PCI1520IZWT [TI]

PCI1520/PCI1520I GHK/ZHK/PDV PC Card Controllers;
PCI1520IZWT
型号: PCI1520IZWT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PCI1520/PCI1520I GHK/ZHK/PDV PC Card Controllers

PC 光电二极管
文件: 总140页 (文件大小:1222K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢀ ꢁ ꢂꢃꢄ ꢅ ꢆꢂ ꢈ ꢉꢊ ꢇꢋꢉ ꢊꢇ ꢀꢌꢍ  
ꢀꢁ ꢁ ꢎ ꢏꢐ ꢁ ꢑ ꢒ ꢓꢏꢑ ꢔꢔ ꢕꢏ ꢖ  
Data Manual  
March 2004  
PCIBus Solutions  
SCPS065D  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−1  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−1  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−2  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−2  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−2  
PCI1520 Data Manual Document History . . . . . . . . . . . . . . . . . . . . . . . 1−3  
2
3
Terminal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−1  
Feature/Protocol Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
3.1  
3.2  
3.3  
3.4  
Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
Clamping Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
Peripheral Component Interconnect (PCI) Interface . . . . . . . . . . . . . . 3−2  
3.4.1  
3.4.2  
3.4.3  
PCI GRST Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
PCI Bus Lock (LOCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−3  
Loading Subsystem Identification . . . . . . . . . . . . . . . . . . . . . 3−3  
3.5  
PC Card Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−4  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
3.5.5  
3.5.6  
3.5.7  
3.5.8  
3.5.9  
PC Card Insertion/Removal and Recognition . . . . . . . . . . . 3−4  
P C Power-Switch Interface (TPS222X) . . . . . . . . . . . . . . . 3−4  
2
Zoomed Video Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−5  
Standardized Zoomed-Video Register Model . . . . . . . . . . . 3−7  
Internal Ring Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−8  
Integrated Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . 3−8  
SPKROUT and CAUDPWM Usage . . . . . . . . . . . . . . . . . . . 3−9  
LED Socket Activity Indicators . . . . . . . . . . . . . . . . . . . . . . . . 3−10  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−10  
3.6  
3.7  
Serial-Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−11  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
Serial-Bus Interface Implementation . . . . . . . . . . . . . . . . . . . 3−11  
Serial-Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 3−11  
Serial-Bus EEPROM Application . . . . . . . . . . . . . . . . . . . . . . 3−13  
Accessing Serial-Bus Devices Through Software . . . . . . . 3−14  
Programmable Interrupt Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−15  
3.7.1  
PC Card Functional and Card Status Change  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−15  
3.7.2  
3.7.3  
3.7.4  
Interrupt Masks and Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−17  
Using Parallel IRQ Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 3−17  
Using Parallel PCI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 3−18  
iii  
3.7.5  
3.7.6  
Using Serialized IRQSER Interrupts . . . . . . . . . . . . . . . . . . . 3−18  
SMI Support in the PCI1520 . . . . . . . . . . . . . . . . . . . . . . . . . . 3−18  
3.8  
Power Management Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−19  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
3.8.5  
3.8.6  
3.8.7  
3.8.8  
3.8.9  
3.8.10  
3.8.11  
Integrated Low-Dropout Voltage Regulator (LDO-VR) . . . . 3−19  
Clock Run Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−19  
CardBus PC Card Power Management . . . . . . . . . . . . . . . . 3−20  
16-Bit PC Card Power Management . . . . . . . . . . . . . . . . . . . 3−20  
Suspend Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−20  
Requirements for Suspend Mode . . . . . . . . . . . . . . . . . . . . . 3−21  
Ring Indicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−21  
PCI Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−22  
CardBus Bridge Power Management . . . . . . . . . . . . . . . . . . 3−23  
ACPI Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−24  
Master List of PME Context Bits and Global  
Reset-Only Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−25  
4
PC Card Controller Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
PCI Configuration Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . . 4−1  
Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−2  
Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−2  
Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−3  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−4  
Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−5  
PCI Class Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−5  
Cache Line Size Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−5  
Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−6  
4.10 Header Type Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−6  
4.11 BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−6  
4.12 CardBus Socket/ExCA Base-Address Register . . . . . . . . . . . . . . . . . . 4−7  
4.13 Capability Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−7  
4.14 Secondary Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−8  
4.15 PCI Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−9  
4.16 CardBus Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−9  
4.17 Subordinate Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−9  
4.18 CardBus Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−10  
4.19 Memory Base Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−10  
4.20 Memory Limit Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−11  
4.21 I/O Base Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−11  
4.22 I/O Limit Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−12  
4.23 Interrupt Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−12  
4.24 Interrupt Pin Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−13  
4.25 Bridge Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−14  
4.26 Subsystem Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−15  
4.27 Subsystem ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−15  
4.28 PC Card 16-Bit I/F Legacy-Mode Base Address Register . . . . . . . . . 4−15  
iv  
4.29 System Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−16  
4.30 Multifunction Routing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−19  
4.31 Retry Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−21  
4.32 Card Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−22  
4.33 Device Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−23  
4.34 Diagnostic Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−24  
4.35 Capability ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−25  
4.36 Next-Item Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−25  
4.37 Power-Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . 4−26  
4.38 Power-Management Control/Status Register . . . . . . . . . . . . . . . . . . . . 4−27  
4.39 Power-Management Control/Status Register Bridge  
Support Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−28  
4.40 Power-Management Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−28  
4.41 General-Purpose Event Status Register . . . . . . . . . . . . . . . . . . . . . . . . 4−29  
4.42 General-Purpose Event Enable Register . . . . . . . . . . . . . . . . . . . . . . . 4−30  
4.43 General-Purpose Input Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−31  
4.44 General-Purpose Output Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−32  
4.45 Serial-Bus Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−32  
4.46 Serial-Bus Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−33  
4.47 Serial-Bus Slave Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−33  
4.48 Serial-Bus Control and Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 4−34  
ExCA Compatibility Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . . . 5−1  
5
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
ExCA Identification and Revision Register . . . . . . . . . . . . . . . . . . . . . . 5−5  
ExCA Interface Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−6  
ExCA Power Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−7  
ExCA Interrupt and General Control Register . . . . . . . . . . . . . . . . . . . 5−8  
ExCA Card Status-Change Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−9  
ExCA Card Status-Change Interrupt Configuration Register . . . . . . . 5−10  
ExCA Address Window Enable Register . . . . . . . . . . . . . . . . . . . . . . . . 5−11  
ExCA I/O Window Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−12  
ExCA I/O Windows 0 and 1 Start-Address Low-Byte Registers . . . . 5−13  
5.10 ExCA I/O Windows 0 and 1 Start-Address High-Byte Registers . . . . 5−13  
5.11 ExCA I/O Windows 0 and 1 End-Address Low-Byte Registers . . . . . 5−14  
5.12 ExCA I/O Windows 0 and 1 End-Address High-Byte Registers . . . . 5−14  
5.13 ExCA Memory Windows 0−4 Start-Address Low-Byte Registers . . . 5−15  
5.14 ExCA Memory Windows 0−4 Start-Address High-Byte Registers . . . 5−16  
5.15 ExCA Memory Windows 0−4 End-Address Low-Byte Registers . . . . 5−17  
5.16 ExCA Memory Windows 0−4 End-Address High-Byte Registers . . . 5−18  
5.17 ExCA Memory Windows 0−4 Offset-Address Low-Byte Registers . . 5−19  
5.18 ExCA Memory Windows 0−4 Offset-Address High-Byte Registers . 5−20  
5.19 ExCA Card Detect and General Control Register . . . . . . . . . . . . . . . . 5−21  
5.20 ExCA Global Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−22  
5.21 ExCA I/O Windows 0 and 1 Offset-Address Low-Byte Registers . . . 5−23  
5.22 ExCA I/O Windows 0 and 1 Offset-Address High-Byte Registers . . . 5−23  
v
5.23 ExCA Memory Windows 0−4 Page Registers . . . . . . . . . . . . . . . . . . . 5−24  
6
7
CardBus Socket Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . . . . . . . 6−1  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Socket Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−2  
Socket Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−3  
Socket Present-State Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−4  
Socket Force Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−6  
Socket Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−8  
Socket Power-Management Register . . . . . . . . . . . . . . . . . . . . . . . . . . 6−9  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−1  
7.1  
7.2  
7.3  
Absolute Maximum Ratings Over Operating Temperature Ranges . 7−1  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 7−2  
Electrical Characteristics Over Recommended  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7−3  
7.4  
7.5  
PCI Clock/Reset Timing Requirements Over Recommended  
Ranges of Supply Voltage and Operating Free-Air Temperature . . . 7−3  
PCI Timing Requirements Over Recommended Ranges of  
Supply Voltage and Operating Free-Air Temperature . . . . . . . . . . . . . 7−4  
8
Mechanical Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8−1  
vi  
List of Illustrations  
Figure  
Title  
Page  
2−1 PCI1520 GHK-Package Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−1  
2−2 PCI1520 PDV-Package Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−2  
3−1 PCI1520 Simplified Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1  
3−2 3-State Bidirectional Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2  
3−3 TPS222X Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−5  
3−4 Zoomed Video Implementation Using the PCI1520 . . . . . . . . . . . . . . . . . . . . 3−6  
3−5 Zoomed Video Switching Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−6  
3−6 Sample Application of SPKROUT and CAUDPWM . . . . . . . . . . . . . . . . . . . . 3−10  
3−7 Two Sample LED Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−10  
3−8 Serial EEPROM Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−11  
3−9 Serial-Bus Start/Stop Conditions and Bit Transfers . . . . . . . . . . . . . . . . . . . . 3−12  
3−10 Serial-Bus Protocol Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−12  
3−11 Serial-Bus Protocol − Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−13  
3−12 Serial-Bus Protocol − Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−13  
3−13 EEPROM Interface Doubleword Data Collection . . . . . . . . . . . . . . . . . . . . . 3−13  
3−14 IRQ Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−18  
3−15 Signal Diagram of Suspend Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−21  
3−16 RI_OUT Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−22  
3−17 Block Diagram of a Status/Enable Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−24  
5−1 ExCA Register Access Through I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−1  
5−2 ExCA Register Access Through Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−2  
6−1 Accessing CardBus Socket Registers Through PCI Memory . . . . . . . . . . . . 6−1  
vii  
List of Tables  
Table  
Title  
Page  
2−1 Signal Names by PDV Terminal Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−3  
2−2 Signal Names by GHK Terminal Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−5  
2−3 CardBus PC Card Signal Names Sorted Alphabetically . . . . . . . . . . . . . . . . 2−7  
2−4 16-Bit PC Card Signal Names Sorted Alphabetically . . . . . . . . . . . . . . . . . . . 2−9  
2−5 Power Supply Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−11  
2−6 PC Card Power Switch Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−11  
2−7 PCI System Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−12  
2−8 PCI Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−13  
2−9 PCI Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−14  
2−10 Multifunction and Miscellaneous Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . 2−15  
2−11 16-Bit PC Card Address and Data Terminals (Slots A and B) . . . . . . . . . . 2−16  
2−12 16-Bit PC Card Interface Control Terminals (Slots A and B) . . . . . . . . . . . . 2−17  
2−13 CardBus PC Card Interface System Terminals (Slots A and B) . . . . . . . . . 2−19  
2−14 CardBus PC Card Address and Data Terminals (Slots A and B) . . . . . . . . 2−20  
2−15 CardBus PC Card Interface Control Terminals (Slots A and B) . . . . . . . . . 2−21  
3−1 PC Card Card-Detect and Voltage-Sense Connections . . . . . . . . . . . . . . . . 3−4  
3−2 Power Switch Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−5  
3−3 Functionality of the ZV Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−7  
3−4 Zoomed-Video Card Interrogation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−8  
3−5 Integrated Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−9  
3−6 CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−11  
3−7 Register- and Bit-Loading Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−14  
3−8 PCI1520 Registers Used to Program Serial-Bus Devices . . . . . . . . . . . . . . . 3−15  
3−9 Interrupt Mask and Flag Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−16  
3−10 PC Card Interrupt Events and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−16  
3−11 Interrupt Pin Register Cross Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−18  
3−12 SMI Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−19  
3−13 Requirements for Internal/External 2.5-V Core Power Supply . . . . . . . . . . 3−19  
3−14 Power-Management Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−23  
4−1 PCI Configuration Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . . . . . . . 4−1  
4−2 Bit Field Access Tag Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−2  
4−3 Command Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−3  
4−4 Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−4  
4−5 Secondary Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−8  
4−6 Interrupt Pin Register Cross-Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−13  
4−7 Bridge Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−14  
4−8 System Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−17  
viii  
4−9 Multifunction Routing Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−19  
4−10 Retry Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−21  
4−11 Card Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−22  
4−12 Device Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−23  
4−13 Diagnostic Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−24  
4−14 Power-Management Capabilities Register Description . . . . . . . . . . . . . . . . 4−26  
4−15 Power-Management Control/Status Register Description . . . . . . . . . . . . . . 4−27  
4−16 Power-Management Control/Status Register Bridge Support  
Extensions Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−28  
4−17 General-Purpose Event Status Register Description . . . . . . . . . . . . . . . . . . 4−29  
4−18 General-Purpose Event Enable Register Description . . . . . . . . . . . . . . . . . 4−30  
4−19 General-Purpose Input Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 4−31  
4−20 General-Purpose Output Register Description . . . . . . . . . . . . . . . . . . . . . . . 4−32  
4−21 Serial-Bus Data Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−32  
4−22 Serial-Bus Index Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−33  
4−23 Serial-Bus Slave Address Register Description . . . . . . . . . . . . . . . . . . . . . . 4−33  
4−24 Serial-Bus Control and Status Register Description . . . . . . . . . . . . . . . . . . . 4−34  
5−1 ExCA Registers and Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−3  
5−2 ExCA Identification and Revision Register Description . . . . . . . . . . . . . . . . . 5−5  
5−3 ExCA Interface Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 5−6  
5−4 ExCA Power Control Register Description—82365SL Support . . . . . . . . . . 5−7  
5−5 ExCA Power Control Register Description—82365SL-DF Support . . . . . . . 5−7  
5−6 ExCA Interrupt and General Control Register Description . . . . . . . . . . . . . . 5−8  
5−7 ExCA Card Status-Change Register Description . . . . . . . . . . . . . . . . . . . . . . 5−9  
5−8 ExCA Card Status-Change Interrupt Configuration  
Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−10  
5−9 ExCA Address Window Enable Register Description . . . . . . . . . . . . . . . . . . . 5−11  
5−10 ExCA I/O Window Control Register Description . . . . . . . . . . . . . . . . . . . . . . 5−12  
5−11 ExCA Memory Windows 0−4 Start-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−16  
5−12 ExCA Memory Windows 0−4 End-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−18  
5−13 ExCA Memory Windows 0−4 Offset-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−20  
5−14 ExCA Card Detect and General Control Register Description . . . . . . . . . . 5−21  
5−15 ExCA Global Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 5−22  
6−1 CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−1  
6−2 Socket Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−2  
6−3 Socket Mask Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−3  
6−4 Socket Present-State Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−4  
6−5 Socket Force Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−7  
6−6 Socket Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−8  
6−7 Socket Power-Management Register Description . . . . . . . . . . . . . . . . . . . . . 6−9  
ix  
x
1 Introduction  
1.1 Description  
The Texas Instruments PCI1520, a 208-terminal dual-slot CardBus controller designed to meet the PCI Bus Power  
Management Interface Specification for PCI to CardBus Bridges, is an ultralow-power high-performance  
PCI-to-CardBus controller that supports two independent card sockets compliant with the PC Card Standard (rev.  
7.1). The PCI1520 provides features that make it the best choice for bridging between PCI and PC Cards in both  
notebook and desktop computers. The 1997 PC Card Standard retains the 16-bit PC Card specification defined in  
PCI Local Bus Specification and defines the new 32-bit PC Card, CardBus, capable of full 32-bit data transfers at  
33 MHz. The PCI1520 supports any combination of 16-bit and CardBus PC Cards in the two sockets, powered at  
5 V or 3.3 V, as required.  
The PCI1520 is compliant with the PCI Local Bus Specification, and its PCI interface can act as either a PCI master  
device or a PCI slave device. The PCI bus mastering is initiated during CardBus PC Card bridging transactions. The  
PCI1520 is also compliant with PCI Bus Power Management Interface Specification (rev. 1.1).  
All card signals are internally buffered to allow hot insertion and removal without external buffering. The PCI1520 is  
register-compatible with the Intel 82365SL-DF and 82365SL ExCA controllers. The PCI1520 internal data path logic  
allows the host to access 8-, 16-, and 32-bit cards using full 32-bit PCI cycles for maximum performance. Independent  
buffering and a pipeline architecture provide an unsurpassed performance level with sustained bursting. The  
PCI1520 can also be programmed to accept fast posted writes to improve system-bus utilization.  
Multiple system-interrupt signaling options are provided, including parallel PCI, parallel ISA, serialized ISA, and  
serialized PCI. Furthermore, general-purpose inputs and outputs are provided for the board designer to implement  
sideband functions. Many other features designed into the PCI1520, such as socket activity light-emitting diode (LED)  
outputs, are discussed in detail throughout the design specification.  
An advanced complementary metal-oxide semiconductor (CMOS) process achieves low system power consumption  
while operating at PCI clock rates up to 33 MHz. Several low-power modes enable the host power management  
system to further reduce power consumption.  
1.2 Features  
The PCI1520 supports the following features:  
A 208-terminal low-profile QFP (PDV) or 209-terminal MicroStar BGAball-grid array (GHK/ZHK) package  
2.5-V core logic and 3.3-V I/O with universal PCI interfaces compatible with 3.3-V and 5-V PCI signaling  
environments  
Integrated low-dropout voltage regulator (LDO-VR) eliminates the need for an external 2.5-V power supply  
Mix-and-match 5-V/3.3-V 16-bit PC Cards and 3.3-V CardBus Cards  
Two PC Card or CardBus slots with hot insertion and removal  
Serial interface to TITPS222X dual-slot PC Card power switch  
Burst transfers to maximize data throughput with CardBus Cards  
Interrupt configurations: parallel PCI, serialized PCI, parallel ISA, and serialized ISA  
Serial EEPROM interface for loading subsystem ID and subsystem vendor ID  
Pipelined architecture for greater than 130-Mbps throughput from CardBus-to-PCI and from  
PCI-to-CardBus  
1−1  
 
Up to five general-purpose I/Os  
Programmable output select for CLKRUN  
Multifunction PCI device with separate configuration space for each socket  
Five PCI memory windows and two I/O windows available for each 16-bit interface  
Two I/O windows and two memory windows available to each CardBus socket  
Exchangeable-card-architecture- (ExCA-) compatible registers are mapped in memory and I/O space  
Intel82365SL-DF and 82365SL register compatible  
Ring indicate, SUSPEND, PCI CLKRUN, and CardBus CCLKRUN  
Socket activity LED terminals  
PCI bus lock (LOCK)  
Advanced quarter-micron, ultralow-power CMOS technology  
Internal ring oscillator  
1.3 Related Documents  
Advanced Configuration and Power Interface (ACPI) Specification (revision 1.1)  
PCI Bus Power Management Interface Specification (revision 1.1)  
PCI Bus Power Management Interface Specification for PCI to CardBus Bridges (revision 0.6)  
PCI to PCMCIA CardBus Bridge Register Description (Yenta) (revision 2.1)  
PCI Local Bus Specification (revision 2.2)  
PCI Mobile Design Guide (revision 1.0)  
PC Card Standard (revision 7.1)  
PC 2001  
Serialized IRQ Support for PCI Systems (revision 6)  
1.4 Trademarks  
Intel is a trademark of Intel Corporation.  
TI and MicroStar BGA are trademarks of Texas Instruments.  
Other trademarks are the property of their respective owners.  
1.5 Ordering Information  
ORDERING NUMBER  
PCI1520  
NAME  
VOLTAGE  
PACKAGE  
208-terminal LQFP  
PC Card controller  
3.3 V, 5-V tolerant I/Os  
209-ball PBGA  
PCI1520I  
PC Card controller,  
3.3 V, 5-V tolerant I/Os  
208-terminal LQFP  
209-ball PBGA  
industrial temperature  
1−2  
 
1.6 PCI1520 Data Manual Document History  
DATE  
PAGE NUMBER  
REVISION  
01/2003  
01/2003  
2−1  
Corrected part number typo in the first sentence of the page  
2−15  
Corrected description of EEPROM detection scheme. EEPROM detection happens on  
deassertion of GRST rather than PRST.  
01/2003  
12/2003  
01/2003  
01/2003  
3−2  
3−3  
Added new subsection 3.4.1 to describe GRST during power up  
Corrected bit description of SUBSYSRW bit in the system control register  
Modified byte-read diagram (Figure 3−12) to better reflect a read transaction to the EEPROM  
3−13  
3−23  
Modified description of power management capabilities register. This register is not a static  
read-only register.  
01/2003  
01/2003  
01/2003  
4−13  
4−26  
5−13  
Corrected default value for interrupt pin register  
Corrected default value for power management capabilities register  
Corrected typo on register description for ExCA I/O windows 0 and 1 start-address high-byte  
register  
01/2003  
01/2003  
01/2003  
03/2004  
03/2004  
03/2004  
03/2004  
03/2004  
5−24  
6−8  
Corrected typo on the bit type for ExCA memory 0−4 page register  
Corrected default value for socket control register  
Modified description for bit 10 in the socket control register  
Added ZHK package to document title  
Added ZHK package to text  
6−8  
Cover  
1−1  
2−1  
Added ZHK package to text  
8−1  
Added ZHK package to text  
8−2  
Added ZHK mechanical  
1−3  
 
1−4  
2 Terminal Descriptions  
The PCI1520 is available in three packages, a 208-terminal quad flatpack (PDV) and two 209-terminal MicroStar  
BGApackages (GHK/ZHK). The GHK and ZHK packages are mechanically and electrically identical, but the ZHK  
is a lead-free (Pb, atomic number 82) design. Throughout the remainder of this manual (except Chapter 8), only the  
GHK designator is used for either the GHK or ZHK package. The terminal layout for the GHK package is shown in  
Figure 2−1. The terminal layout with signal names for the PDV package is shown in Figure 2−2.  
GHK PLASTIC BALL GRID ARRAY (PBGA) PACKAGE  
BOTTOM VIEW  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
Figure 2−1. PCI1520 GHK-Package Terminal Diagram  
2−1  
 
PDV LOW-PROFILE QUAD FLAT PACKAGE  
(LQFP)  
TOP VIEW  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
A_CAD16//A_A17  
A_CAD14//A_A9  
A_CAD15//A_IOWR  
A_CAD13//A_IORD  
A_CAD12//A_A11  
A_CAD11//A_OE  
A_CAD10//A_CE2  
A_CAD9//A_A10  
A_CC/BE0//A_CE1  
GND  
MFUNC1  
SUSPEND  
MFUNC2  
MFUNC3/IRQSER  
MFUNC4  
MFUNC5  
MFUNC6/CLKRUN  
C/BE3  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
RI_OUT/PME  
GND  
A_CAD8//A_D15  
A_CAD7//A_D7  
A_RSVD//A_D14  
AD25  
PRST  
GNT  
V
REQ  
CC  
A_CAD5//A_D6  
AD31  
A_CAD6//A_D13  
A_CAD3//A_D5  
AD30  
AD11  
A_CAD4//A_D12  
A_CAD1//A_D4  
V
CC  
AD29  
AD28  
GRST  
AD27  
AD26  
A_CAD2//A_D11  
A_CAD0//A_D3  
A_CCD1//A_CD1  
B_CAD31//B_D10  
NC  
V
CCP  
B_RSVD//B_D2  
AD24  
PCLK  
IDSEL  
AD23  
GND  
B_CAD30//B_D9  
B_CAD29//B_D1  
B_CAD28//B_D8  
B_CAD27//B_D0  
B_CCD2//B_CD2  
B_CCLKRUN//B_WP(IOIS16)  
B_CSTSCHG//B_BVD1(STSCHG/RI)  
B_CAUDIO//B_BVD2(SPKR)  
B_CSERR//B_WAIT  
PCI1520  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
C/BE2  
FRAME  
V
CC  
B_CINT//B_READY(IREQ)  
B_CVS1//B_VS1  
B_CAD26//B_A0  
B_CAD25//B_A1  
B_CAD24//B_A2  
B_CC/BE3//B_REG  
B_CAD23//B_A3  
GND  
V
CC  
IRDY  
TRDY  
DEVSEL  
GND  
B_CREQ//B_INPACK  
B_CAD22//B_A4  
B_CAD21//B_A5  
B_CRST//B_RESET  
B_CAD20//B_A6  
B_CVS2//B_VS2  
B_CAD19//B_A25  
B_CAD18//B_A7  
B_CAD17//B_A24  
STOP  
PERR  
SERR  
PAR  
C/BE1  
AD15  
AD14  
AD13  
AD12  
Figure 2−2. PCI1520 PDV-Package Terminal Diagram  
2−2  
 
Table 2−1 and Table 2−2 list the terminal assignments arranged in terminal-number order, with corresponding signal  
names for both CardBus and 16-bit PC Cards; Table 2−1 is for terminals on the PDV package and Table 2−2 is for  
terminals on the GHK package. Table 2−3 and Table 2−4 list the terminal assignments arranged in alphanumerical  
order by signal name, with corresponding terminal numbers for both PDV and GHK packages; Table 2−3 is for  
CardBus signal names and Table 2−4 is for 16-bit PC Card signal names.  
Terminal E5 on the GHK package is an identification ball used for device orientation; it has no internal connection  
within the device.  
Table 2−1. Signal Names by PDV Terminal Number  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
CardBus  
16-Bit  
CardBus  
PC Card  
16-Bit  
PC Card  
CardBus  
16-Bit  
PC Card  
AD10  
AD9  
PC Card  
PC Card  
B_CCD2  
B_CAD27  
B_CAD28  
B_CAD29  
B_CAD30  
B_RSVD  
PC Card  
1
AD10  
AD9  
AD8  
C/BE0  
AD7  
GND  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
B_RSVD  
B_A18  
75  
76  
B_CD2  
B_D0  
B_D8  
B_D1  
B_D9  
B_D2  
2
V
V
CC  
CC  
3
AD8  
B_CPAR  
B_CBLOCK  
B_CPERR  
GND  
B_A13  
B_A19  
B_A14  
GND  
77  
4
C/BE0  
AD7  
78  
5
79  
6
GND  
AD6  
80  
NC  
7
B_CSTOP  
B_CGNT  
B_A20  
B_WE  
B_A21  
81  
NC  
8
AD5  
82  
B_CAD31  
A_CCD1  
A_CAD0  
A_CAD2  
A_CAD1  
A_CAD4  
A_CAD3  
A_CAD6  
A_CAD5  
B_D10  
A_CD1  
A_D3  
9
AD4  
B_CDEVSEL  
83  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
AD3  
V
CCB  
V
CCB  
84  
AD2  
B_CCLK  
B_CTRDY  
B_CIRDY  
B_CFRAME  
B_CC/BE2  
B_CAD17  
B_CAD18  
B_CAD19  
B_CVS2  
B_A16  
B_A22  
B_A15  
B_A23  
B_A12  
B_A24  
B_A7  
85  
A_D11  
A_D4  
AD1  
86  
AD0  
87  
A_D12  
A_D5  
V
V
CC  
88  
CC  
B_CCD1  
B_CAD0  
B_CAD2  
B_CAD1  
B_CAD4  
B_CAD3  
B_CAD6  
B_CAD5  
B_RSVD  
GND  
B_CD1  
B_D3  
89  
A_D13  
A_D6  
90  
B_D11  
B_D4  
91  
V
V
CC  
CC  
B_A25  
B_VS2  
B_A6  
92  
A_RSVD  
A_CAD7  
A_CAD8  
GND  
A_D14  
B_D12  
B_D5  
93  
A_D7  
B_CAD20  
B_CRST  
B_CAD21  
B_CAD22  
B_CREQ  
GND  
94  
A_D15  
GND  
B_D13  
B_D6  
B_RESET  
B_A5  
95  
96  
A_CC/BE0  
A_CAD9  
A_CAD10  
A_CAD11  
A_CAD12  
A_CAD13  
A_CAD15  
A_CAD14  
A_CAD16  
A_CC/BE1  
A_RSVD  
A_CPAR  
A_CBLOCK  
A_CPERR  
GND  
A_CE1  
A_A10  
A_CE2  
A_OE  
B_D14  
GND  
B_A4  
97  
B_INPACK  
GND  
98  
B_CAD7  
B_CAD8  
B_CC/BE0  
B_CAD9  
VR_EN  
B_D7  
99  
B_D15  
B_CE1  
B_A10  
VR_EN  
B_CE2  
B_OE  
B_CAD23  
B_CC/BE3  
B_CAD24  
B_CAD25  
B_CAD26  
B_CVS1  
B_A3  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
A_A11  
A_IORD  
A_IOWR  
A_A9  
B_REG  
B_A2  
B_A1  
B_CAD10  
B_CAD11  
B_CAD12  
B_CAD13  
B_CAD15  
B_CAD14  
B_CAD16  
B_CC/BE1  
B_A0  
A_A17  
A_A8  
B_VS1  
B_READY(IREQ)  
B_A11  
B_IORD  
B_IOWR  
B_A9  
B_CINT  
A_A18  
A_A13  
A_A19  
A_A14  
GND  
V
CC  
V
CC  
B_CSERR  
B_CAUDIO  
B_WAIT  
B_BVD2(SPKR)  
B_A17  
B_A8  
B_CSTSCHG B_BVD1(STSCHG/RI)  
B_CCLKRUN B_WP(IOIS16)  
A_CSTOP  
A_A20  
Terminal 81 is an NC on the PCI1520 to allow for terminal compatibility with the next generation of devices.  
2−3  
 
Table 2−1. Signal Names by PDV Terminal Number (Continued)  
SIGNAL NAME  
SIGNAL NAME  
CardBus  
SIGNAL NAME  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
CardBus  
PC Card  
16-Bit  
PC Card  
16-Bit  
CardBus  
16-Bit  
PC Card  
A_CAD27  
A_CAD28  
GND  
PC Card  
PC Card  
PC Card  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
A_CGNT  
A_WE  
A_A21  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
A_D0  
A_D8  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
AD27  
AD27  
AD26  
A_CDEVSEL  
AD26  
V
V
CCA  
GND  
V
V
CCP  
CCA  
CCP  
A_CCLK  
A_CTRDY  
A_CIRDY  
A_A16  
A_A22  
A_A15  
A_CAD29  
A_CAD30  
A_RSVD  
A_CAD31  
SPKROUT  
LATCH  
A_D1  
AD24  
PCLK  
IDSEL  
AD23  
GND  
AD24  
PCLK  
IDSEL  
AD23  
GND  
A_D9  
A_D2  
V
V
CC  
A_D10  
CC  
A_CFRAME  
A_CC/BE2  
A_CAD17  
A_CAD18  
A_CAD19  
A_CVS2  
A_A23  
A_A12  
A_A24  
A_A7  
SPKROUT  
LATCH  
CLOCK  
DATA  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
C/BE2  
FRAME  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
C/BE2  
FRAME  
CLOCK  
DATA  
A_A25  
A_VS2  
A_A6  
MFUNC0  
MFUNC1  
SUSPEND  
MFUNC2  
MFUNC0  
MFUNC1  
SUSPEND  
MFUNC2  
A_CAD20  
A_CRST  
A_RESET  
A_A5  
A_CAD21  
VR_PORT  
A_CAD22  
A_CREQ  
A_CAD23  
A_CC/BE3  
MFUNC3/IRQSER MFUNC3/IRQSER  
VR_PORT  
A_A4  
MFUNC4  
MFUNC5  
MFUNC4  
MFUNC5  
V
V
CC  
CC  
A_INPACK  
A_A3  
MFUNC6/CLKRUN MFUNC6/CLKRUN  
IRDY  
TRDY  
DEVSEL  
GND  
IRDY  
TRDY  
DEVSEL  
GND  
C/BE3  
RI_OUT/PME  
GND  
C/BE3  
RI_OUT/PME  
GND  
A_REG  
V
V
CC  
CC  
A_CAD24  
A_CAD25  
A_CAD26  
A_CVS1  
A_A2  
A_A1  
AD25  
AD25  
STOP  
PERR  
SERR  
PAR  
STOP  
PERR  
SERR  
PAR  
PRST  
PRST  
A_A0  
GNT  
GNT  
A_VS1  
REQ  
REQ  
A_CINT  
A_READY(IREQ)  
A_WAIT  
AD31  
AD31  
C/BE1  
AD15  
AD14  
AD13  
C/BE1  
AD15  
AD14  
AD13  
A_CSERR  
A_CAUDIO  
AD30  
AD30  
A_BVD2(SPKR)  
AD11  
AD11  
A_CSTSCHG A_BVD1(STSCHG/  
RI)  
V
CC  
V
CC  
142  
143  
144  
A_CCLKRUN  
A_WP(IOIS16)  
175  
176  
177  
AD29  
AD28  
GRST  
AD29  
AD28  
GRST  
208  
AD12  
AD12  
V
V
CC  
A_CCD2  
CC  
A_CD2  
2−4  
Table 2−2. Signal Names by GHK Terminal Number  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
16-Bit  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
CardBus  
16-Bit  
CardBus  
PC Card  
16-Bit  
PC Card  
CardBus  
PC Card  
PC Card  
AD12  
PAR  
PC Card  
PC Card  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
C05  
C06  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
AD12  
PAR  
GND  
E07  
E08  
E09  
E10  
E11  
E12  
E13  
E14  
E17  
E18  
E19  
F01  
F02  
F03  
F05  
F06  
F07  
F08  
F09  
F10  
F11  
F12  
F13  
F14  
F15  
F17  
F18  
F19  
G01  
G02  
G03  
G05  
G06  
G14  
PERR  
FRAME  
AD19  
PERR  
FRAME  
AD19  
H06  
H14  
H15  
H17  
H18  
H19  
J01  
J02  
J03  
J05  
J06  
J14  
J15  
J17  
J18  
J19  
K01  
K02  
K03  
K05  
K06  
K14  
K15  
K17  
K18  
K19  
L01  
L02  
L03  
L05  
L06  
L14  
L15  
L17  
AD2  
AD2  
A_CSTSCHG A_BVD1(STSCHG/RI)  
GND  
A_CCLKRUN  
A_CAUDIO  
A_CSERR  
A_CINT  
A_WP(IOIS16)  
A_BVD2(SPKR)  
A_WAIT  
A_READY(IREQ)  
B_D12  
V
V
CC  
IDSEL  
AD27  
IDSEL  
AD27  
CC  
AD18  
GND  
AD18  
GND  
AD31  
AD31  
V
V
CCP  
AD29  
RI_OUT/PME  
MFUNC2  
DATA  
RI_OUT/PME  
MFUNC2  
DATA  
B_CAD4  
CCP  
AD29  
B_CAD3  
B_D5  
V
V
CC  
B_CAD6  
B_D13  
CC  
REQ  
GND  
REQ  
GND  
LATCH  
A_CAD31  
AD3  
LATCH  
A_D10  
AD3  
B_CAD5  
B_D6  
B_RSVD  
A_CAD26  
A_CVS1  
B_D14  
MFUNC5  
MFUNC1  
AD15  
MFUNC5  
MFUNC1  
AD15  
A_A0  
AD5  
AD5  
A_VS1  
AD6  
AD6  
A_CAD25  
A_CAD24  
A_A1  
STOP  
IRDY  
STOP  
IRDY  
AD8  
AD8  
A_A2  
C/BE1  
DEVSEL  
C/BE2  
AD20  
C/BE1  
DEVSEL  
C/BE2  
AD20  
V
CC  
V
CC  
AD17  
AD17  
GND  
GND  
B_D7  
AD22  
AD22  
B_CAD7  
B_CAD8  
B_CC/BE0  
B_CAD9  
A_CC/BE3  
A_CAD23  
A_CREQ  
A_CAD22  
VR_PORT  
VR_EN  
AD24  
AD24  
B_D15  
B_CE1  
B_A10  
A_REG  
A_A3  
AD28  
AD28  
AD23  
AD23  
AD11  
AD11  
AD26  
AD26  
GNT  
GNT  
AD25  
AD25  
C/BE3  
MFUNC4  
AD13  
C/BE3  
MFUNC4  
AD13  
MFUNC3/IRQSER MFUNC3/IRQSER  
SPKROUT  
CLOCK  
SPKROUT  
CLOCK  
A_D2  
A_INPACK  
A_A4  
SERR  
TRDY  
AD16  
SERR  
TRDY  
AD16  
A_RSVD  
A_CAD29  
GND  
VR_PORT  
VR_EN  
B_CE2  
B_OE  
A_D1  
GND  
B_CAD10  
B_CAD11  
B_CAD13  
B_CAD12  
A_CAD21  
A_CRST  
A_CAD20  
AD21  
AD21  
V
CC  
V
CC  
PCLK  
GRST  
AD30  
PCLK  
GRST  
AD30  
AD0  
AD1  
AD0  
AD1  
B_IORD  
B_A11  
A_A5  
AD4  
AD4  
PRST  
PRST  
C/BE0  
A_CAD28  
C/BE0  
A_D8  
A_RESET  
A_A6  
MFUNC6/  
CLKRUN  
MFUNC6/  
CLKRUN  
C15  
D01  
D19  
E01  
E02  
E03  
E05  
E06  
SUSPEND  
AD10  
MFUNC0  
GND  
SUSPEND  
AD10  
MFUNC0  
GND  
G15  
G17  
G18  
G19  
H01  
H02  
H03  
H05  
A_CAD30  
A_CAD27  
A_CCD2  
A_D9  
A_D0  
L18  
L19  
A_CVS2  
A_CAD19  
B_CAD15  
B_CAD14  
B_CAD16  
B_RSVD  
B_CC/BE1  
A_CCLK  
A_VS2  
A_A25  
B_IOWR  
B_A9  
A_CD2  
M01  
M02  
M03  
M05  
M06  
M14  
V
CC  
V
CC  
AD7  
AD7  
B_CAD1  
B_CAD2  
B_CAD0  
B_CCD1  
B_D4  
B_D11  
B_D3  
B_A17  
B_A18  
B_A8  
AD9  
AD9  
NC  
NC  
AD14  
AD14  
B_CD1  
A_A16  
2−5  
 
Table 2−2. Signal Names by GHK Terminal Number (Continued)  
SIGNAL NAME  
SIGNAL NAME  
16-Bit  
SIGNAL NAME  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
CardBus  
PC Card  
16-Bit  
PC Card  
CardBus  
PC Card  
CardBus  
16-Bit  
PC Card  
A_A20  
A_WE  
PC Card  
A_CAD7  
A_CAD10  
A_CAD14  
B_CAD20  
B_CAD22  
B_CAD24  
B_CINT  
PC Card  
M15  
M17  
M18  
M19  
N01  
N02  
N03  
N05  
N06  
N14  
N15  
N17  
N18  
N19  
P01  
P02  
P03  
P05  
P06  
P07  
P08  
P09  
P10  
P11  
P12  
P13  
P14  
P15  
A_CFRAME  
A_CC/BE2  
A_CAD17  
A_CAD18  
A_A23  
A_A12  
A_A24  
A_A7  
P17  
P18  
P19  
R01  
R02  
R03  
R06  
R07  
R08  
R09  
R10  
R11  
R12  
R13  
R14  
R17  
R18  
R19  
T01  
T19  
U05  
U06  
U07  
U08  
U09  
U10  
U11  
U12  
A_CSTOP  
A_CGNT  
U13  
U14  
U15  
V05  
V06  
V07  
V08  
V09  
V10  
V11  
V12  
V13  
V14  
V15  
W04  
W05  
W06  
W07  
W08  
W09  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
A_D7  
A_CE2  
V
V
V
V
A_A9  
CCA  
CCA  
B_A6  
CCB  
CCB  
V
V
CC  
B_CTRDY  
B_CFRAME  
B_CAD19  
B_CREQ  
B_CAD26  
B_CCLKRUN  
B_CAD30  
A_CAD2  
B_A22  
B_A23  
B_A25  
B_INPACK  
B_A0  
B_A4  
CC  
B_CPAR  
B_CBLOCK  
B_CGNT  
B_A13  
B_A19  
B_WE  
B_A14  
A_A19  
A_A21  
A_A22  
A_A15  
B_A2  
B_READY(IREQ)  
B_BVD2(SPKR)  
B_D8  
B_CAUDIO  
B_CAD28  
B_CAD31  
A_CAD4  
A_RSVD  
A_CC/BE0  
A_CAD13  
B_CAD17  
B_CRST  
GND  
B_CPERR  
A_CBLOCK  
A_CDEVSEL  
A_CTRDY  
A_CIRDY  
B_WP(IOIS16)  
B_D9  
B_D10  
A_D12  
A_D11  
A_D6  
A_D14  
A_CAD5  
A_CE1  
V
V
CC  
A_CAD9  
A_A10  
A_IOWR  
A_A18  
A_A14  
GND  
A_IORD  
B_A24  
CC  
GND  
B_CSTOP  
B_CDEVSEL  
B_CIRDY  
B_CCLK  
B_CVS2  
GND  
B_A20  
B_A21  
B_A15  
B_A16  
B_VS2  
B_A3  
A_CAD15  
A_RSVD  
B_RESET  
GND  
A_CPERR  
GND  
B_CAD25  
B_A1  
B_CC/BE2  
A_CC/BE1  
B_CAD18  
B_CAD21  
B_CC/BE3  
B_CVS1  
B_A12  
A_A8  
V
V
CC  
CC  
B_CSERR  
B_CAD27  
B_WAIT  
B_D0  
B_CAD23  
B_CCD2  
B_RSVD  
A_CAD0  
A_CAD6  
A_CAD8  
A_CAD12  
A_CPAR  
B_A7  
B_CD2  
B_D2  
B_A5  
NC  
A_CAD1  
NC  
A_D4  
B_REG  
B_VS1  
A_D3  
V
V
CC  
CC  
A_D13  
A_D15  
A_A11  
A_A13  
B_CSTSCHG B_BVD1(STSCHG/RI)  
GND  
GND  
A_OE  
A_A17  
B_CAD29  
A_CCD1  
A_CAD3  
B_D1  
A_CD1  
A_D5  
A_CAD11  
A_CAD16  
Terminal W11 is an NC on the PCI1520 to allow for terminal compatibility with the next generation of devices.  
2−6  
Table 2−3. CardBus PC Card Signal Names Sorted Alphabetically  
TERM NO.  
TERM. NO.  
TERM. NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
84  
GHK  
P11  
W12  
R11  
U12  
V12  
R12  
P12  
U13  
P13  
R13  
U14  
W15  
P14  
V15  
U15  
R14  
W16  
M18  
M19  
L19  
L17  
L14  
K18  
K15  
J18  
PDV  
113  
119  
112  
138  
117  
107  
109  
130  
126  
139  
111  
141  
116  
137  
124  
106  
92  
GHK  
N15  
M15  
P18  
H19  
N18  
P15  
R18  
K17  
L15  
H18  
P17  
H14  
N17  
J15  
PDV  
181  
167  
179  
178  
176  
175  
172  
171  
16  
GHK  
B10  
F12  
F11  
E11  
B11  
A11  
C12  
E12  
H03  
H01  
H02  
J02  
A_CAD0  
A_CAD1  
A_CDEVSEL  
A_CFRAME  
A_CGNT  
A_CINT  
A_CIRDY  
A_CPAR  
A_CPERR  
A_CREQ  
A_CRST  
A_CSERR  
A_CSTOP  
A_CSTSCHG  
A_CTRDY  
A_CVS1  
A_CVS2  
A_RSVD  
A_RSVD  
A_RSVD  
AD0  
AD24  
AD25  
86  
A_CAD2  
85  
AD26  
A_CAD3  
88  
AD27  
A_CAD4  
87  
AD28  
A_CAD5  
90  
AD29  
A_CAD6  
89  
AD30  
A_CAD7  
93  
AD31  
A_CAD8  
94  
B_CAD0  
B_CAD1  
B_CAD2  
B_CAD3  
B_CAD4  
B_CAD5  
B_CAD6  
B_CAD7  
B_CAD8  
B_CAD9  
B_CAD10  
B_CAD11  
B_CAD12  
B_CAD13  
B_CAD14  
B_CAD15  
B_CAD16  
B_CAD17  
B_CAD18  
B_CAD19  
B_CAD20  
B_CAD21  
B_CAD22  
B_CAD23  
B_CAD24  
B_CAD25  
B_CAD26  
B_CAD27  
B_CAD28  
B_CAD29  
B_CAD30  
B_CAD31  
B_CAUDIO  
B_CBLOCK  
A_CAD9  
97  
18  
A_CAD10  
A_CAD11  
A_CAD12  
A_CAD13  
A_CAD14  
A_CAD15  
A_CAD16  
A_CAD17  
A_CAD18  
A_CAD19  
A_CAD20  
A_CAD21  
A_CAD22  
A_CAD23  
A_CAD24  
A_CAD25  
A_CAD26  
A_CAD27  
A_CAD28  
A_CAD29  
A_CAD30  
A_CAD31  
A_CAUDIO  
A_CBLOCK  
A_CC/BE0  
A_CC/BE1  
A_CC/BE2  
A_CC/BE3  
A_CCD1  
98  
17  
99  
20  
100  
101  
103  
102  
104  
121  
122  
123  
125  
127  
129  
131  
134  
135  
136  
145  
146  
148  
149  
151  
140  
108  
96  
19  
J01  
22  
J05  
L18  
R17  
V13  
F17  
G02  
G03  
H06  
F01  
G05  
F02  
F03  
E02  
F05  
E03  
D01  
B12  
A04  
C05  
E06  
B05  
C08  
B08  
A08  
E09  
F09  
C09  
B09  
F10  
21  
J03  
25  
K02  
K03  
K06  
L02  
L03  
L06  
L05  
M02  
M01  
M03  
W04  
U05  
R06  
V05  
U06  
V06  
P08  
V07  
W07  
R08  
W10  
V10  
U10  
R10  
V11  
V09  
N03  
26  
150  
13  
28  
30  
AD1  
12  
31  
AD2  
11  
32  
AD3  
10  
33  
AD4  
9
35  
AD5  
8
34  
AD6  
7
36  
J17  
AD7  
5
53  
J14  
AD8  
3
54  
G17  
G14  
F18  
G15  
E19  
H17  
N14  
V14  
T19  
M17  
K14  
U11  
G18  
M14  
H15  
AD9  
2
55  
AD10  
1
57  
AD11  
173  
208  
207  
206  
205  
192  
191  
190  
189  
188  
187  
186  
184  
59  
AD12  
60  
AD13  
63  
AD14  
65  
AD15  
66  
AD16  
67  
105  
120  
132  
83  
AD17  
76  
AD18  
77  
AD19  
78  
AD20  
79  
A_CCD2  
144  
115  
142  
AD21  
82  
A_CCLK  
AD22  
72  
A_CCLKRUN  
AD23  
41  
2−7  
 
Table 2−3. CardBus PC Card Signal Names Sorted Alphabetically (Continued)  
TERM NO.  
TERM NO.  
TERM NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
27  
37  
52  
64  
15  
75  
48  
74  
46  
51  
45  
69  
50  
40  
42  
61  
58  
71  
44  
73  
49  
68  
56  
23  
38  
80  
4
GHK  
K05  
M06  
T01  
U07  
H05  
P09  
P06  
R09  
P03  
R03  
N05  
V08  
P05  
N02  
N06  
R07  
W05  
W09  
P02  
U09  
R02  
U08  
P07  
J06  
PDV  
193  
164  
154  
155  
198  
194  
6
GHK  
F08  
B14  
F15  
E17  
F07  
E08  
A06  
A09  
A14  
E01  
K01  
P01  
R19  
W06  
F19  
W14  
B13  
C11  
E10  
B07  
E18  
D19  
A16  
E14  
F13  
B15  
A15  
C14  
PDV  
GHK  
E05  
W11  
A05  
C10  
E07  
C13  
A13  
E13  
C06  
F14  
B06  
C15  
C07  
A07  
A12  
G01  
G19  
J19  
B_CC/BE0  
B_CC/BE1  
B_CC/BE2  
B_CC/BE3  
B_CCD1  
C/BE2  
C/BE3  
NC  
NC  
81  
CLOCK  
DATA  
PAR  
PCLK  
203  
182  
201  
168  
170  
165  
202  
152  
200  
158  
197  
14  
DEVSEL  
FRAME  
GND  
PERR  
B_CCD2  
PRST  
B_CCLK  
REQ  
B_CCLKRUN  
B_CDEVSEL  
B_CFRAME  
B_CGNT  
B_CINT  
GND  
24  
RI_OUT/PME  
SERR  
GND  
43  
GND  
62  
SPKROUT  
STOP  
GND  
95  
GND  
110  
147  
166  
185  
199  
169  
177  
183  
196  
153  
156  
157  
159  
160  
161  
162  
163  
SUSPEND  
TRDY  
B_CIRDY  
B_CPAR  
GND  
GND  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
B_CPERR  
B_CREQ  
B_CRST  
GND  
39  
GND  
70  
GNT  
91  
B_CSERR  
B_CSTOP  
B_CSTSCHG  
B_CTRDY  
B_CVS1  
GRST  
118  
133  
143  
174  
195  
114  
47  
IDSEL  
N01  
N19  
W08  
W13  
P19  
R01  
A10  
L01  
IRDY  
LATCH  
MFUNC0  
MFUNC1  
MFUNC2  
MFUNC3/IRQSER  
MFUNC4  
MFUNC5  
MFUNC6/CLKRUN  
B_CVS2  
V
CCA  
V
CCB  
V
CCP  
B_RSVD  
B_RSVD  
M05  
P10  
G06  
F06  
180  
29  
B_RSVD  
VR_EN  
C/BE0  
VR_PORT  
128  
K19  
C/BE1  
204  
Terminals 81 and W11 are NC on the PCI1520 to allow for terminal compatibility with the next generation of devices.  
2−8  
Table 2−4. 16-Bit PC Card Signal Names Sorted Alphabetically  
TERM. NO.  
TERM. NO.  
TERM NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
136  
135  
134  
131  
129  
127  
125  
122  
105  
103  
97  
GHK  
J14  
PDV  
151  
85  
GHK  
E19  
R11  
V12  
P12  
V13  
P13  
K17  
V15  
R14  
W15  
H19  
K14  
L15  
J15  
PDV  
181  
167  
179  
178  
176  
175  
172  
171  
67  
GHK  
B10  
F12  
F11  
E11  
B11  
A11  
C12  
E12  
R08  
W07  
V07  
P08  
V06  
U06  
V05  
U05  
M06  
M02  
K06  
L06  
T01  
N02  
N06  
P05  
P06  
M03  
M05  
N03  
P02  
P03  
R02  
R03  
W04  
R06  
U09  
V09  
H05  
P09  
K05  
L02  
W10  
U10  
A_A0  
A_A1  
A_D10  
A_D11  
A_D12  
A_D13  
A_D14  
A_D15  
A_INPACK  
A_IORD  
A_IOWR  
A_OE  
AD24  
AD25  
J17  
A_A2  
J18  
87  
AD26  
A_A3  
K15  
K18  
L14  
L17  
M19  
T19  
U15  
R13  
P14  
M17  
P15  
R18  
N18  
M14  
W16  
R17  
N14  
P17  
N15  
N17  
M15  
M18  
L19  
H14  
H17  
U11  
G18  
V14  
U14  
G17  
F18  
F17  
P11  
W12  
U12  
R12  
U13  
G14  
G15  
89  
AD27  
A_A4  
92  
AD28  
A_A5  
94  
AD29  
A_A6  
130  
101  
102  
99  
AD30  
A_A7  
AD31  
A_A8  
B_A0  
A_A9  
B_A1  
66  
A_A10  
A_A11  
A_A12  
A_A13  
A_A14  
A_A15  
A_A16  
A_A17  
A_A18  
A_A19  
A_A20  
A_A21  
A_A22  
A_A23  
A_A24  
A_A25  
A_BVD1(STSCHG/RI)  
A_BVD2(SPKR)  
A_CD1  
A_CD2  
A_CE1  
A_CE2  
A_D0  
A_READY(IREQ)  
A_REG  
A_RESET  
A_VS1  
A_VS2  
A_WAIT  
A_WE  
A_WP(IOIS16)  
AD0  
138  
132  
126  
137  
124  
139  
112  
142  
13  
B_A2  
65  
100  
120  
107  
109  
117  
115  
104  
106  
108  
111  
113  
116  
119  
121  
123  
141  
140  
83  
B_A3  
63  
B_A4  
60  
B_A5  
59  
L18  
H18  
P18  
H15  
G02  
G03  
H06  
F01  
G05  
F02  
F03  
E02  
F05  
E03  
D01  
B12  
A04  
C05  
E06  
B05  
C08  
B08  
A08  
E09  
F09  
C09  
B09  
F10  
B_A6  
57  
B_A7  
54  
B_A8  
37  
B_A9  
35  
B_A10  
B_A11  
B_A12  
B_A13  
B_A14  
B_A15  
B_A16  
B_A17  
B_A18  
B_A19  
B_A20  
B_A21  
B_A22  
B_A23  
B_A24  
B_A25  
B_BVD1(STSCHG/RI)  
B_BVD2(SPKR)  
B_CD1  
B_CD2  
B_CE1  
B_CE2  
B_D0  
28  
AD1  
12  
32  
AD2  
11  
52  
AD3  
10  
40  
AD4  
9
42  
AD5  
8
50  
AD6  
7
48  
AD7  
5
36  
AD8  
3
38  
AD9  
2
41  
AD10  
1
44  
144  
96  
AD11  
173  
208  
207  
206  
205  
192  
191  
190  
189  
188  
187  
186  
184  
46  
AD12  
49  
98  
AD13  
51  
145  
148  
150  
84  
AD14  
53  
A_D1  
AD15  
55  
A_D2  
AD16  
73  
A_D3  
AD17  
72  
A_D4  
86  
AD18  
15  
A_D5  
88  
AD19  
75  
A_D6  
90  
AD20  
27  
A_D7  
93  
AD21  
30  
A_D8  
146  
149  
AD22  
76  
A_D9  
AD23  
B_D1  
78  
2−9  
 
Table 2−4. 16-Bit PC Card Signal Names Sorted Alphabetically (Continued)  
TERM NO.  
TERM NO.  
TERM NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
80  
16  
18  
20  
22  
25  
77  
79  
82  
17  
19  
21  
23  
26  
61  
33  
34  
31  
69  
64  
58  
68  
56  
71  
45  
74  
4
GHK  
P10  
H03  
H01  
J02  
PDV  
193  
164  
154  
155  
198  
194  
6
GHK  
F08  
B14  
F15  
E17  
F07  
E08  
A06  
A09  
A14  
E01  
K01  
P01  
R19  
W06  
F19  
W14  
B13  
C11  
E10  
B07  
E18  
D19  
A16  
E14  
F13  
B15  
A15  
C14  
PDV  
GHK  
E05  
W11  
A05  
C10  
E07  
C13  
A13  
E13  
C06  
F14  
B06  
C15  
C07  
A07  
A12  
G01  
G19  
J19  
B_D2  
B_D3  
C/BE2  
C/BE3  
NC  
NC  
81  
B_D4  
CLOCK  
DATA  
PAR  
PCLK  
203  
182  
201  
168  
170  
165  
202  
152  
200  
158  
197  
14  
B_D5  
B_D6  
J05  
DEVSEL  
FRAME  
GND  
PERR  
B_D7  
K02  
V10  
R10  
V11  
H02  
J01  
PRST  
B_D8  
REQ  
B_D9  
GND  
24  
RI_OUT/PME  
SERR  
B_D10  
GND  
43  
B_D11  
GND  
62  
SPKROUT  
STOP  
B_D12  
GND  
95  
B_D13  
J03  
GND  
110  
147  
166  
185  
199  
169  
177  
183  
196  
153  
156  
157  
159  
160  
161  
162  
163  
SUSPEND  
TRDY  
B_D14  
J06  
GND  
B_D15  
K03  
R07  
L05  
M01  
L03  
V08  
U07  
W05  
U08  
P07  
W09  
N05  
R09  
G06  
F06  
GND  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
B_INPACK  
B_IORD  
B_IOWR  
B_OE  
GND  
39  
GND  
70  
GNT  
91  
GRST  
118  
133  
143  
174  
195  
114  
47  
B_READY(IREQ)  
B_REG  
B_RESET  
B_VS1  
IDSEL  
N01  
N19  
W08  
W13  
P19  
R01  
A10  
L01  
IRDY  
LATCH  
MFUNC0  
MFUNC1  
MFUNC2  
MFUNC3/IRQSER  
MFUNC4  
MFUNC5  
MFUNC6/CLKRUN  
B_VS2  
V
CCA  
V
CCB  
V
CCP  
B_WAIT  
B_WE  
180  
29  
B_WP(IOIS16)  
C/BE0  
VR_EN  
VR_PORT  
128  
K19  
C/BE1  
204  
Terminals 81 and W11 are NC on the PCI1520 to allow for terminal compatibility with the next generation of devices.  
2−10  
The terminals are grouped in tables by functionality, such as PCI system function, power-supply function, etc. The  
terminal numbers are also listed for convenient reference.  
Table 2−5. Power Supply Terminals  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
A06, A09, A14,  
E01, F19, K01,  
P01, R19, W06,  
W14  
Device ground terminals  
6, 24, 43, 62,  
95, 110, 147,  
166, 185, 199  
GND  
14, 39, 70, 91,  
118, 133, 143,  
174, 195  
A07, A12, G01,  
G19, J19, N01,  
N19, W08, W13  
Power supply terminal for I/O and internal voltage regulator  
V
V
CC  
Clamp voltage for PC Card A interface. Matches card A signaling environment, 5 V  
or 3.3 V  
114  
47  
P19  
R01  
CCA  
Clamp voltage for PC Card B interface. Matches card B signaling environment, 5 V  
or 3.3 V  
V
V
CCB  
180  
29  
A10  
L01  
I
Clamp voltage for PCI and miscellaneous I/O, 5 V or 3.3 V  
Internal voltage regulator enable. Active-low  
CCP  
VR_EN  
Internal voltage regulator input/output. When VR_EN is low, the regulator is en-  
abled and this terminal is an output. An external bypass capacitor is required on this  
terminal. When VR_EN is high, the regulator is disabled and this terminal is an input  
for an external 2.5-V core power source.  
VR_PORT  
128  
K19  
I/O  
Table 2−6. PC Card Power Switch Terminals  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
PDV GHK  
Power switch clock. Information on the DATA line is sampled at the rising edge of CLOCK. CLOCK defaults to  
an input, but can be changed to a PCI1520 output by using bit 27 (P2CCLK) in the system control register  
(offset 80h, see Section 4.29). The TPS222X defines the maximum frequency of this signal to be 2 MHz. How-  
ever, PCI1520 requires a 16-KHz to 100-KHz frequency range. If a system design defines this terminal as an  
output, then this terminal requires an external pulldown resistor. The frequency of the PCI1520 output CLOCK  
is derived from the internal ring oscillator (16 KHz typical).  
CLOCK  
154  
F15  
I/O  
Power switch data. DATA is used to communicate socket power control information serially to the power  
switch.  
DATA  
155  
153  
E17  
E18  
O
Power switch latch. LATCH is asserted by the PCI1520 to indicate to the power switch that the data on the  
DATA line is valid. When a pulldown resistor is implemented on this terminal, the MFUNC1 and MFUNC4 ter-  
minals provide the serial EEPROM SDA and SCL interface.  
LATCH  
I/O  
2−11  
 
Table 2−7. PCI System Terminals  
TERMINAL  
NO.  
PDV GHK  
I/O  
DESCRIPTION  
NAME  
Global reset. When the global reset is asserted, the GRST signal causes the PCI1520 to place all output  
buffers in a high-impedance state and reset all internal registers. When GRST is asserted, the device is  
completely in its default state. For systems that require wake-up from D3, GRST normally is asserted only  
during initial boot. PRST should be asserted following initial boot so that PME context is retained during the  
transition from D3 to D0. For systems that do not require wake-up from D3, GRST should be tied to PRST.  
When the SUSPEND mode is enabled, the device is protected from GRST, and the internal registers are  
preserved. All outputs are placed in a high-impedance state.  
GRST  
177  
C11  
I
PCI bus clock. PCLK provides timing for all transactions on the PCI bus. All PCI signals are sampled at the  
rising edge of PCLK.  
PCLK  
PRST  
182  
168  
C10  
C13  
I
I
PCI reset. When the PCI bus reset is asserted, PRST causes the PCI1520 to place all output buffers in a  
high-impedance state and reset internal registers. When PRST is asserted, the device can generate the PME  
signal only if it is enabled. After PRST is deasserted, the PCI1520 is in a default state.  
When the SUSPEND mode is enabled, the device is protected from PRST, and the internal registers are  
preserved. All outputs are placed in a high-impedance state.  
2−12  
 
Table 2−8. PCI Address and Data Terminals  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
171  
172  
175  
176  
178  
179  
167  
181  
184  
186  
187  
188  
189  
190  
191  
192  
205  
206  
207  
208  
173  
1
E12  
C12  
A11  
B11  
E11  
F11  
F12  
B10  
F10  
B09  
C09  
F09  
E09  
A08  
B08  
C08  
B05  
E06  
C05  
A04  
B12  
D01  
E03  
F05  
E02  
F03  
F02  
G05  
F01  
H06  
G03  
G02  
PCI address/data bus. These signals make up the multiplexed PCI address and data bus on the primary  
interface. During the address phase of a primary-bus PCI cycle, AD31−AD0 contain a 32-bit address or  
other destination information. During the data phase, AD31−AD0 contain data.  
I/O  
2
3
5
7
8
9
10  
11  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
12  
13  
AD0  
PCI-bus commands and byte enables. These signals are multiplexed on the same PCI terminals. During  
the address phase of a primary-bus PCI cycle, C/BE3−C/BE0 define the bus command. During the data  
phase, this 4-bit bus is used as byte enables. The byte enables determine which byte paths of the full 32-bit  
data bus carry meaningful data. C/BE0 applies to byte 0 (AD7−AD0), C/BE1 applies to byte 1 (AD15−AD8),  
C/BE2 applies to byte 2 (AD23−AD16), and C/BE3 applies to byte 3 (AD31−AD24).  
164  
193  
204  
4
B14  
F08  
F06  
G06  
C/BE3  
C/BE2  
C/BE1  
C/BE0  
I/O  
I/O  
PCI-bus parity. In all PCI-bus read and write cycles, the PCI1520 calculates even parity across the  
AD31−AD0 and C/BE3−C/BE0 buses. As an initiator during PCI cycles, the PCI1520 outputs this parity  
indicator with a one-PCLK delay. As a target during PCI cycles, the PCI1520 compares its calculated parity  
to the parity indicator of the initiator. A compare error results in the assertion of a parity error (PERR).  
PAR  
203  
A05  
2−13  
 
Table 2−9. PCI Interface Control Terminals  
TERMINAL  
NO.  
PDV GHK  
I/O  
DESCRIPTION  
NAME  
PCI device select. The PCI1520 asserts DEVSEL to claim a PCI cycle as the target device. As a PCI initiator  
198  
194  
F07  
E08  
I/O on the bus, the PCI1520 monitors DEVSEL until a target responds. If no target responds before timeout  
occurs, then the PCI1520 terminates the cycle with an initiator abort.  
DEVSEL  
PCI cycle frame. FRAME is driven by the initiator of a bus cycle. FRAME is asserted to indicate that a bus  
I/O transaction is beginning, and data transfers continue while this signal is asserted. When FRAME is  
deasserted, the PCI bus transaction is in the final data phase.  
FRAME  
PCI bus grant. GNT is driven by the PCI bus arbiter to grant the PCI1520 access to the PCI bus after the  
169  
183  
196  
B13  
E10  
B07  
I
I
current data transaction has completed. GNT may or may not follow a PCI bus request, depending on the PCI  
bus parking algorithm.  
GNT  
IDSEL  
IRDY  
Initialization device select. IDSEL selects the PCI1520 during configuration space accesses. IDSEL can be  
connected to one of the upper 24 PCI address lines on the PCI bus.  
PCI initiator ready. IRDY indicates the ability of the PCI bus initiator to complete the current data phase of the  
I/O transaction. A data phase is completed on a rising edge of PCLK where both IRDY and TRDY are asserted.  
Until IRDY and TRDY are both sampled asserted, wait states are inserted.  
PCI parity error indicator. PERR is driven by a PCI device to indicate that calculated parity does not match  
PAR when PERR is enabled through bit 6 of the command register (PCI offset 04h, see Section 4.4).  
201  
170  
E07  
A13  
I/O  
PERR  
REQ  
O
O
PCI bus request. REQ is asserted by the PCI1520 to request access to the PCI bus as an initiator.  
PCI system error. SERR is an output that is pulsed from the PCI1520 when enabled through bit 8 of the  
command register (PCI offset 04h, see Section 4.4) indicating a system error has occurred. The PCI1520  
need not be the target of the PCI cycle to assert this signal. When SERR is enabled in the command register,  
this signal also pulses, indicating that an address parity error has occurred on a CardBus interface.  
202  
C06  
SERR  
PCI cycle stop signal. STOP is driven by a PCI target to request the initiator to stop the current PCI bus  
200  
197  
B06  
C07  
I/O transaction. STOP is used for target disconnects and is commonly asserted by target devices that do not  
support burst data transfers.  
STOP  
TRDY  
PCI target ready. TRDY indicates the ability of the primary bus target to complete the current data phase of  
I/O the transaction. A data phase is completed on a rising edge of PCLK when both IRDY and TRDY are asserted.  
Until both IRDY and TRDY are asserted, wait states are inserted.  
2−14  
 
Table 2−10. Multifunction and Miscellaneous Terminals  
TERMINAL  
NO.  
PDV GHK  
I/O  
DESCRIPTION  
NAME  
Multifunction terminal 0. MFUNC0 can be configured as parallel PCI interrupt INTA, GPI0, GPO0, socket  
MFUNC0  
156  
157  
D19  
I/O activity LED output, ZV switching output, CardBus audio PWM, GPE, or a parallel IRQ. See  
Section 4.30, Multifunction Routing Register, for configuration details.  
Multifunction terminal 1. MFUNC1 can be configured as parallel PCI interrupt INTB, GPI1, GPO1, socket  
activity LED output, ZV switching output, CardBus audio PWM, GPE, or a parallel IRQ. See  
Section 4.30, Multifunction Routing Register, for configuration details.  
MFUNC1  
MFUNC2  
A16  
I/O  
Serial data (SDA). When LATCH is detected low after the deassertion of GRST, the MFUNC1 terminal  
provides the SDA signaling for the serial bus interface. The two-terminal serial interface loads the  
subsystem identification and other register defaults from an EEPROM after a PCI reset. See  
Section 3.6.1, Serial Bus Interface Implementation, for details on other serial bus applications.  
Multifunction terminal 2. MFUNC2 can be configured as GPI2, GPO2, socket activity LED output, ZV  
I/O switching output, CardBus audio PWM, GPE, RI_OUT, D3_STAT, or a parallel IRQ. See Section 4.30,  
159  
160  
E14  
F13  
Multifunction Routing Register, for configuration details.  
Multifunction terminal 3. MFUNC3 can be configured as a parallel IRQ or the serialized interrupt signal  
I/O IRQSER. This terminal is IRQSER by default. See Section 4.30, Multifunction Routing Register, for  
configuration details.  
MFUNC3/  
IRQSER  
Multifunction terminal 4. MFUNC4 can be configured as PCI LOCK, GPI3, GPO3, socket activity LED  
output, ZV switching output, CardBus audio PWM, GPE, D3_STAT, RI_OUT, or a parallel IRQ. See  
Section 4.30, Multifunction Routing Register, for configuration details.  
MFUNC4  
161  
B15  
I/O  
Serial clock (SCL). When LATCH is detected low after the deassertion of GRST, the MFUNC4 terminal  
provides the SCL signaling for the serial bus interface. The two-terminal serial interface loads the  
subsystem identification and other register defaults from an EEPROM after a PCI reset. See  
Section 3.6.1, Serial Bus Interface Implementation, for details on other serial bus applications.  
Multifunction terminal 5. MFUNC5 can be configured as GPI4, GPO4, socket activity LED output, ZV  
MFUNC5  
162  
163  
A15  
C14  
I/O switching output, CardBus audio PWM, D3_STAT, GPE, or a parallel IRQ. See Section 4.30,  
Multifunction Routing Register, for configuration details.  
MFUNC6/  
CLKRUN  
Multifunction terminal 6. MFUNC6 can be configured as a PCI CLKRUN or a parallel IRQ. See  
Section 4.30, Multifunction Routing Register, for configuration details.  
I/O  
No connect. These terminals have no connection anywhere within the package. Terminal E05 on the  
GHK package is used as a key to indicate the location of the A1 corner of the BGA package. Terminals  
W11 on the GHK package and 81 on the PDV package will be used as a 48-MHz clock input on  
future-generation devices.  
81  
E05  
W11  
NC  
Ring indicate out and power management event output. This terminal provides an output for ring-indicate  
or PME signals.  
RI_OUT/PME  
SPKROUT  
SUSPEND  
165  
152  
158  
E13  
F14  
C15  
O
Speaker output. SPKROUT is the output to the host system that can carry SPKR or CAUDIO through  
the PCI1520 from the PC Card interface. SPKROUT is driven as the exclusive-OR combination of card  
SPKR//CAUDIO inputs.  
O
I
Suspend. SUSPEND protects the internal registers from clearing when the GRST or PRST signal is  
asserted. See Section 3.8.5, Suspend Mode, for details.  
2−15  
 
Table 2−11. 16-Bit PC Card Address and Data Terminals (Slots A and B)  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
SLOT B  
SLOT A  
NAME  
PDV  
GHK  
PDV  
GHK  
A25  
A24  
A23  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
123  
121  
119  
116  
113  
111  
108  
106  
104  
115  
117  
109  
107  
120  
100  
97  
103  
105  
122  
125  
127  
129  
131  
134  
135  
136  
L19  
M18  
M15  
N17  
N15  
P17  
N14  
R17  
W16  
M14  
N18  
R18  
P15  
M17  
P14  
R13  
U15  
T19  
M19  
L17  
L14  
K18  
K15  
J18  
55  
53  
51  
49  
46  
44  
41  
38  
36  
48  
50  
42  
40  
52  
32  
28  
35  
37  
54  
57  
59  
60  
63  
65  
66  
67  
R06  
W04  
R03  
R02  
P03  
P02  
N03  
M05  
M03  
P06  
P05  
N06  
N02  
T01  
L06  
K06  
M02  
M06  
U05  
V05  
U06  
V06  
P08  
V07  
W07  
R08  
O
PC Card address. 16-bit PC Card address lines. A25 is the most significant bit.  
J17  
J14  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
94  
92  
89  
87  
85  
151  
149  
146  
93  
90  
88  
86  
84  
150  
148  
145  
P13  
V13  
P12  
V12  
R11  
E19  
G15  
G14  
U13  
R12  
U12  
W12  
P11  
F17  
F18  
G17  
26  
23  
21  
19  
17  
82  
79  
77  
25  
22  
20  
18  
16  
80  
78  
76  
K03  
J06  
J03  
J01  
H02  
V11  
R10  
V10  
K02  
J05  
J02  
H01  
H03  
P10  
U10  
W10  
I/O  
PC Card data. 16-bit PC Card data lines. D15 is the most significant bit.  
D4  
D3  
D2  
D1  
D0  
Terminal name for slot A is preceded with A_. For example, the full name for terminals 123 and L19 is A_A25.  
Terminal name for slot B is preceded with B_. For example, the full name for terminals 55 and R06 is B_A25.  
2−16  
 
Table 2−12. 16-Bit PC Card Interface Control Terminals (Slots A and B)  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
SLOT B  
SLOT A  
NAME  
PDV  
GHK  
PDV  
GHK  
Battery voltage detect 1. BVD1 is generated by 16-bit memory PC Cards that  
include batteries. BVD1 is used with BVD2 as an indication of the condition of the  
batteries on a memory PC Card. Both BVD1 and BVD2 are high when the battery  
is good. When BVD2 is low and BVD1 is high, the battery is weak and should be  
replaced. When BVD1 is low, the battery is no longer serviceable and the data in  
the memory PC Card is lost. See Section 5.6, ExCA Card Status-Change Interrupt  
Configuration Register, for enable bits. See Section 5.5, ExCA Card  
Status-Change Register, and Section 5.2, ExCA Interface Status Register, for the  
status bits for this signal.  
BVD1  
(STSCHG/RI)  
141  
H14  
73  
U09  
I
Status change. STSCHG is used to alert the system to a change in the READY,  
write protect, or battery voltage dead condition of a 16-bit I/O PC Card.  
Ring indicate. RI is used by 16-bit modem cards to indicate a ring detection.  
Battery voltage detect 2. BVD2 is generated by 16-bit memory PC Cards that  
include batteries. BVD2 is used with BVD1 as an indication of the condition of the  
batteries on a memory PC Card. Both BVD1 and BVD2 are high when the battery  
is good. When BVD2 is low and BVD1 is high, the battery is weak and should be  
replaced. When BVD1 is low, the battery is no longer serviceable and the data in  
the memory PC Card is lost. See Section 5.6, ExCA Card Status-Change Interrupt  
Configuration Register, for enable bits. See Section 5.5, ExCA Card  
Status-Change Register, and Section 5.2, ExCA Interface Status Register, for the  
status bits for this signal.  
BVD2  
(SPKR)  
140  
H17  
72  
V09  
I
Speaker. SPKR is an optional binary audio signal available only when the card and  
socket have been configured for the 16-bit I/O interface. The audio signals from  
cards A and B are combined by the PCI1520 and are output on SPKROUT.  
Card detect 1 and card detect 2. CD1 and CD2 are internally connected to ground  
on the PC Card. When a PC Card is inserted into a socket, CD1 and CD2 are pulled  
low. For signal status, see Section 5.2, ExCA Interface Status Register.  
83  
144  
U11  
G18  
15  
75  
H05  
P09  
CD1  
CD2  
I
Card enable 1 and card enable 2. CE1 and CE2 enable even- and odd-numbered  
address bytes. CE1 enables even-numbered address bytes, and CE2 enables  
odd-numbered address bytes.  
96  
98  
V14  
U14  
27  
30  
K05  
L02  
CE1  
CE2  
O
Input acknowledge. INPACK is asserted by the PC Card when it can respond to an  
I/O read cycle at the current address.  
INPACK  
IORD  
130  
101  
102  
K17  
V15  
R14  
61  
33  
34  
R07  
L05  
M01  
I
I/O read. IORD is asserted by the PCI1520 to enable 16-bit I/O PC Card data output  
during host I/O read cycles.  
O
O
I/O write. IOWR is driven low by the PCI1520 to strobe write data into 16-bit I/O PC  
Cards during host I/O write cycles.  
IOWR  
Terminal name for slot A is preceded with A_. For example, the full name for terminals 130 and K17 is A_INPACK.  
Terminal name for slot B is preceded with B_. For example, the full name for terminals 61 and R07 is B_INPACK.  
2−17  
 
Table 2−12. 16-Bit PC Card Interface Control Terminals (Slots A and B) (Continued)  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
SLOT B  
SLOT A  
PDV GHK PDV GHK  
NAME  
Output enable. OE is driven low by the PCI1520 to enable 16-bit memory PC Card data  
output during host memory read cycles.  
OE  
99  
W15  
H19  
31  
69  
L03  
O
Ready. The ready function is provided by READY when the 16-bit PC Card and the host  
socket are configured for the memory-only interface. READY is driven low by 16-bit memory  
PC Cards to indicate that the memory card circuits are busy processing a previous write  
command. READY is driven high when the 16-bit memory PC Card is ready to accept a new  
data transfer command.  
READY  
(IREQ)  
138  
V08  
I
Interrupt request. IREQ is asserted by a 16-bit I/O PC Card to indicate to the host that a  
device on the 16-bit I/O PC Card requires service by the host software. IREQ is high  
(deasserted) when no interrupt is requested.  
Attribute memory select. REG remains high for all common memory accesses. When REG  
is asserted, access is limited to attribute memory (OE or WE active) and to the I/O space  
(IORD or IOWR active). Attribute memory is a separately accessed section of card memory  
and is generally used to record card capacity and other configuration and attribute  
information.  
132  
126  
K14  
L15  
64  
58  
U07  
O
REG  
RESET  
W05  
O
PC Card reset. RESET forces a hard reset to a 16-bit PC Card.  
VS1  
VS2  
137  
124  
J15  
L18  
68  
56  
U08  
P07  
Voltage sense 1 and voltage sense 2. VS1 and VS2, when used in conjunction with each  
other, determine the operating voltage of the PC Card.  
I/O  
Bus cycle wait. WAIT is driven by a 16-bit PC Card to extend the completion of the memory  
or I/O cycle in progress.  
139  
112  
H18  
P18  
71  
45  
W09  
N05  
I
WAIT  
WE  
Write enable. WE is used to strobe memory write data into 16-bit memory PC Cards. WE  
is also used for memory PC Cards that employ programmable memory technologies.  
O
Write protect. WP applies to 16-bit memory PC Cards. WP reflects the status of the  
write-protect switch on 16-bit memory PC Cards. For 16-bit I/O cards, WP is used for the  
16-bit port (IOIS16) function.  
WP  
(IOIS16)  
142  
H15  
74  
R09  
I
I/O is 16 bits. IOIS16 applies to 16-bit I/O PC Cards. IOIS16 is asserted by the 16-bit PC Card  
when the address on the bus corresponds to an address to which the 16-bit PC Card  
responds, and the I/O port that is addressed is capable of 16-bit accesses.  
Terminal name for slot A is preceded with A_. For example, the full name for terminals 112 and P18 is A_WE.  
Terminal name for slot B is preceded with B_. For example, the full name for terminals 45 and N05 is B_WE.  
2−18  
Table 2−13. CardBus PC Card Interface System Terminals (Slots A and B)  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
SLOT B  
SLOT A  
NAME  
PDV  
GHK  
PDV  
GHK  
CardBus clock. CCLK provides synchronous timing for all transactions on the  
CardBus interface. All signals except CRST, CCLKRUN, CINT, CSTSCHG, CAUDIO,  
CCD2, CCD1, CVS2, and CVS1 are sampled on the rising edge of CCLK, and all  
timing parameters are defined with the rising edge of this signal. CCLK operates at  
the PCI bus clock frequency, but it can be stopped in the low state or slowed down  
for power savings.  
CCLK  
115  
M14  
48  
P06  
O
CardBus clock run. CCLKRUN is used by a CardBus PC Card to request an increase  
in the CCLK frequency, and by the PCI1520 to indicate that the CCLK frequency is  
going to be decreased.  
142  
126  
H15  
L15  
74  
58  
R09  
I/O  
O
CCLKRUN  
CRST  
CardBus reset. CRST brings CardBus PC Card-specific registers, sequencers, and  
signals to a known state. When CRST is asserted, all CardBus PC Card signals are  
placed in a high-impedance state, and the PCI1520 drives these signals to a valid  
logic level. Assertion can be asynchronous to CCLK, but deassertion must be  
synchronous to CCLK.  
W05  
Terminal name for slot A is preceded with A_. For example, the full name for terminals 115 and M14 is A_CCLK.  
Terminal name for slot B is preceded with B_. For example, the full name for terminals 48 and P06 is B_CCLK.  
2−19  
 
Table 2−14. CardBus PC Card Address and Data Terminals (Slots A and B)  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
SLOT B  
SLOT A  
NAME  
PDV  
GHK  
PDV  
GHK  
CAD31  
CAD30  
CAD29  
CAD28  
CAD27  
CAD26  
CAD25  
CAD24  
CAD23  
CAD22  
CAD21  
CAD20  
CAD19  
CAD18  
CAD17  
CAD16  
CAD15  
CAD14  
CAD13  
CAD12  
CAD11  
CAD10  
CAD9  
151  
149  
148  
146  
145  
136  
135  
134  
131  
129  
127  
125  
123  
122  
121  
104  
102  
103  
101  
100  
99  
E19  
G15  
F18  
G14  
G17  
J14  
82  
79  
78  
77  
76  
67  
66  
65  
63  
60  
59  
57  
55  
54  
53  
36  
34  
35  
33  
32  
31  
30  
28  
26  
25  
21  
22  
19  
20  
17  
18  
16  
V11  
R10  
U10  
V10  
W10  
R08  
W07  
V07  
P08  
V06  
U06  
V05  
R06  
U05  
W04  
M03  
M01  
M02  
L05  
L06  
L03  
L02  
K06  
K03  
K02  
J03  
J17  
J18  
K15  
K18  
L14  
L17  
L19  
M19  
M18  
W16  
R14  
U15  
V15  
P14  
W15  
U14  
R13  
P13  
U13  
P12  
R12  
V12  
U12  
R11  
W12  
P11  
CardBus address and data. These signals make up the multiplexed CardBus address  
and data bus on the CardBus interface. During the address phase of a CardBus cycle,  
CAD31−CAD0 contain a 32-bit address. During the data phase of a CardBus cycle,  
CAD31−CAD0 contain data. CAD31 is the most significant bit.  
I/O  
98  
97  
94  
93  
89  
90  
87  
88  
CAD8  
CAD7  
CAD6  
CAD5  
CAD4  
CAD3  
CAD2  
CAD1  
J05  
J01  
J02  
H02  
H01  
H03  
85  
86  
84  
CAD0  
CardBus bus commands and byte enables. CC/BE3−CC/BE0 are multiplexed on the  
same CardBus terminals. During the address phase of  
a CardBus cycle,  
132  
120  
105  
96  
K14  
M17  
T19  
V14  
64  
52  
37  
27  
U07  
T01  
M06  
K05  
CC/BE3  
CC/BE2  
CC/BE1  
CC/BE0  
CC/BE3−CC/BE0 define the bus command. During the data phase, this 4-bit bus is used  
as byte enables. The byte enables determine which byte paths of the full 32-bit data bus  
carry meaningful data. CC/BE0 applies to byte 0 (CAD7−CAD0), CC/BE1 applies to  
byte 1 (CAD15−CAD8), CC/BE2 applies to byte 2 (CAD23−CAD16), and CC/BE3  
applies to byte 3 (CAD31−CAD24).  
I/O  
I/O  
CardBus parity. In all CardBus read and write cycles, the PCI1520 calculates even parity  
across the CAD and CC/BE buses. As an initiator during CardBus cycles, the PCI1520  
outputs CPAR with a one-CCLK delay. As a target during CardBus cycles, the PCI1520  
compares its calculated parity to the parity indicator of the initiator; a compare error  
results in a parity error assertion.  
CPAR  
107  
P15  
40  
N02  
Terminal name for slot A is preceded with A_. For example, the full name for terminals 107 and P15 is A_CPAR.  
Terminal name for slot B is preceded with B_. For example, the full name for terminals 40 and N02 is B_CPAR.  
2−20  
 
Table 2−15. CardBus PC Card Interface Control Terminals (Slots A and B)  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
SLOT B  
SLOT A  
NAME  
PDV  
140  
108  
GHK  
H17  
N14  
PDV  
GHK  
V09  
N03  
CardBus audio. CAUDIO is a digital input signal from a PC Card to the system  
speaker. The PCI1520 supports the binary audio mode and outputs a binary signal  
from the card to SPKROUT.  
CAUDIO  
CBLOCK  
72  
I
41  
I/O  
CardBus lock. CBLOCK is used to gain exclusive access to a target.  
CardBus detect 1 and CardBus detect 2. CCD1 and CCD2 are used in conjunction  
with CVS1 and CVS2 to identify card insertion and interrogate cards to determine the  
operating voltage and card type.  
83  
144  
U11  
G18  
15  
75  
H05  
P09  
CCD1  
CCD2  
I
CardBus device select. The PCI1520 asserts CDEVSEL to claim a CardBus cycle as  
the target device. As a CardBus initiator on the bus, the PCI1520 monitors CDEVSEL  
until a target responds. If no target responds before timeout occurs, then the PCI1520  
terminates the cycle with an initiator abort.  
113  
119  
N15  
M15  
46  
51  
P03  
R03  
I/O  
CDEVSEL  
CFRAME  
CardBus cycle frame. CFRAME is driven by the initiator of a CardBus bus cycle.  
CFRAME is asserted to indicate that a bus transaction is beginning, and data  
transfers continue while this signal is asserted. When CFRAME is deasserted, the  
CardBus bus transaction is in the final data phase.  
I/O  
CardBus bus grant. CGNT is driven by the PCI1520 to grant a CardBus PC Card  
access to the CardBus bus after the current data transaction has been completed.  
112  
138  
P18  
H19  
45  
69  
N05  
V08  
O
I
CGNT  
CINT  
CardBus interrupt. CINT is asserted low by a CardBus PC Card to request interrupt  
servicing from the host.  
CardBus initiator ready. CIRDY indicates the ability of the CardBus initiator to  
complete the current data phase of the transaction. A data phase is completed on a  
rising edge of CCLK when both CIRDY and CTRDY are asserted. Until CIRDY and  
CTRDY are both sampled asserted, wait states are inserted.  
117  
N18  
50  
P05  
I/O  
CIRDY  
CardBus parity error. CPERR reports parity errors during CardBus transactions,  
except during special cycles. It is driven low by a target two clocks following the data  
cycle during which a parity error is detected.  
109  
130  
R18  
K17  
42  
61  
N06  
R07  
I/O  
I
CPERR  
CREQ  
CardBus request. CREQ indicates to the arbiter that the CardBus PC Card desires  
use of the CardBus bus as an initiator.  
CardBus system error. CSERR reports address parity errors and other system errors  
that could lead to catastrophic results. CSERR is driven by the card synchronous to  
CCLK, but deasserted by a weak pullup; deassertion may take several CCLK periods.  
The PCI1520 can report CSERR to the system by assertion of SERR on the PCI  
interface.  
139  
H18  
71  
W09  
I
CSERR  
CardBus stop. CSTOP is driven by a CardBus target to request the initiator to stop  
the current CardBus transaction. CSTOP is used for target disconnects, and is  
commonly asserted by target devices that do not support burst data transfers.  
111  
141  
P17  
H14  
44  
73  
P02  
U09  
I/O  
I
CSTOP  
CardBus status change. CSTSCHG alerts the system to a change in the card status,  
and is used as a wake-up mechanism.  
CSTSCHG  
CardBus target ready. CTRDY indicates the ability of the CardBus target to complete  
the current data phase of the transaction. A data phase is completed on a rising edge  
of CCLK, when both CIRDY and CTRDY are asserted; until this time, wait states are  
inserted.  
116  
N17  
49  
R02  
I/O  
I/O  
CTRDY  
CardBus voltage sense 1 and CardBus voltage sense 2. CVS1 and CVS2 are used  
in conjunction with CCD1 and CCD2 to identify card insertion and interrogate cards  
to determine the operating voltage and card type.  
CVS1  
CVS2  
137  
124  
J15  
L18  
68  
56  
U08  
P07  
Terminal name for slot A is preceded with A_. For example, the full name for terminals 140 and H18 is A_CAUDIO.  
Terminal name for slot B is preceded with B_. For example, the full name for terminals 72 and V09 is B_CAUDIO.  
2−21  
 
2−22  
3 Feature/Protocol Descriptions  
The following sections give an overview of the PCI1520. Figure 3−1 shows a simplified block diagram of the PCI1520.  
The PCI interface includes all address/data and control signals for PCI protocol. The interrupt interface includes  
terminals for parallel PCI, parallel ISA, and serialized PCI and ISA signaling. Miscellaneous system interface  
terminals include multifunction terminals: SUSPEND, RI_OUT/PME (power management control signal), and  
SPKROUT.  
PCI Bus  
INTA  
INTB  
Interrupt  
Controller  
Activity LEDs  
PCI950  
IRQSER  
Deserializer  
TPS222X  
Power Switch  
IRQSER  
3
PCI1520  
IRQ2−15  
3
PC Card  
Socket A  
68  
68  
23  
Zoomed Video  
19  
VGA  
Controller  
68  
68  
Multiplexer  
PC Card  
Socket B  
23  
Zoomed Video  
4
Audio  
Subsystem  
External ZV Port  
23  
NOTE: The PC Card interface is 68 terminals for CardBus and 16-bit PC Cards. In zoomed video mode 23 terminals are used for routing the  
zoomed video signals to the VGA controller and audio subsystem.  
Figure 3−1. PCI1520 Simplified Block Diagram  
3.1 Power Supply Sequencing  
The PCI1520 contains 3.3-V I/O buffers with 5-V tolerance requiring an I/O power supply and an LDO-VR power  
supply for core logic. The core power supply, which is always 2.5 V, can be supplied through the VR_PORT terminal  
(when VR_EN is high) or from the integrated LDO-VR. The LDO-VR needs a 3.3-V power supply via the V  
CC  
terminals. The clamping voltages (V  
, V  
, and V  
) can be either 3.3 V or 5 V, depending on the interface. The  
CCA CCB  
CCP  
following power-up and power-down sequences are recommended.  
The power-up sequence is:  
1. Assert GRST to the device to disable the outputs during power up. Output drivers must be powered up in  
the high-impedance state to prevent high current levels through the clamp diodes to the 5-V clamping rails  
(V  
, V  
, and V  
).  
CCA CCB  
CCP  
2. Apply 3.3-V power to V  
.
CC  
3. Apply the clamp voltage.  
3−1  
 
The power-down sequence is:  
1. Assert GRST to the device to disable the outputs during power down. Output drivers must be powered down  
in the high-impedance state to prevent high current levels through the clamp diodes to the 5-V clamping  
rails (V  
, V  
, and V  
).  
CCA CCB  
CCP  
2. Remove the clamp voltage.  
3. Remove the 3.3-V power from V  
.
CC  
NOTE: The clamp voltage can be ramped up or ramped down along with the 3.3-V power. The  
voltage difference between V and the clamp voltage must remain within 3.6 V.  
CC  
3.2 I/O Characteristics  
Figure 3−2 shows a 3-state bidirectional buffer. Section 7.2, Recommended Operating Conditions, provides the  
electrical characteristics of the inputs and outputs.  
NOTE: The PCI1520 meets the ac specifications of the 1997 PC Card Standard and PCI Local  
Bus Specification.  
V
CCP  
Tied for Open Drain  
OE  
Pad  
Figure 3−2. 3-State Bidirectional Buffer  
NOTE: Unused terminals (input or I/O) must be held high or low to prevent them from floating.  
3.3 Clamping Voltages  
The clamping voltages are set to match whatever external environment the PCI1520 is interfaced with, 3.3 V or 5 V.  
The I/O sites can be pulled through a clamping diode to a voltage rail that protects the core from external signals.  
The core power supply is always 3.3 V and is independent of the clamping voltages. For example, PCI signaling can  
be either 3.3 V or 5 V, and the PCI1520 must reliably accommodate both voltage levels. This is accomplished by using  
a 3.3-V I/O buffer that is 5-V tolerant, with the applicable clamping voltage applied. If a system designer desires a  
5-V PCI bus, then V  
can be connected to a 5-V power supply.  
CCP  
The PCI1520 requires three separate clamping voltages because it supports a wide range of features. The three  
voltages are listed and defined in Section 7.2, Recommended Operating Conditions. GRST, SUSPEND, PME, and  
CSTSCHG are not clamped to any of them.  
3.4 Peripheral Component Interconnect (PCI) Interface  
The PCI1520 is fully compliant with the PCI Local Bus Specification. The PCI1520 provides all required signals for  
PCI master or slave operation, and may operate in either a 5-V or 3.3-V signaling environment by connecting the V  
CCP  
terminal to the desired voltage level. In addition to the mandatory PCI signals, the PCI1520 provides the optional  
interrupt signals INTA and INTB.  
3.4.1 PCI GRST Signal  
During the power-up sequence, GRST and PRST must be asserted. GRST can only be deasserted 100 µs after PCLK  
is stable. PRST can be deasserted at the same time as GRST or any time thereafter.  
3−2  
 
3.4.2 PCI Bus Lock (LOCK)  
The bus-locking protocol defined in the PCI Local Bus Specification is not highly recommended, but is provided on  
the PCI1520 as an additional compatibility feature. The PCI LOCK signal can be routed to the MFUNC4 terminal by  
setting the appropriate values in bits 19−16 of the multifunction routing register. See Section 4.30, Multifunction  
Routing Register, for details. Note that the use of LOCK is only supported by PCI-to-CardBus bridges in the  
downstream direction (away from the processor).  
PCI LOCK indicates an atomic operation that may require multiple transactions to complete. When LOCK is asserted,  
nonexclusive transactions can proceed to an address that is not currently locked. A grant to start a transaction on  
the PCI bus does not guarantee control of LOCK; control of LOCK is obtained under its own protocol. It is possible  
for different initiators to use the PCI bus while a single master retains ownership of LOCK. Note that the CardBus  
signal for this protocol is CBLOCK to avoid confusion with the bus clock.  
An agent may need to do an exclusive operation because a critical access to memory might be broken into several  
transactions, but the master wants exclusive rights to a region of memory. The granularity of the lock is defined by  
PCI to be 16 bytes, aligned. The LOCK protocol defined by the PCI Local Bus Specification allows a resource lock  
without interfering with nonexclusive real-time data transfer, such as video.  
The PCI bus arbiter may be designed to support only complete bus locks using the LOCK protocol. In this scenario,  
the arbiter will not grant the bus to any other agent (other than the LOCK master) while LOCK is asserted. A complete  
bus lock may have a significant impact on the performance of the video. The arbiter that supports complete bus lock  
must grant the bus to the cache to perform a writeback due to a snoop to a modified line when a locked operation  
is in progress.  
The PCI1520 supports all LOCK protocol associated with PCI-to-PCI bridges, as also defined for PCI-to-CardBus  
bridges. This includes disabling write posting while a locked operation is in progress, which can solve a potential  
deadlock when using devices such as PCI-to-PCI bridges. The potential deadlock can occur if a CardBus target  
supports delayed transactions and blocks access to the target until it completes a delayed read. This target  
characteristic is prohibited by the PCI Local Bus Specification, and the issue is resolved by the PCI master using  
LOCK.  
3.4.3 Loading Subsystem Identification  
The subsystem vendor ID register (PCI offset 40h, see Section 4.26) and subsystem ID register (PCI offset 42h, see  
Section 4.27) make up a doubleword of PCI configuration space for functions 0 and 1. This doubleword register is  
used for system and option card (mobile dock) identification purposes and is required by some operating systems.  
Implementation of this unique identifier register is a PC 99/PC 2001 requirement.  
The PCI1520 offers two mechanisms to load a read-only value into the subsystem registers. The first mechanism  
relies upon the system BIOS providing the subsystem ID value. The default access mode to the subsystem registers  
is read-only, but can be made read/write by clearing bit 5 (SUBSYSRW) in the system control register (PCI offset 80h,  
see Section 4.29). Once this bit is cleared, the BIOS can write a subsystem identification value into the registers at  
PCI offset 40h. The BIOS must set the SUBSYSRW bit such that the subsystem vendor ID register and subsystem  
ID register is limited to read-only access. This approach saves the added cost of implementing the serial electrically  
erasable programmable ROM (EEPROM).  
In some conditions, such as in a docking environment, the subsystem vendor ID register and subsystem ID register  
must be loaded with a unique identifier via a serial EEPROM. The PCI1520 loads the data from the serial EEPROM  
after a reset of the primary bus. Note that the SUSPEND input gates the PCI reset from the entire PCI1520 core,  
including the serial-bus state machine (see Section 3.8.5, Suspend Mode, for details on using SUSPEND).  
The PCI1520 provides a two-line serial-bus host controller that can interface to a serial EEPROM. See Section 3.6,  
Serial-Bus Interface, for details on the two-wire serial-bus controller and applications.  
3−3  
 
3.5 PC Card Applications  
This section describes the PC Card interfaces of the PCI1520.  
Card insertion/removal and recognition  
P C power-switch interface  
Zoomed video support  
Speaker and audio applications  
LED socket activity indicators  
CardBus socket registers  
2
3.5.1 PC Card Insertion/Removal and Recognition  
The PC Card Standard (release 7.1) addresses the card-detection and recognition process through an interrogation  
procedure that the socket must initiate on card insertion into a cold, nonpowered socket. Through this interrogation,  
card voltage requirements and interface (16-bit versus CardBus) are determined.  
The scheme uses the card-detect and voltage-sense signals. The configuration of these four terminals identifies the  
card type and voltage requirements of the PC Card interface. The encoding scheme is defined in the PC Card  
Standard (release 7.1) and in Table 3−1.  
Table 3−1. PC Card Card-Detect and Voltage-Sense Connections  
CD2//CCD2  
Ground  
CD1//CCD1  
Ground  
VS2//CVS2  
Open  
VS1//CVS1  
Open  
KEY  
5 V  
5 V  
5 V  
LV  
INTERFACE  
16-bit PC Card  
VOLTAGE  
5 V  
Ground  
Ground  
Open  
Ground  
16-bit PC Card  
5 V and 3.3 V  
5 V, 3.3 V, and X.X V  
3.3 V  
Ground  
Ground  
Ground  
Ground  
16-bit PC Card  
Ground  
Ground  
Open  
Ground  
16-bit PC Card  
Ground  
Connect to CVS1  
Ground  
Open  
Connect to CCD1  
Ground  
LV  
CardBus PC Card  
16-bit PC Card  
3.3 V  
Ground  
Ground  
LV  
3.3 V and X.X V  
3.3 V and X.X V  
3.3 V, X.X V, and Y.Y V  
X.X V  
Connect to CVS2  
Connect to CVS1  
Ground  
Ground  
Connect to CCD2  
Ground  
Ground  
LV  
CardBus PC Card  
CardBus PC Card  
16-bit PC Card  
Ground  
Connect to CCD2  
Open  
LV  
Ground  
Ground  
LV  
Connect to CVS2  
Ground  
Ground  
Connect to CCD2  
Connect to CCD1  
Open  
Open  
LV  
CardBus PC Card  
CardBus PC Card  
CardBus PC Card  
X.X V  
Connect to CVS2  
Ground  
Open  
LV  
X.X V and Y.Y V  
Y.Y V  
Connect to CVS1  
Ground  
Connect to CCD2  
Connect to CCD1  
Ground  
LV  
Connect to CVS1  
Connect to CVS2  
Ground  
Reserved  
Reserved  
Ground  
Connect to CCD1  
2
3.5.2 P C Power-Switch Interface (TPS222X)  
2
The PCI1520 provides a PCMCIA peripheral control (P C) interface for control of the PC Card power switch. The  
CLOCK, DATA, and LATCH terminals interface with the TI TPS222X dual-slot PC Card power interface switches to  
provide power switch support. Figure 3−3 illustrates a typical application where the PCI1520 represents the PCMCIA  
controller. Table 3−2 shows the available power switch options compatible with the PCI1520.  
3−4  
 
Power Supply  
TPS222X  
12 V  
5 V  
3.3 V  
12 V  
5 V  
3.3 V  
AVPP  
V
V
V
V
PP1  
PP2  
CC  
PC Card  
A
AVCC  
AVCC  
AVCC  
CC  
RESET  
RESET  
Supervisor  
BVPP  
V
V
V
V
PP1  
PP2  
CC  
CLOCK  
DATA  
PCI1520  
(PCMCIA  
Controller)  
PC Card  
B
BVCC  
BVCC  
BVCC  
LATCH  
CC  
Figure 3−3. TPS222X Typical Application  
Table 3−2. Power Switch Options  
DEVICE  
PIN-COMPATIBLE REPLACEMENT(S)  
TPS2226IDB – 30-pin SSOP  
TPS2206  
TPS2216ADAP – 32-pin TSSOP  
TPS2224IDB – 24-pin SSOP  
TPS2214(A)  
TPS2216(A)  
TPS2226IDB – 30 pin SSOP  
†‡  
TPS2223  
TPS2224  
TPS2226  
N/A − Check for newer device  
N/A − Check for newer device  
N/A − Check for newer device  
Recommended for new designs  
For applications not requiring 12 volts  
The CLOCK terminal on the PCI1520 can be an input or an output. The PCI1520 defaults the CLOCK terminal as  
an input to control the serial interface and the internal state machine. Bit 27 (P2CCLK) in the system control register  
(offset 80h, see Section 4.29) can be set by the platform BIOS or the serial EEPROM to enable the PCI1520 to  
generate and drive CLOCK internally from the PCI clock. When the system design implements CLOCK as an output  
from the PCI1520, an external pulldown resistor is required.  
3.5.3 Zoomed Video Support  
The PCI1520 allows for the implementation of zoomed video (ZV) for PC Cards. Zoomed video is supported by setting  
bit 6 (ZVENABLE) in the card control register (PCI offset 91h, see Section 4.32) on a per-socket function basis.  
Setting this bit puts 16-bit PC Card address lines A25−A4 of the PC Card interface in the high-impedance state. These  
lines can then transfer video and audio data directly to the appropriate controller. Card address lines A3−A0 can still  
access PC Card CIS registers for PC Card configuration. Figure 3−4 illustrates a PCI1520 ZV implementation.  
3−5  
 
Speakers  
CRT  
Motherboard  
PCI Bus  
VGA  
Controller  
Audio  
Codec  
Zoomed Video  
Port  
PCM  
Audio  
Input  
PC Card  
19  
19  
4
Video  
Audio  
4
PC Card  
Interface  
PCI1520  
Figure 3−4. Zoomed Video Implementation Using the PCI1520  
Not shown in Figure 3−4 is the multiplexing scheme used to route either socket 0 or socket 1 ZV source to the graphics  
controller. The PCI1520 provides ZVSTAT, ZVSEL0, and ZVSEL1 signals on the multifunction terminals to switch  
external bus drivers. Figure 3−5 shows an implementation for switching between three ZV streams using external  
logic.  
2
PCI1520  
ZVSTAT  
ZVSEL0  
ZVSEL1  
0
1
Figure 3−5. Zoomed Video Switching Application  
Figure 3−5 illustrates an implementation using standard three-state bus drivers with active-low output enables.  
ZVSEL0 is an active-low output indicating that the socket 0 ZV mode is enabled, and ZVSEL1 is an active-low output  
indicating that socket 1 ZV is enabled. When both sockets have ZV mode enabled, the PCI1520 by defaults indicates  
socket 0 enabled through ZVSEL0; however, bit 5 (PORT_SEL) in the card control register (see Section 4.32) allows  
software to select the socket ZV source priority. Table 3−3 illustrates the functionality of the ZV output signals.  
3−6  
 
Table 3−3. Functionality of the ZV Output Signals  
INPUTS  
OUTPUTS  
PORTSEL  
SOCKET 0 ENABLE  
SOCKET 1 ENABLE  
ZVSEL0  
ZVSEL1  
ZVSTAT  
X
0
0
1
1
0
1
0
X
1
0
X
1
1
0
1
0
1
1
0
1
1
0
0
1
0
1
1
1
1
Also shown in Figure 3−5 is a third ZV input that can be provided from a source such as a high-speed serial bus like  
IEEE 1394. The ZVSTAT signal provides a mechanism to switch the third ZV source. ZVSTAT is an active-high output  
indicating that one of the PCI1520 sockets is enabled for ZV mode. The implementation shown in Figure 3−5 can be  
used if PC Card ZV is prioritized over other sources.  
3.5.4 Standardized Zoomed-Video Register Model  
The standardized zoomed-video register model is defined for the purpose of standardizing the ZV port control for PC  
Card controllers across the industry. The following list summarizes the standardized zoomed-video register model  
changes to the existing PC Card register set.  
Socket present state register (CardBus socket address + 08h, see Section 6.3)  
Bit 27 (ZVSUPPORT) has been added. The platform BIOS can set this bit via the socket force event register  
(CardBus socket address + 0Ch, see Section 6.4) to define whether zoomed video is supported on that  
socket by the platform.  
Socket force event register (CardBus socket address + 0Ch, see Section 6.4)  
Bit 27 (FZVSUPPORT) has been added. The platform BIOS can use this bit to set the ZVSUPPORT bit in  
the socket present state register (CardBus socket address + 08h, see Section 6.3) to define whether  
zoomed video is supported on that socket by the platform.  
Socket control register (CardBus socket address +10h, see Section 6.5)  
Bit 11 (ZV_ACTIVITY) has been added. This bit is set when zoomed video is enabled for either of the PC  
Card sockets.  
Bit 10 (STDZVREG) has been added. This bit defines whether the PC Card controller supports the  
standardized zoomed-video register model.  
Bit 9 (ZVEN) is provided for software to enable or disable zoomed video, per socket.  
If the STDZVEN bit (bit 0) in the diagnostic register (PCI offset 93h, see Section 4.34) is 1, then the standardized  
zoomed video register model is disabled. For backward compatibility, even if the STDZVEN bit is 0 (enabled), the  
PCI1520 allows software to access zoomed video through the legacy address in the card control register (PCI offset  
91h, see Section 4.32), or through the new register model in the socket control register (CardBus socket address +  
10h, see Section 6.5).  
3.5.4.1 Zoomed-Video Card Insertion and Configuration Procedure  
1. A zoomed-video PC Card is inserted into an empty slot.  
2. The card is detected and interrogated appropriately.  
3−7  
 
There are two types of PC Card controllers to consider.  
Legacy controller not using the standardized ZV register model  
Software reads bit 10 (STDZVREG) of the socket control register (CardBus socket address + 10h) to  
determine if the standardized zoomed-video register model is supported. If the bit returns 0, then software  
must use legacy code to enable zoomed video.  
Newer controller that uses the standardized ZV register model  
Software reads bit 10 (STDZVREG) of the socket control register (CardBus socket address + 10h) to  
determine if the standardized zoomed-video register model is supported. If the bit returns 1, then software  
can use the process/register model detailed in Table 3−4 to enable zoomed video.  
Table 3−4. Zoomed-Video Card Interrogation  
ZVSUPPORT  
(this socket)  
ZVSUPPORT  
(other socket)  
ZV_ACTIVITY  
ACTION  
1
1
X
X
0
1
Set ZVEN to enable zoomed video.  
Display a user message such as, “The zoomed video protocol required by this PC  
Card application is already in use by another card.”  
Display a user message such as, “This platform does not support the zoomed-video  
protocol required by this PC Card application.”  
0
0
0
1
X
X
Display a user message such as, “This platform does not support the zoomed-video  
protocol required by this PC Card application in this PC Card socket. Please remove  
the card and re-insert in the other PC Card socket.”  
3.5.5 Internal Ring Oscillator  
The internal ring oscillator provides an internal clock source for the PCI1520 so that neither the PCI clock nor an  
external clock is required in order for the PCI1520 to power down a socket or interrogate a PC Card. This internal  
oscillator, operating nominally at 16 kHz, can be enabled by setting bit 27 (P2CCLK) of the system control register  
(PCI offset 80h, see Section 4.29) to 1. This function is disabled by default.  
3.5.6 Integrated Pullup Resistors  
The PC Card Standard (release 7.1) requires pullup resistors on various terminals to support both CardBus and 16-bit  
card configurations. Unlike the PCI12XX, PCI1450, and PCI4450 which required external pullup resistors, the  
PCI1520 has integrated all of these pullup resistors. The I/O buffer on the BVD1(STSCHG)/CSTSCHG terminal has  
the capability to switch either pullup or pulldown. The pullup resistor is turned on when a 16-bit PC Card is inserted,  
and the pulldown resistor is turned on when a CardBus PC Card is inserted. This prevents unexpected CSTSCHG  
signal assertion. The integrated pullup resistors are listed in Table 3−5.  
3−8  
 
Table 3−5. Integrated Pullup Resistors  
TERM. NUMBER SOCKET A  
TERM. NUMBER SOCKET B  
SIGNAL NAME  
PDV  
109  
117  
108  
111  
113  
116  
141  
140  
83  
GHK  
R18  
N18  
N14  
P17  
N15  
N17  
H14  
H17  
U11  
G18  
K17  
H19  
L15  
J15  
PDV  
42  
50  
41  
44  
46  
49  
73  
72  
15  
75  
61  
69  
58  
68  
56  
71  
74  
GHK  
N06  
P05  
N03  
P02  
P03  
R02  
U09  
V09  
H05  
P09  
R07  
V08  
W05  
U08  
P07  
W09  
R09  
A14/CPERR  
A15/CIRDY  
A19/CBLOCK  
A20/CSTOP  
A21/CDEVSEL  
A22/CTRDY  
BVD1(STSCHG)/CSTSCHG  
BVD2(SPKR)/CAUDIO  
CD1/CCD1  
CD2/CCD2  
144  
130  
138  
126  
137  
124  
139  
142  
INPACK/CREQ  
READY/CINT  
RESET/CRST  
VS1/CVS1  
VS2/CVS2  
L18  
H18  
H15  
WAIT/CSERR  
WP(IOIS16)/CCLKRUN  
3.5.7 SPKROUT and CAUDPWM Usage  
SPKROUT carries the digital audio signal from the PC Card to the system. When a 16-bit PC Card is configured for  
I/O mode, the BVD2 terminal becomes SPKR. This terminal is also used in CardBus binary audio applications, and  
is referred to as CAUDIO. SPKR passes a TTL-level digital audio signal to the PCI1520. The CardBus CAUDIO signal  
also can pass a single-amplitude binary waveform. The binary audio signals from the two PC Card sockets are XORed  
in the PCI1520 to produce SPKROUT. This output is enabled by bit 1 (SPKROUTEN) in the card control register (PCI  
offset 91h, see Section 4.32).  
Older controllers support CAUDIO in binary or PWM mode but use the same terminal (SPKROUT). Some audio chips  
may not support both modes on one terminal and may have a separate terminal for binary and PWM. The PCI1520  
implementation includes a signal for PWM, CAUDPWM, which can be routed to an MFUNC terminal. Bit 2  
(AUD2MUX), located in the card control register, is programmed on a per-socket function basis to route a CardBus  
CAUDIO PWM terminal to CAUDPWM. If both CardBus functions enable CAUDIO PWM routing to CAUDPWM, then  
socket 0 audio takes precedence. See Section 4.30, Multifunction Routing Register, for details on configuring the  
MFUNC terminals.  
Figure 3−6 provides an illustration of a sample application using SPKROUT and CAUDPWM.  
3−9  
 
System  
Core Logic  
BINARY_SPKR  
PWM_SPKR  
SPKROUT  
CAUDPWM  
Speaker  
Subsystem  
PCI1520  
Figure 3−6. Sample Application of SPKROUT and CAUDPWM  
3.5.8 LED Socket Activity Indicators  
The socket activity LEDs are provided to indicate when a PC Card is being accessed. The LEDA1 and LEDA2 signals  
can be routed to the multifunction terminals. When configured for LED outputs, these terminals output an active high  
signal to indicate socket activity. LEDA1 indicates socket 0 (card A) activity, and LEDA2 indicates socket 1 (card B)  
activity. The LED_SKT output indicates socket activity to either socket 0 or socket 1. See Section 4.30, Multifunction  
Routing Register, for details on configuring the multifunction terminals.  
The active-high LED signal is driven for 64-ms. When the LED is not being driven high, it is driven to a low state. Either  
of the two circuits shown in Figure 3−7 can be implemented to provide LED signaling, and the board designer must  
implement the circuit that best fits the application.  
The LED activity signals are valid when a card is inserted, powered, and not in reset. For PC Card-16, the LED activity  
signals are pulsed when READY/IREQ is low. For CardBus cards, the LED activity signals are pulsed if CFRAME,  
IRDY, or CREQ are active.  
Current Limiting  
R 500 Ω  
LED  
PCI1520  
Current Limiting  
R 500 Ω  
Application-  
Specific Delay  
LED  
PCI1520  
Figure 3−7. Two Sample LED Circuits  
As indicated, the LED signals are driven for a period of 64 ms by a counter circuit. To avoid the possibility of the LEDs  
appearing to be stuck when the PCI clock is stopped, the LED signaling is cut off when the SUSPEND signal is  
asserted, when the PCI clock is to be stopped during the clock run protocol, or when in the D2 or D1 power state.  
If any additional socket activity occurs during this counter cycle, then the counter is reset and the LED signal remains  
driven. If socket activity is frequent (at least once every 64 ms), then the LED signals remain driven.  
3.5.9 CardBus Socket Registers  
The PCI1520 contains all registers for compatibility with the 1997 PC Card Standard. These registers exist as the  
CardBus socket registers and are listed in Table 3−6.  
3−10  
 
Table 3−6. CardBus Socket Registers  
REGISTER NAME  
OFFSET  
Socket event  
Socket mask  
00h  
04h  
Socket present state  
Socket force event  
Socket control  
08h  
0Ch  
10h  
Reserved  
14h−1Ch  
20h  
Socket power management  
3.6 Serial-Bus Interface  
The PCI1520 provides a serial-bus interface to load subsystem identification information and selected register  
2
defaults from a serial EEPROM, and to provide a PC Card power-switch interface alternative to P C. See  
2
Section 3.5.2, P C Power-Switch Interface (TPS222X), for details. The PCI1520 serial-bus interface is compatible  
2
with various I C and SMBus components.  
3.6.1 Serial-Bus Interface Implementation  
The PCI1520 defaults to serial bus interface are disabled. To enable the serial interface, a pulldown resistor must  
be implemented on the LATCH terminal and the appropriate pullup resistor must be implemented on the SDA and  
SCL signals, that is, the MFUNC1 and MFUNC4 terminals. When the interface is detected, bit 3 (SBDETECT) in the  
serial bus control and status register (see Section 4.48) is set. The SBDETECT bit is cleared by a writeback of 1.  
The PCI1520 implements a two-terminal serial interface with one clock signal (SCL) and one data signal (SDA). When  
a pulldown resistor is provided on the LATCH terminal, the SCL signal is mapped to the MFUNC4 terminal and the  
SDA signal is mapped to the MFUNC1 terminal. The PCI1520 drives SCL at nearly 100 kHz during data transfers,  
2
which is the maximum specified frequency for standard mode I C. The serial EEPROM must be located at address  
A0h. Figure 3−8 illustrates an example application implementing the two-wire serial bus.  
V
CC  
Serial  
EEPROM  
PCI1520  
LATCH  
A2  
MFUNC4  
MFUNC1  
A1  
A0  
SCL  
SDA  
Figure 3−8. Serial EEPROM Application  
Some serial device applications may include PC Card power switches, ZV source switches, card ejectors, or other  
devices that may enhance the user’s PC Card experience. The serial EEPROM device and PC Card power switches  
are discussed in the sections that follow.  
3.6.2 Serial-Bus Interface Protocol  
The SCL and SDA signals are bidirectional, open-drain signals and require pullup resistors as shown in Figure 3−8.  
2
The PCI1520, which supports up to 100-Kb/s data-transfer rate, is compatible with standard mode I C using 7-bit  
addressing.  
All data transfers are initiated by the serial bus master. The beginning of a data transfer is indicated by a start  
condition, which is signaled when the SDA line transitions to low state while SCL is in the high state, as illustrated  
3−11  
 
in Figure 3−9. The end of a requested data transfer is indicated by a stop condition, which is signaled by a low-to-high  
transition of SDA while SCL is in the high state, as shown in Figure 3−9. Data on SDA must remain stable during the  
high state of the SCL signal, as changes on the SDA signal during the high state of SCL are interpreted as control  
signals, that is, a start or a stop condition.  
SDA  
SCL  
Start  
Stop  
Change of  
Condition  
Condition  
Data Allowed  
Data Line Stable,  
Data Valid  
Figure 3−9. Serial-Bus Start/Stop Conditions and Bit Transfers  
Data is transferred serially in 8-bit bytes. The number of bytes that may be transmitted during a data transfer is  
unlimited; however, each byte must be completed with an acknowledge bit. An acknowledge (ACK) is indicated by  
the receiver pulling the SDA signal low, so that it remains low during the high state of the SCL signal. Figure 3−10  
illustrates the acknowledge protocol.  
SCL From  
1
2
3
7
8
9
Master  
SDA Output  
By Transmitter  
SDA Output  
By Receiver  
Figure 3−10. Serial-Bus Protocol Acknowledge  
The PCI1520 is a serial bus master; all other devices connected to the serial bus external to the PCI1520 are slave  
devices. As the bus master, the PCI1520 drives the SCL clock at nearly 100 kHz during bus cycles and places SCL  
in a high-impedance state (zero frequency) during idle states.  
Typically, the PCI1520 masters byte reads and byte writes under software control. Doubleword reads are performed  
by the serial EEPROM initialization circuitry upon a PCI reset and may not be generated under software control. See  
Section 3.6.3, Serial-Bus EEPROM Application, for details on how the PCI1520 automatically loads the subsystem  
identification and other register defaults through a serial-bus EEPROM.  
Figure 3−11 illustrates a byte write. The PCI1520 issues a start condition and sends the 7-bit slave device address  
and the command bit zero. A 0 in the R/W command bit indicates that the data transfer is a write. The slave device  
acknowledges if it recognizes the address. If no acknowledgment is received by the PCI1520, then an appropriate  
status bit is set in the serial-bus control and status register (PCI offset B3h, see Section 4.48). The word address byte  
is then sent by the PCI1520, and another slave acknowledgment is expected. Then the PCI1520 delivers the data  
byte MSB first and expects a final acknowledgment before issuing the stop condition.  
3−12  
 
Slave Address  
Word Address  
Data Byte  
S
b6 b5 b4 b3 b2 b1 b0  
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
P
R/W  
A = Slave Acknowledgement  
S/P = Start/Stop Condition  
Figure 3−11. Serial-Bus Protocol − Byte Write  
Figure 3−12 illustrates a byte read. The read protocol is very similar to the write protocol, except the R/W command  
bit must be set to 1 to indicate a read-data transfer. In addition, the PCI1520 master must acknowledge reception  
of the read bytes from the slave transmitter. The slave transmitter drives the SDA signal during read data transfers.  
The SCL signal remains driven by the PCI1520 master.  
Slave Address  
Word Address  
Slave Address  
S
b6 b5 b4 b3 b2 b1 b0  
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
S
b6 b5 b4 b3 b2 b1 b0  
1
A
Start  
R/W  
Restart  
R/W  
Data Byte  
b7 b6 b5 b4 b3 b2 b1 b0  
M
P
Stop  
A = Slave Acknowledgement  
M = Master Acknowledgement  
S/P = Start/Stop Condition  
Figure 3−12. Serial-Bus Protocol − Byte Read  
Figure 3−13 illustrates EEPROM interface doubleword data collection protocol.  
Slave Address  
Word Address  
Slave Address  
S
1
0
1
0
0
0
0
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
S
1
0
1
0
0
0
0
1
A
Start  
R/W  
Restart  
R/W  
Data Byte 3  
M
Data Byte 2  
M
Data Byte 1  
M
Data Byte 0  
M
P
A = Slave Acknowledgement  
M = Master Acknowledgement  
S/P = Start/Stop Condition  
Figure 3−13. EEPROM Interface Doubleword Data Collection  
3.6.3 Serial-Bus EEPROM Application  
When the PCI bus is reset and the serial-bus interface is detected, the PCI1520 attempts to read the subsystem  
identification and other register defaults from a serial EEPROM. The registers and corresponding bits that can be  
loaded with defaults through the EEPROM are provided in Table 3−7.  
3−13  
 
Table 3−7. Register- and Bit-Loading Map  
EEPROM  
OFFSET  
REGISTER  
OFFSET  
REGISTER BITS LOADED FROM EEPROM  
00h  
Flag  
01h: Load / FFh: do not load  
Command register, bits 8, 6−5, 2−0  
Note: bits loaded per following:  
b8 b7  
b6 b6  
b5 b5  
b2 b2  
b1 b1  
b0 b0  
01h  
PCI 04h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
PCI 40h  
PCI 40h  
PCI 42h  
PCI 42h  
PCI 44h  
PCI 44h  
PCI 44h  
PCI 44h  
PCI 80h  
PCI 80h  
PCI 80h  
PCI 8Ch  
PCI 8Ch  
PCI 8Ch  
PCI 8Ch  
PCI 90h  
PCI 91h  
PCI 92h  
PCI 93h  
PCI A2h  
ExCA 00h  
Subsystem vendor ID bits 7−0 bits 7−0  
Subsystem vendor ID bits 15−8 bit 7−0  
Subsystem ID bits 7−0 bits 7−0  
Subsystem ID bits 15−8 bits 7−0  
PC Card 16-bit I/F legacy-mode base address bits 7−1 bits 7−1  
PC Card 16-bit I/F legacy-mode base address bits 15−8 bits 7−0  
PC Card 16-bit I/F legacy-mode base address bit 23:16 bit 7:0  
PC Card 16-bit I/F legacy-mode base address bits 31−24 bits 7−0  
System control bits 7−0 bits 7−0  
System control bits 15−8 bits 7−0  
System control byte bits 31−24 bits 7−0  
Multifunction routing bits 7−0 bits 7−0  
Multifunction routing bits 15−8 bits 7−0  
Multifunction routing bits 23−16 bits 7−0  
Multifunction routing bits 27−24 bits 3−0  
Retry status bits 7, 6 bits 7, 6  
Card control bits 7, 5 bits 7, 6  
Device control bits 6, 3−0 bits 6, 3−0  
Diagnostic bits 7, 4−0 bits 7, 4−0  
Power management capabilities bit 15 bit 7  
ExCA identification and revision bits 7−0 bits 7−0  
CB Socket + 0Ch  
(function 0)  
17h  
18h  
Function 0 socket force event, bit 27 bit 3  
CB Socket + 0Ch Function 1 socket force event, bit 27 bit 3  
(function 1)  
This format must be followed for the PCI1520 to load initializations from a serial EEPROM. All bit fields must be  
considered when programming the EEPROM.  
The serial EEPROM is addressed at slave address 1010 000b by the PCI1520. All hardware address bits for the  
EEPROM should be tied to the appropriate level to achieve this address. The serial EEPROM chip in the sample  
application circuit (Figure 3−8) assumes the 1010b high-address nibble. The lower three address bits are terminal  
inputs to the chip, and the sample application shows these terminal inputs tied to GND.  
3.6.4 Accessing Serial-Bus Devices Through Software  
The PCI1520 provides a programming mechanism to control serial bus devices through software. The programming  
is accomplished through a doubleword of PCI configuration space at offset B0h. Table 3−8 lists the registers used  
to program a serial-bus device through software.  
3−14  
 
Table 3−8. PCI1520 Registers Used to Program Serial-Bus Devices  
PCI OFFSET  
REGISTER NAME  
DESCRIPTION  
B0h  
Serial-bus data  
Contains the data byte to send on write commands or the received data byte on read commands.  
The content of this register is sent as the word address on byte writes or reads. This register is not used  
in the quick command protocol.  
B1h  
B2h  
B3h  
Serial-bus index  
Serial-bus slave  
address  
Write transactions to this register initiate a serial-bus transaction. The slave device address and the  
R/W command selector are programmed through this register.  
Serial-bus control  
and status  
Read data valid, general busy, and general error status are communicated through this register. In  
addition, the protocol-select bit is programmed through this register.  
3.7 Programmable Interrupt Subsystem  
Interrupts provide a way for I/O devices to let the microprocessor know that they require servicing. The dynamic  
nature of PC Cards and the abundance of PC Card I/O applications require substantial interrupt support from the  
PCI1520. The PCI1520 provides several interrupt signaling schemes to accommodate the needs of a variety of  
platforms. The different mechanisms for dealing with interrupts in this device are based on various specifications and  
industry standards. The ExCA register set provides interrupt control for some 16-bit PC Card functions, and the  
CardBus socket register set provides interrupt control for the CardBus PC Card functions. The PCI1520 is, therefore,  
backward compatible with existing interrupt control register definitions, and new registers have been defined where  
required.  
The PCI1520 detects PC Card interrupts and events at the PC Card interface and notifies the host controller using  
one of several interrupt signaling protocols. To simplify the discussion of interrupts in the PCI1520, PC Card interrupts  
are classified either as card status change (CSC) or as functional interrupts.  
The method by which any type of PCI1520 interrupt is communicated to the host interrupt controller varies from  
system to system. The PCI1520 offers system designers the choice of using parallel PCI interrupt signaling, parallel  
ISA-type IRQ interrupt signaling, or the IRQSER serialized ISA and/or PCI interrupt protocol. It is possible to use the  
parallel PCI interrupts in combination with either parallel IRQs or serialized IRQs, as detailed in the sections that  
follow. All interrupt signaling is provided through the seven multifunction terminals, MFUNC0−MFUNC6.  
3.7.1 PC Card Functional and Card Status Change Interrupts  
PC Card functional interrupts are defined as requests from a PC Card application for interrupt service and are  
indicated by asserting specially-defined signals on the PC Card interface. Functional interrupts are generated by  
16-bit I/O PC Cards and by CardBus PC Cards.  
Card status change (CSC)-type interrupts are defined as events at the PC Card interface that are detected by the  
PCI1520 and may warrant notification of host card and socket services software for service. CSC events include both  
card insertion and removal from PC Card sockets, as well as transitions of certain PC Card signals.  
Table 3−9 summarizes the sources of PC Card interrupts and the type of card associated with them. CSC and  
functional interrupt sources are dependent on the type of card inserted in the PC Card socket. The three types of cards  
that can be inserted into any PC Card socket are:  
16-bit memory card  
16-bit I/O card  
CardBus cards  
3−15  
 
Table 3−9. Interrupt Mask and Flag Registers  
CARD TYPE  
EVENT  
MASK  
FLAG  
Battery conditions (BVD1, BVD2)  
Wait states (READY)  
ExCA offset 05h/45h/805h bits 1 and 0 ExCA offset 04h/44h/804h bits 1 and 0  
16-bit memory  
ExCA offset 05h/45h/805h bit 2  
ExCA offset 05h/45h/805h bit 0  
Always enabled  
ExCA offset 04h/44h/804h bit 2  
ExCA offset 04h/44h/804h bit 0  
PCI configuration offset 91h bit 0  
Change in card status (STSCHG)  
Interrupt request (IREQ)  
16-bit I/O  
All 16-bit PC  
Cards  
Power cycle complete  
ExCA offset 05h/45h/805h bit 3  
ExCA offset 04h/44h/804h bit 3  
Change in card status (CSTSCHG)  
Interrupt request (CINT)  
Socket mask bit 0  
Always enabled  
Socket event bit 0  
PCI configuration offset 91h bit 0  
Socket event bit 3  
CardBus  
Power cycle complete  
Socket mask bit 3  
Socket mask bits 2 and 1  
Card insertion or removal  
Socket event bits 2 and 1  
Functional interrupt events are valid only for 16-bit I/O and CardBus cards; that is, the functional interrupts are not  
valid for 16-bit memory cards. Furthermore, card insertion and removal-type CSC interrupts are independent of the  
card type.  
Table 3−10. PC Card Interrupt Events and Description  
CARD TYPE  
EVENT  
TYPE  
SIGNAL  
DESCRIPTION  
A transition on BVD1 indicates a change in the  
PC Card battery conditions.  
BVD1(STSCHG)//CSTSCHG  
Battery conditions  
(BVD1, BVD2)  
CSC  
A transition on BVD2 indicates a change in the  
PC Card battery conditions.  
BVD2(SPKR)//CAUDIO  
READY(IREQ)//CINT  
16-bit  
memory  
A transition on READY indicates a change in the  
ability of the memory PC Card to accept or provide  
data.  
Wait states  
(READY)  
CSC  
Change in card  
status (STSCHG)  
The assertion of STSCHG indicates a status change  
on the PC Card.  
CSC  
Functional  
CSC  
BVD1(STSCHG)//CSTSCHG  
READY(IREQ)//CINT  
16-bit I/O  
CardBus  
Interrupt request  
(IREQ)  
The assertion of IREQ indicates an interrupt request  
from the PC Card.  
Change in card  
status (CSTSCHG)  
The assertion of CSTSCHG indicates a status  
change on the PC Card.  
BVD1(STSCHG)//CSTSCHG  
READY(IREQ)//CINT  
Interrupt request  
(CINT)  
The assertion of CINT indicates an interrupt request  
from the PC Card.  
Functional  
A transition on either CD1//CCD1 or CD2//CCD2  
indicates an insertion or removal of a 16-bit or  
CardBus PC Card.  
Card insertion  
or removal  
CD1//CCD1,  
CD2//CCD2  
CSC  
CSC  
All PC Cards  
Power cycle  
complete  
An interrupt is generated when a PC Card power-up  
cycle has completed.  
N/A  
The naming convention for PC Card signals describes the function for 16-bit memory, I/O cards, and CardBus. For  
example, READY(IREQ)//CINT includes READY for 16-bit memory cards, IREQ for 16-bit I/O cards, and CINT for  
CardBus cards. The 16-bit memory card signal name is first, with the I/O card signal name second, enclosed in  
parentheses. The CardBus signal name follows after a double slash (//).  
The 1997 PC Card Standard describes the power-up sequence that must be followed by the PCI1520 when an  
insertion event occurs and the host requests that the socket V  
and V  
be powered. Upon completion of this  
CC  
PP  
power-up sequence, the PCI1520 interrupt scheme can be used to notify the host system (see Table 3−10), denoted  
by the power cycle complete event. This interrupt source is considered a PCI1520 internal event, because it depends  
on the completion of applying power to the socket rather than on a signal change at the PC Card interface.  
3−16  
 
3.7.2 Interrupt Masks and Flags  
Host software may individually mask (or disable) most of the potential interrupt sources listed in Table 3−10 by setting  
the appropriate bits in the PCI1520. By individually masking the interrupt sources listed, software can control those  
events that cause a PCI1520 interrupt. Host software has some control over the system interrupt the PCI1520 asserts  
by programming the appropriate routing registers. The PCI1520 allows host software to route PC Card CSC and PC  
Card functional interrupts to separate system interrupts. Interrupt routing somewhat specific to the interrupt signaling  
method used is discussed in more detail in the following sections.  
When an interrupt is signaled by the PCI1520, the interrupt service routine must determine which of the events listed  
in Table 3−9 caused the interrupt. Internal registers in the PCI1520 provide flags that report the source of an interrupt.  
By reading these status bits, the interrupt service routine can determine the action to be taken.  
Table 3−9 details the registers and bits associated with masking and reporting potential interrupts. All interrupts can  
be masked except the functional PC Card interrupts, and an interrupt status flag is available for all types of interrupts.  
Notice that there is not a mask bit to stop the PCI1520 from passing PC Card functional interrupts through to the  
appropriate interrupt scheme. These interrupts are not valid until the card is properly powered, and there should never  
be a card interrupt that does not require service after proper initialization.  
Table 3−9 lists the various methods of clearing the interrupt flag bits. The flag bits in the ExCA registers (16-bit PC  
Card-related interrupt flags) can be cleared using two different methods. One method is an explicit write of 1 to the  
flag bit to clear and the other is by reading the flag bit register. The selection of flag bit clearing methods is made by  
bit 2 (IFCMODE) in the ExCA global control register (ExCA offset 1Eh/5Eh/81Eh, see Section 5.20), and defaults to  
the flag-cleared-on-read method.  
The CardBus-related interrupt flags can be cleared by an explicit write of 1 to the interrupt flag in the socket event  
register (see Section 6.1). Although some of the functionality is shared between the CardBus registers and the ExCA  
registers, software should not program the chip through both register sets when a CardBus card is functioning.  
3.7.3 Using Parallel IRQ Interrupts  
The seven multifunction terminals, MFUNC6−MFUNC0, implemented in the PCI1520 can be routed to obtain a  
subset of the ISA IRQs. The IRQ choices provide ultimate flexibility in PC Card host interruptions. To use the parallel  
ISA-type IRQ interrupt signaling, software must program the device control register (PCI offset 92h, see  
Section 4.33), to select the parallel IRQ signaling scheme. See Section 4.30, Multifunction Routing Register, for  
details on configuring the multifunction terminals.  
A system using parallel IRQs requires (at a minimum) one PCI terminal, INTA, to signal CSC events. This requirement  
is dictated by certain card and socket-services software. The INTA requirement calls for routing the MFUNC0 terminal  
for INTA signaling. The INTRTIE bit is used, in this case, to route socket B interrupt events to INTA. This leaves (at  
a maximum) six different IRQs to support legacy 16-bit PC Card functions.  
As an example, suppose the six IRQs used by legacy PC Card applications are IRQ3, IRQ4, IRQ5, IRQ10, IRQ11,  
and IRQ15. The multifunction routing register must be programmed to a value of 0FBA 5432h. This value routes the  
MFUNC0 terminal to INTA signaling and routes the remaining terminals as illustrated in Figure 3−14. Not shown is  
that INTA must also be routed to the programmable interrupt controller (PIC), or to some circuitry that provides parallel  
PCI interrupts to the host.  
3−17  
 
PCI1520  
MFUNC1  
PIC  
IRQ3  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
IRQ4  
IRQ5  
IRQ10  
IRQ11  
IRQ15  
Figure 3−14. IRQ Implementation  
Power-on software is responsible for programming the multifunction routing register to reflect the IRQ configuration  
of a system implementing the PCI1520. The multifunction routing register is shared between the two PCI1520  
functions, and only one write to function 0 or 1 is necessary to configure the MFUNC6−MFUNC0 signals. Writing to  
function 0 only is recommended. See Section 4.30, Multifunction Routing Register, for details on configuring the  
multifunction terminals.  
The parallel ISA-type IRQ signaling from the MFUNC6−MFUNC0 terminals is compatible with the input signal  
requirements of the 8259 PIC. The parallel IRQ option is provided for system designs that require legacy ISA IRQs.  
Design constraints may demand more MFUNC6−MFUNC0 IRQ terminals than the PCI1520 makes available.  
3.7.4 Using Parallel PCI Interrupts  
Parallel PCI interrupts are available when exclusively in parallel PCI interrupt/parallel ISA IRQ signaling mode, and  
when only IRQs are serialized with the IRQSER protocol. Both INTA and INTB can be routed to MFUNC terminals  
(MFUNC0 and MFUNC1). However, interrupts of both socket functions can be routed to INTA (MFUNC0) if bit 29  
(INTRTIE) is set in the system control register (PCI offset 80h, see Section 4.29).  
The INTRTIE bit affects the read-only value provided through accesses to the interrupt pin register (PCI offset 3Dh,  
see Section 4.24). When the INTRTIE bit is set, both functions return a value of 01h on reads from the interrupt pin  
register for both parallel and serial PCI interrupts. Table 3−11 summarizes the interrupt signaling modes.  
Table 3−11. Interrupt Pin Register Cross Reference  
INTPIN  
INTRTIE BIT  
FUNCTION 0  
FUNCTION 1  
0
1
01h  
01h  
02h  
01h  
3.7.5 Using Serialized IRQSER Interrupts  
The serialized interrupt protocol implemented in the PCI1520 uses a single terminal to communicate all interrupt  
status information to the host controller. The protocol defines a serial packet consisting of a start cycle, multiple  
interrupt indication cycles, and a stop cycle. All data in the packet is synchronous with the PCI clock. The packet data  
describes 16 parallel ISA IRQ signals and the optional 4 PCI interrupts INTA, INTB, INTC, and INTD. For details on  
the IRQSER protocol, refer to the document Serialized IRQ Support for PCI Systems.  
3.7.6 SMI Support in the PCI1520  
The PCI1520 provides a mechanism for interrupting the system when power changes have been made to the PC  
Card socket interfaces. The interrupt mechanism is designed to fit into a system maintenance interrupt (SMI) scheme.  
SMI interrupts are generated by the PCI1520, when enabled, after a write cycle to either the socket control register  
(CB offset 10h, see Section 6.5) of the CardBus register set, or the ExCA power control register (ExCA offset  
02h/42h/802h, see Section 5.3) causes a power cycle change sequence to be sent on the power switch interface.  
The SMI control is programmed through three bits in the system control register (PCI offset 80h, see Section 4.29).  
These bits are SMIROUTE (bit 26), SMISTATUS (bit 25), and SMIENB (bit 24). Table 3−12 describes the SMI control  
bits function.  
3−18  
 
Table 3−12. SMI Control  
BIT NAME  
SMIROUTE  
SMISTAT  
FUNCTION  
This shared bit controls whether the SMI interrupts are sent as a CSC interrupt or as IRQ2.  
This socket dependent bit is set when an SMI interrupt is pending. This status flag is cleared by writing back a 1.  
When set, SMI interrupt generation is enabled. This bit is shared by functions 0 and 1.  
SMIENB  
If CSC SMI interrupts are selected, then the SMI interrupt is sent as the CSC on a per-socket basis. The CSC interrupt  
can be either level or edge mode, depending upon the CSCMODE bit in the ExCA global control register (ExCA offset  
1Eh/5Eh/81Eh, see Section 5.20).  
If IRQ2 is selected by SMIROUTE, then the IRQSER signaling protocol supports SMI signaling in the IRQ2 IRQ/Data  
slot. In a parallel ISA IRQ system, the support for an active low IRQ2 is provided only if IRQ2 is routed to either  
MFUNC3 or MFUNC6 through the multifunction routing register (PCI offset 8Ch, see Section 4.30).  
3.8 Power Management Overview  
In addition to the low-power CMOS technology process used for the PCI1520, various features are designed into the  
device to allow implementation of popular power-saving techniques. These features and techniques are discussed  
in this section.  
3.8.1 Integrated Low-Dropout Voltage Regulator (LDO-VR)  
The PCI1520 requires 2.5-V core voltage. The core power can be supplied by the PCI1520 itself using the internal  
LDO-VR. The core power can alternatively be supplied by an external power supply through the VR_PORT terminal.  
Table 3−13 lists the requirements for both the internal core power supply and the external core power supply.  
Table 3−13. Requirements for Internal/External 2.5-V Core Power Supply  
SUPPLY  
V
CC  
VR_EN  
VR_PORT  
NOTE  
Internal  
3.3 V  
GND  
2.5-V output  
Internal 2.5-V LDO-VR is enabled. A 1.0 µF bypass capacitor is required on the VR_PORT  
terminal for decoupling. This output is not for external use.  
External  
3.3 V  
V
CC  
2.5-V input  
Internal 2.5-V LDO-VR is disabled. An external 2.5-V power supply, of minimum 50-mA  
capacity, is required. A 0.1 µF bypass capacitor on the VR_PORT terminal is required.  
3.8.2 Clock Run Protocol  
The PCI CLKRUN feature is the primary method of power management on the PCI interface of the PCI1520. CLKRUN  
signaling is provided through the MFUNC6 terminal. Since some chip sets do not implement CLKRUN, this is not  
always available to the system designer, and alternate power-saving features are provided. For details on the  
CLKRUN protocol see the PCI Mobile Design Guide.  
The PCI1520 does not permit the central resource to stop the PCI clock under any of the following conditions:  
Bit 1 (KEEPCLK) in the system control register (PCI offset 80h, see Section 4.29) is set.  
The 16-bit PC Card- resource manager is busy.  
The PCI1520 CardBus master state machine is busy. A cycle may be in progress on CardBus.  
The PCI1520 master is busy. There may be posted data from CardBus to PCI in the PCI1520.  
Interrupts are pending.  
The CardBus CCLK for either socket has not been stopped by the PCI1520 CCLKRUN manager.  
3−19  
 
The PCI1520 restarts the PCI clock using the CLKRUN protocol under any of the following conditions:  
A 16-bit PC Card IREQ or a CardBus CINT has been asserted by either card.  
A CardBus CBWAKE (CSTSCHG) or 16-bit PC Card STSCHG/RI event occurs in either socket.  
A CardBus attempts to start the CCLK using CCLKRUN.  
A CardBus card arbitrates for the CardBus bus using CREQ.  
3.8.3 CardBus PC Card Power Management  
The PCI1520 implements its own card power-management engine that can turn off the CCLK to a socket when there  
is no activity to the CardBus PC Card. The PCI clock-run protocol is followed on the CardBus CCLKRUN interface  
to control this clock management.  
3.8.4 16-Bit PC Card Power Management  
The COE bit (bit 7) of the ExCA power control register (ExCA offset 02h/42h/802h, see Section 5.3) and PWRDWN  
bit (bit 0) of the ExCA global control register (ExCA offset 1Eh/5Eh/81Eh, see Section 5.20) bits are provided for 16-bit  
PC Card power management. The COE bit places the card interface in a high-impedance state to save power. The  
power savings when using this feature are minimal. The COE bit resets the PC Card when used, and the PWRDWN  
bit does not. Furthermore, the PWRDWN bit is an automatic COE, that is, the PWRDWN performs the COE function  
when there is no card activity.  
NOTE: The 16-bit PC Card must implement the proper pullup resistors for the COE and  
PWRDWN modes.  
3.8.5 Suspend Mode  
The SUSPEND signal, provided for backward compatibility, gates the PRST (PCI reset) signal and the GRST (global  
reset) signal from the PCI1520. Besides gating PRST and GRST, SUSPEND also gates PCLK inside the PCI1520  
in order to minimize power consumption.  
Gating PCLK does not create any issues with respect to the power switch interface in the PCI1520. This is because  
the PCI1520 does not depend on the PCI clock to clock the power switch interface. There are two methods to clock  
the power switch interface in the PCI1520:  
Use an external clock to the PCI1520 CLOCK terminal  
Use the internal oscillator  
It should also be noted that asynchronous signals, such as card status change interrupts and RI_OUT, can be passed  
to the host system without a PCI clock. However, if card status change interrupts are routed over the serial interrupt  
stream, then the PCI clock must be restarted in order to pass the interrupt, because neither the internal oscillator nor  
an external clock is routed to the serial-interrupt state machine. Figure 3−15 is a signal diagram of the suspend  
function.  
3−20  
 
RESET  
GNT  
SUSPEND  
PCLK  
External Terminals  
Internal Signals  
RESETIN  
SUSPENDIN  
PCLKIN  
Figure 3−15. Signal Diagram of Suspend Function  
3.8.6 Requirements for Suspend Mode  
The suspend mode prevents the clearing of all register contents on the assertion of reset (PRST or GRST) which  
would require the reconfiguration of the PCI1520 by software. Asserting the SUSPEND signal places the PCI outputs  
of the controller in a high-impedance state and gates the PCLK signal internally to the controller unless a PCI  
transaction is currently in process (GNT is asserted). It is important that the PCI bus not be parked on the PCI1520  
when SUSPEND is asserted because the outputs are in a high-impedance state.  
The GPIOs, MFUNC signals, and RI_OUT signal are all active during SUSPEND, unless they are disabled in the  
appropriate PCI1520 registers.  
3.8.7 Ring Indicate  
The RI_OUT output is an important feature in power management, allowing a system to go into a suspended mode  
and wake up on modem rings and other card events. TI-designed flexibility permits this signal to fit wide platform  
requirements. RI_OUT on the PCI1520 can be asserted under any of the following conditions:  
A 16-bit PC Card modem in a powered socket asserts RI to indicate to the system the presence of an  
incoming call.  
A powered down CardBus card asserts CSTSCHG (CBWAKE) requesting system and interface wake up.  
A powered CardBus card asserts CSTSCHG from the insertion/removal of cards or change in battery  
voltage levels.  
Figure 3−16 shows various enable bits for the PCI1520 RI_OUT function; however, it does not show the masking of  
CSC events. See Table 3−9 for a detailed description of CSC interrupt masks and flags.  
3−21  
 
RI_OUT Function  
CSTSMASK  
CSC  
PC Card  
Socket 0  
RINGEN  
Card  
I/F  
RI  
CDRESUME  
RIENB  
CSC  
RI_OUT  
CSTSMASK  
CSC  
PC Card  
Socket 1  
RINGEN  
Card  
I/F  
RI  
CDRESUME  
CSC  
Figure 3−16. RI_OUT Functional Diagram  
RI from the 16-bit PC Card interface is masked by bit 7 (RINGEN) in the ExCA interrupt and general control register  
(ExCA offset 03h/43h/803h, see Section 5.4). This is programmed on a per-socket basis and is only applicable when  
a 16-bit card is powered in the socket.  
The CBWAKE signaling to RI_OUT is enabled through the same mask as the CSC event for CSTSCHG. The mask  
bit (bit 0, CSTSMASK) is programmed through the socket mask register (CB offset 04h, see Section 6.2) in the  
CardBus socket registers.  
RI_OUT can be routed through any of three different pins, RI_OUT/PME, MFUNC2, or MFUNC4. The RI_OUT  
function is enabled by setting RIENB in the card control register (PCI offset 91h, see Section 4.32). The PME function  
is enabled by setting PMEEN in the power management control/status register (PCI offset A4h, see Section 4.38).  
When RIMUX in the system control register (PCI offset 80h, see Section 4.29) is set to 0, both the RI_OUT function  
and the PME function are routed to the RI_OUT/PME terminal. If both functions are enabled and RIMUX is set to 0,  
the RI_OUT/PME terminal becomes RI_OUT only and PME assertions will never be seen. Therefore, in a system  
using both the RI_OUT function and the PME function, RIMUX must be set to 1 and RI_OUT must be routed to either  
MFUNC2 or MFUNC4.  
3.8.8 PCI Power Management  
The PCI Bus Power Management Interface Specification for PCI to CardBus Bridges establishes the infrastructure  
required to let the operating system control the power of PCI functions. This is done by defining a standard PCI  
interface and operations to manage the power of PCI functions on the bus. The PCI bus and the PCI functions can  
be assigned one of seven power-management states, resulting in varying levels of power savings.  
The seven power-management states of PCI functions are:  
D0-uninitialized − Before device configuration, device not fully functional  
D0-active − Fully functional state  
D1 − Low-power state  
D2 − Low-power state  
D3 − Low-power state. Transition state before D3  
hot  
cold  
D3  
− PME signal-generation capable. Main power is removed and VAUX is available.  
cold  
D3 − No power and completely nonfunctional  
off  
3−22  
 
NOTE 1: In the D0-uninitialized state, the PCI1520 does not generate PME and/or interrupts. When the IO_EN and MEM_EN bits (bits 0 and  
1) of the command register (PCI offset 04h, see Section 4.4) are both set, the PCI1520 switches the state to D0-active. Transition from  
D3  
to the D0-uninitialized state happens at the deassertion of PRST. The assertion of GRST forces the controller to the  
cold  
D0-uninitialized state immediately.  
NOTE 2: The PWR_STATE bits (bits 0−1) of the power-management control/status register (PCI offset A4h, see Section 4.38) only code for four  
power states, D0, D1, D2, and D3 . The differences between the three D3 states is invisible to the software because the controller  
hot  
is not accessible in the D3  
or D3 state.  
off  
cold  
Similarly, bus power states of the PCI bus are B0−B3. The bus power states B0−B3 are derived from the device power  
state of the originating bridge device.  
For the operating system (OS) to manage the device power states on the PCI bus, the PCI function should support  
four power-management operations. These operations are:  
Capabilities reporting  
Power status reporting  
Setting the power state  
System wake up  
The OS identifies the capabilities of the PCI function by traversing the new capabilities list. The presence of  
capabilities in addition to the standard PCI capabilities is indicated by a 1 in bit 4 (CAPLIST) of the status register (PCI  
offset 06h, see Section 4.5).  
The capabilities pointer provides access to the first item in the linked list of capabilities. For the PCI1520, a CardBus  
bridge with PCI configuration space header type 2, the capabilities pointer is mapped to an offset of 14h. The first  
byte of each capability register block is required to be a unique ID of that capability. PCI power management has been  
assigned an ID of 01h. The next byte is a pointer to the next pointer item in the list of capabilities. If there are no more  
items in the list, then the next item pointer must be set to 0. The registers following the next item pointer are specific  
to the capability of the function. The PCI power-management capability implements the register block outlined in  
Table 3−14.  
Table 3−14. Power-Management Registers  
REGISTER NAME  
Next item pointer  
OFFSET  
Power-management capabilities  
Power-management control/  
Capability ID  
A0h  
Data  
status register bridge support  
extensions  
Power-management control/status (CSR)  
A4h  
The power management capabilities register (PCI offset A2h, see Section 4.37) provides information on the  
capabilities of the function related to power management. The power-management control/status register (PCI offset  
A4h, see Section 4.38) enables control of power-management states and enables/monitors power-management  
events. The data register is an optional register that can provide dynamic data.  
For more information on PCI power management, see the PCI Bus Power Management Interface Specification for  
PCI to CardBus Bridges.  
3.8.9 CardBus Bridge Power Management  
The PCI Bus Power Management Interface Specification for PCI to CardBus Bridges was approved by PCMCIA in  
December of 1997. This specification follows the device and bus state definitions provided in the PCI Bus Power  
Management Interface Specification published by the PCI Special Interest Group (SIG). The main issue addressed  
in the PCI Bus Power Management Interface Specification for PCI to CardBus Bridges is wake-up from D3 or D3  
without losing wake-up context (also called PME context).  
hot  
cold  
3−23  
 
The specific issues addressed by the PCI Bus Power Management Interface Specification for PCI to CardBus Bridges  
for D3 wake up are as follows:  
Preservation of device context. The specification states that a reset must occur during the transition from  
D3 to D0. Some method to preserve wake-up context must be implemented so that the reset does not clear  
the PME context registers.  
Power source in D3  
if wake-up support is required from this state.  
cold  
The Texas Instruments PCI1520 addresses these D3 wake-up issues in the following manner:  
Two resets are provided to handle preservation of PME context bits:  
Global reset (GRST) is used only on the initial boot up of the system after power up. It places the  
PCI1520 in its default state and requires BIOS to configure the device before becoming fully functional.  
PCI reset (PRST) has dual functionality based on whether PME is enabled or not. If PME is enabled,  
then PME context is preserved. If PME is not enabled, then PRST acts the same as a normal PCI reset.  
Please see the master list of PME context bits in Section 3.8.11.  
Power source in D3  
auxiliary power source must be supplied to the PCI1520 V  
if wake-up support is required from this state. Since V  
is removed in D3  
, an  
cold  
CC  
cold  
terminals. Consult the PCI14xx  
CC  
Implementation Guide for D3 Wake-Up or the PCI Power Management Interface Specification for PCI to  
CardBus Bridges for further information.  
3.8.10 ACPI Support  
The Advanced Configuration and Power Interface (ACPI) Specification provides a mechanism that allows unique  
pieces of hardware to be described to the ACPI driver. The PCI1520 offers a generic interface that is compliant with  
ACPI design rules.  
Two doublewords of general-purpose ACPI programming bits reside in PCI1520 PCI configuration space at offset  
A8h. The programming model is broken into status and control functions. In compliance with ACPI, the top level event  
status and enable bits reside in the general-purpose event status register (PCI offset A8h, see Section 4.41) and  
general-purpose event enable register (PCI offset AAh, see Section 4.42). The status and enable bits are  
implemented as defined by ACPI and illustrated in Figure 3−17.  
Status Bit  
Event Input  
Event Output  
Enable Bit  
Figure 3−17. Block Diagram of a Status/Enable Cell  
The status and enable bits generate an event that allows the ACPI driver to call a control method associated with the  
pending status bit. The control method can then control the hardware by manipulating the hardware control bits or  
by investigating child status bits and calling their respective control methods. A hierarchical implementation would  
be somewhat limiting, however, as upstream devices would have to remain in some level of power state to report  
events.  
For more information of ACPI, see the Advanced Configuration and Power Interface (ACPI) Specification.  
3−24  
 
3.8.11 Master List of PME Context Bits and Global Reset-Only Bits  
If the PME enable bit (bit 8) of the power-management control/status register (PCI offset A4h, see section 4.38) is  
asserted, then the assertion of PRST will not clear the following PME context bits. If the PME enable bit is not asserted,  
then the PME context bits are cleared with PRST. The PME context bits are:  
Bridge control register (PCI offset 3Eh): bit 6  
System control register (PCI offset 80h): bits 10, 9, 8  
Power-management control/status register (PCI offset A4h): bits 15, 8  
ExCA power control register (ExCA offset 802h): bits 7, 5 , 4−3, 1−0 ( 82365SL mode only)  
ExCA interrupt and general control register (ExCA offset 803h): bits 6−5  
ExCA card status change register (ExCA offset 804h): bits 11−8, 3−0  
ExCA card status-change-interrupt configuration register (ExCA offset 805h): bits 3−0  
CardBus socket event register (CardBus offset 00h): bits 3−0  
CardBus socket mask register (CardBus offset 04h): bits 3−0  
CardBus socket present state register (CardBus offset 08h): bits 13−7, 5−1  
CardBus socket control register (CardBus offset 10h): bits 6−4, 2−0  
Global reset places all registers in their default state regardless of the state of the PME enable bit. The GRST signal  
is gated only by the SUSPEND signal. This means that assertion of SUSPEND blocks the GRST signal internally,  
thus preserving all register contents. The registers cleared only by GRST are:  
Status register (PCI offset 06h): bits 15−11, 8  
Secondary status register (PCI offset 16h): bits 15−11, 8  
Interrupt pin register (PCI offset 3Dh): bits 1,0 (function 1 only)  
Subsystem vendor ID register (PCI offset 40h): bits 15–0  
Subsystem ID register (PCI offset 42h): bits 15–0  
PC Card 16-bit legacy mode base address register (PCI offset 44h): bits 31–1  
System control register (PCI offset 80h): bits 31–29, 27–13, 11, 6−0  
Multifunction routing register (PCI offset 8Ch): bits 27−0  
Retry status register (PCI offset 90h): bits 7−5, 3, 1  
Card control register (PCI offset 91h): bits 7−5, 2−0  
Device control register (PCI offset 92h): bits 7−5, 3−0  
Diagnostic register (PCI offset 93h): bits 7−0  
Power management capabilities register (PCI offset A2h): bit 15  
General-purpose event status register (PCI offset A8h): bits 15−14  
General-purpose event enable register (PCI offset AAh): bits 15−14, 11, 8, 4−0  
General-purpose output (PCI offset AEh): bits 4−0  
Serial bus data (PCI offset B0h): bits 7−0  
Serial bus index (PCI offset B1h): bits 7−0  
Serial bus slave address register (PCI offset B2h): bits 7−0  
Serial bus control and status register (PCI offset B3h): bits 7, 5−0  
ExCA identification and revision register (ExCA offset 00h): bits 7−0  
ExCA global control register (ExCA offset 1Eh): bits 2−0  
Socket present state register (CardBus offset 08h): bit 29  
Socket power management register (CardBus offset 20h): bits 25−24  
3−25  
 
3−26  
4 PC Card Controller Programming Model  
This section describes the PCI1520 PCI configuration registers that make up the 256-byte PCI configuration header  
for each PCI1520 function. As noted, some bits are global in nature and are accessed only through function 0.  
4.1 PCI Configuration Registers (Functions 0 and 1)  
The PCI1520 is a multifunction PCI device, and the PC Card controller is integrated as PCI functions 0 and 1. The  
configuration header is compliant with the PCI Local Bus Specification as a CardBus bridge header and is PC 99  
compliant as well. Table 4−1 shows the PCI configuration header, which includes both the predefined portion of the  
configuration space and the user-definable registers.  
Table 4−1. PCI Configuration Registers (Functions 0 and 1)  
REGISTER NAME  
OFFSET  
00h  
Device ID  
Status  
Vendor ID  
Command  
04h  
Class code  
Header type  
Revision ID  
08h  
BIST  
Latency timer  
Cache line size  
0Ch  
CardBus socket/ExCA base address  
Reserved  
10h  
Secondary status  
Capability pointer  
PCI bus number  
14h  
CardBus latency timer  
Subordinate bus number  
CardBus bus number  
18h  
CardBus Memory base register 0  
CardBus Memory limit register 0  
CardBus Memory base register 1  
CardBus Memory limit register 1  
CardBus I/O base register 0  
CardBus I/O limit register 0  
1Ch  
20h  
24h  
28h  
2Ch  
30h  
CardBus I/O base register 1  
CardBus I/O limit register 1  
34h  
38h  
Bridge control  
Subsystem ID  
Interrupt pin  
Interrupt line  
3Ch  
Subsystem vendor ID  
40h  
PC Card 16-bit I/F legacy-mode base address  
44h  
Reserved  
System control  
Reserved  
48h−7Ch  
80h  
84h−88h  
8Ch  
Multifunction routing  
Diagnostic  
Device control  
Card control  
Retry status  
Capability ID  
90h  
Reserved  
94h−9Ch  
A0h  
Power-management capabilities  
Power-management  
Next-item pointer  
Power-management data  
control/status bridge  
support extensions  
Power-management control/status  
A4h  
General-purpose event enable  
General-purpose output  
Serial bus control/status Serial bus slave address  
Reserved  
General-purpose event status  
General-purpose input  
A8h  
ACh  
Serial bus index  
Serial bus data  
B0h  
B4h−FCh  
4−1  
 
A bit description table, typically included when a register contains bits of more than one type or purpose, indicates  
bit field names, which appear in the signal column; a detailed field description, which appears in the function column;  
and field access tags, which appear in the type column of the bit description table. Table 4−2 describes the field  
access tags.  
Table 4−2. Bit Field Access Tag Descriptions  
ACCESS TAG  
NAME  
Read  
Write  
Set  
MEANING  
R
W
S
Field may be read by software.  
Field may be written by software to any value.  
Field may be set by a write of 1. Writes of 0 have no effect.  
Field may be cleared by a write of 1. Writes of 0 have no effect.  
Field may be autonomously updated by the PCI1520.  
C
U
Clear  
Update  
4.2 Vendor ID Register  
This 16-bit register contains a value allocated by the PCI Special Interest Group (SIG) and identifies the manufacturer  
of the PCI device. The vendor ID assigned to TI is 104Ch.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
0
Register:  
Offset:  
Type:  
Vendor ID  
00h (functions 0, 1)  
Read-only  
Default:  
104Ch  
4.3 Device ID Register  
This 16-bit register contains a value assigned to the PCI1520 by TI. The device identification for the PCI1520 is  
AC55h.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID  
R
1
R
0
R
1
R
0
R
1
R
1
R
0
R
0
R
0
R
1
R
0
R
1
R
0
R
1
R
0
R
1
Register:  
Offset:  
Type:  
Device ID  
02h (functions 0, 1)  
Read-only  
Default:  
AC55h  
4−2  
 
4.4 Command Register  
The command register provides control over the PCI1520 interface to the PCI bus. All bit functions adhere to the  
definitions in PCI Local Bus Specification. None of the bit functions in this register is shared between the two PCI1520  
PCI functions. Two command registers exist in the PCI1520, one for each function. Software must manipulate the  
two PCI1520 functions as separate entities when enabling functionality through the command register. The  
SERR_EN and PERR_EN enable bits in this register are internally wired-OR between the two functions, and these  
control bits appear separately according to their software function. See Table 4−3 for a complete description of the  
register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Command  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
R
0
RW  
0
RW  
0
R
0
R
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Command  
04h  
Read-only, Read/Write  
0000h  
Default:  
Table 4−3. Command Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
15−10  
RSVD  
R
Reserved. Bits 15−10 return 0s when read.  
Fast back-to-back enable. The PCI1520 does not generate fast back-to-back transactions; therefore, bit 9  
returns 0 when read.  
9
8
FBB_EN  
R
System error (SERR) enable. Bit 8 controls the enable for the SERR driver on the PCI interface. SERR can  
be asserted after detecting an address parity error on the PCI bus. Both bits 8 and 6 must be set for the  
PCI1520 to report address parity errors.  
SERR_EN  
RW  
0 = Disable SERR output driver (default)  
1 = Enable SERR output driver  
Address/data stepping control. The PCI1520 does not support address/data stepping; therefore, bit 7 is  
hardwired to 0.  
7
6
STEP_EN  
PERR_EN  
R
Parity error response enable. Bit 6 controls the PCI1520 response to parity errors through PERR. Data parity  
errors are indicated by asserting PERR, whereas address parity errors are indicated by asserting SERR.  
0 = PCI1520 ignores detected parity error (default)  
RW  
1 = PCI1520 responds to detected parity errors  
VGA palette snoop. Bit 5 controls how PCI devices handle accesses to video graphics array (VGA) palette  
registers.  
5
4
3
VGA_EN  
MWI_EN  
SPECIAL  
RW  
R
Memory write-and-invalidate enable. Bit 4 controls whether a PCI initiator device can generate memory  
write-and-Invalidate commands. The PCI1520 controller does not support memory write-and-invalidate  
commands, but uses memory write commands instead; therefore, this bit is hardwired to 0.  
Special cycles. Bit 3 controls whether or not a PCI device ignores PCI special cycles. The PCI1520 does  
not respond to special cycle operations; therefore, this bit is hardwired to 0.  
R
Bus master control. Bit 2 controls whether or not the PCI1520 can act as a PCI bus initiator (master). The  
PCI1520 can take control of the PCI bus only when this bit is set.  
2
MAST_EN  
RW  
0 = Disables the PCI1520 from generating PCI bus accesses (default)  
1 = Enables the PCI1520 to generate PCI bus accesses  
Memory space enable. Bit 1 controls whether or not the PCI1520 can claim cycles in PCI memory space.  
0 = Disables the PCI1520 from responding to memory space accesses (default)  
1 = Enables the PCI1520 to respond to memory space accesses  
1
0
MEM_EN  
IO_EN  
RW  
RW  
I/O space control. Bit 0 controls whether or not the PCI1520 can claim cycles in PCI I/O space.  
0 = Disables the PCI1520 from responding to I/O space accesses (default)  
1 = Enables the PCI1520 to respond to I/O space accesses  
4−3  
 
4.5 Status Register  
The status register provides device information to the host system. Bits in this register can be read normally. A bit  
in the status register is reset when a 1 is written to that bit location; a 0 written to a bit location has no effect. All bit  
functions adhere to the definitions in the PCI Local Bus Specification. PCI bus status is shown through each function.  
See Table 4−4 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Status  
RC  
0
RC  
0
RC  
0
RC  
0
RC  
0
R
0
R
1
RC  
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Status  
06h (functions 0, 1)  
Read-only, Read/Clear  
0210h  
Default:  
Table 4−4. Status Register Description  
BIT  
15  
SIGNAL  
PAR_ERR  
SYS_ERR  
TYPE  
RC  
FUNCTION  
Detected parity error. Bit 15 is set when a parity error is detected (either address or data).  
14  
RC  
Signaled system error. Bit 14 is set when SERR is enabled and the PCI1520 signals a system error to the host.  
Received master abort. Bit 13 is set when a cycle initiated by the PCI1520 on the PCI bus is terminated by a  
master abort.  
13  
12  
11  
MABORT  
TABT_REC  
TABT_SIG  
RC  
RC  
RC  
R
Received target abort. Bit 12 is set when a cycle initiated by the PCI1520 on the PCI bus is terminated by a target  
abort.  
Signaled target abort. Bit 11 is set by the PCI1520 when it terminates a transaction on the PCI bus with a target  
abort.  
DEVSEL timing. These bits encode the timing of DEVSEL and are hardwired 01b, indicating that the PCI1520  
asserts PCI_SPEED at a medium speed on nonconfiguration cycle accesses.  
10−9 PCI_SPEED  
Data parity error detected.  
0 = The conditions for setting bit 8 have not been met.  
1 = A data parity error occurred, and the following conditions were met:  
a. PERR was asserted by any PCI device including the PCI1520.  
b. The PCI1520 was the bus master during the data parity error.  
c. The parity error response bit is set in the command register (PCI offset 04h, see Section 4.4).  
8
DATAPAR  
RC  
Fast back-to-back capable. The PCI1520 cannot accept fast back-to-back transactions; therefore, bit 7 is  
hardwired to 0.  
7
6
5
FBB_CAP  
UDF  
R
R
R
User-definable feature support. The PCI1520 does not support the user-definable features; therefore, bit 6 is  
hardwired to 0.  
66-MHz capable. The PCI1520 operates at a maximum PCLK frequency of 33 MHz; therefore, bit 5 is hardwired  
to 0.  
66MHZ  
Capabilities list. Bit 4 returns 1 when read. This bit indicates that capabilities in addition to standard PCI  
capabilities are implemented. The linked list of PCI power-management capabilities is implemented in this  
function.  
4
CAPLIST  
RSVD  
R
R
3−0  
Reserved. Bits 3−0 return 0s when read.  
4−4  
 
4.6 Revision ID Register  
The revision ID register indicates the silicon revision of the PCI1520.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Revision ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Offset:  
Type:  
Revision ID  
08h (functions 0, 1)  
Read-only  
01h  
Default:  
4.7 PCI Class Code Register  
The class code register recognizes PCI1520 functions 0 and 1 as a bridge device (06h) and a CardBus bridge device  
(07h), with a 00h programming interface.  
Bit  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Name  
PCI class code  
Base class  
Subclass  
Programming interface  
Type  
R
0
R
0
R
0
R
0
R
0
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Default  
Register:  
Offset:  
Type:  
PCI class code  
09h (functions 0, 1)  
Read-only  
Default:  
06 0700h  
4.8 Cache Line Size Register  
The cache line size register is programmed by host software to indicate the system cache line size.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Cache line size  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Cache line size  
0Ch (functions 0, 1)  
Read/Write  
00h  
Default:  
4−5  
 
4.9 Latency Timer Register  
The latency timer register specifies the latency time for the PCI1520 in units of PCI clock cycles. When the PCI1520  
is a PCI bus initiator and asserts FRAME, the latency timer begins counting from zero. If the latency timer expires  
before the PCI1520 transaction has terminated, then the PCI1520 terminates the transaction when its GNT is  
deasserted. This register is separate for each of the two PCI1520 functions. This allows platforms to prioritize use  
of the PCI bus by the two PCI1520 functions.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Latency timer  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Latency timer  
0Dh  
Read/Write  
00h  
Default:  
4.10 Header Type Register  
This register returns 82h when read, indicating that the PCI1520 function 0 and 1 configuration spaces adhere to the  
CardBus bridge PCI header. The CardBus bridge PCI header ranges from PCI register 000h to 7Fh, and 80h to FFh  
is user-definable extension registers.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Header type  
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Offset:  
Type:  
Header type  
0Eh (functions 0, 1)  
Read/Write  
82h  
Default:  
4.11 BIST Register  
Because the PCI1520 does not support a built-in self-test (BIST), this register returns the value of 00h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
BIST  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
BIST  
0Fh (functions 0, 1)  
Read-only  
00h  
Default:  
4−6  
 
4.12 CardBus Socket/ExCA Base-Address Register  
The CardBus socket/ExCA base-address register is programmed with a base address referencing the CardBus  
socket registers and the memory-mapped ExCA register set. Bits 31−12 are read/write and allow the base address  
to be located anywhere in the 32-bit PCI memory address space on a 4-Kbyte boundary. Bits 11−0 are read-only,  
returning 0s when read. When software writes all 1s to this register, the value read back is FFFF F000h, indicating  
that at least 4 Kbytes of memory address space are required. The CardBus registers start at offset 000h, and the  
memory-mapped ExCA registers begin at offset 800h. Because this register is not shared by functions 0 and 1,  
mapping of each socket control is performed separately.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
CardBus socket/ExCA base-address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus socket/ExCA base-address  
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
CardBus socket/ExCA base-address  
10h  
Read-only, Read/Write  
0000 0000h  
Default:  
4.13 Capability Pointer Register  
The capability pointer register provides a pointer into the PCI configuration header where the PCI  
power-management register block resides. PCI header doublewords at A0h and A4h provide the power-management  
(PM) registers. Each socket has its own capability pointer register. This register returns A0h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability pointer  
R
1
R
0
R
1
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Capability pointer  
14h  
Read-only  
A0h  
Default:  
4−7  
 
4.14 Secondary Status Register  
The secondary status register is compatible with the PCI-to-PCI bridge secondary status register and indicates  
CardBus-related device information to the host system. This register is very similar to the status register (offset 06h,  
see Section 4.5); status bits are cleared by writing a 1. See Table 4−5 for a complete description of the register  
contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Secondary status  
RC  
0
RC  
0
RC  
0
RC  
0
RC  
0
R
0
R
1
RC  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Secondary status  
16h  
Read-only, Read/Clear  
0200h  
Default:  
Table 4−5. Secondary Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15  
CBPARITY  
RC  
Detected parity error. Bit 15 is set when a CardBus parity error is detected (either address or data).  
Signaled system error. Bit 14 is set when CSERR is signaled by a CardBus card. The PCI1520 does not  
assert CSERR.  
14  
13  
CBSERR  
CBMABORT  
REC_CBTA  
SIG_CBTA  
CB_SPEED  
RC  
RC  
RC  
RC  
R
Received master abort. Bit 13 is set when a cycle initiated by the PCI1520 on the CardBus bus has been  
terminated by a master abort.  
Received target abort. Bit 12 is set when a cycle initiated by the PCI1520 on the CardBus bus is terminated  
by a target abort.  
12  
Signaled target abort. Bit 11 is set by the PCI1520 when it terminates a transaction on the CardBus bus  
with a target abort.  
11  
CDEVSEL timing. These bits encode the timing of CDEVSEL and are hardwired 01b, indicating that the  
PCI1520 asserts CB_SPEED at a medium speed.  
10−9  
CardBus data parity error detected.  
0 = The conditions for setting bit 8 have not been met.  
1 = A data parity error occurred and the following conditions were met:  
a. CPERR was asserted on the CardBus interface.  
b. The PCI1520 was the bus master during the data parity error.  
c. The parity error response bit is set in the bridge control.  
8
CB_DPAR  
RC  
Fast back-to-back capable. The PCI1520 cannot accept fast back-to-back transactions; therefore, bit 7  
is hardwired to 0.  
7
6
CBFBB_CAP  
CB_UDF  
R
R
User-definable feature support. The PCI1520 does not support user-definable features; therefore, bit 6  
is hardwired to 0.  
66-MHz capable. The PCI1520 CardBus interface operates at a maximum CCLK frequency of 33 MHz;  
therefore, bit 5 is hardwired to 0.  
5
CB66MHZ  
RSVD  
R
R
4−0  
Reserved. Bits 4−0 return 0s when read.  
4−8  
 
4.15 PCI Bus Number Register  
This register is programmed by the host system to indicate the bus number of the PCI bus to which the PCI1520 is  
connected. The PCI1520 uses this register in conjunction with the CardBus bus number and subordinate bus number  
registers to determine when to forward PCI configuration cycles to its secondary buses.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI bus number  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
PCI bus number  
18h (functions 0, 1)  
Read/Write  
00h  
Default:  
4.16 CardBus Bus Number Register  
This register is programmed by the host system to indicate the bus number of the CardBus bus to which the PCI1520  
is connected. The PCI1520 uses this register in conjunction with the PCI bus number and subordinate bus number  
registers to determine when to forward PCI configuration cycles to its secondary buses. This register is separate for  
each PCI1520 controller function.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus bus number  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
CardBus bus number  
19h  
Read/Write  
00h  
Default:  
4.17 Subordinate Bus Number Register  
This register is programmed by the host system to indicate the highest-numbered bus below the CardBus bus. The  
PCI1520 uses this register in conjunction with the PCI bus number and CardBus bus number registers to determine  
when to forward PCI configuration cycles to its secondary buses. This register is separate for each CardBus controller  
function.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subordinate bus number  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Subordinate bus number  
1Ah  
Read/Write  
00h  
Default:  
4−9  
 
4.18 CardBus Latency Timer Register  
This register is programmed by the host system to specify the latency timer for the PCI1520 CardBus interface in units  
of CCLK cycles. When the PCI1520 is a CardBus initiator and asserts CFRAME, the CardBus latency timer begins  
counting. If the latency timer expires before the PCI1520 transaction has terminated, then the PCI1520 terminates  
the transaction at the end of the next data phase. A recommended minimum value for this register is 40h, which allows  
most transactions to be completed.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus latency timer  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
CardBus latency timer  
1Bh (functions 0, 1)  
Read/Write  
Default:  
00h  
4.19 Memory Base Registers 0, 1  
The memory base registers indicate the lower address of a PCI memory address range. These registers are used  
by the PCI1520 to determine when to forward a memory transaction to the CardBus bus and when to forward a  
CardBus cycle to PCI. Bits 31−12 of these registers are read/write and allow the memory base to be located anywhere  
in the 32-bit PCI memory space on 4-Kbyte boundaries. Bits 11−0 are read-only and always return 0s. Write  
transactions to these bits have no effect. Bits 8 and 9 of the bridge control register specify whether memory windows  
0 and 1 are prefetchable or nonprefetchable. The memory base register or the memory limit register must be nonzero  
for the PCI1520 to claim any memory transactions through CardBus memory windows (that is, these windows are  
not enabled by default to pass the first 4 Kbytes of memory to CardBus).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Memory base registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Memory base registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Memory base registers 0, 1  
1Ch, 24h  
Read-only, Read/Write  
0000 0000h  
Default:  
4−10  
 
4.20 Memory Limit Registers 0, 1  
The memory limit registers indicate the upper address of a PCI memory address range. These registers are used  
by the PCI1520 to determine when to forward a memory transaction to the CardBus bus and when to forward a  
CardBus cycle to PCI. Bits 31−12 of these registers are read/write and allow the memory base to be located anywhere  
in the 32-bit PCI memory space on 4-Kbyte boundaries. Bits 11−0 are read-only and always return 0s. Write  
transactions to these bits have no effect. Bits 8 and 9 of the bridge control register specify whether memory windows  
0 and 1 are prefetchable or nonprefetchable. The memory base register or the memory limit register must be nonzero  
for the PCI1520 to claim any memory transactions through CardBus memory windows; that is, these windows are  
not enabled by default to pass the first 4 Kbytes of memory to CardBus.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Memory limit registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Memory limit registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Memory limit registers 0, 1  
20h, 28h  
Read-only, Read/Write  
0000 0000h  
Default:  
4.21 I/O Base Registers 0, 1  
The I/O base registers indicate the lower address of a PCI I/O address range. These registers are used by the  
PCI1520 to determine when to forward an I/O transaction to the CardBus bus and when to forward a CardBus cycle  
to the PCI bus. The lower 16 bits of this register locate the bottom of the I/O window within a 64-Kbyte page, and the  
upper 16 bits (31−16) are a page register which locates this 64-Kbyte page in 32-bit PCI I/O address space. Bits 31−2  
are read/write. Bits 1 and 0 are read-only and always return 0s, forcing I/O windows to be aligned on a natural  
doubleword boundary.  
NOTE: Either the I/O base register or the I/O limit register must be nonzero to enable any I/O  
transactions.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
I/O base registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
I/O base registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
0
Register:  
Offset:  
Type:  
I/O base registers 0, 1  
2Ch, 34h  
Read-only, Read/Write  
0000 0000h  
Default:  
4−11  
 
4.22 I/O Limit Registers 0, 1  
The I/O limit registers indicate the upper address of a PCI I/O address range. These registers are used by the PCI1520  
to determine when to forward an I/O transaction to the CardBus bus and when to forward a CardBus cycle to PCI.  
The lower 16 bits of this register locate the top of the I/O window within a 64-Kbyte page, and the upper 16 bits are  
a page register that locates this 64-Kbyte page in 32-bit PCI I/O address space. Bits 15−2 are read/write and allow  
the I/O limit address to be located anywhere in the 64-Kbyte page (indicated by bits 31−16 of the appropriate I/O base)  
on doubleword boundaries.  
Bits 31−16 are read-only and always return 0s when read. The page is set in the I/O base register. Bits 1 and 0 are  
read-only and always return 0s, forcing I/O windows to be aligned on a natural doubleword boundary. Write  
transactions to read-only bits have no effect. The PCI1520 assumes that the lower 2 bits of the limit address are 1s.  
NOTE: The I/O base or the I/O limit register must be nonzero to enable an I/O transaction.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
I/O limit registers 0, 1  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
I/O limit registers 0, 1  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
R
0
Register:  
Offset:  
Type:  
I/O limit registers 0, 1  
30h, 38h  
Read-only, Read/Write  
0000 0000h  
Default:  
4.23 Interrupt Line Register  
The interrupt line register communicates interrupt line routing information. Each PCI1520 function has an interrupt  
line register.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt line  
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
RW  
1
Register:  
Offset:  
Type:  
Interrupt line  
3Ch  
Read/Write  
FFh  
Default:  
4−12  
 
4.24 Interrupt Pin Register  
The value read from the interrupt pin register is function dependent and depends on the interrupt signaling mode,  
selected through bits 2−1 (INTMODE field) of the device control register (PCI offset 92h, see Section 4.33) and the  
state of bit 29 (INTRTIE) in the system control register (PCI offset 80h, see Section 4.29). When the INTRTIE bit is  
set, this register reads 01h (INTA) for both functions. See Table 4−6 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt pin  
R
0
R
0
R
0
R
0
R
0
R
0
R
X
R
X
Register:  
Offset:  
Type:  
Interrupt pin  
3Dh  
Read-only  
0Xh  
Default:  
Table 4−6. Interrupt Pin Register Cross-Reference  
INTPIN  
INTRTIE BIT  
FUNCTION 0  
FUNCTION 1  
0
1
01h  
01h  
02h  
01h  
4−13  
 
4.25 Bridge Control Register  
The bridge control register provides control over various PCI1520 bridging functions. Some bits in this register are  
global and are accessed only through function 0. See Table 4−7 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Bridge control  
R
0
R
0
R
0
R
0
R
0
RW  
0
RW  
1
RW  
1
RW  
0
RW  
1
RW  
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Bridge control  
3Eh (functions 0, 1)  
Read-only, Read/Write  
0340h  
Default:  
Table 4−7. Bridge Control Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
15−11  
RSVD  
R
Reserved. Bits 15−11 return 0s when read.  
Write posting enable. Enables write posting to and from the CardBus sockets. Write posting enables  
posting of write data on burst cycles. Operating with write posting disabled inhibits performance on burst  
cycles. Note that burst write data can be posted, but various write transactions may not. Bit 10 is socket  
dependent and is not shared between functions 0 and 1.  
10  
9
POSTEN  
PREFETCH1  
PREFETCH0  
INTR  
RW  
RW  
RW  
RW  
RW  
RW  
Memory window 1 type. Bit 9 specifies whether or not memory window 1 is prefetchable. This bit is socket  
dependent. Bit 9 is encoded as:  
0 = Memory window 1 is nonprefetchable.  
1 = Memory window 1 is prefetchable (default).  
Memory window 0 type. Bit 8 specifies whether or not memory window 0 is prefetchable. This bit is  
encoded as:  
8
0 = Memory window 0 is nonprefetchable.  
1 = Memory window 0 is prefetchable (default).  
PCI interrupt − IREQ routing enable. Bit 7 selects whether PC Card functional interrupts are routed to PCI  
interrupts or the IRQ specified in the ExCA registers.  
7
0 = Functional interrupts routed to PCI interrupts (default)  
1 = Functional interrupts routed by ExCAs  
CardBus reset. When bit 6 is set, CRST is asserted on the CardBus interface. CRST can also be asserted  
by passing a PRST assertion to CardBus.  
0 = CRST deasserted  
6
CRST  
1 = CRST asserted (default)  
Master abort mode. Bit 5 controls how the PCI1520 responds to a master abort when the PCI1520 is an  
initiator on the CardBus interface. This bit is common between each socket.  
0 = Master aborts not reported (default)  
5
MABTMODE  
1 = Signal target abort on PCI and SERR (if enabled)  
4
RSVD  
R
Reserved. Bit 4 returns 0 when read.  
VGA enable. Bit 3 affects how the PCI1520 responds to VGA addresses. When this bit is set, accesses  
to VGA addresses are forwarded.  
3
VGAEN  
RW  
ISA mode enable. Bit 2 affects how the PCI1520 passes I/O cycles within the 64-Kbyte ISA range. This  
bit is not common between sockets. When this bit is set, the PCI1520 does not forward the last 768 bytes  
of each 1K I/O range to CardBus.  
2
ISAEN  
RW  
RW  
CSERR enable. Bit 1 controls the response of the PCI1520 to CSERR signals on the CardBus bus. This  
bit is common between the two sockets.  
1
CSERREN  
0 = CSERR is not forwarded to PCI SERR.  
1 = CSERR is forwarded to PCI SERR.  
CardBus parity error response enable. Bit 0 controls the response of the PCI1520 to CardBus parity errors.  
This bit is common between the two sockets.  
0
CPERREN  
RW  
0 = CardBus parity errors are ignored.  
1 = CardBus parity errors are reported using CPERR.  
This bit is global and is accessed only through function 0.  
4−14  
 
4.26 Subsystem Vendor ID Register  
The subsystem vendor ID register is used for system and option-card identification purposes and may be required  
for certain operating systems. This register is read-only or read/write, depending on the setting of bit 5 (SUBSYSRW)  
in the system control register (PCI offset 80h, see Section 4.29).  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Subsystem vendor ID  
40h (functions 0, 1)  
Read-only (Read/Write if enabled by SUBSYSRW)  
0000h  
Default:  
4.27 Subsystem ID Register  
The subsystem ID register is used for system and option-card identification purposes and may be required for certain  
operating systems. This register is read-only or read/write, depending on the setting of bit 5 (SUBSYSRW) in the  
system control register (PCI offset 80h, see Section 4.29).  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Subsystem ID  
42h (functions 0, 1)  
Read-only (Read/Write if enabled by SUBSYSRW)  
0000h  
Default:  
4.28 PC Card 16-Bit I/F Legacy-Mode Base Address Register  
The PCI1520 supports the index/data scheme of accessing the ExCA registers, which are mapped by this register.  
An address written to this register is the address for the index register and the address + 1 is the data address. Using  
this access method, applications requiring index/data ExCA access can be supported. The base address can be  
mapped anywhere in 32-bit I/O space on a word boundary; hence, bit 0 is read-only, returning 1 when read. As  
specified in the PCI to PCMCIA CardBus Bridge Register Description (Yenta), this register is shared by functions 0  
and 1. See Section 5, ExCA Compatibility Registers, for register offsets.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
PC Card 16-bit I/F legacy-mode base address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PC Card 16-bit I/F legacy-mode base address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
1
Register:  
Offset:  
Type:  
PC Card 16-bit I/F legacy-mode base address  
44h (functions 0, 1)  
Read-only, Read/Write  
Default:  
0000 0001h  
4−15  
 
4.29 System Control Register  
System-level initializations are performed by programming this doubleword register. Some of the bits are global and  
are written only through function 0. See Table 4−8 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
System control  
RW  
0
RW  
0
RW  
0
R
0
RW  
0
RW  
0
RC  
0
RW  
0
R
0
RW  
1
RW  
0
RW  
0
RW  
0
RW  
1
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
System control  
RW  
1
RW  
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
RW  
1
RW  
1
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
System control  
80h (functions 0, 1)  
Read-only, Read/Write, Read/Clear  
0044 9060h  
Default:  
4−16  
 
Table 4−8. System Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Serialized PCI interrupt routing step. Bits 31 and 30 configure the serialized PCI interrupt stream signaling  
and accomplish an even distribution of interrupts signaled on the four PCI interrupt slots. Bits 31 and 30 are  
global to all PCI1520 functions.  
31−30  
SER_STEP  
RW  
00 = INTA/INTB signal in INTA/INTB IRQSER slots  
01 = INTA/INTB signal in INTB/INTC IRQSER slots  
10 = INTA/INTB signal in INTC/INTD IRQSER slots  
11 = INTA/INTB signal in INTD/INTA IRQSER slots  
Tie internal PCI interrupts. When this bit is set, the INTA and INTB signals are tied together internally and are  
signaled as INTA. INTA can then be shifted by using bits 31−30 (SER_STEP). This bit is global to all PCI1520  
functions.  
When configuring the PCI1520 functions to share PCI interrupts, multifunction terminal MFUNC3 must be  
configured as IRQSER prior to setting the INTRTIE bit.  
29  
INTRTIE  
RSVD  
RW  
R
28  
Reserved. Bit 28 returns 0 when read.  
P2C power switch clock. The PCI1520 CLOCK signal is used to clock the serial interface power switch and  
the internal state machine. The default state for bit 27 is 0, requiring an external clock source provided to the  
CLOCK terminal (terminal number F15 for the GHK package or terminal number 154 for the PDV package).  
Bit 27 can be set to 1, allowing the internal oscillator to provide the clock signal.  
0 = CLOCK provided externally, input to PCI1520 (default)  
27  
P2CCLK  
RW  
1 = CLOCK generated by internal oscillator and driven by PCI1520.  
SMI interrupt routing. Bit 26 is shared between functions 0 and 1, and selects whether IRQ2 or CSC is signaled  
when a write occurs to power a PC Card socket.  
26  
25  
SMIROUTE  
SMISTATUS  
RW  
RC  
0 = PC Card power change interrupts routed to IRQ2 (default)  
1 = A CSC interrupt is generated on PC Card power changes.  
SMI interrupt status. This socket-dependent bit is set when bit 24 (SMIENB) is set and a write occurs to set  
the socket power. Writing a 1 to bit 25 clears the status.  
0 = SMI interrupt signaled (default)  
1 = SMI interrupt not signaled  
SMI interrupt mode enable. When bit 24 is set and a write to the socket power control occurs, the SMI interrupt  
signaling is enabled and generates an interrupt. This bit is shared and defaults to 0 (disabled).  
24  
SMIENB  
RSVD  
RW  
R
23  
Reserved. Bit 23 returns 0 when read.  
CardBus reserved terminals signaling. When a CardBus card is inserted and bit 22 is set, the RSVD CardBus  
terminals are driven low. When this bit is 0, these terminals are placed in a high-impedance state.  
0 = Place CardBus RSVD terminals in a high-impedance state.  
22  
21  
CBRSVD  
RW  
RW  
1 = Drive Cardbus RSVD terminals low (default).  
V
protection enable. Bit 21 is socket dependent.  
CC  
0 = V  
VCCPROT  
protection enabled for 16-bit cards (default)  
protection disabled for 16-bit cards  
CC  
CC  
1 = V  
Reduced zoomed video enable. When this bit is enabled, terminals A25−A22 of the card interface for PC  
Card-16 cards are placed in the high-impedance state. This bit should not be set for normal ZV operation. This  
bit is encoded as:  
20  
REDUCEZV  
RSVD  
RW  
0 = Reduced zoomed video disabled (default)  
1 = Reduced zoomed video enabled  
19−16  
RW  
RW  
Reserved. Do not change the default value.  
Memory read burst enable downstream. When bit 15 is set, memory read transactions are allowed to burst  
downstream.  
MRBURSTD  
N
15  
14  
0 = Downstream memory read burst is disabled.  
1 = Downstream memory read burst is enabled (default).  
Memory read burst enable upstream. When bit 14 is set, the PCI1520 allows memory read transactions to  
burst upstream.  
MRBURSTU  
P
RW  
0 = Upstream memory read burst is disabled (default).  
1 = Upstream memory read burst is enabled.  
Socket activity status. When set, bit 13 indicates access has been performed to or from a PC card and is  
cleared upon read of this status bit. This bit is socket-dependent.  
0 = No socket activity (default)  
SOCACTIV  
E
13  
12  
R
R
1 = Socket activity  
RSVD  
Reserved. Bit 12 returns 1 when read.  
This bit is global and is accessed only through function 0.  
4−17  
 
Table 4−8. System Control Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Power stream in progress status bit. When set, bit 11 indicates that a power stream to the power switch  
is in progress and a powering change has been requested. This bit is cleared when the power stream is  
complete.  
11  
PWRSTREAM  
R
0 = Power stream is complete and delay has expired.  
1 = Power stream is in progress.  
Power-up delay in progress status. When set, bit 10 indicates that a power-up stream has been sent to  
the power switch and proper power may not yet be stable. This bit is cleared when the power-up delay has  
expired.  
10  
DELAYUP  
R
R
Power-down delay in progress status. When set, bit 9 indicates that a power-down stream has been sent  
to the power switch and proper power may not yet be stable. This bit is cleared when the power-down delay  
has expired.  
9
DELAYDOWN  
Interrogation in progress. When set, bit 8 indicates an interrogation is in progress and clears when  
interrogation completes. This bit is socket dependent.  
0 = Interrogation not in progress (default)  
8
INTERROGATE  
R
1 = Interrogation in progress  
7
6
RSVD  
R
Reserved. Bit 7 returns 0 when read.  
Power savings mode enable. When this bit is set, if a CB card is inserted, idle, and without a CB clock,  
then the applicable CB state machine will not be clocked.  
PWRSAVINGS  
RW  
Subsystem ID (PCI offset 42h, see Section 4.27), subsystem vendor ID (PCI offset 40H, see  
Section 4.26), ExCA identification and revision (ExCA offset 00h/40h/800h, see Section 5.1) registers  
read/write enable. Bit 5 is shared by functions 0 and 1.  
5
SUBSYSRW  
RW  
0 = Subsystem ID, subsystem vendor ID, ExCA identification and revision registers are read/write.  
1 = Subsystem ID, subsystem vendor ID, ExCA identification and revision registers are read-only  
(default).  
CardBus data parity SERR signaling enable  
0 = CardBus data parity not signaled on PCI SERR  
1 = CardBus data parity signaled on PCI SERR  
4
CB_DPAR  
RSVD  
RW  
RW  
RW  
3
Reserved. Do not change the default value.  
ExCA power-control bit.  
0 = Enables 3.3 V  
1 = Enables 5 V  
2
EXCAPOWER  
Keep clock. This bit works with PCI and CB CLKRUN protocols.  
1
KEEPCLK  
RIMUX  
RW  
RW  
0 = Allows normal functioning of both CLKRUN protocols (default)  
1 = Does not allow CB clock or PCI clock to be stopped using the CLKRUN protocols  
RI_OUT/PME multiplex enable.  
0 = RI_OUT and PME are both routed to the RI_OUT/PME terminal. If both functions are are enabled  
at the same time, the terminal becomes RI_OUT only and PME assertions are not seen.  
1 = Only PME is routed to the RI_OUT/PME terminal.  
0
This bit is global and is accessed only through function 0.  
4−18  
4.30 Multifunction Routing Register  
The multifunction routing register is used to configure the MFUNC0−MFUNC6 terminals. These terminals may be  
configured for various functions. All multifunction terminals default to the general-purpose input configuration. This  
register is intended to be programmed once at power-on initialization. The default value for this register can also be  
loaded through a serial bus EEPROM. See Table 4−9 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Multifunction routing  
R
0
R
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Multifunction routing  
RW  
0
RW  
0
RW  
0
RW  
1
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Multifunction routing  
8Ch (functions 0, 1)  
Read-only, Read/Write  
0000 1000h  
Default:  
Table 4−9. Multifunction Routing Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31−28  
RSVD  
R
Bits 31−28 return 0s when read.  
Multifunction terminal 6 configuration. These bits control the internal signal mapped to the MFUNC6 terminal  
as follows:  
0000 = RSVD  
0100 = IRQ4  
0101 = IRQ5  
0110 = IRQ6  
0111 = IRQ7  
1000 = IRQ8  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = IRQ12  
1101 = IRQ13  
1110 = IRQ14  
1111 = IRQ15  
27−24  
23−20  
MFUNC6  
MFUNC5  
RW  
RW  
0001 = CLKRUN  
0010 = IRQ2  
0011 = IRQ3  
Multifunction terminal 5 configuration. These bits control the internal signal mapped to the MFUNC5 terminal  
as follows:  
0000 = GPI4  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL1  
1000 = CAUDPWM  
1001 = D3_STAT  
1010 = IRQ10  
1100 = LEDA1  
1101 = LED_SKT  
1110 = GPE  
0001 = GPO4  
0010 = PCGNT  
0011 = IRQ3  
1011 = IRQ11  
1111 = IRQ15  
Multifunction terminal 4 configuration. These bits control the internal signal mapped to the MFUNC4 terminal  
as follows:  
NOTE: When the serial bus mode is implemented by pulling down the LATCH terminal, the MFUNC4 terminal  
provides the SCL signaling.  
19−16  
MFUNC4  
RW  
0000 = GPI3  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL1  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = RI_OUT  
1101 = LED_SKT  
1110 = GPE  
0001 = GPO3  
0010 = LOCK PCI  
0011 = IRQ3  
1111 = D3_STAT  
Multifunction terminal 3 configuration. These bits control the internal signal mapped to the MFUNC3 terminal  
as follows:  
0000 = RSVD  
0001 = IRQSER  
0010 = IRQ2  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = IRQ6  
0111 = IRQ7  
1000 = IRQ8  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = IRQ12  
1101 = IRQ13  
1110 = IRQ14  
1111 = IRQ15  
15−12  
11−8  
MFUNC3  
MFUNC2  
RW  
RW  
Multifunction terminal 2 configuration. These bits control the internal signal mapped to the MFUNC2 terminal  
as follows:  
0000 = GPI2  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1100 = RI_OUT  
1101 = LEDA2  
1110 = GPE  
0001 = GPO2  
0010 = PCREQ  
0011 = IRQ3  
1011 = D3_STAT  
1111 = IRQ7  
4−19  
 
Table 4−9. Multifunction Routing Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Multifunction terminal 1 configuration. These bits control the internal signal mapped to the MFUNC1 terminal  
as follows:  
NOTE: When the serial bus mode is implemented by pulling down the LATCH terminal, the MFUNC1 terminal  
provides the SDA signaling.  
7−4  
MFUNC1  
RW  
RW  
0000 = GPI1  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = LEDA1  
1101 = LEDA2  
1110 = GPE  
0001 = GPO1  
0010 = INTB  
0011 = IRQ3  
1111 = IRQ15  
Multifunction terminal 0 configuration. These bits control the internal signal mapped to the MFUNC0 terminal  
as follows:  
0000 = GPI0  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = LEDA1  
1101 = LEDA2  
1110 = GPE  
3−0  
MFUNC0  
0001 = GPO0  
0010 = INTA  
0011 = IRQ3  
1111 = IRQ15  
Default value  
4−20  
4.31 Retry Status Register  
The retry status register enables the retry timeout counters and displays the retry expiration status. The flags are set  
15  
when the PCI1520 retries a PCI or CardBus master request and the master does not return within 2 PCI clock  
cycles. The flags are cleared by writing a 1 to the bit. These bits are expected to be incorporated into the PCI  
command, PCI status, and bridge control registers by the PCI SIG. Access this register only through function 0. See  
Table 4−10 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Retry status  
RW  
1
RW  
1
RC  
0
R
0
RC  
0
R
0
RC  
0
R
0
Register:  
Offset:  
Type:  
Retry status  
90h (functions 0, 1)  
Read-only, Read/Write, Read/Clear  
C0h  
Default:  
Table 4−10. Retry Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PCI retry timeout counter enable. Bit 7 is encoded:  
0 = PCI retry counter disabled  
7
PCIRETRY  
RW  
1 = PCI retry counter enabled (default)  
CardBus retry timeout counter enable. Bit 6 is encoded:  
0 = CardBus retry counter disabled  
6
CBRETRY  
RW  
1 = CardBus retry counter enabled (default)  
CardBus target B retry expired. Write a 1 to clear bit 5.  
0 = Inactive (default)  
5
TEXP_CBB  
RSVD  
RC  
R
1 = Retry has expired  
4
Reserved. Bit 4 returns 0 when read.  
CardBus target A retry expired. Write a 1 to clear bit 3.  
0 = Inactive (default)  
3
TEXP_CBA  
RSVD  
RC  
R
1 = Retry has expired.  
2
1
0
Reserved. Bit 2 returns 0 when read.  
PCI target retry expired. Write a 1 to clear bit 1.  
0 = Inactive (default)  
TEXP_PCI  
RC  
1 = Retry has expired.  
RSVD  
R
Reserved. Bit 0 returns 0 when read.  
This bit is global and is accessed only through function 0.  
4−21  
 
4.32 Card Control Register  
The card control register is provided for PCI1130 compatibility. RI_OUT is enabled through this register, and the  
enable bit is shared between functions 0 and 1. See Table 4−11 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Card control  
RW  
0
RW  
0
RW  
0
R
0
R
0
RW  
0
RW  
0
RC  
0
Register:  
Offset:  
Type:  
Card control  
91h  
Read-only, Read/Write, Read/Clear  
00h  
Default:  
Table 4−11. Card Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Ring indicate output enable.  
0 = Disables any routing of RI_OUT signal (default)  
1 = Enables RI_OUT signal for routing to the RI_OUT/PME terminal, when RIMUX is set to 0,  
and for routing to MFUNC2 or MFUNC4  
7
RIENB  
RW  
Compatibility ZV mode enable. When set, the corresponding PC Card socket interface ZV terminals enter  
a high-impedance state. This bit defaults to 0.  
6
ZVENABLE  
PORT_SEL  
RW  
RW  
Port select. This bit controls the priority for the ZVSEL0 and ZVSEL1 signaling if bit 6 (ZVENABLE) is set  
in both functions.  
5
0 = Socket 0 takes priority, as signaled through ZVSEL0, when both sockets are in ZV mode.  
1 = Socket 1 takes priority, as signaled through ZVSEL1, when both sockets are in ZV mode.  
4−3  
2
RSVD  
R
Reserved. Bits 4 and 3 return 0 when read.  
CardBus audio-to-IRQMUX. When set, the CAUDIO CardBus signal is routed to the corresponding  
multifunction terminal which may be configured for CAUDPWM. When both socket 0 and 1 functions have  
AUD2MUX set, socket 0 takes precedence.  
AUD2MUX  
RW  
Speaker out enable. When bit 1 is set, SPKR on the PC Card is enabled and is routed to SPKROUT. The  
SPKR signal from socket 0 is XORed with the SPKR signal from socket 1 and sent to SPKROUT. The  
SPKROUT terminal drives data only when the SPKROUTEN bit of either function is set. This bit is encoded  
as:  
1
SPKROUTEN  
RW  
0 = SPKR to SPKROUT not enabled  
1 = SPKR to SPKROUT enabled  
Interrupt flag. Bit 0 is the interrupt flag for 16-bit I/O PC Cards and for CardBus cards. Bit 0 is set when a  
functional interrupt is signaled from a PC Card interface and is socket dependent (that is, not global). Write  
back a 1 to clear this bit.  
0
IFG  
RC  
0 = No PC Card functional interrupt detected (default).  
1 = PC Card functional interrupt detected.  
This bit is global and is accessed only through function 0.  
4−22  
 
4.33 Device Control Register  
The device control register is provided for PCI1130 compatibility and contains bits that are shared between functions  
0 and 1. The interrupt mode select is programmed through this register which is composed of PCI1520 global bits.  
The socket-capable force bits are also programmed through this register. See Table 4−12 for a complete description  
of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device control  
RW  
0
RW  
1
RW  
1
R
0
RW  
0
RW  
1
RW  
1
RW  
0
Register:  
Offset:  
Type:  
Device control  
92h (functions 0, 1)  
Read-only, Read/Write  
66h  
Default:  
Table 4−12. Device Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Socket power lock bit. When this bit is set to 1, software cannot power down the PC Card socket while  
in D3. This may be necessary to support wake on LAN or RING if the operating system is programmed  
to power down a socket when the CardBus controller is placed in the D3 state.  
7
SKTPWR_LOCK  
RW  
3-V socket capable force  
0 = Not 3-V capable  
6
3VCAPABLE  
RW  
1 = 3-V capable (default)  
5
IO16V2  
RSVD  
TEST  
RW  
R
Diagnostic bit. This bit defaults to 1.  
Reserved. Bit 4 returns 0 when read.  
TI test. Only a 0 should be written to bit 3.  
4
3
RW  
Interrupt signaling mode. Bits 2 and 1 select the interrupt signaling mode. The interrupt signaling  
mode bits are encoded:  
00 = Parallel PCI interrupts only  
01 = Parallel IRQ and parallel PCI interrupts  
2−1  
INTMODE  
RW  
10 = IRQ serialized interrupts and parallel PCI interrupt  
11 = IRQ and PCI serialized interrupts (default)  
0
RSVD  
RW  
Reserved. Bit 0 is reserved for test purposes. Only 0 should be written to this bit.  
This bit is global and is accessed only through function 0.  
4−23  
 
4.34 Diagnostic Register  
The diagnostic register is provided for internal TI test purposes. It is a read/write register, but only 0s should be written  
to it. See Table 4−13 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Diagnostic  
RW  
0
R
1
RW  
1
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Diagnostic  
93h (functions 0, 1)  
Read/Write  
60h  
Default:  
Table 4−13. Diagnostic Register Description  
FUNCTION  
BIT  
SIGNAL  
TRUE_VAL  
RSVD  
TYPE  
RW  
R
This bit defaults to 0. This bit is encoded as:  
7
0 = Reads true values in PCI vendor ID and PCI device ID registers (default)  
1 = Reads all 1s in reads from the PCI vendor ID and PCI device ID registers  
6
Reserved. Bit 6 returns 1 when read.  
CSC interrupt routing control  
0 = CSC interrupts routed to PCI if ExCA 803 bit 4 = 1  
1 = CSC interrupts routed to PCI if ExCA 805 bits 7−4 = 0000b (default)  
In this case, the setting of ExCA 803 bit 4 is a don’t care.  
5
CSC  
RW  
4
3
2
1
DIAG4  
DIAG3  
DIAG2  
DIAG1  
RW  
RW  
RW  
RW  
Diagnostic RETRY_DIS. Delayed transaction disable.  
Diagnostic RETRY_EXT. Extends the latency from 16 to 64.  
10  
15  
.
Diagnostic DISCARD_TIM_SEL_CB. Set = 2 , reset = 2  
10  
15  
.
Diagnostic DISCARD_TIM_SEL_PCI. Set = 2 , reset = 2  
Standardized zoomed video register model enable.  
0
STDZVEN  
RW  
0 = Enable the standardized zoomed video register model (default).  
1 = Disable the standardized zoomed video register model.  
This bit is global and is accessed only through function 0.  
4−24  
 
4.35 Capability ID Register  
The capability ID register identifies the linked list item as the register for PCI power management. The register returns  
01h when read, which is the unique ID assigned by the PCI SIG for the PCI location of the capabilities pointer and  
the value.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Offset:  
Type:  
Capability ID  
A0h  
Read-only  
01h  
Default:  
4.36 Next-Item Pointer Register  
The next-item pointer register indicates the next item in the linked list of the PCI power-management capabilities.  
Because the PCI1520 functions include only one capabilities item, this register returns 0s when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Next-item pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Next-item pointer  
A1h  
Read-only  
00h  
Default:  
4−25  
 
4.37 Power-Management Capabilities Register  
This register contains information on the capabilities of the PC Card function related to power management. Both  
PCI1520 CardBus bridge functions support D0, D1, D2, and D3 power states. See Table 4−14 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power-management capabilities  
RW  
1
R
1
R
1
R
1
R
1
R
1
R
1
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
0
Register:  
Offset:  
Type:  
Power-management capabilities  
A2h  
Read/Write, Read-only  
FE12h  
Default:  
Table 4−14. Power-Management Capabilities Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME support. This 5-bit field indicates the power states from which the PCI1520 device functions may  
assert PME. A 0 (zero) for any bit indicates that the function cannot assert the PME signal while in that  
power state. These five bits return 11111b when read. Each of these bits is described below:  
15  
PME_Support  
RW  
R
Bit 15 defaults to the value 1 indicating the PME signal can be asserted from the D3  
R/W because wake-up support from D3  
cold  
state. This bit is  
is contingent on the system providing an auxiliary power source  
cold  
to the V  
terminals for D3  
cold  
terminals. If the system designer chooses not to provide an auxiliary power source to the V  
CC  
CC  
wake-up support, then BIOS should write a 0 to this bit.  
14−11 PME_Support  
Bit 14 contains the value 1, indicating that the PME signal can be asserted from D3 state.  
hot  
Bit 13 contains the value 1, indicating that the PME signal can be asserted from D2 state.  
Bit 12 contains the value 1, indicating that the PME signal can be asserted from D1 state.  
Bit 11 contains the value 1, indicating that the PME signal can be asserted from the D0 state.  
D2 support. Bit 10 returns a 1 when read, indicating that the CardBus function supports the D2 device  
power state.  
10  
D2_Support  
R
D1 support. Bit 9 returns a 1 when read, indicating that the CardBus function supports the D1 device  
power state.  
9
D1_Support  
RSVD  
R
R
8−6  
Reserved. Bits 8−6 return 0s when read.  
Device-specific initialization. Bit 5 returns 1 when read, indicating that the CardBus controller function  
requires special initialization (beyond the standard PCI configuration header) before the generic-class  
device driver is able to use it.  
5
DSI  
R
Auxiliary power source. Bit 4 is meaningful only if bit 15 (PME_Support, D3  
it indicates that support for PME in D3  
cold  
proprietary delivery vehicle. When bit 4 is 0, it indicates that the function supplies its own auxiliary power  
source.  
) is set. When bit 4 is set,  
requires auxiliary power supplied by the system by way of a  
cold  
4
AUX_PWR  
R
PME clock. Bit 3 returns 0 when read, indicating that no host bus clock is required for the PCI1520 to  
generate PME.  
3
PMECLK  
VERSION  
R
R
Version. Bits 2−0 return 010b when read, indicating that the power-management registers (PCI offsets  
A4h−A7h, see Sections 4.38−4.40) are defined in the PCI Bus Power Management Interface Specification  
version 1.1.  
2−0  
4−26  
 
4.38 Power-Management Control/Status Register  
The power-management control/status register determines and changes the current power state of the PCI1520  
CardBus function. The contents of this register are not affected by the internally-generated reset caused by the  
transition from D3  
to D0 state. All PCI, ExCA, and CardBus registers are reset as a result of a D3  
to D0 state  
hot  
hot  
transition. TI-specific registers, PCI power-management registers, and the PC Card 16-bit legacy-mode base  
address register (PCI offset 44h, see Section 4.28) are not reset. See Table 4−15 for a complete description of the  
register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power-management control/status  
RC  
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Power-management control/status  
A4h (functions 0, 1)  
Read-only, Read/Write, Read/Clear  
0000h  
Default:  
Table 4−15. Power-Management Control/Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME status. Bit 15 is set when the CardBus function would normally assert PME, independent  
of the state of bit 8 (PME_EN). Bit 15 is cleared by a writeback of 1, and this also clears the PME  
signal if PME was asserted by this function. Writing a 0 to this bit has no effect.  
15  
PMESTAT  
RC  
Data scale. This 2-bit field returns 0s when read. The CardBus function does not return any  
dynamic data.  
14−13  
12−9  
DATASCALE  
DATASEL  
R
R
Data select. This 4-bit field returns 0s when read. The CardBus function does not return any  
dynamic data.  
PME enable. Bit 8 enables the function to assert PME. If this bit is cleared, then assertion of PME  
is disabled.  
8
PME_EN  
RSVD  
RW  
R
7−2  
Reserved. Bits 7−2 return 0s when read.  
Power state. This 2-bit field is used both to determine the current power state of a function and  
to set the function into a new power state. This field is encoded as:  
00 = D0  
01 = D1  
10 = D2  
1−0  
PWR_STATE  
RW  
11 = D3  
hot  
4−27  
 
4.39 Power-Management Control/Status Register Bridge Support Extensions  
The power-management control/status register bridge support extensions support PCI bridge specific functionality.  
See Table 4−16 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power-management control/status register bridge support extensions  
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Power-management control/status register bridge support extensions  
A6h (functions 0, 1)  
Read-only  
Default:  
C0h  
Table 4−16. Power-Management Control/Status Register Bridge Support Extensions Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
BPCC_Enable. Bus power/clock control enable. This bit returns 1 when read.  
This bit is encoded as:  
0 = Bus power/clock control is disabled.  
1 = Bus power/clock control is enabled (default).  
7
BPCC_EN  
R
A 0 indicates that the bus power/clock control policies defined in the PCI Bus Power Management  
Interface Specification are disabled. When the bus power/clock control enable mechanism is disabled,  
the bridge power-management control/status register power state field (see Section 4.38, bits 1−0)  
cannot be used by the system software to control the power or the clock of the bridge secondary bus. A  
1 indicates that the bus power/clock control mechanism is enabled.  
B2/B3 support for D3 . The state of this bit determines the action that is to occur as a direct result of  
hot  
programming the function to D3 . This bit is only meaningful if bit 7 (BPCC_EN) is a 1. This bit is encoded  
hot  
as:  
6
B2_B3  
RSVD  
R
R
0 = When the bridge is programmed to D3 , its secondary bus has its power removed (B3).  
hot  
1 = When the bridge function is programmed to D3 , its secondary bus PCI clock is  
hot  
stopped (B2) (default).  
5−0  
Reserved. Bits 5−0 return 0s when read.  
4.40 Power-Management Data Register  
The power-management data register returns 0s when read, because the CardBus functions do not report dynamic  
data.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power-management data  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
Type:  
Power-management data  
A7h (functions 0, 1)  
Read-only  
Default:  
00h  
4−28  
 
4.41 General-Purpose Event Status Register  
The general-purpose event status register contains status bits that are set when events occur that are controlled by  
the general-purpose control register. The bits in this register and the corresponding GPE are cleared by writing a 1  
to the corresponding bit location. The status bits in this register do not depend upon the states of corresponding bits  
in the general-purpose enable register. Access this register only through function 0. See Table 4−17 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose event status  
RC  
0
RC  
0
R
0
R
0
RC  
0
R
0
R
0
RC  
0
R
0
R
0
R
0
RC  
0
RC  
0
RC  
0
RC  
0
RC  
0
Register:  
Offset:  
Type:  
General-purpose event status  
A8h (function 0)  
Read-only, Read/Clear  
0000h  
Default:  
Table 4−17. General-Purpose Event Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PC Card socket 0 ZV status. Bit 15 is set on a change in status of bit 6 (ZVENABLE) in the function 0 card  
control register (PCI offset 91h, see Section 4.32).  
15  
ZV0_STS  
RC  
PC Card socket 1 ZV status. Bit 14 is set on a change in status of bit 6 (ZVENABLE) in the function 1 card  
control register (PCI offset 91h, see Section 4.32).  
14  
13−12  
11  
ZV1_STS  
RSVD  
RC  
R
Reserved. Bits 13 and 12 return 0s when read.  
Power-change status. Bit 11 is set when software has changed the power state of either socket. A change  
PWR_STS  
RSVD  
RC  
R
in either V  
CC  
or V for either socket causes this bit to be set.  
PP  
10−9  
8
Reserved. Bits 10 and 9 return 0s when read.  
12-V V request status. Bit 8 is set when software has changed the requested V  
for either of the two PC Card sockets.  
level to or from 12 V  
PP PP  
VPP12_STS  
RC  
7−5  
4
RSVD  
R
Reserved. Bits 7−5 return 0s when read.  
GP4_STS  
GP3_STS  
GP2_STS  
GP1_STS  
GP0_STS  
RC  
RC  
RC  
RC  
RC  
GPI4 Status. Bit 4 is set on a change in status of the MFUNC5 terminal input level.  
GPI3 Status. Bit 3 is set on a change in status of the MFUNC4 terminal input level .  
GPI2 Status. Bit 2 is set on a change in status of the MFUNC2 terminal input level.  
GPI1 Status. Bit 1 is set on a change in status of the MFUNC1 terminal input level.  
GPI0 Status. Bit 0 is set on a change in status of the MFUNC0 terminal input level.  
3
2
1
0
4−29  
 
4.42 General-Purpose Event Enable Register  
The general-purpose event enable register contains bits that are set to enable a GPE signal. The GPE signal is driven  
until the corresponding status bit is cleared and the event is serviced. The GPE can only be signaled if one of the  
multifunction terminals, MFUNC6−MFUNC0, is configured for GPE signaling. Access this register only through  
function 0. See Table 4−18 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose event enable  
RW  
0
RW  
0
R
0
R
0
RW  
0
R
0
R
0
RW  
0
R
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
General-purpose event enable  
AAh (function 0)  
Read-only, Read/Write  
0000h  
Default:  
Table 4−18. General-Purpose Event Enable Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PC Card socket 0 ZV enable. When bit 15 is set, a GPE is signaled on a change in status of bit 6  
(ZVENABLE) in the function 0 card control register (PCI offset 91h, see Section 4.32).  
15  
ZV0_EN  
RW  
PC Card socket 1 ZV enable. When bit 14 is set, a GPE is signaled on a change in status of bit 6  
(ZVENABLE) in the function 1 card control register (PCI offset 91h, see Section 4.32).  
14  
13−12  
11  
ZV1_EN  
RSVD  
RW  
R
Reserved. Bits 13 and 12 return 0s when read.  
Power change enable. When bit 11 is set, a GPE is signaled on when software has changed the power  
state of either socket.  
PWR_EN  
RSVD  
RW  
R
10−9  
8
Reserved. Bits 10 and 9 return 0s when read.  
12-V V  
request enable. When bit 8 is set, a GPE is signaled when software has changed the requested  
level to or from 12 V for either card socket.  
PP  
VPP12_EN  
RSVD  
RW  
R
V
PP  
7−5  
4
Reserved. Bits 7−5 return 0s when read.  
GPI4 enable. When bit 4 is set, a GPE is signaled when there has been a change in status of the MFUNC5  
terminal input level if configured as GPI4.  
GP4_EN  
RW  
GPI3 enable. When bit 3 is set, a GPE is signaled when there has been a change in status of the MFUNC4  
terminal input level if configured as GPI3.  
3
2
1
0
GP3_EN  
GP2_EN  
GP1_EN  
GP0_EN  
RW  
RW  
RW  
RW  
GPI2 enable. When bit 2 is set, a GPE is signaled when there has been a change in status of the MFUNC2  
terminal input if configured as GPI2.  
GPI1 enable. When bit 1 is set, a GPE is signaled when there has been a change in status of the MFUNC1  
terminal input if configured as GPI1.  
GPI0 enable. When bit 0 is set, a GPE is signaled when there has been a change in status of the MFUNC0  
terminal input if configured as GPI0.  
4−30  
 
4.43 General-Purpose Input Register  
The general-purpose input register provides the logical value of the data input from the GPI terminals, MFUNC5,  
MFUNC4, and MFUNC2−MFUNC0. Access this register only through function 0. See Table 4−19 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose input  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
X
R
X
R
X
R
X
R
X
Register:  
Offset:  
Type:  
General-purpose input  
ACh (function 0)  
Read-only  
Default:  
00XXh  
Table 4−19. General-Purpose Input Register Description  
FUNCTION  
BIT  
SIGNAL  
RSVD  
TYPE  
15−5  
R
R
R
R
R
R
Reserved. Bits 15−5 return 0s when read.  
4
3
2
1
0
GPI4_DATA  
GPI3_DATA  
GPI2_DATA  
GPI1_DATA  
GPI0_DATA  
GPI4 data bit. The value read from bit 4 represents the logical value of the data input from the MFUNC5 terminal.  
GPI3 data bit. The value read from bit 3 represents the logical value of the data input from the MFUNC4 terminal.  
GPI2 data bit. The value read from bit 2 represents the logical value of the data input from the MFUNC2 terminal.  
GPI1 data bit. The value read from bit 1 represents the logical value of the data input from the MFUNC1 terminal.  
GPI0 data bit. The value read from bit 0 represents the logical value of the data input from the MFUNC0 terminal.  
4−31  
 
4.44 General-Purpose Output Register  
The general-purpose output register is used for control of the general-purpose outputs. Access this register only  
through function 0. See Table 4−20 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose output  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
General-purpose output  
AEh (function 0)  
Read-only, Read/Write  
0000h  
Default:  
Table 4−20. General-Purpose Output Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15−5  
RSVD  
R
Reserved. Bits 15−5 return 0s when read.  
GPO4 data bit. The value written to bit 4 represents the logical value of the data driven to the MFUNC5  
terminal if configured as GPO4. Read transactions return the last data value written.  
4
3
2
1
0
GPO4_DATA  
GPO3_DATA  
GPO2_DATA  
GPO1_DATA  
GPO0_DATA  
RW  
GPIO3 data bit. The value written to bit 3 represents the logical value of the data driven to the MFUNC4  
terminal if configured as GPO3. Read transactions return the last data value written.  
RW  
RW  
RW  
RW  
GPO2 data bit. The value written to bit 2 represents the logical value of the data driven to the MFUNC2  
terminal if configured as GPO2. Read transactions return the last data value written.  
GPO1 data bit. The value written to bit 1 represents the logical value of the data driven to the MFUNC1  
terminal if configured as GPO1. Read transactions return the last data value written.  
GPO0 data bit. The value written to bit 0 represents the logical value of the data driven to the MFUNC0  
terminal if configured as GPO0. Read transactions return the last data value written.  
4.45 Serial-Bus Data Register  
The serial-bus data register is for programmable serial-bus byte reads and writes. This register represents the data  
when generating cycles on the serial bus interface. To write a byte, this register must be programmed with the data,  
the serial bus index register must be programmed with the byte address, the serial-bus slave address must be  
programmed with the 7-bit slave address, and the read/write indicator bit must be reset.  
On byte reads, the byte address is programmed into the serial-bus index register, the serial bus slave address register  
must be programmed with both the 7-bit slave address and the read/write indicator bit, and bit 5 (REQBUSY) in the  
serial bus control and status register (PCI offset B3h, see Section 4.48) must be polled until clear. Then the contents  
of this register are valid read data from the serial bus interface. See Table 4−21 for a complete description of the  
register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Serial-bus data  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Serial-bus data  
B0h (function 0)  
Read/Write  
00h  
Default:  
Table 4−21. Serial-Bus Data Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Serial-bus data. This bit field represents the data byte in a read or write transaction on the serial interface.  
On reads, the REQBUSY bit must be polled to verify that the contents of this register are valid.  
7−0  
SBDATA  
RW  
4−32  
 
4.46 Serial-Bus Index Register  
The serial-bus index register is for programmable serial-bus byte reads and writes. This register represents the byte  
address when generating cycles on the serial-bus interface. To write a byte, the serial-bus data register must be  
programmed with the data, this register must be programmed with the byte address, and the serial-bus slave address  
register must be programmed with both the 7-bit slave address and the read/write indicator bit.  
On byte reads, the word address is programmed into this register, the serial-bus slave address must be programmed  
with both the 7-bit slave address and the read/write indicator bit, and bit 5 (REQBUSY) in the serial-bus control and  
status register (see Section 4.48) must be polled until clear. Then the contents of the serial-bus data register are valid  
read data from the serial-bus interface. See Table 4−22 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Serial-bus index  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Serial-bus index  
B1h (function 0)  
Read/Write  
00h  
Default:  
Table 4−22. Serial-Bus Index Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7−0  
SBINDEX  
RW  
Serial-bus index. This bit field represents the byte address in a read or write transaction on the serial interface.  
4.47 Serial-Bus Slave Address Register  
The serial-bus slave address register is for programmable serial-bus byte read and write transactions. To write a byte,  
the serial-bus data register must be programmed with the data, the serial-bus index register must be programmed  
with the byte address, and this register must be programmed with both the 7-bit slave address and the read/write  
indicator bit.  
On byte reads, the byte address is programmed into the serial bus index register, this register must be programmed  
with both the 7-bit slave address and the read/write indicator bit, and bit 5 (REQBUSY) in the serial-bus control and  
status register (PCI offset B3h, see Section 4.48) must be polled until clear. Then the contents of the serial-bus data  
register are valid read data from the serial-bus interface. See Table 4−23 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Serial-bus slave address  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Serial-bus slave address  
B2h (function 0)  
Read/Write  
Default:  
00h  
Table 4−23. Serial-Bus Slave Address Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Serial-bus slave address. This bit field represents the slave address of a read or write transaction on the  
serial interface.  
7−1  
SLAVADDR  
RW  
RW  
Read/write command. Bit 0 indicates the read/write command bit presented to the serial bus on byte read  
and write accesses.  
0
RWCMD  
0 = A byte write access is requested to the serial bus interface.  
1 = A byte read access is requested to the serial bus interface.  
4−33  
 
4.48 Serial-Bus Control and Status Register  
The serial-bus control and status register communicates serial-bus status information and selects the quick  
command protocol. Bit 5 (REQBUSY) in this register must be polled during serial-bus byte reads to indicate when  
data is valid in the serial-bus data register. See Table 4−24 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Serial-bus control and status  
RW  
0
R
0
R
0
R
0
RC  
0
RW  
0
RC  
0
RC  
0
Register:  
Offset:  
Type:  
Serial-bus control and status  
B3h (function 0)  
Read-only, Read/Write, Read/Clear  
00h  
Default:  
Table 4−24. Serial-Bus Control and Status Register Description  
BIT  
7
SIGNAL  
PROT_SEL  
RSVD  
TYPE  
RW  
R
FUNCTION  
Protocol select. When bit 7 is set, the send-byte protocol is used on write requests and the receive-byte  
protocol is used on read commands. The word-address byte in the serial-bus index register (PCI offset B1h,  
see Section 4.46) is not output by the PCI1520 when bit 7 is set.  
6
Reserved. Bit 6 returns 0 when read.  
Requested serial-bus access busy. Bit 5 indicates that a requested serial-bus access (byte read or write)  
is in progress. A request is made, and bit 5 is set, by writing to the serial-bus slave address register (PCI  
offset B2h, see Section 4.47). Bit 5 must be polled on reads from the serial interface. After the byte read  
access has been requested, the read data is valid in the serial-bus data register.  
5
4
REQBUSY  
ROMBUSY  
R
R
Serial EEPROM busy status. Bit 4 indicates the status of the PCI1520 serial EEPROM circuitry. Bit 4 is set  
during the loading of the subsystem ID and other default values from the serial-bus EEPROM.  
0 = Serial EEPROM circuitry is not busy  
1 = Serial EEPROM circuitry is busy  
Serial-bus detect. When bit 3 is set, it indicates that the serial-bus interface is detected. A pulldown resistor  
must be implemented on the LATCH terminal for bit 3 to be set. If bit 3 is reset, then the MFUNC4 and  
MFUNC1 terminals can be used for alternate functions such as general-purpose inputs and outputs.  
0 = Serial-bus interface not detected  
3
SBDETECT  
RC  
1 = Serial-bus interface detected  
Serial-bus test. When bit 2 is set, the serial-bus clock frequency is increased for test purposes.  
0 = Serial-bus clock at normal operating frequency, 100 kHz (default)  
1 = Serial-bus clock frequency increased for test purposes  
2
1
SBTEST  
RW  
RC  
Requested serial-bus access error. Bit 1 indicates when a data error occurs on the serial interface during  
a requested cycle, and can be set due to a missing acknowledge. Bit 1 is cleared by a writeback of 1.  
0 = No error detected during user-requested byte read or write cycle  
REQ_ERR  
1 = Data error detected during user-requested byte read or write cycle  
EEPROM data-error status. Bit 0 indicates when a data error occurs on the serial interface during the  
auto-load from the serial-bus EEPROM, and can be set due to a missing acknowledge. Bit 0 is also set on  
invalid EEPROM data formats. See Section 3.6.1, Serial Bus Interface Implementation, for details on  
EEPROM data format. Bit 0 is cleared by a writeback of 1.  
0
ROM_ERR  
RC  
0 = No error detected during auto-load from serial-bus EEPROM  
1 = Data error detected during auto-load from serial-bus EEPROM  
4−34  
 
5 ExCA Compatibility Registers (Functions 0 and 1)  
The ExCA registers implemented in the PCI1520 are register-compatible with the Intel 82365SL−DF PCMCIA  
controller. ExCA registers are identified by an offset value that is compatible with the legacy I/O index/data scheme  
used on the Intel 82365 ISA controller. The ExCA registers are accessed through this scheme by writing the register  
offset value into the index register (I/O base) and reading or writing the data register (I/O base + 1). The I/O base  
address used in the index/data scheme is programmed in the PC Card 16-bit I/F legacy-mode base address register  
(PCI offset 44h, see Section 4.28), which is shared by both card sockets. The offsets from this base address run  
contiguously from 00h to 3Fh for socket A, and from 40h to 7Fh for socket B. See Figure 5−1 for an ExCA I/O mapping  
illustration.  
PCI1520 Configuration Registers  
Host I/O Space  
Offset  
Offset  
00h  
PC Card A  
ExCA  
10h  
Index  
Data  
Registers  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
3Fh  
40h  
PC Card B  
ExCA  
Registers  
44h  
7Fh  
NOTE: The 16-bit legacy mode base address register is shared by functions 0 and 1 as indicated by the shading.  
Figure 5−1. ExCA Register Access Through I/O  
The TI PCI1520 also provides a memory-mapped alias of the ExCA registers by directly mapping them into PCI  
memory space. They are located through the CardBus socket/ExCA base-address register (PCI offset 10h, see  
Section 4.12) at memory offset 800h. Each socket has a separate base address programmable by function. See  
Figure 5−2 for an ExCA memory mapping illustration. Note that memory offsets are 800h−844h for both functions  
0 and 1. This illustration also identifies the CardBus socket register mapping, which is mapped into the same 4-K  
window at memory offset 00h.  
5−1  
 
Host  
Host  
Memory Space  
Memory Space  
PCI1520 Configuration Registers  
Offset  
Offset  
00h  
Offset  
00h  
CardBus  
Socket A  
Registers  
10h  
44h  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
CardBus  
Socket B  
Registers  
20h  
800h  
20h  
ExCA  
Registers  
Card A  
800h  
ExCA  
Registers  
Card B  
844h  
844h  
NOTE: The CardBus socket/ExCA base address mode register is separate for functions 0 and 1.  
Figure 5−2. ExCA Register Access Through Memory  
The interrupt registers in the ExCA register set, as defined by the 82365SL−DL specification, control such card  
functions as reset, type, interrupt routing, and interrupt enables. Special attention must be paid to the interrupt routing  
registers and the host interrupt signaling method selected for the PCI1520 to ensure that all possible PCI1520  
interrupts can potentially be routed to the programmable interrupt controller. The ExCA registers that are critical to  
the interrupt signaling are the ExCA interrupt and general control register (ExCA offset 03h/43h/803h, see  
Section 5.4) and the ExCA card status-change interrupt configuration register (05h/45h/805h, see Section 5.6).  
Access to I/O mapped 16-bit PC cards is available to the host system via two ExCA I/O windows. These are regions  
of host I/O address space into which the card I/O space is mapped. These windows are defined by start, end, and  
offset addresses programmed in the ExCA registers described in this section. I/O windows have byte granularity.  
Access to memory mapped 16-bit PC Cards is available to the host system via five ExCA memory windows. These  
are regions of host memory space into which the card memory space is mapped. These windows are defined by start,  
end, and offset addresses programmed in the ExCA registers described in this section. Table 5−1 identifies each  
ExCA register and its respective ExCA offset. Memory windows have 4-Kbyte granularity.  
5−2  
 
Table 5−1. ExCA Registers and Offsets  
ExCA OFFSET (HEX)  
PCI MEMORY ADDRESS  
EXCA REGISTER NAME  
OFFSET (HEX)  
CARD A  
00  
CARD B  
40  
Identification and revision  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
80A  
80B  
80C  
80D  
80E  
80F  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
81A  
Interface status  
01  
41  
Power control  
02  
42  
Interrupt and general control  
03  
43  
Card status change  
04  
44  
Card status-change interrupt configuration  
Address window enable  
05  
45  
06  
46  
I / O window control  
07  
47  
I / O window 0 start-address low byte  
I / O window 0 start-address high byte  
I / O window 0 end-address low byte  
I / O window 0 end-address high byte  
I / O window 1 start-address low byte  
I / O window 1 start-address high byte  
I / O window 1 end-address low byte  
I / O window 1 end-address high byte  
Memory window 0 start-address low byte  
Memory window 0 start-address high byte  
Memory window 0 end-address low byte  
Memory window 0 end-address high byte  
Memory window 0 offset-address low byte  
Memory window 0 offset-address high byte  
Card detect and general control  
Reserved  
08  
48  
09  
49  
0A  
0B  
0C  
0D  
0E  
0F  
10  
4A  
4B  
4C  
4D  
4E  
4F  
50  
11  
51  
12  
52  
13  
53  
14  
54  
15  
55  
16  
56  
17  
57  
Memory window 1 start-address low byte  
Memory window 1 start-address high byte  
Memory window 1 end-address low byte  
18  
58  
19  
59  
1A  
5A  
Memory window 1 end-address high byte  
Memory window 1 offset-address low byte  
Memory window 1 offset-address high byte  
Global control  
81B  
81C  
81D  
81E  
81F  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
82A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
Reserved  
Memory window 2 start-address low byte  
Memory window 2 start-address high byte  
Memory window 2 end-address low byte  
Memory window 2 end-address high byte  
Memory window 2 offset-address low byte  
Memory window 2 offset-address high byte  
Reserved  
Reserved  
Memory window 3 start-address low byte  
Memory window 3 start-address high byte  
Memory window 3 end-address low byte  
5−3  
 
Table 5−1. ExCA Registers and Offsets (Continued)  
ExCA OFFSET (HEX)  
PCI MEMORY ADDRESS  
OFFSET (HEX)  
EXCA REGISTER NAME  
CARD A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
CARD B  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
Memory window 3 end-address high byte  
Memory window 3 offset-address low byte  
Memory window 3 offset-address high byte  
Reserved  
82B  
82C  
82D  
82E  
82F  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
83A  
83B  
83C  
83D  
83E  
83F  
840  
841  
842  
843  
844  
Reserved  
Memory window 4 start-address low byte  
Memory window 4 start-address high byte  
Memory window 4 end-address low byte  
Memory window 4 end-address high byte  
Memory window 4 offset-address low byte  
Memory window 4 offset-address high byte  
I/O window 0 offset-address low byte  
I/O window 0 offset-address high byte  
I/O window 1 offset-address low byte  
I/O window 1 offset-address high byte  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Memory window page 0  
Memory window page 1  
Memory window page 2  
Memory window page 3  
Memory window page 4  
A bit description table, typically included when a register contains bits of more than one type or purpose, indicates  
bit field names, which appear in the signal column; a detailed field description, which appears in the function column;  
and field access tags, which appear in the type column of the bit description table. Table 4−2 describes the field  
access tags.  
5−4  
5.1 ExCA Identification and Revision Register  
The ExCA identification and revision register provides host software with information on 16-bit PC Card support and  
Intel 82365SL-DF compatibility. This register is read-only or read/write, depending on the setting of bit 5  
(SUBSYSRW) in the system control register (PCI offset 80h, see Section 4.29). See Table 5−2 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA identification and revision  
R
1
R
0
RW  
0
RW  
0
RW  
0
RW  
1
RW  
0
RW  
0
Register:  
Offset:  
ExCA identification and revision  
CardBus socket address + 800h; Card A ExCA offset 00h  
Card B ExCA offset 40h  
Type:  
Default:  
Read-only, Read/Write  
84h  
Table 5−2. ExCA Identification and Revision Register Description  
BIT  
7−6  
5−4  
SIGNAL  
IFTYPE  
RSVD  
TYPE  
FUNCTION  
Interface type. These bits, which are hardwired as 10b, identify the 16-bit PC Card support provided by the  
PCI1520. The PCI1520 supports both I/O and memory 16-bit PC cards.  
R
RW  
Reserved. Bits 5 and 4 can be used for Intel 82365SL-DF emulation.  
Intel 82365SL-DF revision. This field stores the Intel 82365SL-DF revision supported by the PCI1520. Host  
software can read this field to determine compatibility to the Intel 82365SL-DF register set. Writing 0010b to  
this field puts the controller in 82365SL mode.  
3−0  
365REV  
RW  
5−5  
 
5.2 ExCA Interface Status Register  
The ExCA interface status register provides information on the current status of the PC Card interface. An X in the  
default bit value indicates that the value of the bit after reset depends on the state of the PC Card interface. See  
Table 5−3 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA interface status  
R
0
R
0
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Offset:  
ExCA interface status  
CardBus socket address + 801h; Card A ExCA offset 01h  
Card B ExCA offset 41h  
Type:  
Read-only  
Default:  
00XX XXXXb  
Table 5−3. ExCA Interface Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7
RSVD  
R
Reserved. Bit 7 returns 0 when read.  
Card Power. Bit 6 indicates the current power status of the PC Card socket. This bit reflects how the ExCA  
power control register (ExCA offset 02h/42h/802h, see Section 5.3) is programmed. Bit 6 is encoded as:  
6
5
CARDPWR  
READY  
R
R
0 = V  
1 = V  
and V  
and V  
to the socket turned off (default)  
to the socket turned on  
CC  
CC  
PP  
PP  
Ready. Bit 5 indicates the current status of the READY signal at the PC Card interface.  
0 = PC Card not ready for data transfer  
1 = PC Card ready for data transfer  
Card write protect (WP). Bit 4 indicates the current status of WP at the PC Card interface. This signal reports  
to the PCI1520 whether or not the memory card is write protected. Furthermore, write protection for an entire  
PCI1520 16-bit memory window is available by setting the appropriate bit in the memory window  
offset-address high-byte register.  
4
CARDWP  
R
0 = WP is 0. PC Card is read/write.  
1 = WP is 1. PC Card is read-only.  
Card detect 2. Bit 3 indicates the status of CD2 at the PC Card interface. Software may use this and bit 2  
(CDETECT1) to determine if a PC Card is fully seated in the socket.  
0 = CD2 is 1. No PC Card is inserted.  
3
2
CDETECT2  
CDETECT1  
R
R
1 = CD2 is 0. PC Card is at least partially inserted.  
Card detect 1. Bit 2 indicates the status of CD1 at the PC Card interface. Software may use this and bit 3  
(CDETECT2) to determine if a PC Card is fully seated in the socket.  
0 = CD1 is 1. No PC Card is inserted.  
1 = CD1 is 0. PC Card is at least partially inserted.  
Battery voltage detect. When a 16-bit memory card is inserted, the field indicates the status of the battery  
voltage detect signals (BVD1, BVD2) at the PC Card interface, where bit 1 reflects the BVD2 status and bit 0  
reflects BVD1.  
00 = Battery dead  
01 = Battery dead  
10 = Battery low; warning  
11 = Battery good  
1−0  
BVDSTAT  
R
When a 16-bit I/O card is inserted, this field indicates the status of SPKR (bit 1) and STSCHG (bit 0) at the  
PC Card interface. In this case, the two bits in this field directly reflect the current state of these card outputs.  
5−6  
 
5.3 ExCA Power Control Register  
The ExCA power control register provides PC Card power control. Bit 7 (COE) of this register controls the 16-bit output  
enables on the socket interface, and can be used for power management in 16-bit PC Card applications. See  
Table 5−4 and Table 5−5 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA power control  
RW  
0
R
0
R
0
RW  
0
RW  
0
R
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA power control  
CardBus socket address + 802h; Card A ExCA offset 02h  
Card B ExCA offset 42h  
Type:  
Default:  
Read-only, Read/Write  
00h  
Table 5−4. ExCA Power Control Register Description—82365SL Support  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Card output enable. Bit 7 controls the state of all of the 16-bit outputs on the PCI1520. This bit is  
encoded as:  
7
COE  
RW  
0 = 16-bit PC Card outputs disabled (default)  
1 = 16-bit PC Card outputs enabled  
6
5
RSVD  
R
Reserved. Bit 6 returns 0 when read.  
Auto power switch enable.  
AUTOPWRSWEN  
RW  
0 = Automatic socket power switching based on card detects is disabled.  
1 = Automatic socket power switching based on card detects is enabled.  
PC Card power enable.  
0 = V  
1 = V  
= No connection  
CC  
CC  
4
CAPWREN  
RSVD  
RW  
R
is enabled and controlled by bit 2 (EXCAPOWER) of the system control register  
(PCI offset 80h, see Section 4.29).  
3−2  
Reserved. Bits 3 and 2 return 0s when read.  
PC Card V  
this field unless V  
power control. Bits 1 and 0 are used to request changes to card V . The PCI1520 ignores  
PP  
PP  
to the socket is enabled. This field is encoded as:  
CC  
00 = No connection (default)  
01 = V  
1−0  
EXCAVPP  
RW  
CC  
10 = 12 V  
11 = Reserved  
Table 5−5. ExCA Power Control Register Description—82365SL-DF Support  
BIT  
7
SIGNAL  
TYPE  
RW  
R
FUNCTION  
Card output enable. Bit 7 controls the state of all of the 16-bit outputs on the PCI1520. This bit is encoded as:  
0 = 16-bit PC Card outputs disabled (default)  
COE  
1 = 16-bit PC Card outputs enabled  
6−5  
RSVD  
Reserved. Bits 6 and 5 return 0s when read.  
V
CC  
. Bits 4 and 3 are used to request changes to card V . This field is encoded as:  
CC  
00 = 0 V (default)  
01 = 0 V reserved  
10 = 5 V  
4−3  
2
EXCAVCC  
RSVD  
RW  
R
11 = 3.3 V  
Reserved. Bit 2 returns 0 when read.  
V
. Bits 1 and 0 are used to request changes to card V . The PCI1520 ignores this field unless V  
to  
PP PP CC  
the socket is enabled. This field is encoded as:  
00 = No connection (default)  
1−0  
EXCAVPP  
RW  
01 = V  
10 = 12 V  
CC  
11 = Reserved  
5−7  
 
5.4 ExCA Interrupt and General Control Register  
The ExCA interrupt and general control register controls interrupt routing for I/O interrupts, as well as other critical  
16-bit PC Card functions. See Table 5−6 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA interrupt and general control  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA interrupt and general control  
CardBus socket address + 803h; Card A ExCA offset 03h  
Card B ExCA offset 43h  
Type:  
Default:  
Read/Write  
00h  
Table 5−6. ExCA Interrupt and General Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Card ring indicate enable. Bit 7 enables the ring indicate function of BVD1/RI. This bit is encoded as:  
0 = Ring indicate disabled (default)  
7
RINGEN  
RW  
1 = Ring indicate enabled  
Card reset. Bit 6 controls the 16-bit PC Card RESET, and allows host software to force a card reset. Bit 6  
affects 16-bit cards only. This bit is encoded as:  
6
5
RESET  
RW  
RW  
0 = RESET signal asserted (default)  
1 = RESET signal deasserted  
Card type. Bit 5 indicates the PC card type. This bit is encoded as:  
0 = Memory PC Card installed (default)  
CARDTYPE  
1 = I/O PC Card installed  
PCI interrupt CSC routing enable bit. When bit 4 is set (high), the card status change interrupts are routed  
to PCI interrupts. When low, the card status change interrupts are routed using bits 7−4 (CSCSELECT field)  
in the ExCA card status-change interrupt configuration register (ExCA offset 05h/45h/805h, see  
Section 5.6). This bit is encoded as:  
4
CSCROUTE  
RW  
0 = CSC interrupts are routed by ExCA registers (default).  
1 = CSC interrupts are routed to PCI interrupts.  
Card interrupt select for I/O PC Card functional interrupts. Bits 3−0 select the interrupt routing for I/O  
PC Card functional interrupts. This field is encoded as:  
0000 = No interrupt routing (default). CSC interrupts are routed to PCI interrupts. This bit setting is  
ORed with bit 4 (CSCROUTE) for backward compatibility.  
0001 = IRQ1 enabled  
0010 = SMI enabled  
0011 = IRQ3 enabled  
0100 = IRQ4 enabled  
0101 = IRQ5 enabled  
3−0  
INTSELECT  
RW  
0100 = IRQ6 enabled  
0111 = IRQ7 enabled  
1000 = IRQ8 enabled  
1001 = IRQ9 enabled  
1010 = IRQ10 enabled  
1011 = IRQ11 enabled  
1100 = IRQ12 enabled  
1101 = IRQ13 enabled  
1110 = IRQ14 enabled  
1111 = IRQ15 enabled  
5−8  
 
5.5 ExCA Card Status-Change Register  
The ExCA card status-change register controls interrupt routing for I/O interrupts as well as other critical 16-bit PC  
Card functions. The register enables these interrupt sources to generate an interrupt to the host. When the interrupt  
source is disabled, the corresponding bit in this register always reads 0. When an interrupt source is enabled, the  
corresponding bit in this register is set to indicate that the interrupt source is active. After generating the interrupt to  
the host, the interrupt service routine must read this register to determine the source of the interrupt. The interrupt  
service routine is responsible for resetting the bits in this register as well. Resetting a bit is accomplished by one of  
two methods: a read of this register or an explicit write back of 1 to the status bit. The choice of these two methods  
is based on bit 2 (interrupt flag clear mode select) in the ExCA global control register (ExCA offset 1E/5E/81E, see  
Section 5.20). See Table 5−7 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA card status-change  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Offset:  
ExCA card status-change  
CardBus socket address + 804h; Card A ExCA offset 04h  
Card B ExCA offset 44h  
Type:  
Default:  
Read-only  
00h  
Table 5−7. ExCA Card Status-Change Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7−4  
RSVD  
R
Reserved. Bits 7−4 return 0s when read.  
Card detect change. Bit 3 indicates whether a change on CD1 or CD2 occurred at the PC Card  
interface. This bit is encoded as:  
3
2
CDCHANGE  
R
R
0 = No change detected on either CD1 or CD2  
1 = Change detected on either CD1 or CD2  
Ready change. When a 16-bit memory is installed in the socket, bit 2 includes whether the source of  
a PCI1520 interrupt was due to a change on READY at the PC Card interface, indicating that the  
PC Card is now ready to accept new data. This bit is encoded as:  
READYCHANGE  
0 = No low-to-high transition detected on READY (default)  
1 = Detected low-to-high transition on READY  
When a 16-bit I/O card is installed, bit 2 is always 0.  
Battery warning change. When a 16-bit memory card is installed in the socket, bit 1 indicates whether  
the source of a PCI1520 interrupt was due to a battery-low warning condition. This bit is encoded as:  
0 = No battery warning condition (default)  
1
0
BATWARN  
BATDEAD  
R
R
1 = Detected battery warning condition  
When a 16-bit I/O card is installed, bit 1 is always 0.  
Battery dead or status change. When a 16-bit memory card is installed in the socket, bit 0 indicates  
whether the source of a PCI1520 interrupt was due to a battery dead condition. This bit is encoded as:  
0 = STSCHG deasserted (default)  
1 = STSCHG asserted  
Ring indicate. When the PCI1520 is configured for ring indicate operation, bit 0 indicates the status of  
RI.  
5−9  
 
5.6 ExCA Card Status-Change Interrupt Configuration Register  
The ExCA card status-change interrupt configuration register controls interrupt routing for card status-change  
interrupts, as well as masking CSC interrupt sources. See Table 5−8 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA status-change-interrupt configuration  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA card status-change interrupt configuration  
CardBus socket address + 805h; Card A ExCA offset 05h  
Card B ExCA offset 45h  
Type:  
Default:  
Read/Write  
00h  
Table 5−8. ExCA Card Status-Change Interrupt Configuration Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Interrupt select for card status change. Bits 7−4 select the interrupt routing for card status-change  
interrupts.  
0000 = CSC interrupts routed to PCI interrupts if bit 5 (CSC) of the diagnostic register (PCI offset 93h, see  
Section 4.34) is set to 1. In this case bit 4 (CSCROUTE) of the ExCA interrupt and general control register  
(ExCA offset 03h/43h/803h, see Section 5.4) is a don’t care. This is the default setting.  
0000 = No ISA interrupt routing if bit 5 (CSC) of the diagnostic register is set to 0 (see Section 4.34). In  
this case, CSC interrupts are routed to PCI interrupts by setting bit 4 (CSCROUTE) of the ExCA interrupt  
and general control register (ExCA offset 03h/43h/803h, see Section 5.4) to 1.  
7−4  
CSCSELECT  
RW  
This field is encoded as:  
0000 = No interrupt routing (default)  
0001 = IRQ1 enabled  
0010 = SMI enabled  
0011 = IRQ3 enabled  
0100 = IRQ4 enabled  
0101 = IRQ5 enabled  
0110 = IRQ6 enabled  
0111 = IRQ7 enabled  
1000 = IRQ8 enabled  
1001 = IRQ9 enabled  
1010 = IRQ10 enabled  
1011 = IRQ11 enabled  
1100 = IRQ12 enabled  
1101 = IRQ13 enabled  
1110 = IRQ14 enabled  
1111 = IRQ15 enabled  
Card detect enable. Bit 3 enables interrupts on CD1 or CD2 changes. This bit is encoded as:  
0 = Disables interrupts on CD1 or CD2 line changes (default)  
3
2
CDEN  
RW  
RW  
1 = Enables interrupts on CD1 or CD2 line changes  
Ready enable. Bit 2 enables/disables a low-to-high transition on PC Card READY to generate a host  
interrupt. This interrupt source is considered a card status change. This bit is encoded as:  
0 = Disables host interrupt generation (default)  
READYEN  
1 = Enables host interrupt generation  
Battery warning enable. Bit 1 enables/disables a battery warning condition to generate a CSC interrupt.  
This bit is encoded as:  
1
0
BATWARNEN  
BATDEADEN  
RW  
RW  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
Battery dead enable. Bit 0 enables/disables a battery dead condition on a memory PC Card or assertion  
of the STSCHG I/O PC Card signal to generate a CSC interrupt.  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
5−10  
 
5.7 ExCA Address Window Enable Register  
The ExCA address window enable register enables/disables the memory and I/O windows to the 16-bit PC Card. By  
default, all windows to the card are disabled. The PCI1520 does not acknowledge PCI memory or I/O cycles to the  
card if the corresponding enable bit in this register is 0, regardless of the programming of the memory or I/O window  
start/end/offset address registers. See Table 5−9 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA address window enable  
RW  
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA address window enable  
CardBus socket address + 806h; Card A ExCA offset 06h  
Card B ExCA offset 46h  
Type:  
Default:  
Read-only, Read/Write  
00h  
Table 5−9. ExCA Address Window Enable Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
I/O window 1 enable. Bit 7 enables/disables I/O window 1 for the PC Card. This bit is encoded as:  
0 = I/O window 1 disabled (default)  
7
IOWIN1EN  
RW  
1 = I/O window 1 enabled  
I/O window 0 enable. Bit 6 enables/disables I/O window 0 for the PC Card. This bit is encoded as:  
0 = I/O window 0 disabled (default)  
6
5
IOWIN0EN  
RSVD  
RW  
R
1 = I/O window 0 enabled  
Reserved. Bit 5 returns 0 when read.  
Memory window 4 enable. Bit 4 enables/disables memory window 4 for the PC Card. This bit is  
encoded as:  
4
3
2
1
0
MEMWIN4EN  
MEMWIN3EN  
MEMWIN2EN  
MEMWIN1EN  
MEMWIN0EN  
RW  
RW  
RW  
RW  
RW  
0 = Memory window 4 disabled (default)  
1 = Memory window 4 enabled  
Memory window 3 enable. Bit 3 enables/disables memory window 3 for the PC Card. This bit is  
encoded as:  
0 = Memory window 3 disabled (default)  
1 = Memory window 3 enabled  
Memory window 2 enable. Bit 2 enables/disables memory window 2 for the PC Card. This bit is  
encoded as:  
0 = Memory window 2 disabled (default)  
1 = Memory window 2 enabled  
Memory window 1 enable. Bit 1 enables/disables memory window 1 for the PC Card. This bit is  
encoded as:  
0 = Memory window 1 disabled (default)  
1 = Memory window 1 enabled  
Memory window 0 enable. Bit 0 enables/disables memory window 0 for the PC Card. This bit is  
encoded as:  
0 = Memory window 0 disabled (default)  
1 = Memory window 0 enabled  
5−11  
 
5.8 ExCA I/O Window Control Register  
The ExCA I/O window control register contains parameters related to I/O window sizing and cycle timing. See  
Table 5−10 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O window control  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA I/O window control  
CardBus socket address + 807h; Card A ExCA offset 07h  
Card B ExCA offset 47h  
Type:  
Default:  
Read/Write  
00h  
Table 5−10. ExCA I/O Window Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
I/O window 1 wait state. Bit 7 controls the I/O window 1 wait state for 16-bit I/O accesses. Bit 7 has no effect  
on 8-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel 82365SL-DF. This  
bit is encoded as:  
7
WAITSTATE1  
RW  
0 = 16-bit cycles have standard length (default).  
1 = 16-bit cycles are extended by one equivalent ISA wait state.  
I/O window 1 zero wait state. Bit 6 controls the I/O window 1 wait state for 8-bit I/O accesses. Bit 6 has  
no effect on 16-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel  
82365SL-DF. This bit is encoded as:  
6
ZEROWS1  
RW  
0 = 8-bit cycles have standard length (default).  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles.  
I/O window 1 IOIS16 source. Bit 5 controls the I/O window 1 automatic data sizing feature that uses IOIS16  
from the PC Card to determine the data width of the I/O data transfer. This bit is encoded as:  
0 = Window data width determined by DATASIZE1, bit 4 (default).  
5
4
IOIS16W1  
RW  
RW  
1 = Window data width determined by IOIS16.  
I/O window 1 data size. Bit 4 controls the I/O window 1 data size. Bit 4 is ignored if bit 5 (IOSIS16W1) is  
set. This bit is encoded as:  
DATASIZE1  
0 = Window data width is 8 bits (default).  
1 = Window data width is 16 bits.  
I/O window 0 wait state. Bit 3 controls the I/O window 0 wait state for 16-bit I/O accesses. Bit 3 has no effect  
on 8-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel 82365SL-DF. This  
bit is encoded as:  
3
2
WAITSTATE0  
ZEROWS0  
RW  
RW  
0 = 16-bit cycles have standard length (default).  
1 = 16-bit cycles are extended by one equivalent ISA wait state.  
I/O window 0 zero wait state. Bit 2 controls the I/O window 0 wait state for 8-bit I/O accesses. Bit 2 has  
no effect on 16-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel  
82365SL-DF. This bit is encoded as:  
0 = 8-bit cycles have standard length (default).  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles.  
I/O window 0 IOIS16 source. Bit 1 controls the I/O window 0 automatic data sizing feature that uses IOIS16  
from the PC Card to determine the data width of the I/O data transfer. This bit is encoded as:  
0 = Window data width is determined by DATASIZE0, bit 0 (default).  
1
0
IOIS16W0  
RW  
RW  
1 = Window data width is determined by IOIS16.  
I/O window 0 data size. Bit 0 controls the I/O window 0 data size. Bit 0 is ignored if bit 1 (IOSIS16W0) is  
set. This bit is encoded as:  
DATASIZE0  
0 = Window data width is 8 bits (default).  
1 = Window data width is 16 bits.  
5−12  
 
5.9 ExCA I/O Windows 0 and 1 Start-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window start address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the lower 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 start-address low-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA I/O window 0 start-address low-byte  
CardBus socket address + 808h; Card A ExCA offset 08h  
Card B ExCA offset 48h  
Register:  
Offset:  
ExCA I/O window 1 start-address low-byte  
CardBus socket address + 80Ch; Card A ExCA offset 0Ch  
Card B ExCA offset 4Ch  
Type:  
Read/Write  
Default:  
00h  
5.10 ExCA I/O Windows 0 and 1 Start-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window start address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the upper 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 start-address high-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA I/O window 0 start-address high-byte  
CardBus socket address + 809h; Card A ExCA offset 09h  
Card B ExCA offset 49h  
Register:  
Offset:  
ExCA I/O window 1 start-address high-byte  
CardBus socket address + 80Dh; Card A ExCA offset 0Dh  
Card B ExCA offset 4Dh  
Type:  
Read/write  
Default:  
00h  
5−13  
 
5.11 ExCA I/O Windows 0 and 1 End-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window end address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the lower 8 bits of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 end-address low-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA I/O window 0 end-address low-byte  
CardBus socket address + 80Ah; Card A ExCA offset 0Ah  
Card B ExCA offset 4Ah  
Register:  
Offset:  
ExCA I/O window 1 end-address low-byte  
CardBus socket address + 80Eh; Card A ExCA offset 0Eh  
Card B ExCA offset 4Eh  
Type:  
Read/Write  
Default:  
00h  
5.12 ExCA I/O Windows 0 and 1 End-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window end address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the upper 8 bits of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 end-address high-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA I/O window 0 end-address high-byte  
CardBus socket address + 80Bh; Card A ExCA offset 0Bh  
Card B ExCA offset 4Bh  
Register:  
Offset:  
ExCA I/O window 1 end-address high-byte  
CardBus socket address + 80Fh; Card A ExCA offset 0Fh  
Card B ExCA offset 4Fh  
Type:  
Read/write  
Default:  
00h  
5−14  
 
5.13 ExCA Memory Windows 0−4 Start-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window start address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19−A12 of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 start-address low-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA memory window 0 start-address low-byte  
CardBus socket address + 810h; Card A ExCA offset 10h  
Card B ExCA offset 50h  
Register:  
Offset:  
ExCA memory window 1 start-address low-byte  
CardBus socket address + 818h; Card A ExCA offset 18h  
Card B ExCA offset 58h  
Register:  
Offset:  
ExCA memory window 2 start-address low-byte  
CardBus socket address + 820h; Card A ExCA offset 20h  
Card B ExCA offset 60h  
Register:  
Offset:  
ExCA memory window 3 start-address low-byte  
CardBus socket address + 828h; Card A ExCA offset 28h  
Card B ExCA offset 68h  
Register:  
Offset:  
ExCA memory window 4 start-address low-byte  
CardBus socket address + 830h; Card A ExCA offset 30h  
Card B ExCA offset 70h  
Type:  
Read/Write  
Default:  
00h  
5−15  
 
5.14 ExCA Memory Windows 0−4 Start-Address High-Byte Registers  
These registers contain the high nibble of the 16-bit memory window start address for memory windows 0, 1, 2, 3,  
and 4. The lower 4 bits of these registers correspond to bits A23−A20 of the start address. In addition, the memory  
window data width and wait states are set in this register. See Table 5−11 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 start-address high-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA memory window 0 start-address high-byte  
CardBus socket address + 811h; Card A ExCA offset 11h  
Card B ExCA offset 51h  
Register:  
Offset:  
ExCA memory window 1 start-address high-byte  
CardBus socket address + 819h; Card A ExCA offset 19h  
Card B ExCA offset 59h  
Register:  
Offset:  
ExCA memory window 2 start-address high-byte  
CardBus socket address + 821h; Card A ExCA offset 21h  
Card B ExCA offset 61h  
Register:  
Offset:  
ExCA memory window 3 start-address high-byte  
CardBus socket address + 829h; Card A ExCA offset 29h  
Card B ExCA offset 69h  
Register:  
Offset:  
ExCA memory window 4 start-address high-byte  
CardBus socket address + 831h; Card A ExCA offset 31h  
Card B ExCA offset 71h  
Type:  
Read/Write  
Default:  
00h  
Table 5−11. ExCA Memory Windows 0−4 Start-Address High-Byte Registers Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Data size. Bit 7 controls the memory window data width. This bit is encoded as:  
0 = Window data width is 8 bits (default).  
7
DATASIZE  
RW  
1 = Window data width is 16 bits.  
Zero wait state. Bit 6 controls the memory window wait state for 8- and 16-bit accesses. This wait-state timing  
emulates the ISA wait state used by the Intel 82365SL-DF. This bit is encoded as:  
0 = 8- and 16-bit cycles have standard length (default).  
6
ZEROWAIT  
RW  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles.  
16-bit cycles are reduced to equivalent of two ISA cycles.  
5−4  
3−0  
SCRATCH  
STAHN  
RW  
RW  
Scratch pad bits. Bits 5 and 4 have no effect on memory window operation.  
Start-address high nibble. Bits 3−0 represent the upper address bits A23−A20 of the memory window  
start address.  
5−16  
 
5.15 ExCA Memory Windows 0−4 End-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window end address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19−A12 of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 end-address low-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA memory window 0 end-address low-byte  
CardBus socket address + 812h; Card A ExCA offset 12h  
Card B ExCA offset 52h  
Register:  
Offset:  
ExCA memory window 1 end-address low-byte  
CardBus socket address + 81Ah; Card A ExCA offset 1Ah  
Card B ExCA offset 5Ah  
Register:  
Offset:  
ExCA memory window 2 end-address low-byte  
CardBus socket address + 822h; Card A ExCA offset 22h  
Card B ExCA offset 62h  
Register:  
Offset:  
ExCA memory window 3 end-address low-byte  
CardBus socket address + 82Ah; Card A ExCA offset 2Ah  
Card B ExCA offset 6Ah  
Register:  
Offset:  
ExCA memory window 4 end-address low-byte  
CardBus socket address + 832h; Card A ExCA offset 32h  
Card B ExCA offset 72h  
Type:  
Read/Write  
Default:  
00h  
5−17  
 
5.16 ExCA Memory Windows 0−4 End-Address High-Byte Registers  
These registers contain the high nibble of the 16-bit memory window end address for memory windows 0, 1, 2, 3,  
and 4. The lower 4 bits of these registers correspond to bits A23−A20 of the end address. In addition, the memory  
window wait states are set in this register. See Table 5−12 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 end-address high-byte  
RW  
0
RW  
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA memory window 0 end-address high-byte  
CardBus socket address + 813h; Card A ExCA offset 13h  
Card B ExCA offset 53h  
Register:  
Offset:  
ExCA memory window 1 end-address high-byte  
CardBus socket address + 81Bh; Card A ExCA offset 1Bh  
Card B ExCA offset 5Bh  
Register:  
Offset:  
ExCA memory window 2 end-address high-byte  
CardBus socket address + 823h; Card A ExCA offset 23h  
Card B ExCA offset 63h  
Register:  
Offset:  
ExCA memory window 3 end-address high-byte  
CardBus socket address + 82Bh; Card A ExCA offset 2Bh  
Card B ExCA offset 6Bh  
Register:  
Offset:  
ExCA memory window 4 end-address high-byte  
CardBus socket address + 833h; Card A ExCA offset 33h  
Card B ExCA offset 73h  
Type:  
Read-only, Read/Write  
Default:  
00h  
Table 5−12. ExCA Memory Windows 0−4 End-Address High-Byte Registers Description  
BIT  
7−6  
5−4  
3−0  
SIGNAL  
MEMWS  
RSVD  
TYPE  
RW  
R
FUNCTION  
Wait state. Bits 7 and 6 specify the number of equivalent ISA wait states to be added to 16-bit memory  
accesses. The number of wait states added is equal to the binary value of these two bits.  
Reserved. Bits 5 and 4 return 0s when read.  
End-address high nibble. Bits 3−0 represent the upper address bits A23−A20 of the memory window end  
address.  
ENDHN  
RW  
5−18  
 
5.17 ExCA Memory Windows 0−4 Offset-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window offset address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19−A12 of the offset address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 offset-address low-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA memory window 0 offset-address low-byte  
CardBus socket address + 814h; Card A ExCA offset 14h  
Card B ExCA offset 54h  
Register:  
Offset:  
ExCA memory window 1 offset-address low-byte  
CardBus socket address + 81Ch; Card A ExCA offset 1Ch  
Card B ExCA offset 5Ch  
Register:  
Offset:  
ExCA memory window 2 offset-address low-byte  
CardBus socket address + 824h; Card A ExCA offset 24h  
Card B ExCA offset 64h  
Register:  
Offset:  
ExCA memory window 3 offset-address low-byte  
CardBus socket address + 82Ch; Card A ExCA offset 2Ch  
Card B ExCA offset 6Ch  
Register:  
Offset:  
ExCA memory window 4 offset-address low-byte  
CardBus socket address + 834h; Card A ExCA offset 34h  
Card B ExCA offset 74h  
Type:  
Read/Write  
Default:  
00h  
5−19  
 
5.18 ExCA Memory Windows 0−4 Offset-Address High-Byte Registers  
These registers contain the high 6 bits of the 16-bit memory window offset address for memory windows 0, 1, 2, 3,  
and 4. The lower 6 bits of these registers correspond to bits A25−A20 of the offset address. In addition, the write  
protection and common/attribute memory configurations are set in this register. See Table 5−13 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 offset-address high-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA memory window 0 offset-address high-byte  
CardBus socket address + 815h; Card A ExCA offset 15h  
Card B ExCA offset 55h  
Register:  
Offset:  
ExCA memory window 1 offset-address high-byte  
CardBus socket address + 81Dh; Card A ExCA offset 1Dh  
Card B ExCA offset 5Dh  
Register:  
Offset:  
ExCA memory window 2 offset-address high-byte  
CardBus socket address + 825h; Card A ExCA offset 25h  
Card B ExCA offset 65h  
Register:  
Offset:  
ExCA memory window 3 offset-address high-byte  
CardBus socket address + 82Dh; Card A ExCA offset 2Dh  
Card B ExCA offset 6Dh  
Register:  
Offset:  
ExCA memory window 4 offset-address high-byte  
CardBus socket address + 835h; Card A ExCA offset 35h  
Card B ExCA offset 75h  
Type:  
Read/Write  
Default:  
00h  
Table 5−13. ExCA Memory Windows 0−4 Offset-Address High-Byte Registers Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Write protect. Bit 7 specifies whether write operations to this memory window are enabled. This bit is  
encoded as:  
7
WINWP  
RW  
0 = Write operations are allowed (default).  
1 = Write operations are not allowed.  
Bit 6 specifies whether this memory window is mapped to card attribute or common memory. This bit is encoded  
as:  
6
REG  
RW  
RW  
0 = Memory window is mapped to common memory (default).  
1 = Memory window is mapped to attribute memory.  
Offset-address high byte. Bits 5−0 represent the upper address bits A25−A20 of the memory window  
offset address.  
5−0  
OFFHB  
5−20  
 
5.19 ExCA Card Detect and General Control Register  
The ExCA card detect and general control register controls how the ExCA registers for the socket respond to card  
removal, as well as reports the status of VS1 and VS2 at the PC Card interface. See Table 5−14 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O card detect and general control  
R
X
R
X
RW  
0
RW  
0
R
0
R
0
RW  
0
R
0
Register:  
Offset:  
ExCA card detect and general control  
CardBus socket address + 816h; Card A ExCA offset 16h  
Card B ExCA offset 56h  
Type:  
Read-only, Read/Write  
Default:  
XX00 0000b  
Table 5−14. ExCA Card Detect and General Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
VS2 state. Bit 7 reports the current state of VS2 at the PC Card interface and, therefore, does not have  
a default value.  
0 = VS2 low  
7
VS2STAT  
R
1 = VS2 high  
VS1 state. Bit 6 reports the current state of VS1 at the PC Card interface and, therefore, does not have  
a default value.  
0 = VS1 low  
6
5
VS1STAT  
SWCSC  
R
1 = VS1 high  
Software card detect interrupt. If bit 3 (CDEN) in the ExCA card status-change interrupt configuration  
register (ExCA offset 05h/45h/805, see Section 5.6) is set, then writing a 1 to bit 5 causes a card-detect  
card-status change interrupt for the associated card socket. If bit 3 (CDEN) in the ExCA card  
status-change-interrupt configuration register (ExCA offset 05h/45h/805, see Section 5.6) is cleared to 0,  
then writing a 1 to bit 5 has no effect. A read operation of this bit always returns 0.  
RW  
Card detect resume enable. If bit 4 is set to 1, then once a card detect change has been detected on CD1  
and CD2 inputs, RI_OUT goes from high to low. RI_OUT remains low until bit 0 (card status change) in  
the ExCA card status-change register is cleared (see Section 5.5). If this bit is a 0, then the card detect  
resume functionality is disabled.  
4
CDRESUME  
RW  
0 = Card detect resume disabled (default)  
1 = Card detect resume enabled  
3−2  
1
RSVD  
REGCONFIG  
RSVD  
R
RW  
R
Reserved. Bits 3 and 2 return 0s when read.  
Register configuration on card removal. Bit 1 controls how the ExCA registers for the socket react to a card  
removal event. This bit is encoded as:  
0 = No change to ExCA registers on card removal (default)  
1 = Reset ExCA registers on card removal  
0
Reserved. Bit 0 returns 0 when read.  
5−21  
 
5.20 ExCA Global Control Register  
The ExCA global control register controls both PC Card sockets and is not duplicated for each socket. The host  
interrupt mode bits in this register are retained for Intel 82365SL-DF compatibility. See Table 5−15 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA global control  
R
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA global control  
CardBus socket address + 81Eh; Card A ExCA offset 1Eh  
Card B ExCA offset 5Eh  
Type:  
Default:  
Read-only, Read/Write  
00h  
Table 5−15. ExCA Global Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
7−5  
RSVD  
R
Reserved. Bits 7−5 return 0s when read.  
Level/edge interrupt mode select − card B. Bit 4 selects the signaling mode for the PCI1520 host interrupt  
for card B interrupts. This bit is encoded as:  
4
3
2
1
INTMODEB  
INTMODEA  
IFCMODE  
CSCMODE  
RW  
RW  
RW  
RW  
0 = Host interrupt is edge mode (default).  
1 = Host interrupt is level mode.  
Level/edge interrupt mode select − card A. Bit 3 selects the signaling mode for the PCI1520 host interrupt  
for card A interrupts. This bit is encoded as:  
0 = Host interrupt is edge mode (default).  
1 = Host interrupt is level mode.  
Interrupt flag clear mode select. Bit 2 selects the interrupt flag clear mechanism for the flags in the ExCA  
card status change register (ExCA offset 04h/44h/804h, see Section 5.5). This bit is encoded as:  
0 = Interrupt flags are cleared by read of CSC register (default).  
1 = Interrupt flags are cleared by explicit writeback of 1.  
Card status change level/edge mode select. Bit 1 selects the signaling mode for the PCI1520 host interrupt  
for card status changes. This bit is encoded as:  
0 = Host interrupt is edge mode (default).  
1 = Host interrupt is level mode.  
Power-down mode select. When bit 0 is set to 1, the PCI1520 is in power-down mode. In power-down mode,  
the PCI1520 card outputs are high-impedance until an active cycle is executed on the card interface.  
Following an active cycle, the outputs are again high-impedance. The PCI1520 still receives functional  
interrupts and/or card status-change interrupts; however, an actual card access is required to wake up the  
interface. This bit is encoded as:  
0
PWRDWN  
RW  
0 = Power-down mode is disabled (default).  
1 = Power-down mode is enabled.  
5−22  
 
5.21 ExCA I/O Windows 0 and 1 Offset-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window offset address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the lower 8 bits of the offset address, and bit 0 is always 0.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 offset-address low-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
Register:  
Offset:  
ExCA I/O window 0 offset-address low-byte  
CardBus socket address + 836h; Card A ExCA offset 36h  
Card B ExCA offset 76h  
Register:  
Offset:  
ExCA I/O window 1 offset-address low-byte  
CardBus socket address + 838h; Card A ExCA offset 38h  
Card B ExCA offset 78h  
Type:  
Read-only, Read/Write  
Default:  
00h  
5.22 ExCA I/O Windows 0 and 1 Offset-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window offset address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the upper 8 bits of the offset address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 offset-address high-byte  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
ExCA I/O window 0 offset-address high-byte  
CardBus socket address + 837h; Card A ExCA offset 37h  
Card B ExCA offset 77h  
Register:  
Offset:  
ExCA I/O window 1 offset-address high-byte  
CardBus socket address + 839h; Card A ExCA offset 39h  
Card B ExCA offset 79h  
Type:  
Read/Write  
Default:  
00h  
5−23  
 
5.23 ExCA Memory Windows 0−4 Page Registers  
The upper 8 bits of a 4-byte PCI memory address are compared to the contents of this register when decoding  
addresses for 16-bit memory windows. Each window has its own page register, all of which default to 00h. By  
programming this register to a nonzero value, host software can locate 16-bit memory windows in any 1 of 256  
16-Mbyte regions in the 4-Gbyte PCI address space. These registers are only accessible when the ExCA registers  
are memory-mapped; that is, these registers cannot be accessed using the index/data I/O scheme.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 0−4 page  
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
ExCA memory windows 0−4 page  
CardBus socket address + 840h, 841h, 842h, 843h, 844h  
Read/Write  
00h  
Default:  
5−24  
 
6 CardBus Socket Registers (Functions 0 and 1)  
The 1997 PC Card Standard requires a CardBus socket controller to provide five 32-bit registers that report and  
control socket-specific functions. The PCI1520 provides the CardBus socket/ExCA base-address register (PCI offset  
10h, see Section 4.12) to locate these CardBus socket registers in PCI memory address space. Each socket has a  
separate base address register for accessing the CardBus socket registers (see Figure 6−1). Table 6−1 gives the  
location of the socket registers in relation to the CardBus socket/ExCA base address.  
The PCI1520 implements an additional register at offset 20h that provides power management control for the socket.  
Host  
Host  
Memory Space  
Memory Space  
PCI1520 Configuration Registers  
Offset  
Offset  
00h  
Offset  
00h  
CardBus  
Socket A  
Registers  
10h  
44h  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
CardBus  
Socket B  
Registers  
20h  
800h  
20h  
ExCA  
Registers  
Card A  
800h  
ExCA  
Registers  
Card B  
844h  
844h  
NOTE: The CardBus socket/ExCA base address mode register is separate for functions 0 and 1.  
Figure 6−1. Accessing CardBus Socket Registers Through PCI Memory  
Table 6−1. CardBus Socket Registers  
REGISTER NAME  
OFFSET  
00h  
Socket event  
Socket mask  
04h  
Socket present-state  
Socket force event  
Socket control  
08h  
0Ch  
10h  
Reserved  
14h−1Ch  
20h  
Socket power-management  
A bit description table, typically included when a register contains bits of more than one type or purpose, indicates  
bit field names, which appear in the signal column; a detailed field description, which appears in the function column;  
and field access tags, which appear in the type column of the bit description table. Table 4−2 describes the field  
access tags.  
6−1  
 
6.1 Socket Event Register  
The socket event register indicates a change in socket status has occurred. These bits do not indicate what the  
change is, only that one has occurred. Software must read the socket present-state register (CB offset 08h, see  
Section 6.3) for current status. Each bit in this register can be cleared by writing a 1 to that bit. The bits in this register  
can be set to a 1 by software by writing a 1 to the corresponding bit in the socket force event register (CB offset 0Ch,  
see Section 6.4). All bits in this register are cleared by PCI reset. They can be immediately set again, if, when coming  
out of PC Card reset, the bridge finds the status unchanged (that is, CSTSCHG reasserted or card detect is still true).  
Software must clear this register before enabling interrupts. If it is not cleared when interrupts are enabled, then an  
interrupt is generated (but not masked) based on any bit set. See Table 6−2 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Socket event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Socket event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
Register:  
Offset:  
Type:  
Socket event  
CardBus socket address + 00h  
Read-only, Read/Write, Read/Clear  
0000 0000h  
Default:  
Table 6−2. Socket Event Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31−4  
RSVD  
R
Reserved. Bits 31−4 return 0s when read.  
Power cycle. Bit 3 is set when the PCI1520 detects that bit 3 (PWRCYCLE) in the socket present-state  
register (CB offset 08h, see Section 6.3) has changed state. This bit is cleared by writing a 1.  
3
2
1
PWREVENT  
CD2EVENT  
CD1EVENT  
R/C  
R/C  
R/C  
CCD2. Bit 2 is set when the PCI1520 detects that bit 2 (CDETECT2) in the socket present-state register  
(CB offset 08h, see Section 6.3) has changed state. This bit is cleared by writing a 1.  
CCD1. Bit 1 is set when the PCI1520 detects that bit 1 (CDETECT1) in the socket present-state register  
(CB offset 08h, see Section 6.3) has changed state. This bit is cleared by writing a 1.  
CSTSCHG. Bit 0 is set when bit 0 (CARDSTS) in the socket present-state register (CB offset 08h, see  
Section 6.3) has changed state. For CardBus cards, bit 0 is set on the rising edge of CSTSCHG. For 16-bit  
PC Cards, bit 0 is set on both transitions of CSTSCHG. This bit is reset by writing a 1.  
0
CSTSEVENT  
R/C  
6−2  
 
6.2 Socket Mask Register  
The socket mask register allows software to control the CardBus card events that generate a status change interrupt.  
The state of these mask bits does not prevent the corresponding bits from reacting in the socket event register (CB  
offset 00h, see Section 6.1). See Table 6−3 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Socket mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Socket mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Socket mask  
CardBus socket address + 04h  
Read-only, Read/Write  
0000 0000h  
Default:  
Table 6−3. Socket Mask Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
31−4  
RSVD  
R
Reserved. Bits 31−4 return 0s when read.  
Power cycle. Bit 3 masks bit 3 (PWRCYCLE) in the socket present-state register (CB offset 08h, see  
Section 6.3) from causing a status change interrupt.  
3
2−1  
0
PWRMASK  
CDMASK  
RW  
RW  
RW  
0 = PWRCYCLE event does not cause CSC interrupt (default).  
1 = PWRCYCLE event causes CSC interrupt.  
Card detect mask. Bits 2 and 1 mask bits 1 and 2 (CDETECT1 and CDETECT2) in the socket present-state  
register (CB offset 08h, see Section 6.3) from causing a CSC interrupt.  
00 = Insertion/removal does not cause CSC interrupt (default).  
01 = Reserved (undefined)  
10 = Reserved (undefined)  
11 = Insertion/removal causes CSC interrupt.  
CSTSCHG mask. Bit 0 masks bit 0 (CARDSTS) in the socket present-state register (CB offset 08h, see  
Section 6.3) from causing a CSC interrupt.  
CSTSMASK  
0 = CARDSTS event does not cause CSC interrupt (default).  
1 = CARDSTS event causes CSC interrupt.  
6−3  
 
6.3 Socket Present-State Register  
The socket present-state register reports information about the socket interface. Write transactions to the socket force  
event register (CB offset 0Ch, see Section 6.4) are reflected here, as well as general socket interface status.  
Information about PC Card V  
support and card type is only updated at each insertion. Also note that the PCI1520  
CC  
uses CCD1 and CCD2 during card identification, and changes on these signals during this operation are not reflected  
in this register. See Table 6−4 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Socket present-state  
R
0
R
0
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Socket present-state  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
X
R
0
R
0
R
0
R
X
R
X
R
X
Register:  
Offset:  
Type:  
Socket present-state  
CardBus socket address + 08h  
Read-only  
Default:  
3000 00XXh  
Table 6−4. Socket Present-State Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
YV socket. Bit 31 indicates whether or not the socket can supply V  
does not support Y.Y-V V ; therefore, this bit is always reset unless overridden by the socket force event  
CC  
register (CB offset 0Ch, see Section 6.4). This bit is hardwired to 0.  
= Y.Y V to PC Cards. The PCI1520  
CC  
31  
YVSOCKET  
R
R
R
XV socket. Bit 30 indicates whether or not the socket can supply V  
does not support X.X-V V ; therefore, this bit is always reset unless overridden by the socket force event  
CC  
register (CB offset 0Ch, see Section 6.4). This bit is hardwired to 0.  
= X.X V to PC Cards. The PCI1520  
CC  
30  
29  
XVSOCKET  
3VSOCKET  
3-V socket. Bit 29 indicates whether or not the socket can supply V  
does support 3.3-V V ; therefore, this bit is always set unless overridden by the socket force event  
CC  
register (CB offset 0Ch, see Section 6.4).  
= 3.3 V to PC Cards. The PCI1520  
CC  
5-V socket. Bit 28 indicates whether or not the socket can supply V  
does support 5-V V ; therefore, this bit is always set unless overridden by the socket force event register  
CC  
(CB offset 0Ch, see Section 6.4).  
= 5 V to PC Cards. The PCI1520  
CC  
28  
27  
5VSOCKET  
R
R
ZVSUPPORT  
Zoomed-video support. This bit indicates whether or not the socket has support for zoomed video.  
0 = Zoomed video is not supported.  
1 = Zoomed video is supported.  
26−14  
13  
RSVD  
R
R
Reserved. Bits 27−14 return 0s when read.  
YV card. Bit 13 indicates whether or not the PC Card inserted in the socket supports V  
= Y.Y V.  
= X.X V.  
= 3.3 V.  
CC  
YVCARD  
0 = Y.Y-V V  
1 = Y.Y-V V  
is not supported.  
is supported.  
CC  
CC  
XV card. Bit 12 indicates whether or not the PC Card inserted in the socket supports V  
CC  
12  
11  
XVCARD  
3VCARD  
R
R
0 = X.X-V V  
1 = X.X-V V  
is not supported.  
is supported.  
CC  
CC  
3-V card. Bit 11 indicates whether or not the PC Card inserted in the socket supports V  
CC  
0 = 3.3-V V  
1 = 3.3-V V  
is not supported.  
is supported.  
CC  
CC  
6−4  
 
Table 6−4. Socket Present-State Register (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
5-V card. Bit 10 indicates whether or not the PC Card inserted in the socket supports V  
= 5 V.  
CC  
10  
5VCARD  
R
0 = 5-V V  
1 = 5-V V  
is not supported.  
is supported.  
CC  
CC  
Bad V  
invalid voltage.  
request. Bit 9 indicates that the host software has requested that the socket be powered at an  
CC  
9
8
BADVCCREQ  
DATALOST  
R
0 = Normal operation (default)  
1 = Invalid V  
CC  
request by host software  
Data lost. Bit 8 indicates that a PC Card removal event may have caused lost data because the cycle did  
not terminate properly or because write data still resides in the PCI1520.  
0 = Normal operation (default)  
R
1 = Potential data loss due to card removal  
Not a card. Bit 7 indicates that an unrecognizable PC Card has been inserted in the socket. This bit is not  
updated until a valid PC Card is inserted into the socket.  
0 = Normal operation (default)  
7
6
NOTACARD  
IREQCINT  
R
R
1 = Unrecognizable PC Card detected  
READY(IREQ)//CINT. Bit 6 indicates the current status of READY(IREQ)//CINT at the PC Card interface.  
0 = READY(IREQ)//CINT low  
1 = READY(IREQ)//CINT high  
CardBus card detected. Bit 5 indicates that a CardBus PC Card is inserted in the socket. This bit is not  
updated until another card interrogation sequence occurs (card insertion).  
5
4
CBCARD  
R
R
16-bit card detected. Bit 4 indicates that a 16-bit PC Card is inserted in the socket. This bit is not updated  
until another card interrogation sequence occurs (card insertion).  
16BITCARD  
Power cycle. Bit 3 indicates the status of each card powering request. This bit is encoded as:  
0 = Socket powered down (default)  
3
2
PWRCYCLE  
CDETECT2  
R
R
1 = Socket powered up  
CCD2. Bit 2 reflects the current status of CCD2 at the PC Card interface. Changes to this signal during  
card interrogation are not reflected here.  
0 = CCD2 low (PC Card may be present)  
1 = CCD2 high (PC Card not present)  
CCD1. Bit 1 reflects the current status of CCD1 at the PC Card interface. Changes to this signal during  
card interrogation are not reflected here.  
1
0
CDETECT1  
CARDSTS  
R
R
0 = CCD1 low (PC Card may be present)  
1 = CCD1 high (PC Card not present)  
CSTSCHG. Bit 0 reflects the current status of CSTSCHG at the PC Card interface.  
0 = CSTSCHG low  
1 = CSTSCHG high  
6−5  
6.4 Socket Force Event Register  
The socket force event register is used to force changes to the socket event register (CB offset 00h, see Section 6.1)  
and the socket present-state register (see Section 6.3). Bit 14 (CVSTEST) in this register must be written when  
forcing changes that require card interrogation. See Table 6−5 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Socket force event  
R
0
R
0
R
0
R
0
W
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Socket force event  
R
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
R
0
W
0
W
0
W
0
W
0
W
0
W
0
Register:  
Offset:  
Type:  
Socket force event  
CardBus socket address + 0Ch  
Read-only, Write-only  
0000 0000h  
Default:  
6−6  
 
Table 6−5. Socket Force Event Register Description  
FUNCTION  
BIT  
31−28  
27  
SIGNAL  
RSVD  
TYPE  
R
Reserved. Bits 31−28 return 0s when read.  
FZVSUPPORT  
RSVD  
W
Zoomed-video support. This bit indicates whether or not the socket has support for zoomed video.  
Reserved. Bits 26−15 return 0s when read.  
26−15  
R
Card VS test. When bit 14 is set, the PCI1520 re-interrogates the PC Card, updates the socket present-state  
register (CB offset 08h, see Section 6.3), and enables the socket control register (CB offset 10h, see  
Section 6.5).  
14  
13  
12  
11  
10  
CVSTEST  
FYVCARD  
FXVCARD  
F3VCARD  
F5VCARD  
W
W
W
W
W
Force YV card. Write transactions to bit 13 cause bit 13 (YVCARD) in the socket present-state register (CB  
offset 08h, see Section 6.3) to be written. When set, this bit disables the socket control register (CB offset  
10h, see Section 6.5).  
Force XV card. Write transactions to bit 12 cause bit 12 (XVCARD) in the socket present-state register (CB  
offset 08h, see Section 6.3) to be written. When set, this bit disables the socket control register (CB offset  
10h, see Section 6.5).  
Force 3-V card. Write transactions to bit 11 cause bit 11 (3VCARD) in the socket present-state register (CB  
offset 08h, see Section 6.3) to be written. When set, this bit disables the socket control register (CB offset  
10h, see Section 6.5).  
Force 5-V card. Write transactions to bit 10 cause bit 10 (5VCARD) in the socket present-state register (CB  
offset 08h, see Section 6.3) to be written. When set, this bit disables the socket control register (CB offset  
10h, see Section 6.5).  
Force bad V  
CC  
request. Changes to bit 9 (BADVCCREQ) in the socket present-state register (CB offset 08h,  
see Section 6.3) can be made by writing to bit 9.  
9
8
FBADVCCREQ  
FDATALOST  
W
W
Force data lost. Write transactions to bit 8 cause bit 8 (DATALOST) in the socket present-state register (CB  
offset 08h, see Section 6.3) to be written.  
Force not-a-card. Write transactions to bit 7 cause bit 7 (NOTACARD) in the socket present-state register  
(CB offset 08h, see Section 6.3) to be written.  
7
6
5
FNOTACARD  
RSVD  
W
R
Reserved. Bit 6 returns 0 when read.  
Force CardBus card. Write transactions to bit 5 cause bit 5 (CBCARD) in the socket present-state register  
(CB offset 08h, see Section 6.3) to be written.  
FCBCARD  
W
Force 16-bit card. Write transactions to bit 4 cause bit 4 (16BITCARD) in the socket present-state register  
(CB offset 08h, see Section 6.3) to be written.  
4
3
F16BITCARD  
FPWRCYCLE  
W
W
Force power cycle. Write transactions to bit 3 cause bit 3 (PWREVENT) in the socket event register (CB  
offset 00h, see Section 6.1) to be written, and bit 3 (PWRCYCLE) in the socket present-state register (CB  
offset 08h, see Section 6.3) is unaffected.  
Force CCD2. Write transactions to bit 2 cause bit 2 (CD2EVENT) in the socket event register (CB offset 00h,  
see Section 6.1) to be written, and bit 2 (CDETECT2) in the socket present-state register (CB offset 08h,  
see Section 6.3) is unaffected.  
2
1
0
FCDETECT2  
FCDETECT1  
FCARDSTS  
W
W
W
Force CCD1. Write transactions to bit 1 cause bit 1 (CD1EVENT) in the socket event register (CB offset 00h,  
see Section 6.1) to be written, and bit 1 (CDETECT1) in the socket present-state register (CB offset 08h,  
see Section 6.3) is unaffected.  
Force CSTSCHG. Write transactions to bit 0 cause bit 0 (CSTSEVENT) in the socket event register (CB  
offset 00h, see Section 6.1) to be written, and bit 0 (CARDSTS) in the socket present-state register (CB  
offset 08h, see Section 6.3) is unaffected.  
6−7  
 
6.5 Socket Control Register  
The socket control register provides control of the voltages applied to the socket and instructions for the CB CLKRUN  
protocol. The PCI1520 ensures that the socket is powered up only at acceptable voltages when a CardBus card is  
inserted. See Table 6−6 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Socket control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Socket control  
R
0
R
0
R
0
R
0
R
0
R
1
RW  
0
R
0
RW  
0
RW  
0
RW  
0
RW  
0
R
0
RW  
0
RW  
0
RW  
0
Register:  
Offset:  
Type:  
Socket control  
CardBus socket address + 10h  
Read-only, Read/Write  
0000 0400h  
Default:  
Table 6−6. Socket Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31−12  
RSVD  
R
Reserved. These bits return 0 when read. A write to these bits has no effect.  
Zoomed video activity. This bit returns 0 when the ZVEN bits for both sockets are 0 (disabled). If either  
ZVEN bit is set to 1, the ZV_ACTIVITY bit returns 1.  
11  
10  
ZV_ACTIVITY  
STDZVREG  
R
R
Standardized zoomed video register model support. This bit returns 1 by default when the STDZVEN  
bit (bit 0) in the diagnostic register is cleared (PCI offset 93h, see Section 4.34).  
9
8
ZVEN  
RSVD  
RW  
R
Zoomed video enable. This bit enables zoomed video for this socket.  
Reserved. ThIs bit returns 0 when read. A write to thIs bit has no effect.  
CB CLKRUN protocol instructions.  
0 = CB CLKRUN protocol can only attempt to stop/slow the CB clock if the socket is idle and the  
PCI CLKRUN protocol is preparing to stop/slow the PCI bus clock.  
1 = CB CLKRUN protocol can attempt to stop/slow the CB clock if the socket is idle.  
7
STOPCLK  
RW  
V
CC  
control. Bits 6−4 request card V  
000 = Request power off (default)  
001 = Reserved  
changes.  
CC  
100 = Request V  
101 = Request V  
110 = Reserved  
111 = Reserved  
= X.X V  
= Y.Y V  
CC  
CC  
6−4  
3
VCCCTRL  
RSVD  
RW  
R
010 = Request V  
011 = Request V  
= 5 V  
= 3.3 V  
CC  
CC  
Reserved. Bit 3 returns 0 when read.  
control. Bits 2−0 request card V  
V
changes.  
PP  
000 = Request power off (default)  
PP  
100 = Request V  
101 = Request V  
110 = Reserved  
111 = Reserved  
= X.X V  
= Y.Y V  
PP  
PP  
001 = Request V  
010 = Request V  
= 12 V  
= 5 V  
2−0  
VPPCTRL  
RW  
PP  
PP  
PP  
011 = Request V  
= 3.3 V  
6−8  
 
6.6 Socket Power-Management Register  
This register provides power management control over the socket through a mechanism for slowing or stopping the  
clock on the card interface when the card is idle. See Table 6−7 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Socket power-management  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Socket power-management  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RW  
0
Register:  
Type:  
Offset:  
Default:  
Socket power-management  
Read-only, Read/Write  
CardBus socket address + 20h  
0000 0000h  
Table 6−7. Socket Power-Management Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31−26  
RSVD  
R
R
Reserved. Bits 31−26 return 0s when read.  
Socket access status. This bit provides information on when a socket access has occurred. This bit is  
cleared by a read access.  
25  
SKTACCES  
0 = A PC card access has not occurred (default).  
1 = A PC card access has occurred.  
Socket mode status. This bit provides clock mode information.  
0 = Clock is operating normally.  
24  
23−17  
16  
SKTMODE  
RSVD  
R
R
1 = Clock frequency has changed.  
Reserved. Bits 23−17 return 0s when read.  
CardBus clock control enable. When bit 16 is set, bit 0 (CLKCTRL) is enabled.  
0 = Clock control is disabled (default).  
CLKCTRLEN  
RSVD  
RW  
R
1 = Clock control is enabled.  
15−1  
Reserved. Bits 15−1 return 0s when read.  
CardBus clock control. This bit determines whether the CB CLKRUN protocol stops or slows the CB clock  
during idle states. Bit 16 (CLKCTRLEN) enables this bit.  
0
CLKCTRL  
RW  
0 = Allows CB CLKRUN protocol to stop the CB clock (default).  
1 = Allows CB CLKRUN protocol to slow the CB clock by a factor of 16.  
6−9  
 
6−10  
7 Electrical Characteristics  
7.1 Absolute Maximum Ratings Over Operating Temperature Ranges  
Supply voltage range, V  
Clamping voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
CC  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6 V  
CCP, CCA, CCB  
Input voltage range, V : PCI, miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
I
CCP  
CCA  
CCB  
Card A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 to V  
Card B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 to V  
Fail safe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
CC  
CCP  
CCA  
CCB  
Output voltage range, V : PCI, miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
O
Card A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 to V  
Card B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 to V  
Fail safe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
CC  
Input clamp current, I (V < 0 or V > V ) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
IK  
I
I
CC  
Output clamp current, I  
(V < 0 or V > V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
OK  
O O CC  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Applies for external input and bidirectional buffers. V > V  
does not apply to fail-safe terminals. PCI terminals and miscellaneous  
I
CC  
terminals are measured with respect to V  
limit specified applies for a dc condition.  
instead of V . PC Card terminals are measured with respect to V  
or V . The  
CCB  
CCP  
CC CCA  
2. Applies for external output and bidirectional buffers. V > V  
does not apply to fail-safe terminals. PCI terminals and miscellaneous  
or V . The  
O
CC  
terminals are measured with respect to V  
limit specified applies for a dc condition.  
instead of V . PC Card terminals are measured with respect to V  
CCP  
CC CCA  
CCB  
7−1  
 
7.2 Recommended Operating Conditions (see Note 3)  
OPERATION  
MIN  
NOM  
3.3  
3.3  
5
MAX  
3.6  
UNIT  
V
V
Commercial  
Commercial  
3.3 V  
3.3 V  
5 V  
3
V
Core voltage  
CC  
3
4.75  
3
3.6  
PCI and miscellaneous I/O clamp  
voltage  
V
V
CCP  
5.25  
3.6  
3.3 V  
5 V  
3.3  
5
V
CCA  
V
CCB  
Commercial  
PCI  
PC Card I/O clamp voltage  
4.75  
5.25  
3.3 V  
5 V  
0.5 V  
CCP  
V
CCP  
2
V
CCP  
3.3 V  
5 V  
0.475 V  
V
V
High-level input voltage  
V
V
CC(A/B)  
2.4  
CC(A/B)  
IH  
PC Card  
CC(A/B)  
Miscellaneous  
2
0
0
0
0
0
0
0
0
0
0
0
1
0
0
V
CC  
0.3 V  
3.3 V  
5 V  
CCP  
PCI  
0.8  
3.3 V  
5 V  
0.325 V  
Low-level input voltage  
V
V
V
CC(A/B)  
0.8  
IL  
PC Card  
Miscellaneous  
0.8  
PCI  
V
CCP  
PC Card  
V
CC(A/B)  
V
V
Input voltage  
I
Miscellaneous  
PCI  
V
V
V
V
CC  
CC  
CC  
§
PC Card  
Output voltage  
V
O
Miscellaneous  
CC  
4
PCI and PC Card  
t
t
Input transition time (t and t )  
ns  
r
f
Miscellaneous  
PCI1520  
6
70  
85  
25  
25  
25  
Operating ambient temperature  
range  
T
°C  
°C  
A
PCI1520I  
−40  
0
T
J
Virtual junction temperature  
115  
Applies to external inputs and bidirectional buffers without hysteresis  
Miscellaneous terminals are 15, 56, 68, 75, 83, 124, 137, 144, 158, and 177 for the PDV packaged device and C11, C15, G18, H05, J15, L18,  
P07, P09, U08, and U11 for the GHK packaged device (SUSPEND, GRST, CDx, and VSx terminals).  
Applies to external output buffers  
§
These junction temperatures reflect simulation conditions. The customer is responsible for verifying junction temperature.  
NOTE 3: Unused terminals (input or I/O) must be held high or low to prevent them from floating.  
7−2  
 
7.3 Electrical Characteristics Over Recommended Operating Conditions (unless  
otherwise noted)  
PARAMETER  
TERMINALS  
OPERATION TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
I
I
I
I
I
= −0.5 mA  
= −2 mA  
0.9 V  
3.3 V  
5 V  
OH  
OH  
OH  
OH  
OH  
OH  
CC  
2.4  
PCI  
V
3.3 V  
5 V  
= −0.5 mA  
= −1 mA  
0.9 V  
CC  
2.4  
SPKROUT  
V
OH  
High-level output voltage  
= −0.15 mA  
= −0.15 mA  
0.9 V  
3.3 V  
5 V  
CC  
2.4  
PC Card  
Miscellaneous  
PCI  
V
V
I
I
I
I
I
I
I
I
= −4 mA  
= 1.5 mA  
= 6 mA  
V
CC  
−0.6  
OH  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
0.1 V  
3.3 V  
5 V  
CC  
0.55  
= 0.7 mA  
= 0.7 mA  
= 4 mA  
0.1 V  
CC  
3.3 V  
5 V  
PC Card  
0.55  
Low-level output voltage  
V
OL  
0.5  
Miscellaneous  
SPKROUT  
= 1 mA  
0.1 V  
CC  
3.3 V  
5 V  
= 1 mA  
0.55  
3.6 V  
5.25 V  
3.6 V  
V = V  
−1  
−1  
10  
I
CC  
High-impedance, low-level output  
current  
I
I
Output terminals  
Output terminals  
µA  
µA  
OZL  
V = V  
I
CC  
V = V  
I
CC  
High-impedance, high-level output  
current  
OZH  
5.25 V  
3.6 V  
25  
−1  
V = V  
I
CC  
Input terminals  
I/O terminals  
V = GND  
I
V = GND  
I
−10  
−330  
10  
I
I
µA  
µA  
Low-level input current  
High-level input current  
IL  
Pullup terminals  
V = GND  
I
V = V  
I
CC  
Input terminals  
I/O terminals  
5.25 V  
3.6 V  
20  
10  
25  
V = V  
I
CC  
CC  
CC  
IH  
V = V  
I
5.25 V  
V = V  
I
For PCI and miscellaneous terminals, V = V  
. For PC Card terminals, V = V .  
I
CCP  
I
CC(A/B)  
For I/O terminals, input leakage (I and I ) includes I  
leakage of the disabled output.  
IL IH OZ  
7.4 PCI Clock/Reset Timing Requirements Over Recommended Ranges of Supply  
Voltage and Operating Free-Air Temperature  
ALTERNATE  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
t
t
t
Cycle time, PCLK  
t
30  
11  
11  
1
ns  
ns  
c
cyc  
Pulse duration (width), PCLK high  
Pulse duration (width), PCLK low  
Slew rate, PCLK  
t
high  
w(H)  
w(L)  
t
ns  
low  
v/t  
t , t  
r f  
4
V/ns  
ms  
ms  
t
w
Pulse duration (width), PRST  
Setup time, PCLK active at end of PRST  
t
1
rst  
t
su  
t
100  
rst-clk  
7−3  
 
7.5 PCI Timing Requirements Over Recommended Ranges of Supply Voltage and  
Operating Free-Air Temperature  
This data manual uses the following conventions to describe time ( t ) intervals. The format is t , where subscript A  
A
indicates the type of dynamic parameter being represented. One of the following is used: t = propagation delay time,  
pd  
t (t , t ) = delay time, t = setup time, and t = hold time.  
d
en dis  
su  
h
ALTERNATE  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
PCLK-to-shared signal  
valid delay time  
t
11  
val  
inv  
C
= 50 pF,  
L
t
Propagation delay time, See Note 4  
ns  
pd  
See Note 4  
PCLK-to-shared signal  
invalid delay time  
t
2
2
t
t
t
t
Enable time, high impedance-to-active delay time from PCLK  
Disable time, active-to-high impedance delay time from PCLK  
Setup time before PCLK valid  
t
ns  
ns  
ns  
ns  
en  
dis  
su  
h
on  
t
28  
off  
t
7
0
su  
Hold time after PCLK high  
t
h
NOTE 4: PCI shared signals are AD31−AD0, C/BE3−C/BE0, FRAME, TRDY, IRDY, STOP, IDSEL, DEVSEL, and PAR.  
7−4  
 
8 Mechanical Information  
The PCI1520 is packaged in either a 209-ball GHK/ZHK BGA or a 208-pin PDV package. The following show the  
mechanical dimensions for the GHK, ZHK, and PDV packages.  
GHK (S-PBGA-N209)  
PLASTIC BALL GRID ARRAY  
16,10  
15,90  
SQ  
14,40 TYP  
0,80  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
0,80  
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19  
10 12 14 16 18  
2
4
6
8
0,95  
0,85  
1,40 MAX  
Seating Plane  
0,10  
0,55  
0,45  
0,12  
0,08  
M
0,08  
0,45  
0,35  
4145273−2/B 12/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. MicroStar BGAconfiguration.  
MicroStar BGA is a trademark of Texas Instruments.  
8−1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Mar-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCI1520IZHK  
LIFEBUY  
BGA  
ZHK  
209  
90  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
PCI1520IZHK  
MICROSTAR  
PCI1520IZWT  
PCI1520PDV  
PCI1520PDVG4  
PCI1520ZHK  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
NFBGA  
ZWT  
PDV  
PDV  
ZHK  
209  
208  
208  
209  
90  
36  
36  
90  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SNAGCU  
NIPDAU  
NIPDAU  
SNAGCU  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-3-260C-168 HR  
PCI1520IZWT  
PCI1520PDV  
PCI1520PDV  
PCI1520ZHK  
LQFP  
0 to 70  
0 to 70  
0 to 70  
LQFP  
BGA  
MICROSTAR  
PCI1520ZWT  
ACTIVE  
NFBGA  
ZWT  
209  
90  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
PCI1520ZWT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Mar-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF PCI1520 :  
Enhanced Product: PCI1520-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 2  
PACKAGE OUTLINE  
UBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
ZHK0209A  
16.1  
15.9  
A
B
BALL A1 CORNER  
16.1  
15.9  
1.4 MAX  
C
SEATING PLANE  
0.1 C  
(0.8) TYP  
(0.8) TYP  
14.4 TYP  
W
V
U
T
R
P
N
M
L
SYMM  
14.4  
TYP  
K
J
H
G
F
0.55  
209X Ø  
0.45  
E
D
C
0.15  
0.05  
C A B  
C
B
A
0.8 TYP  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
0.8 TYP  
SYMM  
4220275/A 10/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This is a Pb-Free ball design.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
UBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
ZHK0209A  
SYMM  
(0.8) TYP  
A
B
(0.8) TYP  
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
209X (Ø 0.4)  
U
V
W
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
LAND PATTERN EXAMPLE  
SCALE: 6X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
EXPOSED  
METAL  
METAL UNDER  
SOLDER MASK  
(Ø 0.40)  
SOLDER MASK  
OPENING  
(Ø 0.40)  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4220275/A 10/2020  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
UBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
ZHK0209A  
SYMM  
(0.8) TYP  
A
B
(0.8) TYP  
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
209X (Ø 0.4)  
U
V
W
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
SOLDER PASTE EXAMPLE  
BASED ON 0.150 mm THICK STENCIL  
SCALE: 6X  
4220275/A 10/2020  
NOTES: (continued)  
5. For alternate stencil design recommendations see IPC-7525 or board assembly site preference.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY