PCM1608KY/2K [TI]

24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER; 24位192kHz采样, 8通道,增强型多级Δ-Σ数位类比转换器
PCM1608KY/2K
型号: PCM1608KY/2K
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER
24位192kHz采样, 8通道,增强型多级Δ-Σ数位类比转换器

转换器
文件: 总31页 (文件大小:453K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCM1608  
PCM1608  
SBAS164A – MARCH 2001  
24-Bit, 192kHz Sampling, 8-Channel,  
Enhanced Multilevel, Delta-Sigma  
DIGITAL-TO-ANALOG CONVERTER  
APPLICATIONS  
FEATURES  
INTEGRATED A/V RECEIVERS  
DVD MOVIE AND AUDIO PLAYERS  
HDTV RECEIVERS  
24-BIT RESOLUTION  
ANALOG PERFORMANCE:  
Dynamic Range: 100dB typ (PCM1608Y)  
105dB typ (PCM1608KY)  
SNR: 100dB typ (PCM1608Y)  
105dB typ (PCM1608KY)  
CAR AUDIO SYSTEMS  
DVD ADD-ON CARDS FOR HIGH-END PCs  
DIGITAL AUDIO WORKSTATIONS  
OTHER MULTICHANNEL AUDIO SYSTEMS  
THD+N: 0.003% typ (PCM1608Y)  
0.002% typ (PCM1608KY)  
Full-Scale Output: 3.1Vp-p typ  
4x/8x OVERSAMPLING INTERPOLATION FILTER:  
Stopband Attenuation: –55dB  
Passband Ripple: ±0.03dB  
DESCRIPTION  
The PCM1608 is a CMOS monolithic integrated circuit that  
features eight 24-bit audio Digital-to-Analog Converters  
(DACs) and support circuitry in a small LQFP-48 package. The  
DACs utilize Texas Instrument’s enhanced multi-level, delta-  
sigma architecture that employs fourth-order noise shaping and  
8-level amplitude quantization to achieve excellent signal-to-  
noise performance and a high tolerance to clock jitter.  
SAMPLING FREQUENCY:  
5kHz to 200kHz (Channels 1, 2, 7, and 8)  
5kHz to 100kHz (Channels 3, 4, 5, and 6)  
ACCEPTS 16-, 18-, 20-, AND 24-BIT AUDIO DATA  
DATA FORMATS: Standard, I2S, and Left-Justified  
SYSTEM CLOCK: 128, 192, 256, 384, 512, or 768fS  
The PCM1608 accepts industry-standard audio data formats  
with 16- to 24-bit audio data. Sampling rates up to 200kHz  
(channels 1, 2, 7, and 8) or 100kHz (channels 3, 4, 5, and 6)  
are supported. A full set of user-programmable functions are  
accessible through a 4-wire serial control port that supports  
register write and read functions.  
USER-PROGRAMMABLE FUNCTIONS:  
Digital Attenuation: 0dB to –63dB, 0.5dB/Step  
Soft Mute  
Zero Flags May Be Used As General-  
Purpose Logic Output  
Digital De-Emphasis  
Digital Filter Roll-Off: Sharp or Slow  
DUAL-SUPPLY OPERATION:  
+5V Analog, +3.3V Digital  
+5V TOLERANT DIGITAL LOGIC INPUTS  
PACKAGE: LQFP-48  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2000, Texas Instruments Incorporated  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
www.ti.com  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
DRAWING  
NUMBER  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER(1)  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
PCM1608Y  
LQFP-48  
340  
"
–25°C to +85°C  
PCM1608Y  
PCM1608Y  
PCM1608Y/2K  
PCM1608KY  
250-Piece Tray  
Tape and Reel  
250-Piece Tray  
Tape and Reel  
"
"
"
"
PCM1608KY  
LQFP-48  
340  
–25°C to +85°C  
PCM1608KY  
"
"
"
"
"
PCM1608KY/2K  
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K indicates 2000 devices per reel). Ordering 2000 pieces  
of “PCM1608Y/2K” will get a single 2000-piece Tape and Reel.  
ABSOLUTE MAXIMUM RATINGS  
ELECTROSTATIC  
Power Supply Voltage, VDD .............................................................. +4.0V  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Texas Instru-  
VCC .............................................................. +6.5V  
Ground Voltage Differences.............................................................. ±0.1V  
Digital Input Voltage ................................................ –0.3V to (6.5V + 0.3V)  
mentsrecommendsthatallintegratedcircuitsbehandledwith  
Input Current (except power supply) ............................................... ±10mA  
Operating Temperature Under Bias ................................ –40°C to +125°C  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Storage Temperature ...................................................... –55°C to +150°C  
Junction Temperature .................................................................... +150°C  
ESD damage can range from subtle performance degradation  
Lead Temperature (soldering, 5s)................................................. +260°C  
Package Temperature (IR reflow, 10s) .......................................... +235°C  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
ELECTRICAL CHARACTERISTICS  
All specifications at TA = +25°C, VCC = 5.0V, VDD = 3.3V, system clock = 384fS (fS = 44.1kHz), and 24-bit data, unless otherwise noted.  
PCM1608Y  
PCM1608KY  
PARAMETER  
RESOLUTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
24  
Bits  
DATA FORMAT  
Audio Data Interface Formats  
Audio Data Bit Length  
Audio Data Format  
Standard, I2S, Left-Justified  
16, 18, 20, 24-Bits Selectable  
MSB-First, Binary Two’s Complement  
Sampling Frequency (fS)  
VOUT 1, 2, 7, 8  
VOUT 3, 4, 5, 6  
5
5
200  
100  
kHz  
kHz  
System Clock Frequency  
128, 192, 256, 384, 512, 768fS  
TTL-Compatible  
DIGITAL INPUT/OUTPUT  
Logic Family  
Input Logic Level  
VIH  
2.0  
VDC  
VDC  
VIL  
0.8  
Input Logic Current  
(1)  
IIH  
IIL  
IIH  
IIL  
VIN = VDD  
VIN = 0V  
VIN = VDD  
VIN = 0V  
10  
µA  
µA  
µA  
µA  
(1)  
–10  
100  
–10  
(2)  
65  
(2)  
Output Logic Level  
VOH  
VOL  
IOH = –4mA  
IOL = +4mA  
2.4  
VDC  
VDC  
1.0  
DYNAMIC PERFORMANCE(3) (4)  
PCM1608Y  
THD+N at VOUT = 0dB  
fS = 44.1kHz  
fS = 96kHz  
fS = 192Hz  
fS = 44.1kHz  
fS = 96kHz  
0.003  
0.005  
0.006  
1.25  
1.40  
1.65  
100  
99  
98  
100  
99  
98  
98  
0.01  
%
%
%
%
%
THD+N at VOUT = –60dB  
fS = 192kHz  
%
Dynamic Range  
EIAJ, A-Weighted, fS = 44.1kHz  
A-Weighted, fS = 96kHz  
A-Weighted, fS = 192kHz  
EIAJ, A-Weighted, fS = 44.1kHz  
A-Weighted, fS = 96kHz  
A-Weighted, fS = 192kHz  
fS = 44.1kHz  
94  
94  
91  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise Ratio  
Channel Separation  
Level Linearity Error  
fS = 96kHz  
fS = 192kHz  
VOUT = –90dB  
97  
96  
±0.5  
PCM1608  
SBAS164A  
2
ELECTRICAL CHARACTERISTICS (Cont.)  
All specifications at TA = +25°C, VCC = 5.0V, VDD = 3.3V, system clock = 384fS (fS = 44.1kHz), and 24-bit data, unless otherwise noted.  
PCM1608Y  
PCM1608KY  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PCM1608KY  
THD+N at VOUT = 0dB  
fS = 44.1kHz  
fS = 96kHz  
fS = 192kHz  
0.002  
0.004  
0.005  
0.7  
0.008  
%
%
%
THD+N at VOUT = –60dB  
fS = 44.1kHz  
%
fS = 96kHz  
0.9  
%
fS = 192kHz  
1.0  
%
Dynamic Range  
EIAJ, A-Weighted, fS = 44.1kHz  
A-Weighted, fS = 96kHz  
A-Weighted, fS = 192kHz  
EIAJ, A-Weighted, fS = 44.1kHz  
A-Weighted, fS = 96kHz  
A-Weighted, fS = 192kHz  
fS = 44.1kHz  
98  
98  
94  
105  
103  
102  
105  
103  
102  
103  
101  
100  
±0.5  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise Ratio  
Channel Separation  
Level Linearity Error  
fS = 96kHz  
fS = 192kHz  
VOUT = –90dB  
DC ACCURACY  
Gain Error  
Gain Mismatch, Channel-to-Channel  
Bipolar Zero Error  
±1.0  
±1.0  
±30  
±6  
±3  
±60  
% of FSR  
% of FSR  
mV  
VOUT = 0.5VCC at Bipolar Zero  
ANALOG OUTPUT  
Output Voltage  
Center Voltage  
Full Scale (–0dB)  
AC Load  
62% of VCC  
50% VCC  
Vp-p  
VDC  
kΩ  
Load Impedance  
5
DIGITAL FILTER PERFORMANCE  
Filter Characteristics 1, Sharp Roll-Off  
Passband  
±0.03dB  
–3dB  
0.454fS  
0.487fS  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Stopband Attenuation  
0.546fS  
dB  
dB  
dB  
±0.03  
Stopband = 0.546fS  
Stopband = 0.567fS  
–50  
–55  
Filter Characteristics 2, Slow Roll-Off  
Passband  
Passband  
±0.5dB  
–3dB  
0.198fS  
0.390fS  
Stopband  
0.884fS  
–40  
Passband Ripple  
Stopband Attenuation  
Delay Time  
±0.5  
dB  
dB  
Stopband = 0.884fS  
20/fS  
±0.1  
sec  
dB  
De-Emphasis Error  
ANALOG FILTER PERFORMANCE  
Frequency Response  
f = 20kHz  
f = 44kHz  
–0.03  
–0.20  
dB  
dB  
POWER-SUPPLY REQUIREMENTS(4)  
Voltage Range, VDD  
VCC  
Supply Current, IDD  
+3.0  
+4.5  
+3.3  
+5.0  
18  
40  
40  
+3.6  
+5.5  
25  
VDC  
VDC  
mA  
mA  
mA  
(5)  
fS = 44.1kHz  
fS = 96kHz  
fS = 192kHz  
ICC  
fS = 44.1kHz  
fS = 96kHz  
fS = 192kHz  
fS = 44.1kHz  
fS = 96kHz  
fS = 192kHz  
33  
36  
36  
224  
312  
312  
46  
mA  
mA  
mA  
mW  
mW  
mW  
Power Dissipation  
313  
TEMPERATURE RANGE  
Operation Temperature  
Thermal Resistance  
–25  
+85  
°C  
θJA  
LQFP-48  
100  
°C/W  
NOTES: (1) Pins 31, 38, 40, 41, 45-47 (DATA4, SCKI, BCK, LRCK, DATA1, DATA2, DATA3). (2) Pins 34-37 (MDI, MC, ML, RST). (3) Analog performance  
specifications are tested with a Shibasoku #725 THD Meter with 400Hz HPF on, 30kHz LPF on, average mode with 20kHz bandwidth limiting. The load  
connected to the analog output is 5kΩ, or larger, via capacitive loading. (4) Conditions in 192kHz operation are: system clock = 128fS, DAC3 through DAC6  
disabled in Register 8, and oversampling rate = 64fS in Register 12. (5) CLKO is disabled.  
PCM1608  
SBAS164A  
3
BLOCK DIAGRAM  
Output Amp and  
Low-Pass Filter  
VOUT  
1
2
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
BCK  
LRCK  
Output Amp and  
Low-Pass Filter  
VOUT  
Serial  
Input  
I/F  
DATA1 (1,2)  
DATA2 (3,4)  
DATA3 (5,6)  
DATA4 (7,8)  
Output Amp and  
Low-Pass Filter  
VOUT3  
4x/8x  
Oversampling  
Digital Filter  
with  
Function  
Controller  
VOUT4  
Output Amp and  
Low-Pass Filter  
Enhanced  
Multi-Level  
Delta-Sigma  
Modulator  
VCOM  
VOUT  
5
Output Amp and  
Low-Pass Filter  
TEST  
RST  
ML  
Output Amp and  
Low-Pass Filter  
VOUT6  
Function  
Control  
I/F  
MC  
Output Amp and  
Low-Pass Filter  
VOUT  
7
8
MDI  
MDO  
VOUT  
Output Amp and  
Low-Pass Filter  
System Clock  
System Clock  
Manager  
Power Supply  
Zero Detect  
SCKI  
PIN CONFIGURATION  
Top View  
LQFP  
36 35 34 33 32 31 30 29 28 27 26 25  
RST  
SCKI  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
V
CC3  
AGND3  
CC4  
AGND4  
OUT8  
AGND6  
CC5  
AGND5  
OUT7  
VCOM  
VOUT  
OUT2  
SCKO  
BCK  
V
LRCK  
TEST  
VDD  
V
PCM1608  
V
DGND  
DATA1  
DATA2  
DATA3  
ZEROA  
V
1
V
1
2
3
4
5
6
7
8
9
10 11 12  
PCM1608  
SBAS164A  
4
PIN ASSIGNMENTS  
PIN  
NAME  
I/O  
DESCRIPTION  
1
ZERO1/GPO1  
ZERO2/GPO2  
ZERO3/GPO3  
ZERO4/GPO4  
ZERO5/GPO5  
ZERO6/GPO6  
NC  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
Zero Data Flag for VOUT1. Can also be used as GPO pin.  
Zero Data Flag for VOUT2. Can also be used as GPO pin.  
Zero Data Flag for VOUT3. Can also be used as GPO pin.  
Zero Data Flag for VOUT4. Can also be used as GPO pin.  
Zero Data Flag for VOUT5. Can also be used as GPO pin.  
Zero Data Flag for VOUT6. Can also be used as GPO pin.  
No Connection  
2
3
4
5
6
7
8
NC  
No Connection  
9
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
6
5
4
3
2
1
Voltage Output of Audio Signal Corresponding to Rch on DATA3. Up to 96kHz.  
Voltage Output of Audio Signal Corresponding to Lch on DATA3. Up to 96kHz.  
Voltage Output of Audio Signal Corresponding to Rch on DATA2. Up to 96kHz.  
Voltage Output of Audio Signal Corresponding to Lch on DATA2. Up to 96kHz.  
Voltage Output of Audio Signal Corresponding to Rch on DATA1. Up to 192kHz.  
Voltage Output of Audio Signal Corresponding to Lch on DATA1. Up to 192kHz.  
Common Voltage Output. This pin should be bypassed with a 10µF capacitor to AGND.  
Voltage Output for Audio Signal Corresponding to Lch on DATA4. Up to 192kHz.  
Analog Ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
VCOM  
VOUT7  
AGND5  
VCC  
AGND6  
VOUT  
AGND4  
VCC  
AGND3  
VCC  
AGND2  
VCC  
AGND1  
VCC  
5
Analog Power Supply, +5V  
Analog Ground  
8
Voltage Output for Audio Signal Corresponding to Rch on DATA4. Up to 192kHz.  
Analog Ground  
4
Analog Power Supply, +5V  
Analog Ground  
3
Analog Power Supply, +5V  
Analog Ground  
2
Analog Power Supply, +5V  
Analog Ground  
1
Analog Power Supply, +5V  
NC  
ZERO7  
DATA4  
ZERO8  
MDO  
No Connection  
Zero Data Flag for VOUT  
Serial Audio Data Input for VOUT7 and VOUT8(2)  
Zero Data Flag for VOUT  
7
8
Serial Data Output for Serial Control Port(3)  
Serial Data Input for Serial Control Port(1)  
Shift Clock for Serial Control Port(1)  
Latch Enable for Serial Control Port(1)  
MDI  
MC  
I
ML  
I
RST  
I
System Reset, Active LOW(1)  
SCKI  
I
System Clock Input. Input frequency is 128, 192, 256, 384, 512, or 768fS.(2)  
Buffered Clock Output. Output frequency is 128, 192, 256, 384, 512, or 768fS, or one-half of 128, 192, 256, 384, 512, or 768fS.  
Shift Clock Input for Serial Audio Data. Clock must be 32, 48, or 64fS.(2)  
Left and Right Clock Input. This clock is equal to the sampling rate, fS.(2)  
Test Pin. This pin should be connected to DGND.(1)  
Digital Power Supply, +3.3V  
SCKO  
BCK  
O
I
LRCK  
TEST  
VDD  
I
I
DGND  
DATA1  
DATA2  
DATA3  
ZEROA  
Digital Ground  
Serial Audio Data Input for VOUT1 and VOUT2(2)  
Serial Audio Data Input for VOUT3 and VOUT4(2)  
Serial Audio Data Input for VOUT5 and VOUT6(2)  
Zero Data Flag. Logical ANDof ZERO1 through ZERO6.  
I
I
O
NOTES: (1) Schmitt-Trigger input with internal pull-down, 5V tolerant. (2) Schmitt-Trigger input, 5V tolerant. (3) Tri-state output.  
PCM1608  
SBAS164A  
5
TYPICAL CHARACTERISTICS  
All specifications at TA = +25°C, VCC = 5.0V, VDD = 3.3V, system clock = 384fS (fS = 44.1kHz), and 24-bit input data, unless otherwise noted.  
DIGITAL FILTER  
Digital Filter (De-Emphasis Off, fS = 44.1kHz)  
FREQUENCY RESPONSE PASSBAND  
FREQUENCY RESPONSE (Sharp Roll-Off)  
(Sharp Roll-Off)  
0
20  
0.05  
0.04  
0.03  
0.02  
0.01  
0
40  
60  
80  
0.01  
0.02  
0.03  
0.04  
0.05  
100  
120  
140  
0
1
2
3
4
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (x fS)  
Frequency (x fS)  
FREQUENCY RESPONSE (Slow Roll-Off)  
TRANSITION CHARACTERISTICS (Slow Roll-Off)  
0
20  
5
4
3
40  
2
1
60  
0
80  
1  
2  
3  
4  
5  
100  
120  
140  
0
1
2
3
4
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (x fS)  
Frequency (x fS)  
De-Emphasis and De-Emphasis Error  
DE-EMPHASIS (fS = 32kHz)  
0.0  
DE-EMPHASIS ERROR (fS = 32kHz)  
0.5  
0.4  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
0.3  
0.2  
0.1  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
Frequency (kHz)  
Frequency (kHz)  
PCM1608  
SBAS164A  
6
TYPICAL CHARACTERISTICS (Cont.)  
All specifications at TA = +25°C, VCC = 5.0V, VDD = 3.3V, system clock = 384fS (fS = 44.1kHz), and 24-bit input data, unless otherwise noted.  
De-Emphasis and De-Emphasis Error (Cont.)  
DE-EMPHASIS (fS = 44.1kHz)  
DE-EMPHASIS ERROR (fS = 44.1kHz)  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
18  
18  
0
2
4
6
8
10  
12  
14  
16  
20  
0
2
4
6
8
10  
12  
14  
16  
20  
Frequency (kHz)  
Frequency (kHz)  
DE-EMPHASIS (fS = 48kHz)  
DE-EMPHASIS ERROR (fS = 48kHz)  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
18  
0
2
4
6
8
10 12 14  
20 22  
18  
0
2
4
6
8
10 12 14  
20 22  
16  
16  
Frequency (kHz)  
Frequency (kHz)  
ANALOG DYNAMIC PERFORMANCE  
All specifications at TA = +25°C, VCC = 5.0V, VDD = 3.3V, and 24-bit input data, unless otherwise noted. Conditions in 192kHz operation are: system clock = 128fS,  
DAC3 through DAC6 = disable of Register 8, and oversampling rate = 64fS of Redister 12.  
Supply-Voltage Characteristics  
THD+N vs VCC (VDD = 3.3V)  
DYNAMIC RANGE vs VCC (VDD = 3.3V)  
10  
1
110  
108  
106  
104  
102  
100  
98  
60dB/192kHz, 384fS  
60dB/96kHz, 384fS  
44.1kHz, 384fS  
60dB/44.1kHz, 384fS  
0.1  
96kHz, 384fS  
0dB/192kHz, 384fS  
0dB/96kHz, 384fS  
0.01  
0.001  
0.0001  
192kHz, 384fS  
0dB/44.1kHz, 384fS  
96  
4
4.5  
5
5.5  
6
4
4.5  
5
5.5  
6
VCC (V)  
VCC (V)  
PCM1608  
SBAS164A  
7
TYPICAL CHARACTERISTICS (Cont.)  
All specifications at TA = +25°C, VCC = 5.0V, VDD = 3.3V, and 24-bit input data, unless otherwise noted. Conditions in 192kHz operation are: system clock = 128fS,  
DAC3 through DAC6 = disable of Register 8, and oversampling rate = 64fS of Redister 12.  
Supply-Voltage Characteristics (Cont.)  
SNR vs VCC (VDD = 3.3V)  
CHANNEL SEPARATION vs VCC (VDD = 3.3V)  
110  
108  
106  
104  
102  
100  
98  
110  
108  
106  
104  
102  
100  
98  
44.1kHz, 384fS  
96kHz, 384fS  
44.1kHz, 384fS  
96kHz, 384fS  
192kHz, 384fS  
192kHz, 384fS  
96  
96  
4
4.5  
5
5.5  
6
4
4.5  
5
5.5  
6
VCC (V)  
V
CC (V)  
Temperature Characteristics  
THD+N vs TA  
DYNAMIC RANGE vs TA  
110  
108  
106  
104  
102  
100  
98  
10  
1
60dB/192kHz, 384fS  
60dB/96kHz, 384fS  
44.1kHz, 384fS  
96kHz, 384fS  
60dB/44.1kHz, 384fS  
0.1  
0dB/192kHz, 384fS  
0dB/96kHz, 384fS  
0.01  
0.001  
0.0001  
192kHz, 384fS  
0dB/44.1kHz, 384fS  
96  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
SNR vs TA  
CHANNEL SEPARATION vs TA  
110  
108  
106  
104  
102  
100  
98  
110  
108  
106  
104  
102  
100  
98  
44.1kHz, 384fS  
96kHz, 384fS  
44.1kHz, 384fS  
96kHz, 384fS  
192kHz, 384fS  
192kHz, 384fS  
96  
96  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
PCM1608  
SBAS164A  
8
SYSTEM CLOCK OUTPUT  
SYSTEM CLOCK AND RESET  
FUNCTIONS  
A buffered version of the system clock input is available at  
the SCKO output (pin 39). SCKO can operate at either full  
(fSCKI) or half (fSCKI/2) rate. The SCKO output frequency  
may be programmed using the CLKE bit of Register 9. If the  
SCKO output is not required, it is recommended to disable  
it using the CLKE bit. The default is SCKO enabled.  
SYSTEM CLOCK INPUT  
The PCM1608 requires a system clock for operating the  
digital interpolation filters and multilevel delta-sigma modu-  
lators. The system clock is applied at the SCKI input (pin 38).  
Table I shows examples of system clock frequencies for  
common audio sampling rates.  
POWER-ON AND EXTERNAL RESET FUNCTIONS  
Figure 1 shows the timing requirements for the system clock  
input. For optimal performance, it is important to use a clock  
source with low phase jitter and noise. The PLL1700 multi-  
clock generator from Texas Instruments is an excellent  
choice for providing the PCM1608 system clock.  
The PCM1608 includes a power-on reset function, as shown  
in Figure 2. With the system clock active, and VDD > 2.0V  
(typical, 1.6V to 2.4V), the power-on reset function will be  
enabled. The initialization sequence requires 1024 system  
clocks from the time VDD > 2.0V. After the initialization  
period, the PCM1608 will be set to its reset default state, as  
described in the Mode Control Register section of this data  
sheet.  
The 192kHz sampling frequency operation is available on  
DATA1 for VOUT1 and VOUT2, and DATA4 for VOUT7 and  
VOUT8. It is recommended that VOUT3, VOUT4, VOUT5, and  
VOUT6 be disabled when operating with fS = 192kHz. This  
is done by setting the DAC3, DAC4, DAC5, and DAC6 bits  
of Register 9 to a “1” state.  
The PCM1608 also includes an external reset capability  
using the RST input (pin 37). This allows an external  
SYSTEM CLOCK FREQUENCY (fSCLK) (MHz)  
SAMPLING  
FREQUENCY  
128fS  
192fS  
256fS  
384fS  
512fS  
768fS  
8kHz  
16kHz  
32kHz  
44.1kHz  
48kHz  
96kHz  
192kHz  
2.0480  
4.0960  
8.1920  
11.2896  
12.2880  
24.5760  
(2)  
3.0720  
6.1440  
12.2880  
16.9344  
18.4320  
36.8640  
(2)  
4.0960  
8.1920  
16.3840  
22.5792  
24.5760  
49.1520  
(2)  
6.1440  
12.2880  
24.5760  
33.8688  
36.8640  
(1)  
24.5760  
36.8640  
(2)  
NOTES: (1) The 768fS system clock rate is not supported for fS > 64kHz. (2) This system clock is not supported for the given sampling frequency.  
TABLE I. System Clock Rates for Common Audio Sampling Frequencies.  
tSCKH  
2.0V  
System Clock  
0.8V  
tSCKL  
System Clock  
Pulse Cycle Time(1)  
System Clock Pulse Width HIGH tSCKH: 7ns (min)  
System Clock Pulse Width LOW tSCKL: 7ns (min)  
NOTE: (1) 1/128fS, 1/256fS, 1/384fS, 1/512fS, and 1/768fS.  
FIGURE 1. System Clock Timing.  
2.4V  
VDD  
2.0V  
1.6V  
0V  
Reset  
Reset Removal  
Internal Reset  
1024 System Clocks  
Dont Care  
System Clock  
FIGURE 2. Power-On Reset Timing.  
PCM1608  
SBAS164A  
9
controller or master reset circuit to force the PCM1608 to  
initialize to its reset default state. For normal operation,  
RST should be set to a logic “1”.  
Internal operation of the PCM1608 is synchronized with  
LRCK. Accordingly, it is held when the sampling rate clock  
of LRCK is changed, or SCKI and/or BCK is broken at least  
for one clock cycle. If SCKI, BCK, and LRCK are provided  
continuously after this hold condition, the internal operation  
will be resynchronized automatically, less than 3/fS period. In  
this resynchronize period, and following 3/fS, the analog  
outputs are forced to the bipolar zone level (or VCC/2).  
External resettling is not required.  
The external reset operation and timing is shown in Figure 3.  
The RST pin is set to logic “0” for a minimum of 20ns.  
After the initialization sequence is completed, the PCM1608  
will be set to its reset default state, as described in the  
Mode Control Registers section of this data sheet.  
During the reset period (1024 system clocks), the analog  
outputs are forced to the bipolar zero level (or VCC/2).  
After the reset period, the internal registers are initialized  
in the next 1/fS period and, if SCKI, BCK, and LRCK are  
provided continuously, the PCM1608 provides proper ana-  
log output with unit-group delay, as specified in this data  
sheet.  
AUDIO DATA FORMATS AND TIMING  
The PCM1608 supports industry-standard audio data formats,  
including Standard, I2S, and Left-Justified (see Figure 4).  
Data formats are selected using the format bits, FMT[2:0], in  
Register 9. The default data format is 24-bit Standard. All  
formats require Binary Two’s Complement, MSB-first audio  
data. See Figure 5 for a detailed timing diagram of the serial  
audio interface.  
The external reset is especially useful in applications  
where there is a delay between PCM1608 power-up and  
system clock activation. In this case, the RST pin should  
be held at a logic “0” level until the system clock has been  
activated.  
DATA1, DATA2, DATA3, and DATA4 each carry two audio  
channels, designated as the Left and Right channels. The Left  
channel data always precedes the Right channel data in the  
serial data stream for all data formats. Table II shows the  
mapping of the digital input data to the analog output pins.  
AUDIO SERIAL INTERFACE  
The audio serial interface for the PCM1608 is comprised of  
a 5-wire synchronous serial port. It includes LRCK (pin 41),  
BCK (pin 40), DATA1 (pin 45), DATA2 (pin 46), DATA3  
(pin 47), and DATA4 (pin 31). BCK is the serial audio bit  
clock, and is used to clock the serial data present on  
DATA1, DATA2, DATA3, and DATA4 into the audio  
interface’s serial shift register. Serial data is clocked into  
the PCM1608 on the rising edge of BCK. LRCK is the  
serial audio left/right word clock. It is used to latch serial  
data into the serial audio interface’s internal registers.  
DATA INPUT  
CHANNEL  
ANALOG OUTPUT  
DATA1  
DATA1  
DATA2  
DATA2  
DATA3  
DATA3  
DATA4  
DATA4  
Left  
Right  
Left  
VOUT1(1)  
VOUT2(1)  
VOUT3(2)  
VOUT4(2)  
VOUT5(2)  
VOUT6(2)  
VOUT7(1)  
VOUT8(1)  
Right  
Left  
Right  
Left  
Right  
Both LRCK and BCK must be synchronous to the system  
clock. Ideally, it is recommended that LRCK and BCK be  
derived from the system clock input, SCKI. LRCK is  
operated at the sampling frequency (fS). BCK may be  
operated at 32, 48, or 64 times the sampling frequency (I2S  
format does not support BCK = 32fS).  
NOTES: (1) Up to 192kHz. (2) Up to 96kHz, forced to bipolar zero when  
fS = 96kHz.  
TABLE II. Audio Input Data to Analog Output Mapping.  
RST  
Reset Removal  
Reset  
Internal Reset  
1024 System Clocks  
System Clock  
FIGURE 3. External Reset Timing.  
PCM1608  
SBAS164A  
10  
SERIAL CONTROL INTERFACE  
(pin 36). MDO is the serial data output, used to read back the  
values of the mode registers; MDI is the serial data input,  
used to program the mode registers; MC is the serial bit  
clock, used to shift data in and out of the control port; and  
ML is the control port latch clock.  
The serial control interface is a 4-wire synchronous serial  
port that operates asynchronously to the serial audio inter-  
face. The serial control interface is utilized to program and  
read the on-chip mode registers. The control interface in-  
cludes MDO (pin 33), MDI (pin 34), MC (pin 35), and ML  
(1) Standard Data Format: L-Channel = HIGH, R-Channel = LOW  
1/fS  
R-Channel  
LRCK  
L-Channel  
BCK  
(= 32fS, 48fS or 64fS)  
16-Bit Right-Justified, BCK = 48fS or 64fS  
DATA  
14 15 16  
1
2
3
14 15 16  
1
2
3
14 15 16  
MSB  
LSB  
MSB  
LSB  
16-Bit Right-Justified, BCK = 32fS  
DATA  
14 15 16  
16 17 18  
1
2
3
14 15 16  
1
2
3
14 15 16  
MSB  
LSB MSB  
LSB  
17 18  
LSB  
18-Bit Right-Justified  
DATA  
1
2
3
16 17 18  
1
2
MSB  
LSB  
MSB  
20-Bit Right-Justified  
DATA 18 19 20  
1
2
3
18 19 20  
LSB  
1
2
3
18 19 20  
LSB  
MSB  
MSB  
24-Bit Right-Justified  
DATA  
22 23 24  
1
2
3
22 23 24  
1
2
3
22 23 24  
LSB  
MSB  
LSB MSB  
(2) I2S Data Format: L-Channel = LOW, R-Channel = HIGH  
1/fS  
LRCK  
L-Channel  
R-Channel  
BCK  
(= 48fS or 64fS)  
DATA  
1
2
3
N-2 N-1  
N
1
2
3
N-2 N-1  
N
1
2
MSB  
LSB  
MSB  
LSB  
(3) Left-Justified Data Format: L-Channel = HIGH, R-Channel = LOW  
1/fS  
L-Channel  
LRCK  
R-Channel  
BCK  
(= 32fS, 48fS or 64fS)  
DATA  
1
2
3
N-2 N-1  
N
1
2
3
N-2 N-1  
N
1
2
MSB  
LSB  
MSB  
LSB  
FIGURE 4. Audio Data Input Formats.  
PCM1608  
SBAS164A  
11  
LRCK  
BCK  
50% of VDD  
50% of VDD  
tBCH  
tBCL  
tLB  
tBCY  
tBL  
DATA1,DATA2,  
DATA3, DATA4  
50% of VDD  
tDS  
tDH  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
(1)  
tBCY  
tBCH  
tBCL  
tBL  
BCK Pulse Cycle Time  
BCK High Level Time  
BCK Low Level Time  
32, 48, or 64fS  
35  
35  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
BCK Rising Edge to LRCK Edge  
tLB  
LRCK Falling Edge to BCK Rising Edge  
DATA Set Up Time  
tDS  
tDH  
DATA Hold Time  
NOTE: (1) fS is the sampling frequency (e.g., 44.1kHz, 48kHz, 96kHz, etc.)  
FIGURE 5. Audio Interface Timing.  
REGISTER WRITE OPERATION  
MC, corresponding to the 16-bits of the control data word on  
MDI. After the sixteenth clock cycle has completed, ML is  
set to logic “1” to latch the data into the indexed mode  
control register.  
All Write operations for the serial control port use 16-bit  
data words. Figure 6 shows the control data word format.  
The most significant bit is the Read/Write (R/W) bit. When  
set to “0”, this bit indicates a Write operation. There are  
seven bits, labeled IDX[6:0], that set the register index (or  
address) for the Write operation. The least significant eight  
bits, D[7:0], contain the data to be written to the register  
specified by IDX[6:0].  
SINGLE REGISTER READ OPERATION  
Read operations utilize the 16-bit control word format shown  
in Figure 6. For Read operations, the R/W bit is set to “1”.  
Read operations ignore the index bits, IDX[6:0], of the  
control data word. Instead, the REG[6:0] bits in Control  
Register 11 are used to set the index of the register that is to  
be read during the Read operation. Bits IDX[6:0] should be  
set to 00H for Read operations.  
Figure 7 shows the functional timing diagram for writing the  
serial control port. ML is held at a logic “1” state until a  
register needs to be written. To start the register write cycle,  
ML is set to logic “0”. Sixteen clocks are then provided on  
MSB  
LSB  
R/W IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Register Index (or Address)  
Register Data  
Read/Write Operation  
0 = Write Operation  
1 = Read Operation (register index is ignored)  
FIGURE 6. Control Data Word Format for MDI.  
ML  
MC  
MDI  
X
R/W IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0 D7 D6 D5  
D4 D3 D2 D1 D0  
X
X
RW IDX6  
FIGURE 7. Write Operation Timing.  
PCM1608  
SBAS164A  
12  
The details of the Read operation are shown in Figure 8. First,  
Control Register 11 must be written with the index of the  
register to be read back. Additionally, the INC bit must be set  
to logic “0” in order to disable the Auto-Increment Read  
function. The Read cycle is then initiated by setting ML to  
logic “0” and setting the R/W bit of the control data word to  
logic “1”, indicating a Read operation. MDO remains at a  
high-impedance state until the last eight bits of the 16-bit read  
cycle, which corresponds to the eight data bits of the register  
indexed by the REG[6:0] bits of Control Register 11. The  
Read cycle is completed when ML is set to “1”, immediately  
after the MC clock cycle for the least significant bit of  
indexed control register has completed.  
AUTO-INCREMENT READ OPERATION  
The Auto-Increment Read function allows for multiple regis-  
ters to be read sequentially. The Auto-Increment Read func-  
tion is enabled by setting the INC bit of Control Register 11  
to “1”. The sequence always starts with Register 1, and ends  
with the register indexed by the REG[6:0] bits in Control  
Register 11.  
Figure 8 shows the timing of the Auto-Increment Read  
operation. The operation begins by writing Control Regis-  
ter 11, setting INC to “1”, and setting REG[6:0] to the last  
register to be read in the sequence. The actual Read opera-  
tion starts on the next HIGH to LOW transition of the ML  
pin.  
INC = 1 (Auto-Increment Read)  
ML  
MC  
MDI  
1
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
MDO  
High Impedance  
D7 D6 D5 D4 D3 D2 D1 D0  
INDEX 1”  
ML  
MC  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
MDI  
MDO  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
INDEX N 1INDEX N”  
INC = 0 (Single Register Read)  
High Impedance  
ML  
MC  
1
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
MDI  
MDO  
High Impedance  
D7 D6 D5 D4 D3 D2 D1 D0  
INDEX N”  
NOTES: (1) X = Dont care. (2) Index which it begins to read in the read mode can set by REG[6:0] in Register 11, data from Register 1 to Register 12 can  
be read by setting it as INC = 1in Register 11. For example, set REG[6:0] = 0001001to read from Register 9. (INC = 0or 1.)  
FIGURE 8. Read Operation Timing.  
PCM1608  
SBAS164A  
13  
The Read cycle starts by setting the R/W bit of the control  
word to “1”, and setting all of the IDX[6:0] bits to “0”.  
All subsequent bits input on the MDI are ignored while ML  
is set to “0”. For the first eight clocks of the Read cycle,  
MDO is set to a high-impedance state. This is followed by  
a sequence of 8-bit words, each corresponding the data  
contained in Control Registers 1 through N, where N is  
defined by the REG[6:0] bits in Control Register 11. The  
Read cycle is completed when ML is set to “1”, immediately  
after the MC clock cycle for the least significant bit of  
Control Register N has completed.  
CONTROL INTERFACE TIMING REQUIREMENTS  
Figure 9 shows a detailed timing diagram for the Serial  
Control interface. Pay special attention to the setup and hold  
times, as well as tMLS and tMLH, which define minimum delays  
between edges of the ML and MC clocks. These timing  
parameters are critical for proper control port operation.  
tMHH  
50% of VDD  
ML  
tMCH  
tMCL  
tMLS  
tMLH  
50% of VDD  
MC  
tMCY  
LSB  
MDI  
50% of VDD  
tMDS  
tMCH  
tMOS  
LSB  
50% of VDD  
MDO  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
tMCY  
tMCL  
tMCH  
tMHH  
tMLS  
tMLH  
tMDH  
tMDS  
tMOS  
MC Pulse Cycle Time  
MC Low Level Time  
MC High Level Time  
ML High Level Time  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
50  
300  
20  
ML Falling Edge to MC Rising Edge  
ML Hold Time(1)  
20  
MDI Hold Time  
15  
MDL Set Up Time  
20  
MC Falling Edge to MDSO Stable  
30  
NOTE: (1) MC rising edge for LSB to ML rising edge.  
FIGURE 9. Control Interface Timing.  
PCM1608  
SBAS164A  
14  
MODE CONTROL REGISTERS  
Register Map  
User-Programmable Mode Controls  
The mode control register map is shown in Table IV. Each  
register includes a R/W bit that determines whether a regis-  
ter read (R/W = 1) or write (R/W = 0) operation is per-  
formed. Each register also includes an index (or address)  
indicated by the IDX[6:0] bits.  
The PCM1608 includes a number of user-programmable  
functions that are accessed via control registers. The regis-  
ters are programmed using the Serial Control Interface that  
was previously discussed in this data sheet. Table III lists the  
available mode control functions, along with their reset  
default conditions and associated register index.  
FUNCTION  
RESET DEFAULT  
CONTROL REGISTER  
INDEX, IDX[6:0]  
Digital Attenuation Control, 0dB to 63dB in 0.5dB Steps  
0dB, No Attenuation  
1 through 6, 16, 17  
AT1[7:0], AT2[7:0]  
AT3[7:0], AT4[7:0]  
AT5[7:0], AT6[7:0]  
AT7[7:0], AT8[7:0]  
MUT[8:1]  
DAC[8:1]  
FMT[2:0]  
FLT  
Soft Mute Control  
DAC 1-8 Operation Control  
Audio Data Format Control  
Digital Filter Roll-Off Control  
SCKO Frequency Selection  
Mute Disabled  
DAC 1-6 Enabled  
24-Bit Standard Format  
Sharp Roll-Off  
7, 18  
8, 19  
9
9
9
Full Rate (= fSCKI  
)
CLKD  
SCKO Output Enable  
SCKO Enabled  
9
CLKE  
De-Emphasis All Channel Function Control  
De-Emphasis All Channel Sample Rate Selection  
Output Phase Select  
De-Emphasis All Channel Disabled  
44.1kHz  
10  
10  
10  
10  
11  
11  
12  
12  
12  
DMC  
DMF[1:0]  
DREV  
ZREV  
REG[6:0]  
INC  
GPOE  
GPO[6:1]  
OVER  
Normal Phase  
High  
REG[6:0] = 01H  
Auto-Increment Disabled  
Zero Flag Enabled  
Disabled  
Zero Flag Polarity Select  
Read Register Index Control  
Read Auto-Increment Control  
General-Purpose Output Enable  
General-Purpose Output Bits (GPO1-GPO6)  
Oversampling Rate Control  
64x  
TABLE III. User-Programmable Mode Controls.  
IDX  
(B8-B14) REGISTER  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
Register0  
Register1  
Register2  
Register3  
Register4  
Register5  
Register6  
Register7  
Register8  
Register9  
Register10  
Register11  
Register12  
R/W IDX6  
R/W IDX6  
R/W IDX6  
R/W IDX6  
R/W IDX6  
R/W IDX6  
R/W IDX6  
R/W IDX6  
R/W IDX6  
R/W IDX6  
R/W IDX6  
R/W IDX6  
R/W IDX6  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX1 IDX0 N/A(1) N/A(1) N/A(1) N/A(1) N/A(1) N/A(1) N/A(1) N/A(1)  
IDX1 IDX0  
IDX1 IDX0  
IDX1 IDX0  
IDX1 IDX0  
IDX1 IDX0  
IDX1 IDX0  
AT17 AT16 AT15 AT14 AT13 AT12 AT11 AT10  
AT27 AT26 AT25 AT24 AT23 AT22 AT21 AT20  
AT37 AT36 AT35 AT34 AT33 AT32 AT31 AT30  
AT47 AT46 AT45 AT44 AT43 AT42 AT41 AT40  
AT57 AT56 AT55 AT54 AT53 AT52 AT51 AT50  
AT67 AT66 AT65 AT64 AT63 AT62 AT61 AT60  
IDX1 IDX0 RSV(2) RSV(2) MUT6 MUT5 MUT4 MUT3 MUT2 MUT1  
IDX1 IDX0 RSV(2) RSV(2) DAC6 DAC5 DAC4 DAC3 DAC2 DAC1  
IDX1 IDX0 RSV(2) RSV(2) FLT  
IDX1 IDX0 RSV(2) ZREV DREV DMF1 DMF0 DMC  
IDX1 IDX0 INC REG6 REG5 REG4 REG3 REG2 REG1 REG0  
IDX1 IDX0 OVER GPOE GPO6 GPO5 GPO4 GPO3 GPO2 GPO1  
CLKD CLKE FMT2 FMT1 FMT0  
DMC DMC  
10H  
11H  
12H  
13H  
Register 16  
Register 17  
Register 18  
Register 19  
R/W IDX6  
R/W IDX6  
R/W IDX6  
R/W IDX6  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX5 IDX4  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX3 IDX2  
IDX1 IDX0  
IDX1 IDX0  
AT77 AT76 AT75 AT74 AT73 AT72 AT71 AT70  
AT87 AT86 AT85 AT84 AT83 AT82 AT81 AT80  
IDX1 IDX0 RSV(2) RSV(2) RSV(2) RSV(2) RSV(2) RSV(2) MUT8 MUT7  
IDX1 IDX0 RSV(2) RSV(2) RSV(2) RSV(2) RSV(2) RSV(2) DAC8 DAC7  
NOTES: (1) N/A = not assigned. No operation even if setting any data. (2) RSV = reserved for test operation. It should be set 0during regular operation.  
TABLE IV. Mode Control Register Map.  
PCM1608  
SBAS164A  
15  
REGISTER DEFINITIONS  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 1  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
Register 7  
Register 8  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
AT17 AT16  
AT27 AT26  
AT37 AT36  
AT47 AT46  
AT57 AT56  
AT67 AT66  
AT77 AT76  
AT87 AT86  
AT15  
AT14  
AT13  
AT12 AT11 AT10  
AT22 AT21 AT20  
AT32 AT31 AT30  
AT42 AT41 AT40  
AT52 AT51 AT50  
AT62 AT61 AT60  
AT72 AT71 AT70  
AT82 AT81 AT80  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX5  
IDX5  
IDX5  
IDX5  
IDX5  
IDX5  
IDX5  
IDX4  
IDX4  
IDX4  
IDX4  
IDX4  
IDX4  
IDX4  
IDX3  
IDX3  
IDX3  
IDX3  
IDX3  
IDX3  
IDX3  
IDX2  
IDX2  
IDX2  
IDX2  
IDX2  
IDX2  
IDX2  
IDX1  
IDX1  
IDX1  
IDX1  
IDX1  
IDX1  
IDX1  
IDX0  
IDX0  
IDX0  
IDX0  
IDX0  
IDX0  
IDX0  
AT25  
AT35  
AT45  
AT55  
AT65  
AT75  
AT85  
AT24  
AT34  
AT44  
AT54  
AT64  
AT74  
AT84  
AT23  
AT33  
AT43  
AT53  
AT63  
AT73  
AT83  
R/W  
Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default Value: 0  
ATx[7:0]  
Digital Attenuation Level Setting  
where x = 1 through 8, corresponding to the DAC output VOUTx.  
These bits are Read/Write.  
Default Value: 1111 1111B  
Each DAC output, VOUT1 through VOUT8, has a digital attenuator associated with it. The attenuator may be  
set from 0dB to –63dB, in 0.5dB steps. Changes in attenuator levels are made by incrementing or  
decrementing, by one step (0.5dB), for every 8/fS time interval until the programmed attenuator setting is  
reached. Alternatively, the attenuator may be set to infinite attenuation (or mute).  
The attenuation level may be set using the formula below.  
Attenuation Level (dB) = 0.5 (ATx[7:0]DEC – 255)  
where: ATx[7:0]DEC = 0 through 255  
for: ATx[7:0]DEC = 0 through 128, the attenuator is set to infinite attenuation.  
The following table shows attenuator levels for various settings.  
ATx[7:0]  
Decimal Value  
Attenuator Level Setting  
1111 1111B  
1111 1110B  
1111 1101B  
255  
254  
253  
0dB, No Attenuation (default)  
–0.5dB  
–1.0dB  
1000 0010B  
1000 0001B  
1000 0000B  
130  
129  
128  
–62.5dB  
–63.0dB  
Mute  
0000 0000B  
0
Mute  
PCM1608  
SBAS164A  
16  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 7  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
RSV  
RSV  
MUT6 MUT5 MUT4 MUT3 MUT2 MUT1  
R/W  
Read/Write Mode Select  
When R/W = 0, a Write operation is performed.  
When R/W = 1, a Read operation is performed.  
Default Value: 0  
MUTx  
Soft Mute Control  
Where x = 1 through 6, corresponding to the DAC output VOUTx.  
These bits are Read/Write.  
Default Value: 0  
MUTx = 0  
MUTx = 1  
Mute Disabled (default)  
Mute Enabled  
The mute bits, MUT1 through MUT6, are used to enable or disable the Soft Mute function for the  
corresponding DAC outputs, VOUT1 through VOUT6. The Soft Mute function is incorporated into the digital  
attenuators. When Mute is disabled (MUTx = 0), the attenuator and DAC operate normally. When Mute  
is enabled by setting MUTx = 1, the digital attenuator for the corresponding output will be decreased from  
the current setting to the infinite attenuation setting one attenuator step (0.5dB) at a time. This provides a  
quiet, pop-free muting of the DAC output. Upon returning from Soft Mute, by setting  
MUTx = 0, the attenuator will be increased one step at a time to the previously programmed attenuator  
level.  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 8  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
RSV  
RSV  
DAC6 DAC5 DAC4 DAC3 DAC2 DAC1  
R/W  
Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default Value: 0  
DACx  
DAC Operation Control  
where x = 1 through 6, corresponding to the DAC output VOUTx.  
These bits are Read/Write.  
Default Value: 0  
DACx = 0  
DACx = 1  
DAC Operation Enabled (default)  
DAC Operation Disabled  
The DAC operation controls are used to enable and disable the DAC outputs, VOUT1 through VOUT6. When  
DACx = 0, the output amplifier input is connected to the DAC output. When DACx = 1, the output amplifier  
input is switched to the DC common-mode voltage (VCOM), equal to VCC/2  
.
PCM1608  
SBAS164A  
17  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 9  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
RSV  
RSV  
FLT  
CLKD CLKE FMT2 FMT1 FMT0  
R/W  
Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default Value: 0  
FLT  
Digital Filter Roll-Off Control  
These bits are Read/Write.  
Default Value: 0  
FLT = 0  
FLT = 1  
Sharp Roll-Off (default)  
Slow Roll-Off  
The FLT bit allows the user to select the digital filter roll-off that is best suited to their application. Two  
filter roll-off sections are available: Sharp or Slow. The filter responses for these selections are shown in  
the Typical Performance Curves section of this data sheet.  
CLKD  
SCKO Frequency Selection  
This bit is Read/Write.  
Default Value: 0  
CLKD = 0  
CLKD = 1  
Full Rate, fSCKO = fSCKI (default)  
Half Rate, fSCKO = fSCKL/2  
The CLKD bit is used to determine the clock frequency at the system clock output pin, SCKO.  
CLKE  
SCKO Output Enable  
This bit is Read/Write.  
Default Value: 0  
CLKE = 0  
CLKE = 1  
SCKO Enabled (default)  
SCKO Disabled  
The CLKE bit is used to enable or disable the system clock output pin, SCKO. When SCKO is enabled, it will  
output either a full or half rate clock, based upon the setting of the CLKD bit. When SCKO is disabled, it is set  
to a LOW level.  
FMT[2:0] Audio Interface Data Format  
These bits are Read/Write.  
Default Value: 000B  
FMT[2:0]  
Audio Data Format Selection  
000  
001  
010  
011  
100  
101  
110  
111  
24-Bit Standard Format, Right-Justified Data (default)  
20-Bit Standard Format, Right-Justified Data  
18-Bit Standard Format, Right-Justified Data  
16-Bit Standard Format, Right-Justified Data  
I2S Format, 16- to 24-bits  
Left-Justified Format, 16- to 24-Bits  
Reserved  
Reserved  
The FMT[2:0] bits are used to select the data format for the serial audio interface.  
PCM1608  
SBAS164A  
18  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 10  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
RSV ZREV DREV DMF1 DMF0 DMC  
DMC DMC  
R/W  
Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default Value: 0  
DMF[1:0]  
Sampling Frequency Selection for the De-Emphasis Function  
These bits are Read/Write.  
Default Value: 00B  
DMF[1:0]  
De-Emphasis Same Rate Selection  
00  
01  
10  
11  
44.1kHz (default)  
48kHz  
32kHz  
Reserved  
The DMF[1:0] bits are used to select the sampling frequency used for the Digital De-Emphasis function when  
it is enabled. The de-emphasis curves are shown in the Typical Performance Curves section of this data sheet.  
The table below shows the available sampling frequencies.  
DMC  
Digital De-Emphasis, All Channels Function Control  
This bit is Read/Write.  
Default Value: 0  
DMC = 0  
DMC = 1  
De-Emphasis Disabled for All Channels (default)  
De-Emphasis Enabled for All Channels 1 and 2  
The DMC bit is used to enable or disable the De-Emphasis function for all channels. To select more than one  
of three DMC bits, enable or disable the De-Emphasis function.  
DREV  
Output Phase Select  
Default Value: 0  
DREV = 0  
DREV = 1  
Normal Output (default)  
Inverted Output  
The DREV bit is the output analog signal phase control.  
ZREV  
Zero Flag Polarity Select  
Default Value: 0  
ZREV = 0  
ZREV = 1  
Zero Flag Pins HIGH at a Zero Detect (default)  
Zero Flag Pins LOW at a Zero Detect  
The ZREV bit allows the user to select the polarity of the Zero Flag pins.  
PCM1608  
SBAS164A  
19  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 11  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
INC  
REG6 REG5 REG4 REG3 REG2 REG1 REG0  
R/W  
Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default Value: 0  
INC  
Auto-Increment Read Control  
This bit is Read/Write.  
Default Value: 0  
INC = 0  
INC = 1  
Auto-Increment Read Disabled (default)  
Auto-Increment Read Enabled  
The INC bit is used to enable or disable the Auto-Increment Read feature of the Serial Control Interface. Refer  
to the Serial Control Interface section of this data sheet for details regarding Auto-Increment Read operation.  
REG[6:0]  
Read Register Index  
These bits are Read/Write.  
Default Value: 01H  
The REG[6:0] bits are used to set the index of the register to be read when performing the Single Register Read  
operation. In the case of an Auto-Increment Read operation, the REG[6:0] bits indicate the index of the last  
register to be read in the Auto-Increment Read sequence. For example, if Registers 1 through 6 are to be read  
during an Auto-Increment Read operation, the REG[6:0] bits would be set to 06H. Refer to the Serial Control  
Interface section of this data sheet for details regarding the Single Register and Auto-Increment Read operations.  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 12  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0 OVER GPOE GPO6 GPO5 GPO4 GPO3 GPO2 GPO1  
GPOx  
General-Purpose Logic Output  
Where: x = 1 through 6, corresponding pins GPO1 through GPO6.  
These bits are Read/Write.  
Default Value: 0  
GPOx = 0  
GPOx = 1  
Set GPOx to “0”  
Set GPOx to “1”  
The general-purpose output pins, GPO1 through GPO6, are enabled by setting GPOE = 1. These pins are used  
as general-purpose outputs for controlling user-defined logic functions. When general-purpose outputs are  
disabled (GPOE = 0), they default to the zero-flag function, ZERO1 through ZERO6.  
GPOE  
General-Purpose Output Enable  
This bit is Read/Write.  
Default Value: 0  
GPOE = 0  
GPOE = 1  
General-Purpose Outputs Disabled  
Pins default to zero-flag function (ZERO1 through ZERO6).  
General-Purpose Outputs Enabled  
Data written to GPO1 through GPO6 will appear at the corresponding pins.  
PCM1608  
SBAS164A  
20  
Register 12 (Cont.)  
OVER  
Oversampling Rate Control  
This bit is Read/Write.  
Default Value: 0  
System Clock Rate = 256, 384, 512, or 768fS:  
OVER = 0  
OVER = 1  
64x Oversampling (default)  
128x Oversampling  
System Clock Rate = 128 or 192fS:  
OVER = 0  
OVER = 1  
32x Oversampling (default)  
64x Oversampling  
The OVER bit is used to control the oversampling rate of the delta-sigma DACs. The OVER = 1 setting is  
reccomended when the oversampling rate is 192kHz (system clock rate is 128 or 192fS).  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 18  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV MUT8 MUT7  
R/W  
Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default Value: 0  
MUTx  
Soft Mute Control  
Where x = 7-8, corresponding to the DAC output VOUTx.  
These bits are Read/Write.  
Default Value: 0  
MUTx = 0  
MUTx = 1  
Mute Disabled (default)  
Mute Enabled  
The mute bits, MUT7 through MUT8, are used to enable or disable the Soft Mute function for the  
corresponding DAC outputs, VOUT7 and VOUT8. The Soft Mute function is incorporated into the digital  
attenuators. When Mute is disabled (MUTx = 0), the attenuator and the DAC operate normally. When Mute  
is enabled by setting MUTx = 1, the digital attenuator for the corresponding output will be decremented  
from the current setting to the infinite attenuation setting one attenuator step (0.5dB) at a time. This  
provides a quiet, “pop”-free muting of the DAC output. Upon returning from Soft Mute, by setting  
MUTx = 0, the attenuator will be incremented one step at a time to the previously programmed attenuator  
level.  
PCM1608  
SBAS164A  
21  
B15  
R/W  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
REGISTER 19  
IDX6  
IDX5  
IDX4  
IDX3  
IDX2  
IDX1  
IDX0  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV DAC8 DAC7  
R/W  
Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default Value: 0  
DACx  
DAC Operation Control  
Where x = 7-8, corresponding to the DAC output VOUTx.  
These bits are Read/Write.  
Default Value: 0  
DACx = 0  
DACx = 1  
DAC Operation Disabled (default)  
DAC Operation Enabled  
The DAC operation controls are used to enable and disable the DAC outputs, VOUT7 and VOUT8. When  
DACx = 0, the output amplifier input is connected to the DAC output. When DACx = 1, the output amplifier  
input is switched to the DC common-mode voltage (VCOM), equal to VCC/2.  
filter is not enough to attenuate the out-of-band noise to an  
ANALOG OUTPUTS  
acceptable level for most applications. An external low-pass  
filter is required to provide sufficient out-of-band noise  
rejection. Further discussion of DAC post-filter circuits is  
provided in the Applications Information section of this data  
sheet.  
The PCM1608 includes eight independent output channels,  
VOUT1 through VOUT8. These are unbalanced outputs, each  
capable of driving 3.1Vp-p typical into a 5kAC load with  
VCC = +5V. The internal output amplifiers for VOUT1 through  
VOUT8 are DC biased to the common-mode (or bipolar zero)  
voltage, equal to VCC/2.  
VCOM OUTPUT  
The output amplifiers include an RC continuous-time filter,  
which helps to reduce the out-of-band noise energy present  
at the DAC outputs due to the noise-shaping characteristics  
of the PCM1608’s delta-sigma DACs. The frequency re-  
sponse of this filter is shown in Figure 10. By itself, this  
One unbuffered, common-mode voltage output pin, VCOM  
(pin 15), is brought out for decoupling purposes. This pin is  
nominally biased to a DC voltage level equal to VCC/2. If  
this pin is to be used to bias external circuitry, a voltage  
follower is required for buffering purposes. Figure 11 shows  
an example of using the VCOM pin for external biasing  
applications.  
20  
0
20  
40  
60  
80  
100  
PCM1608  
4
VCC  
2
1
VBIAS  
OPA337  
3
15  
VCOM  
+
10µF  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FIGURE 11. Biasing External Circuits Using the VCOM Pin.  
Log Frequency (Hz)  
FIGURE 10. Output Filter Frequency Response.  
PCM1608  
SBAS164A  
22  
ZERO FLAG  
can be used to operate external mute circuits. ZERO1 through  
ZERO6 can be used as status indicators for a microcontroller,  
audio signal processor, or other digitally controlled functions.  
Zero Detect Condition  
Zero Detection for each output channel is independent from  
the others. If the data for a given channel remains at a “0”  
level for 1024 sample periods (or LRCK clock periods), a  
Zero Detect condition exists for that channel.  
The active polarity of zero flag output can be inverted by  
setting the ZREV bit of Control Register 10 to “1”. The reset  
default is active high output, or ZREV = 0.  
Zero Output Flags  
Given that a Zero Detect condition exists for one or more  
channels, the Zero Flag pins for those channels will be set to  
a logic “1” state. There are Zero Flag pins for each channel,  
ZERO1 through ZERO6 (pins 1 through 6), ZERO7 (pin 30),  
and ZERO8 (pin 32). In addition, all eight Zero Flags are  
logically “AND”ed together, and the result provided at the  
ZEROA pin (pin 48), which is set to a logic “1” state when all  
channels indicate a Zero Detect condition. The Zero Flag pins  
APPLICATIONS INFORMATION  
CONNECTION DIAGRAMS  
A basic connection diagram with the necessary power-  
supply bypassing and decoupling components is shown in  
Figure 12. Texas Instruments recommends using the compo-  
nent values shown in Figure 12 for all designs.  
ML  
MC  
MD  
PLL1700  
Micro Controller  
SCKO3  
ZERO7, 8  
DATA4  
+5V  
Power Supply  
10µF  
Regulator  
36 35 34 33 32 31 30 29 28 27 26 25  
VCC3  
37  
38  
39  
40  
41  
42  
24  
RST  
RST  
23  
AGND3  
SCKI  
SCKO  
BCK  
V
CC4 22  
AGND4  
21  
20  
19  
18  
17  
16  
15  
14  
13  
BCK  
LPF  
LPF  
LRCK  
V
OUT8  
AGND6  
CC5  
AGND5  
OUT7  
VCOM  
VOUT  
VOUT  
8
LRCK  
TEST  
PCM1608  
43 VDD  
V
10µF  
44 DGND  
V
DATA1  
DATA1  
DATA2  
45  
46  
47  
48  
VOUT7  
10µF  
DATA2  
DATA3  
1
LPF  
LPF  
VOUT1  
DATA3  
ZEROA  
V
OUT2  
V
OUT2  
ZEROA  
1
2
3
4
5
6
7
8
9
10 11 12  
LPF  
VOUT  
VOUT  
VOUT  
3
4
5
LPF  
LPF  
LPF  
V
OUT6  
ZERO16  
FIGURE 12. Basic Connection Diagram.  
PCM1608  
SBAS164A  
23  
A typical application diagram is shown in Figure 13. The  
REG1117-3.3 from Texas Instruments is used to generate  
+3.3V for VDD from the +5V analog power supply. The  
PLL1700E from Texas Instruments is used to generate the  
system clock input at SCKI, as well as generating the clock  
for the audio signal processor.  
Series resistors (22to 100) are recommended for SCKI,  
LRCK, BCK, DATA1, DATA2, DATA3, and DATA4.  
The series resistor combines with the stray PCB and device  
input capacitance to form a low-pass filter which removes  
high-frequency noise from the digital signal, thus reducing  
high-frequency emission.  
O U T  
A G N D 2  
3
4
5
6
V
C C  
O U T  
2
1
V
V
O U T  
A G N D 1  
V
C C  
O U T  
V
V
N C  
N C  
Z e r o - F l a g  
Z e r o - F l a g  
Z E R O 7  
D A T A 4  
Z E R O 8  
N C  
Z E R O 6 / G P O 6  
Z E R O 5 / G P O 5  
Z E R O 4 / G P O 4  
Z E R O 3 / G P O 3  
Z E R O 2 / G P O 2  
Z E R O 1 / G P O 1  
M D O  
M D I  
M C  
M L  
FIGURE 13. Typical Application Diagram.  
24  
PCM1608  
SBAS164A  
POWER SUPPLIES AND GROUNDING  
Multiple FeedBack (MFB) circuit arrangement, which re-  
duces sensitivity to passive component variations over fre-  
quency and temperature. For more information regarding  
MFB active filter design, please refer to the Texas Instru-  
ments Applications Bulletin AB-034, available from our  
web site (www.ti.com), or your local Texas Instruments  
sales office.  
The PCM1608 requires a +5V analog supply and a +3.3V  
digital supply. The +5V supply is used to power the DAC  
analog and output filter circuitry, while the +3.3V supply is  
used to power the digital filter and serial interface circuitry.  
For best performance, the +3.3V supply should be derived  
from the +5V supply using a linear regulator (see Figure 13).  
Since the overall system performance is defined by the quality  
of the DACs and their associated analog output circuitry,  
high-quality audio op amps are recommended for the active  
filters. The OPA2134 and OPA2353 dual op amps from  
Texas Instruments are shown in Figures 14 and 15, and are  
recommended for use with the PCM1608.  
Two capacitors are required for supply bypassing (see Fig-  
ure 12). These capacitors should be located as close as  
possible to the PCM1608 package. The 10µF capacitors  
should be tantalum or aluminum electrolytic, while the  
0.1µF capacitors are ceramic (X7R type is recommended  
for surface-mount applications).  
DAC OUTPUT FILTER CIRCUITS  
Delta-sigma DACs utilize noise-shaping techniques to im-  
prove in-band Signal-to-Noise Ratio (SNR) performance at  
the expense of generating increased out-of-band noise above  
the Nyquist Frequency, or fS/2. The out-of-band noise must  
be low-pass filtered in order to provide the optimal converter  
performance. This is accomplished by a combination of on-  
chip and external low-pass filtering.  
R2  
C1  
2
R1  
R3  
VIN  
R4  
1
VOUT  
OPA2134  
3
C2  
R2  
R1  
A
V –  
Figures 14 and 15 show the recommended external low-pass  
active filter circuits for dual- and single-supply applications.  
These circuits are second-order Butterworth filters using the  
FIGURE 14. Dual Supply Filter Circuit.  
R2  
AV –  
R1  
R2  
C1  
R1  
R3  
2
VIN  
R4  
1
VOUT  
OPA2134  
C2  
3
PCM1608  
VCOM  
To Additional  
Low-Pass Filter  
Circuits  
OPA337  
C2  
10µF  
+
FIGURE 15. Single-Supply Filter Circuit.  
PCM1608  
SBAS164A  
25  
Separate power supplies are recommended for the digital and  
analog sections of the board. This prevents the switching noise  
present on the digital supply from contaminating the analog  
power supply and degrading the dynamic performance of the  
DACs. In cases where a common +5V supply must be used for  
the analog and digital sections, an inductance (RF choke, ferrite  
bead) should be placed between the analog and digital +5V  
supply connections to avoid coupling of the digital switching  
noise into the analog circuitry. Figure 17 shows the recom-  
mended approach for single-supply applications.  
PCB LAYOUT GUIDELINES  
A typical PCB floor plan for the PCM1608 is shown in  
Figure 16. A ground plane is recommended, with the analog  
and digital sections being isolated from one another using a  
split or cut in the circuit board. The PCM1608 should be  
oriented with the digital I/O pins facing the ground plane  
split/cut to allow for short, direct connections to the digital  
audio interface and control signals originating from the  
digital section of the board.  
Digital Power  
Analog Power  
+VD  
DGND  
AGND +5VA  
+VS VS  
REG  
VCC  
VDD  
DGND  
Digital Logic  
and  
Audio  
Processor  
Output  
Circuits  
PCM1608  
Digital  
Ground  
AGND  
Analog  
Ground  
DIGITAL SECTION  
ANALOG SECTION  
Return Path for Digital Signals  
FIGURE 16. Recommended PCB Layout.  
Power Supplies  
RF Choke or Ferrite Bead  
+5V  
GND +VS VS  
REG  
VCC  
VDD  
VDD  
DGND  
Digital Logic  
and  
Output  
Circuits  
Audio  
Processor  
PCM1608  
AGND  
Common  
Ground  
DIGITAL SECTION  
ANALOG SECTION  
FIGURE 17. Single-Supply PCB Layout.  
26  
PCM1608  
SBAS164A  
Figure 18 illustrates the simulated jitter sensitivity of the  
PCM1608. To achieve best performance, the system clock  
jitter should be less than 300 picoseconds. This is easily  
achieved using a quality clock generation IC, like the PLL1700  
from Texas Instruments.  
THEORY OF OPERATION  
The DAC section of the PCM1608 is based on a multi-bit  
delta-sigma architecture. This architecture utilizes a fourth-  
order noise-shaper and an 8-level amplitude quantizer, fol-  
lowed by an analog low-pass filter. A block diagram of the  
delta-sigma modulator is shown in Figure 19. This architec-  
ture has the advantage of stability and improved jitter toler-  
ance, when compared to traditional 1-bit (2-level) delta-  
sigma designs.  
JITTER DEPENDENCE (x 64 Over Sampling)  
125  
120  
115  
110  
105  
100  
95  
The combined oversampling rate of the digital interpolation  
filter and the delta-sigma modulator is 32, 64, or 128fS. The  
total oversampling rate is determined by the desired sam-  
pling frequency. If fS 96kHz, then the OVER bit in  
Register 12 may be set to an oversampling rate of 64 or  
128fS. If fS > 96kHz, then the OVER bit may be used to set  
the oversampling rate to 32 or 64fS. Figure 20 shows the  
out-of-band quantization noise plots for both the 64x and  
128x oversampling scenarios. Notice that the 128x  
oversampling plot shows significantly improved out-of-band  
noise performance, allowing for a simplified low-pass filter  
to be used at the output of the DAC.  
90  
0
100  
200  
300  
400  
500  
600  
Jitter (ps)  
FIGURE 18. Jitter Sensitivity.  
+
Z1  
Z1  
Z1  
Z1  
8fS  
+
+
+
+
+
8-Level Quantizer  
64fS  
FIGURE 19. Eight-Level Delta-Sigma Modulator.  
QUANTIZATION NOISE SPECTRUM  
(64x Oversampling)  
0
QUANTIZATION NOISE SPECTRUM  
(128x Oversampling)  
0
20  
20  
40  
40  
60  
60  
80  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
180  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Frequency (fS)  
Frequency (fS)  
FIGURE 20. Quantization Noise Spectrum.  
PCM1608  
SBAS164A  
27  
For the PCM1608 DACs, THD+N is measured with a full-  
scale, 1kHz digital sine wave as the test stimulus at the input  
of the DAC. The digital generator is set to a 24-bit audio  
word length and a sampling frequency of 44.1kHz, or 96kHz.  
The digital generator output is taken from the unbalanced  
S/PDIF connector of the measurement system. The  
S/PDIF data is transmitted via coaxial cable to the digital  
audio receiver on the DEM-DAI1602 demo board. The  
receiver is then configured to output 24-bit data in either I2S  
or left-justified data format. The DAC audio interface format  
is programmed to match the receiver output format. The  
analog output is then taken from the DAC post filter and  
connected to the analog analyzer input of the measurement  
system. The analog input is band-limited, using filters resi-  
dent in the analyzer. The resulting THD+N is measured by  
the analyzer and displayed by the measurement system.  
KEY PERFORMANCE PARAMETERS  
AND MEASUREMENT  
This section provides information on how to measure key  
dynamic performance parameters for the PCM1608. In all  
cases, an Audio Precision System Two Cascade or equiva-  
lent audio measurement system is utilized to perform the  
testing.  
TOTAL HARMONIC DISTORTION + NOISE  
Total Harmonic Distortion + Noise (THD+N) is a significant  
figure of merit for audio DACs, since it takes into account  
both harmonic distortion and all noise sources within a  
specified measurement bandwidth. The true rms value of the  
distortion and noise is referred to as THD+N. The test setup  
for THD+N testing is shown in Figure 21.  
Evaluation Board  
DEM-DAI1608  
2nd-Order  
Low-Pass  
Filter  
S/PDIF  
Receiver  
PCM1608  
f3dB = 54kHz  
Analyzer  
Digital  
and  
Display  
Generator  
S/PDIF  
Band Limit  
Notch Filter  
fC = 1kHz  
Output  
100% Full-Scale  
24-Bit, 1kHz  
Sine Wave  
rms Mode  
HPF = 22Hz(1)  
LPF = 30kHz(1)  
Option = 20kHz Apogee Filter(2)  
NOTES: (1) There is little difference in measured THD+N when using the  
various settings for these filters. (2) Required for THD+N test.  
FIGURE 21. Test Setup for THD+N Measurements.  
PCM1608  
SBAS164A  
28  
DYNAMIC RANGE  
IDLE CHANNEL SIGNAL-TO-NOISE RATIO  
Dynamic range is specified as A-Weighted, THD+N mea-  
sured with a –60dBFS, 1kHz digital sine wave stimulus at  
the input of the DAC. This measurement is designed to give  
a good indication of how the DAC will perform, given a  
low-level input signal.  
The SNR test provides a measure of the noise of the DAC.  
The input to the DAC is in all “0”s data, and the DAC’s  
Infinite Zero Detect Mute function must be disabled (de-  
fault condition at power-up for the PCM1608). This en-  
sures that the delta-sigma modulator output is connected to  
the output amplifier circuit so that idle tones (if present)  
may be observed at the output. The dither function of the  
digital signal generator must also be disabled to ensure an  
all “0”s data stream at the input of the DAC.  
The measurement setup for the dynamic range measurement  
is shown in Figure 22, and is similar to the THD+N test  
setup discussed previously. The differences include the  
band-limit filter selection, the additional A-Weighting filter,  
and the –60dBFS input level.  
The measurement setup for SNR is identical to that used for  
dynamic range, with the exception of the input signal level.  
(see the notes provided in Figure 22.)  
Evaluation Board  
DEM-DAI1608  
2nd-Order  
Low-Pass  
Filter  
S/PDIF  
Receiver  
PCM1608(1)  
f
3dB = 54kHz  
Analyzer  
and  
Display  
Digital  
Generator  
A-Weight  
Filter(1)  
S/PDIF  
Output  
Band Limit  
Notch Filter  
fC = 1kHz  
0% Full-Scale,  
Dither Off (SNR)  
60dBFS,  
rms Mode  
HPF = 22Hz  
LPF = 22kHz  
Option = A-Weighting(2)  
1kHz Sine Wave  
(Dynamic Range)  
NOTES: (1) Infinite Zero Detect Mute disabled.  
(2) Results without A-Weighting will be approxi-  
mately 3dB worse.  
FIGURE 22. Test Set-Up for Dynamic Range and SNR Meeasurements.  
PCM1608  
SBAS164A  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Oct-2003  
PACKAGING INFORMATION  
ORDERABLE DEVICE  
STATUS(1)  
PACKAGE TYPE  
PACKAGE DRAWING  
PINS  
PACKAGE QTY  
PCM1608KY  
PCM1608KY/2K  
PCM1608Y  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LQFP  
LQFP  
LQFP  
LQFP  
PT  
PT  
PT  
PT  
48  
48  
48  
48  
250  
2000  
250  
PCM1608Y/2K  
2000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

PCM1608KY/2KG4

SERIAL INPUT LOADING, 24-BIT DAC, PQFP48, GREEN, PLASTIC, LQFP-48
TI

PCM1608KYG4

105dB SNR 8-Channel Audio DAC 48-LQFP
TI

PCM1608Y

24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER
TI

PCM1608Y/2K

24-Bit, 192kHz Sampling, 8-Channel, Enhanced Multilevel, Delta-Sigma DIGITAL-TO-ANALOG CONVERTER
TI

PCM1608Y/2KG4

SERIAL INPUT LOADING, 24-BIT DAC, PQFP48, GREEN, PLASTIC, LQFP-48
TI

PCM1608_15

Delta-Sigma Digital-to-Analog Converter
TI

PCM1609A

24-BIT, 192-kHz SAMPLING, 8-CHANNEL, ENHANCED MULTILEVEL, DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER
TI

PCM1609APT

24-BIT, 192-kHz SAMPLING, 8-CHANNEL, ENHANCED MULTILEVEL, DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER
TI

PCM1609APTG4

24-BIT, 192-kHz SAMPLING, 8-CHANNEL, ENHANCED MULTILEVEL, DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER
TI

PCM1609APTR

24-BIT, 192-kHz SAMPLING, 8-CHANNEL, ENHANCED MULTILEVEL, DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER
TI

PCM1609APTRG4

24-BIT, 192-kHz SAMPLING, 8-CHANNEL, ENHANCED MULTILEVEL, DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER
TI

PCM1680

24-Bit, 192-kHz Sampling, Enhanced Multilevel, Delta-Sigma, Audio Digital-to-Analog Converter
TI