a memory PC Card or assertion  
of the STSCHG I/O PC Card signal to generate a CSC interrupt.  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
5–10  
5.7 ExCA Address Window Enable Register (Index 06h)  
This register enables/disables the memory and I/O windows to the 16-bit PC Card. By default, all windows to the card  
are disabled. The PCI1451 will not acknowledge PCI memory or I/O cycles to the card if the corresponding enable  
bit in this register is 0, regardless of the programming of the ExCA memory and I/O window start/end/offset address  
registers (see Sections 5.9 through 5.20).  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA address window enable  
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA address window enable  
Read-only, Read/Write  
Offset:  
CardBus Socket Address + 806h:  
Card A ExCA Offset 06h  
Card B ExCA Offset 46h  
Default:  
00h  
Table 5–8. ExCA Address Window Enable Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
I/O window 1 enable. This bit enables/disables I/O window 1 for the card. This bit is encoded as:  
7
IOWIN1EN  
R/W  
0 = I/O window 1 disabled (default)  
1 = I/O window 1 enabled  
I/O window 0 enable. This bit enables/disables I/O window 0 for the card. This bit is encoded as:  
6
5
IOWIN0EN  
RSVD  
R/W  
R
0 = I/O window 0 disabled (default)  
1 = I/O window 0 enabled  
This bit returns 0 when read. A write has no effect.  
Memory window 4 enable. This bit enables/disables memory window 4 for the card. This bit is encoded  
as:  
4
3
2
1
0
MEMWIN4EN  
MEMWIN3EN  
MEMWIN2EN  
MEMWIN1EN  
MEMWIN0EN  
R/W  
R/W  
R/W  
R/W  
R/W  
0 = memory window 4 disabled (default)  
1 = memory window 4 enabled  
Memory window 3 enable. This bit enables/disables memory window 3 for the card. This bit is encoded  
as:  
0 = memory window 3 disabled (default)  
1 = memory window 3 enabled  
Memory window 2 enable. This bit enables/disables memory window 2 for the card. This bit is encoded  
as:  
0 = memory window 2 disabled (default)  
1 = memory window 2 enabled  
Memorywindow1enable. Thisbitenables/disablesmemorywindow1forthePCCard. Thisbitisencoded  
as:  
0 = memory window 1 disabled (default)  
1 = memory window 1 enabled  
Memorywindow0enable. Thisbitenables/disablesmemorywindow0forthePCCard. Thisbitisencoded  
as:  
0 = memory window 0 disabled (default)  
1 = memory window 0 enabled  
5–11  
5.8 ExCA I/O Window Control Register (Index 07h)  
This register contains parameters related to I/O window sizing and cycle timing.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O window control  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA I/O window control  
Read/Write  
Offset:  
CardBus Socket Address + 807h:  
00h  
Card A ExCA Offset 07h  
Card B ExCA Offset 47h  
Default:  
Table 5–9. ExCA I/O Window Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
I/O window 1 wait-state. This bit controls the I/O window 1 wait-state for 16-bit I/O accesses. This bit has  
no effect on 8-bit accesses. This wait-state timing emulates the ISA wait-state used by the 82365SL-DF.  
This bit is encoded as:  
7
WAITSTATE1  
R/W  
R/W  
0 = 16-bit cycles have standard length (default)  
1 = 16-bit cycles extended by one equivalent ISA wait state  
I/O window 1 zero wait-state. This bit controls the I/O window 1 wait-state for 8-bit I/O accesses.  
NOTE: This bit has no effect on 16-bit accesses. This wait-state timing emulates the ISA wait-state used  
by the 82365SL-DF.  
6
ZEROWS1  
0 = 8-bit cycles have standard length (default)  
1 = 8-bit cycles reduced to equivalent of three ISA cycles  
I/O window 1 IOIS16 source. This bit controls the I/O window automatic data sizing feature which used  
the IOIS16 signal from the PC Card to determine the data width of the I/O data transfer.  
5
4
IOSIS16W1  
DATASIZE1  
R/W  
R/W  
0 = Window data width determined by DATASIZE1, bit 4 (default)  
1 = Window data width determined by IOIS16  
I/O window 1 data size. This bit controls the I/O window 1 data size. This bit is ignored if the I/O window  
1 IOIS16 source bit (bit 5) is set. This bit is encoded as:  
0 = Window data width is 8 bits (default)  
1 = Window data width is 16 bits  
I/O window 0 wait-state. This bit controls the I/O window 0 wait-state for 16-bit I/O accesses. This bit has  
no effect on 8-bit accesses. This wait-state timing emulates the ISA wait-state used by the 82365SL-DF.  
This bit is encoded as:  
3
2
WAITSTATE0  
ZEROWS0  
R/W  
R/W  
0 = 16-bit cycles have standard length (default)  
1 = 16-bit cycles extended by one equivalent ISA wait state  
I/O window 0 zero wait-state. This bit controls the I/O window 0 wait-state for 8-bit I/O accesses.  
NOTE: This bit has no effect on 16-bit accesses. This wait-state timing emulates the ISA wait-state used  
by the 82365SL-DF.  
0 = 8-bit cycles have standard length (default)  
1 = 8-bit cycles reduced to equivalent of three ISA cycles  
I/O window 0 IOIS16 source. This bit controls the I/O window automatic data sizing feature which used  
the IOIS16 signal from the PC Card to determine the data width of the I/O data transfer.  
1
0
IOIS16W0  
R/W  
R/W  
0 = Window data width determined by DATASIZE0, bit 0 (default)  
1 = Window data width determined by IOIS16  
I/O window 0 data size. This bit controls the I/O window 0 data size. This bit is ignored if the I/O window  
0 IOIS16 Source bit (bit 1) is set. This bit is encoded as:  
DATASIZE0  
0 = Window data width is 8 bits (default)  
1 = Window data width is 16 bits  
5–12  
5.9 ExCA I/O Windows 0 and 1 Start-Address Low-Byte Registers (Index 08h, 0Ch)  
These registers contain the low byte of the 16-bit I/O window start address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the lower 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 start-address low-byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
ExCA I/O window 0 start-address low-byte  
CardBus Socket Address + 808h:  
Card A ExCA Offset 08h  
Card B ExCA Offset 48h  
Register:  
Offset:  
ExCA I/O window 1 start-address low-byte  
CardBus Socket Address + 80Ch:  
Card A ExCA Offset 0Ch  
Card B ExCA Offset 4Ch  
Type:  
Read/Write  
00h  
Default:  
Size:  
One byte  
5.10 ExCA I/O Windows 0 and 1 Start-Address High-Byte Registers (Index 09h, ODh)  
These registers contain the high byte of the 16-bit I/O window start address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the upper 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 start-address high-byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
ExCA I/O window 0 start-address high-byte  
CardBus Socket Address + 809h:  
Card A ExCA Offset 09h  
Card B ExCA Offset 49h  
Register:  
Offset:  
ExCA I/O window 1 start-address high-byte  
CardBus Socket Address + 80Dh:  
Card A ExCA Offset 0Dh  
Card B ExCA Offset 4Dh  
Type:  
Read/Write  
00h  
Default:  
Size:  
One byte  
5–13  
5.11 ExCA I/O Windows 0 and 1 End-Address Low-Byte Registers (Index 0Ah, 0Eh)  
These registers contain the low byte of the 16-bit I/O window end address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the lower 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 end-address low-byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
ExCA I/O window 0 end-address low-byte  
CardBus Socket Address + 80Ah:  
Card A ExCA Offset 0Ah  
Card B ExCA Offset 4Ah  
Register:  
Offset:  
ExCA I/O window 1 end-address low-byte  
CardBus Socket Address + 80Eh:  
Card A ExCA Offset 0Eh  
Card B ExCA Offset 4Eh  
Type:  
Read/Write  
00h  
Default:  
Size:  
One byte  
5.12 ExCA I/O Windows 0 and 1 End-Address High-Byte Registers (Index 0Bh, 0Fh)  
These registers contain the high byte of the 16-bit I/O window end address for I/O windows 0 and 1. The eight bits  
of these registers correspond to the upper eight bits of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 end-address high-byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
ExCA I/O window 0 end-address high-byte  
CardBus Socket Address + 80Bh:  
Card A ExCA Offset 0Bh  
Card B ExCA Offset 4Bh  
Register:  
Offset:  
ExCA I/O window 1 end-address high-byte  
CardBus Socket Address + 80Fh:  
Card A ExCA Offset 0Fh  
Card B ExCA Offset 4Fh  
Type:  
Read/Write  
00h  
Default:  
Size:  
One byte  
5–14  
5.13 ExCA Memory Windows 0–4 Start-Address Low-Byte Registers (Index  
10h/18h/20h/28h/30h)  
These registers contain the low byte of the 16-bit memory window start address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19–A12 of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 start-address low-byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
ExCA memory window 0 start-address low-byte  
CardBus Socket Address + 810h:  
Card A ExCA Offset 10h  
Card B ExCA Offset 50h  
Register:  
Offset:  
ExCA memory window 1 start-address low-byte  
CardBus Socket Address + 818h: Card A ExCA Offset 18h  
Card B ExCA Offset 58h  
ExCA memory window 2 start-address low-byte  
CardBus Socket Address + 820h: Card A ExCA Offset 20h  
Card B ExCA Offset 60h  
ExCA memory window 3 start-address low-byte  
CardBus Socket Address + 828h: Card A ExCA Offset 28h  
Card B ExCA Offset 68h  
ExCA memory window 4 start-address low-byte  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
CardBus Socket Address + 830h:  
Card A ExCA Offset 30h  
Card B ExCA Offset 70h  
Type:  
Read/Write  
00h  
Default:  
Size:  
One byte  
5–15  
5.14 ExCA Memory Windows 0–4 Start-Address High-Byte Registers (Index  
11h/19h/21h/29h/31h)  
These registers contain the high nibble of the 16-bit memory window start address for memory windows 0, 1, 2, 3,  
and 4. The lower 4 bits of these registers correspond to bits A23–A20 of the start address. In addition, the memory  
window data width and wait states are set in this register.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 start-address high-byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
ExCA memory window 0 start-address high-byte  
CardBus Socket Address + 811h:  
Card A ExCA Offset 11h  
Card B ExCA Offset 51h  
Register:  
Offset:  
ExCA memory window 1 start-address high-byte  
CardBus Socket Address + 819h: Card A ExCA Offset 19h  
Card B ExCA Offset 59h  
ExCA memory window 2 start-address high-byte  
CardBus Socket Address + 821h: Card A ExCA Offset 21h  
Card B ExCA Offset 61h  
ExCA memory window 3 start-address high-byte  
CardBus Socket Address + 829h: Card A ExCA Offset 29h  
Card B ExCA Offset 69h  
ExCA memory window 4 start-address high-byte  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
CardBus Socket Address + 831h:  
Card A ExCA Offset 31h  
Card B ExCA Offset 71h  
Type:  
Read/Write  
00h  
Default:  
Size:  
One byte  
Table 5–10. ExCA Memory Windows 0–4 Start-Address High-Byte Registers Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
This bit controls the memory window data width. This bit is encoded as:  
7
DATASIZE  
R/W  
0 = Window data width is 8 bits (default)  
1 = Window data width is 16 bits  
Zero wait-state. This bit controls the memory window wait state for 8- and 16-bit accesses. This wait state  
timing emulates the ISA wait-state used by the 82365SL-DF. This bit is encoded as:  
6
ZEROWAIT  
R/W  
0 = 8- and 16-bit cycles have standard length (default)  
1 = 8-bit cycles reduced to equivalent of three ISA cycles  
16-bit cycles reduce to the equivalent of two ISA cycles.  
5–4  
3–0  
SCRATCH  
STAHN  
R/W  
R/W  
Scratch pad bits. These bits have no effect on memory window operation.  
Startaddresshigh-nibble. ThesebitsrepresenttheupperaddressbitsA23–A20ofthememorywindowstart  
address.  
5–16  
5.15 ExCA Memory Windows 0–4 End-Address Low-Byte Registers (Index  
12h/1Ah/22h/2Ah/32h)  
These registers contain the low byte of the 16-bit memory window end address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19–A12 of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 end-address low-byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
ExCA memory window 0 end-address low-byte  
CardBus Socket Address + 812h:  
Card A ExCA Offset 12h  
Card B ExCA Offset 52h  
Register:  
Offset:  
ExCA memory window 1 end-address low-byte  
CardBus Socket Address + 81Ah: Card A ExCA Offset 1Ah  
Card B ExCA Offset 5Ah  
ExCA memory window 2 end-address low-byte  
CardBus Socket Address + 822h: Card A ExCA Offset 22h  
Card B ExCA Offset 62h  
ExCA memory window 3 end-address low-byte  
CardBus Socket Address + 82Ah: Card A ExCA Offset 2Ah  
Card B ExCA Offset 6Ah  
ExCA memory window 4 end-address low-byte  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
CardBus Socket Address + 832h:  
Card A ExCA Offset 32h  
Card B ExCA Offset 72h  
Type:  
Read/Write  
00h  
Default:  
Size:  
One byte  
5–17  
5.16 ExCA Memory Windows 0–4 End-Address High-Byte Registers (Index  
13h/1Bh/23h/2Bh/33h)  
These registers contain the high nibble of the 16-bit memory window end address for memory windows 0, 1, 2, 3,  
and 4. The lower 4 bits of these registers correspond to bits A23–A20 of the end address. In addition, the memory  
window wait states are set in this register.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 end-address high-byte  
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
ExCA memory window 0 end-address high-byte  
CardBus Socket Address + 813h:  
Card A ExCA Offset 13h  
Card B ExCA Offset 53h  
Register:  
Offset:  
ExCA memory window 1 end-address high-byte  
CardBus Socket Address + 81Bh: Card A ExCA Offset 1Bh  
Card B ExCA Offset 5Bh  
ExCA memory window 2 end-address high-byte  
CardBus Socket Address + 823h: Card A ExCA Offset 23h  
Card B ExCA Offset 63h  
ExCA memory window 3 end-address high-byte  
CardBus Socket Address + 82Bh: Card A ExCA Offset 2Bh  
Card B ExCA Offset 6Bh  
ExCA Memory window 4 end-address high-byte  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
CardBus Socket Address + 833h:  
Card A ExCA Offset 33h  
Card B ExCA Offset 73h  
Type:  
Read/Write, Read-only  
Default:  
Size:  
00h  
One byte  
Table 5–11. ExCA Memory Windows 0–4 End-Address High-Byte Registers Description  
BIT  
7–6  
5–4  
3–0  
SIGNAL  
MEMWS  
RSVD  
TYPE  
R/W  
R
FUNCTION  
Wait state. These bits specify the number of equivalent ISA wait states to be added to 16-bit memory  
accesses. The number of wait states added is equal to the binary value of these two bits.  
These bits return 0s when read. Writes have no effect.  
End address high-nibble. These bits represent the upper address bits A23–A20 of the memory window end  
address.  
ENDHN  
R/W  
5–18  
5.17 ExCA Memory Windows 0–4 Offset-Address Low-Byte Registers (Index  
14h/1Ch/24h/2Ch/34h)  
These registers contain the low-byte of the 16-bit memory window offset address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19–A12 of the offset address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 offset-address low-byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
ExCA memory window 0 offset-address low-byte  
CardBus Socket Address + 814h:  
Card A ExCA Offset 14h  
Card B ExCA Offset 54h  
Register:  
Offset:  
ExCA memory window 1 offset-address low-byte  
CardBus Socket Address + 81Ch: Card A ExCA Offset 1Ch  
Card B ExCA Offset 5Ch  
ExCA memory window 2 offset-address low-byte  
CardBus Socket Address + 824h: Card A ExCA Offset 24h  
Card B ExCA Offset 64h  
ExCA memory window 3 offset-address low-byte  
CardBus Socket Address + 82Ch: Card A ExCA Offset 2Ch  
Card B ExCA Offset 6Ch  
ExCA memory window 4 offset-address low-byte  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
CardBus Socket Address + 834h:  
Card A ExCA Offset 34h  
Card B ExCA Offset 74h  
Type:  
Read/Write  
00h  
Default:  
Size:  
One byte  
5–19  
5.18 ExCA Memory Windows 0–4 Offset-Address High-Byte Registers (Index  
15h/1Dh/25h/2Dh/35h)  
These registers contain the high 6 bits of the 16-bit memory window offset address for memory windows 0, 1, 2, 3,  
and 4. The lower 6 bits of these registers correspond to bits A25–A20 of the offset address. In addition, the write  
protection and common/attribute memory configurations are set in this register.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 offset-address high-byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
ExCA memory window 0 offset-address high-byte  
CardBus Socket Address + 815h:  
Card A ExCA Offset 15h  
Card B ExCA Offset 55h  
Register:  
Offset:  
ExCA memory window 1 offset-address high-byte  
CardBus Socket Address + 81Dh: Card A ExCA Offset 1Dh  
Card B ExCA Offset 5Dh  
ExCA memory window 2 offset-address high-byte  
CardBus Socket Address + 825h: Card A ExCA Offset 25h  
Card B ExCA Offset 65h  
ExCA memory window 3 offset-address high-byte  
CardBus Socket Address + 82Dh: Card A ExCA Offset 2Dh  
Card B ExCA Offset 6Dh  
ExCA memory window 4 offset-address high-byte  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
CardBus Socket Address + 835h:  
Card A ExCA Offset 35h  
Card B ExCA Offset 75h  
Type:  
Read/Write  
00h  
Default:  
Size:  
One byte  
Table 5–12. ExCA Memory Windows 0–4 Offset-Address High-Byte Registers Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Write protect. This bit specifies whether write operations to this memory window are enabled.  
This bit is encoded as:  
7
WINWP  
R/W  
0 = Write operations are allowed (default)  
1 = Write operations are not allowed  
This bit specifies whether this memory window is mapped to card attribute or common memory.  
This bit is encoded as:  
6
REG  
R/W  
R/W  
0 = Memory window is mapped to common memory (default)  
1 = Memory window is mapped to attribute memory  
Offset-address high byte. These bits represent the upper address bits A25–A20 of the memory-window offset  
address.  
5–0  
OFFHB  
5–20  
5.19 ExCA I/O Windows 0 and 1 Offset-Address Low-Byte Registers (Index 36h, 38h)  
These registers contain the low byte of the 16-bit I/O window offset address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the lower 8 bits of the offset address, and bit 0 is always 0.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 offset-address low-byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
Register:  
Offset:  
ExCA I/O window 0 offset-address low-byte  
CardBus Socket Address + 836h:  
Card A ExCA Offset 36h  
Card B ExCA Offset 76h  
Register:  
Offset:  
ExCA I/O window 1 offset-address low-byte  
CardBus Socket Address + 838h:  
Card A ExCA Offset 38h  
Card B ExCA Offset 78h  
Type:  
Read/Write  
00h  
Default:  
Size:  
One byte  
5.20 ExCA I/O Windows 0 and 1 Offset-Address High-Byte Registers (Index 37h, 39h)  
These registers contain the high byte of the 16-bit I/O window offset address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the upper 8 bits of the offset address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 offset-address high-byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
ExCA I/O window 0 offset-address high-byte  
CardBus Socket Address + 837h:  
Card A ExCA Offset 37h  
Card B ExCA Offset 77h  
Register:  
Offset:  
ExCA I/O window 1 offset-address high-byte  
CardBus Socket Address + 839h:  
Card A ExCA Offset 39h  
Card B ExCA Offset 79h  
Type:  
Read/Write  
00h  
Default:  
Size:  
One byte  
5–21  
5.21 ExCA Card Detect and General Control Register (Index 16h)  
This register controls how the ExCA registers for the socket respond to card removal. It also reports the status of the  
VS1 and VS2 signals at the PC Card interface. Table 5–13 describes each bit in the ExCA card detect and general  
control register.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA card detect and general control  
R
X
R
X
W
0
R/W  
0
R
0
R
0
R/W  
0
R
0
Register:  
Type:  
ExCA card detect and general control  
Read-only, Write-only, Read/Write  
CardBus Socket Address + 816h:  
Offset:  
Card A ExCA Offset 16h  
Card B ExCA Offset 56h  
Default:  
XX00 0000b  
Table 5–13. ExCA Card Detect and General Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
VS2. This bit reports the current state of the VS2 signal at the PC Card interface, and, therefore, does not  
have a default value.  
7
VS2STAT  
R
0 = VS2 is low  
1 = VS2 is high  
VS1. This bit reports the current state of the VS1 signal at the PC Card interface, and, therefore, does not  
have a default value.  
6
5
VS1STAT  
SWCSC  
R
0 = VS1 is low  
1 = VS1 is high  
Software card detect interrupt. If the card detect enable bit in the ExCA card status-change interrupt  
configuration register (see Section 5.6) is set, then writing a 1 to this bit causes a card detect card status  
change interrupt for the associated card socket.  
W
If the card detect enable bit is cleared to 0 in the ExCA card status-change interrupt configuration register  
(seeSection5.6), thenwritinga1tothesoftwarecarddetectinterruptbithasnoeffect.Thisbitiswrite-only.  
A read operation of this bit always returns 0.  
Card detect resume enable. If this bit is set to 1 and once a card detect change has been detected on the  
CD1 and CD2 inputs, then the RI_OUT output will go from high to low. The RI_OUT remains low until the  
card status change bit in the ExCA card status change register (see Section 5.5) is cleared. If this bit is  
a 0, then the card detect resume functionality is disabled.  
4
CDRESUME  
R/W  
0 = Card detect resume disabled (default)  
1 = Card detect resume enabled  
3–2  
1
RSVD  
REGCONFIG  
RSVD  
R
R/W  
R
These bits return 0s when read. Writes have no effect.  
Register configuration upon card removal. This bit controls how the ExCA registers for the socket react  
to a card removal event. This bit is encoded as:  
0 = No change to ExCA registers upon card removal (default)  
1 = Reset ExCA registers upon card removal  
0
This bit returns 0 when read. A write has no effect.  
5–22  
5.22 ExCA Global Control Register (Index 1Eh)  
This register controls both PC Card sockets, and is not duplicated for each socket. The host interrupt mode bits in  
this register are retained for 82365SL compatibility.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA global control  
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA global control  
Read-only, Read/Write  
Offset:  
CardBus Socket Address + 81Eh:  
Card A ExCA Offset 1Eh  
Card B ExCA Offset 5Eh  
Default:  
00h  
Table 5–14. ExCA Global Control Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
7–5  
RSVD  
R
These bits return 0s when read. Writes have no effect.  
Level/edge interrupt mode select – card B. This bit selects the signaling mode for the PCI1451 host interrupt  
for Card B interrupts. This bit is encoded as:  
4
3
2
1
INTMODEB  
INTMODEA  
IFCMODE  
CSCMODE  
R/W  
R/W  
R/W  
R/W  
0 = Host interrupt is edge mode (default)  
1 = Host interrupt is level mode  
Level/edge interrupt mode select – card A. This bit selects the signaling mode for the PCI1451 host interrupt  
for card A interrupts. This bit is encoded as:  
0 = Host interrupt is edge mode (default)  
1 = Host interrupt is level mode  
Interrupt flag clear mode select. This bit selects the interrupt flag clear mechanism for the flags in the ExCA  
card status change register (see Section 5.5). This bit is encoded as:  
0 = Interrupt flags cleared by read of CSC register (default)  
1 = Interrupt flags cleared by explicit write back of 1  
Card status change level/edge mode select. This bit selects the signaling mode for the PCI1451 host  
interrupt for card status changes. This bit is encoded as:  
0 = Host interrupt is edge mode (default)  
1 = Host interrupt is level mode  
PWRDWN mode select. When the bit is set to 1, the PCI1451 is in power-down mode. In power-down mode  
the PCI1451 card outputs are placed in a high-impedance state until an active cycle is executed on the card  
interface. Following an active cycle the outputs are again placed in a high-impedance state. The PCI1451  
still receives DMA requests, functional interrupts and/or card status change interrupts; however, an actual  
card access is required to wake up the interface. This bit is encoded as:  
0
PWRDWN  
R/W  
0 = Power-down mode disabled (default)  
1 = Power-down mode enabled  
5–23  
5.23 ExCA Memory Windows 0–4 Page Registers (Index 40h, 41h, 42h, 43h, 44h)  
The upper 8 bits of a 4-byte PCI memory address are compared to the contents of this register when decoding  
addresses for 16-bit memory windows. Each window has its own page register, all of which default to 00h. By  
programming this register to a nonzero value, host software may locate 16-bit memory windows in any one of 256  
16M-byte regions in the 4-Gigabyte PCI address space. These registers are only accessible when the ExCA registers  
are memory-mapped, that is, these registers may not be accessed using the index/data I/O scheme.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0–4 page  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA memory windows 0–4 page  
Read/Write  
Offset:  
Default:  
CardBus Socket Address + 840h, 841h, 842h, 843h, 844h  
00h  
5–24  
6 CardBus Socket Registers (Functions 0 and 1)  
The PCMCIA CardBus Specification requires a CardBus socket controller to provide five 32-bit registers which report  
and control the socket-specific functions. The PCI1451 provides the CardBus socket/ExCA base address register  
(PCI offset 10h) to locate these CardBus socket registers in PCI memory address space. Each socket has a separate  
base address register for accessing the CardBus socket registers, see Figure 6–1 below. Table 6–1 illustrates the  
location of the socket registers in relation to the CardBus socket/ExCA base address.  
Table 6–1. CardBus Socket Registers  
REGISTER NAME  
Socket event  
OFFSET  
00h  
Socket mask  
04h  
Socket present state  
Socket force event  
Socket control  
08h  
0Ch  
10h  
Reserved  
14h  
Reserved  
18h  
Reserved  
1Ch  
20h  
Socket power management  
Host  
Host  
Memory Space  
Memory Space  
PCI1451 Configuration Registers  
Offset  
00h  
.
.
CardBus  
Socket A  
Registers  
.
CardBus Socket/ExCA Base Address  
10h  
44h  
Offset  
00h  
20h  
.
.
CardBus  
Socket B  
Registers  
800h  
ExCA  
Registers  
Card A  
16-bit Legacy-Mode Base Address  
20h  
.
.
844h  
800h  
.
ExCA  
Registers  
Card B  
Note: The CardBus Socket/ExCA Base  
Address Mode Register is separate for  
functions 0 and 1.  
844h  
Figure 6–1. Accessing CardBus Socket Registers Through PCI Memory  
6–1  
6.1 Socket Event Register  
This register indicates a change in socket status has occurred. These bits do not indicate what the change is, only  
that one has occurred. Software must read the socket present state register (see Section 6.3) for current status. Each  
bit in this register can be cleared by writing a 1 to that bit. The bits in this register can be set to a 1 by software through  
writing a 1 to the corresponding bit in the socket force event register (see Section 6.4). All bits in this register are  
cleared by PCI reset. They may be immediately set again, if, when coming out of PC Card reset, the bridge finds the  
status unchanged (i.e., CSTSCHG reasserted or card detect is still true). Software needs to clear this register before  
enabling interrupts. If it is not cleared and interrupts are enabled, then an interrupt is generated based on any bit set  
and not masked.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/WC R/WC R/WC R/WC  
0
0
0
0
Register:  
Type:  
Socket event  
Read-only, Read/Write to Clear  
CardBus Socket Address + 00h  
0000 0000h  
Offset:  
Default:  
Table 6–2. Socket Event Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31–4  
RSVD  
R
These bits return 0s when read.  
Power cycle. This bit is set when the PCI1451 detects that the PWRCYCLE bit in the socket present state  
register (see Section 6.3) has changed. This bit is cleared by writing a 1.  
3
2
1
PWREVENT  
CD2EVENT  
CD1EVENT  
R/WC  
R/WC  
R/WC  
CCD2. This bit is set when the PCI1451 detects that the CDETECT2 field in the socket present state  
register (see Section 6.3) has changed. This bit is cleared by writing a 1.  
CCD1. This bit is set when the PCI1451 detects that the CDETECT1 field in the socket present state  
register (see Section 6.3) has changed. This bit is cleared by writing a 1.  
This bit is set when the CARDSTS field in the socket present state register (see Section 6.3) has changed  
R/WC state. For CardBus cards, this bit is set on the rising edge of the CSTSCHG signal. For 16-bit PC Cards,  
this bit is set on both transitions of the CSTSCHG signal. This bit is reset by writing a 1.  
CSTSEVENT.  
CSTSCHG  
0
6–2  
6.2 Socket Mask Register  
This register allows software to control the CardBus card events which generate a status change interrupt. Table 6–3  
below describes each bit in this register. The state of these mask bits does not prevent the corresponding bits from  
reacting in the socket event register (see Section 6.1).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Socket mask  
Read-only, Read/Write  
Offset:  
Default:  
CardBus Socket Address + 04h  
0000 0000h  
Table 6–3. Socket Mask Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31–4  
RSVD  
R
These bits return 0s when read.  
Power cycle. This bit masks the PWRCYCLE bit in the socket present state register (see Section 6.3) from  
causing a status change interrupt.  
3
2–1  
0
PWRMASK  
CDMASK  
R/W  
R/W  
R/W  
0 = PWRCYCLE event will not cause a CSC interrupt (default)  
1 = PWRCYCLE event will cause a CSC interrupt  
Carddetect mask. These bits mask the CDETECT1 and CDETECT2 bits in the socket present state register  
(see Section 6.3) from causing a CSC interrupt.  
00 = Insertion/removal will not cause CSC interrupt (default)  
01 = Reserved (undefined)  
10 = Reserved (undefined)  
11 = Insertion/removal will cause CSC interrupt  
CSTSCHG mask. This bit masks the CARDSTS field in the socket present state register (see Section 6.3)  
from causing a CSC interrupt.  
CSTSMASK  
0 = CARDSTS event will not cause CSC interrupt (default)  
1 = CARDSTS event will cause CSC interrupt  
6–3  
6.3 Socket Present State Register  
This register reports information about the socket interface. Writes to the socket force event register (see Section 6.4)  
are reflected here as well as general socket interface status. Information about PC Card V  
support and card type  
CC  
is only updated at each insertion. Also note that the PCI1451 uses the CCD1 and CCD2 signals during card  
identification, and changes on these signals during this operation are not reflected in this register.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket present state  
R
0
R
0
R
1
R
1
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket present state  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
X
R
0
R
0
R
0
R
X
R
X
R
X
Register:  
Type:  
Socket present state  
Read-only  
Offset:  
Default:  
CardBus Socket Address + 08h  
3000 00XXh  
Table 6–4. Socket Present State Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
YV socket. This bit indicates whether or not the socket can supply V  
does not support Y.YV V ; therefore, this bit is hardwired to 0.  
CC  
= Y.YV to PC Cards. The PCI1451  
= X.XV to PC Cards. The PCI1451  
CC  
31  
YVSOCKET  
R
XV socket. This bit indicates whether or not the socket can supply V  
does not support X.XV V ; therefore, this bit is hardwired to 0.  
CC  
CC  
30  
29  
XVSOCKET  
3VSOCKET  
R
R
3-V socket. This bit indicates whether or not the socket can supply V  
PCI1451 does support 3.3 V V ; therefore, this bit is always set unless overridden by the socket force  
CC  
event register (see Section 6.4).  
= 3.3 Vdc to PC Cards. The  
CC  
5-V socket. This bit indicates whether or not the socket can supply V  
PCI1451 does support 5.0 V V ; therefore, this bit is always 1 unless overridden by the device control  
CC  
register (bit 6) (see Section 4.39).  
= 5.0 Vdc to PC Cards. The  
CC  
28  
5VSOCKET  
R
27–14  
13  
RSVD  
R
R
These bits return 0s when read.  
YV card. This bit indicates whether or not the PC Card inserted in the socket supports V  
CC  
bit can be set by writing to the corresponding bit in the socket force event register (see Section 6.4).  
= Y.Y Vdc. This  
YVCARD  
XV card. This bit indicates whether or not the PC Card inserted in the socket supports V = X.X Vdc. This  
CC  
bit can be set by writing to the corresponding bit in the socket force event register (see Section 6.4).  
12  
11  
10  
XVCARD  
3VCARD  
5VCARD  
R
R
R
3-V card. This bit indicates whether or not the PC Card inserted in the socket supports V  
= 3.3 Vdc. This  
CC  
bit can be set by writing to the F3VCARD bit in the socket force event register (see Section 6.4).  
5-V card. This bit indicates whether or not the PC Card inserted in the socket supports V  
= 5.0 Vdc. This  
CC  
bit can be set by writing to the F5VCARD bit in the socket force event register (see Section 6.4).  
Bad V request. This bit indicates that the host software has requested that the socket be powered at  
CC  
an invalid voltage.  
9
8
7
BADVCCREQ  
DATALOST  
R
R
R
0 = Normal operation (default)  
1 = Invalid V  
request by host software  
CC  
Data lost. This bit indicates that a PC Card removal event may have caused lost data because the cycle  
did not terminate properly or because write data still resides in the PCI1451.  
0 = Normal operation (default)  
1 = Potential data loss due to card removal  
Not a card. This bit indicates that an unrecognizable PC Card has been inserted in the socket. This bit is  
not updated until a valid PC Card is inserted into the socket.  
NOTACARD  
0 = Normal operation (default)  
1 = Unrecognizable PC Card detected  
6–4  
Table 6–4. Socket Present State Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
READY(IREQ)//CINT. This bit indicates the current status of the READY(IREQ)//CINT signal at the PC  
Card interface.  
6
IREQCINT  
R
0 = READY(IREQ)//CINT is low  
1 = READY(IREQ)//CINT is high  
CardBus card detected. This bit indicates that a CardBus PC Card is inserted in the socket. This bit is not  
updated until another card interrogation sequence occurs (card insertion).  
5
4
CBCARD  
R
R
16-bit card detected. This bit indicates that a 16-bit PC Card is inserted in the socket. This bit is not  
updated until another card interrogation sequence occurs (card insertion).  
16BITCARD  
Power cycle. This bit indicates the status of the card power request. This bit is encoded as:  
3
2
PWRCYCLE  
CDETECT2  
R
R
0 = Socket is powered down (default)  
1 = Socket is powered up  
CCD2. This bit reflects the current status of the CCD2 signal at the PC Card interface. Changes to this  
signal during card interrogation are not reflected here.  
0 = CCD2 is low (PC Card may be present)  
1 = CCD2 is high (PC Card not present)  
CCD1. This bit reflects the current status of the CCD1 signal at the PC Card interface. Changes to this  
signal during card interrogation are not reflected here.  
1
0
CDETECT1  
R
R
0 = CCD1 is low (PC Card may be present)  
1 = CCD1 is high (PC Card not present)  
This bit reflects the current status of the CSTSCHG signal at the PC Card interface.  
CARDSTS.  
CSTSCHG  
0 = CSTSCHG is low  
1 = CSTSCHG is high  
6–5  
6.4 Socket Force Event Register  
This register is used to force changes to the socket event register (see Section 6.1) and the socket present state  
register (see Section 6.3). The CVSTEST bit in this register must be written when forcing changes that require card  
interrogation.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket force event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket force event  
R
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
R
0
W
0
W
0
W
0
W
0
W
0
W
0
Register:  
Type:  
Socket force event  
Read-only, Write-only  
Offset:  
Default:  
CardBus Socket Address + 0Ch  
0000 0000h  
Table 6–5. Socket Force Event Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–15  
RSVD  
R
These bits return 0s when read.  
Card VS test. When this bit is set, the PCI1451 reinterrogates the PC Card, updates the socket present  
state register (see Section 6.3), and re-enables the socket power control.  
14  
13  
12  
11  
10  
9
CVSTEST  
FYVCARD  
W
Force YV card. Writes to this bit cause the YVCARD bit in the socket present state register (see Section  
6.3) to be written. When set, this bit disables the socket power control.  
W
W
W
W
W
W
Force XV card. Writes to this bit cause the XVCARD bit in the socket present state register (see Section  
6.3) to be written. When set, this bit disables the socket power control.  
FXVCARD  
Force 3-V card. Writes to this bit cause the 3VCARD bit in the socket present state register (see Section  
6.3) to be written. When set, this bit disables the socket power control.  
F3VCARD  
Force 5-V card. Writes to this bit cause the 5VCARD bit in the socket present state register (see Section  
6.3) to be written. When set, this bit disables the socket power control.  
F5VCARD  
Force BadVccReq. Changes to the BADVCCREQ bit in the socket present state register (see Section  
6.3) can be made by writing this bit.  
FBADVCCREQ  
FDATALOST  
Force data lost. Writes to this bit cause the DATALOST bit in the socket present state register (see  
Section 6.3) to be written.  
8
Force not a card. Writes to this bit cause the NOTACARD bit in the socket present state register (see  
Section 6.3) to be written.  
7
6
5
FNOTACARD  
RSVD  
W
R
This bit returns 0 when read.  
Force CardBus card. Writes to this bit cause the CBCARD bit in the socket present state register (see  
Section 6.3) to be written.  
FCBCARD  
W
Force 16-bit card. Writes to this bit cause the 16BITCARD bit in the socket present state register (see  
Section 6.3) to be written.  
4
3
F16BITCARD  
FPWRCYCLE  
W
W
Force power cycle. Writes to this bit cause the PWREVENT bit in the socket event register (see Section  
6.1) to be written, and the PWRCYCLE bit in the socket present state register (see Section 6.3) is  
unaffected.  
Force CCD2. Writes to this bit cause the CD2EVENT bit in the socket event register (see Section 6.1)  
to be written, and the CDETECT2 bit in the socket present state register (see Section 6.3) is unaffected.  
2
1
0
FCDETECT2  
FCDETECT1  
FCARDSTS  
W
W
W
Force CCD1. Writes to this bit cause the CD1EVENT bit in the socket event register (see Section 6.1)  
to be written, and the CDETECT1 bit in the socket present state register (see Section 6.3) is unaffected.  
Force CSTSCHG. Writes to this bit cause the CSTSEVENT bit in the socket event register (see Section  
6.1) to be written. The CARDSTS bit in the socket present state register (see Section 6.3) is unaffected.  
6–6  
6.5 Socket Control Register  
This register provides control of the voltages applied to the socket’s V and V . The PCI1451 ensures that the  
PP  
CC  
socket is powered up only at acceptable voltages when a CardBus card is inserted.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Socket control  
Read-only, Read/Write  
Offset:  
Default:  
CardBus Socket Address + 10h  
0000 0000h  
Table 6–6. Socket Control Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31–8  
RSVD  
R
These bits return 0s when read.  
This bit controls how the CardBus clock run state machine decides when to stop the CardBus clock to the  
CardBus Card:  
0 = The PCI1451 Clock run master will request to stop the clock to the CardBus Card under the following  
two  
conditions:  
The CardBus interface is idle for 8 clocks and  
There is a request from the PCI master to stop the PCI clock.  
7
STOPCLK  
R/W  
1 = The PCI1451 clock run master will try to stop the clock to the CardBus card under the following  
condition:  
The CardBus interface is idle for 8 clocks.  
In summary, if this bit is set to1, then the CardBus controller will try to stop the clock to the CardBus card  
independent of the PCI clock run signal if the CardBus interface is sampled idle for 8 clocks.  
V
CC  
control. These bits are used to request card V changes.  
CC  
000 = Request power off (default)  
001 = Reserved  
010 = Request V  
011 = Request V  
100 = Request V  
101 = Request V  
110 = Reserved  
111 = Reserved  
= 5.0 V  
= 3.3 V  
= X.XV  
= Y.YV  
CC  
CC  
CC  
CC  
6–4  
VCCCTRL  
RSVD  
R/W  
3
R
This bit returns 0 when read.  
control. These bits are used to request card VPP changes.  
V
PP  
000 = Request power off (default)  
001 = Request V  
010 = Request V  
011 = Request V  
= 12.0 V  
= 5.0 V  
= 3.3 V  
= X.XV  
= Y.YV  
PP  
PP  
PP  
2–0  
VPPCTRL  
R/W  
100 = Request V  
101 = Request V  
110 = Reserved  
111 = Reserved  
PP  
PP  
6–7  
6.6 Socket Power Management Register  
This register provides power management control over the socket through a mechanism for slowing or stopping the  
clock on the card interface when the card is idle.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket power management  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R/W  
0
15  
14  
13  
12  
11  
10  
0
Name  
Type  
Default  
Socket power management  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
Register:  
Type:  
Socket power management  
Read-only, Read/Write  
CardBus Socket Address + 20h  
0000 0000h  
Offset:  
Default:  
Table 6–7. Socket Power Management Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31–26  
RSVD  
R
R
These bits return 0s when read.  
Socket access status. This bit provides information on when a socket access has occurred. This bit is  
cleared by a read access.  
25  
SKTACCES  
0 = No PC Card access has occurred (default)  
1 = PC Card has been accessed  
Socket mode status. This bit provides clock mode information.  
0 = Normal clock operation  
24  
23–17  
16  
SKTMODE  
RSVD  
R
R
1 = Clock frequency has changed  
These bits return 0s when read.  
CardBus clock control enable. This bit, when set, enables clock control according to bit 0 (CLKCTRL).  
0 = Clock control disabled (default)  
CLKCTRLEN  
RSVD  
R/W  
R
1 = Clock control enabled  
15–1  
These bits return 0s when read.  
CardBus clock control. This bit determines whether the CardBus CLKRUN protocol will attempt to stop or  
slow the CardBus clock during idle states. The CLKCTRLEN bit enables this bit.  
0
CLKCTRL  
R/W  
0 = Allows the CardBus CLKRUN protocol to attempt to stop the CardBus clock (default).  
1 = Allows the CardBus CLKRUN protocol to attempt to slow the CardBus clock by a factor of 16.  
6–8  
7 Distributed DMA (DDMA) Registers  
The DMA base address, programmable in PCI configuration space at offset 98h, points to a 16-byte region in PCI  
I/O space where the DDMA registers reside. Table 7–1 summarizes the names and locations of these registers.  
These registers are identical in function, but different in location from the Intel 8237 DMA controller. The similarity  
between the register models retains some level of compatibility with legacy DMA and simplifies the translation  
required by the master DMA device when forwarding legacy DMA writes to DMA channels.  
These PCI1451 DMA register definitions are identical to those registers of the same name in the 8237 DMA controller;  
however, some register bits defined in the 8237 do not apply to distributed DMA in a PCI environment. In such cases,  
the PCI1451 will implement these obsolete register bits as nonfunctional, read-only bits. The reserved registers  
shown in Table 7–1 are implemented as read-only, and return 0s when read. Writes to reserved registers have no  
effect.  
Table 7–1. Distributed DMA Registers  
DMA BASE  
TYPE  
REGISTER NAME  
ADDRESS  
OFFSET  
R
W
R
Current address  
00h  
04h  
08h  
0Ch  
Reserved  
Reserved  
Page  
Base address  
Current count  
Base count  
Reserved  
Reserved  
W
R
N/A  
Mode  
N/A  
Status  
W
R
Request  
N/A  
Command  
Multichannel  
Reserved  
Reserved  
Master  
clear  
W
Mask  
7–1  
7.1 DMA Current Address/Base Address Register  
This register is used to set the starting (base) memory address of a DMA transfer. Reads from this register indicate  
the current memory address of a direct memory transfer.  
For the 8-bit DMA transfer mode, the DMA current address register contents are presented on AD15–0 of the PCI  
bus during the address phase. Bits 7–0 of the DMA page register are presented on AD23–AD16 of the PCI bus during  
the address phase.  
For the 16-bit DMA transfer mode, the DMA current address register contents are presented on AD16–AD1 of the  
PCI bus during the address phase, and AD0 is driven to logic 0. Bits 7–1 of the DMA page register (see Section 7.2)  
are presented on AD23–AD17 of the PCI bus during the address phase, and bit 0 is ignored.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Name  
Type  
Default  
Bit  
DMA current address/base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA current address/base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
DMA current address/base address  
Read/Write  
Offset:  
Default:  
Size:  
DMA Base Address + 00h  
0000h  
Two bytes  
7.2 DMA Page Register  
This register is used to set the upper byte of the address of a DMA transfer. Details of the address represented by  
this register are explained in the DMA current address/base address register (see Section 7.1).  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA page  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
DMA page  
Read/Write  
Offset:  
Default:  
Size:  
DMA Base Address + 02h  
00h  
One byte  
7–2  
7.3 DMA Current Count/Base Count Register  
This register is used to set the total transfer count, in bytes, of a direct memory transfer. Reads from this register  
indicate the current count of a direct memory transfer. In the 8-bit transfer mode, the count is decremented by 1 after  
each transfer. Likewise, the count is decremented by 2 in 16-bit transfer mode.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Name  
Type  
Default  
Bit  
DMA current count/base count  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA current count/base count  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
DMA current count/base count  
Read/Write  
Offset:  
Default:  
Size:  
DMA Base Address + 04h  
0000h  
Two bytes  
7.4 DMA Command Register  
This register is used to enable and disable the controller; all other bits are reserved.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA command  
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
Register:  
Type:  
DMA command  
Read-only, Read/Write  
DMA Base Address + 08h  
00h  
Offset:  
Default:  
Size:  
One byte  
Table 7–2. DDMA Command Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
7–3  
RSVD  
R
These bits return 0s when read.  
DMA controller enable. This bit enables and disables the distributed DMA slave controller in the PCI1451,  
and defaults to the enabled state.  
2
DMAEN  
RSVD  
R/W  
R
0 = DMA controller enabled (default)  
1 = DMA controller disabled  
1–0  
These bits return 0s when read.  
7–3  
7.5 DMA Status Register  
This register indicates the terminal count and DMA request (DREQ) status.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA status  
R
0
R
0
R
0
R
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
Register:  
Type:  
DMA status  
Read-only  
Offset:  
Default:  
Size:  
DMA Base Address + 08h  
00h  
One byte  
Table 7–3. DMA Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Channel request. In the 8237, these bits indicate the status of the DREQ signal of each DMA channel. In  
the PCI1451, these bits indicate the DREQ status of the single socket being serviced by this register. All four  
bits are set when the PC Card asserts its DREQ signal, and are reset when DREQ is deasserted. The status  
of the mask bit in the DMA multichannel mask register (see Section 7.9) has no effect on these bits.  
7–4  
DREQSTAT  
R
Channelterminal count. The 8327 uses these bits to indicate the TC status of each of its four DMA channels.  
In the PCI1451, these bits report information about just a single DMA channel; therefore, all four of these  
register bits indicate the TC status of the single socket being serviced by this register. All four bits are set  
when the terminal count (TC) is reached by the DMA channel. These bits are reset when read or when the  
DMA channel is reset.  
3–0  
TC  
R/C  
7.6 DMA Request Register  
This register is used to request a DDMA transfer through software. Any write to this register enables software  
requests. This register is to be used in block mode only.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA request  
W
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
Register:  
Type:  
DMA request  
Write-only  
Offset:  
Default:  
Size:  
DMA Base Address + 09h  
00h  
One byte  
7–4  
7.7 DMA Mode Register  
This register is used to set the DMA transfer mode.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA mode  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
Register:  
Type:  
DMA mode  
Read-only, Read/Write  
DMA Base Address + 0Bh  
00h  
Offset:  
Default:  
Size:  
One byte  
Table 7–4. DDMA Mode Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Mode select bits. The PCI1451 uses these bits to determine the transfer mode.  
00 = Demand mode select (default)  
01 = Single mode select  
7–6  
DMAMODE  
R/W  
10 = Block mode select  
11 = Reserved  
Address increment/decrement. The PCI1451 uses this register bit to select the memory address in the DMA  
current address/base address register (see Section 7.1) to increment or decrement after each data transfer.  
This is in accordance with the 8237 use of this register bit, and is encoded as follows:  
0 = Addresses increment (default)  
5
4
INCDEC  
R/W  
R/W  
1 = Addresses decrement  
Auto-initialization bit.  
AUTOINIT  
0 = Auto-initialization disabled (default)  
1 = Auto-initialization enabled  
Transfer type. These bits select the type of direct memory transfer to be performed. A memory write transfer  
moves data from the PCI1451 PC Card interface to memory, and a memory read transfer moves data from  
memory to the PCI1451 PC Card interface. The field is encoded as:  
00 = No transfer selected (default)  
01 = Write transfer  
3–2  
1–0  
XFERTYPE  
RSVD  
R/W  
R
10 = Read transfer  
11 = Reserved  
These bits return 0s when read.  
7.8 DMA Master Clear Register  
This register is used to reset the DDMA controller, and resets all DDMA registers.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA master clear  
W
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
Register:  
Type:  
DMA master clear  
Write-only  
Offset:  
Default:  
Size:  
DMA Base Address + 0Dh  
00h  
One byte  
7–5  
7.9 DMA Multichannel Mask Register  
The PCI1451 uses only the least significant bit of this register to mask the PC Card DMA channel. The PCI1451 sets  
the mask bit when the PC Card is removed. Host software is responsible for either resetting the socket DMA controller  
or re-enabling the mask bit.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA multichannel mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
Register:  
Type:  
DMA multichannel mask  
Read-only, Read/Write  
DMA Base Address + 0Fh  
00h  
Offset:  
Default:  
Size:  
One byte  
Table 7–5. DDMA Multichannel Mask Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7–1  
RSVD  
R
These bits return 0s when read.  
Mask select bit. This bit masks incoming DREQ signals from the PC Card. When set, the socket ignores DMA  
requests from the card. When cleared (or when reset), incoming DREQ assertions are serviced normally.  
0 = DDMA service provided on card DREQ  
0
MASKBIT  
R/W  
1 = Socket DREQ signal ignored (default)  
7–6  
8 Electrical Characteristics  
8.1 Absolute Maximum Ratings Over Operating Temperature Ranges  
Supply voltage range, V  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V  
CC  
CCP, CCA, CCB  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6 V  
Input voltage range, V : PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
I
CCP  
CCA  
CCB  
Card A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
Card B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
CC  
CC  
CCA  
Output voltage range, V : PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
O
Card A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
Card B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
CCB  
Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to V  
CC  
Input clamp current, I (V < 0 or V > V ) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
I
I
CC  
Output clamp current, I  
(V < 0 or V > V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
OK  
O O CC  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Applies for external input and bidirectional buffers. V > V  
does not apply to Misc terminals. PCI terminals are measured with  
or V . The limit specified applies for a  
I
CC  
respect to V  
instead of V . PC Card terminals are measured with respect to V  
CC CCA  
CCP  
CCB  
dc condition.  
2. Applies for external output and bidirectional buffers. V > V  
does not apply to Misc terminals. PCI terminals are measured with  
instead of V . PC Card terminals are measured with respect to V or V . The limit specified applies for a  
CC CCA  
O
CC  
respect to V  
CCP  
CCB  
dc condition.  
8–1  
8.2 Recommended Operating Conditions (see Note 3)  
OPERATION  
MIN  
3
NOM  
3.3  
3.3  
5
MAX  
3.6  
UNIT  
Core voltage, V  
CC  
Commercial  
Commercial  
3.3 V  
3.3 V  
5 V  
V
3
3.6  
PCI I/O voltage, V  
CCP  
V
V
4.75  
3
5.25  
3.6  
3.3 V  
5 V  
3.3  
5
PC Card I/O voltage, V  
CC(A/B)  
Commercial  
PCI  
4.75  
5.25  
3.3 V  
5 V  
0.5 V  
V
CCP  
CCP  
2
V
CCP  
3.3 V  
5 V  
0.475 V  
V
V
CC(A/B)  
CC(A/B)  
PC Card  
2.4  
High-level Input voltage, V  
IH  
V
CC(A/B)  
VS  
3.3 V  
3.3 V  
2
V
V
V
CC  
CC  
CC  
CD  
2.4  
2
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
Miscellaneous  
3.3 V  
5 V  
0.3 V  
CCP  
PCI  
0.8  
3.3 V  
5 V  
0.325 V  
CC(A/B)  
Low-level input voltage, V  
V
V
IL  
PC Card  
0.8  
Miscellaneous  
0.8  
PCI  
V
CCP  
PC Card  
V
V
Input voltage, V  
CC(A/B)  
I
Miscellaneous  
PCI  
V
CC  
V
CCP  
PC Card  
Output voltage, V  
V
CC(A/B)  
O
Miscellaneous  
V
CC  
4
PCI and PC Card  
Input transition times (t and t ), t  
t
ns  
r
f
Miscellaneous  
6
Operating ambient temperature range, T  
25  
25  
70  
_C  
_C  
A
§
Virtual junction temperature, T  
115  
J
Applies for external inputs and bidirectional buffers without hysteresis  
Miscellaneous terminals are RI_OUT, CLOCK, DATA, LATCH, SPKROUT, SCL, SDA, SUSPEND, MFUNC terminals, VS terminals, CD  
terminals, and ZV terminals.  
§
These junction temperatures reflect simulation conditions. The customer is responsible for verifying junction temperature.  
Applies for external output buffers  
NOTE 3: Unused or floating terminals (input or I/O) must be held high or low.  
8–2  
8.3 Electrical Characteristics Over Recommended Operating Conditions (unless  
otherwise noted)  
PARAMETER  
TERMINALS  
PCI  
OPERATION TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
I
I
I
I
I
I
I
I
I
= –0.5 mA  
= –2 mA  
= –0.15 mA  
= –0.15 mA  
= –4 mA  
= 1.5 mA  
= 6 mA  
0.9 V  
3.3 V  
5 V  
OH  
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
OL  
CC  
2.4  
0.9 V  
3.3 V  
5 V  
V
V
High-level output voltage (see Note 4)  
CC  
2.4  
OH  
OL  
PC Card  
Miscellaneous  
PCI  
§
V
–0.6  
CC  
0.1 V  
3.3 V  
5 V  
CC  
0.55  
= 0.7 mA  
= 0.7 mA  
= 4 mA  
0.1 V  
CC  
3.3 V  
5 V  
V
V
Low-level output voltage  
PC Card  
0.55  
§
0.5  
–1  
–1  
10  
25  
Miscellaneous  
3.6 V  
5.25 V  
3.6 V  
V = GND  
I
Output-only  
terminals  
3-state-output, high-impedance-state  
current (see Note 4)  
I
I
µA  
µA  
OZL  
V = GND  
I
V = V  
Output-only  
terminals  
I
CC  
CC  
3-state-output, high-impedance-state  
current  
OZH  
5.25 V  
V = V  
I
Input-only  
terminals  
V = GND  
I
–1  
–10  
V = GND  
I
I
µA  
µA  
Low-level input current  
I/O terminals  
IL  
Pullup  
terminals  
V = GND  
–190  
I
3.6 V  
5.25 V  
3.6 V  
10  
20  
10  
25  
V = V  
I
Input-only  
terminals  
CC  
V = V  
I
CC  
CC  
CC  
I
IH  
High-level input current (see Note 5)  
V = V  
I
I/O terminals  
5.25 V  
V = V  
I
For I/O terminals, input leakage (I and I ) includes I  
IL IH  
leakage of the disabled output.  
OZ  
Pullup terminals: A_CPERR, A_CIRDY, A_CBLOCK, A_CSTOP, A_CDEVSEL, A_CTRDY, A_CSTSCHG, A_CAUDIO, A_CCD1, A_CCD2,  
A_CREQ, A_CINT, A_CRST, A_CVS1, A_CVS2, A_CSERR, B_CPERR, B_CIRDY, B_CBLOCK, B_CSTOP, B_CDEVSEL, B_CTRDY,  
B_CSTSCHG, B_CAUDIO, B_CCD1, B_CCD2, B_CREQ, B_CINT, B_CRST, B_CVS1, B_CVS2, B_CSERR, MFUNC5, MFUNC6, and LATCH.  
Miscellaneous terminals are RI_OUT, CLOCK, DATA, LATCH, SPKROUT, SCL, SDA, SUSPEND, MFUNC terminals, VS terminals, CD  
terminals, and ZV terminals.  
§
For PCI terminals, V = V  
. For PC Card terminals, V = V  
CCP  
.
I
I
CC(A/B)  
NOTES: 4. V  
and I  
are not tested on RI_OUTZ (pin P12) because they are open-drain outputs.  
OH  
OL  
is not tested on pullup terminals because they are pulled up with an internal resistor.  
5.  
I
IH  
8.4 PCI Clock/Reset Timing Requirements Over Recommended Ranges of Supply  
Voltage and Operating Free-Air Temperature (see Figure 8–2 and Figure 8–3)  
PARAMETER  
Cycle time, PCLK  
ALTERNATE SYMBOL TEST CONDITIONS  
MIN  
30  
11  
11  
1
MAX  
UNIT  
ns  
t
t
t
t
cyc  
c
Pulse duration, PCLK high  
Pulse duration, PCLK low  
Slew rate, PCLK  
t
ns  
wH  
wL  
high  
t
ns  
low  
t , t  
v/t  
4
V/ns  
ms  
ms  
r f  
t
w
Pulse duration, RSTIN  
t
1
rst  
t
su  
Setup time, PCLK active at end of RSTIN  
t
100  
rst-clk  
8–3  
8.5 PCI Timing Requirements Over Recommended Ranges of Supply Voltage and  
Operating Free-Air Temperature (see Note 7, Figure 8–1 and Figure 8–4)  
ALTERNATE  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
PCLK-to-shared signal  
valid delay time  
t
11  
val  
inv  
C
= 50 pF,  
L
t
Propagation delay time, See Note 6  
ns  
pd  
See Note 7  
PCLK-to-shared signal  
invalid delay time  
t
2
2
t
t
t
t
Enable time, high impedance-to-active delay time from PCLK  
Disable time, active-to-high impedance delay time from PCLK  
Setup time before PCLK valid  
t
ns  
ns  
ns  
ns  
en  
dis  
su  
h
on  
t
28  
off  
t
7
0
su  
Hold time after PCLK high  
t
h
NOTES: 6. PCI shared signals are AD31–AD0, C/BE3–C/BE0, FRAME, TRDY, IRDY, STOP, IDSEL, DEVSEL, and PAR.  
7. This data sheet uses the following conventions to describe time ( t ) intervals. The format is t , where subscript A indicates the type  
A
ofdynamicparameterbeingrepresented. Oneofthefollowingisused:t =propagationdelaytime, t = delay time, t =setuptime,  
pd su  
d
and t = hold time.  
h
8–4  
8.6 Parameter Measurement Information  
LOAD CIRCUIT PARAMETERS  
I
OL  
TIMING  
PARAMETER  
C
I
I
V
LOAD  
(pF)  
OL  
OH  
LOAD  
(V)  
(mA)  
(mA)  
t
0
3
PZH  
Test  
Point  
t
50  
8
–8  
en  
t
t
t
PZL  
PHZ  
PLZ  
From Output  
Under Test  
V
LOAD  
t
t
50  
50  
8
8
–8  
–8  
1.5  
dis  
pd  
C
LOAD  
C
V
includes the typical load-circuit distributed capacitance.  
LOAD  
I
OH  
– V  
OL  
LOAD  
= 50 , where V  
= 0.6 V, I  
= 8 mA  
OL  
OL  
I
OL  
LOAD CIRCUIT  
V
Timing  
Input  
(see Note A)  
CC  
V
CC  
50% V  
High-Level  
Input  
CC  
50% V  
50% V  
CC  
CC  
0 V  
0 V  
t
h
t
su  
t
w
V
CC  
90% V  
Data  
CC  
V
CC  
50% V  
Input  
50% V  
CC  
10% V  
CC  
CC  
t
Low-Level  
Input  
0 V  
50% V  
50% V  
CC  
CC  
0 V  
t
r
f
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
INPUT RISE AND FALL TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATION  
Output  
Control  
(low-level  
enabling)  
V
CC  
50% V  
50% V  
CC  
CC  
V
0 V  
CC  
Input  
(see Note A)  
t
50% V  
50% V  
CC  
PZL  
CC  
t
PLZ  
0 V  
t
pd  
V
t
CC  
50% V  
pd  
V
Waveform 1  
(see Notes B  
and C)  
CC  
CC  
OH  
50% V  
CC  
In-Phase  
Output  
V
+ 0.3 V  
OL  
50% V  
50% V  
CC  
CC  
V
OL  
V
OL  
t
PHZ  
t
pd  
t
PZH  
t
pd  
V
OH  
V
OH  
Waveform 2  
(see Notes B  
and C)  
V
– 0.3 V  
OH  
Out-of-Phase  
Output  
50% V  
CC  
50% V  
50% V  
CC  
CC  
50% V  
V
OL  
0 V  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
NOTES: A. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by pulse generators having the  
following characteristics: PRR = 1 MHz, Z = 50 , t = 6 ns.  
O
r
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.  
C. For t  
and t  
, V  
PHZ OL  
and V  
are measured values.  
OH  
PLZ  
Figure 8–1. Load Circuit and Voltage Waveforms  
8–5  
8.7 PCI Bus Parameter Measurement Information  
t
high  
t
low  
2 V  
0.8 V  
2 V MIN Peak-to-Peak  
t
f
t
r
t
cyc  
Figure 8–2. PCLK Timing Waveform  
PCLK  
t
rst  
RSTIN  
t
srst-clk  
Figure 8–3. RSTIN Timing Waveforms  
PCLK  
1.5 V  
t
t
inv  
val  
1.5 V  
Valid  
PCI Output  
PCI Input  
t
t
on  
off  
Valid  
t
su  
t
h
Figure 8–4. Shared Signals Timing Waveforms  
8.8 PC Card Cycle Timing  
The PC Card cycle timing is controlled by the wait-state bits in the Intel 82365SL-DF compatible memory and I/O  
window registers. The PC Card cycle generator uses the PCI clock to generate the correct card address setup and  
hold times and the PC Card command active (low) interval. This allows the cycle generator to output PC Card cycles  
that are as close to the Intel 82365SL-DF timing as possible, while always slightly exceeding the Intel 82365SL-DF  
values. This ensures compatibility with existing software and maximizes throughput.  
The PC Card address setup and hold times are a function of the wait-state bits. Table 8–1 shows address setup time  
in PCLK cycles and nanoseconds for I/O and memory cycles. Table 8–2 and Table 8–3 show command active time  
in PCLK cycles and nanoseconds for I/O and memory cycles. Table 8–4 shows address hold time in PCLK cycles  
and nanoseconds for I/O and memory cycles.  
8–6  
Table 8–1. PC Card Address Setup Time, t  
, 8-Bit and 16-Bit PCI Cycles  
su(A)  
TS1 – 0 = 01  
(PCLK/ns)  
WAIT-STATE BITS  
I/O  
3/90  
Memory  
Memory  
WS1  
WS1  
0
1
2/60  
4/120  
Table 8–2. PC Card Command Active Time, t  
, 8-Bit PCI Cycles  
c(A)  
WAIT-STATE BITS  
TS1 – 0 = 01  
(PCLK/ns)  
WS  
0
ZWS  
0
X
1
19/570  
23/690  
7/210  
1
I/O  
0
00  
01  
10  
11  
00  
0
19/570  
23/690  
23/690  
23/690  
7/210  
X
X
X
1
Memory  
Table 8–3. PC Card Command Active Time, t  
, 16-Bit PCI Cycles  
c(A)  
WAIT-STATE BITS  
TS1 – 0 = 01  
(PCLK/ns)  
WS  
0
ZWS  
0
X
1
7/210  
11/330  
N/A  
1
I/O  
0
00  
01  
10  
11  
00  
0
9/270  
13/390  
17/510  
23/630  
5/150  
X
X
X
1
Memory  
Table 8–4. PC Card Address Hold Time, t  
, 8-Bit and 16-Bit PCI Cycles  
h(A)  
TS1 – 0 = 01  
(PCLK/ns)  
WAIT-STATE BITS  
I/O  
2/60  
2/60  
3/90  
Memory  
Memory  
WS1  
WS1  
0
1
8–7  
8.9 Timing Requirements Over Recommended Ranges of Supply Voltage and  
Operating Free-Air Temperature, Memory Cycles (for 100-ns Common Memory)  
(see Note 8 and Figure 8–5)  
ALTERNATE  
SYMBOL  
MIN  
MAX  
UNIT  
t
t
t
t
t
t
t
t
t
t
t
t
Setup time, CE1 and CE2 before WE/OE low  
Setup time, CA25–CA0 before WE/OE low  
T1  
60  
+2PCLK  
90  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su  
su  
su  
pd  
w
T2  
t
su(A)  
Setup time, REG before WE/OE low  
T3  
Propagation delay time, WE/OE low to WAIT low  
Pulse duration, WE/OE low  
T4  
T5  
200  
120  
Hold time, WE/OE low after WAIT high  
T6  
h
Hold time, CE1 and CE2 after WE/OE high  
Setup time (read), CDATA15–CDATA0 valid before OE high  
Hold time (read), CDATA15–CDATA0 valid after OE high  
Hold time, CA25–CA0 and REG after WE/OE high  
Setup time (write), CDATA15–CDATA0 valid before WE low  
Hold time (write), CDATA15–CDATA0 valid after WE low  
T7  
h
T8  
su  
h
T9  
0
+1PCLK  
60  
T10  
T11  
T12  
t
h(A)  
h
su  
h
240  
NOTE 8: These times are dependent on the register settings associated with ISA wait states and data size. They are also dependent on cycle  
type (read/write, memory/I/O) and WAIT from PC Card. The times listed here represent absolute minimums (the times that would be  
observed if programmed for zero wait state, 16-bit cycles) with a 33-MHz PCI clock.  
8.10 Timing Requirements Over Recommended Ranges of Supply Voltage and  
Operating Free-Air Temperature, I/O Cycles  
(see Figure 8–6)  
ALTERNATE  
MIN  
MAX  
UNIT  
SYMBOL  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
T26  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Setup time, REG before IORD/IOWR low  
60  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su  
su  
su  
pd  
pd  
w
Setup time, CE1 and CE2 before IORD/IOWR low  
Setup time, CA25–CA0 valid before IORD/IOWR low  
Propagation delay time, IOIS16 low after CA25–CA0 valid  
Propagation delay time, IORD low to WAIT low  
Pulse duration, IORD/IOWR low  
t
+2PCLK  
su(A)  
35  
35  
T
cA  
Hold time, IORD low after WAIT high  
h
Hold time, REG low after IORD high  
0
h
Hold time, CE1 and CE2 after IORD/IOWR high  
Hold time, CA25–CA0 after IORD/IOWR high  
Setup time (read), CDATA15–CDATA0 valid before IORD high  
Hold time (read), CDATA15–CDATA0 valid after IORD high  
Setup time (write), CDATA15–CDATA0 valid before IOWR low  
Hold time (write), CDATA15–CDATA0 valid after IOWR high  
120  
h
t
+1PCLK  
h
h(A)  
10  
0
su  
h
90  
90  
su  
h
8–8  
8.11 Switching Characteristics Over Recommended Ranges of Supply Voltage and  
Operating Free-Air Temperature, Miscellaneous (see Figure 8–7)  
ALTERNATE  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
BVD2 low to SPKROUT low  
BVD2 high to SPKROUT high  
IREQ to IRQ15–IRQ3  
30  
30  
30  
30  
T27  
t
pd  
Propagation delay time  
ns  
T28  
STSCHG to IRQ15–IRQ3  
8.12 PC Card Parameter Measurement Information  
CA25–CA0  
T10  
REG  
CE1, CE2  
T1  
T5  
T7  
WE, OE  
WAIT  
T3  
T6  
T2  
T4  
T12  
T9  
T11  
CDATA15–CDATA0  
(write)  
T8  
CDATA15–CDATA0  
(read)  
With no wait state  
With wait state  
Figure 8–5. PC Card Memory Cycle  
8–9  
CA25–CA0  
IOIS16  
T16  
T22  
REG  
T20  
T21  
CE1, CE2  
T14  
T18  
IORD, IOWR  
WAIT  
T13  
T15  
T19  
T17  
T26  
T24  
T25  
CDATA15–CDATA0  
(write)  
T23  
CDATA15–CDATA0  
(read)  
With no wait state  
With wait state  
Figure 8–6. PC Card I/O Cycle  
BVD2  
SPKROUT  
IREQ  
T27  
T28  
IRQ15–IRQ3  
Figure 8–7. Miscellaneous PC Card Delay Times  
8–10  
9 Mechanical Data  
GJG (S-PBGA-N257)  
PLASTIC BALL GRID ARRAY  
16,10  
15,90  
SQ  
14,40 TYP  
0,80  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
0,80  
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19  
10 12 14 16 18  
2
4
6
8
0,95  
0,85  
1,40 MAX  
Seating Plane  
0,10  
0,55  
0,45  
0,12  
0,08  
M
0,08  
0,45  
0,35  
4173511/A 08/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. MicroStar BGA configuration  
MicroStar is a trademark of Texas Instruments Incorporated.  
9–1  
9–2  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

PCI1510

PC CARD CONTROLLERS
TI

PCI1510GGU

PC CARD CONTROLLERS
TI

PCI1510GVF

PC CARD CONTROLLERS
TI

PCI1510PGE

PC CARD CONTROLLERS
TI

PCI1510PGEG4

单槽 PC CardBus 控制器 | PGE | 144 | 0 to 70
TI

PCI1510R

PC Card Controllers
TI

PCI1510RGVF

PCMCIA BUS CONTROLLER, PBGA253, PLASTIC, BGA-253
TI

PCI1510RZVF

PC Card Controllers
TI

PCI1510ZGU

PC CARD CONTROLLERS
TI

PCI1510ZVF

PC CARD CONTROLLERS
TI

PCI1510ZWS

单槽 PC CardBus 控制器 | ZWS | 144 | 0 to 70
TI

PCI1512

CardBus Controller
TI