PCI1510ZVF [TI]

PC CARD CONTROLLERS; PC卡控制器
PCI1510ZVF
型号: PCI1510ZVF
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PC CARD CONTROLLERS
PC卡控制器

总线控制器 微控制器和处理器 外围集成电路 PC 时钟
文件: 总128页 (文件大小:713K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁ ꢂꢃ ꢄ ꢃ ꢅ ꢆ ꢆ ꢇ ꢈꢆ ꢉ ꢊꢈ ꢀꢆ ꢋꢈꢌ ꢆ ꢇꢈ ꢌꢉ ꢊ  
ꢀꢁ ꢁ ꢍ ꢎꢏ ꢁ ꢐ ꢑ ꢒꢎꢐ ꢓꢓ ꢔꢎ ꢕ  
Data Manual  
December 2004  
Connectivity Solutions  
SCPS071E  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−1  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−1  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−2  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−2  
Document Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−2  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−3  
PCI1510 Data Manual Document History . . . . . . . . . . . . . . . . . . . . . . . 1−3  
2
3
Terminal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−1  
2.1  
2.2  
PCI1510 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−3  
Terminal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−15  
Feature/Protocol Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
3.1  
3.2  
3.3  
3.4  
Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
Clamping Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
Peripheral Component Interconnect (PCI) Interface . . . . . . . . . . . . . . 3−2  
3.4.1  
3.4.2  
3.4.3  
PCI GRST Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
PCI Bus Lock (LOCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−3  
Loading Subsystem Identification . . . . . . . . . . . . . . . . . . . . . 3−3  
3.5  
PC Card Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−4  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
PC Card Insertion/Removal and Recognition . . . . . . . . . . . 3−4  
Parallel Power-Switch Interface (TPS2211A) . . . . . . . . . . . 3−4  
Zoomed Video Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−5  
Standardized Zoomed-Video Register Model . . . . . . . . . . . 3−6  
3.5.4.1  
Zoomed-Video Card Insertion and Configuration  
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−6  
3.5.5  
3.5.6  
3.5.7  
3.5.8  
3.5.9  
Internal Ring Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−7  
Integrated Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . 3−7  
SPKROUT and CAUDPWM Usage . . . . . . . . . . . . . . . . . . . 3−8  
LED Socket Activity Indicators . . . . . . . . . . . . . . . . . . . . . . . . 3−8  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−9  
3.6  
Serial-Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−9  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
Serial-Bus Interface Implementation . . . . . . . . . . . . . . . . . . . 3−9  
Serial-Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 3−10  
Serial-Bus EEPROM Application . . . . . . . . . . . . . . . . . . . . . . 3−12  
Accessing Serial-Bus Devices Through Software . . . . . . . 3−13  
iii  
Section  
Title  
Page  
3.7  
Programmable Interrupt Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−13  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
3.7.6  
PC Card Functional and Card Status Change Interrupts . 3−13  
Interrupt Masks and Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−15  
Using Parallel IRQ Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 3−15  
Using Parallel PCI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 3−16  
Using Serialized IRQSER Interrupts . . . . . . . . . . . . . . . . . . . 3−16  
SMI Support in the PCI1510 Controller . . . . . . . . . . . . . . . . 3−16  
3.8  
Power Management Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−17  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
3.8.5  
3.8.6  
3.8.7  
3.8.8  
3.8.9  
3.8.10  
3.8.11  
Integrated Low-Dropout Voltage Regulator (LDO-VR) . . . . 3−17  
Clock Run Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−17  
CardBus PC Card Power Management . . . . . . . . . . . . . . . . 3−17  
16-Bit PC Card Power Management . . . . . . . . . . . . . . . . . . . 3−17  
Suspend Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−18  
Requirements for Suspend Mode . . . . . . . . . . . . . . . . . . . . . 3−18  
Ring Indicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−19  
PCI Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−19  
CardBus Bridge Power Management . . . . . . . . . . . . . . . . . . 3−20  
ACPI Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−21  
Master List of PME Context Bits and Global Reset-Only  
Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−22  
4
PC Card Controller Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
PCI Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−2  
Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−2  
Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−3  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−4  
Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−4  
PCI Class Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−5  
Cache Line Size Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−5  
Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−5  
4.10 Header Type Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−5  
4.11 BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−6  
4.12 CardBus Socket/ExCA Base-Address Register . . . . . . . . . . . . . . . . . . 4−6  
4.13 Capability Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−6  
4.14 Secondary Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−7  
4.15 PCI Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−8  
4.16 CardBus Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−8  
4.17 Subordinate Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−8  
4.18 CardBus Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−8  
4.19 Memory Base Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−9  
4.20 Memory Limit Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−9  
4.21 I/O Base Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−10  
iv  
Section  
Title  
Page  
4.22 I/O Limit Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−10  
4.23 Interrupt Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−11  
4.24 Interrupt Pin Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−11  
4.25 Bridge Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−12  
4.26 Subsystem Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−13  
4.27 Subsystem ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−13  
4.28 PC Card 16-Bit I/F Legacy-Mode Base Address Register . . . . . . . . . 4−13  
4.29 System Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−14  
4.30 Multifunction Routing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−16  
4.31 Retry Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−17  
4.32 Card Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−18  
4.33 Device Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−19  
4.34 Diagnostic Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−20  
4.35 Capability ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−20  
4.36 Next-Item Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−20  
4.37 Power-Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . 4−21  
4.38 Power-Management Control/Status Register . . . . . . . . . . . . . . . . . . . . 4−22  
4.39 Power-Management Control/Status Register Bridge Support  
Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−23  
4.40 Power-Management Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−23  
4.41 General-Purpose Event Status Register . . . . . . . . . . . . . . . . . . . . . . . . 4−24  
4.42 General-Purpose Event Enable Register . . . . . . . . . . . . . . . . . . . . . . . 4−25  
4.43 General-Purpose Input Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−26  
4.44 General-Purpose Output Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−26  
4.45 Serial-Bus Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−27  
4.46 Serial-Bus Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−27  
4.47 Serial-Bus Slave Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−28  
4.48 Serial-Bus Control and Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 4−29  
ExCA Compatibility Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−1  
5
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
ExCA Identification and Revision Register . . . . . . . . . . . . . . . . . . . . . . 5−4  
ExCA Interface Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−5  
ExCA Power Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−6  
ExCA Interrupt and General Control Register . . . . . . . . . . . . . . . . . . . 5−8  
ExCA Card Status-Change Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−9  
ExCA Card Status-Change Interrupt Configuration Register . . . . . . . 5−10  
ExCA Address Window Enable Register . . . . . . . . . . . . . . . . . . . . . . . . 5−11  
ExCA I/O Window Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−12  
ExCA I/O Windows 0 and 1 Start-Address Low-Byte Registers . . . . 5−13  
5.10 ExCA I/O Windows 0 and 1 Start-Address High-Byte Registers . . . . 5−13  
5.11 ExCA I/O Windows 0 and 1 End-Address Low-Byte Registers . . . . . 5−13  
5.12 ExCA I/O Windows 0 and 1 End-Address High-Byte Registers . . . . 5−13  
5.13 ExCA Memory Windows 0−4 Start-Address Low-Byte Registers . . . 5−14  
v
Section  
Title  
Page  
5.14 ExCA Memory Windows 0−4 Start-Address High-Byte Registers . . . 5−14  
5.15 ExCA Memory Windows 0−4 End-Address Low-Byte Registers . . . . 5−15  
5.16 ExCA Memory Windows 0−4 End-Address High-Byte Registers . . . 5−15  
5.17 ExCA Memory Windows 0−4 Offset-Address Low-Byte Registers . . 5−16  
5.18 ExCA Memory Windows 0−4 Offset-Address High-Byte Registers . 5−16  
5.19 ExCA Card Detect and General Control Register . . . . . . . . . . . . . . . . 5−17  
5.20 ExCA Global Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−18  
5.21 ExCA I/O Windows 0 and 1 Offset-Address Low-Byte Registers . . . 5−19  
5.22 ExCA I/O Windows 0 and 1 Offset-Address High-Byte Registers . . . 5−19  
5.23 ExCA Memory Windows 0−4 Page Registers . . . . . . . . . . . . . . . . . . . 5−19  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−1  
6
7
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Socket Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−2  
Socket Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−3  
Socket Present-State Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−4  
Socket Force Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−5  
Socket Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−7  
Socket Power-Management Register . . . . . . . . . . . . . . . . . . . . . . . . . . 6−8  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−1  
7.1  
7.2  
7.3  
Absolute Maximum Ratings Over Operating Temperature Ranges . 7−1  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 7−2  
Electrical Characteristics Over Recommended Operating  
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−3  
7.4  
7.5  
PCI Clock/Reset Timing Requirements Over Recommended Ranges of  
Supply Voltage and Operating Free-Air Temperature . . . . . . . . . . . . . 7−3  
PCI Timing Requirements Over Recommended Ranges of Supply  
Voltage and Operating Free-Air Temperature . . . . . . . . . . . . . . . . . . . . 7−4  
8
Mechanical Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−1  
vi  
List of Illustrations  
Figure  
2−1  
2−2  
2−3  
3−1  
3−2  
3−3  
3−4  
3−5  
3−6  
3−7  
3−8  
3−9  
Title  
Page  
PCI1510 GGU-Package Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 2−1  
PCI1510 GVF-Package Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 2−2  
PCI1510 PGE-Package Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 2−3  
PCI1510 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
3-State Bidirectional Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
TPS2211A Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−5  
Zoomed Video Implementation Using the PCI1510 Controller . . . . . . . . . 3−5  
Zoomed Video Switching Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−6  
Sample Application of SPKROUT and CAUDPWM . . . . . . . . . . . . . . . . . . 3−8  
Two Sample LED Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−9  
Serial EEPROM Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−10  
Serial-Bus Start/Stop Conditions and Bit Transfers . . . . . . . . . . . . . . . . . . 3−10  
3−10 Serial-Bus Protocol Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−11  
3−11 Serial-Bus Protocol − Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−11  
3−12 Serial-Bus Protocol − Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−11  
3−13 EEPROM Interface Doubleword Data Collection . . . . . . . . . . . . . . . . . . . . 3−12  
3−14 IRQ Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−16  
3−15 Signal Diagram of Suspend Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−18  
3−16 RI_OUT Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−19  
3−17 Block Diagram of a Status/Enable Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−21  
5−1  
5−2  
6−1  
ExCA Register Access Through I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−1  
ExCA Register Access Through Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−1  
Accessing CardBus Socket Registers Through PCI Memory . . . . . . . . . . 6−1  
vii  
List of Tables  
Table  
Title  
Page  
2−1  
2−2  
2−3  
2−4  
Signal Names Sorted by PGE Terminal Number . . . . . . . . . . . . . . . . . . . . 2−4  
Signal Names Sorted by GGU Terminal Number . . . . . . . . . . . . . . . . . . . . 2−6  
Signal Names Sorted by GVF Terminal Number . . . . . . . . . . . . . . . . . . . . 2−8  
CardBus PC Card Signal Names Sorted Alphabetically to Device  
Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−11  
2−5  
16-Bit PC Card Signal Names Sorted Alphabetically to Device  
Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−13  
2−6  
2−7  
2−8  
2−9  
Power Supply Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−15  
PC Card Power Switch Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−15  
PCI System Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−16  
PCI Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−17  
2−10 PCI Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−18  
2−11 Multifunction and Miscellaneous Terminals . . . . . . . . . . . . . . . . . . . . . . . . . 2−19  
2−12 16-Bit PC Card Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . . . 2−20  
2−13 16-Bit PC Card Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . . . . 2−21  
2−14 CardBus PC Card Interface System Terminals . . . . . . . . . . . . . . . . . . . . . . 2−22  
2−15 CardBus PC Card Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . 2−23  
2−16 CardBus PC Card Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . 2−24  
3−1  
3−2  
3−3  
3−4  
3−5  
3−6  
3−7  
3−8  
3−9  
PC Card Card-Detect and Voltage-Sense Connections . . . . . . . . . . . . . . 3−4  
Zoomed-Video Card Interrogation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−7  
Integrated Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−7  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−9  
Register- and Bit-Loading Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−12  
PCI1510 Registers Used to Program Serial-Bus Devices . . . . . . . . . . . . . 3−13  
Interrupt Mask and Flag Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−14  
PC Card Interrupt Events and Description . . . . . . . . . . . . . . . . . . . . . . . . . . 3−14  
SMI Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−16  
3−10 Requirements for Internal/External 2.5-V Core Power Supply . . . . . . . . . 3−17  
3−11 Power-Management Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−20  
4−1  
4−2  
4−3  
4−4  
4−5  
4−6  
4−7  
4−8  
4−9  
PCI Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
Bit Field Access Tag Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−2  
Command Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−3  
Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−4  
Secondary Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−7  
Bridge Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−12  
System Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−14  
Multifunction Routing Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 4−16  
Retry Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−17  
viii  
Table  
Title  
Page  
4−10 Card Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−18  
4−11 Device Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−19  
4−12 Diagnostic Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−20  
4−13 Power-Management Capabilities Register Description . . . . . . . . . . . . . . . 4−21  
4−14 Power-Management Control/Status Register Description . . . . . . . . . . . . . 4−22  
4−15 Power-Management Control/Status Register Bridge Support Extensions  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−23  
4−16 General-Purpose Event Status Register Description . . . . . . . . . . . . . . . . . 4−24  
4−17 General-Purpose Event Enable Register Description . . . . . . . . . . . . . . . . 4−25  
4−18 General-Purpose Input Register Description . . . . . . . . . . . . . . . . . . . . . . . . 4−26  
4−19 General-Purpose Output Register Description . . . . . . . . . . . . . . . . . . . . . . 4−26  
4−20 Serial-Bus Data Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−27  
4−21 Serial-Bus Index Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−27  
4−22 Serial-Bus Slave Address Register Description . . . . . . . . . . . . . . . . . . . . . 4−28  
4−23 Serial-Bus Control and Status Register Description . . . . . . . . . . . . . . . . . . 4−29  
5−1  
5−2  
5−3  
5−4  
5−5  
5−6  
5−7  
5−8  
ExCA Registers and Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−2  
ExCA Identification and Revision Register Description . . . . . . . . . . . . . . . 5−4  
ExCA Interface Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . 5−5  
ExCA Power Control Register Description—82365SL Support . . . . . . . . 5−6  
ExCA Power Control Register Description—82365SL-DF Support . . . . . 5−7  
ExCA Interrupt and General Control Register Description . . . . . . . . . . . . 5−8  
ExCA Card Status-Change Register Description . . . . . . . . . . . . . . . . . . . . 5−9  
ExCA Card Status-Change Interrupt Configuration Register  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−10  
5−9  
ExCA Address Window Enable Register Description . . . . . . . . . . . . . . . . 5−11  
5−10 ExCA I/O Window Control Register Description . . . . . . . . . . . . . . . . . . . . . 5−12  
5−11 ExCA Memory Windows 0−4 Start-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−14  
5−12 ExCA Memory Windows 0−4 End-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−15  
5−13 ExCA Memory Windows 0−4 Offset-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−16  
5−14 ExCA Card Detect and General Control Register Description . . . . . . . . . 5−17  
5−15 ExCA Global Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 5−18  
6−1  
6−2  
6−3  
6−4  
6−5  
6−6  
6−7  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−1  
Socket Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−2  
Socket Mask Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−3  
Socket Present-State Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 6−4  
Socket Force Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 6−6  
Socket Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−7  
Socket Power-Management Register Description . . . . . . . . . . . . . . . . . . . 6−8  
ix  
x
1 Introduction  
1.1 Description  
The Texas Instruments PCI1510 device, a 144-terminal or a 209-terminal single-slot CardBus controller designed  
to meet the PCI Bus Power Management Interface Specification for PCI to CardBus Bridges, is an ultralow-power  
high-performance PCI-to-CardBus controller that supports a single PC card socket compliant with the PC Card  
Standard (rev. 7.2). The controller provides features that make it the best choice for bridging between PCI and PC  
Cards in both notebook and desktop computers. The PC Card Standard retains the 16-bit PC Card specification  
defined in the PCI Local Bus Specification and defines the 32-bit PC Card, CardBus, capable of full 32-bit data  
transfers at 33 MHz. The controller supports both 16-bit and CardBus PC Cards, powered at 5 V or 3.3 V, as required.  
The controller is compliant with the PCI Local Bus Specification, and its PCI interface can act as either a PCI master  
device or a PCI slave device. The PCI bus mastering is initiated during CardBus PC Card bridging transactions. The  
controller is also compliant with PCI Bus Power Management Interface Specification (rev. 1.1).  
All card signals are internally buffered to allow hot insertion and removal without external buffering. The controller  
is register-compatible with the Intel 82365SL-DF and 82365SL ExCA controllers. The controller internal data path  
logic allows the host to access 8-, 16-, and 32-bit cards using full 32-bit PCI cycles for maximum performance.  
Independent buffering and a pipeline architecture provide an unsurpassed performance level with sustained bursting.  
The controller can also be programmed to accept fast posted writes to improve system-bus utilization.  
Multiple system-interrupt signaling options are provided, including parallel PCI, parallel ISA, serialized ISA, and  
serialized PCI. Furthermore, general-purpose inputs and outputs are provided for the board designer to implement  
sideband functions. Many other features designed into the PCI1510 controller, such as a socket activity light-emitting  
diode (LED) outputs, are discussed in detail throughout this document.  
An advanced complementary metal-oxide semiconductor (CMOS) process achieves low system power consumption  
while operating at PCI clock rates up to 33 MHz. Several low-power modes enable the host power management  
system to further reduce power consumption.  
1.2 Features  
The controller supports the following features:  
A 144-terminal low-profile QFP (PGE), 144-terminal MicroStar BGAball-grid array (GGU/ZGU) package,  
or a 209-terminal PBGA (GVF/ZVF) package  
2.5-V core logic and 3.3-V I/O with universal PCI interfaces compatible with 3.3-V and 5-V PCI signaling  
environments  
Integrated low-dropout voltage regulator (LDO-VR) eliminates the need for an external 2.5-V power supply  
Mix-and-match 5-V/3.3-V 16-bit PC Cards and 3.3-V CardBus Cards  
A single PC Card or CardBus slot with hot insertion and removal  
Parallel interface to TI TPS2211A single-slot PC Card power switch  
Burst transfers to maximize data throughput with CardBus Cards  
Interrupt configurations: parallel PCI, serialized PCI, parallel ISA, and serialized ISA  
Serial EEPROM interface for loading subsystem ID, subsystem vendor ID, and other configuration registers  
Pipelined architecture for greater than 130-Mbps throughput from CardBus-to-PCI and from PCI-to-  
CardBus  
1−1  
 
Up to five general-purpose I/Os  
Programmable output select for CLKRUN  
Five PCI memory windows and two I/O windows available for the 16-bit interface  
Two I/O windows and two memory windows available to the CardBus socket  
Exchangeable-card-architecture- (ExCA-) compatible registers are mapped in memory and I/O space  
Intel82365SL-DF and 82365SL register compatible  
Ring indicate, SUSPEND, PCI CLKRUN, and CardBus CCLKRUN  
Socket activity LED terminal  
PCI bus lock (LOCK)  
Internal ring oscillator  
1.3 Related Documents  
Advanced Configuration and Power Interface (ACPI) Specification (revision 1.1)  
PCI Bus Power Management Interface Specification (revision 1.1)  
PCI Bus Power Management Interface Specification for PCI to CardBus Bridges (revision 0.6)  
PCI to PCMCIA CardBus Bridge Register Description (Yenta) (revision 2.1)  
PCI Local Bus Specification (revision 2.2)  
PCI Mobile Design Guide (revision 1.0)  
PC Card Standard (revision 7.2)  
Serialized IRQ Support for PCI Systems (revision 6)  
1.4 Trademarks  
Intel is a trademark of Intel Corporation.  
MicroStar BGA is a trademark of Texas Instruments.  
Other trademarks are the property of their respective owners.  
1.5 Document Conventions  
Throughout this data manual, several conventions are used to convey information. These conventions are listed  
below:  
1. To identify a binary number or field, a lower case b follows the numbers. For example: 000b is a 3-bit binary  
field.  
2. To identify a hexadecimal number or field, a lower case h follows the numbers. For example: 8AFh is a 12-bit  
hexadecimal field.  
3. All other numbers that appear in this document that do not have either a b or h following the number are  
assumed to be decimal format.  
4. If the signal or terminal name has a bar above the name (for example, GRST), then this indicates the logical  
NOT function. When asserted, this signal is a logic low, 0, or 0b.  
5. RSVD indicates that the referenced item is reserved.  
6. In Sections 4 through 6, the configuration space for the controller is defined. For each register bit, the  
software access method is identified in an access column. The legend for this access column includes the  
following entries:  
r – read-only access  
1−2  
 
ru – read-only access with updates by the controller internal hardware  
rw – read and write access  
rcu – read access with the option to clear an asserted bit with a write-back of 1b including updates by  
the controller internal hardware.  
1.6 Ordering Information  
ORDERING NUMBER  
PCI1510  
NAME  
VOLTAGE  
PACKAGE  
144-terminal LQFP  
PC Card controller  
3.3 V, 5-V tolerant I/Os  
144-ball PBGA (GGU or ZGU)  
209-ball PBGA (GVF or ZVF)  
1.7 PCI1510 Data Manual Document History  
DATE  
PAGE NUMBER  
REVISION  
01/2003  
01/2003  
01/2003  
01/2003  
2−23  
3−2  
Modified terminal number of CAD30 from 143 to 142 for PGE package  
Added new subsection 3.4.1 to describe GRST during power up  
3−11  
3−20  
Modified byte-read diagram (Figure 3−12) to better reflect a read transaction to the EEPROM  
Modified the description of the power management capabilities register. This register is not a static  
read-only register.  
08/2003  
08/2003  
08/2003  
10/2003  
10/2003  
10/2003  
10/2003  
07/2004  
12/2004  
1−3  
2−1  
8−4  
1−1  
1−3  
2−8  
8−2  
Added lead-free (Pb, atomic number 82) MicroStar BGApackage (ZGU) to ordering information  
Added description for ZGU package  
Added ZGU mechanical drawing  
Added GVF package to features  
Added GVF package to ordering information  
Added GVF terminal descriptions, Table 2−3  
Added GVF mechanical drawing.  
Chapters 1, 2, 8 Added RGVF, RZVF, and ZVF packages and pinout.  
Chapters 1, 2, 8 Removed RGVF and RZVF packages and pinout.  
Added Section 1.5, Document Conventions  
1−3  
 
1−4  
2 Terminal Descriptions  
The PCI1510 controller is available in five packages, a 144-terminal quad flatpack (PGE), two 144-terminal MicroStar  
BGApackages (GGU/ZGU), and two 209-terminal PBGA packages (GVF/ZVF). The GGU and ZGU packages are  
mechanically and electrically identical, but the ZGU is a lead-free (Pb, atomic number 82) design. Throughout the  
remainder of this manual, only the GGU package designator is used for either the GGU or ZGU package. The terminal  
layout for the GGU package is shown in Figure 2−1. The GVF and ZVF packages are mechanically and electrically  
identical, but the ZVF is a lead-free (Pb, atomic number 82) design. Throughout the remainder of this manual, only  
the GVF package designator is used for either the GVF or ZVF package. The terminal layout for the GVF package  
is shown in Figure 2−2. The terminal layout with signal names for the PGE package is shown in Figure 2−3.  
GGU PACKAGE  
(TOP VIEW)  
13  
12  
11  
10  
9
C
C
C
C
C
C
C
C
C
C
C
C
C
C
P
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
M
T
C
T
T
C
C
C
C
C
C
C
C
C
P
P
P
C
C
C
C
T
M
C
C
C
M
M
M
M
P
8
7
M
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
6
C
C
C
C
P
P
P
P
5
4
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
3
P
P
P
P
P
2
1
P
P
A
B
C
D
E
F
G
H
J
K
L
M
N
P
C
T
PCI Interface  
VCC  
PC Card Interface  
TPS Power Switch  
MFUNC Pins  
Ground (GND)  
Miscellaneous  
M
Figure 2−1. PCI1510 GGU-Package Terminal Diagram  
2−1  
 
GVF PACKAGE  
(TOP VIEW)  
C
C
C
C
C
N
N
N
N
N
N
N
N
N
N
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
C
C
C
C
C
C
C
C
C
C
N
N
C
C
C
N
N
N
N
N
N
N
P
C
C
C
C
C
C
C
C
N
N
T
C
C
C
C
C
C
C
C
N
N
T
C
C
C
C
C
C
C
C
N
N
M
C
C
C
C
C
C
C
C
C
C
N
N
N
N
N
N
N
N
N
N
N
P
P
P
P
N
N
N
N
N
N
P
P
P
P
P
N
N
N
N
N
N
P
P
P
P
P
C
C
C
C
C
C
C
N
T
N
N
N
N
N
P
P
P
P
C
C
C
8
P
7
N
T
M
M
M
P
P
P
P
P
P
P
P
P
P
6
N
P
P
5
4
N
M
M
M
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
3
P
P
2
N
P
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
P
PCI Interface  
VCC  
C
T
PC Card Interface  
TPS Power Switch  
MFUNC Pins  
Ground (GND)  
Miscellaneous  
No Connection  
N
M
Figure 2−2. PCI1510 GVF-Package Terminal Diagram  
2−2  
 
2.1 PCI1510 Terminal Assignments  
Figure 2−3 and Table 2−1 show the terminal assignments for the PGE package. Table 2−2 and Table 2−3 list the  
terminal assignments for the GGU and GVF packages, respectively. The signal names for the PC Card slot are given  
in a CardBus // 16-bit signal format. All tables are arranged in order by increasing terminal designator, which is  
numeric for the PGE package and alphanumeric for the other packages. Table 2−4 and Table 2−5 list the CardBus  
and 16-bit signal names, respectively, in alphanumerical order with the corresponding terminal numbers for each  
package.  
PGE PACKAGE  
(TOP VIEW)  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
VCCCB  
CIRDY//A15  
CFRAME//A23  
GND  
VPPD1  
VPPD0  
VCC  
109  
110  
111  
112  
113  
114  
MFUNC6  
MFUNC5  
MFUNC4  
GRST  
SUSPEND  
MFUNC3  
MFUNC2  
VR_PORT  
SPKROUT  
GND  
CC/BE2//A12  
CAD17//A24  
CAD18//A7  
115  
116  
CAD19//A25  
CVS2//VS2  
117  
118  
CAD20//A6  
CRST//RESET  
CAD21//A5  
119  
120  
121  
122  
CAD22//A4  
CREQ//INPACK  
CAD23//A3  
MFUNC1  
MFUNC0  
RI_OUT/PME  
AD0  
123  
124  
CC/BE3//REG  
VR_EN  
125  
126  
VCC  
AD1  
CAD24//A2  
VCC  
127  
128  
129  
130  
CAD25//A1  
53  
52  
AD2  
CAD26//A0  
AD3  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
CVS1//VS1  
AD4  
131  
132  
CINT//READY(IREQ)  
GND  
AD5  
AD6  
133  
134  
CSERR//WAIT  
CAUDIO//BVD2(SPKR)  
CSTSCHG//BVD1(STSCHG/RI)  
CCLKRUN//WP(IOIS16)  
VCC  
AD7  
C/BE0  
AD8  
135  
136  
137  
AD9  
AD10  
CCD2//CD2  
AD11  
138  
139  
CAD27//D0  
AD12  
140  
CAD28//D8  
AD13  
141  
142  
CAD29//D1  
GND  
CAD30//D9  
AD14  
143  
144  
CRSVD//D2  
AD15  
CAD31//D10  
C/BE1  
Figure 2−3. PCI1510 PGE-Package Terminal Diagram  
2−3  
 
Table 2−1. Signal Names Sorted by PGE Terminal Number  
SIGNAL NAME  
SIGNAL NAME  
TERMINAL  
TERMINAL  
CARDBUS  
16-BIT  
CARDBUS  
16-BIT  
1
REQ  
REQ  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
AD11  
AD10  
AD9  
AD8  
C/BE0  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD11  
AD10  
AD9  
AD8  
C/BE0  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
2
GNT  
GNT  
3
AD31  
AD30  
AD29  
AD28  
AD27  
GND  
AD26  
AD25  
AD24  
AD31  
AD30  
AD29  
AD28  
AD27  
GND  
AD26  
AD25  
AD24  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
V
CC  
V
CC  
V
CC  
V
CC  
C/BE3  
IDSEL  
AD23  
AD22  
AD21  
AD20  
PRST  
PCLK  
GND  
C/BE3  
IDSEL  
AD23  
AD22  
AD21  
AD20  
PRST  
PCLK  
GND  
AD1  
AD0  
AD1  
AD0  
RI_OUT/PME  
MFUNC0  
MFUNC1  
GND  
RI_OUT/PME  
MFUNC0  
MFUNC1  
GND  
SPKROUT  
VR_PORT  
MFUNC2  
MFUNC3  
SUSPEND  
GRST  
SPKROUT  
VR_PORT  
MFUNC2  
MFUNC3  
SUSPEND  
GRST  
AD19  
AD18  
AD17  
AD16  
C/BE2  
AD19  
AD18  
AD17  
AD16  
C/BE2  
FRAME  
IRDY  
MFUNC4  
MFUNC5  
MFUNC6  
MFUNC4  
MFUNC5  
MFUNC6  
FRAME  
IRDY  
V
CC  
V
CC  
TRDY  
TRDY  
DEVSEL  
STOP  
VPPD0  
VPPD1  
VCCD0  
VCCD1  
CCD1  
CAD0  
CAD2  
CAD1  
CAD4  
GND  
VPPD0  
VPPD1  
VCCD0  
VCCD1  
CD1  
D3  
DEVSEL  
STOP  
V
CC  
V
CC  
PERR  
SERR  
PAR  
PERR  
SERR  
PAR  
D11  
V
CCP  
V
CCP  
D4  
C/BE1  
AD15  
AD14  
GND  
C/BE1  
AD15  
AD14  
GND  
D12  
GND  
D5  
CAD3  
CAD6  
CAD5  
CRSVD  
D13  
AD13  
AD12  
AD13  
AD12  
D6  
D14  
2−4  
 
Table 2−1. Signal Names Sorted by PGE Terminal Number (Continued)  
SIGNAL NAME  
SIGNAL NAME  
TERMINAL  
TERMINAL  
CARDBUS  
CLK_48_RSVD  
CAD7  
16-BIT  
CARDBUS  
16-BIT  
85†  
86  
CLK_48_RSVD  
D7  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
CAD18  
CAD19  
CVS2  
A7  
A25  
87  
CAD8  
D15  
VS2  
A6  
88  
CC/BE0  
CAD9  
CE1  
A10  
CAD20  
CRST  
89  
RESET  
A5  
90  
CAD10  
CE2  
OE  
CAD21  
CAD22  
CREQ  
CAD23  
91  
CAD11  
A4  
92  
CAD12  
A11  
INPACK  
A3  
93  
GND  
GND  
IORD  
IOWR  
A9  
94  
CAD13  
CC/BE3  
VR_EN  
REG  
VR_EN  
95  
CAD15  
96  
CAD14  
V
V
CC  
CC  
97  
CAD16  
A17  
CAD24  
CAD25  
CAD26  
CVS1  
A2  
98  
CC/BE1  
CRSVD  
CPAR  
A8  
A1  
99  
A18  
A0  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
A13  
VS1  
CBLOCK  
CPERR  
CSTOP  
A19  
CINT  
READY(IREQ)  
GND  
A14  
GND  
A20  
CSERR  
CAUDIO  
CSTSCHG  
CCLKRUN  
WAIT  
V
CC  
V
CC  
BVD2(SPKR)  
BVD1(STSCHG/RI)  
WP(IOIS16)  
CGNT  
WE  
A21  
A16  
A22  
CDEVSEL  
CCLK  
V
CC  
V
CC  
CTRDY  
CCD2  
CD2  
D0  
V
V
CAD27  
CAD28  
CAD29  
CAD30  
CRSVD  
CAD31  
CCCB  
CCCB  
CIRDY  
CFRAME  
GND  
A15  
A23  
GND  
A12  
A24  
D8  
D1  
D9  
CC/BE2  
CAD17  
D2  
D10  
Terminal 85 is an NC on the PCI1510 to allow for terminal compatibility with the next generation of devices.  
2−5  
Table 2−2. Signal Names Sorted by GGU Terminal Number  
SIGNAL NAME  
SIGNAL NAME  
TERMINAL  
TERMINAL  
CARDBUS  
16-BIT  
CARDBUS  
16-BIT  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
C01  
C02  
C03  
C04  
C05  
C06  
C07  
C08  
C09  
C10  
C/BE3  
GND  
C/BE3  
GND  
D2  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
E01  
E02  
E03  
E04  
E10  
E11  
E12  
E13  
F01  
F02  
F03  
F04  
F10  
F11  
F12  
F13  
G01  
G02  
G03  
G04  
G10  
G11  
G12  
G13  
H01  
H02  
H03  
V
V
CC  
CC  
CAUDIO  
CAD25  
CRST  
BVD2(SPKR)  
A1  
CRSVD  
CAD27  
CCLKRUN  
CINT  
D0  
RESET  
A12  
WP(IOIS16)  
READY(IREQ)  
CC/BE2  
CAD23  
CDEVSEL  
CPERR  
CGNT  
A3  
V
CC  
V
CC  
A21  
CC/BE3  
CVS2  
REG  
VS2  
A23  
A14  
WE  
CFRAME  
GND  
V
CC  
V
CC  
GND  
A7  
AD25  
AD25  
AD31  
AD29  
A20  
CAD18  
CBLOCK  
AD27  
AD31  
A19  
AD29  
AD27  
VS1  
D10  
D9  
CSTOP  
CC/BE1  
CPAR  
CRSVD  
AD22  
CVS1  
A8  
CAD31  
CAD30  
CCD2  
A13  
A18  
CD2  
WAIT  
A2  
AD22  
IDSEL  
AD24  
AD26  
A17  
CSERR  
CAD24  
CREQ  
CAD19  
CAD17  
IDSEL  
AD24  
INPACK  
A25  
AD26  
CAD16  
CAD14  
CAD13  
GND  
A24  
A9  
V
V
IORD  
GND  
PCLK  
AD20  
PRST  
AD21  
OE  
CCCB  
CCCB  
CAD22  
CCLK  
A4  
A16  
PCLK  
AD20  
GNT  
GNT  
REQ  
REQ  
PRST  
AD21  
AD23  
AD23  
CAD29  
CAD28  
CSTSCHG  
CAD26  
CAD21  
CAD20  
CIRDY  
D1  
CAD11  
CAD9  
CAD12  
CAD10  
AD17  
D8  
A10  
BVD1(STSCHG/RI)  
A11  
A0  
CE2  
A5  
AD17  
AD19  
AD18  
A6  
AD19  
A15  
AD18  
C11  
C12  
C13  
D01  
D02  
D03  
D04  
CAD15  
CTRDY  
IOWR  
A22  
H04  
H10†  
H11  
H12  
H13  
J01  
GND  
GND  
CLK_48_RSVD  
CAD8  
CLK_48_RSVD  
D15  
V
CC  
V
CC  
GND  
GND  
CAD7  
D7  
AD28  
AD30  
VR_EN  
AD28  
AD30  
VR_EN  
CC/BE0  
FRAME  
C/BE2  
CE1  
FRAME  
C/BE2  
J02  
Terminal H10 is not bonded out in the packaged parts in order to have pin compatibility with future devices.  
2−6  
 
Table 2−2. Signal Names Sorted by GGU Terminal Number (Continued)  
SIGNAL NAME  
SIGNAL NAME  
TERMINAL  
TERMINAL  
CARDBUS  
16-BIT  
CARDBUS  
16-BIT  
J03  
J04  
J10  
J11  
TRDY  
AD16  
CAD5  
CAD4  
TRDY  
AD16  
D6  
L11  
L12  
GRST  
GRST  
VCCD1  
CD1  
VCCD1  
CCD1  
L13  
D12  
M01  
M02  
M03  
M04  
M05  
M06  
M07  
M08  
M09  
M10  
M11  
M12  
M13  
N01  
N02  
N03  
N04  
N05  
N06  
N07  
N08  
N09  
N10  
N11  
N12  
N13  
V
CC  
V
CC  
J12  
J13  
K01  
K02  
K03  
K04  
K05  
K06  
K07  
K08  
K09  
K10  
K11  
K12  
K13  
L01  
L02  
L03  
L04  
L05  
L06  
L07  
L08  
L09  
L10  
CRSVD  
CAD3  
D14  
AD9  
AD9  
D5  
C/BE1  
AD15  
C/BE1  
AD15  
AD10  
AD5  
IRDY  
IRDY  
DEVSEL  
PERR  
AD4  
DEVSEL  
PERR  
AD4  
AD10  
AD5  
AD1  
AD1  
AD13  
AD13  
C/BE0  
MFUNC0  
GND  
RI_OUT/PME  
SPKROUT  
MFUNC4  
VPPD1  
CAD2  
GND  
RI_OUT/PME  
SPKROUT  
MFUNC4  
VPPD1  
D11  
C/BE0  
MFUNC0  
GND  
VPPD0  
MFUNC3  
CAD0  
VPPD0  
MFUNC3  
D3  
GND  
PAR  
PAR  
CAD1  
D4  
GND  
GND  
CAD6  
D13  
AD12  
AD12  
STOP  
SERR  
STOP  
SERR  
AD8  
AD8  
AD7  
AD7  
V
CCP  
V
CCP  
AD3  
AD3  
AD11  
AD11  
AD14  
AD6  
V
CC  
V
CC  
AD14  
AD0  
AD0  
AD6  
MFUNC1  
SUSPEND  
MFUNC1  
SUSPEND  
AD2  
AD2  
VR_PORT  
MFUNC2  
MFUNC6  
VR_PORT  
MFUNC2  
MFUNC6  
V
CC  
V
CC  
MFUNC5  
VCCD0  
MFUNC5  
VCCD0  
2−7  
Table 2−3. Signal Names Sorted by GVF Terminal Number  
SIGNAL NAME  
SIGNAL NAME  
TERMINAL  
TERMINAL  
CARDBUS  
VPPD0  
16-BIT  
CARDBUS  
16-BIT  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
C05  
C06  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
D01  
D19  
E01  
E02  
E03  
E05  
E06  
VPPD0  
E07  
E08  
E09  
E10  
E11  
E12  
E13  
E14  
E17  
E18  
E19  
F01  
F02  
F03  
F05  
F06  
F07  
F08  
F09  
F10  
F11  
F12  
F13  
F14  
F15  
F17  
F18  
F19  
G01  
G02  
G03  
G05  
G06  
G14  
G15  
G17  
G18  
G19  
H01  
H02  
H03  
H05  
NC  
NC  
V
V
CAD31  
CAD28  
D10  
D8  
CC  
CC  
NC  
NC  
GND  
GND  
CSERR  
CAD25  
CAD21  
CAD18  
CTRDY  
CSTOP  
CBLOCK  
WAIT  
A1  
V
CC  
V
CC  
CSTSCHG  
GND  
BVD1(STSCHG/RI)  
GND  
A5  
A7  
V
V
A22  
A20  
A19  
CCCB  
CAD23  
CCCB  
A3  
V
CC  
V
CC  
CAD19  
GND  
A25  
V
CC  
V
CC  
GND  
A21  
MFUNC5  
MFUNC3  
MFUNC2  
MFUNC0  
NC  
MFUNC5  
MFUNC3  
MFUNC2  
MFUNC0  
NC  
CDEVSEL  
VCCD1  
NC  
VCCD1  
NC  
NC  
NC  
CAD29  
CCLKRUN  
CVS1  
CC/BE3  
CREQ  
CRST  
CAD17  
CFRAME  
VPPD1  
NC  
D1  
NC  
NC  
WP(IOIS16)  
VS1  
CRSVD  
CAD27  
CAUDIO  
CAD26  
CVS2  
D2  
D0  
REG  
INPACK  
RESET  
A24  
BVD2(SPKR)  
A0  
VS2  
CIRDY  
CPAR  
A15  
A23  
A13  
VPPD1  
NC  
CPERR  
CRSVD  
CAD16  
CAD14  
A14  
A18  
NC  
NC  
A17  
CAD30  
CCD2  
CINT  
D9  
A9  
CD2  
V
CC  
V
CC  
READY(IREQ)  
A2  
VR_PORT  
SUSPEND  
MFUNC4  
MFUNC1  
VR_PORT  
SUSPEND  
MFUNC4  
MFUNC1  
CAD24  
CAD22  
CAD20  
CC/BE2  
CCLK  
NC  
A4  
A6  
A12  
V
V
CCCB  
CCCB  
A16  
CC/BE1  
CAD15  
CAD13  
GND  
A8  
NC  
IOWR  
IORD  
GND  
CGNT  
GND  
WE  
GND  
SPKROUT  
NC  
SPKROUT  
NC  
PCLK  
PCLK  
GRST  
PRST  
VR_EN  
GRST  
PRST  
NC  
NC  
VCCD0  
VCCD0  
VR_EN  
Terminal F06 is not bonded out in the packaged parts in order to have pin compatibility with future devices.  
2−8  
 
Table 2−3. Signal Names Sorted by GVF Terminal Number (Continued)  
SIGNAL NAME  
SIGNAL NAME  
TERMINAL  
TERMINAL  
CARDBUS  
MFUNC6  
16-BIT  
MFUNC6  
CARDBUS  
16-BIT  
H06  
H14  
H15  
H17  
H18  
H19  
J01  
J02  
J03  
J05  
J06  
J14  
J15  
J17  
J18  
J19  
K01  
K02  
K03  
K05  
K06  
K14  
K15  
K17  
K18  
K19  
L01  
L02  
L03  
L05  
L06  
L14  
L15  
L17  
L18  
L19  
M01  
M02  
M03  
M05  
M06  
M14  
M15  
M17  
M18  
M19  
N01  
N02  
N03  
N05  
N06  
N14  
N15  
N17  
N18  
N19  
P01  
P02  
P03  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
P15  
P17  
P18  
P19  
R01  
R02  
R03  
R06  
R07  
R08  
R09  
R10  
R11  
R12  
R13  
R14  
R17  
NC  
NC  
CAD11  
CAD12  
CAD10  
CAD9  
OE  
NC  
NC  
A11  
CE2  
A10  
NC  
NC  
GND  
AD19  
AD18  
GND  
AD19  
AD18  
FRAME  
AD17  
NC  
V
CC  
V
CC  
GNT  
GNT  
REQ  
FRAME  
AD17  
NC  
REQ  
RI_OUT/PME  
AD31  
RI_OUT/PME  
AD31  
AD30  
D15  
NC  
NC  
AD30  
NC  
NC  
CAD8  
CC/BE0  
CAD7  
CRSVD  
CAD5  
GND  
NC  
NC  
CE1  
NC  
NC  
D7  
AD16  
C/BE2  
IRDY  
STOP  
TRDY  
AD14  
AD9  
NC  
AD16  
C/BE2  
IRDY  
STOP  
TRDY  
AD14  
AD9  
NC  
D14  
D6  
GND  
AD29  
AD28  
AD27  
AD26  
D13  
AD29  
AD28  
AD27  
AD26  
CAD6  
CAD3  
CAD4  
CAD1  
GND  
NC  
NC  
D5  
NC  
NC  
D12  
NC  
NC  
D4  
NC  
NC  
GND  
NC  
NC  
V
CCP  
V
CCP  
NC  
NC  
AD25  
AD25  
AD24  
IDSEL  
C/BE3  
D11  
NC  
NC  
AD24  
NC  
NC  
IDSEL  
C/BE3  
CAD2  
GND  
GND  
V
CC  
V
CC  
DEVSEL  
PERR  
AD15  
AD10  
AD6  
AD0  
NC  
DEVSEL  
PERR  
AD15  
AD10  
AD6  
AD0  
NC  
CAD0  
D3  
CCD1  
VR_PORT  
CD1  
VR_PORT  
V
V
V
V
CC  
CC  
CC  
CC  
AD23  
AD22  
AD20  
AD21  
NC  
AD23  
AD22  
AD20  
AD21  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
2−9  
Table 2−3. Signal Names Sorted by GVF Terminal Number (Continued)  
SIGNAL NAME  
SIGNAL NAME  
TERMINAL  
TERMINAL  
CARDBUS  
16-BIT  
CARDBUS  
16-BIT  
R18  
R19  
T01  
T19  
U05  
U06  
U07  
U08  
U09  
U10  
U11  
U12  
U13  
U14  
U15  
V05  
V06  
V07  
V08  
V09  
NC  
NC  
V10  
V11  
NC  
NC  
NC  
NC  
NC  
NC  
PAR  
NC  
NC  
NC  
NC  
NC  
NC  
PAR  
NC  
NC  
SERR  
NC  
SERR  
NC  
V12  
V13  
C/BE1  
AD12  
AD8  
AD5  
AD1  
NC  
C/BE1  
AD12  
AD8  
AD5  
AD1  
NC  
V14  
V15  
W04  
W05  
W06  
W07  
W08  
W09  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
V
CCP  
V
CCP  
GND  
AD7  
GND  
AD7  
NC  
NC  
V
CC  
V
CC  
NC  
NC  
AD3  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
AD3  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
AD13  
AD11  
C/BE0  
AD4  
AD2  
AD13  
AD11  
C/BE0  
AD4  
AD2  
2−10  
Table 2−4. CardBus PC Card Signal Names Sorted Alphabetically to Device Terminals  
TERMINAL  
GGU  
N08  
M07  
L07  
TERMINAL  
GGU  
G10  
G12  
F12  
F11  
SIGNAL NAME  
SIGNAL NAME  
PGE  
56  
55  
53  
52  
51  
50  
49  
48  
46  
45  
44  
43  
42  
41  
39  
38  
25  
24  
23  
22  
18  
17  
16  
15  
11  
10  
9
GVF  
R09  
U09  
V09  
W09  
V08  
U08  
R08  
W07  
U07  
P08  
R07  
V06  
U06  
V05  
P07  
R06  
P01  
N06  
N03  
N02  
M05  
M06  
M03  
M02  
L03  
L02  
K06  
K05  
K03  
K02  
J06  
PGE  
91  
GVF  
H14  
H15  
G18  
F19  
G17  
F18  
B14  
E13  
A14  
C13  
E12  
C12  
A12  
C11  
E11  
F11  
F09  
E09  
B08  
C08  
E08  
F10  
V07  
U05  
P02  
L06  
E18  
J15  
G15  
C14  
B11  
L17  
C09  
C15  
B09  
A16  
B15  
D19  
C10  
F13  
AD0  
CAD11  
AD1  
CAD12  
CAD13  
CAD14  
CAD15  
CAD16  
CAD17  
CAD18  
CAD19  
CAD20  
CAD21  
CAD22  
CAD23  
CAD24  
CAD25  
CAD26  
CAD27  
CAD28  
CAD29  
CAD30  
CAD31  
CAUDIO  
C/BE0  
92  
AD2  
94  
AD3  
N06  
K04  
M06  
L06  
96  
AD4  
95  
C11  
F10  
B10  
A12  
B09  
C09  
C08  
B12  
D10  
B07  
D07  
C07  
A04  
C05  
C04  
B04  
B03  
D06  
K06  
M03  
J02  
AD5  
97  
AD6  
114  
115  
116  
118  
120  
121  
123  
127  
128  
129  
139  
140  
141  
142  
144  
134  
47  
AD7  
N05  
N04  
M02  
M05  
L04  
AD8  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
CAD0  
CAD1  
CAD2  
CAD3  
CAD4  
CAD5  
CAD6  
CAD7  
CAD8  
CAD9  
N03  
K05  
L05  
M04  
J04  
H01  
H03  
H02  
G02  
G04  
F01  
C03  
F03  
E02  
F04  
B01  
D02  
E04  
D03  
E03  
K11  
C/BE1  
37  
C/BE2  
26  
C/BE3  
13  
A01  
A13  
H13  
E11  
CBLOCK  
CC/BE0  
CC/BE1  
CC/BE2  
CC/BE3  
CCD1  
101  
88  
7
6
98  
5
113  
124  
75  
D09  
A08  
L13  
4
3
J05  
76  
78  
77  
81  
79  
83  
82  
86  
87  
89  
90  
L15  
K18  
L14  
K15  
K17  
J19  
CCD2  
138  
107  
136  
106  
111  
105  
131  
110  
85  
B05  
B13  
A05  
D11  
A10  
D13  
A06  
C10  
H10  
E12  
D12  
K12  
M12  
J13  
CCLK  
CCLKRUN  
CDEVSEL  
CFRAME  
CGNT  
J11  
J10  
K13  
H12  
H11  
G11  
G13  
K14  
J17  
CINT  
CIRDY  
CLK_48_RSVD  
CPAR  
J14  
H18  
H17  
100  
102  
F14  
F15  
CAD10  
CPERR  
2−11  
 
Table 2−4. CardBus PC Card Signal Names Sorted Alphabetically to Device Terminals (Continued)  
TERMINAL  
GGU  
B08  
D08  
A03  
E13  
J12  
TERMINAL  
GGU  
M10  
N12  
L10  
SIGNAL NAME  
CREQ  
SIGNAL NAME  
MFUNC4  
PGE  
122  
119  
84  
GVF  
B12  
B13  
F08  
F17  
J18  
E10  
E17  
A09  
E14  
B10  
F12  
R02  
N05  
J01  
H02  
L05  
P03  
F05  
G06  
F03  
F02  
PGE  
67  
68  
69  
35  
20  
33  
19  
1
GVF  
G05  
F01  
CRST  
MFUNC5  
MFUNC6  
PAR  
CRSVD  
CRSVD  
CRSVD  
CSERR  
CSTOP  
CSTSCHG  
CTRDY  
CVS1  
H06  
W04  
H01  
R03  
H03  
J02  
99  
N01  
G01  
K03  
143  
133  
103  
135  
108  
130  
117  
30  
PCLK  
B06  
E10  
C06  
C12  
B02  
A09  
K02  
J01  
PERR  
PRST  
G03  
C02  
M08  
L02  
REQ  
RI_OUT/PME  
SERR  
57  
34  
61  
31  
65  
29  
73  
74  
71  
72  
125  
62  
J03  
T01  
CVS2  
SPKROUT  
STOP  
M09  
L01  
E02  
DEVSEL  
FRAME  
GNT  
P05  
27  
SUSPEND  
TRDY  
N10  
J03  
G03  
P06  
2
C01  
L11  
GRST  
66  
VCCD0  
VCCD1  
VPPD0  
VPPD1  
VR_EN  
VR_PORT  
N13  
L12  
E06  
IDSEL  
14  
F02  
B05  
IRDY  
28  
K01  
K07  
N09  
L09  
K09  
A04  
MFUNC0  
MFUNC1  
MFUNC2  
MFUNC3  
58  
M11  
D04  
L08  
C05  
H05  
G02, L18  
59  
63  
64  
K10  
2−12  
Table 2−5. 16-Bit PC Card Signal Names Sorted Alphabetically to Device Terminals  
TERMINAL  
GGU  
N08  
M07  
L07  
TERMINAL  
GGU  
G12  
D09  
E12  
D12  
C10  
B13  
F10  
E13  
A13  
E10  
D11  
C12  
A10  
B10  
B09  
C06  
D06  
K06  
M03  
J02  
SIGNAL NAME  
SIGNAL NAME  
PGE  
56  
55  
53  
52  
51  
50  
49  
48  
46  
45  
44  
43  
42  
41  
39  
38  
25  
24  
23  
22  
18  
17  
16  
15  
11  
GVF  
R09  
U09  
V09  
W09  
V08  
U08  
R08  
W07  
U07  
P08  
R07  
V06  
U06  
V05  
P07  
R06  
P01  
N06  
N03  
N02  
M05  
M06  
M03  
M02  
L03  
L02  
K06  
K05  
K03  
K02  
J06  
PGE  
92  
GVF  
H15  
C14  
F14  
F15  
F13  
C15  
F18  
F17  
E18  
E17  
A16  
E14  
B15  
B14  
A14  
A09  
F10  
V07  
U05  
P02  
L06  
L17  
C09  
J15  
H17  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
A0  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
113  
100  
102  
110  
107  
97  
N06  
K04  
M06  
L06  
N05  
N04  
M02  
M05  
L04  
99  
101  
103  
106  
108  
111  
114  
116  
135  
134  
47  
N03  
K05  
L05  
M04  
J04  
BVD1(STSCHG/RI)  
BVD2(SPKR)  
C/BE0  
C/BE1  
C/BE2  
C/BE3  
CD1  
H01  
H03  
H02  
G02  
G04  
F01  
C03  
F03  
E02  
F04  
B01  
D02  
E04  
D03  
E03  
C07  
D07  
B07  
D10  
B12  
C08  
C09  
A12  
E11  
37  
26  
13  
A01  
L13  
75  
CD2  
138  
88  
B05  
H13  
G13  
H10  
K02  
A04  
C04  
A03  
K11  
K12  
J13  
CE1  
CE2  
90  
10  
9
CLK_48_RSVD  
DEVSEL  
D0  
85  
30  
R02  
F09  
B08  
F08  
L15  
K18  
K15  
J19  
J17  
E09  
C08  
E08  
L14  
K17  
K14  
J18  
J14  
7
139  
141  
143  
76  
6
D1  
5
D2  
4
D3  
3
J05  
D4  
78  
129  
128  
127  
123  
121  
120  
118  
115  
98  
96  
89  
F11  
D5  
81  
A1  
E11  
C11  
A12  
C12  
E12  
C13  
E13  
G15  
F19  
H18  
D6  
83  
J10  
A2  
D7  
86  
H12  
C05  
B04  
B03  
M12  
J11  
A3  
D8  
140  
142  
144  
77  
A4  
D9  
A5  
D10  
A6  
D11  
A7  
D12  
79  
A8  
D13  
82  
K13  
J12  
A9  
F11  
D14  
84  
A10  
G11  
D15  
87  
H11  
2−13  
 
Table 2−5. 16-Bit PC Card Signal Names Sorted Alphabetically to Device Terminals (Continued)  
TERMINAL  
GGU  
J01  
TERMINAL  
GGU  
A08  
SIGNAL NAME  
FRAME  
SIGNAL NAME  
PGE  
27  
2
GVF  
N05  
J01  
PGE  
124  
1
GVF  
B11  
REG  
REQ  
GNT  
C01  
L11  
C02  
D08  
M08  
L02  
J02  
GRST  
66  
14  
122  
94  
95  
28  
58  
59  
63  
64  
67  
68  
69  
91  
35  
20  
33  
19  
131  
H02  
L05  
B12  
G18  
G17  
P03  
F05  
G06  
F03  
F02  
G05  
F01  
H06  
H14  
W04  
H01  
R03  
H03  
C10  
RESET  
RI_OUT/PME  
SERR  
119  
57  
B13  
J03  
IDSEL  
F02  
INPACK  
IORD  
B08  
F12  
34  
T01  
SPKROUT  
STOP  
61  
M09  
L01  
E02  
P05  
G03  
P06  
E06  
B05  
A04  
C05  
H05  
G02, L18  
B10  
F12  
IOWR  
C11  
31  
IRDY  
K01  
K07  
N09  
L09  
SUSPEND  
TRDY  
65  
N10  
J03  
MFUNC0  
MFUNC1  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
OE  
29  
VCCD0  
VCCD1  
VPPD0  
VPPD1  
VR_EN  
VR_PORT  
VS1  
73  
N13  
L12  
74  
K10  
M10  
N12  
L10  
71  
K09  
72  
M11  
D04  
L08  
125  
62  
G10  
N01  
G01  
K03  
G03  
A06  
130  
117  
133  
105  
136  
B02  
PAR  
VS2  
A09  
PCLK  
WAIT  
B06  
E10  
D19  
B09  
PERR  
WE  
D13  
A05  
PRST  
WP(IOIS16)  
READY(IREQ)  
2−14  
2.2 Terminal Descriptions  
The terminals are grouped in tables by functionality, such as PCI system function, power-supply function, etc. The  
terminal numbers are also listed for convenient reference.  
Table 2−6. Power Supply Terminals  
TERMINAL  
NUMBER  
GGU  
I/O  
DESCRIPTION  
NAME  
PGE  
GVF  
A07, A10, A15,  
E01, G19, K01,  
K19, N01, P19,  
W06  
8, 21, 40,  
60, 80, 93, F13, H04, K08,  
112, 132 M13, N02  
A02, A11, D01,  
GND  
Device ground terminals  
A05, A08, A13,  
E19, G01, H19,  
L19, M01, R01,  
W08  
12, 32, 54, A07, C13, D05,  
V
CC  
70, 104,  
126, 137  
E01, M01, N07,  
N11  
Power supply terminals for I/O and internal voltage regulator  
Clamp voltage for PC Card interface. Matches card signaling  
environment, 5 V or 3.3 V  
V
V
109  
B11  
A11, G14  
CCCB  
36  
L03  
D04  
L01, W05  
H05  
Clamp voltage for PCI and miscellaneous I/O, 5 V or 3.3 V  
Internal voltage regulator enable. Active-low  
CCP  
VR_EN  
125  
I
Internal voltage regulator input/output. When VR_EN is low, the  
regulator is enabled and this terminal is an output. An external  
bypass capacitor is required on this terminal. When VR_EN is high,  
the regulator is disabled and this terminal is an input for an external  
2.5-V core power source.  
VR_PORT  
62  
L08  
G02, L18  
Table 2−7. PC Card Power Switch Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PGE  
GGU  
GVF  
VCCD0  
VCCD1  
73  
74  
N13  
L12  
E06  
B05  
O
O
Logic controls to the TPS2211A PC Card power interface switch to control AVCC  
Logic controls to the TPS2211A PC Card power interface switch to control AVPP  
VPPD0  
VPPD1  
71  
72  
K09  
M11  
A04  
C05  
2−15  
 
Table 2−8. PCI System Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PGE  
GGU  
GVF  
Global reset. When the global reset is asserted, the GRST signal causes the controller to  
place all output buffers in a high-impedance state and reset all internal registers. When GRST  
is asserted, the device is completely in its default state. For systems that require wake-up  
from D3, GRST normally is asserted only during initial boot. PRST must be asserted following  
initial boot so that PME context is retained during the transition from D3 to D0.  
GRST  
66  
L11  
H02  
I
When the SUSPEND mode is enabled, the device is protected from GRST, and the internal  
registers are preserved. All outputs are placed in a high-impedance state.  
PCI bus clock. PCLK provides timing for all transactions on the PCI bus. All PCI signals are  
sampled at the rising edge of PCLK.  
PCLK  
PRST  
20  
19  
G01  
G03  
H01  
H03  
I
I
PCI bus reset. When the PCI bus reset is asserted, PRST causes the controller to place all  
output buffers in a high-impedance state and reset internal registers. When PRST is asserted,  
the device can generate the PME signal only if it is enabled. After PRST is deasserted, the  
controller is in a default state.  
When the SUSPEND mode is enabled, the device is protected from PRST, and the internal  
registers are preserved. All outputs are placed in a high-impedance state.  
2−16  
 
Table 2−9. PCI Address and Data Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PGE  
3
GGU  
E03  
D03  
E04  
D02  
B01  
F04  
E02  
F03  
C03  
F01  
G04  
G02  
H02  
H03  
H01  
J04  
GVF  
J05  
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
4
J06  
5
K02  
K03  
K05  
K06  
L02  
L03  
M02  
M03  
M06  
M05  
N02  
N03  
N06  
P01  
R06  
P07  
V05  
U06  
V06  
R04  
P08  
U07  
W07  
R08  
U08  
V08  
W09  
V09  
U09  
R09  
6
7
9
10  
11  
15  
16  
17  
18  
22  
23  
24  
25  
38  
39  
41  
42  
43  
44  
45  
46  
48  
49  
50  
51  
52  
53  
55  
56  
PCI address/data bus. These signals make up the multiplexed PCI address and data bus on the  
primary interface. During the address phase of a primary-bus PCI cycle, AD31–AD0 contain a  
32-bit address or other destination information. During the data phase, AD31–AD0 contain data.  
I/O  
M04  
L05  
K05  
N03  
L04  
M05  
M02  
N04  
N05  
L06  
M06  
K04  
N06  
L07  
M07  
N08  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
PCI-bus commands and byte enables. These signals are multiplexed on the same PCI  
terminals. During the address phase of a primary-bus PCI cycle, C/BE3–C/BE0 define the bus  
command. During the data phase, this 4-bit bus is used as a byte enable. The byte enable  
determines which byte paths of the full 32-bit data bus carry meaningful data. C/BE0 applies to  
byte 0 (AD7–AD0), C/BE1 applies to byte 1 (AD15–AD8), C/BE2 applies to byte 2  
(AD23–AD16), and C/BE3 applies to byte 3 (AD31–AD24).  
C/BE3  
C/BE2  
C/BE1  
C/BE0  
13  
26  
37  
47  
A01  
J02  
L06  
P02  
U05  
V07  
I/O  
I/O  
M03  
K06  
PCI-bus parity. In all PCI-bus read and write cycles, the controller calculates even parity across  
the AD31–AD0 and C/BE3–C/BE0 buses. As an initiator during PCI cycles, the controller outputs  
this parity indicator with a one-PCLK delay. As a target during PCI cycles, the controller  
compares its calculated parity to the parity indicator of the initiator. A compare error results in the  
assertion of a parity error (PERR).  
PAR  
35  
N01  
W04  
2−17  
 
Table 2−10. PCI Interface Control Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PGE  
GGU  
GVF  
PCI device select. The controller asserts DEVSEL to claim a PCI cycle as the target device.  
As a PCI initiator on the bus, the controller monitors DEVSEL until a target responds. If no  
target responds before timeout occurs, then the controller terminates the cycle with an initiator  
abort.  
DEVSEL  
30  
K02  
R02  
I/O  
I/O  
PCI cycle frame. FRAME is driven by the initiator of a bus cycle. FRAME is asserted to indicate  
that a bus transaction is beginning, and data transfers continue while this signal is asserted.  
When FRAME is deasserted, the PCI bus transaction is in the final data phase.  
FRAME  
27  
J01  
N05  
PCI bus grant. GNT is driven by the PCI bus arbiter to grant the controller access to the PCI  
bus after the current data transaction has completed. GNT may or may not follow a PCI bus  
request, depending on the PCI bus parking algorithm.  
GNT  
2
C01  
F02  
J01  
L05  
I
I
Initialization device select. IDSEL selects the controller during configuration space accesses.  
IDSEL can be connected to one of the upper 24 PCI address lines on the PCI bus.  
IDSEL  
14  
PCI initiator ready. IRDY indicates the ability of the PCI bus initiator to complete the current  
data phase of the transaction. A data phase is completed on a rising edge of PCLK where both  
IRDY and TRDY are asserted. Until IRDY and TRDY are both sampled asserted, wait states  
are inserted.  
IRDY  
28  
K01  
P03  
I/O  
PCI parity error indicator. PERR is driven by a PCI device to indicate that calculated parity  
does not match PAR when PERR is enabled through bit 6 of the command register (PCI offset  
04h, see Section 4.4).  
PERR  
REQ  
33  
1
K03  
C02  
R03  
J02  
I/O  
O
PCI bus request. REQ is asserted by the controller to request access to the PCI bus as an  
initiator.  
PCI system error. SERR is an output that is pulsed from the controller when enabled through  
bit 8 of the command register (PCI offset 04h, see Section 4.4) indicating a system error has  
occurred. The controller need not be the target of the PCI cycle to assert this signal. When  
SERR is enabled in the command register, this signal also pulses, indicating that an address  
parity error has occurred on a CardBus interface.  
SERR  
34  
L02  
T01  
O
PCI cycle stop signal. STOP is driven by a PCI target to request the initiator to stop the current  
PCI bus transaction. STOP is used for target disconnects and is commonly asserted by target  
devices that do not support burst data transfers.  
STOP  
TRDY  
31  
29  
L01  
J03  
P05  
P06  
I/O  
I/O  
PCI target ready. TRDY indicates the ability of the primary bus target to complete the current  
data phase of the transaction. A data phase is completed on a rising edge of PCLK when both  
IRDY and TRDY are asserted. Until both IRDY and TRDY are asserted, wait states are  
inserted.  
2−18  
 
Table 2−11. Multifunction and Miscellaneous Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PGE  
GGU  
GVF  
No connect. These terminals have no connection anywhere within the package.  
Terminals H10 on the GGU package and 85 on the PGE package will be used as a  
48-MHz clock input on future-generation devices.  
CLK_48_RSVD  
85  
H10  
Multifunction terminal 0. MFUNC0 can be configured as parallel PCI interrupt INTA,  
GPI0, GPO0, socket activity LED output, ZV switching output, CardBus audio PWM,  
GPE, or a parallel IRQ. See Section 4.30, Multifunction Routing Register, for  
configuration details.  
MFUNC0  
58  
59  
K07  
N09  
F05  
G06  
I/O  
I/O  
Multifunction terminal 1. MFUNC1 can be configured as GPI1, GPO1, socket activity  
LED output, D3_STAT, ZV switching output, CardBus audio PWM, GPE, or a parallel  
IRQ. See Section 4.30, Multifunction Routing Register, for configuration details.  
Serial data (SDA). When VCCD0 and VCCD1 are detected high after a global reset, the  
MFUNC1 terminal provides the SDA signaling for the serial bus interface. The  
two-terminal serial interface loads the subsystem identification and other register  
defaults from an EEPROM after a global reset. See Section 3.6.1, Serial Bus Interface  
Implementation, for details on other serial bus applications.  
MFUNC1  
MFUNC2  
Multifunction terminal 2. MFUNC2 can be configured as GPI2, GPO2, socket activity  
LED output, ZV switching output, CardBus audio PWM, GPE, RI_OUT, D3_STAT, or a  
parallel IRQ. See Section 4.30, Multifunction Routing Register, for configuration details.  
63  
64  
L09  
K10  
F03  
F02  
I/O  
I/O  
Multifunction terminal 3. MFUNC3 can be configured as a parallel IRQ or the serialized  
interrupt signal IRQSER. This terminal is IRQSER by default. See Section 4.30,  
Multifunction Routing Register, for configuration details.  
MFUNC3/  
IRQSER  
Multifunction terminal 4. MFUNC4 can be configured as PCI LOCK, GPI3, GPO3, socket  
activity LED output, ZV switching output, CardBus audio PWM, GPE, D3_STAT,  
RI_OUT, or a parallel IRQ. See Section 4.30, Multifunction Routing Register, for  
configuration details.  
MFUNC4  
MFUNC5  
67  
68  
M10  
N12  
G05  
F01  
I/O  
I/O  
Serial clock (SCL). When VCCD0 and VCCD1 are detected high after a global reset, the  
MFUNC4 terminal provides the SCL signaling for the serial bus interface. The  
two-terminal serial interface loads the subsystem identification and other register  
defaults from an EEPROM after a global reset. See Section 3.6.1, Serial Bus Interface  
Implementation, for details on other serial bus applications.  
Multifunction terminal 5. MFUNC5 can be configured as GPI4, GPO4, socket activity  
LED output, ZV switching output, CardBus audio PWM, D3_STAT, GPE, or a parallel  
IRQ. See Section 4.30, Multifunction Routing Register, for configuration details.  
MFUNC6/  
CLKRUN  
Multifunction terminal 6. MFUNC6 can be configured as a PCI CLKRUN or a parallel  
IRQ. See Section 4.30, Multifunction Routing Register, for configuration details.  
69  
57  
L10  
H06  
J03  
I/O  
O
Ring indicate out and power management event output. Terminal provides an output for  
ring- indicate or PME signals.  
RI_OUT / PME  
SPKROUT  
M08  
Speaker output. SPKROUT is the output to the host system that can carry SPKR or  
CAUDIO through the controller from the PC Card interface. SPKROUT is driven as the  
exclusive-OR combination of card SPKR//CAUDIO inputs.  
61  
65  
M09  
N10  
E02  
G03  
O
I
Suspend. SUSPEND protects the internal registers from clearing when the GRST or  
PRST signal is asserted. See Section 3.8.5, Suspend Mode, for details.  
SUSPEND  
2−19  
 
Table 2−12. 16-Bit PC Card Address and Data Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PGE  
116  
114  
111  
108  
106  
103  
101  
99  
GGU  
B09  
B10  
A10  
C12  
D11  
E10  
A13  
E13  
F10  
B13  
C10  
D12  
E12  
D09  
G12  
G11  
F11  
E11  
A12  
C09  
C08  
B12  
D10  
B07  
D07  
C07  
H11  
J12  
GVF  
A14  
B14  
B15  
E14  
A16  
E17  
E18  
F17  
F18  
C15  
F13  
F15  
F14  
C14  
H15  
H18  
F19  
G15  
E13  
C13  
E12  
C12  
A12  
C11  
E11  
F11  
J14  
J18  
K14  
K17  
L14  
E08  
C08  
E09  
J17  
J19  
K15  
K18  
L15  
F08  
B08  
F09  
A25  
A24  
A23  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
97  
107  
110  
102  
100  
113  
92  
O
PC Card address. 16-bit PC Card address lines. A25 is the most significant bit.  
89  
96  
A8  
98  
A7  
115  
118  
120  
121  
123  
127  
128  
129  
87  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
84  
82  
K13  
J11  
79  
77  
M12  
B03  
B04  
C05  
H12  
J10  
144  
142  
140  
86  
D8  
I/O  
PC Card data. 16-bit PC Card data lines. D15 is the most significant bit.  
D7  
D6  
83  
D5  
81  
J13  
D4  
78  
K12  
K11  
A03  
C04  
A04  
D3  
76  
D2  
143  
141  
139  
D1  
D0  
2−20  
 
Table 2−13. 16-Bit PC Card Interface Control Terminals  
TERMINAL  
NUMBER  
PGE GGU GVF  
I/O  
DESCRIPTION  
NAME  
Battery voltage detect 1. BVD1 is generated by 16-bit memory PC Cards that include  
batteries. BVD1 is used with BVD2 as an indication of the condition of the batteries on a  
memory PC Card. Both BVD1 and BVD2 are high when the battery is good. When BVD2 is  
low and BVD1 is high, the battery is weak and should be replaced. When BVD1 is low, the  
battery is no longer serviceable and the data in the memory PC Card is lost. See Section 5.6,  
ExCA Card Status-Change Interrupt Configuration Register, for enable bits. See Section 5.5,  
ExCA Card Status-Change Register, and Section 5.2, ExCA Interface Status Register, for the  
status bits for this signal.  
BVD1  
(STSCHG/RI)  
135  
C06  
A09  
I
Status change. STSCHG is used to alert the system to a change in the READY, write protect,  
or battery voltage dead condition of a 16-bit I/O PC Card.  
Ring indicate. RI is used by 16-bit modem cards to indicate a ring detection.  
Battery voltage detect 2. BVD2 is generated by 16-bit memory PC Cards that include  
batteries. BVD2 is used with BVD1 as an indication of the condition of the batteries on a  
memory PC Card. Both BVD1 and BVD2 are high when the battery is good. When BVD2 is  
low and BVD1 is high, the battery is weak and should be replaced. When BVD1 is low, the  
battery is no longer serviceable and the data in the memory PC Card is lost. See Section 5.6,  
ExCA Card Status-Change Interrupt Configuration Register, for enable bits. See Section 5.5,  
ExCA Card Status-Change Register, and Section 5.2, ExCA Interface Status Register, for the  
status bits for this signal.  
BVD2(SPKR)  
134  
D06  
F10  
I
Speaker. SPKR is an optional binary audio signal available only when the card and socket  
have been configured for the 16-bit I/O interface.  
Card detect 1 and card detect 2. CD1 and CD2 are internally connected to ground on the PC  
Card. When a PC Card is inserted into a socket, CD1 and CD2 are pulled low. For signal  
status, see Section 5.2, ExCA Interface Status Register.  
CD1  
CD2  
75  
L13  
B05  
L17  
C09  
I
138  
Card enable 1 and card enable 2. CE1 and CE2 enable even- and odd-numbered address  
bytes. CE1 enables even-numbered address bytes, and CE2 enables odd-numbered  
address bytes.  
CE1  
CE2  
88  
90  
H13  
J15  
O
G13 H17  
Input acknowledge. INPACK is asserted by the PC Card when it can respond to an I/O read  
cycle at the current address.  
INPACK  
IORD  
IOWR  
OE  
122  
94  
B08  
F12  
C11  
B12  
G18  
G17  
I
I/O read. IORD is asserted by the controller to enable 16-bit I/O PC Card data output during  
host I/O read cycles.  
O
O
O
I/O write. IOWR is driven low by the controller to strobe write data into 16-bit I/O PC Cards  
during host I/O write cycles.  
95  
Output enable. OE is driven low by the controller to enable 16-bit memory PC Card data  
output during host memory read cycles.  
91  
G10 H14  
Ready. The ready function is provided by READY when the 16-bit PC Card and the host  
socket are configured for the memory-only interface. READY is driven low by the 16-bit  
memory PC Cards to indicate that the memory card circuits are busy processing a previous  
write command. READY is driven high when the 16-bit memory PC Card is ready to accept a  
new data transfer command.  
READY  
(IREQ)  
131  
A06  
C10  
I
Interrupt request. IREQ is asserted by a 16-bit I/O PC Card to indicate to the host that a  
device on the 16-bit I/O PC Card requires service by the host software. IREQ is high  
(deasserted) when no interrupt is requested.  
Attribute memory select. REG remains high for all common memory accesses. When REG is  
asserted, access is limited to attribute memory (OE or WE active) and to the I/O space  
(IORD or IOWR active). Attribute memory is a separately accessed section of card memory  
and is generally used to record card capacity and other configuration and attribute  
information.  
REG  
124  
119  
A08  
D08  
B11  
B13  
O
O
RESET  
PC Card reset. RESET forces a hard reset to a 16-bit PC Card.  
2−21  
 
Table 2−13. 16-Bit PC Card Interface Control Terminals (Continued)  
TERMINAL  
NUMBER  
PGE GGU GVF  
I/O  
DESCRIPTION  
NAME  
VS1  
130  
117  
B02  
A09  
B10  
F12  
Voltage sense 1 and voltage sense 2. VS1 and VS2, when used in conjunction with each other,  
determine the operating voltage of the PC Card.  
I/O  
VS2  
Bus cycle wait. WAIT is driven by a 16-bit PC Card to extend the completion of the memory or  
I/O in progress.  
WAIT  
133  
105  
B06  
D13  
E10  
D19  
I
Write enable. WE is used to strobe memory write data into 16-bit memory PC Cards. WE is also  
used for memory PC Cards that employ programmable memory technologies.  
WE  
O
Write protect. WP applies to 16-bit memory PC Cards. WP reflects the status of the write-protect  
switch on 16-bit memory PC Cards. For 16-bit I/O cards, WP is used for the 16-bit port (IOIS16)  
function.  
WP  
(IOIS16)  
136  
A05  
B09  
I
I/O is 16 bits. IOIS16 applies to 16-bit I/O PC Cards. IOIS16 is asserted by the 16-bit PC Card  
when the address on the bus corresponds to an address to which the 16-bit PC Card responds,  
and the I/O port that is addressed is capable of 16-bit accesses.  
Table 2−14. CardBus PC Card Interface System Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PGE  
GGU  
GVF  
CardBus clock. CCLK provides synchronous timing for all transactions on the CardBus  
interface. All signals except CRST, CCLKRUN, CINT, CSTSCHG, CAUDIO, CCD2, CCD1,  
CVS2, and CVS1 are sampled on the rising edge of CCLK, and all timing parameters are  
defined with the rising edge of this signal. CCLK operates at the PCI bus clock frequency, but  
it can be stopped in the low state or slowed down for power savings.  
CCLK  
107  
B13  
C15  
O
CardBus clock run. CCLKRUN is used by a CardBus PC Card to request an increase in the  
CCLK frequency, and by the controller to indicate that the CCLK frequency is going to be  
decreased.  
CCLKRUN  
CRST  
136  
119  
A05  
D08  
B09  
B13  
I/O  
O
CardBus reset. CRST brings CardBus PC Card-specific registers, sequencers, and signals  
to a known state. When CRST is asserted, all CardBus PC Card signals are placed in a  
high-impedance state, and the controller drives these signals to a valid logic level. Assertion  
can be asynchronous to CCLK, but deassertion must be synchronous to CCLK.  
2−22  
 
Table 2−15. CardBus PC Card Address and Data Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PGE  
144  
142  
141  
140  
139  
129  
128  
127  
123  
121  
120  
118  
116  
115  
114  
97  
GGU  
B03  
B04  
C04  
C05  
A04  
C07  
D07  
B07  
D10  
B12  
C08  
C09  
B09  
A12  
B10  
F10  
C11  
F11  
F12  
G12  
G10  
G13  
G11  
H11  
H12  
K13  
J10  
GVF  
E08  
C08  
B08  
E09  
F09  
F11  
E11  
C11  
A12  
C12  
E12  
C13  
A14  
E13  
B14  
F18  
G17  
F19  
G18  
H15  
H14  
H17  
H18  
J14  
J17  
K14  
J19  
K17  
K15  
L14  
K18  
L15  
CAD31  
CAD30  
CAD29  
CAD28  
CAD27  
CAD26  
CAD25  
CAD24  
CAD23  
CAD22  
CAD21  
CAD20  
CAD19  
CAD18  
CAD17  
CAD16  
CAD15  
CAD14  
CAD13  
CAD12  
CAD11  
CAD10  
CAD9  
CardBus address and data. These signals make up the multiplexed CardBus address and data  
bus on the CardBus interface. During the address phase of a CardBus cycle, CAD31–CAD0  
contain a 32-bit address. During the data phase of a CardBus cycle, CAD31–CAD0 contain  
data. CAD31 is the most significant bit.  
I/O  
95  
96  
94  
92  
91  
90  
89  
CAD8  
87  
CAD7  
86  
CAD6  
82  
CAD5  
83  
CAD4  
79  
J11  
CAD3  
81  
J13  
CAD2  
77  
M12  
K12  
K11  
CAD1  
78  
CAD0  
76  
CardBus bus commands and byte enables. CC/BE3–CC/BE0 are multiplexed on the same  
CardBus terminals. During the address phase of a CardBus cycle, CC/BE3–CC/BE0 define the  
bus command. During the data phase, this 4-bit bus is used as a byte enable. The byte enable  
determines which byte paths of the full 32-bit data bus carry meaningful data. CC/BE0 applies  
to byte 0 (CAD7–CAD0), CC/BE1 applies to byte 1 (CAD15–CAD8), CC/BE2 applies to byte 2  
(CAD23–CAD16), and CC/BE3 applies to byte (CAD31–CAD24).  
CC/BE3  
CC/BE2  
CC/BE1  
CC/BE0  
124  
113  
98  
A08  
D09  
E11  
H13  
B11  
C14  
G15  
J15  
I/O  
I/O  
88  
CardBus parity. In all CardBus read and write cycles, the controller calculates even parity  
across the CAD and CC/BE buses. As an initiator during CardBus cycles, the controller outputs  
CPAR with a one-CCLK delay. As a target during CardBus cycles, the controller compares its  
calculated parity to the parity indicator of the initiator; a compare error results in a parity error  
assertion.  
CPAR  
100  
E12  
F14  
2−23  
 
Table 2−16. CardBus PC Card Interface Control Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PGE  
134  
101  
GGU  
D06  
A13  
GVF  
F10  
E18  
CardBus audio. CAUDIO is a digital input signal from a PC Card to the system speaker. The  
controller supports the binary audio mode and outputs a binary signal from the card to  
SPKROUT.  
CAUDIO  
CBLOCK  
I
I/O CardBus lock. CBLOCK is used to gain exclusive access to a target.  
CardBus detect 1 and CardBus detect 2. CCD1 and CCD2 are used in conjunction with  
CVS1 and CVS2 to identify card insertion and interrogate cards to determine the operating  
voltage and card type.  
CCD1  
CCD2  
75  
L13  
B05  
L17  
C09  
I
138  
CardBus device select. The controller asserts CDEVSEL to claim a CardBus cycle as the  
target device. As a CardBus initiator on the bus, the controller monitors CDEVSEL until a  
target responds. If no target responds before timeout occurs, then the controller terminates  
the cycle with an initiator abort.  
CDEVSEL  
CFRAME  
106  
111  
D11  
A10  
A16  
B15  
I/O  
CardBus cycle frame. CFRAME is driven by the initiator of a CardBus bus cycle. CFRAME  
is asserted to indicate that a bus transaction is beginning, and data transfers continue while  
this signal is asserted.  
I/O  
When CFRAME is deasserted, the CardBus bus transaction is in the final data phase.  
CardBus bus grant. CGNT is driven by the controller to grant a CardBus PC Card access to  
the CardBus bus after the current data transaction has been completed.  
CGNT  
CINT  
105  
131  
D13  
A06  
D19  
C10  
O
I
CardBus interrupt. CINT is asserted low by a CardBus PC Card to request interrupt  
servicing from the host.  
CardBus initiator ready. CIRDY indicates the ability of the CardBus initiator to complete the  
current data phase of the transaction. A data phase is completed on a rising edge of CCLK  
when both CIRDY and CTRDY are asserted. Until CIRDY and CTRDY are both sampled  
asserted, wait states are inserted.  
CIRDY  
110  
C10  
F13  
I/O  
CardBus parity error. CPERR reports parity errors during CardBus transactions, except  
CPERR  
CREQ  
102  
122  
D12  
B08  
F15  
B12  
I/O during special cycles. It is driven low by a target two clocks following the data cycle during  
which a parity error is detected.  
CardBus request. CREQ indicates to the arbiter that the CardBus PC Card desires use of  
I
the CardBus bus as an initiator.  
CardBus system error. CSERR reports address parity errors and other system errors that  
could lead to catastrophic results. CSERR is driven by the card synchronous to CCLK, but  
deasserted by a weak pullup; deassertion may take several CCLK periods. The controller  
CSERR  
133  
B06  
E10  
I
can report CSERR to the system by assertion of SERR on the PCI interface.  
CardBus stop. CSTOP is driven by a CardBus target to request the initiator to stop the  
I/O current CardBus transaction. CSTOP is used for target disconnects, and is commonly  
asserted by target devices that do not support burst data transfers.  
CSTOP  
103  
135  
108  
E10  
C06  
C12  
E17  
A09  
E14  
CardBus status change. CSTSCHG alerts the system to a change in the card status, and is  
used as a wake-up mechanism.  
CSTSCHG  
CTRDY  
I
CardBus target ready. CTRDY indicates the ability of the CardBus target to complete the  
I/O current data phase of the transaction. A data phase is completed on a rising edge of CCLK,  
when both CIRDY and CTRDY are asserted; until this time, wait states are inserted.  
CardBus voltage sense 1 and CardBus voltage sense 2. CVS1 and CVS2 are used in  
I/O conjunction with CCD1 and CCD2 to identify card insertion and interrogate cards to  
determine the operating voltage and card type.  
CVS1  
CVS2  
130  
117  
B02  
A09  
B10  
F12  
2−24  
 
3 Feature/Protocol Descriptions  
The following sections give an overview of the PCI1510 controller. Figure 3−1 shows a simplified block diagram of  
the controller. The PCI interface includes all address/data and control signals for PCI protocol. The interrupt interface  
includes terminals for parallel PCI, parallel ISA, and serialized PCI and ISA signaling. Miscellaneous system interface  
terminals include multifunction terminals: SUSPEND, RI_OUT/PME (power-management control signal), and  
SPKROUT.  
PCI Bus  
INTA  
Interrupt  
Activity LED  
Controller  
TPS2211A  
Power  
Switch  
PCI950  
IRQSER  
Deserializer  
IRQSER  
3
PCI1510  
IRQ2−15  
4
PC Card  
Socket  
68  
Zoomed Video  
19  
VGA  
Controller  
23  
Multiplexer  
Zoomed Video  
4
Audio  
Subsystem  
External ZV Port  
NOTE: The PC Card interface is 68 terminals for CardBus and 16-bit PC Cards. In ZV mode, 23 terminals are used for routing the ZV signals  
to the VGA controller and audio subsystem.  
Figure 3−1. PCI1510 Simplified Block Diagram  
3.1 Power Supply Sequencing  
The controller contains 3.3-V I/O buffers with 5-V tolerance requiring an I/O power supply and an LDO-VR power  
supply for core logic. The core power supply, which is always 2.5 V, can be supplied through the VR_PORT terminal  
(when VR_EN is high) or from the integrated LDO-VR. The LDO-VR needs a 3.3-V power supply via the V  
CC  
terminals. The clamping voltages (V  
and V  
) can be either 3.3 V or 5 V, depending on the interface. The  
CCCB  
CCP  
following power-up and power-down sequences are recommended.  
The power-up sequence is:  
1. Assert GRST to the device to disable the outputs during power up. Output drivers must be powered up in  
the high-impedance state to prevent high current levels through the clamp diodes to the 5-V clamping rails  
(V  
and V  
).  
CCCB  
CCP  
2. Apply 3.3-V power to V  
.
CC  
3. Apply the clamp voltage.  
The power-down sequence is:  
1. Assert GRST to the device to disable the outputs during power down. Output drivers must be powered down  
in the high-impedance state to prevent high current levels through the clamp diodes to the 5-V clamping  
rails (V  
and V  
).  
CCCB  
CCP  
3−1  
 
2. Remove the clamp voltage.  
3. Remove the 3.3-V power from V  
.
CC  
NOTE: The clamp voltage can be ramped up or ramped down along with the 3.3-V power. The  
voltage difference between V and the clamp voltage must remain within 3.6 V.  
CC  
3.2 I/O Characteristics  
Figure 3−2 shows a 3-state bidirectional buffer. Section 7.2, Recommended Operating Conditions, provides the  
electrical characteristics of the inputs and outputs.  
NOTE: The controller meets the ac specifications of the PC Card Standard and PCI Local Bus  
Specification.  
V
CCP  
Tied for Open Drain  
OE  
Pad  
Figure 3−2. 3-State Bidirectional Buffer  
NOTE: Unused terminals (input or I/O) must be held high or low to prevent them from floating.  
3.3 Clamping Voltages  
The clamping voltages are set to match whatever external environment the controller is interfaced with, 3.3 V or 5 V.  
The I/O sites can be pulled through a clamping diode to a voltage rail that protects the core from external signals.  
The core power supply is always 3.3 V and is independent of the clamping voltages. For example, PCI signaling can  
be either 3.3 V or 5 V, and the controller must reliably accommodate both voltage levels. This is accomplished by  
using a 3.3-V I/O buffer that is 5-V tolerant, with the applicable clamping voltage applied. If a system designer desires  
a 5-V PCI bus, then V  
can be connected to a 5-V power supply.  
CCP  
The controller requires three separate clamping voltages because it supports a wide range of features. The three  
voltages are listed and defined in Section 7.2, Recommended Operating Conditions. GRST, SUSPEND, PME, and  
CSTSCHG are not clamped to any of them.  
3.4 Peripheral Component Interconnect (PCI) Interface  
The controller is fully compliant with the PCI Local Bus Specification. The controller provides all required signals for  
PCI master or slave operation, and may operate in either a 5-V or 3.3-V signaling environment by connecting the V  
CCP  
terminal to the desired voltage level. In addition to the mandatory PCI signals, the controller provides the optional  
interrupt signal INTA.  
3.4.1 PCI GRST Signal  
During the power-up sequence, GRST and PRST must be asserted. GRST can only be deasserted 100 µs after PCLK  
is stable. PRST can be deasserted at the same time as GRST or any time thereafter.  
3−2  
 
3.4.2 PCI Bus Lock (LOCK)  
The bus-locking protocol defined in the PCI Local Bus Specification is not highly recommended, but is provided on  
the controller as an additional compatibility feature. The PCI LOCK signal can be routed to the MFUNC4 terminal by  
setting the appropriate values in bits 19−16 of the multifunction routing register. See Section 4.30, Multifunction  
Routing Register, for details. Note that the use of LOCK is only supported by PCI-to-CardBus bridges in the  
downstream direction (away from the processor).  
PCI LOCK indicates an atomic operation that may require multiple transactions to complete. When LOCK is asserted,  
nonexclusive transactions can proceed to an address that is not currently locked. A grant to start a transaction on  
the PCI bus does not guarantee control of LOCK; control of LOCK is obtained under its own protocol. It is possible  
for different initiators to use the PCI bus while a single master retains ownership of LOCK. Note that the CardBus  
signal for this protocol is CBLOCK to avoid confusion with the bus clock.  
An agent may need to do an exclusive operation because a critical access to memory might be broken into several  
transactions, but the master wants exclusive rights to a region of memory. The granularity of the lock is defined by  
PCI to be 16 bytes, aligned. The LOCK protocol defined by the PCI Local Bus Specification allows a resource lock  
without interfering with nonexclusive real-time data transfer, such as video.  
The PCI bus arbiter may be designed to support only complete bus locks using the LOCK protocol. In this scenario,  
the arbiter does not grant the bus to any other agent (other than the LOCK master) while LOCK is asserted. A  
complete bus lock may have a significant impact on the performance of the video. The arbiter that supports complete  
bus lock must grant the bus to the cache to perform a writeback due to a snoop to a modified line when a locked  
operation is in progress.  
The controller supports all LOCK protocol associated with PCI-to-PCI bridges, as also defined for PCI-to-CardBus  
bridges. This includes disabling write posting while a locked operation is in progress, which can solve a potential  
deadlock when using devices such as PCI-to-PCI bridges. The potential deadlock can occur if a CardBus target  
supports delayed transactions and blocks access to the target until it completes a delayed read. This target  
characteristic is prohibited by the PCI Local Bus Specification, and the issue is resolved by the PCI master using  
LOCK.  
3.4.3 Loading Subsystem Identification  
The subsystem vendor ID register (PCI offset 40h, see Section 4.26) and subsystem ID register (PCI offset 42h, see  
Section 4.27) make up a doubleword of PCI configuration space for function 0. This doubleword register is used for  
system and option card (mobile dock) identification purposes and is required by some operating systems.  
Implementation of this unique identifier register is a PC 99/PC 2001 requirement.  
The controller offers two mechanisms to load a read-only value into the subsystem registers. The first mechanism  
relies upon the system BIOS providing the subsystem ID value. The default access mode to the subsystem registers  
is read-only, but can be made read/write by clearing bit 5 (SUBSYSRW) in the system control register (PCI offset 80h,  
see Section 4.29). Once this bit is cleared, the BIOS can write a subsystem identification value into the registers at  
PCI offset 40h. The BIOS must set the SUBSYSRW bit such that the subsystem vendor ID register and subsystem  
ID register is limited to read-only access. This approach saves the added cost of implementing the serial electrically  
erasable programmable ROM (EEPROM).  
In some conditions, such as in a docking environment, the subsystem vendor ID register and subsystem ID register  
must be loaded with a unique identifier via a serial EEPROM. The controller loads the data from the serial EEPROM  
after a reset of the primary bus. Note that the SUSPEND input gates the PCI reset from the entire core, including the  
serial-bus state machine (see Section 3.8.5, Suspend Mode, for details on using SUSPEND).  
The controller provides a two-line serial-bus host controller that can interface to a serial EEPROM. See Section 3.6,  
Serial-Bus Interface, for details on the two-wire serial-bus controller and applications.  
3−3  
 
3.5 PC Card Applications  
This section describes the PC Card interfaces of the controller.  
Card insertion/removal and recognition  
Zoomed video support  
Speaker and audio applications  
LED socket activity indicators  
CardBus socket registers  
3.5.1 PC Card Insertion/Removal and Recognition  
The PC Card Standard (release 7.2) addresses the card-detection and recognition process through an interrogation  
procedure that the socket must initiate on card insertion into a cold, nonpowered socket. Through this interrogation,  
card voltage requirements and interface (16-bit versus CardBus) are determined.  
The scheme uses the card-detect and voltage-sense signals. The configuration of these four terminals identifies the  
card type and voltage requirements of the PC Card interface. The encoding scheme is defined in the PC Card  
Standard (release 7.2) and in Table 3−1.  
Table 3−1. PC Card Card-Detect and Voltage-Sense Connections  
CD2//CCD2  
Ground  
CD1//CCD1  
Ground  
VS2//CVS2  
Open  
VS1//CVS1  
Open  
KEY  
5 V  
5 V  
5 V  
LV  
INTERFACE  
16-bit PC Card  
VOLTAGE  
5 V  
Ground  
Ground  
Open  
Ground  
16-bit PC Card  
5 V and 3.3 V  
5 V, 3.3 V, and X.X V  
3.3 V  
Ground  
Ground  
Ground  
Ground  
16-bit PC Card  
Ground  
Ground  
Open  
Ground  
16-bit PC Card  
Ground  
Connect to CVS1  
Ground  
Open  
Connect to CCD1  
Ground  
LV  
CardBus PC Card  
16-bit PC Card  
3.3 V  
Ground  
Ground  
LV  
3.3 V and X.X V  
3.3 V and X.X V  
3.3 V, X.X V, and Y.Y V  
X.X V  
Connect to CVS2  
Connect to CVS1  
Ground  
Ground  
Connect to CCD2  
Ground  
Ground  
LV  
CardBus PC Card  
CardBus PC Card  
16-bit PC Card  
Ground  
Connect to CCD2  
Open  
LV  
Ground  
Ground  
LV  
Connect to CVS2  
Ground  
Ground  
Connect to CCD2  
Connect to CCD1  
Open  
Open  
LV  
CardBus PC Card  
CardBus PC Card  
CardBus PC Card  
X.X V  
Connect to CVS2  
Ground  
Open  
LV  
X.X V and Y.Y V  
Y.Y V  
Connect to CVS1  
Ground  
Connect to CCD2  
Connect to CCD1  
Ground  
LV  
Connect to CVS1  
Connect to CVS2  
Ground  
Reserved  
Reserved  
Ground  
Connect to CCD1  
3.5.2 Parallel Power-Switch Interface (TPS2211A)  
The controller provides a parallel interface for control of the PC Card power switch. The VCCD and VPPD terminals  
are used with the TI TPS2211A single-slot PC Card power-switch interface to provide power-switch support.  
Figure 3−3 illustrates a typical application, where the controller represents the PC Card controller.  
3−4  
 
Power Supply  
TPS2211A  
12 V  
5 V  
12V  
5V  
3.3 V  
3.3V  
AVPP  
AVCC  
V
V
V
V
PP1  
PP2  
CC  
SHDN  
SHDN  
Supervisor  
PC Card  
CC  
VCCD0  
VCCD1  
VPPD0  
VPPD1  
PCI1510  
(PC Card  
Controller)  
Figure 3−3. TPS2211A Typical Application  
3.5.3 Zoomed Video Support  
The controller allows for the implementation of zoomed video (ZV) for PC Cards. Zoomed video is supported by  
setting bit 6 (ZVENABLE) in the card control register (PCI offset 91h, see Section 4.32). Setting this bit puts 16-bit  
PC Card address lines A25−A4 of the PC Card interface in the high-impedance state. These lines can then transfer  
video and audio data directly to the appropriate controller. Card address lines A3−A0 can still access PC Card CIS  
registers for PC Card configuration. Figure 3−4 illustrates a ZV implementation.  
Speakers  
CRT  
Motherboard  
PCI Bus  
VGA  
Controller  
Audio  
Codec  
Zoomed Video  
Port  
PCM  
Audio  
Input  
PC Card  
19  
19  
4
Video  
Audio  
4
PC Card  
Interface  
PCI1510  
Figure 3−4. Zoomed Video Implementation Using the PCI1510 Controller  
Not shown in Figure 3−4 is the multiplexing scheme used to route a socket ZV source to the graphics controller. The  
controller provides ZVSTAT and ZVSEL0 signals on the multifunction terminals to switch external bus drivers.  
Figure 3−5 shows an implementation for switching between two ZV streams using external logic.  
3−5  
 
PCI1510  
ZVSTAT  
ZVSEL0  
Figure 3−5. Zoomed Video Switching Application  
Figure 3−5 illustrates an implementation using standard three-state bus drivers with active-low output enables.  
ZVSEL0 is an active-low output indicating that the socket ZV mode is enabled.  
3.5.4 Standardized Zoomed-Video Register Model  
The standardized zoomed-video register model is defined for the purpose of standardizing the ZV port control for PC  
Card controllers across the industry. The following list summarizes the standardized zoomed-video register model  
changes to the existing PC Card register set.  
Socket present state register (CardBus socket address + 08h, see Section 6.3)  
Bit 27 (ZVSUPPORT) has been added. The platform BIOS can set this bit via the socket force event register  
(CardBus socket address + 0Ch, see Section 6.4) to define whether zoomed video is supported on the  
socket by the platform.  
Socket force event register (CardBus socket address + 0Ch, see Section 6.4)  
Bit 27 (FZVSUPPORT) has been added. The platform BIOS can use this bit to set the ZVSUPPORT bit in  
the socket present state register (CardBus socket address + 08h, see Section 6.3) to define whether  
zoomed video is supported on the socket by the platform.  
Socket control register (CardBus socket address +10h, see Section 6.5)  
Bit 11 (ZV_ACTIVITY) has been added. This bit is set when zoomed video is enabled for the PC Card socket.  
Bit 10 (STDZVREG) has been added. This bit defines whether the PC Card controller supports the  
standardized zoomed-video register model.  
Bit 9 (ZVEN) is provided for software to enable or disable zoomed video.  
If the STDZVEN bit (bit 0) in the diagnostic register (PCI offset 93h, see Section 4.34) is 1b, then the standardized  
zoomed video register model is disabled. For backward compatibility, even if the STDZVEN bit is 0b (enabled), the  
controller allows software to access zoomed video through the legacy address in the card control register (PCI offset  
91h, see Section 4.32), or through the new register model in the socket control register (CardBus socket address +  
10h, see Section 6.5).  
3.5.4.1 Zoomed-Video Card Insertion and Configuration Procedure  
1. A zoomed-video PC Card is inserted into an empty slot.  
2. The card is detected and interrogated appropriately.  
3−6  
 
There are two types of PC Card controllers to consider.  
Legacy controller not using the standardized ZV register model  
Software reads bit 10 (STDZVREG) of the socket control register (CardBus socket address + 10h) to  
determine if the standardized zoomed-video register model is supported. If the bit returns 0b, then software  
must use legacy code to enable zoomed video.  
Newer controller that uses the standardized ZV register model  
Software reads bit 10 (STDZVREG) of the socket control register (CardBus socket address + 10h) to  
determine if the standardized zoomed-video register model is supported. If the bit returns 1b, then software  
can use the process/register model detailed in Table 3−2 to enable zoomed video.  
Table 3−2. Zoomed-Video Card Interrogation  
ZVSUPPORT  
ZV_ACTIVITY  
ACTION  
1
0
Set ZVEN to enable zoomed video.  
Display a user message such as, The zoomed video protocol required by this PC Card application is al-  
ready in use by another card.  
1
0
1
Display a user message such as, This platform does not support the zoomed-video protocol required by  
this PC Card application.  
X
3.5.5 Internal Ring Oscillator  
The internal ring oscillator provides an internal clock source for the controller so that neither the PCI clock nor an  
external clock is required in order for the controller to power down a socket or interrogate a PC Card. This internal  
oscillator can be enabled by setting bit 27 (P2CCLK) of the system control register (PCI offset 80h, see Section 4.29)  
to 1b. This function is enabled by default.  
3.5.6 Integrated Pullup Resistors  
The PC Card Standard (release 7.2) requires pullup resistors on various terminals to support both CardBus and 16-bit  
card configurations. Unlike the PCI12XX, PCI1450, and PCI4450 controllers which required external pullup resistors,  
the PCI1510 controller has integrated all of these pullup resistors. The I/O buffer on the BVD1(STSCHG)//CSTSCHG  
terminal has the capability to switch either pullup or pulldown. The pullup resistor is turned on when a 16-bit PC Card  
is inserted, and the pulldown resistor is turned on when a CardBus PC Card is inserted. This prevents unexpected  
CSTSCHG signal assertion. The integrated pullup resistors are listed in Table 3−3.  
Table 3−3. Integrated Pullup Resistors  
TERMINAL NUMBER  
TERMINAL NUMBER  
SIGNAL NAME  
SIGNAL NAME  
PGE  
GGU  
D12  
C10  
A13  
E10  
D11  
C12  
C06  
D06  
L13  
GVF  
PGE  
GGU  
B05  
B08  
A06  
D08  
B02  
A09  
B06  
A05  
GVF  
A14/CPERR  
A15/CIRDY  
102  
110  
101  
103  
106  
108  
135  
134  
75  
F15  
F13  
E18  
E17  
A16  
E14  
A09  
F10  
L17  
CD2/CCD2  
INPACK/CREQ  
READY/CINT  
RESET/CRST  
VS1/CVS1  
138  
122  
131  
119  
130  
117  
133  
136  
C09  
B12  
C10  
B13  
B10  
F12  
E10  
B09  
A19/CBLOCK  
A20/CSTOP  
A21/CDEVSEL  
A22/CTRDY  
VS2/CVS2  
BVD1(STSCHG)/CSTSCHG  
BVD2(SPKR)/CAUDIO  
CD1/CCD1  
WAIT/CSERR  
WP(IOIS16)/CCLKRUN  
3−7  
 
3.5.7 SPKROUT and CAUDPWM Usage  
SPKROUT carries the digital audio signal from the PC Card to the system. When a 16-bit PC Card is configured for  
I/O mode, the BVD2 terminal becomes SPKR. This terminal is also used in CardBus binary audio applications, and  
is referred to as CAUDIO. SPKR passes a TTL-level digital audio signal to the controller. The CardBus CAUDIO signal  
also can pass a single-amplitude binary waveform. The binary audio signal from the PC Card socket is used in the  
controller to produce SPKROUT. This output is enabled by bit 1 (SPKROUTEN) in the card control register (PCI offset  
91h, see Section 4.32).  
Older controllers support CAUDIO in binary or PWM mode but use the same terminal (SPKROUT). Some audio chips  
may not support both modes on one terminal and may have a separate terminal for binary and PWM. The  
implementation includes a signal for PWM, CAUDPWM, which can be routed to an MFUNC terminal. Bit 2  
(AUD2MUX), located in the card control register, is programmed to route a CardBus CAUDIO PWM terminal to  
CAUDPWM. See Section 4.30, Multifunction Routing Register, for details on configuring the MFUNC terminals.  
Figure 3−6 provides an illustration of a sample application using SPKROUT and CAUDPWM.  
System  
Core Logic  
BINARY_SPKR  
SPKROUT  
Speaker  
Subsystem  
PWM_SPKR  
PCI1510  
CAUDPWM  
Figure 3−6. Sample Application of SPKROUT and CAUDPWM  
3.5.8 LED Socket Activity Indicators  
The socket activity LED is provided to indicate when a PC Card is being accessed. The LED_SKT signal can be routed  
to the multifunction terminals. When configured for LED output, this terminal outputs an active high signal to indicate  
socket activity. See Section 4.30, Multifunction Routing Register, for details on configuring the multifunction  
terminals.  
The active-high LED signal is driven for 64-ms. When the LED is not being driven high, it is driven to a low state. Either  
of the two circuits shown in Figure 3−7 can be implemented to provide LED signaling, and the board designer must  
implement the circuit that best fits the application.  
The LED activity signal is valid when a card is inserted, powered, and not in reset. For PC Card-16, the LED activity  
signal is pulsed when READY/IREQ is low. For CardBus cards, the LED activity signal is pulsed if CFRAME, IRDY,  
or CREQ are active.  
3−8  
 
Current Limiting  
R 500 Ω  
LED  
PCI1510  
Current Limiting  
R 500 Ω  
Application-  
Specific Delay  
LED  
PCI1510  
Figure 3−7. Two Sample LED Circuits  
As indicated, the LED signal is driven for a period of 64 ms by a counter circuit. To avoid the possibility of the LED  
appearing to be stuck when the PCI clock is stopped, the LED signaling is cut off when the SUSPEND signal is  
asserted, when the PCI clock is to be stopped during the clock run protocol, or when in the D2 or D1 power state.  
If any additional socket activity occurs during this counter cycle, then the counter is reset and the LED signal remains  
driven. If socket activity is frequent (at least once every 64 ms), then the LED signals remain driven.  
3.5.9 CardBus Socket Registers  
The controller contains all registers for compatibility with the PC Card Standard. These registers exist as the CardBus  
socket registers and are listed in Table 3−4.  
Table 3−4. CardBus Socket Registers  
REGISTER NAME  
OFFSET  
00h  
Socket event  
Socket mask  
04h  
Socket present state  
Socket force event  
Socket control  
08h  
0Ch  
10h  
Reserved  
14h−1Ch  
20h  
Socket power management  
3.6 Serial-Bus Interface  
The controller provides a serial-bus interface to load subsystem identification information and selected register  
defaults from a serial EEPROM, and to provide a PC Card power-switch interface alternative. The serial-bus interface  
2
is compatible with various I C and SMBus components.  
3.6.1 Serial-Bus Interface Implementation  
To enable the serial interface, a pullup resistor must be implemented on the VCCD0 and VCCD1 terminals and the  
appropriate pullup resistors must be implemented on the SDA and SCL signals, that is, the MFUNC1 and MFUNC4  
terminals. When the interface is detected, bit 3 (SBDETECT) in the serial bus control and status register (PCI offset  
B3h, see Section 4.48) is set. The SBDETECT bit is cleared by a writeback of 1b.  
The controller implements a two-pin serial interface with one clock signal (SCL) and one data signal (SDA). When  
pullup resistors are provided on the VCCD0 and VCCD1 terminals, the SCL signal is mapped to the MFUNC4 terminal  
and the SDA signal is mapped to the MFUNC1 terminal. The controller drives SCL at nearly 100 kHz during data  
3−9  
 
2
transfers, which is the maximum specified frequency for standard-mode I C. The serial EEPROM must be located  
at address A0h. Figure 3−8 illustrates an example application implementing the two-wire serial bus.  
V
CC  
Serial  
EEPROM  
5 V  
PCI1510  
VCCD0  
VCCD1  
A2  
A1  
A0  
MFUNC4  
MFUNC1  
SCL  
SDA  
Figure 3−8. Serial EEPROM Application  
Some serial device applications may include PC Card power switches, ZV source switches, card ejectors, or other  
devices that may enhance the user’s PC Card experience. The serial EEPROM device and PC Card power switches  
are discussed in the sections that follow.  
3.6.2 Serial-Bus Interface Protocol  
The SCL and SDA signals are bidirectional, open-drain signals and require pullup resistors as shown in Figure 3−8.  
2
The controller, which supports up to 100-Kb/s data-transfer rate, is compatible with standard mode I C using 7-bit  
addressing.  
All data transfers are initiated by the serial bus master. The beginning of a data transfer is indicated by a start  
condition, which is signaled when the SDA line transitions to low state while SCL is in the high state, as illustrated  
in Figure 3−9. The end of a requested data transfer is indicated by a stop condition, which is signaled by a low-to-high  
transition of SDA while SCL is in the high state, as shown in Figure 3−9. Data on SDA must remain stable during the  
high state of the SCL signal, as changes on the SDA signal during the high state of SCL are interpreted as control  
signals, that is, a start or a stop condition.  
SDA  
SCL  
Start  
Stop  
Change of  
Condition  
Condition  
Data Allowed  
Data Line Stable,  
Data Valid  
Figure 3−9. Serial-Bus Start/Stop Conditions and Bit Transfers  
Data is transferred serially in 8-bit bytes. The number of bytes that may be transmitted during a data transfer is  
unlimited; however, each byte must be completed with an acknowledge bit. An acknowledge (ACK) is indicated by  
the receiver pulling the SDA signal low, so that it remains low during the high state of the SCL signal. Figure 3−10  
illustrates the acknowledge protocol.  
3−10  
 
SCL From  
Master  
1
2
3
7
8
9
SDA Output  
By Transmitter  
SDA Output  
By Receiver  
Figure 3−10. Serial-Bus Protocol Acknowledge  
The controller is a serial bus master; all other devices connected to the serial bus external to the controller are slave  
devices. As the bus master, the controller drives the SCL clock at nearly 100 kHz during bus cycles and places SCL  
in a high-impedance state (zero frequency) during idle states.  
Typically, the controller masters byte reads and byte writes under software control. Doubleword reads are performed  
by the serial EEPROM initialization circuitry upon a PCI reset and may not be generated under software control. See  
Section 3.6.3, Serial-Bus EEPROM Application, for details on how the controller automatically loads the subsystem  
identification and other register defaults through a serial-bus EEPROM.  
Figure 3−11 illustrates a byte write. The controller issues a start condition and sends the 7-bit slave device address  
and the command bit zero. A 0b in the R/W command bit indicates that the data transfer is a write. The slave device  
acknowledges if it recognizes the address. If no acknowledgment is received by the controller, then an appropriate  
status bit is set in the serial-bus control and status register (PCI offset B3h, see Section 4.48). The word address byte  
is then sent by the controller, and another slave acknowledgment is expected. Then the controller delivers the data  
byte MSB first and expects a final acknowledgment before issuing the stop condition.  
Slave Address  
Word Address  
Data Byte  
S
b6 b5 b4 b3 b2 b1 b0  
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
P
R/W  
A = Slave Acknowledgement  
S/P = Start/Stop Condition  
Figure 3−11. Serial-Bus Protocol − Byte Write  
Figure 3−12 illustrates a byte read. The read protocol is very similar to the write protocol, except the R/W command  
bit must be set to 1b to indicate a read-data transfer. In addition, the master must acknowledge reception of the read  
bytes from the slave transmitter. The slave transmitter drives the SDA signal during read data transfers. The SCL  
signal remains driven by the master.  
Slave Address  
Word Address  
Slave Address  
S
b6 b5 b4 b3 b2 b1 b0  
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
S
b6 b5 b4 b3 b2 b1 b0  
1
A
Start  
R/W  
Restart  
R/W  
Data Byte  
b7 b6 b5 b4 b3 b2 b1 b0  
M
P
Stop  
A = Slave Acknowledgement  
M = Master Acknowledgement  
S/P = Start/Stop Condition  
Figure 3−12. Serial-Bus Protocol − Byte Read  
Figure 3−13 illustrates EEPROM interface doubleword data collection protocol.  
3−11  
 
Slave Address  
Word Address  
Slave Address  
S
1
0
1
0
0
0
0
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
S
1
0
1
0
0
0
0
1
A
Start  
R/W  
Restart  
R/W  
Data Byte 3  
M
Data Byte 2  
M
Data Byte 1  
M
Data Byte 0  
M
P
A = Slave Acknowledgement  
M = Master Acknowledgement  
S/P = Start/Stop Condition  
Figure 3−13. EEPROM Interface Doubleword Data Collection  
3.6.3 Serial-Bus EEPROM Application  
When the PCI bus is reset and the serial-bus interface is detected, the controller attempts to read the subsystem  
identification and other register defaults from a serial EEPROM. The registers and corresponding bits that can be  
loaded with defaults through the EEPROM are provided in Table 3−5.  
Table 3−5. Register- and Bit-Loading Map  
EEPROM OFFSET REGISTER OFFSET  
REGISTER BITS LOADED FROM EEPROM  
01h: Load / FFh: do not load  
00h  
01h  
Flag  
PCI 04h  
Command register, bit 8, 6−5, 2−0  
Note: bits loaded per following:  
bit 8 bit 7  
bit 6 bit 6  
bit 5 bit 5  
bit 2 bit 2  
bit 1 bit 1  
bit 0 bit 0  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
PCI 40h  
PCI 40h  
PCI 42h  
PCI 42h  
PCI 44h  
PCI 44h  
PCI 44h  
PCI 44h  
PCI 80h  
PCI 80h  
PCI 80h  
PCI 80h  
PCI 8Ch  
PCI 8Ch  
PCI 8Ch  
PCI 8Ch  
PCI 90h  
PCI 91h  
PCI 92h  
PCI 93h  
PCI A2h  
ExCA 00h  
CB Socket + 0Ch  
Subsystem vendor ID bits 7−0 bits 7−0  
Subsystem vendor ID bits 15−8 bits 7−0  
Subsystem ID bits 7−0 bits 7−0  
Subsystem ID bits 15−8 bits 7−0  
PC Card 16-bit I/F LBAR bits 7−1 bits 7−1  
PC Card 16-bit I/F LBAR bits 15−8 bits 7−0  
PC Card 16-bit I/F LBAR bits 23−16 bits 7−0  
PC Card 16-bit I/F LBAR bits 31−24 bits 7−0  
System control bits 7−0 bits 7−0  
System control bits 15−8 bits 7−0  
System control bits 23−16 bits 7−0  
System control bits 31−24 bits 7−0  
Multifunction routing bits 7−0 bits 7−0  
Multifunction routing bits 15−8 bits 7−0  
Multifunction routing bits 23−16 bits 7−0  
Multifunction routing bits 27−24 bits 3−0  
Retry status bits 7, 6 bits 7, 6  
Card control bit 7 bit 7  
Device control bits 6, 3−0 bits 6, 3−0  
Diagnostic bits 7, 4–0 bits 7, 4−0  
Power management capabilities bit 15 bit 7  
ExCA identification and revision bits 7–0 bits 7−0  
Socket force event, bit 27 bit 3  
3−12  
 
This format must be followed for the controller to load initializations from a serial EEPROM. All bit fields must be  
considered when programming the EEPROM.  
The serial EEPROM is addressed at slave address 1010 000b by the controller. All hardware address bits for the  
EEPROM should be tied to the appropriate level to achieve this address. The serial EEPROM chip in the sample  
application circuit (Figure 3−8) assumes the 1010b high-address nibble. The lower three address bits are terminal  
inputs to the chip, and the sample application shows these terminal inputs tied to GND.  
3.6.4 Accessing Serial-Bus Devices Through Software  
The controller provides a programming mechanism to control serial bus devices through software. The programming  
is accomplished through a doubleword of PCI configuration space at offset B0h. Table 3−6 lists the registers used  
to program a serial-bus device through software.  
Table 3−6. PCI1510 Registers Used to Program Serial-Bus Devices  
PCI OFFSET  
REGISTER NAME  
DESCRIPTION  
B0h  
Serial-bus data  
Contains the data byte to send on write commands or the received data byte on read commands.  
The content of this register is sent as the word address on byte writes or reads. This register is not used  
in the quick command protocol.  
B1h  
B2h  
B3h  
Serial-bus index  
Serial-bus slave  
address  
Write transactions to this register initiate a serial-bus transaction. The slave device address and the  
R/W command selector are programmed through this register.  
Serial-bus control  
and status  
Read data valid, general busy, and general error status are communicated through this register. In  
addition, the protocol-select bit is programmed through this register.  
3.7 Programmable Interrupt Subsystem  
Interrupts provide a way for I/O devices to let the microprocessor know that they require servicing. The dynamic  
nature of PC Cards and the abundance of PC Card I/O applications require substantial interrupt support from the  
controller. The controller provides several interrupt signaling schemes to accommodate the needs of a variety of  
platforms. The different mechanisms for dealing with interrupts in this device are based on various specifications and  
industry standards. The ExCA register set provides interrupt control for some 16-bit PC Card functions, and the  
CardBus socket register set provides interrupt control for the CardBus PC Card functions. The controller is, therefore,  
backward compatible with existing interrupt control register definitions, and new registers have been defined where  
required.  
The controller detects PC Card interrupts and events at the PC Card interface and notifies the host controller using  
one of several interrupt signaling protocols. To simplify the discussion of interrupts in the controller, PC Card interrupts  
are classified either as card status change (CSC) or as functional interrupts.  
The method by which any type of interrupt is communicated to the host interrupt controller varies from system to  
system. The controller offers system designers the choice of using parallel PCI interrupt signaling, parallel ISA-type  
IRQ interrupt signaling, or the IRQSER serialized ISA and/or PCI interrupt protocol. It is possible to use the parallel  
PCI interrupts in combination with either parallel IRQs or serialized IRQs, as detailed in the sections that follow. All  
interrupt signaling is provided through the seven multifunction terminals, MFUNC0−MFUNC6.  
3.7.1 PC Card Functional and Card Status Change Interrupts  
PC Card functional interrupts are defined as requests from a PC Card application for interrupt service and are  
indicated by asserting specially-defined signals on the PC Card interface. Functional interrupts are generated by  
16-bit I/O PC Cards and by CardBus PC Cards.  
Card status change (CSC)-type interrupts are defined as events at the PC Card interface that are detected by the  
controller and may warrant notification of host card and socket services software for service. CSC events include both  
card insertion and removal from the PC Card socket, as well as transitions of certain PC Card signals.  
3−13  
 
Table 3−7 summarizes the sources of PC Card interrupts and the type of card associated with them. CSC and  
functional interrupt sources are dependent on the type of card inserted in the PC Card socket. The three types of cards  
that can be inserted into any PC Card socket are:  
16-bit memory card  
16-bit I/O card  
CardBus cards  
Table 3−7. Interrupt Mask and Flag Registers  
CARD TYPE  
EVENT  
MASK  
FLAG  
Battery conditions (BVD1, BVD2)  
Wait states (READY)  
ExCA offset 05h/45h/805h bits 1 and 0 ExCA offset 04h/44h/804h bits 1 and 0  
16-bit memory  
ExCA offset 05h/45h/805h bit 2  
ExCA offset 05h/45h/805h bit 0  
Always enabled  
ExCA offset 04h/44h/804h bit 2  
ExCA offset 04h/44h/804h bit 0  
PCI configuration offset 91h bit 0  
Change in card status (STSCHG)  
Interrupt request (IREQ)  
16-bit I/O  
All 16-bit PC  
Cards  
Power cycle complete  
ExCA offset 05h/45h/805h bit 3  
ExCA offset 04h/44h/804h bit 3  
Change in card status (CSTSCHG)  
Interrupt request (CINT)  
Socket mask bit 0  
Always enabled  
Socket event bit 0  
PCI configuration offset 91h bit 0  
Socket event bit 3  
CardBus  
Power cycle complete  
Socket mask bit 3  
Socket mask bits 2 and 1  
Card insertion or removal  
Socket event bits 2 and 1  
Functional interrupt events are valid only for 16-bit I/O and CardBus cards; that is, the functional interrupts are not  
valid for 16-bit memory cards. Furthermore, card insertion and removal-type CSC interrupts are independent of the  
card type.  
Table 3−8. PC Card Interrupt Events and Description  
CARD TYPE  
EVENT  
TYPE  
SIGNAL  
DESCRIPTION  
A transition on BVD1 indicates a change in the  
PC Card battery conditions.  
BVD1(STSCHG)//CSTSCHG  
Battery conditions  
(BVD1, BVD2)  
CSC  
A transition on BVD2 indicates a change in the  
PC Card battery conditions.  
BVD2(SPKR)//CAUDIO  
READY(IREQ)//CINT  
16-bit  
memory  
A transition on READY indicates a change in the  
ability of the memory PC Card to accept or provide  
data.  
Wait states  
(READY)  
CSC  
Change in card  
status (STSCHG)  
The assertion of STSCHG indicates a status change  
on the PC Card.  
CSC  
Functional  
CSC  
BVD1(STSCHG)//CSTSCHG  
READY(IREQ)//CINT  
16-bit I/O  
CardBus  
Interrupt request  
(IREQ)  
The assertion of IREQ indicates an interrupt request  
from the PC Card.  
Change in card  
status (CSTSCHG)  
The assertion of CSTSCHG indicates a status  
change on the PC Card.  
BVD1(STSCHG)//CSTSCHG  
READY(IREQ)//CINT  
Interrupt request  
(CINT)  
The assertion of CINT indicates an interrupt request  
from the PC Card.  
Functional  
A transition on either CD1//CCD1 or CD2//CCD2  
indicates an insertion or removal of a 16-bit or  
CardBus PC Card.  
Card insertion  
or removal  
CD1//CCD1,  
CD2//CCD2  
CSC  
CSC  
All PC Cards  
Power cycle  
complete  
An interrupt is generated when a PC Card power-up  
cycle has completed.  
N/A  
The naming convention for PC Card signals describes the function for 16-bit memory, I/O cards, and CardBus. For  
example, READY(IREQ)//CINT includes READY for 16-bit memory cards, IREQ for 16-bit I/O cards, and CINT for  
CardBus cards. The 16-bit memory card signal name is first, with the I/O card signal name second, enclosed in  
parentheses. The CardBus signal name follows after a double slash (//).  
3−14  
 
The PC Card Standard describes the power-up sequence that must be followed by the controller when an insertion  
event occurs and the host requests that the socket V and V be powered. Upon completion of this power-up  
CC  
PP  
sequence, the interrupt scheme can be used to notify the host system (see Table 3−8), denoted by the power cycle  
complete event. This interrupt source is considered an internal event, because it depends on the completion of  
applying power to the socket rather than on a signal change at the PC Card interface.  
3.7.2 Interrupt Masks and Flags  
Host software may individually mask (or disable) most of the potential interrupt sources listed in Table 3−8 by setting  
the appropriate bits in the controller. By individually masking the interrupt sources listed, software can control those  
events that cause an interrupt. Host software has some control over the system interrupt the controller asserts by  
programming the appropriate routing registers. The controller allows host software to route PC Card CSC and PC  
Card functional interrupts to separate system interrupts. Interrupt routing somewhat specific to the interrupt signaling  
method used is discussed in more detail in the following sections.  
When an interrupt is signaled by the controller, the interrupt service routine must determine which of the events listed  
in Table 3−7 caused the interrupt. Internal registers in the controller provide flags that report the source of an interrupt.  
By reading these status bits, the interrupt service routine can determine the action to be taken.  
Table 3−7 details the registers and bits associated with masking and reporting potential interrupts. All interrupts can  
be masked except the functional PC Card interrupts, and an interrupt status flag is available for all types of interrupts.  
Notice that there is not a mask bit to stop the controller from passing PC Card functional interrupts through to the  
appropriate interrupt scheme. These interrupts are not valid until the card is properly powered, and there should never  
be a card interrupt that does not require service after proper initialization.  
Table 3−7 lists the various methods of clearing the interrupt flag bits. The flag bits in the ExCA registers (16-bit PC  
Card-related interrupt flags) can be cleared using two different methods. One method is an explicit write of 1b to the  
flag bit to clear and the other is by reading the flag bit register. The selection of flag bit clearing methods is made by  
bit 2 (IFCMODE) in the ExCA global control register (ExCA offset 1Eh/5Eh/81Eh, see Section 5.20), and defaults to  
the flag-cleared-on-read method.  
The CardBus-related interrupt flags can be cleared by an explicit write of 1b to the interrupt flag in the socket event  
register (see Section 6.1). Although some of the functionality is shared between the CardBus registers and the ExCA  
registers, software should not program the chip through both register sets when a CardBus card is functioning.  
3.7.3 Using Parallel IRQ Interrupts  
The seven multifunction terminals, MFUNC6−MFUNC0, implemented in the controller can be routed to obtain a  
subset of the ISA IRQs. The IRQ choices provide ultimate flexibility in PC Card host interruptions. To use the parallel  
ISA-type IRQ interrupt signaling, software must program the device control register (PCI offset 92h, see  
Section 4.33), to select the parallel IRQ signaling scheme. See Section 4.30, Multifunction Routing Register, for  
details on configuring the multifunction terminals.  
A system using parallel IRQs requires (at a minimum) one PCI terminal, INTA, to signal CSC events. This requirement  
is dictated by certain card and socket-services software. The INTA requirement calls for routing the MFUNC0 terminal  
for INTA signaling. This leaves (at a maximum) six different IRQs to support legacy 16-bit PC Card functions.  
As an example, suppose the six IRQs used by legacy PC Card applications are IRQ3, IRQ4, IRQ5, IRQ10, IRQ11,  
and IRQ15. The multifunction routing register must be programmed to a value of 0FBA 5432h. This value routes the  
MFUNC0 terminal to INTA signaling and routes the remaining terminals as illustrated in Figure 3−14. Not shown is  
that INTA must also be routed to the programmable interrupt controller (PIC), or to some circuitry that provides parallel  
PCI interrupts to the host.  
3−15  
 
PCI1510  
MFUNC1  
PIC  
IRQ3  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
IRQ4  
IRQ5  
IRQ10  
IRQ11  
IRQ15  
Figure 3−14. IRQ Implementation  
Power-on software is responsible for programming the multifunction routing register to reflect the IRQ configuration  
of a system implementing the controller. See Section 4.30, Multifunction Routing Register, for details on configuring  
the multifunction terminals.  
The parallel ISA-type IRQ signaling from the MFUNC6−MFUNC0 terminals is compatible with the input signal  
requirements of the 8259 PIC. The parallel IRQ option is provided for system designs that require legacy ISA IRQs.  
Design constraints may demand more MFUNC6−MFUNC0 IRQ terminals than the controller makes available.  
3.7.4 Using Parallel PCI Interrupts  
Parallel PCI interrupts are available when exclusively in parallel PCI interrupt/parallel ISA IRQ signaling mode, and  
when only IRQs are serialized with the IRQSER protocol. Socket functional interrupts can be routed to INTA.  
3.7.5 Using Serialized IRQSER Interrupts  
The serialized interrupt protocol implemented in the controller uses a single terminal to communicate all interrupt  
status information to the host controller. The protocol defines a serial packet consisting of a start cycle, multiple  
interrupt indication cycles, and a stop cycle. All data in the packet is synchronous with the PCI clock. The packet data  
describes 16 parallel ISA IRQ signals and the optional 4 PCI interrupts INTA, INTB, INTC, and INTD. For details on  
the IRQSER protocol, refer to the document Serialized IRQ Support for PCI Systems.  
3.7.6 SMI Support in the PCI1510 Controller  
The controller provides a mechanism for interrupting the system when power changes have been made to the PC  
Card socket interfaces. The interrupt mechanism is designed to fit into a system maintenance interrupt (SMI) scheme.  
SMI interrupts are generated by the controller, when enabled, after a write cycle to either the socket control register  
(CB offset 10h, see Section 6.5) of the CardBus register set, or the ExCA power control register (ExCA offset  
02h/42h/802h, see Section 5.3) causes a power cycle change sequence to be sent on the power switch interface.  
The SMI control is programmed through three bits in the system control register (PCI offset 80h, see Section 4.29).  
These bits are SMIROUTE (bit 26), SMISTATUS (bit 25), and SMIENB (bit 24). Table 3−9 describes the SMI control  
bits function.  
Table 3−9. SMI Control  
BIT NAME  
SMIROUTE  
SMISTAT  
FUNCTION  
This shared bit controls whether the SMI interrupts are sent as a CSC interrupt or as IRQ2.  
This socket dependent bit is set when an SMI interrupt is pending. This status flag is cleared by writing back 1b.  
When set, SMI interrupt generation is enabled.  
SMIENB  
If CSC SMI interrupts are selected, then the SMI interrupt is sent as the CSC on a per-socket basis. The CSC interrupt  
can be either level or edge mode, depending upon the CSCMODE bit in the ExCA global control register (ExCA offset  
1Eh/5Eh/81Eh, see Section 5.20).  
If IRQ2 is selected by SMIROUTE, then the IRQSER signaling protocol supports SMI signaling in the IRQ2 IRQ/Data  
slot. In a parallel ISA IRQ system, the support for an active low IRQ2 is provided only if IRQ2 is routed to either  
MFUNC3 or MFUNC6 through the multifunction routing register (PCI offset 8Ch, see Section 4.30).  
3−16  
 
3.8 Power Management Overview  
In addition to the low-power CMOS technology process used for the controller, various features are designed into  
the device to allow implementation of popular power-saving techniques. These features and techniques are  
discussed in this section.  
3.8.1 Integrated Low-Dropout Voltage Regulator (LDO-VR)  
The controller requires 2.5-V core voltage. The core power can be supplied by the controller itself using the internal  
LDO-VR. The core power can alternatively be supplied by an external power supply through the VR_PORT terminal.  
Table 3−10 lists the requirements for both the internal core power supply and the external core power supply.  
Table 3−10. Requirements for Internal/External 2.5-V Core Power Supply  
SUPPLY  
V
CC  
VR_EN  
VR_PORT  
NOTE  
Internal  
3.3 V  
GND  
2.5-V output  
Internal 2.5-V LDO-VR is enabled. A 1.0-µF bypass capacitor is required on the VR_PORT  
terminal for decoupling. This output is not for external use.  
External  
3.3 V  
V
CC  
2.5-V input  
Internal 2.5-V LDO-VR is disabled. An external 2.5-V power supply, of minimum 50-mA  
capacity, is required. A 0.1-µF bypass capacitor on the VR_PORT terminal is required.  
3.8.2 Clock Run Protocol  
The PCI CLKRUN feature is the primary method of power management on the PCI interface of the controller.  
CLKRUN signaling is provided through the MFUNC6 terminal. Since some chip sets do not implement CLKRUN, this  
is not always available to the system designer, and alternate power-saving features are provided. For details on the  
CLKRUN protocol see the PCI Mobile Design Guide.  
The controller does not permit the central resource to stop the PCI clock under any of the following conditions:  
Bit 1 (KEEPCLK) in the system control register (PCI offset 80h, see Section 4.29) is set.  
The 16-bit PC Card- resource manager is busy.  
The CardBus master state machine is busy. A cycle may be in progress on CardBus.  
The master is busy. There may be posted data from CardBus to PCI in the controller.  
Interrupts are pending.  
The CardBus CCLK for either socket has not been stopped by the CCLKRUN manager.  
The controller restarts the PCI clock using the CLKRUN protocol under any of the following conditions:  
A 16-bit PC Card IREQ or a CardBus CINT has been asserted by either card.  
A CardBus CBWAKE (CSTSCHG) or 16-bit PC Card STSCHG/RI event occurs in either socket.  
A CardBus attempts to start the CCLK using CCLKRUN.  
A CardBus card arbitrates for the CardBus bus using CREQ.  
3.8.3 CardBus PC Card Power Management  
The controller implements its own card power-management engine that can turn off the CCLK to a socket when there  
is no activity to the CardBus PC Card. The PCI clock-run protocol is followed on the CardBus CCLKRUN interface  
to control this clock management.  
3.8.4 16-Bit PC Card Power Management  
The COE bit (bit 7) of the ExCA power control register (ExCA offset 02h/42h/802h, see Section 5.3) and PWRDWN  
bit (bit 0) of the ExCA global control register (ExCA offset 1Eh/5Eh/81Eh, see Section 5.20) bits are provided for 16-bit  
PC Card power management. The COE bit places the card interface in a high-impedance state to save power. The  
power savings when using this feature are minimal. The COE bit resets the PC Card when used, and the PWRDWN  
bit does not. Furthermore, the PWRDWN bit is an automatic COE, that is, the PWRDWN performs the COE function  
when there is no card activity.  
NOTE: The 16-bit PC Card must implement the proper pullup resistors for the COE and  
PWRDWN modes.  
3−17  
 
3.8.5 Suspend Mode  
The SUSPEND signal, provided for backward compatibility, gates the PRST (PCI reset) signal and the GRST (global  
reset) signal from the controller. Besides gating PRST and GRST, SUSPEND also gates PCLK inside the controller  
in order to minimize power consumption.  
It should also be noted that asynchronous signals, such as card status change interrupts and RI_OUT, can be passed  
to the host system without a PCI clock. However, if card status change interrupts are routed over the serial interrupt  
stream, then the PCI clock must be restarted in order to pass the interrupt, because neither the internal oscillator nor  
an external clock is routed to the serial-interrupt state machine. Figure 3−15 is a signal diagram of the suspend  
function.  
RESET  
GNT  
SUSPEND  
PCLK  
External Terminals  
Internal Signals  
RESETIN  
SUSPENDIN  
PCLKIN  
Figure 3−15. Signal Diagram of Suspend Function  
3.8.6 Requirements for Suspend Mode  
The suspend mode prevents the clearing of all register contents on the assertion of reset (PRST or GRST) which  
would require the reconfiguration of the controller by software. Asserting the SUSPEND signal places the PCI outputs  
of the controller in a high-impedance state and gates the PCLK signal internally to the controller unless a PCI  
transaction is currently in process (GNT is asserted). It is important that the PCI bus not be parked on the controller  
when SUSPEND is asserted, because the outputs are in a high-impedance state.  
The GPIOs, MFUNC signals, and RI_OUT signal are all active during SUSPEND, unless they are disabled in the  
appropriate registers.  
3−18  
 
3.8.7 Ring Indicate  
The RI_OUT output is an important feature in power management, allowing a system to go into a suspended mode  
and wake up on modem rings and other card events. TI-designed flexibility permits this signal to fit wide platform  
requirements. RI_OUT on the controller can be asserted under any of the following conditions:  
A 16-bit PC Card modem in a powered socket asserts RI to indicate to the system the presence of an  
incoming call.  
A powered down CardBus card asserts CSTSCHG (CBWAKE) requesting system and interface wake up.  
A powered CardBus card asserts CSTSCHG from the insertion/removal of cards or change in battery  
voltage levels.  
Figure 3−16 shows various enable bits for the RI_OUT function; however, it does not show the masking of CSC  
events. See Table 3−7 for a detailed description of CSC interrupt masks and flags.  
RI_OUT Function  
CSTSMASK  
RIENB  
PC Card  
Socket  
RINGEN  
Card  
I/F  
RI_OUT  
CDRESUME  
Figure 3−16. RI_OUT Functional Diagram  
RI from the 16-bit PC Card interface is masked by bit 7 (RINGEN) in the ExCA interrupt and general control register  
(ExCA offset 03h/43h/803h, see Section 5.4). This is only applicable when a 16-bit card is powered in the socket.  
The CBWAKE signaling to RI_OUT is enabled through the same mask as the CSC event for CSTSCHG. The mask  
bit (bit 0, CSTSMASK) is programmed through the socket mask register (CB offset 04h, see Section 6.2) in the  
CardBus socket registers.  
RI_OUT can be routed through any of three different pins, RI_OUT/PME, MFUNC2, or MFUNC4. The RI_OUT  
function is enabled by setting RIENB in the card control register (PCI offset 91h, see Section 4.32). The PME function  
is enabled by setting PMEEN in the power management control/status register (PCI offset A4h, see Section 4.38).  
When RIMUX in the system control register (PCI offset 80h, see Section 4.29) is set to 0b, both the RI_OUT function  
and the PME function are routed to the RI_OUT/PME terminal. If both functions are enabled and RIMUX is set to 0b,  
the RI_OUT/PME terminal becomes RI_OUT only and PME assertions will never be seen. Therefore, in a system  
using both the RI_OUT function and the PME function, RIMUX must be set to 1b and RI_OUT must be routed to either  
MFUNC2 or MFUNC4.  
3.8.8 PCI Power Management  
The PCI Bus Power Management Interface Specification for PCI to CardBus Bridges establishes the infrastructure  
required to let the operating system control the power of PCI functions. This is done by defining a standard PCI  
interface and operations to manage the power of PCI functions on the bus. The PCI bus and the PCI functions can  
be assigned one of seven power-management states, resulting in varying levels of power savings.  
The seven power-management states of PCI functions are:  
D0-uninitialized − Before device configuration, device not fully functional  
D0-active − Fully functional state  
D1 − Low-power state  
D2 − Low-power state  
3−19  
 
D3 − Low-power state. Transition state before D3  
hot cold  
D3  
− PME signal-generation capable. Main power is removed and VAUX is available.  
cold  
D3 − No power and completely non-functional  
off  
NOTE:  
In the D0-uninitialized state, the controller does not generate PME and/or interrupts. When the IO_EN and  
MEM_EN bits (bits 0 and 1) of the command register (PCI offset 04h, see Section 4.4) are both set, the  
controller switches the state to D0-active. Transition from D3  
to the D0-uninitialized state happens at  
cold  
the deassertion of PRST. The assertion of GRST forces the controller to the D0-uninitialized state  
immediately.  
The PWR_STATE bits (bits 0−1) of the power-management control/status register (PCI offset A4h, see  
Section 4.38) only code for four power states, D0, D1, D2, and D3 . The differences between the three  
hot  
D3 states is invisible to the software because the controller is not accessible in the D3  
or D3 state.  
cold  
off  
Similarly, bus power states of the PCI bus are B0−B3. The bus power states B0−B3 are derived from the device power  
state of the originating bridge device.  
For the operating system (OS) to manage the device power states on the PCI bus, the PCI function should support  
four power-management operations. These operations are:  
Capabilities reporting  
Power status reporting  
Setting the power state  
System wake up  
The OS identifies the capabilities of the PCI function by traversing the new capabilities list. The presence of  
capabilities in addition to the standard PCI capabilities is indicated by a 1b in bit 4 (CAPLIST) of the status register  
(PCI offset 06h, see Section 4.5).  
The capabilities pointer provides access to the first item in the linked list of capabilities. For the controller, a CardBus  
bridge with PCI configuration space header type 2, the capabilities pointer is mapped to an offset of 14h. The first  
byte of each capability register block is required to be a unique ID of that capability. PCI power management has been  
assigned an ID of 01h. The next byte is a pointer to the next pointer item in the list of capabilities. If there are no more  
items in the list, then the next item pointer must be set to 0b. The registers following the next item pointer are specific  
to the capability of the function. The PCI power-management capability implements the register block outlined in  
Table 3−11.  
Table 3−11. Power-Management Registers  
REGISTER NAME  
Next-item pointer  
OFFSET  
Power-management capabilities  
Power-management  
Capability ID  
A0h  
Power-management data  
control/status bridge  
support extensions  
Power-management control/status  
A4h  
The power management capabilities register (PCI offset A2h, see Section 4.37) provides information on the  
capabilities of the function related to power management. The power-management control/status register (PCI offset  
A4h, see Section 4.38) enables control of power-management states and enables/monitors power-management  
events. The data register is an optional register that can provide dynamic data.  
For more information on PCI power management, see the PCI Bus Power Management Interface Specification for  
PCI to CardBus Bridges.  
3.8.9 CardBus Bridge Power Management  
The PCI Bus Power Management Interface Specification for PCI to CardBus Bridges was approved by PCMCIA in  
December of 1997. This specification follows the device and bus state definitions provided in the PCI Bus Power  
Management Interface Specification published by the PCI Special Interest Group (SIG). The main issue addressed  
in the PCI Bus Power Management Interface Specification for PCI to CardBus Bridges is wake-up from D3 or D3  
without losing wake-up context (also called PME context).  
hot  
cold  
3−20  
 
The specific issues addressed by the PCI Bus Power Management Interface Specification for PCI to CardBus Bridges  
for D3 wake up are as follows:  
Preservation of device context. The specification states that a reset must occur during the transition from  
D3 to D0. Some method to preserve wake-up context must be implemented so that the reset does not clear  
the PME context registers.  
Power source in D3  
if wake-up support is required from this state.  
cold  
The PCI1510 controller addresses these D3 wake-up issues in the following manner:  
Two resets are provided to handle preservation of PME context bits:  
Global reset (GRST) is used only on the initial boot up of the system after power up. It places the  
controller in its default state and requires BIOS to configure the device before becoming fully functional.  
PCI reset (PRST) has dual functionality based on whether PME is enabled or not. If PME is enabled,  
then PME context is preserved. If PME is not enabled, then PRST acts the same as a normal PCI reset.  
Please see the master list of PME context bits in Section 3.8.11.  
Power source in D3  
auxiliary power source must be supplied to the V  
for D3 Wake-Up or the PCI Power Management Interface Specification for PCI to CardBus Bridges for  
if wake-up support is required from this state. Since V  
is removed in D3  
, an  
cold  
CC  
cold  
terminals. Consult the PCI14xx Implementation Guide  
CC  
further information.  
3.8.10 ACPI Support  
The Advanced Configuration and Power Interface (ACPI) Specification provides a mechanism that allows unique  
pieces of hardware to be described to the ACPI driver. The controller offers a generic interface that is compliant with  
ACPI design rules.  
Two doublewords of general-purpose ACPI programming bits reside in PCI configuration space at offset A8h. The  
programming model is broken into status and control functions. In compliance with ACPI, the top level event status  
and enable bits reside in the general-purpose event status register (PCI offset A8h, see Section 4.41) and  
general-purpose event enable register (PCI offset AAh, see Section 4.42). The status and enable bits are  
implemented as defined by ACPI and illustrated in Figure 3−17.  
Status Bit  
Event Input  
Event Output  
Enable Bit  
Figure 3−17. Block Diagram of a Status/Enable Cell  
The status and enable bits generate an event that allows the ACPI driver to call a control method associated with the  
pending status bit. The control method can then control the hardware by manipulating the hardware control bits or  
by investigating child status bits and calling their respective control methods. A hierarchical implementation would  
be somewhat limiting, however, as upstream devices would have to remain in some level of power state to report  
events.  
For more information of ACPI, see the Advanced Configuration and Power Interface (ACPI) Specification.  
3−21  
 
3.8.11 Master List of PME Context Bits and Global Reset-Only Bits  
If the PME enable bit (bit 8) of the power-management control/status register (PCI offset A4h, see section 4.38) is  
asserted, then the assertion of PRST will not clear the following PME context bits. If the PME enable bit is not asserted,  
then the PME context bits are cleared with PRST. The PME context bits are:  
Bridge control register (PCI offset 3Eh): bit 6  
System control register (PCI offset 80h): bits 10, 9, 8  
Power-management control/status register (PCI offset A4h): bits 15, 8  
ExCA power control register (ExCA offset 802h): bits 7, 5 , 4−3, 1−0 ( 82365SL mode only)  
ExCA interrupt and general control register (ExCA offset 803h): bits 6−5  
ExCA card status change register (ExCA offset 804h): bits 11−8, 3−0  
ExCA card status-change-interrupt configuration register (ExCA offset 805h): bits 3−0  
CardBus socket event register (CardBus offset 00h): bits 3−0  
CardBus socket mask register (CardBus offset 04h): bits 3−0  
CardBus socket present state register (CardBus offset 08h): bits 13−7, 5−1  
CardBus socket control register (CardBus offset 10h): bits 6−4, 2−0  
Global reset places all registers in their default state regardless of the state of the PME enable bit. The GRST signal  
is gated only by the SUSPEND signal. This means that assertion of SUSPEND blocks the GRST signal internally,  
thus preserving all register contents. The registers cleared only by GRST are:  
Status register (PCI offset 06h): bits 15−11, 8  
Secondary status register (PCI offset 16h): bits 15−11, 8  
Interrupt pin register (PCI offset 3Dh): bits 1,0  
Subsystem vendor ID register (PCI offset 40h): bits 15–0  
Subsystem ID register (PCI offset 42h): bits 15–0  
PC Card 16-bit legacy mode base address register (PCI offset 44h): bits 31–1  
System control register (PCI offset 80h): bits 31–29, 27–13, 11, 6−0  
Multifunction routing register (PCI offset 8Ch): bits 27−0  
Retry status register (PCI offset 90h): bits 7−5, 3, 1  
Card control register (PCI offset 91h): bits 7−5, 2−0  
Device control register (PCI offset 92h): bits 7−5, 3−0  
Diagnostic register (PCI offset 93h): bits 7−0  
Power management capabilities register (PCI offset A2h): bit 15  
General-purpose event status register (PCI offset A8h): bits 15−14  
General-purpose event enable register (PCI offset AAh): bits 15−14, 11, 8, 4−0  
General-purpose output (PCI offset AEh): bits 4−0  
Serial bus data (PCI offset B0h): bits 7−0  
Serial bus index (PCI offset B1h): bits 7−0  
Serial bus slave address register (PCI offset B2h): bits 7−0  
Serial bus control and status register (PCI offset B3h): bits 7, 5−0  
ExCA identification and revision register (ExCA offset 00h): bits 7−0  
ExCA global control register (ExCA offset 1Eh): bits 2−0  
Socket present state register (CardBus offset 08h): bit 29  
Socket power management register (CardBus offset 20h): bits 25−24  
3−22  
 
4 PC Card Controller Programming Model  
This chapter describes the PCI1510 PCI configuration registers that make up the 256-byte PCI configuration header.  
4.1 PCI Configuration Registers  
The configuration header is compliant with the PCI Local Bus Specification as a CardBus bridge header and is PC 99  
compliant as well. Table 4−1 shows the PCI configuration header, which includes both the predefined portion of the  
configuration space and the user-definable registers.  
Table 4−1. PCI Configuration Registers  
REGISTER NAME  
OFFSET  
00h  
Device ID  
Status  
Vendor ID  
Command  
04h  
Class code  
Header type  
Revision ID  
08h  
BIST  
Latency timer  
Cache line size  
0Ch  
CardBus socket/ExCA base address  
Reserved  
10h  
Secondary status  
Capability pointer  
PCI bus number  
14h  
CardBus latency timer  
Subordinate bus number  
CardBus bus number  
18h  
CardBus Memory base register 0  
CardBus Memory limit register 0  
CardBus Memory base register 1  
CardBus Memory limit register 1  
CardBus I/O base register 0  
CardBus I/O limit register 0  
1Ch  
20h  
24h  
28h  
2Ch  
30h  
CardBus I/O base register 1  
CardBus I/O limit register 1  
34h  
38h  
Bridge control  
Subsystem ID  
Interrupt pin  
Interrupt line  
3Ch  
Subsystem vendor ID  
40h  
PC Card 16-bit I/F legacy-mode base address  
44h  
Reserved  
System control  
Reserved  
48h−7Ch  
80h  
84h−88h  
8Ch  
Multifunction routing  
Diagnostic  
Device control  
Card control  
Retry status  
Capability ID  
90h  
Reserved  
94h−9Ch  
A0h  
Power-management capabilities  
Power-management  
Next-item pointer  
Power-management data  
control/status bridge  
support extensions  
Power-management control/status  
A4h  
General-purpose event enable  
General-purpose output  
Serial bus control/status Serial bus slave address  
Reserved  
General-purpose event status  
General-purpose input  
A8h  
ACh  
Serial bus index  
Serial bus data  
B0h  
B4h−FCh  
4−1  
 
A bit description table, typically included when a register contains bits of more than one type or purpose, indicates  
bit field names, which appear in the signal column; a detailed field description, which appears in the function column;  
and field access tags, which appear in the type column of the bit description table. Table 4−2 describes the field  
access tags.  
Table 4−2. Bit Field Access Tag Descriptions  
ACCESS TAG  
NAME  
Read  
Write  
Set  
MEANING  
R
W
S
Field may be read by software.  
Field may be written by software to any value.  
Field may be set by a write of 1b. Writes of 0b have no effect.  
Field may be cleared by a write of 1b. Writes of 0b have no effect.  
Field may be autonomously updated by the controller.  
C
U
Clear  
Update  
4.2 Vendor ID Register  
This 16-bit register contains a value allocated by the PCI Special Interest Group (SIG) and identifies the manufacturer  
of the PCI device. The vendor ID assigned to TI is 104Ch.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
1
0
0
0
0
0
1
0
0
1
1
0
0
Register:  
Offset:  
Type:  
Vendor ID  
00h  
Read-only  
104Ch  
Default:  
4.3 Device ID Register  
This 16-bit register contains a value assigned to the controller by TI. The device identification for the controller is  
AC56h.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
1
0
1
0
1
1
0
0
0
1
0
1
0
1
1
0
Register:  
Offset:  
Type:  
Device ID  
02h  
Read-only  
AC56h  
Default:  
4−2  
 
4.4 Command Register  
The command register provides control over the controller interface to the PCI bus. All bit functions adhere to the  
definitions in PCI Local Bus Specification. See Table 4−3 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Command  
04h  
Read-only, Read/Write  
0000h  
Default:  
Table 4−3. Command Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
15−10  
RSVD  
R
Reserved. Bits 15−10 return 00 0000b when read.  
Fast back-to-back enable. The controller does not generate fast back-to-back transactions; therefore, bit 9  
returns 0b when read.  
9
8
7
6
FBB_EN  
SERR_EN  
STEP_EN  
PERR_EN  
R
RW  
R
System error (SERR) enable. Bit 8 controls the enable for the SERR driver on the PCI interface. SERR can  
be asserted after detecting an address parity error on the PCI bus. Both bits 8 and 6 must be set for the  
controller to report address parity errors.  
0 = Disable SERR output driver (default)  
1 = Enable SERR output driver  
Address/data stepping control. The controller does not support address/data stepping; therefore, bit 7 is  
hardwired to 0b.  
Parity error response enable. Bit 6 controls the controller response to parity errors through PERR. Data  
parity errors are indicated by asserting PERR, whereas address parity errors are indicated by asserting  
SERR.  
RW  
0 = The controller ignores detected parity error (default)  
1 = The controller responds to detected parity errors  
VGA palette snoop. Bit 5 controls how PCI devices handle accesses to video graphics array (VGA) palette  
registers.  
5
4
3
VGA_EN  
MWI_EN  
SPECIAL  
RW  
R
Memory write-and-invalidate enable. Bit 4 controls whether a PCI initiator device can generate memory  
write-and-Invalidate commands. The controller does not support memory write-and-invalidate commands,  
but uses memory write commands instead; therefore, this bit is hardwired to 0b.  
Special cycles. Bit 3 controls whether or not a PCI device ignores PCI special cycles. The controller does  
not respond to special cycle operations; therefore, this bit is hardwired to 0b.  
R
Bus master control. Bit 2 controls whether or not the controller can act as a PCI bus initiator (master). The  
controller can take control of the PCI bus only when this bit is set.  
2
MAST_EN  
RW  
0 = Disables the controller from generating PCI bus accesses (default)  
1 = Enables the controller to generate PCI bus accesses  
Memory space enable. Bit 1 controls whether or not the controller can claim cycles in PCI memory space.  
0 = Disables the controller from responding to memory space accesses (default)  
1 = Enables the controller to respond to memory space accesses  
1
0
MEM_EN  
IO_EN  
RW  
RW  
I/O space control. Bit 0 controls whether or not the controller can claim cycles in PCI I/O space.  
0 = Disables the controller from responding to I/O space accesses (default)  
1 = Enables the controller to respond to I/O space accesses  
4−3  
 
4.5 Status Register  
The status register provides device information to the host system. Bits in this register can be read normally. A bit  
in the status register is reset when a 1b is written to that bit location; a 0b written to a bit location has no effect. All  
bit functions adhere to the definitions in the PCI Local Bus Specification. See Table 4−4 for a complete description  
of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
Register:  
Offset:  
Type:  
Status  
06h  
Read-only, Read/Clear  
0210h  
Default:  
Table 4−4. Status Register Description  
BIT  
15  
SIGNAL  
PAR_ERR  
SYS_ERR  
TYPE  
RC  
FUNCTION  
Detected parity error. Bit 15 is set when a parity error is detected (either address or data).  
14  
RC  
Signaled system error. Bit 14 is set when SERR is enabled and the controller signals a system error to the host.  
Received master abort. Bit 13 is set when a cycle initiated by the controller on the PCI bus is terminated by a  
master abort.  
13  
12  
11  
MABORT  
TABT_REC  
TABT_SIG  
RC  
RC  
RC  
R
Received target abort. Bit 12 is set when a cycle initiated by the controller on the PCI bus is terminated by a  
target abort.  
Signaled target abort. Bit 11 is set by the controller when it terminates a transaction on the PCI bus with a target  
abort.  
DEVSEL timing. These bits encode the timing of DEVSEL and are hardwired 01b, indicating that the controller  
asserts PCI_SPEED at a medium speed on nonconfiguration cycle accesses.  
10−9 PCI_SPEED  
Data parity error detected.  
0 = The conditions for setting bit 8 have not been met.  
1 = A data parity error occurred, and the following conditions were met:  
a. PERR was asserted by any PCI device including the controller.  
b. The controller was the bus master during the data parity error.  
c. The parity error response bit is set in the command register (PCI offset 04h, see Section 4.4).  
8
DATAPAR  
RC  
Fast back-to-back capable. The controller cannot accept fast back-to-back transactions; therefore, bit 7 is  
hardwired to 0b.  
7
6
5
FBB_CAP  
UDF  
R
R
R
User-definable feature support. The controller does not support the user-definable features; therefore, bit 6 is  
hardwired to 0b.  
66-MHz capable. The controller operates at a maximum PCLK frequency of 33 MHz; therefore, bit 5 is  
hardwired to 0b.  
66MHZ  
Capabilities list. Bit 4 returns 1b when read. This bit indicates that capabilities in addition to standard PCI  
capabilities are implemented. The linked list of PCI power-management capabilities is implemented in this  
function.  
4
CAPLIST  
RSVD  
R
R
3−0  
Reserved. Bits 3−0 return 0h when read.  
4.6 Revision ID Register  
The revision ID register indicates the silicon revision of the controller.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Revision ID  
08h  
Read-only  
00h  
Default:  
4−4  
 
4.7 PCI Class Code Register  
The class code register recognizes the controller as a bridge device (06h) and a CardBus bridge device (07h), with  
a 00h programming interface.  
Bit  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
Base class Subclass  
9
8
7
6
5
4
3
2
1
0
Name  
Default  
Programming interface  
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
PCI class code  
09h  
Read-only  
06 0700h  
Default:  
4.8 Cache Line Size Register  
The cache line size register is programmed by host software to indicate the system cache line size.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Cache line size  
0Ch  
Read/Write  
00h  
Default:  
4.9 Latency Timer Register  
The latency timer register specifies the latency time for the controller in units of PCI clock cycles. When the controller  
is a PCI bus initiator and asserts FRAME, the latency timer begins counting from zero. If the latency timer expires  
before the transaction has terminated, then the controller terminates the transaction when its GNT is deasserted.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Latency timer  
0Dh  
Read/Write  
00h  
Default:  
4.10 Header Type Register  
This register returns 02h when read, indicating that the configuration space adheres to the CardBus bridge PCI  
header. The CardBus bridge PCI header ranges from PCI register 00h to 7Fh, and 80h to FFh is user-definable  
extension registers.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
1
0
Register:  
Offset:  
Type:  
Header type  
0Eh  
Read-only  
02h  
Default:  
4−5  
 
4.11 BIST Register  
Because the controller does not support a built-in self-test (BIST), this register returns the value of 00h when read.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
BIST  
0Fh  
Read-only  
00h  
Default:  
4.12 CardBus Socket/ExCA Base-Address Register  
The CardBus socket/ExCA base-address register is programmed with a base address referencing the CardBus  
socket registers and the memory-mapped ExCA register set. Bits 31−12 are read/write and allow the base address  
to be located anywhere in the 32-bit PCI memory address space on a 4-Kbyte boundary. Bits 11−0 are read-only,  
returning 000h when read. When software writes FFFF FFFFh to this register, the value read back is FFFF F000h,  
indicating that at least 4 Kbytes of memory address space are required. The CardBus registers start at offset 000h,  
and the memory-mapped ExCA registers begin at offset 800h.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
CardBus socket/ExCA base-address  
10h  
Read-only, Read/Write  
0000 0000h  
Default:  
4.13 Capability Pointer Register  
The capability pointer register provides a pointer into the PCI configuration header where the PCI  
power-management register block resides. PCI header doublewords at A0h and A4h provide the power-management  
(PM) registers. This register returns A0h when read.  
Bit  
7
6
5
4
3
2
1
0
Default  
1
0
1
0
0
0
0
0
Register:  
Offset:  
Type:  
Capability pointer  
14h  
Read-only  
A0h  
Default:  
4−6  
 
4.14 Secondary Status Register  
The secondary status register is compatible with the PCI-to-PCI bridge secondary status register and indicates  
CardBus-related device information to the host system. This register is very similar to the status register (offset 06h,  
see Section 4.5); status bits are cleared by writing a 1b. See Table 4−5 for a complete description of the register  
contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Secondary status  
16h  
Read-only, Read/Clear  
0200h  
Default:  
Table 4−5. Secondary Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15  
CBPARITY  
RC  
Detected parity error. Bit 15 is set when a CardBus parity error is detected (either address or data).  
Signaled system error. Bit 14 is set when CSERR is signaled by a CardBus card. The controller does not  
assert CSERR.  
14  
13  
CBSERR  
CBMABORT  
REC_CBTA  
SIG_CBTA  
CB_SPEED  
RC  
RC  
RC  
RC  
R
Received master abort. Bit 13 is set when a cycle initiated by the controller on the CardBus bus has been  
terminated by a master abort.  
Received target abort. Bit 12 is set when a cycle initiated by the controller on the CardBus bus is terminated  
by a target abort.  
12  
Signaled target abort. Bit 11 is set by the controller when it terminates a transaction on the CardBus bus  
with a target abort.  
11  
CDEVSEL timing. These bits encode the timing of CDEVSEL and are hardwired 01b, indicating that the  
controller asserts CB_SPEED at a medium speed.  
10−9  
CardBus data parity error detected.  
0 = The conditions for setting bit 8 have not been met.  
1 = A data parity error occurred and the following conditions were met:  
a. CPERR was asserted on the CardBus interface.  
b. The controller was the bus master during the data parity error.  
c. The parity error response bit is set in the bridge control.  
8
CB_DPAR  
RC  
Fast back-to-back capable. The controller cannot accept fast back-to-back transactions; therefore, bit 7  
is hardwired to 0b.  
7
6
CBFBB_CAP  
CB_UDF  
R
R
User-definable feature support. The controller does not support user-definable features; therefore, bit 6  
is hardwired to 0b.  
66-MHz capable. The CardBus interface operates at a maximum CCLK frequency of 33 MHz; therefore,  
bit 5 is hardwired to 0b.  
5
CB66MHZ  
RSVD  
R
R
4−0  
Reserved. Bits 4−0 return 00000b when read.  
4−7  
 
4.15 PCI Bus Number Register  
This register is programmed by the host system to indicate the bus number of the PCI bus to which the controller is  
connected. The controller uses this register in conjunction with the CardBus bus number and subordinate bus number  
registers to determine when to forward PCI configuration cycles to its secondary buses.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
PCI bus number  
18h  
Read/Write  
00h  
Default:  
4.16 CardBus Bus Number Register  
This register is programmed by the host system to indicate the bus number of the CardBus bus to which the controller  
is connected. The controller uses this register in conjunction with the PCI bus number and subordinate bus number  
registers to determine when to forward PCI configuration cycles to its secondary buses.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
CardBus bus number  
19h  
Read/Write  
00h  
Default:  
4.17 Subordinate Bus Number Register  
This register is programmed by the host system to indicate the highest-numbered bus below the CardBus bus. The  
controller uses this register in conjunction with the PCI bus number and CardBus bus number registers to determine  
when to forward PCI configuration cycles to its secondary buses.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Subordinate bus number  
1Ah  
Read/Write  
00h  
Default:  
4.18 CardBus Latency Timer Register  
This register is programmed by the host system to specify the latency timer for the CardBus interface in units of CCLK  
cycles. When the controller is a CardBus initiator and asserts CFRAME, the CardBus latency timer begins counting.  
If the latency timer expires before the transaction has terminated, then the controller terminates the transaction at  
the end of the next data phase. A recommended minimum value for this register is 40h, which allows most  
transactions to be completed.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
CardBus latency timer  
1Bh  
Read/Write  
00h  
Default:  
4−8  
 
4.19 Memory Base Registers 0, 1  
The memory base registers indicate the lower address of a PCI memory address range. These registers are used  
by the controller to determine when to forward a memory transaction to the CardBus bus and when to forward a  
CardBus cycle to PCI. Bits 31−12 of these registers are read/write and allow the memory base to be located anywhere  
in the 32-bit PCI memory space on 4-Kbyte boundaries. Bits 11−0 are read-only and always return 000h. Write  
transactions to these bits have no effect. Bits 8 and 9 of the bridge control register specify whether memory windows  
0 and 1 are prefetchable or nonprefetchable. The memory base register or the memory limit register must be nonzero  
for the controller to claim any memory transactions through CardBus memory windows (that is, these windows are  
not enabled by default to pass the first 4 Kbytes of memory to CardBus).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Memory base registers 0, 1  
1Ch, 24h  
Read-only, Read/Write  
0000 0000h  
Default:  
4.20 Memory Limit Registers 0, 1  
The memory limit registers indicate the upper address of a PCI memory address range. These registers are used  
by the controller to determine when to forward a memory transaction to the CardBus bus and when to forward a  
CardBus cycle to PCI. Bits 31−12 of these registers are read/write and allow the memory base to be located anywhere  
in the 32-bit PCI memory space on 4-Kbyte boundaries. Bits 11−0 are read-only and always return 000h. Write  
transactions to these bits have no effect. Bits 8 and 9 of the bridge control register specify whether memory windows  
0 and 1 are prefetchable or nonprefetchable. The memory base register or the memory limit register must be nonzero  
for the controller to claim any memory transactions through CardBus memory windows; that is, these windows are  
not enabled by default to pass the first 4 Kbytes of memory to CardBus.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Memory limit registers 0, 1  
20h, 28h  
Read-only, Read/Write  
0000 0000h  
Default:  
4−9  
 
4.21 I/O Base Registers 0, 1  
The I/O base registers indicate the lower address of a PCI I/O address range. These registers are used by the  
controller to determine when to forward an I/O transaction to the CardBus bus and when to forward a CardBus cycle  
to the PCI bus. The lower 16 bits of this register locate the bottom of the I/O window within a 64-Kbyte page, and the  
upper 16 bits (31−16) are a page register which locates this 64-Kbyte page in 32-bit PCI I/O address space. Bits 31−2  
are read/write. Bits 1 and 0 are read-only and always return 00b, forcing I/O windows to be aligned on a natural  
doubleword boundary.  
NOTE: Either the I/O base register or the I/O limit register must be nonzero to enable any I/O  
transactions.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
I/O base registers 0, 1  
2Ch, 34h  
Read-only, Read/Write  
0000 0000h  
Default:  
4.22 I/O Limit Registers 0, 1  
The I/O limit registers indicate the upper address of a PCI I/O address range. These registers are used by the  
controller to determine when to forward an I/O transaction to the CardBus bus and when to forward a CardBus cycle  
to PCI. The lower 16 bits of this register locate the top of the I/O window within a 64-Kbyte page, and the upper 16  
bits are a page register that locates this 64-Kbyte page in 32-bit PCI I/O address space. Bits 15−2 are read/write and  
allow the I/O limit address to be located anywhere in the 64-Kbyte page (indicated by bits 31−16 of the appropriate  
I/O base) on doubleword boundaries.  
Bits 31−16 are read-only and always return 0000h when read. The page is set in the I/O base register. Bits 1 and 0  
are read-only and always return 00b, forcing I/O windows to be aligned on a natural doubleword boundary. Write  
transactions to read-only bits have no effect. The controller assumes that the lower 2 bits of the limit address are 11b.  
NOTE: The I/O base or the I/O limit register must be nonzero to enable an I/O transaction.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
I/O limit registers 0, 1  
30h, 38h  
Read-only, Read/Write  
0000 0000h  
Default:  
4−10  
 
4.23 Interrupt Line Register  
The interrupt line register communicates interrupt line routing information.  
Bit  
7
6
5
4
3
2
1
0
Default  
1
1
1
1
1
1
1
1
Register:  
Offset:  
Type:  
Interrupt line  
3Ch  
Read/Write  
FFh  
Default:  
4.24 Interrupt Pin Register  
The value read from the interrupt pin register is function dependent and depends on the interrupt signaling mode,  
selected through bits 2−1 (INTMODE field) of the device control register (PCI offset 92h, see Section 4.33).  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
1
Register:  
Offset:  
Type:  
Interrupt pin  
3Dh  
Read-only  
01h  
Default:  
4−11  
 
4.25 Bridge Control Register  
The bridge control register provides control over various bridging functions. See Table 4−6 for a complete description  
of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Bridge control  
3Eh  
Read-only, Read/Write  
0340h  
Default:  
Table 4−6. Bridge Control Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
15−11  
RSVD  
R
Reserved. Bits 15−11 return 00 0000b when read.  
Write posting enable. Enables write posting to and from the CardBus socket. Write posting enables posting  
of write data on burst cycles. Operating with write posting disabled inhibits performance on burst cycles.  
Note that burst write data can be posted, but various write transactions may not.  
10  
9
POSTEN  
RW  
RW  
Memory window 1 type. Bit 9 specifies whether or not memory window 1 is prefetchable. Bit 9 is encoded  
as:  
PREFETCH1  
0 = Memory window 1 is nonprefetchable  
1 = Memory window 1 is prefetchable (default)  
Memory window 0 type. Bit 8 specifies whether or not memory window 0 is prefetchable. This bit is  
encoded as:  
8
7
6
5
PREFETCH0  
INTR  
RW  
RW  
RW  
RW  
0 = Memory window 0 is nonprefetchable  
1 = Memory window 0 is prefetchable (default)  
PCI interrupt − IREQ routing enable. Bit 7 selects whether PC Card functional interrupts are routed to PCI  
interrupts or the IRQ specified in the ExCA registers.  
0 = Functional interrupts routed to PCI interrupts (default)  
1 = Functional interrupts routed by ExCAs  
CardBus reset. When bit 6 is set, CRST is asserted on the CardBus interface. CRST can also be asserted  
by passing a PRST assertion to CardBus.  
0 = CRST deasserted  
CRST  
1 = CRST asserted (default)  
Master abort mode. Bit 5 controls how the controller responds to a master abort when the controller is an  
initiator on the CardBus interface. This bit is common between each socket.  
0 = Master aborts not reported (default)  
MABTMODE  
1 = Signal target abort on PCI and SERR (if enabled)  
4
3
RSVD  
R
Reserved. Bit 4 returns 0b when read.  
VGA enable. Bit 3 affects how the controller responds to VGA addresses. When this bit is set, accesses  
to VGA addresses are forwarded.  
VGAEN  
RW  
ISA mode enable. Bit 2 affects how the controller passes I/O cycles within the 64-Kbyte ISA range. When  
this bit is set, the controller does not forward the last 768 bytes of each 1K I/O range to CardBus.  
2
1
ISAEN  
RW  
RW  
CSERR enable. Bit 1 controls the response of the controller to CSERR signals on the CardBus bus.  
0 = CSERR is not forwarded to PCI SERR  
CSERREN  
1 = CSERR is forwarded to PCI SERR  
CardBus parity error response enable. Bit 0 controls the response of the controller to CardBus parity  
errors.  
0
CPERREN  
RW  
0 = CardBus parity errors are ignored  
1 = CardBus parity errors are reported using CPERR  
4−12  
 
4.26 Subsystem Vendor ID Register  
The subsystem vendor ID register is used for system and option-card identification purposes and may be required  
for certain operating systems. This register is read-only or read/write, depending on the setting of bit 5 (SUBSYSRW)  
in the system control register (PCI offset 80h, see Section 4.29).  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Subsystem vendor ID  
40h  
Read-only (Read/Write if enabled by SUBSYSRW)  
0000h  
Default:  
4.27 Subsystem ID Register  
The subsystem ID register is used for system and option-card identification purposes and may be required for certain  
operating systems. This register is read-only or read/write, depending on the setting of bit 5 (SUBSYSRW) in the  
system control register (PCI offset 80h, see Section 4.29).  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Subsystem ID  
42h  
Read-only (Read/Write if enabled by SUBSYSRW)  
0000h  
Default:  
4.28 PC Card 16-Bit I/F Legacy-Mode Base Address Register  
The controller supports the index/data scheme of accessing the ExCA registers, which are mapped by this register.  
An address written to this register is the address for the index register and the address + 1 is the data address. Using  
this access method, applications requiring index/data ExCA access can be supported. The base address can be  
mapped anywhere in 32-bit I/O space on a word boundary; hence, bit 0 is read-only, returning 1b when read. See  
Section 5, ExCA Compatibility Registers, for register offsets.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Register:  
Offset:  
Type:  
PC Card 16-bit I/F legacy-mode base address  
44h  
Read-only, Read/Write  
0000 0001h  
Default:  
4−13  
 
4.29 System Control Register  
System-level initializations are performed by programming this doubleword register. See Table 4−7 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
1
0
0
1
0
0
0
0
0
1
1
0
0
0
0
0
Register:  
Offset:  
Type:  
System control  
80h  
Read-only, Read/Write, Read/Clear  
0844 9060h  
Default:  
Table 4−7. System Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Serialized PCI interrupt routing step. Bits 31 and 30 configure the serialized PCI interrupt stream signaling  
and accomplish an even distribution of interrupts signaled on the four PCI interrupt slots.  
00 = INTA signal in INTA IRQSER slots  
31−30  
SER_STEP  
RW  
01 = INTA signal in INTB IRQSER slots  
10 = INTA signal in INTC IRQSER slots  
11 = INTA signal in INTD IRQSER slots  
29−28  
27  
RSVD  
OSEN  
R
Reserved. Bit 28 returns 0b when read.  
Internal oscillator enable.  
R/W  
0 = Internal oscillator is disabled  
1 = Internal oscillator is enabled (default)  
SMI interrupt routing. Bit 26 selects whether IRQ2 or CSC is signaled when a write occurs to power a PC Card  
socket.  
26  
25  
SMIROUTE  
SMISTATUS  
RW  
RC  
0 = PC Card power change interrupts routed to IRQ2 (default)  
1 = A CSC interrupt is generated on PC Card power changes  
SMI interrupt status. This bit is set when bit 24 (SMIENB) is set and a write occurs to set the socket power.  
Writing a 1b to bit 25 clears the status.  
0 = SMI interrupt signaled (default)  
1 = SMI interrupt not signaled  
SMI interrupt mode enable. When bit 24 is set and a write to the socket power control occurs, the SMI interrupt  
signaling is enabled and generates an interrupt. This bit defaults to 0b (disabled).  
24  
23  
SMIENB  
RSVD  
RW  
R
Reserved. Bit 23 returns 0b when read.  
CardBus reserved terminals signaling. When a CardBus card is inserted and bit 22 is set, the RSVD CardBus  
terminals are driven low. When this bit is 0b, these terminals are placed in a high-impedance state.  
0 = Place CardBus RSVD terminals in a high-impedance state  
22  
21  
CBRSVD  
RW  
RW  
1 = Drive Cardbus RSVD terminals low (default)  
V
protection enable.  
CC  
0 = V  
VCCPROT  
protection enabled for 16-bit cards (default)  
protection disabled for 16-bit cards  
CC  
CC  
1 = V  
Reduced zoomed video enable. When this bit is enabled, terminals A25−A22 of the card interface for PC  
Card-16 cards are placed in the high-impedance state. This bit should not be set for normal ZV operation. This  
bit is encoded as:  
20  
REDUCEZV  
RSVD  
RW  
RW  
0 = Reduced zoomed video disabled (default)  
1 = Reduced zoomed video enabled  
19−16  
Reserved. Do not change the default value.  
4−14  
 
Table 4−7. System Control Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Memory read burst enable downstream. When bit 15 is set, memory read transactions are allowed to  
burst downstream.  
15  
MRBURSTDN  
RW  
0 = Downstream memory read burst is disabled  
1 = Downstream memory read burst is enabled (default)  
Memory read burst enable upstream. When bit 14 is set, the controller allows memory read transactions  
to burst upstream.  
14  
MRBURSTUP  
RW  
0 = Upstream memory read burst is disabled (default)  
1 = Upstream memory read burst is enabled  
Socket activity status. When set, bit 13 indicates access has been performed to or from a PC card and  
is cleared upon read of this status bit.  
0 = No socket activity (default)  
1 = Socket activity  
13  
12  
SOCACTIVE  
RSVD  
R
R
Reserved. Bit 12 returns 1b when read.  
Power stream in progress status bit. When set, bit 11 indicates that a power stream to the power switch  
is in progress and a powering change has been requested. This bit is cleared when the power stream is  
complete.  
11  
PWRSTREAM  
R
0 = Power stream is complete and delay has expired  
1 = Power stream is in progress  
Power-up delay in progress status. When set, bit 10 indicates that a power-up stream has been sent to  
the power switch and proper power may not yet be stable. This bit is cleared when the power-up delay  
has expired.  
10  
9
DELAYUP  
R
R
Power-down delay in progress status. When set, bit 9 indicates that a power-down stream has been sent  
to the power switch and proper power may not yet be stable. This bit is cleared when the power-down  
delay has expired.  
DELAYDOWN  
Interrogation in progress. When set, bit 8 indicates an interrogation is in progress and clears when  
interrogation completes.  
8
INTERROGATE  
R
0 = Interrogation not in progress (default)  
1 = Interrogation in progress  
Auto power-switch enable  
0 = Bit 5 (AUTOPWRSWEN) in ExCA power control register (ExCA offset 02h, see Section 5.3)  
is disabled (default)  
7
6
AUTOPWRSWEN  
PWRSAVINGS  
R/W  
RW  
1 = Bit 5 (AUTOPWRSWEN) in ExCA power control register (ExCA offset 02h, see Section 5.3)  
is enabled  
Power savings mode enable. When this bit is set, if a CB card is inserted, idle, and without a CB clock,  
then the applicable CB state machine will not be clocked.  
Subsystem ID (PCI offset 42h, see Section 4.27), subsystem vendor ID (PCI offset 40H, see  
Section 4.26), ExCA identification and revision (ExCA offset 00h/40h/800h, see Section 5.1) registers  
read/write enable.  
5
SUBSYSRW  
RW  
0 = Subsystem ID, subsystem vendor ID, ExCA identification and revision registers are read/write  
1 = Subsystem ID, subsystem vendor ID, ExCA identification and revision registers are read-only  
(default)  
CardBus data parity SERR signaling enable  
0 = CardBus data parity not signaled on PCI SERR  
1 = CardBus data parity signaled on PCI SERR  
4
3
2
CB_DPAR  
RSVD  
RW  
RW  
RW  
Reserved. Do not change the default value.  
ExCA power-control bit.  
0 = Enables 3.3 V  
1 = Enables 5 V  
EXCAPOWER  
Keep clock. This bit works with PCI and CB CLKRUN protocols.  
1
0
KEEPCLK  
RIMUX  
RW  
RW  
0 = Allows normal functioning of both CLKRUN protocols (default)  
1 = Does not allow CB clock or PCI clock to be stopped using the CLKRUN protocols  
RI_OUT/PME multiplex enable.  
0 = RI_OUT and PME are both routed to the RI_OUT/PME terminal. If both functions are are enabled  
at the same time, the terminal becomes RI_OUT only and PME assertions are not seen.  
1 = Only PME is routed to the RI_OUT/PME terminal.  
4−15  
4.30 Multifunction Routing Register  
The multifunction routing register is used to configure the MFUNC0−MFUNC6 terminals. These terminals may be  
configured for various functions. All multifunction terminals default to the general-purpose input configuration. This  
register is intended to be programmed once at power-on initialization. The default value for this register can also be  
loaded through a serial bus EEPROM. See Table 4−8 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Multifunction routing  
8Ch  
Read-only, Read/Write  
0000 1000h  
Default:  
Table 4−8. Multifunction Routing Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31−28  
RSVD  
R
Bits 31−28 return 0h when read.  
Multifunction terminal 6 configuration. These bits control the internal signal mapped to the MFUNC6 terminal  
as follows:  
0000 = RSVD  
0100 = IRQ4  
0101 = IRQ5  
0110 = IRQ6  
0111 = IRQ7  
1000 = IRQ8  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = IRQ12  
1101 = IRQ13  
1110 = IRQ14  
1111 = IRQ15  
27−24  
23−20  
MFUNC6  
MFUNC5  
RW  
RW  
0001 = CLKRUN  
0010 = IRQ2  
0011 = IRQ3  
Multifunction terminal 5 configuration. These bits control the internal signal mapped to the MFUNC5 terminal  
as follows:  
0000 = GPI4  
0100 = IRQ4  
0101 = D3_STAT 1001 = D3_STAT  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1100 = LED_SKT  
1101 = LED_SKT  
1110 = GPE  
0001 = GPO4  
0010 = PCGNT  
0011 = IRQ3  
1010 = IRQ10  
1011 = IRQ11  
1111 = IRQ15  
Multifunction terminal 4 configuration. These bits control the internal signal mapped to the MFUNC4 terminal  
as follows:  
NOTE: When the serial bus mode is implemented by pulling up the VCCD0 and VCCD1 terminals, the  
MFUNC4 terminal provides the SCL signaling.  
19−16  
MFUNC4  
RW  
0000 = GPI3  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = RI_OUT  
1101 = LED_SKT  
1110 = GPE  
0001 = GPO3  
0010 = LOCK PCI  
0011 = IRQ3  
1111 = D3_STAT  
Multifunction terminal 3 configuration. These bits control the internal signal mapped to the MFUNC3 terminal  
as follows:  
0000 = RSVD  
0001 = IRQSER  
0010 = IRQ2  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = IRQ6  
0111 = IRQ7  
1000 = IRQ8  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = IRQ12  
1101 = IRQ13  
1110 = IRQ14  
1111 = IRQ15  
15−12  
11−8  
MFUNC3  
MFUNC2  
RW  
RW  
Multifunction terminal 2 configuration. These bits control the internal signal mapped to the MFUNC2 terminal  
as follows:  
0000 = GPI2  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = RI_OUT  
1101 = D3_STAT  
1110 = GPE  
0001 = GPO2  
0010 = PCREQ  
0011 = IRQ3  
1111 = IRQ7  
4−16  
 
Table 4−8. Multifunction Routing Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Multifunction terminal 1 configuration. These bits control the internal signal mapped to the MFUNC1 terminal  
as follows:  
NOTE: When the serial bus mode is implemented by pulling up the VCCD0 and VCCD1 terminals, the  
MFUNC1 terminal provides the SDA signaling.  
7−4  
MFUNC1  
RW  
RW  
0000 = GPI1  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = LED_SKT  
1101 = IRQ13  
1110 = GPE  
0001 = GPO1  
0010 = D3_STAT  
0011 = IRQ3  
1111 = IRQ15  
Multifunction terminal 0 configuration. These bits control the internal signal mapped to the MFUNC0 terminal  
as follows:  
0000 = GPI0  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = LED_SKT  
1101 = IRQ13  
1110 = GPE  
3−0  
MFUNC0  
0001 = GPO0  
0010 = INTA  
0011 = IRQ3  
1111 = IRQ15  
Default value  
4.31 Retry Status Register  
The retry status register enables the retry timeout counters and displays the retry expiration status. The flags are set  
15  
when the controller retries a PCI or CardBus master request and the master does not return within 2 PCI clock  
cycles. The flags are cleared by writing a 1b to the bit. These bits are expected to be incorporated into the PCI  
command, PCI status, and bridge control registers by the PCI SIG. See Table 4−9 for a complete description of the  
register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
1
1
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Retry status  
90h  
Read-only, Read/Write, Read/Clear  
C0h  
Default:  
Table 4−9. Retry Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PCI retry timeout counter enable. Bit 7 is encoded:  
0 = PCI retry counter disabled  
7
PCIRETRY  
RW  
1 = PCI retry counter enabled (default)  
CardBus retry timeout counter enable. Bit 6 is encoded:  
0 = CardBus retry counter disabled  
6
CBRETRY  
RW  
1 = CardBus retry counter enabled (default)  
CardBus target B retry expired. Write a 1b to clear bit 5.  
0 = Inactive (default)  
5
4
3
2
1
0
TEXP_CBB  
RSVD  
RC  
R
1 = Retry has expired  
Reserved. Bit 4 returns 0b when read.  
CardBus target A retry expired. Write a 1b to clear bit 3.  
0 = Inactive (default)  
TEXP_CBA  
RSVD  
RC  
R
1 = Retry has expired  
Reserved. Bit 2 returns 0b when read.  
PCI target retry expired. Write a 1b to clear bit 1.  
0 = Inactive (default)  
TEXP_PCI  
RSVD  
RC  
R
1 = Retry has expired  
Reserved. Bit 0 returns 0b when read.  
4−17  
 
4.32 Card Control Register  
The card control register is provided for PCI1130 compatibility. RI_OUT is enabled through this register. See  
Table 4−10 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Card control  
91h  
Read-only, Read/Write, Read/Clear  
00h  
Default:  
Table 4−10. Card Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Ring indicate output enable.  
0 = Disables any routing of RI_OUT signal (default)  
1 = Enables RI_OUT signal for routing to the RI_OUT/PME terminal, when RIMUX is set to 0b,  
and for routing to MFUNC2 or MFUNC4  
7
RIENB  
RW  
Compatibility ZV mode enable. When set, the corresponding PC Card socket interface ZV terminals enter  
a high-impedance state. This bit defaults to 0b.  
6
ZVENABLE  
RW  
5
RSVD  
RSVD  
RW  
R
Reserved. Do not change default value.  
4−3  
Reserved. Bits 4 and 3 return 00b when read.  
CardBus audio-to-IRQMUX. When set, the CAUDIO CardBus signal is routed to the corresponding  
multifunction terminal which may be configured for CAUDPWM.  
2
1
AUD2MUX  
RW  
Speaker out enable. When bit 1 is set, SPKR on the PC Card is enabled and is routed to SPKROUT. The  
SPKROUT terminal drives data only when the SPKROUTEN bit is set. This bit is encoded as:  
0 = SPKR to SPKROUT not enabled  
SPKROUTEN  
RW  
1 = SPKR to SPKROUT enabled  
Interrupt flag. Bit 0 is the interrupt flag for 16-bit I/O PC Cards and for CardBus cards. Bit 0 is set when a  
functional interrupt is signaled from a PC Card interface. Write back a 1b to clear this bit.  
0 = No PC Card functional interrupt detected (default).  
0
IFG  
RC  
1 = PC Card functional interrupt detected.  
4−18  
 
4.33 Device Control Register  
The device control register is provided for PCI1130 compatibility. See Table 4−11 for a complete description of the  
register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
1
1
0
0
1
1
0
Register:  
Offset:  
Type:  
Device control  
92h  
Read-only, Read/Write  
66h  
Default:  
Table 4−11. Device Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Socket power lock bit. When this bit is set to 1b, software cannot power down the PC Card socket while  
in D3. This may be necessary to support wake on LAN or RING if the operating system is programmed  
to power down a socket when the CardBus controller is placed in the D3 state.  
7
SKTPWR_LOCK  
RW  
3-V socket capable force  
0 = Not 3-V capable  
6
3VCAPABLE  
RW  
1 = 3-V capable (default)  
5
4
3
IO16V2  
RSVD  
TEST  
RW  
R
Diagnostic bit. This bit defaults to 1b.  
Reserved. Bit 4 returns 0b when read.  
TI test. Only a 0b should be written to bit 3.  
RW  
Interrupt signaling mode. Bits 2 and 1 select the interrupt signaling mode. The interrupt signaling  
mode bits are encoded:  
00 = Parallel PCI interrupts only  
01 = Parallel IRQ and parallel PCI interrupts  
10 = IRQ serialized interrupts and parallel PCI interrupt  
11 = IRQ and PCI serialized interrupts (default)  
2−1  
0
INTMODE  
RSVD  
RW  
RW  
Reserved. Bit 0 is reserved for test purposes. Only 0b should be written to this bit.  
4−19  
 
4.34 Diagnostic Register  
The diagnostic register is provided for internal TI test purposes. It is a read/write register, but only 00h should be  
written to it. See Table 4−12 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
1
1
0
0
0
0
0
Register:  
Offset:  
Type:  
Diagnostic  
93h  
Read/Write  
60h  
Default:  
Table 4−12. Diagnostic Register Description  
FUNCTION  
BIT  
7
SIGNAL  
TRUE_VAL  
RSVD  
TYPE  
RW  
R
This bit defaults to 0b. This bit is encoded as:  
0 = Reads true values in PCI vendor ID and PCI device ID registers (default)  
1 = Reads all 1s in reads from the PCI vendor ID and PCI device ID registers  
6
Reserved. Bit 6 returns 1b when read.  
CSC interrupt routing control  
0 = CSC interrupts routed to PCI if ExCA 803 bit 4 = 1b  
1 = CSC interrupts routed to PCI if ExCA 805 bits 7−4 = 0000b (default)  
In this case, the setting of ExCA 803 bit 4 is a don’t care.  
5
CSC  
RW  
4
3
2
1
DIAG4  
DIAG3  
DIAG2  
DIAG1  
RW  
RW  
RW  
RW  
Diagnostic RETRY_DIS. Delayed transaction disable.  
Diagnostic RETRY_EXT. Extends the latency from 16 to 64.  
10  
15  
.
Diagnostic DISCARD_TIM_SEL_CB. Set = 2 , reset = 2  
10  
15  
.
Diagnostic DISCARD_TIM_SEL_PCI. Set = 2 , reset = 2  
Standardized zoomed video register model enable.  
0
STDZVEN  
RW  
0 = Enable the standardized zoomed video register model (default)  
1 = Disable the standardized zoomed video register model  
4.35 Capability ID Register  
The capability ID register identifies the linked list item as the register for PCI power management. The register returns  
01h when read, which is the unique ID assigned by the PCI SIG for the PCI location of the capabilities pointer and  
the value.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
1
Register:  
Offset:  
Type:  
Capability ID  
A0h  
Read-only  
01h  
Default:  
4.36 Next-Item Pointer Register  
The next-item pointer register indicates the next item in the linked list of the PCI power-management capabilities.  
Because the controller function includes only one capabilities item, this register returns 00h when read.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Next-item pointer  
A1h  
Read-only  
00h  
Default:  
4−20  
 
4.37 Power-Management Capabilities Register  
This register contains information on the capabilities of the PC Card function related to power management. The  
CardBus bridge supports the D0, D1, D2, and D3 power states. See Table 4−13 for a complete description of the  
register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
1
1
1
1
1
1
1
0
0
0
0
1
0
0
1
0
Register:  
Offset:  
Type:  
Power-management capabilities  
A2h  
Read/Write, Read-only  
FE12h  
Default:  
Table 4−13. Power-Management Capabilities Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME support. This 5-bit field indicates the power states from which the controller function may assert PME.  
A 0b for any bit indicates that the function cannot assert the PME signal while in that power state. These  
five bits return 11111b when read. Each of these bits is described below:  
15  
PME_Support  
RW  
Bit 15 defaults to 1b indicating the PME signal can be asserted from the D3  
because wake-up support from D3  
cold  
state. This bit is R/W  
is contingent on the system providing an auxiliary power source to  
cold  
the V  
terminals for D3  
cold  
terminals. If the system designer chooses not to provide an auxiliary power source to the V  
CC  
CC  
wake-up support, then BIOS should write a 0b to this bit.  
Bit 14 contains the value 1b, indicating that the PME signal can be asserted from D3  
hot  
state.  
Bit 13 contains the value 1b, indicating that the PME signal can be asserted from D2 state.  
Bit 12 contains the value 1b, indicating that the PME signal can be asserted from D1 state.  
Bit 11 contains the value 1b, indicating that the PME signal can be asserted from the D0 state.  
14−11 PME_Support  
R
R
D2 support. Bit 10 returns a 1b when read, indicating that the CardBus function supports the D2 device  
power state.  
10  
D2_Support  
D1 support. Bit 9 returns a 1b when read, indicating that the CardBus function supports the D1 device  
power state.  
9
D1_Support  
RSVD  
R
R
8−6  
Reserved. Bits 8−6 return 000b when read.  
Device-specific initialization. Bit 5 returns 1b when read, indicating that the CardBus controller function  
requires special initialization (beyond the standard PCI configuration header) before the generic-class  
device driver is able to use it.  
5
DSI  
R
Auxiliary power source. Bit 4 is tied to bit 15. When bit 4 is set, it indicates that support for PME in D3  
requires auxiliary power supplied by the system by way of a proprietary delivery vehicle. When bit 4 is 0b,  
it indicates that the function supplies its own auxiliary power source.  
cold  
4
3
AUX_PWR  
PMECLK  
VERSION  
R
R
R
PME clock. Bit 3 returns 0b when read, indicating that no host bus clock is required for the controller to  
generate PME.  
Version. Bits 2−0 return 010b when read, indicating that the power-management registers (PCI offsets  
A4h−A7h, see Sections 4.38−4.40) are defined in the PCI Bus Power Management Interface Specification  
version 1.1.  
2−0  
4−21  
 
4.38 Power-Management Control/Status Register  
The power-management control/status register determines and changes the current power state of the controller  
CardBus function. The contents of this register are not affected by the internally-generated reset caused by the  
transition from D3  
to D0 state. All PCI, ExCA, and CardBus registers are reset as a result of a D3  
to D0 state  
hot  
hot  
transition. TI-specific registers, PCI power-management registers, and the PC Card 16-bit legacy-mode base  
address register (PCI offset 44h, see Section 4.28) are not reset. See Table 4−14 for a complete description of the  
register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Power-management control/status  
A4h  
Read-only, Read/Write, Read/Clear  
0000h  
Default:  
Table 4−14. Power-Management Control/Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME status. Bit 15 is set when the CardBus function would normally assert PME, independent  
of the state of bit 8 (PME_EN). Bit 15 is cleared by a writeback of 1b, and this also clears the PME  
signal if PME was asserted by this function. Writing a 0b to this bit has no effect.  
15  
PMESTAT  
RC  
Data scale. This 2-bit field returns 00b when read. The CardBus function does not return any  
dynamic data.  
14−13  
12−9  
DATASCALE  
DATASEL  
R
R
Data select. This 4-bit field returns 0h when read. The CardBus function does not return any  
dynamic data.  
PME enable. Bit 8 enables the function to assert PME. If this bit is cleared, then assertion of PME  
is disabled.  
8
PME_EN  
RSVD  
RW  
R
7−2  
Reserved. Bits 7−2 return 000000b when read.  
Power state. This 2-bit field is used both to determine the current power state of a function and  
to set the function into a new power state. This field is encoded as:  
00 = D0  
01 = D1  
10 = D2  
1−0  
PWR_STATE  
RW  
11 = D3  
hot  
4−22  
 
4.39 Power-Management Control/Status Register Bridge Support Extensions  
The power-management control/status register bridge support extensions support PCI bridge specific functionality.  
See Table 4−15 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
1
1
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Power-management control/status register bridge support extensions  
A6h  
Read-only  
C0h  
Default:  
Table 4−15. Power-Management Control/Status Register Bridge Support Extensions Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
BPCC_Enable. Bus power/clock control enable. This bit returns 1b when read.  
This bit is encoded as:  
0 = Bus power/clock control is disabled  
1 = Bus power/clock control is enabled (default)  
7
BPCC_EN  
R
A 0b indicates that the bus power/clock control policies defined in the PCI Bus Power Management  
Interface Specification are disabled. When the bus power/clock control enable mechanism is disabled,  
the bridge power-management control/status register power state field (see Section 4.38, bits 1−0)  
cannot be used by the system software to control the power or the clock of the bridge secondary bus. A  
1b indicates that the bus power/clock control mechanism is enabled.  
B2/B3 support for D3 . The state of this bit determines the action that is to occur as a direct result of  
hot  
programming the function to D3 . This bit is only meaningful if bit 7 (BPCC_EN) is a 1b. This bit is  
hot  
encoded as:  
6
B2_B3  
RSVD  
R
R
0 = When the bridge is programmed to D3 , its secondary bus has its power removed (B3)  
1 = When the bridge function is programmed to D3 , its secondary bus PCI clock is  
hot  
hot  
stopped (B2) (default)  
5−0  
Reserved. Bits 5−0 return 000000b when read.  
4.40 Power-Management Data Register  
The power-management data register returns 00h when read, because the CardBus function does not report dynamic  
data.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Power-management data  
A7h  
Read-only  
00h  
Default:  
4−23  
 
4.41 General-Purpose Event Status Register  
The general-purpose event status register contains status bits that are set when events occur that are controlled by  
the general-purpose control register. The bits in this register and the corresponding GPE are cleared by writing a 1b  
to the corresponding bit location. The status bits in this register do not depend upon the states of corresponding bits  
in the general-purpose enable register. See Table 4−16 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
General-purpose event status  
A8h  
Read-only, Read/Clear  
0000h  
Default:  
Table 4−16. General-Purpose Event Status Register Description  
BIT  
15  
SIGNAL  
ZV_STS  
RSVD  
TYPE  
RC  
R
FUNCTION  
PC Card socket 0 ZV status. Bit 15 is set on a change in status of bit 6 (ZVENABLE) in the function 0 card  
control register (PCI offset 91h, see Section 4.32).  
14−12  
11  
Reserved. Bits 14−12 return 000b when read.  
Power-change status. Bit 11 is set when software has changed the power state of the socket. A change  
PWR_STS  
RSVD  
RC  
R
in either V  
CC  
or V causes this bit to be set.  
PP  
10−9  
8
Reserved. Bits 10 and 9 return 00b when read.  
12-V V request status. Bit 8 is set when software has changed the requested V  
level to or from 12 V  
PP  
PP  
VPP12_STS  
RC  
for the PC Card socket.  
7−5  
4
RSVD  
R
Reserved. Bits 7−5 return 000b when read.  
GP4_STS  
GP3_STS  
GP2_STS  
GP1_STS  
GP0_STS  
RC  
RC  
RC  
RC  
RC  
GPI4 Status. Bit 4 is set on a change in status of the MFUNC5 terminal input level.  
GPI3 Status. Bit 3 is set on a change in status of the MFUNC4 terminal input level.  
GPI2 Status. Bit 2 is set on a change in status of the MFUNC2 terminal input level.  
GPI1 Status. Bit 1 is set on a change in status of the MFUNC1 terminal input level.  
GPI0 Status. Bit 0 is set on a change in status of the MFUNC0 terminal input level.  
3
2
1
0
4−24  
 
4.42 General-Purpose Event Enable Register  
The general-purpose event enable register contains bits that are set to enable a GPE signal. The GPE signal is driven  
until the corresponding status bit is cleared and the event is serviced. The GPE can only be signaled if one of the  
multifunction terminals, MFUNC6−MFUNC0, is configured for GPE signaling. See Table 4−17 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
General-purpose event enable  
AAh  
Read-only, Read/Write  
0000h  
Default:  
Table 4−17. General-Purpose Event Enable Register Description  
BIT  
15  
SIGNAL  
ZV0_EN  
RSVD  
TYPE  
RW  
R
FUNCTION  
PC Card ZV enable. When bit 15 is set, a GPE is signaled on a change in status of bit 6 (ZVENABLE) in  
the card control register (PCI offset 91h, see Section 4.32).  
14−12  
11  
Reserved. Bits 14−12 return 000b when read.  
Power change enable. When bit 11 is set, a GPE is signaled on when software has changed the power  
state.  
PWR_EN  
RSVD  
RW  
R
10−9  
8
Reserved. Bits 10 and 9 return 00b when read.  
12-V V  
request enable. When bit 8 is set, a GPE is signaled when software has changed the requested  
level to or from 12 V.  
PP  
VPP12_EN  
RSVD  
RW  
R
V
PP  
7−5  
4
Reserved. Bits 7−5 return 000b when read.  
GPI4 enable. When bit 4 is set, a GPE is signaled when there has been a change in status of the MFUNC5  
terminal input level if configured as GPI4.  
GP4_EN  
RW  
GPI3 enable. When bit 3 is set, a GPE is signaled when there has been a change in status of the MFUNC4  
terminal input level if configured as GPI3.  
3
2
1
0
GP3_EN  
GP2_EN  
GP1_EN  
GP0_EN  
RW  
RW  
RW  
RW  
GPI2 enable. When bit 2 is set, a GPE is signaled when there has been a change in status of the MFUNC2  
terminal input if configured as GPI2.  
GPI1 enable. When bit 1 is set, a GPE is signaled when there has been a change in status of the MFUNC1  
terminal input if configured as GPI1.  
GPI0 enable. When bit 0 is set, a GPE is signaled when there has been a change in status of the MFUNC0  
terminal input if configured as GPI0.  
4−25  
 
4.43 General-Purpose Input Register  
The general-purpose input register provides the logical value of the data input from the GPI terminals, MFUNC5,  
MFUNC4, and MFUNC2−MFUNC0. See Table 4−18 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
X
X
X
X
X
Register:  
Offset:  
Type:  
General-purpose input  
ACh  
Read-only  
00XXh  
Default:  
Table 4−18. General-Purpose Input Register Description  
FUNCTION  
BIT  
SIGNAL  
RSVD  
TYPE  
15−5  
R
R
R
R
R
R
Reserved. Bits 15−5 return 0s when read.  
4
3
2
1
0
GPI4_DATA  
GPI3_DATA  
GPI2_DATA  
GPI1_DATA  
GPI0_DATA  
GPI4 data bit. The value read from bit 4 represents the logical value of the data input from the MFUNC5 terminal.  
GPI3 data bit. The value read from bit 3 represents the logical value of the data input from the MFUNC4 terminal.  
GPI2 data bit. The value read from bit 2 represents the logical value of the data input from the MFUNC2 terminal.  
GPI1 data bit. The value read from bit 1 represents the logical value of the data input from the MFUNC1 terminal.  
GPI0 data bit. The value read from bit 0 represents the logical value of the data input from the MFUNC0 terminal.  
4.44 General-Purpose Output Register  
The general-purpose output register is used for control of the general-purpose outputs. See Table 4−19 for a  
complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
General-purpose output  
AEh  
Read-only, Read/Write  
0000h  
Default:  
Table 4−19. General-Purpose Output Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15−5  
RSVD  
R
Reserved. Bits 15−5 return 0s when read.  
GPO4 data bit. The value written to bit 4 represents the logical value of the data driven to the MFUNC5  
terminal if configured as GPO4. Read transactions return the last data value written.  
4
3
2
1
0
GPO4_DATA  
GPO3_DATA  
GPO2_DATA  
GPO1_DATA  
GPO0_DATA  
RW  
GPIO3 data bit. The value written to bit 3 represents the logical value of the data driven to the MFUNC4  
terminal if configured as GPO3. Read transactions return the last data value written.  
RW  
RW  
RW  
RW  
GPO2 data bit. The value written to bit 2 represents the logical value of the data driven to the MFUNC2  
terminal if configured as GPO2. Read transactions return the last data value written.  
GPO1 data bit. The value written to bit 1 represents the logical value of the data driven to the MFUNC1  
terminal if configured as GPO1. Read transactions return the last data value written.  
GPO0 data bit. The value written to bit 0 represents the logical value of the data driven to the MFUNC0  
terminal if configured as GPO0. Read transactions return the last data value written.  
4−26  
 
4.45 Serial-Bus Data Register  
The serial-bus data register is for programmable serial-bus byte reads and writes. This register represents the data  
when generating cycles on the serial bus interface. To write a byte, this register must be programmed with the data,  
the serial bus index register must be programmed with the byte address, the serial-bus slave address must be  
programmed with the 7-bit slave address, and the read/write indicator bit must be reset.  
On byte reads, the byte address is programmed into the serial-bus index register, the serial bus slave address register  
must be programmed with both the 7-bit slave address and the read/write indicator bit, and bit 5 (REQBUSY) in the  
serial bus control and status register (PCI offset B3h, see Section 4.48) must be polled until clear. Then the contents  
of this register are valid read data from the serial bus interface. See Table 4−20 for a complete description of the  
register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Serial-bus data  
B0h  
Read/Write  
00h  
Default:  
Table 4−20. Serial-Bus Data Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Serial-bus data. This bit field represents the data byte in a read or write transaction on the serial interface.  
On reads, the REQBUSY bit must be polled to verify that the contents of this register are valid.  
7−0  
SBDATA  
RW  
4.46 Serial-Bus Index Register  
The serial-bus index register is for programmable serial-bus byte reads and writes. This register represents the byte  
address when generating cycles on the serial-bus interface. To write a byte, the serial-bus data register must be  
programmed with the data, this register must be programmed with the byte address, and the serial-bus slave address  
register must be programmed with both the 7-bit slave address and the read/write indicator bit.  
On byte reads, the word address is programmed into this register, the serial-bus slave address must be programmed  
with both the 7-bit slave address and the read/write indicator bit, and bit 5 (REQBUSY) in the serial-bus control and  
status register (see Section 4.48) must be polled until clear. Then the contents of the serial-bus data register are valid  
read data from the serial-bus interface. See Table 4−21 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Serial-bus index  
B1h  
Read/Write  
00h  
Default:  
Table 4−21. Serial-Bus Index Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7−0  
SBINDEX  
RW  
Serial-bus index. This bit field represents the byte address in a read or write transaction on the serial interface.  
4−27  
 
4.47 Serial-Bus Slave Address Register  
The serial-bus slave address register is for programmable serial-bus byte read and write transactions. To write a byte,  
the serial-bus data register must be programmed with the data, the serial-bus index register must be programmed  
with the byte address, and this register must be programmed with both the 7-bit slave address and the read/write  
indicator bit.  
On byte reads, the byte address is programmed into the serial bus index register, this register must be programmed  
with both the 7-bit slave address and the read/write indicator bit, and bit 5 (REQBUSY) in the serial-bus control and  
status register (PCI offset B3h, see Section 4.48) must be polled until clear. Then the contents of the serial-bus data  
register are valid read data from the serial-bus interface. See Table 4−22 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Serial-bus slave address  
B2h  
Read/Write  
00h  
Default:  
Table 4−22. Serial-Bus Slave Address Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Serial-bus slave address. This bit field represents the slave address of a read or write transaction on the  
serial interface.  
7−1  
SLAVADDR  
RW  
RW  
Read/write command. Bit 0 indicates the read/write command bit presented to the serial bus on byte read  
and write accesses.  
0
RWCMD  
0 = A byte write access is requested to the serial bus interface  
1 = A byte read access is requested to the serial bus interface  
4−28  
 
4.48 Serial-Bus Control and Status Register  
The serial-bus control and status register communicates serial-bus status information and selects the quick  
command protocol. Bit 5 (REQBUSY) in this register must be polled during serial-bus byte reads to indicate when  
data is valid in the serial-bus data register. See Table 4−23 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Serial-bus control and status  
B3h (function 0)  
Read-only, Read/Write, Read/Clear  
00h  
Default:  
Table 4−23. Serial-Bus Control and Status Register Description  
BIT  
7
SIGNAL  
PROT_SEL  
RSVD  
TYPE  
RW  
R
FUNCTION  
Protocol select. When bit 7 is set, the send-byte protocol is used on write requests and the receive-byte  
protocol is used on read commands. The word-address byte in the serial-bus index register (PCI offset B1h,  
see Section 4.46) is not output by the controller when bit 7 is set.  
6
Reserved. Bit 6 returns 0b when read.  
Requested serial-bus access busy. Bit 5 indicates that a requested serial-bus access (byte read or write)  
is in progress. A request is made, and bit 5 is set, by writing to the serial-bus slave address register (PCI  
offset B2h, see Section 4.47). Bit 5 must be polled on reads from the serial interface. After the byte read  
access has been requested, the read data is valid in the serial-bus data register.  
5
4
REQBUSY  
ROMBUSY  
R
R
Serial EEPROM busy status. Bit 4 indicates the status of the serial EEPROM circuitry. Bit 4 is set during  
the loading of the subsystem ID and other default values from the serial-bus EEPROM.  
0 = Serial EEPROM circuitry is not busy  
1 = Serial EEPROM circuitry is busy  
Serial-bus detect. When bit 3 is set, it indicates that the serial-bus interface is detected through pullup  
resistors on the VCCD0 and VCCD1 terminals after reset. If bit 3 is reset, then the MFUNC4 and MFUNC1  
terminals can be used for alternate functions such as general-purpose inputs and outputs.  
0 = Serial-bus interface not detected  
3
SBDETECT  
RC  
1 = Serial-bus interface detected  
Serial-bus test. When bit 2 is set, the serial-bus clock frequency is increased for test purposes.  
0 = Serial-bus clock at normal operating frequency, 100 kHz (default)  
1 = Serial-bus clock frequency increased for test purposes  
2
1
SBTEST  
RW  
RC  
Requested serial-bus access error. Bit 1 indicates when a data error occurs on the serial interface during  
a requested cycle, and can be set due to a missing acknowledge. Bit 1 is cleared by a writeback of 1b.  
0 = No error detected during user-requested byte read or write cycle  
REQ_ERR  
1 = Data error detected during user-requested byte read or write cycle  
EEPROM data-error status. Bit 0 indicates when a data error occurs on the serial interface during the  
auto-load from the serial-bus EEPROM, and can be set due to a missing acknowledge. Bit 0 is also set on  
invalid EEPROM data formats. See Section 3.6.1, Serial Bus Interface Implementation, for details on  
EEPROM data format. Bit 0 is cleared by a writeback of 1b.  
0
ROM_ERR  
RC  
0 = No error detected during auto-load from serial-bus EEPROM  
1 = Data error detected during auto-load from serial-bus EEPROM  
4−29  
 
4−30  
5 ExCA Compatibility Registers  
The ExCA registers implemented in the PCI1510 controller are register-compatible with the Intel 82365SL−DF  
PCMCIA controller. ExCA registers are identified by an offset value that is compatible with the legacy I/O index/data  
scheme used on the Intel 82365 ISA controller. The ExCA registers are accessed through this scheme by writing the  
register offset value into the index register (I/O base) and reading or writing the data register (I/O base + 1). The I/O  
base address used in the index/data scheme is programmed in the PC Card 16-bit I/F legacy-mode base address  
register (PCI offset 44h, see Section 4.28). The offsets from this base address run contiguously from 00h to 3Fh. See  
Figure 5−1 for an ExCA I/O mapping illustration.  
PCI1510 Configuration Registers  
Host I/O Space  
Offset  
Offset  
00h  
PC Card A  
ExCA  
Registers  
10h  
Index  
Data  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
3Fh  
44h  
Figure 5−1. ExCA Register Access Through I/O  
The controller also provides a memory-mapped alias of the ExCA registers by directly mapping them into PCI memory  
space. They are located through the CardBus socket/ExCA base-address register (PCI offset 10h, see Section 4.12)  
at memory offset 800h. See Figure 5−2 for an ExCA memory mapping illustration. This illustration also identifies the  
CardBus socket register mapping, which is mapped into the same 4-K window at memory offset 00h.  
Host  
Memory Space  
PCI1510 Configuration Registers  
Offset  
Offset  
00h  
CardBus  
Socket  
Registers  
10h  
44h  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
20h  
800h  
ExCA  
Registers  
844h  
Figure 5−2. ExCA Register Access Through Memory  
The interrupt registers in the ExCA register set, as defined by the 82365SL−DL specification, control such card  
functions as reset, type, interrupt routing, and interrupt enables. Special attention must be paid to the interrupt routing  
registers and the host interrupt signaling method selected for the controller to ensure that all possible interrupts can  
potentially be routed to the programmable interrupt controller. The ExCA registers that are critical to the interrupt  
5−1  
 
signaling are the ExCA interrupt and general control register (ExCA offset 03h/43h/803h, see Section 5.4) and the  
ExCA card status-change interrupt configuration register (05h/45h/805h, see Section 5.6).  
Access to I/O mapped 16-bit PC cards is available to the host system via two ExCA I/O windows. These are regions  
of host I/O address space into which the card I/O space is mapped. These windows are defined by start, end, and  
offset addresses programmed in the ExCA registers described in this section. I/O windows have byte granularity.  
Access to memory mapped 16-bit PC Cards is available to the host system via five ExCA memory windows. These  
are regions of host memory space into which the card memory space is mapped. These windows are defined by start,  
end, and offset addresses programmed in the ExCA registers described in this section. Table 5−1 identifies each  
ExCA register and its respective ExCA offset. Memory windows have 4-Kbyte granularity.  
Table 5−1. ExCA Registers and Offsets  
PCI MEMORY ADDRESS  
OFFSET (HEX)  
ExCA OFFSET  
(HEX)  
EXCA REGISTER NAME  
Identification and revision  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
80A  
80B  
80C  
80D  
80E  
80F  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
81A  
81B  
81C  
81D  
81E  
81F  
820  
821  
822  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
Interface status  
Power control  
Interrupt and general control  
Card status change  
Card status-change interrupt configuration  
Address window enable  
I / O window control  
I / O window 0 start-address low byte  
I / O window 0 start-address high byte  
I / O window 0 end-address low byte  
I / O window 0 end-address high byte  
I / O window 1 start-address low byte  
I / O window 1 start-address high byte  
I / O window 1 end-address low byte  
I / O window 1 end-address high byte  
Memory window 0 start-address low byte  
Memory window 0 start-address high byte  
Memory window 0 end-address low byte  
Memory window 0 end-address high byte  
Memory window 0 offset-address low byte  
Memory window 0 offset-address high byte  
Card detect and general control  
Reserved  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
Memory window 1 start-address low byte  
Memory window 1 start-address high byte  
Memory window 1 end-address low byte  
Memory window 1 end-address high byte  
Memory window 1 offset-address low byte  
Memory window 1 offset-address high byte  
Global control  
Reserved  
Memory window 2 start-address low byte  
Memory window 2 start-address high byte  
Memory window 2 end-address low byte  
5−2  
 
Table 5−1. ExCA Registers and Offsets (Continued)  
PCI MEMORY ADDRESS  
OFFSET (HEX)  
ExCA OFFSET  
EXCA REGISTER NAME  
(HEX)  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
Memory window 2 end-address high byte  
Memory window 2 offset-address low byte  
Memory window 2 offset-address high byte  
Reserved  
823  
824  
825  
826  
827  
828  
829  
82A  
82B  
82C  
82D  
82E  
82F  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
83A  
83B  
83C  
83D  
83E  
83F  
840  
841  
842  
843  
844  
Reserved  
Memory window 3 start-address low byte  
Memory window 3 start-address high byte  
Memory window 3 end-address low byte  
Memory window 3 end-address high byte  
Memory window 3 offset-address low byte  
Memory window 3 offset-address high byte  
Reserved  
Reserved  
Memory window 4 start-address low byte  
Memory window 4 start-address high byte  
Memory window 4 end-address low byte  
Memory window 4 end-address high byte  
Memory window 4 offset-address low byte  
Memory window 4 offset-address high byte  
I/O window 0 offset-address low byte  
I/O window 0 offset-address high byte  
I/O window 1 offset-address low byte  
I/O window 1 offset-address high byte  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Memory window page 0  
Memory window page 1  
Memory window page 2  
Memory window page 3  
Memory window page 4  
A bit description table, typically included when a register contains bits of more than one type or purpose, indicates  
bit field names, which appear in the signal column; a detailed field description, which appears in the function column;  
and field access tags, which appear in the type column of the bit description table. Table 4−2 describes the field  
access tags.  
5−3  
5.1 ExCA Identification and Revision Register  
The ExCA identification and revision register provides host software with information on 16-bit PC Card support and  
Intel 82365SL-DF compatibility. This register is read-only or read/write, depending on the setting of bit 5  
(SUBSYSRW) in the system control register (PCI offset 80h, see Section 4.29). See Table 5−2 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
1
0
0
0
0
1
0
0
Register:  
Offset:  
Type:  
ExCA identification and revision  
CardBus socket address + 800h; ExCA offset 00h  
Read-only, Read/Write  
84h  
Default:  
Table 5−2. ExCA Identification and Revision Register Description  
BIT  
7−6  
5−4  
SIGNAL  
IFTYPE  
RSVD  
TYPE  
FUNCTION  
Interface type. These bits, which are hardwired as 10b, identify the 16-bit PC Card support provided by the  
controller. The controller supports both I/O and memory 16-bit PC cards.  
R
RW  
Reserved. Bits 5 and 4 can be used for Intel 82365SL-DF emulation.  
Intel 82365SL-DF revision. This field stores the Intel 82365SL-DF revision supported by the controller. Host  
software can read this field to determine compatibility to the Intel 82365SL-DF register set. Writing 0010b to  
this field puts the controller in 82365SL mode.  
3−0  
365REV  
RW  
5−4  
 
5.2 ExCA Interface Status Register  
The ExCA interface status register provides information on the current status of the PC Card interface. An X in the  
default bit value indicates that the value of the bit after reset depends on the state of the PC Card interface. See  
Table 5−3 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
X
X
X
X
X
X
Register:  
Offset:  
Type:  
ExCA interface status  
CardBus socket address + 801h; ExCA offset 01h  
Read-only  
Default:  
00XX XXXXb  
Table 5−3. ExCA Interface Status Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
7
RSVD  
R
Reserved. Bit 7 returns 0b when read.  
Card Power. Bit 6 indicates the current power status of the PC Card socket. This bit reflects how the ExCA  
power control register (ExCA offset 02h/42h/802h, see Section 5.3) is programmed. Bit 6 is encoded as:  
6
5
CARDPWR  
READY  
R
R
0 = V  
1 = V  
and V  
and V  
to the socket turned off (default)  
to the socket turned on  
CC  
CC  
PP  
PP  
Ready. Bit 5 indicates the current status of the READY signal at the PC Card interface.  
0 = PC Card not ready for data transfer  
1 = PC Card ready for data transfer  
Card write protect (WP). Bit 4 indicates the current status of WP at the PC Card interface. This signal reports  
to the controller whether or not the memory card is write protected. Furthermore, write protection for an entire  
16-bit memory window is available by setting the appropriate bit in the memory window offset-address  
high-byte register.  
4
CARDWP  
R
0 = WP is 0b. PC Card is read/write.  
1 = WP is 1b. PC Card is read-only.  
Card detect 2. Bit 3 indicates the status of CD2 at the PC Card interface. Software may use this and bit 2  
(CDETECT1) to determine if a PC Card is fully seated in the socket.  
0 = CD2 is 1b. No PC Card is inserted.  
3
2
CDETECT2  
CDETECT1  
R
R
1 = CD2 is 0b. PC Card is at least partially inserted.  
Card detect 1. Bit 2 indicates the status of CD1 at the PC Card interface. Software may use this and bit 3  
(CDETECT2) to determine if a PC Card is fully seated in the socket.  
0 = CD1 is 1b. No PC Card is inserted.  
1 = CD1 is 0b. PC Card is at least partially inserted.  
Battery voltage detect. When a 16-bit memory card is inserted, the field indicates the status of the battery  
voltage detect signals (BVD1, BVD2) at the PC Card interface, where bit 1 reflects the BVD2 status and bit 0  
reflects BVD1.  
00 = Battery dead  
01 = Battery dead  
10 = Battery low; warning  
11 = Battery good  
1−0  
BVDSTAT  
R
When a 16-bit I/O card is inserted, this field indicates the status of SPKR (bit 1) and STSCHG (bit 0) at the  
PC Card interface. In this case, the two bits in this field directly reflect the current state of these card outputs.  
5−5  
 
5.3 ExCA Power Control Register  
The ExCA power control register provides PC Card power control. Bit 7 (COE) of this register controls the 16-bit output  
enables on the socket interface, and can be used for power management in 16-bit PC Card applications. See  
Table 5−4 and Table 5−5 for a complete description of the register contents.  
The controller supports both the 82365SL and 82365SL-DF register models. Bits 3−0 (365REV) of the ExCA  
identification and revision register (ExCA offset 00h, see Section 5.1) control which register model is supported.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
ExCA power control—82365SL support  
CardBus socket address + 802h; ExCA offset 02h  
Read-only, Read/Write  
00h  
Default:  
Table 5−4. ExCA Power Control Register Description—82365SL Support  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Card output enable. Bit 7 controls the state of all of the 16-bit outputs on the controller. This bit is  
encoded as:  
7
COE  
RW  
0 = 16-bit PC Card outputs disabled (default)  
1 = 16-bit PC Card outputs enabled  
6
5
RSVD  
R
Reserved. Bit 6 returns 0b when read.  
Auto power switch enable.  
AUTOPWRSWEN  
RW  
0 = Automatic socket power switching based on card detects is disabled  
1 = Automatic socket power switching based on card detects is enabled  
PC Card power enable.  
0 = V  
1 = V  
= No connection  
CC  
CC  
4
CAPWREN  
RSVD  
RW  
R
is enabled and controlled by bit 2 (EXCAPOWER) of the system control register  
(PCI offset 80h, see Section 4.29)  
3−2  
Reserved. Bits 3 and 2 return 00b when read.  
PC Card V  
PP  
power control. Bits 1 and 0 request changes to card V . The controller ignores this field  
PP  
unless V  
to the socket is enabled. This field is encoded as:  
CC  
00 = No connection (default)  
01 = V  
1−0  
EXCAVPP  
RW  
CC  
10 = 12 V  
11 = Reserved  
5−6  
 
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
ExCA power control—82365SL-DF support  
CardBus socket address + 802h; ExCA offset 02h  
Read-only, Read/Write  
Default:  
00h  
Table 5−5. ExCA Power Control Register Description—82365SL-DF Support  
BIT  
7
SIGNAL  
TYPE  
RW  
R
FUNCTION  
Card output enable. Bit 7 controls the state of all of the 16-bit outputs on the controller. This bit is encoded as:  
0 = 16-bit PC Card outputs disabled (default)  
COE  
1 = 16-bit PC Card outputs enabled  
6−5  
RSVD  
Reserved. Bits 6 and 5 return 00b when read.  
V
CC  
. Bits 4 and 3 request changes to card V . This field is encoded as:  
CC  
00 = 0 V (default)  
01 = 0 V reserved  
10 = 5 V  
4−3  
2
EXCAVCC  
RSVD  
RW  
R
11 = 3.3 V  
Reserved. Bit 2 returns 0b when read.  
V
. Bits 1 and 0 request changes to card V . The controller ignores this field unless V to the socket is  
PP PP CC  
enabled. This field is encoded as:  
00 = No connection (default)  
1−0  
EXCAVPP  
RW  
01 = V  
10 = 12 V  
CC  
11 = Reserved  
5−7  
 
5.4 ExCA Interrupt and General Control Register  
The ExCA interrupt and general control register controls interrupt routing for I/O interrupts, as well as other critical  
16-bit PC Card functions. See Table 5−6 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
ExCA interrupt and general control  
CardBus socket address + 803h; ExCA offset 03h  
Read/Write  
00h  
Default:  
Table 5−6. ExCA Interrupt and General Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Card ring indicate enable. Bit 7 enables the ring indicate function of BVD1/RI. This bit is encoded as:  
0 = Ring indicate disabled (default)  
7
RINGEN  
RW  
1 = Ring indicate enabled  
Card reset. Bit 6 controls the 16-bit PC Card RESET, and allows host software to force a card reset. Bit 6  
affects 16-bit cards only. This bit is encoded as:  
6
5
RESET  
RW  
RW  
0 = RESET signal asserted (default)  
1 = RESET signal deasserted  
Card type. Bit 5 indicates the PC card type. This bit is encoded as:  
0 = Memory PC Card installed (default)  
CARDTYPE  
1 = I/O PC Card installed  
PCI interrupt CSC routing enable bit. When bit 4 is set (high), the card status change interrupts are routed  
to PCI interrupts. When low, the card status change interrupts are routed using bits 7−4 (CSCSELECT field)  
in the ExCA card status-change interrupt configuration register (ExCA offset 05h/45h/805h, see  
Section 5.6). This bit is encoded as:  
4
CSCROUTE  
RW  
0 = CSC interrupts are routed by ExCA registers (default)  
1 = CSC interrupts are routed to PCI interrupts  
Card interrupt select for I/O PC Card functional interrupts. Bits 3−0 select the interrupt routing for I/O  
PC Card functional interrupts. This field is encoded as:  
0000 = No interrupt routing (default). CSC interrupts are routed to PCI interrupts. This bit setting is  
ORed with bit 4 (CSCROUTE) for backward compatibility.  
0001 = IRQ1 enabled  
0010 = SMI enabled  
0011 = IRQ3 enabled  
0100 = IRQ4 enabled  
0101 = IRQ5 enabled  
3−0  
INTSELECT  
RW  
0100 = IRQ6 enabled  
0111 = IRQ7 enabled  
1000 = IRQ8 enabled  
1001 = IRQ9 enabled  
1010 = IRQ10 enabled  
1011 = IRQ11 enabled  
1100 = IRQ12 enabled  
1101 = IRQ13 enabled  
1110 = IRQ14 enabled  
1111 = IRQ15 enabled  
5−8  
 
5.5 ExCA Card Status-Change Register  
The ExCA card status-change register controls interrupt routing for I/O interrupts as well as other critical 16-bit PC  
Card functions. The register enables these interrupt sources to generate an interrupt to the host. When the interrupt  
source is disabled, the corresponding bit in this register always reads 0b. When an interrupt source is enabled, the  
corresponding bit in this register is set to indicate that the interrupt source is active. After generating the interrupt to  
the host, the interrupt service routine must read this register to determine the source of the interrupt. The interrupt  
service routine is responsible for resetting the bits in this register as well. Resetting a bit is accomplished by one of  
two methods: a read of this register or an explicit write back of 1b to the status bit. The choice of these two methods  
is based on bit 2 (interrupt flag clear mode select) in the ExCA global control register (ExCA offset 1E/5E/81E, see  
Section 5.20). See Table 5−7 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
ExCA card status-change  
CardBus socket address + 804h; ExCA offset 04h  
Read-only  
00h  
Default:  
Table 5−7. ExCA Card Status-Change Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7−4  
RSVD  
R
Reserved. Bits 7−4 return 0h when read.  
Card detect change. Bit 3 indicates whether a change on CD1 or CD2 occurred at the PC Card interface.  
This bit is encoded as:  
3
2
CDCHANGE  
R
R
0 = No change detected on either CD1 or CD2  
1 = Change detected on either CD1 or CD2  
Ready change. When a 16-bit memory is installed in the socket, bit 2 includes whether the source of an  
interrupt was due to a change on READY at the PC Card interface, indicating that the PC Card is now  
ready to accept new data. This bit is encoded as:  
READYCHANGE  
0 = No low-to-high transition detected on READY (default)  
1 = Detected low-to-high transition on READY  
When a 16-bit I/O card is installed, bit 2 is always 0b.  
Battery warning change. When a 16-bit memory card is installed in the socket, bit 1 indicates whether the  
source of an interrupt was due to a battery-low warning condition. This bit is encoded as:  
0 = No battery warning condition (default)  
1
0
BATWARN  
BATDEAD  
R
R
1 = Detected battery warning condition  
When a 16-bit I/O card is installed, bit 1 is always 0b.  
Battery dead or status change. When a 16-bit memory card is installed in the socket, bit 0 indicates  
whether the source of an interrupt was due to a battery dead condition. This bit is encoded as:  
0 = STSCHG deasserted (default)  
1 = STSCHG asserted  
Ring indicate. When the controller is configured for ring indicate operation, bit 0 indicates the status of  
RI.  
5−9  
 
5.6 ExCA Card Status-Change Interrupt Configuration Register  
The ExCA card status-change interrupt configuration register controls interrupt routing for card status-change  
interrupts, as well as masking CSC interrupt sources. See Table 5−8 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
ExCA card status-change interrupt configuration  
CardBus socket address + 805h; ExCA offset 05h  
Read/Write  
00h  
Default:  
Table 5−8. ExCA Card Status-Change Interrupt Configuration Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Interrupt select for card status change. Bits 7−4 select the interrupt routing for card status-change  
interrupts.  
0000 = CSC interrupts routed to PCI interrupts if bit 5 (CSC) of the diagnostic register (PCI offset 93h, see  
Section 4.34) is set to 1b. In this case bit 4 (CSCROUTE) of the ExCA interrupt and general control register  
(ExCA offset 03h/43h/803h, see Section 5.4) is a don’t care. This is the default setting.  
0000 = No ISA interrupt routing if bit 5 (CSC) of the diagnostic register is set to 0b (see Section 4.34). In  
this case, CSC interrupts are routed to PCI interrupts by setting bit 4 (CSCROUTE) of the ExCA interrupt  
and general control register (ExCA offset 03h/43h/803h, see Section 5.4) to 1b.  
7−4  
CSCSELECT  
RW  
This field is encoded as:  
0000 = No interrupt routing (default)  
0001 = IRQ1 enabled  
0010 = SMI enabled  
0011 = IRQ3 enabled  
0100 = IRQ4 enabled  
0101 = IRQ5 enabled  
0110 = IRQ6 enabled  
0111 = IRQ7 enabled  
1000 = IRQ8 enabled  
1001 = IRQ9 enabled  
1010 = IRQ10 enabled  
1011 = IRQ11 enabled  
1100 = IRQ12 enabled  
1101 = IRQ13 enabled  
1110 = IRQ14 enabled  
1111 = IRQ15 enabled  
Card detect enable. Bit 3 enables interrupts on CD1 or CD2 changes. This bit is encoded as:  
0 = Disables interrupts on CD1 or CD2 line changes (default)  
3
2
CDEN  
RW  
RW  
1 = Enables interrupts on CD1 or CD2 line changes  
Ready enable. Bit 2 enables/disables a low-to-high transition on PC Card READY to generate a host  
interrupt. This interrupt source is considered a card status change. This bit is encoded as:  
0 = Disables host interrupt generation (default)  
READYEN  
1 = Enables host interrupt generation  
Battery warning enable. Bit 1 enables/disables a battery warning condition to generate a CSC interrupt.  
This bit is encoded as:  
1
0
BATWARNEN  
BATDEADEN  
RW  
RW  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
Battery dead enable. Bit 0 enables/disables a battery dead condition on a memory PC Card or assertion  
of the STSCHG I/O PC Card signal to generate a CSC interrupt.  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
5−10  
 
5.7 ExCA Address Window Enable Register  
The ExCA address window enable register enables/disables the memory and I/O windows to the 16-bit PC Card. By  
default, all windows to the card are disabled. The controller does not acknowledge PCI memory or I/O cycles to the  
card if the corresponding enable bit in this register is 0b, regardless of the programming of the memory or I/O window  
start/end/offset address registers. See Table 5−9 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
ExCA address window enable  
CardBus socket address + 806h; ExCA offset 06h  
Read-only, Read/Write  
00h  
Default:  
Table 5−9. ExCA Address Window Enable Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
I/O window 1 enable. Bit 7 enables/disables I/O window 1 for the PC Card. This bit is encoded as:  
0 = I/O window 1 disabled (default)  
7
IOWIN1EN  
RW  
1 = I/O window 1 enabled  
I/O window 0 enable. Bit 6 enables/disables I/O window 0 for the PC Card. This bit is encoded as:  
0 = I/O window 0 disabled (default)  
6
5
IOWIN0EN  
RSVD  
RW  
R
1 = I/O window 0 enabled  
Reserved. Bit 5 returns 0b when read.  
Memory window 4 enable. Bit 4 enables/disables memory window 4 for the PC Card. This bit is  
encoded as:  
4
3
2
1
0
MEMWIN4EN  
MEMWIN3EN  
MEMWIN2EN  
MEMWIN1EN  
MEMWIN0EN  
RW  
RW  
RW  
RW  
RW  
0 = Memory window 4 disabled (default)  
1 = Memory window 4 enabled  
Memory window 3 enable. Bit 3 enables/disables memory window 3 for the PC Card. This bit is  
encoded as:  
0 = Memory window 3 disabled (default)  
1 = Memory window 3 enabled  
Memory window 2 enable. Bit 2 enables/disables memory window 2 for the PC Card. This bit is  
encoded as:  
0 = Memory window 2 disabled (default)  
1 = Memory window 2 enabled  
Memory window 1 enable. Bit 1 enables/disables memory window 1 for the PC Card. This bit is  
encoded as:  
0 = Memory window 1 disabled (default)  
1 = Memory window 1 enabled  
Memory window 0 enable. Bit 0 enables/disables memory window 0 for the PC Card. This bit is  
encoded as:  
0 = Memory window 0 disabled (default)  
1 = Memory window 0 enabled  
5−11  
 
5.8 ExCA I/O Window Control Register  
The ExCA I/O window control register contains parameters related to I/O window sizing and cycle timing. See  
Table 5−10 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
ExCA I/O window control  
CardBus socket address + 807h; ExCA offset 07h  
Read/Write  
00h  
Default:  
Table 5−10. ExCA I/O Window Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
I/O window 1 wait state. Bit 7 controls the I/O window 1 wait state for 16-bit I/O accesses. Bit 7 has no effect  
on 8-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel 82365SL-DF. This  
bit is encoded as:  
7
WAITSTATE1  
RW  
RW  
0 = 16-bit cycles have standard length (default)  
1 = 16-bit cycles are extended by one equivalent ISA wait state  
I/O window 1 zero wait state. Bit 6 controls the I/O window 1 wait state for 8-bit I/O accesses. Bit 6 has  
no effect on 16-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel  
82365SL-DF. This bit is encoded as:  
6
ZEROWS1  
0 = 8-bit cycles have standard length (default)  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles  
I/O window 1 IOIS16 source. Bit 5 controls the I/O window 1 automatic data sizing feature that uses IOIS16  
from the PC Card to determine the data width of the I/O data transfer. This bit is encoded as:  
0 = Window data width determined by DATASIZE1, bit 4 (default)  
5
4
IOIS16W1  
RW  
RW  
1 = Window data width determined by IOIS16  
I/O window 1 data size. Bit 4 controls the I/O window 1 data size. Bit 4 is ignored if bit 5 (IOSIS16W1) is  
set. This bit is encoded as:  
DATASIZE1  
0 = Window data width is 8 bits (default)  
1 = Window data width is 16 bits  
I/O window 0 wait state. Bit 3 controls the I/O window 0 wait state for 16-bit I/O accesses. Bit 3 has no effect  
on 8-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel 82365SL-DF. This  
bit is encoded as:  
3
2
WAITSTATE0  
ZEROWS0  
RW  
RW  
0 = 16-bit cycles have standard length (default)  
1 = 16-bit cycles are extended by one equivalent ISA wait state  
I/O window 0 zero wait state. Bit 2 controls the I/O window 0 wait state for 8-bit I/O accesses. Bit 2 has  
no effect on 16-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel  
82365SL-DF. This bit is encoded as:  
0 = 8-bit cycles have standard length (default)  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles  
I/O window 0 IOIS16 source. Bit 1 controls the I/O window 0 automatic data sizing feature that uses IOIS16  
from the PC Card to determine the data width of the I/O data transfer. This bit is encoded as:  
0 = Window data width is determined by DATASIZE0, bit 0 (default)  
1
0
IOIS16W0  
RW  
RW  
1 = Window data width is determined by IOIS16  
I/O window 0 data size. Bit 0 controls the I/O window 0 data size. Bit 0 is ignored if bit 1 (IOSIS16W0) is  
set. This bit is encoded as:  
DATASIZE0  
0 = Window data width is 8 bits (default)  
1 = Window data width is 16 bits  
5−12  
 
5.9 ExCA I/O Windows 0 and 1 Start-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window start address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the lower 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Register:  
Offset:  
ExCA I/O window 0 start-address low-byte  
CardBus socket address + 808h; ExCA offset 08h  
ExCA I/O window 1 start-address low-byte  
CardBus socket address + 80Ch; ExCA offset 0Ch  
Read/Write  
Type:  
Default:  
00h  
5.10 ExCA I/O Windows 0 and 1 Start-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window start address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the upper 8 bits of the end address.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Register:  
Offset:  
ExCA I/O window 0 start-address high-byte  
CardBus socket address + 809h; ExCA offset 09h  
ExCA I/O window 1 start-address high-byte  
CardBus socket address + 80Dh; ExCA offset 0Dh  
Read/write  
Type:  
Default:  
00h  
5.11 ExCA I/O Windows 0 and 1 End-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window end address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the lower 8 bits of the end address.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Register:  
Offset:  
ExCA I/O window 0 end-address low-byte  
CardBus socket address + 80Ah; ExCA offset 0Ah  
ExCA I/O window 1 end-address low-byte  
CardBus socket address + 80Eh; ExCA offset 0Eh  
Read/Write  
Type:  
Default:  
00h  
5.12 ExCA I/O Windows 0 and 1 End-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window end address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the upper 8 bits of the end address.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Register:  
Offset:  
ExCA I/O window 0 end-address high-byte  
CardBus socket address + 80Bh; ExCA offset 0Bh  
ExCA I/O window 1 end-address high-byte  
CardBus socket address + 80Fh; ExCA offset 0Fh  
Read/write  
Type:  
Default:  
00h  
5−13  
 
5.13 ExCA Memory Windows 0−4 Start-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window start address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19−A12 of the start address.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 start-address low-byte  
CardBus socket address + 810h; ExCA offset 10h  
ExCA memory window 1 start-address low-byte  
CardBus socket address + 818h; ExCA offset 18h  
ExCA memory window 2 start-address low-byte  
CardBus socket address + 820h; ExCA offset 20h  
ExCA memory window 3 start-address low-byte  
CardBus socket address + 828h; ExCA offset 28h  
ExCA memory window 4 start-address low-byte  
CardBus socket address + 830h; ExCA offset 30h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
00h  
5.14 ExCA Memory Windows 0−4 Start-Address High-Byte Registers  
These registers contain the high nibble of the 16-bit memory window start address for memory windows 0, 1, 2, 3,  
and 4. The lower 4 bits of these registers correspond to bits A23−A20 of the start address. In addition, the memory  
window data width and wait states are set in this register. See Table 5−11 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 start-address high-byte  
CardBus socket address + 811h; ExCA offset 11h  
ExCA memory window 1 start-address high-byte  
CardBus socket address + 819h; ExCA offset 19h  
ExCA memory window 2 start-address high-byte  
CardBus socket address + 821h; ExCA offset 21h  
ExCA memory window 3 start-address high-byte  
CardBus socket address + 829h; ExCA offset 29h  
ExCA memory window 4 start-address high-byte  
CardBus socket address + 831h; ExCA offset 31h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
00h  
Table 5−11. ExCA Memory Windows 0−4 Start-Address High-Byte Registers Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Data size. Bit 7 controls the memory window data width. This bit is encoded as:  
0 = Window data width is 8 bits (default)  
7
DATASIZE  
RW  
1 = Window data width is 16 bits  
Zero wait state. Bit 6 controls the memory window wait state for 8- and 16-bit accesses. This wait-state timing  
emulates the ISA wait state used by the Intel 82365SL-DF. This bit is encoded as:  
0 = 8- and 16-bit cycles have standard length (default)  
6
ZEROWAIT  
RW  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles.  
16-bit cycles are reduced to equivalent of two ISA cycles.  
5−4  
3−0  
SCRATCH  
STAHN  
RW  
RW  
Scratch pad bits. Bits 5 and 4 have no effect on memory window operation.  
Start-address high nibble. Bits 3−0 represent the upper address bits A23−A20 of the memory window  
start address.  
5−14  
 
5.15 ExCA Memory Windows 0−4 End-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window end address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19−A12 of the end address.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 end-address low-byte  
CardBus socket address + 812h; ExCA offset 12h  
ExCA memory window 1 end-address low-byte  
CardBus socket address + 81Ah; ExCA offset 1Ah  
ExCA memory window 2 end-address low-byte  
CardBus socket address + 822h; ExCA offset 22h  
ExCA memory window 3 end-address low-byte  
CardBus socket address + 82Ah; ExCA offset 2Ah  
ExCA memory window 4 end-address low-byte  
CardBus socket address + 832h; ExCA offset 32h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
00h  
5.16 ExCA Memory Windows 0−4 End-Address High-Byte Registers  
These registers contain the high nibble of the 16-bit memory window end address for memory windows 0, 1, 2, 3,  
and 4. The lower 4 bits of these registers correspond to bits A23−A20 of the end address. In addition, the memory  
window wait states are set in this register. See Table 5−12 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 end-address high-byte  
CardBus socket address + 813h; ExCA offset 13h  
ExCA memory window 1 end-address high-byte  
CardBus socket address + 81Bh; ExCA offset 1Bh  
ExCA memory window 2 end-address high-byte  
CardBus socket address + 823h; ExCA offset 23h  
ExCA memory window 3 end-address high-byte  
CardBus socket address + 82Bh; ExCA offset 2Bh  
ExCA memory window 4 end-address high-byte  
CardBus socket address + 833h; ExCA offset 33h  
Read-only, Read/Write  
Register:  
Offset:  
Type:  
Default:  
00h  
Table 5−12. ExCA Memory Windows 0−4 End-Address High-Byte Registers Description  
BIT  
7−6  
5−4  
3−0  
SIGNAL  
MEMWS  
RSVD  
TYPE  
RW  
R
FUNCTION  
Wait state. Bits 7 and 6 specify the number of equivalent ISA wait states to be added to 16-bit memory  
accesses. The number of wait states added is equal to the binary value of these two bits.  
Reserved. Bits 5 and 4 return 00b when read.  
End-address high nibble. Bits 3−0 represent the upper address bits A23−A20 of the memory window end  
address.  
ENDHN  
RW  
5−15  
 
5.17 ExCA Memory Windows 0−4 Offset-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window offset address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19−A12 of the offset address.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 offset-address low-byte  
CardBus socket address + 814h; ExCA offset 14h  
ExCA memory window 1 offset-address low-byte  
CardBus socket address + 81Ch; ExCA offset 1Ch  
ExCA memory window 2 offset-address low-byte  
CardBus socket address + 824h; ExCA offset 24h  
ExCA memory window 3 offset-address low-byte  
CardBus socket address + 82Ch; ExCA offset 2Ch  
ExCA memory window 4 offset-address low-byte  
CardBus socket address + 834h; ExCA offset 34h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
00h  
5.18 ExCA Memory Windows 0−4 Offset-Address High-Byte Registers  
These registers contain the high 6 bits of the 16-bit memory window offset address for memory windows 0, 1, 2, 3,  
and 4. The lower 6 bits of these registers correspond to bits A25−A20 of the offset address. In addition, the write  
protection and common/attribute memory configurations are set in this register. See Table 5−13 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 offset-address high-byte  
CardBus socket address + 815h; ExCA offset 15h  
ExCA memory window 1 offset-address high-byte  
CardBus socket address + 81Dh; A ExCA offset 1Dh  
ExCA memory window 2 offset-address high-byte  
CardBus socket address + 825h; ExCA offset 25h  
ExCA memory window 3 offset-address high-byte  
CardBus socket address + 82Dh; ExCA offset 2Dh  
ExCA memory window 4 offset-address high-byte  
CardBus socket address + 835h; ExCA offset 35h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
00h  
Table 5−13. ExCA Memory Windows 0−4 Offset-Address High-Byte Registers Description  
BIT  
SIGNAL TYPE  
FUNCTION  
Write protect. Bit 7 specifies whether write operations to this memory window are enabled. This bit is encoded as:  
0 = Write operations are allowed (default)  
7
WINWP  
RW  
1 = Write operations are not allowed  
Bit 6 specifies whether this memory window is mapped to card attribute or common memory. This bit is encoded  
as:  
6
REG  
RW  
RW  
0 = Memory window is mapped to common memory (default)  
1 = Memory window is mapped to attribute memory  
Offset-address high byte. Bits 5−0 represent the upper address bits A25−A20 of the memory window  
offset address.  
5−0  
OFFHB  
5−16  
 
5.19 ExCA Card Detect and General Control Register  
The ExCA card detect and general control register controls how the ExCA registers for the socket respond to card  
removal, as well as reports the status of VS1 and VS2 at the PC Card interface. See Table 5−14 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
X
X
0
0
0
0
0
0
Register:  
Offset:  
Type:  
ExCA card detect and general control  
CardBus socket address + 816h; ExCA offset 16h  
Read-only, Read/Write  
Default:  
XX00 0000b  
Table 5−14. ExCA Card Detect and General Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
VS2 state. Bit 7 reports the current state of VS2 at the PC Card interface and, therefore, does not have  
a default value.  
0 = VS2 low  
7
VS2STAT  
R
1 = VS2 high  
VS1 state. Bit 6 reports the current state of VS1 at the PC Card interface and, therefore, does not have  
a default value.  
0 = VS1 low  
6
5
VS1STAT  
SWCSC  
R
1 = VS1 high  
Software card detect interrupt. If bit 3 (CDEN) in the ExCA card status-change interrupt configuration  
register (ExCA offset 05h/45h/805, see Section 5.6) is set, then writing a 1b to bit 5 causes a card-detect  
card-status change interrupt for the associated card socket. If bit 3 (CDEN) in the ExCA card  
status-change-interrupt configuration register (ExCA offset 05h/45h/805, see Section 5.6) is cleared to 0b,  
then writing a 1b to bit 5 has no effect. A read operation of this bit always returns 0b.  
RW  
Card detect resume enable. If bit 4 is set to 1b, then once a card detect change has been detected on CD1  
and CD2 inputs, RI_OUT goes from high to low. RI_OUT remains low until bit 0 (card status change) in  
the ExCA card status-change register is cleared (see Section 5.5). If this bit is a 0b, then the card detect  
resume functionality is disabled.  
4
CDRESUME  
RW  
0 = Card detect resume disabled (default)  
1 = Card detect resume enabled  
3−2  
1
RSVD  
REGCONFIG  
RSVD  
R
RW  
R
Reserved. Bits 3 and 2 return 00b when read.  
Register configuration on card removal. Bit 1 controls how the ExCA registers for the socket react to a card  
removal event. This bit is encoded as:  
0 = No change to ExCA registers on card removal (default)  
1 = Reset ExCA registers on card removal  
0
Reserved. Bit 0 returns 0b when read.  
5−17  
 
5.20 ExCA Global Control Register  
The host interrupt mode bits in this register are retained for Intel 82365SL-DF compatibility. See Table 5−15 for a  
complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
ExCA global control  
CardBus socket address + 81Eh; ExCA offset 1Eh  
Read-only, Read/Write  
00h  
Default:  
Table 5−15. ExCA Global Control Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
7−5  
RSVD  
R
Reserved. Bits 7−5 return 000b when read.  
Level/edge interrupt mode select − card B. Bit 4 selects the signaling mode for the controller host interrupt  
for card B interrupts. This bit is encoded as:  
4
3
2
1
INTMODEB  
INTMODEA  
IFCMODE  
CSCMODE  
RW  
RW  
RW  
RW  
0 = Host interrupt is edge mode (default)  
1 = Host interrupt is level mode  
Level/edge interrupt mode select − card A. Bit 3 selects the signaling mode for the controller host interrupt  
for card A interrupts. This bit is encoded as:  
0 = Host interrupt is edge mode (default)  
1 = Host interrupt is level mode  
Interrupt flag clear mode select. Bit 2 selects the interrupt flag clear mechanism for the flags in the ExCA  
card status change register (ExCA offset 04h/44h/804h, see Section 5.5). This bit is encoded as:  
0 = Interrupt flags are cleared by read of CSC register (default)  
1 = Interrupt flags are cleared by explicit writeback of 1b  
Card status change level/edge mode select. Bit 1 selects the signaling mode for the controller host interrupt  
for card status changes. This bit is encoded as:  
0 = Host interrupt is edge mode (default)  
1 = Host interrupt is level mode  
Power-down mode select. When bit 0 is set to 1b, the controller is in power-down mode. In power-down  
mode, the controller card outputs are high-impedance until an active cycle is executed on the card interface.  
Following an active cycle, the outputs are again high-impedance. The controller still receives functional  
interrupts and/or card status-change interrupts; however, an actual card access is required to wake up the  
interface. This bit is encoded as:  
0
PWRDWN  
RW  
0 = Power-down mode is disabled (default)  
1 = Power-down mode is enabled  
5−18  
 
5.21 ExCA I/O Windows 0 and 1 Offset-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window offset address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the lower 8 bits of the offset address, and bit 0 is always 0b.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Register:  
Offset:  
ExCA I/O window 0 offset-address low-byte  
CardBus socket address + 836h; ExCA offset 36h  
ExCA I/O window 1 offset-address low-byte  
CardBus socket address + 838h; ExCA offset 38h  
Read-only, Read/Write  
Type:  
Default:  
00h  
5.22 ExCA I/O Windows 0 and 1 Offset-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window offset address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the upper 8 bits of the offset address.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Register:  
Offset:  
ExCA I/O window 0 offset-address high-byte  
CardBus socket address + 837h; ExCA offset 37h  
ExCA I/O window 1 offset-address high-byte  
CardBus socket address + 839h; ExCA offset 39h  
Read/Write  
Type:  
Default:  
00h  
5.23 ExCA Memory Windows 0−4 Page Registers  
The upper 8 bits of a 4-byte PCI memory address are compared to the contents of this register when decoding  
addresses for 16-bit memory windows. Each window has its own page register, all of which default to 00h. By  
programming this register to a nonzero value, host software can locate 16-bit memory windows in any 1 of 256  
16-Mbyte regions in the 4-Gbyte PCI address space. These registers are only accessible when the ExCA registers  
are memory-mapped; that is, these registers cannot be accessed using the index/data I/O scheme.  
Bit  
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
ExCA memory windows 0−4 page  
CardBus socket address + 840h, 841h, 842h, 843h, 844h  
Read/Write  
00h  
Default:  
5−19  
 
5−20  
6 CardBus Socket Registers  
The PC Card Standard requires a CardBus socket controller to provide five 32-bit registers that report and control  
socket-specific functions. The PCI1510 controller provides the CardBus socket/ExCA base-address register (PCI  
offset 10h, see Section 4.12) to locate these CardBus socket registers in PCI memory address space. Table 6−1 gives  
the location of the socket registers in relation to the CardBus socket/ExCA base address.  
The controller implements an additional register at offset 20h that provides power management control for the socket.  
Host  
Memory Space  
PCI1510 Configuration Registers  
Offset  
Offset  
00h  
CardBus  
Socket  
Registers  
10h  
44h  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
20h  
800h  
ExCA  
Registers  
844h  
Figure 6−1. Accessing CardBus Socket Registers Through PCI Memory  
Table 6−1. CardBus Socket Registers  
REGISTER NAME  
OFFSET  
00h  
Socket event  
Socket mask  
04h  
Socket present-state  
Socket force event  
Socket control  
08h  
0Ch  
10h  
Reserved  
14h−1Ch  
20h  
Socket power-management  
A bit description table, typically included when a register contains bits of more than one type or purpose, indicates  
bit field names, which appear in the signal column; a detailed field description, which appears in the function column;  
and field access tags, which appear in the type column of the bit description table. Table 4−2 describes the field  
access tags.  
6−1  
 
6.1 Socket Event Register  
The socket event register indicates a change in socket status has occurred. These bits do not indicate what the  
change is, only that one has occurred. Software must read the socket present-state register (CB offset 08h, see  
Section 6.3) for current status. Each bit in this register can be cleared by writing a 1b to that bit. The bits in this register  
can be set to a 1b by software by writing a 1b to the corresponding bit in the socket force event register (CB offset  
0Ch, see Section 6.4). All bits in this register are cleared by PCI reset. They can be immediately set again, if, when  
coming out of PC Card reset, the bridge finds the status unchanged (that is, CSTSCHG reasserted or card detect  
is still true). Software must clear this register before enabling interrupts. If it is not cleared when interrupts are enabled,  
then an interrupt is generated (but not masked) based on any bit set. See Table 6−2 for a complete description of  
the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Socket event  
CardBus socket address + 00h  
Read-only, Read/Write, Read/Clear  
0000 0000h  
Default:  
Table 6−2. Socket Event Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31−4  
RSVD  
R
Reserved. Bits 31−4 return 000 0000h when read.  
Power cycle. Bit 3 is set when the controller detects that bit 3 (PWRCYCLE) in the socket present-state  
register (CB offset 08h, see Section 6.3) has changed state. This bit is cleared by writing a 1b.  
3
2
1
PWREVENT  
CD2EVENT  
CD1EVENT  
R/C  
R/C  
R/C  
CCD2. Bit 2 is set when the controller detects that bit 2 (CDETECT2) in the socket present-state register  
(CB offset 08h, see Section 6.3) has changed state. This bit is cleared by writing a 1b.  
CCD1. Bit 1 is set when the controller detects that bit 1 (CDETECT1) in the socket present-state register  
(CB offset 08h, see Section 6.3) has changed state. This bit is cleared by writing a 1b.  
CSTSCHG. Bit 0 is set when bit 0 (CARDSTS) in the socket present-state register (CB offset 08h, see  
Section 6.3) has changed state. For CardBus cards, bit 0 is set on the rising edge of CSTSCHG. For 16-bit  
PC Cards, bit 0 is set on both transitions of CSTSCHG. This bit is reset by writing a 1b.  
0
CSTSEVENT  
R/C  
6−2  
 
6.2 Socket Mask Register  
The socket mask register allows software to control the CardBus card events that generate a status change interrupt.  
The state of these mask bits does not prevent the corresponding bits from reacting in the socket event register (CB  
offset 00h, see Section 6.1). See Table 6−3 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Socket mask  
CardBus socket address + 04h  
Read-only, Read/Write  
0000 0000h  
Default:  
Table 6−3. Socket Mask Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31−4  
RSVD  
R
Reserved. Bits 31−4 return 000 0000b when read.  
Power cycle. Bit 3 masks bit 3 (PWRCYCLE) in the socket present-state register (CB offset 08h, see  
Section 6.3) from causing a status change interrupt.  
3
2−1  
0
PWRMASK  
CDMASK  
RW  
RW  
RW  
0 = PWRCYCLE event does not cause CSC interrupt (default)  
1 = PWRCYCLE event causes CSC interrupt  
Card detect mask. Bits 2 and 1 mask bits 1 and 2 (CDETECT1 and CDETECT2) in the socket present-state  
register (CB offset 08h, see Section 6.3) from causing a CSC interrupt.  
00 = Insertion/removal does not cause CSC interrupt (default)  
01 = Reserved (undefined)  
10 = Reserved (undefined)  
11 = Insertion/removal causes CSC interrupt  
CSTSCHG mask. Bit 0 masks bit 0 (CARDSTS) in the socket present-state register (CB offset 08h, see  
Section 6.3) from causing a CSC interrupt.  
CSTSMASK  
0 = CARDSTS event does not cause CSC interrupt (default)  
1 = CARDSTS event causes CSC interrupt  
6−3  
 
6.3 Socket Present-State Register  
The socket present-state register reports information about the socket interface. Write transactions to the socket force  
event register (CB offset 0Ch, see Section 6.4) are reflected here, as well as general socket interface status.  
Information about PC Card V  
support and card type is only updated at each insertion. Also note that the controller  
CC  
uses CCD1 and CCD2 during card identification, and changes on these signals during this operation are not reflected  
in this register. See Table 6−4 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
X
0
0
0
X
X
X
Register:  
Offset:  
Type:  
Socket present-state  
CardBus socket address + 08h  
Read-only  
Default:  
3000 00XXh  
Table 6−4. Socket Present-State Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
YV socket. Bit 31 indicates whether or not the socket can supply V  
does not support Y.Y-V V ; therefore, this bit is always reset unless overridden by the socket force event  
CC  
register (CB offset 0Ch, see Section 6.4). This bit is hardwired to 0b.  
= Y.Y V to PC Cards. The controller  
CC  
31  
YVSOCKET  
R
R
R
XV socket. Bit 30 indicates whether or not the socket can supply V  
does not support X.X-V V ; therefore, this bit is always reset unless overridden by the socket force event  
CC  
register (CB offset 0Ch, see Section 6.4). This bit is hardwired to 0b.  
= X.X V to PC Cards. The controller  
CC  
30  
29  
XVSOCKET  
3VSOCKET  
3-V socket. Bit 29 indicates whether or not the socket can supply V  
does support 3.3-V V ; therefore, this bit is always set unless overridden by the socket force event  
CC  
register (CB offset 0Ch, see Section 6.4).  
= 3.3 V to PC Cards. The controller  
CC  
5-V socket. Bit 28 indicates whether or not the socket can supply V  
does support 5-V V ; therefore, this bit is always set unless overridden by the socket force event register  
CC  
(CB offset 0Ch, see Section 6.4).  
= 5 V to PC Cards. The controller  
CC  
28  
27  
5VSOCKET  
R
R
ZVSUPPORT  
Zoomed-video support. This bit indicates whether or not the socket has support for zoomed video.  
0 = Zoomed video is not supported  
1 = Zoomed video is supported  
26−14  
13  
RSVD  
R
R
Reserved. Bits 26−14 return 0s when read.  
YV card. Bit 13 indicates whether or not the PC Card inserted in the socket supports V  
= Y.Y V.  
= X.X V.  
= 3.3 V.  
CC  
YVCARD  
0 = Y.Y-V V  
1 = Y.Y-V V  
is not supported  
is supported  
CC  
CC  
XV card. Bit 12 indicates whether or not the PC Card inserted in the socket supports V  
CC  
12  
11  
XVCARD  
3VCARD  
R
R
0 = X.X-V V  
1 = X.X-V V  
is not supported  
is supported  
CC  
CC  
3-V card. Bit 11 indicates whether or not the PC Card inserted in the socket supports V  
CC  
0 = 3.3-V V  
1 = 3.3-V V  
is not supported  
is supported  
CC  
CC  
6−4  
 
Table 6−4. Socket Present-State Register (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
5-V card. Bit 10 indicates whether or not the PC Card inserted in the socket supports V  
= 5 V.  
CC  
10  
5VCARD  
R
0 = 5-V V  
1 = 5-V V  
is not supported.  
is supported.  
CC  
CC  
Bad V  
invalid voltage.  
request. Bit 9 indicates that the host software has requested that the socket be powered at an  
CC  
9
8
BADVCCREQ  
DATALOST  
R
0 = Normal operation (default)  
1 = Invalid V  
CC  
request by host software  
Data lost. Bit 8 indicates that a PC Card removal event may have caused lost data because the cycle did  
not terminate properly or because write data still resides in the controller.  
0 = Normal operation (default)  
R
1 = Potential data loss due to card removal  
Not a card. Bit 7 indicates that an unrecognizable PC Card has been inserted in the socket. This bit is not  
updated until a valid PC Card is inserted into the socket.  
0 = Normal operation (default)  
7
6
NOTACARD  
IREQCINT  
R
R
1 = Unrecognizable PC Card detected  
READY(IREQ)//CINT. Bit 6 indicates the current status of READY(IREQ)//CINT at the PC Card interface.  
0 = READY(IREQ)//CINT low  
1 = READY(IREQ)//CINT high  
CardBus card detected. Bit 5 indicates that a CardBus PC Card is inserted in the socket. This bit is not  
updated until another card interrogation sequence occurs (card insertion).  
5
4
CBCARD  
R
R
16-bit card detected. Bit 4 indicates that a 16-bit PC Card is inserted in the socket. This bit is not updated  
until another card interrogation sequence occurs (card insertion).  
16BITCARD  
Power cycle. Bit 3 indicates the status of each card powering request. This bit is encoded as:  
0 = Socket powered down (default)  
3
2
PWRCYCLE  
CDETECT2  
R
R
1 = Socket powered up  
CCD2. Bit 2 reflects the current status of CCD2 at the PC Card interface. Changes to this signal during  
card interrogation are not reflected here.  
0 = CCD2 low (PC Card may be present)  
1 = CCD2 high (PC Card not present)  
CCD1. Bit 1 reflects the current status of CCD1 at the PC Card interface. Changes to this signal during  
card interrogation are not reflected here.  
1
0
CDETECT1  
CARDSTS  
R
R
0 = CCD1 low (PC Card may be present)  
1 = CCD1 high (PC Card not present)  
CSTSCHG. Bit 0 reflects the current status of CSTSCHG at the PC Card interface.  
0 = CSTSCHG low  
1 = CSTSCHG high  
6.4 Socket Force Event Register  
The socket force event register is used to force changes to the socket event register (CB offset 00h, see Section 6.1)  
and the socket present-state register (see Section 6.3). Bit 14 (CVSTEST) in this register must be written when  
forcing changes that require card interrogation. See Table 6−5 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Socket force event  
CardBus socket address + 0Ch  
Read-only, Write-only  
0000 0000h  
Default:  
6−5  
 
Table 6−5. Socket Force Event Register Description  
FUNCTION  
BIT  
31−28  
27  
SIGNAL  
RSVD  
TYPE  
R
Reserved. Bits 31−28 return 0h when read.  
FZVSUPPORT  
RSVD  
W
Zoomed-video support. This bit indicates whether or not the socket has support for zoomed video.  
Reserved. Bits 26−15 return 000h when read.  
26−15  
R
Card VS test. When bit 14 is set, the controller re-interrogates the PC Card, updates the socket present-state  
register (CB offset 08h, see Section 6.3), and enables the socket control register (CB offset 10h, see  
Section 6.5).  
14  
13  
12  
11  
10  
CVSTEST  
FYVCARD  
FXVCARD  
F3VCARD  
F5VCARD  
W
W
W
W
W
Force YV card. Write transactions to bit 13 cause bit 13 (YVCARD) in the socket present-state register (CB  
offset 08h, see Section 6.3) to be written. When set, this bit disables the socket control register (CB offset  
10h, see Section 6.5).  
Force XV card. Write transactions to bit 12 cause bit 12 (XVCARD) in the socket present-state register (CB  
offset 08h, see Section 6.3) to be written. When set, this bit disables the socket control register (CB offset  
10h, see Section 6.5).  
Force 3-V card. Write transactions to bit 11 cause bit 11 (3VCARD) in the socket present-state register (CB  
offset 08h, see Section 6.3) to be written. When set, this bit disables the socket control register (CB offset  
10h, see Section 6.5).  
Force 5-V card. Write transactions to bit 10 cause bit 10 (5VCARD) in the socket present-state register (CB  
offset 08h, see Section 6.3) to be written. When set, this bit disables the socket control register (CB offset  
10h, see Section 6.5).  
Force bad V  
CC  
request. Changes to bit 9 (BADVCCREQ) in the socket present-state register (CB offset 08h,  
see Section 6.3) can be made by writing to bit 9.  
9
8
FBADVCCREQ  
FDATALOST  
W
W
Force data lost. Write transactions to bit 8 cause bit 8 (DATALOST) in the socket present-state register (CB  
offset 08h, see Section 6.3) to be written.  
Force not-a-card. Write transactions to bit 7 cause bit 7 (NOTACARD) in the socket present-state register  
(CB offset 08h, see Section 6.3) to be written.  
7
6
5
FNOTACARD  
RSVD  
W
R
Reserved. Bit 6 returns 0b when read.  
Force CardBus card. Write transactions to bit 5 cause bit 5 (CBCARD) in the socket present-state register  
(CB offset 08h, see Section 6.3) to be written.  
FCBCARD  
W
Force 16-bit card. Write transactions to bit 4 cause bit 4 (16BITCARD) in the socket present-state register  
(CB offset 08h, see Section 6.3) to be written.  
4
3
F16BITCARD  
FPWRCYCLE  
W
W
Force power cycle. Write transactions to bit 3 cause bit 3 (PWREVENT) in the socket event register (CB  
offset 00h, see Section 6.1) to be written, and bit 3 (PWRCYCLE) in the socket present-state register (CB  
offset 08h, see Section 6.3) is unaffected.  
Force CCD2. Write transactions to bit 2 cause bit 2 (CD2EVENT) in the socket event register (CB offset 00h,  
see Section 6.1) to be written, and bit 2 (CDETECT2) in the socket present-state register (CB offset 08h,  
see Section 6.3) is unaffected.  
2
1
0
FCDETECT2  
FCDETECT1  
FCARDSTS  
W
W
W
Force CCD1. Write transactions to bit 1 cause bit 1 (CD1EVENT) in the socket event register (CB offset 00h,  
see Section 6.1) to be written, and bit 1 (CDETECT1) in the socket present-state register (CB offset 08h,  
see Section 6.3) is unaffected.  
Force CSTSCHG. Write transactions to bit 0 cause bit 0 (CSTSEVENT) in the socket event register (CB  
offset 00h, see Section 6.1) to be written, and bit 0 (CARDSTS) in the socket present-state register (CB  
offset 08h, see Section 6.3) is unaffected.  
6−6  
 
6.5 Socket Control Register  
The socket control register provides control of the voltages applied to the socket and instructions for the CB CLKRUN  
protocol. The controller ensures that the socket is powered up only at acceptable voltages when a CardBus card is  
inserted. See Table 6−6 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
Register:  
Offset:  
Type:  
Socket control  
CardBus socket address + 10h  
Read-only, Read/Write  
0000 0400h  
Default:  
Table 6−6. Socket Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31−12  
RSVD  
R
Reserved. These bits return 00000h when read. A write to these bits has no effect.  
Zoomed video activity. This bit returns 0b when the ZVEN bit is 0b (disabled). If the ZVEN bit is set to  
1b, the ZV_ACTIVITY bit returns 1b.  
11  
10  
ZV_ACTIVITY  
STDZVREG  
R
R
Standardized zoomed video register model support. This bit returns 1b when the STDZVEN bit (bit 0)  
in the diagnostic register is cleared (PCI offset 93h, see Section 4.34).  
9
8
ZVEN  
RSVD  
RW  
R
Zoomed video enable. This bit enables zoomed video for this socket.  
Reserved. ThIs bit returns 0b when read. A write to thIs bit has no effect.  
CB CLKRUN protocol instructions.  
0 = CB CLKRUN protocol can only attempt to stop/slow the CB clock if the socket is idle and the  
PCI CLKRUN protocol is preparing to stop/slow the PCI bus clock  
1 = CB CLKRUN protocol can attempt to stop/slow the CB clock if the socket is idle  
7
STOPCLK  
RW  
V
CC  
control. Bits 6−4 request card V  
CC  
changes.  
000 = Request power off (default)  
001 = Reserved  
100 = Request V  
101 = Request V  
110 = Reserved  
111 = Reserved  
= X.X V  
= Y.Y V  
CC  
CC  
6−4  
3
VCCCTRL  
RSVD  
RW  
R
010 = Request V  
= 5 V  
CC  
CC  
011 = Request V  
= 3.3 V  
Reserved. Bit 3 returns 0b when read.  
V
PP  
control. Bits 2−0 request card V  
000 = Request power off (default)  
changes.  
PP  
100 = Request V  
101 = Request V  
110 = Reserved  
111 = Reserved  
= X.X V  
= Y.Y V  
PP  
PP  
001 = Request V  
010 = Request V  
011 = Request V  
= 12 V  
= 5 V  
= 3.3 V  
2−0  
VPPCTRL  
RW  
PP  
PP  
PP  
6−7  
 
6.6 Socket Power-Management Register  
This register provides power management control over the socket through a mechanism for slowing or stopping the  
clock on the card interface when the card is idle. See Table 6−7 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Default  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Register:  
Type:  
Offset:  
Default:  
Socket power-management  
Read-only, Read/Write  
CardBus socket address + 20h  
0000 0000h  
Table 6−7. Socket Power-Management Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Reserved. Bits 31−26 return 00 0000b when read.  
31−26  
RSVD  
R
R
Socket access status. This bit provides information on when a socket access has occurred. This bit is  
cleared by a read access.  
25  
SKTACCES  
0 = A PC card access has not occurred (default)  
1 = A PC card access has occurred  
Socket mode status. This bit provides clock mode information.  
0 = Clock is operating normally  
24  
23−17  
16  
SKTMODE  
RSVD  
R
R
1 = Clock frequency has changed  
Reserved. Bits 23−17 return 000 0000b when read.  
CardBus clock control enable. When bit 16 is set, bit 0 (CLKCTRL) is enabled.  
0 = Clock control is disabled (default)  
CLKCTRLEN  
RSVD  
RW  
R
1 = Clock control is enabled  
15−1  
Reserved. Bits 15−1 return 0s when read.  
CardBus clock control. This bit determines whether the CB CLKRUN protocol stops or slows the CB clock  
during idle states. Bit 16 (CLKCTRLEN) enables this bit.  
0
CLKCTRL  
RW  
0 = Allows CB CLKRUN protocol to stop the CB clock (default)  
1 = Allows CB CLKRUN protocol to slow the CB clock by a factor of 16  
6−8  
 
7 Electrical Characteristics  
7.1 Absolute Maximum Ratings Over Operating Temperature Ranges  
Supply voltage range, V  
Clamping voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
CC  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6 V  
CCP, CCCB  
Input voltage range, V : PCI, miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
I
CCP  
PC Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 to V  
CCCB  
CC  
CCP  
Fail safe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
Output voltage range, V : PCI, miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
O
PC Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 to V  
CCCB  
Fail safe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
CC  
Input clamp current, I (V < 0 or V > V ) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
IK  
I
I
CC  
Output clamp current, I  
(V < 0 or V > V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
OK  
O O CC  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Applies for external input and bidirectional buffers. V > V  
does not apply to fail-safe terminals. PCI terminals and miscellaneous  
I
CC  
terminals are measured with respect to V  
specified applies for a dc condition.  
instead of V . PC Card terminals are measured with respect to V  
. The limit  
CCCB  
CCP  
CC  
2. Applies for external output and bidirectional buffers. V > V  
does not apply to fail-safe terminals. PCI terminals and miscellaneous  
. The limit  
O
CC  
terminals are measured with respect to V  
specified applies for a dc condition.  
instead of V . PC Card terminals are measured with respect to V  
CC CCCB  
CCP  
7−1  
 
7.2 Recommended Operating Conditions (see Note 3)  
OPERATION  
MIN  
NOM  
3.3  
3.3  
5
MAX  
3.6  
UNIT  
V
V
Commercial  
Commercial  
3.3 V  
3.3 V  
5 V  
3
V
Core voltage  
CC  
3
4.75  
3
3.6  
PCI and miscellaneous I/O clamp  
voltage  
V
V
CCP  
5.25  
3.6  
3.3 V  
5 V  
3.3  
5
V
Commercial  
PCI  
PC Card I/O clamp voltage  
CCCB  
4.75  
5.25  
3.3 V  
5 V  
0.5 V  
CCP  
V
CCP  
2
V
CCP  
3.3 V  
5 V  
0.475 V  
V
High-level input voltage  
V
V
CCCB  
CCCB  
CCCB  
IH  
PC Card  
2.4  
V
Miscellaneous  
2
0
0
0
V
CC  
3.3 V  
5 V  
0.3 V  
CCP  
0.8  
PCI  
3.3 V  
5 V  
0.325 V  
Low-level input voltage  
V
V
V
CCCB  
0.8  
IL  
PC Card  
0
0
0
0
0
0
0
0
1
0
0
0
Miscellaneous  
0.8  
PCI  
V
CCP  
PC Card  
V
CCCB  
V
V
Input voltage  
I
Miscellaneous  
PCI  
V
V
V
V
CC  
CC  
CC  
§
PC Card  
Output voltage  
V
O
Miscellaneous  
CC  
4
PCI and PC Card  
t
t
Input transition time (t and t )  
ns  
r
f
Miscellaneous  
6
T
Operating ambient temperature range  
Virtual junction temperature  
25  
25  
70  
°C  
°C  
A
T
J
115  
Applies to external inputs and bidirectional buffers without hysteresis  
Miscellaneous terminals are 65, 66, 75, 117, 130, and 138 for the PGE-packaged device; A09, B02, B05, L11, L13, and N10 for the  
GGU-packaged device; and B10, C09, F12, G03, H02, and L17 for the GVF-packaged device (SUSPEND, GRST, CDx, and VSx terminals).  
Applies to external output buffers  
§
These junction temperatures reflect simulation conditions. The customer is responsible for verifying junction temperature.  
NOTE 3: Unused terminals (input or I/O) must be held high or low to prevent them from floating.  
7−2  
 
7.3 Electrical Characteristics Over Recommended Operating Conditions (unless  
otherwise noted)  
PARAMETER  
TERMINALS  
OPERATION TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
I
I
I
= −0.5 mA  
= −2 mA  
0.9 V  
3.3 V  
5 V  
OH  
OH  
OH  
OH  
CC  
2.4  
PCI  
V
= −0.15 mA  
= −0.15 mA  
0.9 V  
3.3 V  
5 V  
V
High-level output voltage  
CC  
2.4  
OH  
OL  
PC Card  
Miscellaneous  
PCI  
V
V
I
I
I
I
I
I
= −4 mA  
= 1.5 mA  
= 6 mA  
V
CC  
−0.6  
OH  
OL  
OL  
OL  
OL  
OL  
0.1 V  
3.3 V  
5 V  
CC  
0.55  
= 0.7 mA  
= 0.7 mA  
= 4 mA  
0.1 V  
CC  
3.3 V  
5 V  
V
Low-level output voltage  
PC Card  
0.55  
0.5  
−1  
−1  
10  
Miscellaneous  
Output terminals  
3.6 V  
5.25 V  
3.6 V  
V = V  
I
CC  
CC  
CC  
High-impedance, low-level output  
current  
I
I
µA  
µA  
OZL  
V = V  
I
V = V  
I
High-impedance, high-level output  
current  
Output terminals  
OZH  
5.25 V  
25  
−1  
V = V  
I
CC  
Input terminals  
I/O terminals  
V = GND  
I
V = GND  
I
−10  
−330  
10  
I
I
µA  
µA  
Low-level input current  
IL  
Pullup terminals  
V = GND  
I
3.6 V  
V = V  
I
CC  
Input terminals  
5.25 V  
3.6 V  
20  
10  
25  
30  
V = V  
I
CC  
CC  
CC  
CC  
High-level input current  
V = V  
I
IH  
I/O terminals  
Pulldown  
5.25 V  
5.25 V  
V = V  
I
V = V  
I
For PCI and miscellaneous terminals, V = V  
. For PC Card terminals, V = V .  
I
CCP  
I
CCCB  
For I/O terminals, input leakage (I and I ) includes I  
leakage of the disabled output.  
IL IH OZ  
7.4 PCI Clock/Reset Timing Requirements Over Recommended Ranges of Supply  
Voltage and Operating Free-Air Temperature  
ALTERNATE  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
t
t
t
Cycle time, PCLK  
t
30  
11  
11  
1
ns  
ns  
c
cyc  
Pulse duration (width), PCLK high  
Pulse duration (width), PCLK low  
Slew rate, PCLK  
t
high  
w(H)  
w(L)  
t
ns  
low  
v/t  
t , t  
r
4
V/ns  
ms  
ms  
f
t
w
Pulse duration (width), PRST  
Setup time, PCLK active at end of PRST  
t
1
rst  
t
su  
t
100  
rst-clk  
7−3  
 
7.5 PCI Timing Requirements Over Recommended Ranges of Supply Voltage and  
Operating Free-Air Temperature  
This data manual uses the following conventions to describe time ( t ) intervals. The format is t , where subscript A  
A
indicates the type of dynamic parameter being represented. One of the following is used: t = propagation delay time,  
pd  
t (t , t ) = delay time, t = setup time, and t = hold time.  
d
en dis  
su  
h
ALTERNATE  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
PCLK-to-shared signal  
valid delay time  
t
11  
val  
inv  
C
= 50 pF,  
L
t
Propagation delay time, See Note 4  
ns  
pd  
See Note 4  
PCLK-to-shared signal  
invalid delay time  
t
2
2
t
t
t
t
Enable time, high impedance-to-active delay time from PCLK  
Disable time, active-to-high impedance delay time from PCLK  
Setup time before PCLK valid  
t
ns  
ns  
ns  
ns  
en  
dis  
su  
h
on  
t
28  
off  
t
7
0
su  
Hold time after PCLK high  
t
h
NOTE 4: PCI shared signals are AD31−AD0, C/BE3−C/BE0, FRAME, TRDY, IRDY, STOP, IDSEL, DEVSEL, and PAR.  
7−4  
 
8 Mechanical Information  
The PCI1510 is packaged in either a 144-ball GGU or ZGU BGA, 209-ball GVF or ZVF BGA, or a 144-pin PGE  
package. The following shows the mechanical dimensions for the GGU, GVF, PGE, ZGU, and ZVF packages.  
GGU (S-PBGA-N144)  
PLASTIC BALL GRID ARRAY  
12,10  
11,90  
SQ  
9,60 TYP  
0,80  
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2 3 4 5 6 7 8 9 10 11 12 13  
0,95  
0,85  
1,40 MAX  
Seating Plane  
0,10  
0,55  
0,45  
0,12  
0,08  
M
0,08  
0,45  
0,35  
4073221-2/B 08/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. MicroStar BGAconfiguration  
MicroStar BGA is a trademark of Texas Instruments.  
8−1  
 
GVF (S−PBGA−N209)  
PLASTIC BALL GRID ARRAY  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
8−2  
PGE (S-PQFP-G144)  
PLASTIC QUAD FLATPACK  
108  
73  
109  
72  
0,27  
0,17  
M
0,08  
0,50  
0,13 NOM  
144  
37  
1
36  
Gage Plane  
17,50 TYP  
20,20  
SQ  
19,80  
0,25  
0,05 MIN  
22,20  
SQ  
0°ā7°  
21,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4040147/C 10/96  
NOTES: C. All linear dimensions are in millimeters.  
D. This drawing is subject to change without notice.  
E. Falls within JEDEC MS-026  
8−3  
ZGU (S−PBGA−N144)  
PLASTIC BALL GRID ARRAY  
12,10  
11,90  
SQ  
9,60 TYP  
0,80  
N
M
L
K
J
0,80  
H
G
F
E
D
C
B
A
A1 Corner  
1
2
3
4
5
6
7
8
9 10 11 12 13  
Bottom View  
0,95  
0,85  
1,40 MAX  
Seating Plane  
0,10  
0,55  
0,45  
0,08  
0,45  
0,35  
4204394/A 04/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. MicroStar BGAconfiguration  
D. This package is lead-free.  
8−4  
ZVF (S−PBGA−N209)  
PLASTIC BALL GRID ARRAY  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. This package is lead-free.  
8−5  
8−6  

相关型号:

PCI1510ZWS

单槽 PC CardBus 控制器 | ZWS | 144 | 0 to 70
TI

PCI1512

CardBus Controller
TI

PCI1512GVF

PCI BUS CONTROLLER, PBGA216, PLASTIC, BGA-216
ROCHESTER

PCI1512GVF

IC PCI BUS CONTROLLER, PBGA216, PLASTIC, BGA-216, Bus Controller
TI

PCI1512ZVF

PCI1512 Single Slot PC CardBus Controller
TI

PCI1512_09

CardBus Controller
TI

PCI1515GHK

PCMCIA BUS CONTROLLER, PBGA257, PLASTIC, BGA-257
TI

PCI1520

PC CARD CONTROLLERS
TI

PCI1520-EP

PC Card Controllers
TI

PCI1520GHK

PC Card Controller 209-BGA MICROSTAR 0 to 70
TI

PCI1520I

PC CARD CONTROLLERS
TI

PCI1520IGHK

PC Card Controllers
TI