PCM1754 [TI]

106dB SNR 立体声音频数模转换器 (DAC)(硬件控制);
PCM1754
型号: PCM1754
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

106dB SNR 立体声音频数模转换器 (DAC)(硬件控制)

转换器 数模转换器
文件: 总41页 (文件大小:2025K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
PCM175x 24 位、192kHz 采样、增强型多级、Δ-Σ、音频  
数模转换器  
1 特性  
2 应用  
1
24 位分辨率  
模拟性能 (VCC = 5V)  
A/V 接收器  
HDTV 接收器  
车载音频系统  
动态范围:106dB  
需要 24 位音频的应用  
SNR106dB(典型值)  
THD+N0.002%(典型值)  
满量程输出:4VPP(典型值)  
3 说明  
PCM1753PCM1754 PCM1755 (PCM175x) 器件  
是基于 TI 增强型 Δ-Σ 架构的立体声数模转换器  
过采样数字滤波器  
阻带衰减:–50dB  
(DAC)。这一增强型架构使用四阶噪声整形和 8 阶振幅  
量化,可实现出色的动态性能并提升时钟抖动耐受度。  
得益于具有符合行业标准的音频数据格式以及 16 位和  
24 位数据的器件支持,PCM175x 器件可轻松与音频  
DSP 和解码器芯片连接。可在硬件模式下或通过全套  
用户可编程的功能(可通过支持寄存器写入功能的三线  
串行控制接口访问)控制 PCM175x 器件。  
通带纹波:±0.04dB  
采样频率:5kHz 200kHz  
系统时钟:128 fS192 fS256 fS384 fS512  
fS768 fS1152 fS,且具有自动检测功能  
硬件控制 (PCM1754)  
I2S 16 位字,右平衡  
44.1kHz 数字去加重功能  
软静音  
PCM1753 PCM1748PCM1742 PCM1741 引  
脚兼容,引脚 5 除外。  
适用于 L/R 通道共模输出的零标志  
电源:5V 单电源  
器件信息(1)  
小型 16 引线 SSOP 封装,无铅  
器件型号  
PCM1753  
封装  
封装尺寸(标称值)  
PCM1754  
PCM1755  
SSOP (16)  
3.90mm x 4.90mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
功能方框图  
BCK  
Audio  
LRCK  
Serial  
V
L
OUT  
Output Amp  
And  
Low-Pass Filter  
DAC  
DATA  
Port  
4x/8x  
Enhanced  
Multilevel  
Delta-Sigma  
Modulator  
Oversampling  
Digital Filter  
and Function  
Control  
FMT  
V
V
COM  
Serial  
Control  
Port  
MUTE  
Output Amp  
And  
Low-Pass Filter  
DAC  
DEMP  
TEST  
R
OUT  
System C lock  
SCK  
System  
Clock Manager  
Zero Detect  
Power Supply  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLES092  
 
 
 
 
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 17  
8.5 Programming........................................................... 18  
8.6 Register Maps......................................................... 19  
Application and Implementation ........................ 24  
9.1 Application Information............................................ 24  
9.2 Typical Application ................................................. 24  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions...................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 System Clock Input Timing ....................................... 6  
7.7 Audio Interface Timing.............................................. 6  
7.8 Control Interface Timing Requirements .................... 7  
7.9 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 12  
9
10 Power Supply Recommendations ..................... 29  
11 Layout................................................................... 29  
11.1 Layout Guidelines ................................................. 29  
11.2 Layout Example .................................................... 29  
12 器件和文档支持 ..................................................... 31  
12.1 相关文档ꢀ ........................................................... 31  
12.2 相关链接................................................................ 31  
12.3 接收文档更新通知 ................................................. 31  
12.4 社区资源................................................................ 31  
12.5 ....................................................................... 31  
12.6 静电放电警告......................................................... 31  
12.7 Glossary................................................................ 31  
13 机械、封装和可订购信息....................................... 31  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (August 2015) to Revision E  
Page  
Added text to pin 11 description to clarify operation for PCM1755 ........................................................................................ 3  
Added text to pin 12 description to clarify operation for PCM1755 ....................................................................................... 3  
Added new row for PCM1755 temperature range to Absolute Maximum Ratings table ....................................................... 4  
Changed location of operating temperature from Electrical Characteristics table to Recommended Operating  
Conditions table...................................................................................................................................................................... 4  
Changed operating temperature MAX value for PCM1753 and PCM1754 from 105°C to 85°C in the Recommended  
Operating Conditions table ..................................................................................................................................................... 4  
Added new row for PCM1755 temperature range to the Recommended Operating Conditions table ................................. 4  
Changed output voltage value from MIN to TYP in the Electrical Characteristics table ....................................................... 6  
Changed center voltage value from MIN to TYP in the Electrical Characteristics table ........................................................ 6  
Changes from Revision C (February 2009) to Revision D  
Page  
已添加 添加了 ESD 额定值 表、建议运行条件 表、特性 说明 部分、器件功能模式应用和实施 部分、电源建议 部  
分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分 ............................................................................. 1  
2
Copyright © 2003–2019, Texas Instruments Incorporated  
 
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
5 Device Comparison Table  
FEATURE  
PCM1753, PCM1755  
I2S, standard, left-justified  
PCM1754  
I2S, standard  
16-bit and 24-bit I2S, 16-bit standard  
Audio data interface format  
Audio data bit length  
Audio data format  
16-bit, 18-bit, 20-bit, and 24-bit selectable  
MSB first, 2's complement  
6 Pin Configuration and Functions  
PCM1753, PCM1755 DBQ Package  
16-Pin SSOP  
PCM1754 DBQ Package  
16-Pin SSOP  
Top View  
Top View  
BCK  
DATA  
LRCK  
DGND  
NC  
BCK  
DATA  
LRCK  
DGND  
NC  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
SCK  
SCK  
ML  
FMT  
MC  
MUTE  
DEMP  
TEST  
ZEROA  
VCOM  
MD  
ZEROL/NA  
ZEROR/ZEROA  
VCOM  
VCC  
VCC  
VOUTL  
VOUTL  
VOUTR  
VOUTR  
AGND  
AGND  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
PCM1753,  
PCM1755  
NAME  
PCM1754  
AGND  
BCK  
9
1
9
1
I
Analog ground  
Audio-data bit-clock input  
Audio-data digital input  
De-emphasis control  
Digital ground  
DATA  
DEMP  
DGND  
FMT  
2
2
I
-
13  
4
I
4
I
-
15  
3
Data format select  
LRCK  
MC  
3
I
L-channel and R-channel audio data latch enable input  
Mode control clock input  
Mode control data input  
14  
13  
15  
-
-
I
MD  
-
I
ML  
-
I
Mode control latch input  
Analog mixing control  
MUTE  
NC  
14  
5
I
5
I
No connection  
SCK  
16  
-
16  
12  
6
System clock input  
TEST  
VCC  
VCOM  
I
Test pin, ground or open  
Analog power supply, 5 V  
Common voltage decoupling  
Analog output for L-channel  
Analog output for R-channel  
6
O
O
10  
7
10  
7
VOUTL  
VOUTR  
8
8
Zero flag output for R-channel / Zero flag output for L-/R-channel.  
Open-drain output for PCM1755.  
ZEROR/ZEROA  
ZEROL/NA  
11  
12  
11  
-
O
O
Zero flag output for L-channel / Not assigned.  
Open-drain output for PCM1755.  
Copyright © 2003–2019, Texas Instruments Incorporated  
3
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
Supply voltage  
VCC  
–0.3  
6.5  
±0.1  
6.5  
Ground voltage differences  
Input voltage  
AGND, DGND  
V
–0.3  
V
Input current (any pins except supplies)  
±10  
85  
mA  
PCM1753, PCM1754  
PCM1755  
–40  
–25  
Ambient temperature under bias  
°C  
85  
Junction temperature  
150  
150  
°C  
°C  
Storage temperature, Tstg  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
VCC  
TA  
Supply voltage  
4.5  
–40  
–25  
5
5.5  
85  
85  
V
PCM1753, PCM1754  
PCM1755  
Operating temperature  
°C  
7.4 Thermal Information  
PCM175x  
DBQ (SSOP)  
16 PINS  
104.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
53  
46.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
10.3  
ψJB  
46.4  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2003–2019, Texas Instruments Incorporated  
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
7.5 Electrical Characteristics  
all specifications at TA = 25°C, VCC = 5 V, fS = 44.1 kHz, system clock = 384 fS, and 24-bit data (unless otherwise noted)  
PARAMETER  
Resolution  
DATA FORMAT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
24  
Bits  
fS  
Sampling frequency  
5
200  
kHz  
kHz  
128 fS  
192 fS  
256 fS  
384 fS  
512 fS  
768 fS  
1152 fS  
System clock frequency  
DIGITAL INPUT/OUTPUT  
Logic family  
TTL compatible  
VIH  
VIL  
Input logic level, high  
2
VDC  
VDC  
Input logic level, low  
0.8  
10  
Input logic current, high (SCK, BCK, DATA,  
and LRCK pins)  
IIH  
IIL  
IIH  
IIL  
VIN = VCC  
µA  
µA  
µA  
µA  
Input logic current, low (SCK, BCK, DATA,  
and LRCK pins)  
VIN = 0 V  
VIN = VCC  
VIN = 0 V  
-10  
100  
-10  
Input logic current, high (TEST, DEMP,  
MUTE, and FMT pins)  
65  
Input logic current, low (TEST, DEMP,  
MUTE, and FMT pins)  
VOH  
VOL  
Output logic level, high (ZEROA pin)  
IOH = –1 mA  
IOL = 1 mA  
2.4  
VDC  
VDC  
Output logic level, low (ZEROA pin)  
0.4  
DYNAMIC PERFORMANCE(1)(2)  
fS = 44.1 kHz  
0%  
0%  
0.01%  
THD+N at VOUT = 0 dB  
fS = 96 kHz  
fS = 192 kHz  
0%  
fS = 44.1 kHz  
0.65%  
0.80%  
0.95%  
106  
THD+N at VOUT = -60 dB  
Dynamic range  
fS = 96 kHz  
fS = 192 kHz  
EIAJ, A-weighted, fS = 44.1 kHz  
A-weighted, fS = 96 kHz  
A-weighted, fS = 192 kHz  
EIAJ, A-weighted, fS = 44.1 kHz  
A-weighted, fS = 96 kHz  
A-weighted, fS = 192 kHz  
fS = 44.1 kHz  
100  
100  
97  
104  
dB  
dB  
102  
106  
Signal-to-noise ratio  
Channel separation  
104  
102  
103  
fS = 96 kHz  
101  
dB  
dB  
fS = 192 kHz  
100  
Level linearity error  
VOUT = -90 dB  
±0.5  
DC ACCURACY  
% of  
FSR  
Gain error  
±1  
±6  
% of  
FSR  
Gain mismatch, channel-to-channel  
Bipolar zero error  
±1  
±3  
VOUT = 0.5 VCC at BPZ  
±30  
±60  
mV  
(1) Analog performance specifications are measured using the System Two™ Cascade audio measurement system by Audio Precision™ in  
the averaging mode.  
(2) Conditions in 192-kHz operation are system clock = 128 fS and oversampling rate = 64 fS of register 18.  
Copyright © 2003–2019, Texas Instruments Incorporated  
5
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
all specifications at TA = 25°C, VCC = 5 V, fS = 44.1 kHz, system clock = 384 fS, and 24-bit data (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG OUTPUT  
80% of  
VCC  
Output voltage  
Full scale (0 dB)  
VPP  
50% of  
VCC  
Center voltage  
VDC  
Load impedance  
AC-coupled load  
±0.04 dB  
5
kΩ  
DIGITAL FILTER PERFORMANCE  
FILTER CHARACTERISTICS (SHARP ROLLOFF)  
Pass band  
Stop band  
0.454 fS  
±0.04  
0.546 fs  
–50  
Pass-band ripple  
dB  
dB  
Stop-band attenuation  
ANALOG FILTER PERFORMANCE  
Stop band = 0.546 fS  
At 20 kHz  
At 44 kHz  
–0.03  
–0.2  
Frequency response  
dB  
POWER SUPPLY REQUIREMENTS(2)  
fS = 44.1 kHz  
fS = 96 kHz  
fS = 192 kHz  
fS = 44.1 kHz  
fS = 96 kHz  
fS = 192 kHz  
16  
25  
21  
ICC  
Supply current  
mA  
mW  
30  
80  
105  
Power dissipation  
125  
150  
TEMPERATURE  
RθJA  
Thermal Resistance  
16-pin DBQ  
104.1  
°C/W  
7.6 System Clock Input Timing  
for more information, see the System Clock Input section  
MIN  
NOM  
MAX UNIT  
t(SCKH)  
t(SCKL)  
t(SCY)  
System clock pulse duration, high  
System clock pulse duration, low  
System clock pulse cycle time  
7
7
ns  
ns  
ns  
See Figure 20.  
(1)  
See  
(1) 1/128 fS, 1/256 fS, 1/384 fS, 1/512 fS, 1/768 fS, or 1/1152 fS.  
7.7 Audio Interface Timing  
for more information, see the Audio Data Formats and Timing section  
MIN  
MAX  
UNIT  
1/(32 fS)  
1/(48 fS)  
t(BCY)  
BCK pulse cycle time  
1/(64 fS)(1)  
t(BCH)  
t(BCL)  
t(BL)  
BCK high–level time  
35  
35  
10  
ns  
ns  
ns  
BCK low–level time  
See Figure 22.  
BCK rising edge to LRCK edge  
LRCK falling edge to BCK rising  
edge  
t(LB)  
10  
ns  
t(DS)  
t(DH)  
DATA setup time  
DATA hold time  
10  
10  
ns  
ns  
(1) fS is the sampling frequency (for example, 44.1 kHz, 48 kHz, 96 kHz, and so on).  
6
Copyright © 2003–2019, Texas Instruments Incorporated  
 
 
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
7.8 Control Interface Timing Requirements  
these timing parameters are critical for proper control port operation  
MIN  
100  
50  
NOM  
MAX  
UNIT  
ns  
t(MCY)  
t(MCL)  
t(MCH)  
t(MCH)  
t(MLS)  
t(MLH)  
t(MDH)  
t(MCS)  
MC pulse cycle time  
MC low-level time  
MC high-level time  
ML high-level time  
ML falling edge to MC rising edge  
ML hold time(2)  
ns  
50  
ns  
(1)  
See  
ns  
See Figure 1.  
20  
20  
15  
20  
ns  
ns  
MD hold time  
ns  
MD setup time  
ns  
3
256 ´ f  
(1)  
S seconds (min); fS: sampling rate.  
(2) MC rising edge for LSB to ML rising edge.  
t(MHH)  
ML  
t(MCL)  
t(MLS)  
t(MCH)  
t(MLH)  
MC  
MD  
t(MCY)  
LSB  
t(MDS)  
t(MDH)  
Figure 1. Control Interface Timing  
Copyright © 2003–2019, Texas Instruments Incorporated  
7
 
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
7.9 Typical Characteristics  
7.9.1 Digital Filter (De-Emphasis Off)  
all specifications at TA = 25°C, VCC = 5 V, fS = 44.1 kHz, system clock = 384 fS, and 24-bit data, (unless otherwise noted)  
0
–20  
0.05  
0.04  
0.03  
–40  
0.02  
0.01  
–60  
0.00  
–80  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–100  
–120  
–140  
0
1
2
3
4
0.0  
0.1  
0.2  
Frequency[×f ]  
S
0.3  
0.4  
0.5  
Frequency[× f  
]
S
Figure 2. Frequency Response, Sharp Rolloff  
Figure 3. Pass-Band Ripple, Sharp Rolloff  
0
5
4
–20  
–40  
3
2
1
–60  
0
–80  
–1  
–2  
–3  
–4  
–5  
–100  
–120  
–140  
0
1
2
3
4
0.0  
0.1  
0.2  
Frequency [×f ]  
S
0.3  
0.4  
0.5  
Frequency[×f  
]
S
Figure 4. Frequency Response, Slow Rolloff  
Figure 5. Transition Characteristics, Slow Rolloff  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
Frequency (kHz)  
Frequency (kHz)  
Figure 6. De-Emphasis Level vs Frequency  
Figure 7. De-Emphasis Error vs Frequency  
8
Copyright © 2003–2019, Texas Instruments Incorporated  
 
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
Digital Filter (De-Emphasis Off) (continued)  
all specifications at TA = 25°C, VCC = 5 V, fS = 44.1 kHz, system clock = 384 fS, and 24-bit data, (unless otherwise noted)  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
Frequency (kHz)  
Frequency (kHz)  
Figure 8. De-Emphasis Level vs Frequency  
Figure 9. De-Emphasis Error vs Frequency  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
9
–10  
16 18 20 22  
0
2
4
6
8
10 12 14  
16 18 20 22  
0
2
4
6
8
10 12 14  
Frequency (kHz)  
Frequency (kHz)  
Figure 10. De-Emphasis Level vs Frequency  
Figure 11. De-Emphasis Error vs Frequency  
Copyright © 2003–2019, Texas Instruments Incorporated  
9
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
7.9.2 Analog Dynamic Performance (Supply Voltage Characteristics)  
All specifications at TA = 25°C, VCC = 5 V, fS = 44.1 kHz, system clock = 384 fS, and 24-bit data, (unless otherwise noted)  
110  
108  
106  
104  
102  
100  
98  
10  
44.1 kHz, 384 f  
S
96 kHz, 384 f  
S
192 kHz, 128 f  
S
1
0.1  
–60 dB  
0.01  
0 dB  
0.001  
44.1 kHz, 384 f  
S
96 kHz, 384 f  
S
192 kHz, 128 f  
S
96  
0.0001  
4.0  
4.5  
5.0  
5.5 6.0  
4.0  
4.5  
5.0  
5.5  
6.0  
Supply Voltage (V)  
Supply Voltage (V)  
Figure 12. Total Harmonic Distortion + Noise vs Supply  
Voltage  
Figure 13. Dynamic Range vs Supply Voltage  
110  
110  
44.1 kHz, 384 f  
44.1 kHz, 384 f  
S
S
96 kHz, 384 f  
96 kHz, 384 f  
S
S
108  
106  
104  
102  
100  
98  
108  
106  
104  
102  
100  
98  
192 kHz, 128 f  
192 kHz, 128 f  
S
S
96  
96  
4.0  
4.5  
5.0  
5.5  
6.0  
4.0  
4.5  
5.0  
5.5  
6.0  
Supply Voltage (V)  
Supply Voltage (V)  
Figure 14. Signal-to-Noise Ratio vs Supply Voltage  
Figure 15. Channel Separation vs Supply Voltage  
10  
Copyright © 2003–2019, Texas Instruments Incorporated  
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
7.9.3 Analog Dynamic Performance (Temperature Characteristics)  
All specifications at TA = 25°C, VCC = 5 V, fS = 44.1 kHz, system clock = 384 fS, and 24-bit data, (unless otherwise noted)  
110  
108  
106  
104  
102  
100  
98  
10  
44.1 kHz, 384 f  
S
96 kHz, 384 f  
S
–60 dB  
192 kHz, 128 f  
S
1
0.1  
0.01  
0 dB  
0.001  
44.1 kHz, 384 f  
S
96 kHz, 384 f  
S
192 kHz, 128 f  
S
96  
0.0001  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
Free-Air Temperature (°C)  
Free-Air Temperature (°C)  
Figure 16. Total Harmonic Distortion + Noise vs Free-Air  
Temperature  
Figure 17. Dynamic Range vs Free-Air Temperature  
110  
110  
44.1 kHz, 384 f  
S
44.1 kHz, 384 f  
S
96 kHz, 384 f  
S
96 kHz, 384 f  
S
108  
108  
192 kHz, 128 f  
S
192 kHz, 128 f  
S
106  
104  
102  
100  
98  
106  
104  
102  
100  
98  
96  
96  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
Free-Air Temperature (°C)  
Free-Air Temperature (°C)  
Figure 18. Signal-to-Noise Ratio vs Free-Air Temperature  
Figure 19. Channel Separation vs Free-Air Temperature  
Copyright © 2003–2019, Texas Instruments Incorporated  
11  
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The PCM175x devices are stereo digital-to-analog converters (DACs) based on TI's enhanced delta-sigma  
architecture which employ 4th-order noise shaping and 8-level amplitude quantization to achieve excellent  
dynamic performance and improved clock jitter tolerance. The PCM175x devices easily interface with audio DSP  
and decoder chips because of the devices' support of industry-standard audio data formats with 16- and 24-bit  
data. The PCM175x devices can be controlled in a hardware mode, or a full set of user-programmable functions  
is accessible through a three-wire serial control port, which supports register-write functions.  
8.2 Functional Block Diagram  
BCK  
Audio  
LRCK  
Serial  
V
V
V
L
Output Amp  
and  
OUT  
DATA  
Port  
DAC  
Low-Pass Filter  
4x/8x  
Oversampling  
Digital  
Enhanced  
Multilevel  
Delta-Sigma  
Modulator  
Filter  
and  
FMT  
COM  
Function  
Control  
Serial  
Control  
Port  
MUTE  
DEMP  
Output Amp  
and  
Low-Pass Filter  
DAC  
R
OUT  
TEST  
SCK  
System Clock  
System  
Clock  
Manager  
Zero Detect  
Power Supply  
8.3 Feature Description  
8.3.1 System Clock and Reset Functions  
8.3.1.1 System Clock Input  
The PCM175x devices require a system clock for operating the digital interpolation filters and multilevel delta-  
sigma modulators. The system clock is applied at the SCK input (pin 16). Table 1 lists examples of system clock  
frequencies for common audio sampling rates.  
Figure 20 shows and the System Clock Input Timing table lists he timing requirements for the system clock input.  
For optimal performance, use a clock source with low phase-jitter and noise. TI's PLL170x family of multiclock  
generators is an excellent choice for providing the PCM175x system clock.  
12  
Copyright © 2003–2019, Texas Instruments Incorporated  
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
Feature Description (continued)  
Table 1. System Clock Rates for Common Audio Sampling Frequencies  
SYSTEM CLOCK FREQUENCY (fSCLK) (MHz)  
SAMPLING  
FREQUENCY  
128 fS  
1.024  
192 fS  
1.536  
256 fS  
2.048  
384 fS  
3.072  
512 fS  
4.096  
768 fS  
6.144  
1152 fS  
9.216  
8 kHz  
16 kHz  
32 kHz  
44.1 kHz  
48 kHz  
88.2 kHz  
96 kHz  
192 kHz  
2.048  
3.072  
4.096  
6.144  
8.192  
12.288  
24.576  
33.8688  
18.432  
4.096  
6.144  
8.192  
12.288  
16.9344  
18.432  
33.8688  
16.384  
22.5792  
24.576  
45.1584  
36.864  
(1)  
5.6448  
6.144  
8.4672  
9.216  
11.2896  
12.288  
22.5792  
(1)  
(1)  
(1)  
(1)  
36.864  
(1)  
11.2896  
12.288  
24.576  
16.9344  
18.432  
36.864  
(1)  
(1)  
24.576  
36.864  
49.152  
(1)  
(1)  
(1)  
(1) This system clock rate is not supported for the given sampling frequency.  
t
(SCKH)  
H
L
2.0 V  
0.8 V  
System Clock (SCK)  
t
(SCKL)  
t
(SCY)  
Figure 20. System Clock Input Timing  
8.3.1.2 Power-On Reset Functions  
The PCM175x devices include a power-on reset function. Figure 21 shows the operation of this function. With the  
system clock active and VCC > 3 V (typical, 2.2 V to 3.7 V), the power-on reset function is enabled. The  
initialization sequence requires 1024 system clocks from the time VCC > 3 V (typical, 2.2 V to 3.7 V).  
During the reset period (1024 system clocks), the analog output is forced to the bipolar zero level, or VCC/2. After  
the reset period, an internal register is initialized in the next 1/fS period and if SCK, BCK, and LRCK are provided  
continuously, the PCM175x devices provide proper analog output with unit group delay against the input data.  
V
CC  
3.7 V (Max)  
3.0 V (Typ)  
2.2 V (Min)  
Reset  
Reset Removal  
Internal Reset  
System Clock  
Don’t Care  
1024 System Clocks  
Figure 21. Power-On Reset Timing  
Copyright © 2003–2019, Texas Instruments Incorporated  
13  
 
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
8.3.2 Audio Serial Interface  
The audio serial interface for the PCM175x devices consists of a 3-wire synchronous serial port. The interface  
includes LRCK (pin 3), BCK (pin 1), and DATA (pin 2). The BCK pin is the serial audio bit clock, and it is used to  
clock the serial data present on the DATA pin into the serial shift register of the audio interface. Serial data is  
clocked into the PCM175x on the rising edge of the BCK pin. The LRCK pin is the serial audio left and right word  
clock. This pin is used to latch serial data into the internal registers of the serial audio interface.  
Both the LRCK and BCK pins should be synchronous to the system clock. Ideally, TI recommendeds that the  
LRCK and BCK pins be derived from the system clock input, SCK. The LRCK pin is operated at the sampling  
frequency, fS. The BCK pin can be operated at 32, 48, or 64 times the sampling frequency for standard (right-  
justified) format, and 32 times the sampling frequency of the BCK pin is limited to 16-bit right-justified format only.  
The BCK pin can be operated at 48 or 64 times the sampling frequency for the I2S and left-justified formats. 48  
times the sampling frequency of BCK is limited to 192/384/768 fS SCKI.  
Internal operation of the PCM175x devices is synchronized with the LRCK pin. Accordingly, internal operation is  
held when the sampling rate clock of the LRCK pin is changed or when the SCK pin and/or BCK pin is  
interrupted for a 3-bit clock cycle or longer. If th SCK, BCK, and LRCK pins are provided continuously after this  
held condition, the internal operation is re-synchronized automatically in a period of less than 3/fS. External  
resetting is not required.  
8.3.2.1 Audio Data Formats and Timing  
The PCM1753 device supports industry-standard audio data formats, including right-justified, I2S, and left-  
justified. The PCM1754 device supports I2S and 16-bit-word right-justified audio data formats. Figure 23 shows  
the data formats. Data formats are selected using the format bits, FMT[2:0], located in control register 20 of the  
PCM1753 device, and are selected using the FMT pin on the PCM1754 device. The default data format is 24-bit  
left-justified. All formats require binary 2s-complement MSB-first audio data. The Audio Interface Timing table  
shows a detailed timing diagram for the serial audio interface.  
1.4 V  
1.4 V  
1.4 V  
LRCK  
t
t
(BCL)  
t
(BCH)  
(LB)  
BCK  
t
t
(BCY)  
(BL)  
DATA  
t
t
(DS)  
(DH)  
Figure 22. Audio Interface Timing  
14  
Copyright © 2003–2019, Texas Instruments Incorporated  
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
(1) Standard Data Format; L-Channel = HIGH, R-Channel = LOW  
1/f  
S
LRCK  
BCK  
L-Channel  
R-Channel  
(= 32 f , 48 f or 64 f )  
S
S
S,  
16-Bit Right-Justified, BCK = 48 f or 64 f  
S
S
DATA 14 15 16  
1
2
3
14 15 16  
1
2
3
14 15 16  
LSB  
MSB  
LSB  
MSB  
16-Bit Right-Justified, BCK = 32 f  
S
DATA 14 15 16  
1
2
3
14 15 16  
LSB  
1
2
3
14 15 16  
LSB  
MSB  
MSB  
18-Bit Right-Justified, BCK = 48 f or 64 f  
S
S
DATA 16 17 18  
1
3
2
3
16 17 18  
LSB  
1
3
2
3
16 17 18  
LSB  
MSB  
MSB  
20-Bit Right-Justified, BCK = 48 f or 64 f  
S
S
18 19 20  
1
2
18 19 20  
LSB  
1
2
18 19 20  
LSB  
DATA  
MSB  
MSB  
24-Bit Right-Justified, BCK = 48 f or 64 f  
S
S
DATA 22 23 24  
1
2
3
22 23 24  
LSB  
1
2
3
22 23 24  
LSB  
MSB  
MSB  
(2) I2S Data Format; L-Channel = LOW, R-Channel = HIGH  
1/f  
S
LRCK  
BCK  
L-Channel  
R-Channel  
(= 48 f or 64 f )  
S
S
N–2 N–1  
N–2 N–1  
1
2
3
N
1
2
3
N
12  
DATA  
MSB  
LSB  
MSB  
LSB  
(3) Left-Justified Data Format; L-Channel = HIGH, R-Channel = LOW  
1/f  
S
LRCK  
BCK  
L-Channel  
R-Channel  
(= 48 f or 64 f )  
S
S,  
N–2 N–1  
N–2 N–1  
DATA  
1
2
3
N
1
2
3
N
1
2
MSB  
LSB  
MSB  
LSB  
Figure 23. Audio Data Input Formats  
Copyright © 2003–2019, Texas Instruments Incorporated  
15  
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
8.3.3 Zero Flag (PCM1754)  
The PCM1754 device has a ZERO flag pin, ZEROA (pin 11). ZEROA is the L-channel and R-channel common  
zero flag pin. If the data for L-channel and R-channel remains at a 0 level for 1024 sampling periods (or LRCK  
clock periods), ZEROA is set to a logic 1 state.  
8.3.4 Zero Flag (PCM1753)  
Zero-Detect Condition  
Zero detection for either output channel is independent from the other channel. If the data for a given channel  
remains at a 0 level for 1024 sample periods (or LRCK clock periods), a zero-detect condition exists for that  
channel.  
8.3.5 Zero Flag Outputs  
If a zero-detect condition exists for one or more channels, the zero flag pins for those channels are set to a logic  
1 state. There are zero flag pins for each channel, ZEROL (pin 12) and ZEROR (pin 11). These pins can be used  
to operate external mute circuits, or used as status indicators for a microcontroller, audio signal processor, or  
other digitally controlled function. The active polarity of zero flag outputs can be inverted by setting the ZREV bit  
of control register 22 to 1. The reset default is active-high output, or ZREV = 0. The L-channel and R-channel  
common zero flag can be selected by setting the AZRO bit of control register 22 to 1. The reset default is  
independent zero flags for L-channel and R-channel, or AZRO = 0.  
8.3.6 Analog Outputs  
The PCM1753 device includes two independent output channels, VOUTL and VOUTR. These are unbalanced  
outputs, each capable of driving 4 VPP typical into a 5-kΩ ac-coupled load. The internal output amplifiers for  
VOUTL and VOUTR are biased to the dc common-mode (or bipolar zero) voltage, equal to 0.5 VCC  
.
The output amplifiers include an RC continuous-time filter, which helps to reduce the out-of-band noise energy  
present at the DAC outputs due to the noise shaping characteristics of the PCM1754 delta-sigma D/A converters.  
The frequency response of this filter is shown in Figure 24. By itself, this filter is not enough to attenuate the out-  
of-band noise to an acceptable level for many applications. An external low-pass filter is required to provide  
sufficient out-of-band noise rejection. Further discussion of DAC post-filter circuits is provided in the Applications  
Information section of this data sheet.  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
0.1  
1
10  
100  
1
10  
k
k
Frequency (kHz)  
Figure 24. Output Filter Frequency Response  
16  
Copyright © 2003–2019, Texas Instruments Incorporated  
 
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
8.3.6.1 VCOM Output  
One unbuffered common-mode voltage output pin, VCOM (pin 10) is brought out for decoupling purposes. This pin  
is nominally biased to a dc voltage level equal to 0.5 VCC. This pin can be used to bias external circuits.  
Figure 25 shows an example of using the VCOM pin for external biasing applications.  
R2  
AV = –1, where AV = –  
R1  
PCM1754  
V
CC  
C
R
1
2
R
R
3
1
2
3
10 µF  
(1)  
V X  
OUT  
1/2  
1
Filtered  
Output  
OPA2353  
C
2
+
V
COM  
+
10 µF  
(1)  
X = L or R  
(a) Using V  
to Bias a Single-Supply Filter Stage  
COM  
V
CC  
PCM1754  
Buffered V  
OPA337  
+
COM  
V
COM  
+
10 µF  
(b) Using a Voltage Follower to Buffer V  
When Biasing Multiple Nodes  
COM  
Figure 25. Biasing External Circuits Using the VCOM Pin  
8.4 Device Functional Modes  
8.4.1 Hardware Control (PCM1754)  
The digital functions of the PCM1754 are capable of hardware control. Table 2 lists selectable formats, Table 3  
shows de-emphasis control, and Table 4 lists mute control.  
Table 2. Data Format Select  
FMT (PIN 15)  
LOW  
DATA FORMAT  
16– to 24–bit, I2S format  
16–bit right–justified  
HIGH  
Copyright © 2003–2019, Texas Instruments Incorporated  
17  
 
 
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
Table 3. De-Emphasis Control  
DEMP (PIN 13)  
DE–EMPHASIS FUNCTION  
44.1 kHz de–emphasis OFF  
LOW  
HIGH  
44.1 kHz de–emphasis ON  
Table 4. Mute Control  
MUTE (PIN 14)  
LOW  
MUTE  
Mute OFF  
HIGH  
Mute ON  
8.4.2 Oversampling Rate Control (PCM1754)  
The PCM1754 automatically controls the oversampling rate of the delta-sigma DACs with the system clock rate.  
The oversampling rate is set to 64× oversampling with every system clock and sampling frequency.  
8.5 Programming  
8.5.1 Software Control (PCM1753/55)  
The PCM1753 and PCM1755 devices have many programmable functions which can be controlled in the  
software control mode. The functions are controlled by programming the internal registers using the ML, MC, and  
MD pins.  
The serial control interface is a 3-wire serial port, which operates asynchronously to the audio serial interface.  
The serial control interface is used to program the on-chip mode registers. The control interface includes MD (pin  
13), MC (pin 14), and ML (pin 15). The MD pin is the serial data input, used to program the mode registers. The  
MC pin is the serial bit clock, used to shift data into the control port. The ML pin is the control port latch clock.  
8.5.1.1 Register Write Operation  
All write operations for the serial control port use 16-bit data words. Figure 26 lists the control data word format.  
The most significant bit must be a 0. There are seven bits, labeled IDX[6:0], that set the register index (or  
address) for the write operation. The least significant eight bits, D[7:0], contain the data to be written to the  
register specified by IDX[6:0].  
Figure 27 lists the functional timing diagram for writing to the serial control port. ML is held at a logic 1 state until  
a register needs to be written. To start the register write cycle, ML is set to logic 0. Sixteen clocks are then  
provided on MC, corresponding to the 16 bits of the control data word on MD. After the sixteenth clock cycle has  
completed, ML is set to logic 1 to latch the data into the indexed mode control register.  
Figure 26. Control Data Word Format for MD  
Figure 27. Register Write Operation  
18  
Copyright © 2003–2019, Texas Instruments Incorporated  
 
 
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
8.6 Register Maps  
8.6.1 Mode Control Registers (PCM1753/55)  
8.6.1.1 User-Programmable Mode Controls  
The PCM1753/55 devices include a number of user-programmable functions, which are accessed via control  
registers. The registers are programmed using the serial control interface, which was previously discussed in this  
data sheet. Table 5 lists the available mode control functions, along with their reset default conditions and  
associated register index.  
Table 5. User-Programmable Mode Controls  
FUNCTION  
Digital attenuation control, 0 dB to –63 dB in 0.5-dB steps  
Soft mute control  
RESET DEFAULT  
0 dB, no attenuation  
Mute disabled  
REGISTER  
BIT(s)  
AT1[7:0], AT2[7:0]  
MUT[2:0]  
OVER  
16 and 17  
18  
18  
18  
19  
19  
19  
20  
20  
22  
22  
22  
Oversampling rate control (64 fS or 128 fS)  
Soft reset control  
64 fS oversampling  
Reset disabled  
SRST  
DAC operation control  
DAC1 and DAC2 enabled  
De-emphasis disabled  
44.1 kHz  
DAC[2:1]  
DM12  
De-emphasis function control  
De-emphasis sample rate selection  
Audio data format control  
DMF[1:0]  
FMT[2:0]  
FLT  
24-bit left-justified  
Sharp rolloff  
Digital filter rolloff control  
Zero flag function select  
L-, R-channel independent  
Normal phase  
AZRO  
Output phase select  
DREV  
Zero flag polarity select  
High  
ZREV  
The mode control register map is shown in Table 6. Each register includes an index (or address) indicated by the  
IDX[6:0] bits.  
Table 6. Mode Control Register Map(1)  
IDX  
(B8–B REGISTER  
14)  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
10h  
11h  
12h  
13h  
14h  
16h  
Register 16  
Register 17  
Register 18  
Register 19  
Register 20  
Register 22  
0
0
0
0
0
0
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX6  
IDX5  
IDX5  
IDX5  
IDX5  
IDX5  
IDX5  
IDX4  
IDX4  
IDX4  
IDX4  
IDX4  
IDX4  
IDX3  
IDX3  
IDX3  
IDX3  
IDX3  
IDX3  
IDX2  
IDX2  
IDX2  
IDX2  
IDX2  
IDX2  
IDX1  
IDX1  
IDX1  
IDX1  
IDX1  
IDX1  
IDX0  
IDX0  
IDX0  
IDX0  
IDX0  
IDX0  
AT17  
AT27  
SRST  
RSV  
AT16  
AT26  
OVER  
DMF1  
RSV  
AT15  
AT25  
RSV  
DMF0  
FLT  
AT14  
AT24  
RSV  
AT13  
AT23  
RSV  
RSV  
RSV  
RSV  
AT12  
AT22  
RSV  
AT11  
AT21  
MUT2  
DAC2  
FMT1  
ZREV  
AT10  
AT20  
MUT1  
DAC1  
FMT0  
DREV  
DM12  
RSV  
RSV  
RSV  
FMT2  
AZRO  
RSV  
RSV  
RSV  
RSV  
(1) RSV: Reserved for test operation. It should be set to 0 for regular operation.  
Copyright © 2003–2019, Texas Instruments Incorporated  
19  
 
 
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
8.6.1.2 Register Definitions  
8.6.1.2.1 ATx[7:0]: Digital Attenuation Level Setting  
Where x = 1 or 2, corresponding to the DAC output VOUTL (x = 1) and VOUTR (x = 2).  
Default value: 1111 1111b  
Each DAC channel (VOUTL and VOUTR) includes a digital attenuation function. The attenuation level can be set  
from 0 dB to –63 dB in 0.5-dB steps. Changes in attenuator levels are made by incrementing or decrementing  
one step (0.5 dB) for every 8/fS time internal until the programmed attenuator setting is reached. Alternatively,  
the attenuation level can be set to infinite attenuation (or mute).  
The attenuation data for each channel can be set individually. The attenuation level is set using the following  
formula:  
Attenuation level (dB) = 0.5 × (ATx[7:0]DEC – 255)  
where ATx[7:0]DEC = 0 through 255.  
For ATx[7:0]DEC = 0 through 128, attenuation is set to infinite attenuation.  
The table in Figure 28 shows the attenuation levels for various settings:  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure 28. ATx[7:0]: Digital Attenuation Level Setting Table  
20  
Copyright © 2003–2019, Texas Instruments Incorporated  
 
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
8.6.1.2.2 MUTx: Soft Mute Control  
where x = 1 or 2, corresponding to the DAC outputs VOUTL (x = 1) and VOUTR (x = 2).  
Default value: 0  
The mute bits, MUT1 and MUT2, are used to enable or disable the soft mute function for the corresponding DAC  
outputs, VOUTL and VOUTR. The soft mute function is incorporated into the digital attenuators. When mute is  
disabled (MUTx = 0), the attenuator and DAC operate normally. When mute is enabled by setting MUTx = 1, the  
digital attenuator for the corresponding output is decreased from the current setting to infinite attenuation, one  
attenuator step (0.5 dB) for every 8/fS seconds. This provides pop-free muting of the DAC output.  
By setting MUTx = 0, the attenuator is increased one step for every 8/fS seconds to the previously programmed  
attenuation level.  
8.6.1.2.3 OVER: Oversampling Rate Control  
Default value: 0  
System clock rate = 256 fS, 384 fS, 512 fS, 768 fS, or 1152 fS:  
System clock rate = 128 fS or 192 fS:  
The OVER bit is used to control the oversampling rate of the delta-sigma D/A converters. The OVER = 1 setting  
is recommended when the sampling rate is 192 kHz (system clock rate is 128 fS or 192 fS).  
8.6.1.2.4 SRST: Reset  
Default value: 0  
The SRST bit is used to enable or disable the soft reset function. The operation is the same as power-on reset.  
All registers are initialized.  
8.6.1.2.5 DACx: DAC Operation Control  
Where x = 1 or 2, corresponding to the DAC output VOUTL (x = 1) or VOUTR (x = 2).  
Default value: 0  
The DAC operation controls are used to enable and disable the DAC outputs, VOUTL and VOUTR. When DACx =  
0, the corresponding output generates the audio waveform dictated by the data present on the DATA pin. When  
DACx = 1, the corresponding output is set to the bipolar zero level, or 0.5 VCC  
.
Copyright © 2003–2019, Texas Instruments Incorporated  
21  
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
8.6.1.2.6 DM12: Digital De-Emphasis Function Control  
Default value: 0  
The DM12 bit is used to enable or disable the digital de-emphasis function. See the plots shown in the Typical  
Characteristics section of this data sheet.  
8.6.1.2.7 DMF[1:0]: Sampling Frequency Selection for the De-Emphasis Function  
Default value: 00  
The DMF[1:0] bits are used to select the sampling frequency used for the digital de-emphasis function when it is  
enabled.  
8.6.1.2.8 FMT[2:0]: Audio Interface Data Format  
Default value: 101  
The FMT[2:0] bits are used to select the data format for the serial audio interface. The table in Figure 29 shows  
the available format options.  
Figure 29. FMT[2:0]: Audio Interface Data Format Table  
22  
Copyright © 2003–2019, Texas Instruments Incorporated  
 
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
8.6.1.2.9 FLT: Digital Filter Rolloff Control  
Default value: 0  
The FLT bit allows the user to select the digital filter rolloff that is best suited to the application. Two filter rolloff  
selections are available, sharp and slow. The filter responses for these selections are shown in the Typical  
Characteristics section of this data sheet.  
8.6.1.2.10 DREV: Output Phase Select  
Default value: 0  
The DREV bit is the output analog signal phase control.  
8.6.1.2.11 ZREV: Zero Flag Polarity Select  
Default value: 01h  
The ZREV bit allows the user to select the polarity of zero flag pins.  
8.6.1.2.12 AZRO: Zero Flag Function Select  
Default value: 0  
The AZRO bit allows the user to select the function of zero flag pins.  
Copyright © 2003–2019, Texas Instruments Incorporated  
23  
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The delta-sigma section of the PCM175x device is based on an 8-level amplitude quantizer and a 4th-order noise  
shaper. This section converts the oversampled input data to 8-level delta-sigma format. A block diagram of the 8-  
level delta-sigma modulator is shown in Figure 32. This 8-level delta-sigma modulator has the advantage of  
stability and clock jitter sensitivity over the typical one-bit (2-level) delta-sigma modulator.  
The combined oversampling rate of the delta-sigma modulator and the interpolation filter is 64 fS.  
The theoretical quantization noise performance of the 8-level delta-sigma modulator is shown in Figure 35 and  
Figure 36. The enhanced multilevel delta-sigma architecture also has advantages for input clock jitter sensitivity  
due to the multilevel quantizer, with the simulated jitter sensitivity shown in Figure 37.  
The PCM175X devices are suitable for a wide variety of cost-sensitive consumer applications requiring good  
performance and operation with a single 5-V supply.  
9.2 Typical Application  
A basic connection diagram is shown in Figure 30, with the necessary power supply bypassing and decoupling  
components. TI recommends using the component values shown in Figure 30 for all designs.  
The use of series resistors (22 Ω to 100 Ω) is recommended for the SCK, LRCK, BCK, and DATA inputs. The  
series resistor combines with the stray PCB and device input capacitance to form a low-pass filter, which reduces  
high-frequency noise emissions and helps to dampen glitches and ringing present on clock and data lines.  
For this design example, use the parameters listed in Table 7.  
PCM1754  
System Clock  
Format  
BCK  
SCK  
FMT  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PCM Audio Data  
DATA  
LRCK  
DGND  
NC  
MUTE On/Off  
DEMP On/Off  
MUTE  
DEMP  
TEST  
Zero Mute Control  
V
CC  
ZEROA  
+5 V  
10 µF  
V
OUT  
V
OUT  
L
V
COM  
+
10 µF  
10 µF  
R
AGND  
10 µF  
Post LPF  
L-Ch Out  
Post LPF  
R-Ch Out  
Figure 30. Basic Connection Diagram  
24  
Copyright © 2003–2019, Texas Instruments Incorporated  
 
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
Typical Application (continued)  
9.2.1 Design Requirements  
9.2.1.1 Design Parameters  
Table 7 lists the design parameters and example values for the PCM175x devices.  
Table 7. Design Parameters  
DESIGN PARAMETER  
Audio input  
EXAMPLE VALUE  
PCM audio data  
0 VPP - 4 VPP  
Hardware  
Analog output  
Part configuration  
9.2.1.2 Power Supplies and Grounding  
The PCM1754 device requires 5 V for VCC  
.
Proper power supply bypassing is shown in Figure 30. The 10-μF capacitors should be tantalum or aluminum  
electrolytic.  
9.2.1.3 D/A Output Filter Circuits  
Delta-sigma D/A converters use noise-shaping techniques to improve in-band signal-to-noise ratio (SNR)  
performance at the expense of generating increased out-of-band noise above the Nyquist frequency, or fS/2. The  
out-of-band noise must be low-pass filtered in order to provide the optimal converter performance. This is  
accomplished by a combination of on-chip and external low-pass filtering.  
Figure 25(a) and Figure 31 show the recommended external low-pass active filter circuits for single- and dual-  
supply applications. These circuits are 2nd-order Butterworth filters using the multiple feedback (MFB) circuit  
arrangement, which reduces sensitivity to passive component variations over frequency and temperature. For  
more information regarding MFB active filter design, see Burr-Brown applications bulletin (SBAA055), available  
from the TI Web site at http://www.ti.com.  
Because the overall system performance is defined by the quality of the D/A converters and their associated  
analog output circuitry, high-quality audio operational amplifiers are recommended for the active filters. TI's  
OPA2353 and OPA2134 dual operational amplifiers are shown in Figure 25(a) and Figure 31, and are  
recommended for use with the PCM1754 device.  
R
C
2
1
R
R
3
1
2
R
4
V
IN  
1
OPA2134  
V
OUT  
3
C
+
2
R2  
R1  
AV = –  
Figure 31. Dual-Supply Filter Circuit  
Copyright © 2003–2019, Texas Instruments Incorporated  
25  
 
 
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Total Harmonic Distortion + Noise  
Total harmonic distortion + noise (THD+N) is a significant figure of merit for audio D/A converters because it  
takes into account both harmonic distortion and all noise sources within a specified measurement bandwidth.  
The average value of the distortion and noise is referred to as THD+N.  
For the PCM175x, THD+N is measured with a full-scale, 1-kHz digital sine wave as the test stimulus at the input  
of the DAC (see Figure 33). The digital generator is set to 24-bit audio word length and a sampling frequency of  
44.1 kHz or 96 kHz. The digital generator output is taken from the unbalanced S/PDIF connector of the  
measurement system. The S/PDIF data is transmitted via a coaxial cable to the digital audio receiver on the  
DEM-DAI1753 demonstration board. The receiver is then configured to output 24-bit data in either I2S or left-  
justified data format. The DAC audio interface format is programmed to match the receiver output format. The  
analog output is then taken from the DAC post filter and connected to the analog analyzer input of the  
measurement system. The analog input is band limited using filters resident in the analyzer. The resulting  
THD+N is measured by the analyzer and displayed by the measurement system.  
+
+
+
+
+
IN  
+
+
+
+
–1  
–1  
–1  
–1  
Z
Z
Z
Z
8 f  
S
+ +  
+
+
8-Level Quantizer  
OUT  
64 f  
S
Figure 32. Eight-Level Delta-Sigma Modulator  
26  
Copyright © 2003–2019, Texas Instruments Incorporated  
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
9.2.2.2 Dynamic Range  
Dynamic range is specified as A-weighted THD+N measured with a –60-dB full-scale, 1-kHz digital sine wave  
stimulus at the input of the D/A converter. This measurement is designed to give a good indicator of how the  
DAC performs given a low-level input signal.  
The measurement setup for the dynamic range measurement is shown in Figure 34, and is similar to the THD+N  
test setup discussed previously. The differences include the band limit filter selection, the additional A-weighting  
filter, and the –60-dB full-scale input level.  
Evaluation Board  
DEM-DAI1753  
2nd-Order  
S/PDIF  
PCM1754  
Low-Pass  
Filter  
Receiver  
f
= 54 kHz or 108 kHz  
–3 dB  
Audio Precision System Two  
Analyzer  
and  
Display  
Digital  
AES17 Filter  
Generator  
Band Limit  
S/PDIF  
Output  
0 dB FS  
(100% Full-Scale),  
24-Bit,  
Averaging  
Mode  
HPF = 400 Hz  
LPF = 30 kHz  
f
= 20.9 kHz  
–3 dB  
1-kHz Sine Wave  
Figure 33. Test Setup for THD+N Measurement  
9.2.2.3 Idle Channel Signal-to-Noise Ratio (SNR)  
The SNR test provides a measure of the noise floor of the D/A converter. The input to the D/A is all-0s data, and  
the dither function of the digital generator must be disabled to ensure an all-0s data stream at the input of the  
D/A converter.  
The measurement setup for SNR is identical to that used for dynamic range, with the exception of the input  
signal level.  
(See the note provided in Figure 34).  
Evaluation Board  
DEM-DAI1753  
2nd-Order  
S/PDIF  
PCM1754  
Low-Pass  
Filter  
Receiver  
f
= 54 kHz or 108 kHz  
–3 dB  
Audio Precision System Two  
Analyzer  
Digital  
A-Weighting  
(1)  
and  
Display  
AES17 Filter  
Generator  
Filter  
S/PDIF  
Output  
Band Limit  
0% Full-Scale,  
Dither Off (SNR)  
or –60 dB FS,  
Averaging  
Mode  
HPF = 400 Hz  
LPF = 30 kHz  
f
= 20.9 kHz  
–3 dB  
1 kHz Sine Wave  
(Dynamic Range)  
(1)  
Results without A-Weighting are approximately 3 dB worse.  
Figure 34. Test Setup for Dynamic Range and SNR Measurement  
Copyright © 2003–2019, Texas Instruments Incorporated  
27  
 
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
9.2.3 Application Curves  
0
20  
0
20  
40  
40  
60  
60  
80  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
180  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Frequency [×f ]  
S
Frequency[×f ]  
S
Figure 35. Quantization Noise Spectrum (×64  
Oversampling)  
Figure 36. Quantization Noise Spectrum (×128  
Oversampling)  
125  
120  
115  
110  
105  
100  
95  
90  
0
100  
200  
300  
400  
500  
600  
Jitter (psp-p  
)
Figure 37. Jitter Dependence (×64 Oversampling)  
28  
Copyright © 2003–2019, Texas Instruments Incorporated  
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
10 Power Supply Recommendations  
The PCM175x devices are designed to operate from a 4.5-V to 5.5-V power supply. Ensure that the power  
supply is clean and use high-quality decoupling capacitors to reduce noise. The bulk capacitances can be from  
either tantalum or aluminum capacitors.  
Separate power supplies are recommended for the digital and analog sections of the board. This prevents the  
switching noise present on the digital supply from contaminating the analog power supply and degrading the  
dynamic performance of the PCM175x devices. In cases where a common 5-V supply must be used for the  
analog and digital sections, an inductance (RF choke, ferrite bead) should be placed between the analog and  
digital 5-V supply connections to avoid coupling of the digital switching noise into the analog circuitry. Figure 39  
shows the recommended approach for single-supply applications.  
11 Layout  
11.1 Layout Guidelines  
Figure 38 shows a typical PCB floor plan for the PCM175x devices. A ground plane is recommended, with the  
analog and digital sections being isolated from one another using a split or cut in the circuit board. The PCM175x  
should be oriented with the digital I/O pins facing the ground plane split/cut to allow for short, direct connections  
to the digital audio interface and control signals originating from the digital section of the board.  
Separate power supplies are recommended for the digital and analog sections of the board. This prevents the  
switching noise present on the digital supply from contaminating the analog power supply and degrading the  
dynamic performance of the PCM175x. In cases where a common 5-V supply must be used for the analog and  
digital sections, an inductance (RF choke, ferrite bead) should be placed between the analog and digital 5-V  
supply connections to avoid coupling of the digital switching noise into the analog circuitry. Figure 39 shows the  
recommended approach for single-supply applications.  
11.2 Layout Example  
Digital Power  
+V DGND  
Analog Power  
AGND +5VA +V –V  
S
D
S
V
CC  
Digital Logic  
and  
Audio  
Output  
DGND  
PCM1754  
Circuits  
Processor  
Digital  
Ground  
AGND  
Analog  
Ground  
Digital Section  
Analog Section  
Return Path for Digital Signals  
Figure 38. Recommended PCB Layout  
Copyright © 2003–2019, Texas Instruments Incorporated  
29  
 
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
Layout Example (continued)  
Power Supplies  
AGND +V  
RF Choke or Ferrite Bead  
+5V  
–V  
S
S
V
CC  
V
DD  
Output  
DGND  
Circuits  
PCM1754  
AGND  
Common  
Ground  
Digital Section  
Analog Section  
Figure 39. Single-Supply PCB Layout  
30  
版权 © 2003–2019, Texas Instruments Incorporated  
PCM1753, PCM1754, PCM1755  
www.ti.com.cn  
ZHCSK28E APRIL 2003REVISED JULY 2019  
12 器件和文档支持  
12.1 相关文档ꢀ  
请参阅如下相关文档:  
德州仪器 (TI)《数字音频数模转换器的动态性能测试》 应用简报  
德州仪器 (TI)OPA2353 高速单电源轨至轨运算放大器 MicroAmplifier™ 系列》数据表  
德州仪器 (TI)OPA2134 SoundPlus™ 高性能音频运算放大器》数据表  
德州仪器 (TI)PLL170x 3.3V 双路 PLL 多时钟发生器》数据表  
德州仪器 (TI)PCM175x-Q1 24 192kHz 采样增强型多级 Δ-Σ 音频数模转换器》数据表  
12.2 相关链接  
8 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具与软件,以及申请样片或购买产品的快速链  
接。  
8. 相关链接  
产品文件夹  
单击此处  
单击此处  
单击此处  
单击此处  
样片与购买  
单击此处  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
单击此处  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
System Two, Audio Precision are trademarks of Audio Precision, Inc.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2003–2019, Texas Instruments Incorporated  
31  
 
PCM1753, PCM1754, PCM1755  
ZHCSK28E APRIL 2003REVISED JULY 2019  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2003–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM1753DBQ  
PCM1753DBQR  
PCM1754DBQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
DBQ  
DBQ  
DBQ  
DBQ  
DBQ  
DBQ  
DBQ  
DBQ  
16  
16  
16  
16  
16  
16  
16  
16  
75  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
PCM1753  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
PCM1753  
PCM1754  
PCM1754  
PCM1754  
PCM1754  
PCM1755  
PCM1755  
75  
75  
RoHS & Green  
RoHS & Green  
PCM1754DBQG4  
PCM1754DBQR  
PCM1754DBQRG4  
PCM1755DBQ  
2000 RoHS & Green  
2000 RoHS & Green  
75  
RoHS & Green  
PCM1755DBQR  
2000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PCM1753DBQR  
PCM1754DBQR  
PCM1755DBQR  
SSOP  
SSOP  
SSOP  
DBQ  
DBQ  
DBQ  
16  
16  
16  
2000  
2000  
2000  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
PCM1753DBQR  
PCM1754DBQR  
PCM1755DBQR  
SSOP  
SSOP  
SSOP  
DBQ  
DBQ  
DBQ  
16  
16  
16  
2000  
2000  
2000  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
PCM1753DBQ  
PCM1754DBQ  
PCM1754DBQG4  
PCM1755DBQ  
DBQ  
DBQ  
DBQ  
DBQ  
SSOP  
SSOP  
SSOP  
SSOP  
16  
16  
16  
16  
75  
75  
75  
75  
506.6  
506.6  
506.6  
506.6  
8
8
8
8
3940  
3940  
3940  
3940  
4.32  
4.32  
4.32  
4.32  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY