PCM1792A [TI]

132dB SNR 最高性能立体声 DAC(软件控制);
PCM1792A
型号: PCM1792A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

132dB SNR 最高性能立体声 DAC(软件控制)

文件: 总65页 (文件大小:740K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
− 5-V Analog, 3.3-V Digital  
FEATURES  
D
D
5-V Tolerant Digital Inputs  
D
24-Bit Resolution  
Small 28-Lead SSOP Package  
D
Analog Performance:  
− Dynamic Range:  
APPLICATIONS  
− 132 dB (9 V rms, Mono)  
− 129 dB (4.5 V rms, Stereo)  
− 127 dB (2 V rms, Stereo)  
− THD+N: 0.0004%  
D
D
D
D
D
D
D
A/V Receivers  
SACD Player  
DVD Players  
D
D
Differential Current Output: 7.8 mA p-p  
HDTV Receivers  
8× Oversampling Digital Filter:  
− Stop-Band Attenuation: –130 dB  
− Pass-Band Ripple: 0.00001 dB  
Car Audio Systems  
Digital Multitrack Recorders  
Other Applications Requiring 24-Bit Audio  
D
D
Sampling Frequency: 10 kHz to 200 kHz  
System Clock: 128, 192, 256, 384, 512, or  
DESCRIPTION  
768 f With Autodetect  
S
D
Accepts 16-, 20-, and 24-Bit Audio Data  
The PCM1792A is a monolithic CMOS integrated circuit  
that includes stereo digital-to-analog converters and  
support circuitry in a small 28-lead SSOP package. The  
data converters use TI’s advanced segment DAC  
architecture to achieve excellent dynamic performance  
and improved tolerance to clock jitter. The PCM1792A  
provides balanced current outputs, allowing the user to  
optimize analog performance externally. The PCM1792A  
accepts PCM and DSD audio data formats, providing easy  
interfacing to audio DSP and decoder chips. The  
PCM1792A also interfaces with external digital filter  
devices (DF1704, DF1706, PMD200). Sampling rates up  
to 200 kHz are supported. A full set of user-programmable  
functions is accessible through an SPI or I2C serial control  
port, which supports register write and readback functions.  
The PCM1792A also supports the time division  
multiplexed command and audio (TDMCA) data format.  
2
D
PCM Data Formats: Standard, I S, and  
Left-Justified  
D
D
DSD Format Interface Available  
Optional Interface to External Digital Filter or  
DSP Available  
2
D
TDMCA or Serial Port (SPI/I C)  
D
User-Programmable Mode Controls:  
− Digital Attenuation: 0 dB to –120 dB,  
0.5 dB/Step  
− Digital De-Emphasis  
− Digital Filter Rolloff: Sharp or Slow  
− Soft Mute  
− Zero Flag for Each Output  
D
Dual Supply Operation:  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate  
precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to  
damage because very small parametric changes could cause the device not to meet its published specifications.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢚ ꢙ ꢕꢘ ꢁ ꢌꢋ ꢙꢓ ꢕ ꢇꢌꢇ ꢛꢜ ꢝꢞ ꢟ ꢠꢡ ꢢꢛꢞꢜ ꢛꢣ ꢤꢥ ꢟ ꢟ ꢦꢜꢢ ꢡꢣ ꢞꢝ ꢧꢥꢨ ꢩꢛꢤ ꢡꢢꢛ ꢞꢜ ꢪꢡ ꢢꢦꢫ ꢀꢟ ꢞꢪꢥ ꢤꢢꢣ  
ꢤ ꢞꢜ ꢝꢞꢟ ꢠ ꢢꢞ ꢣ ꢧꢦ ꢤ ꢛ ꢝꢛ ꢤ ꢡ ꢢꢛ ꢞꢜꢣ ꢧ ꢦꢟ ꢢꢬꢦ ꢢꢦ ꢟ ꢠꢣ ꢞꢝ ꢌꢦꢭ ꢡꢣ ꢋꢜꢣ ꢢꢟ ꢥꢠ ꢦꢜꢢ ꢣ ꢣꢢ ꢡꢜꢪ ꢡꢟ ꢪ ꢮ ꢡꢟ ꢟ ꢡ ꢜꢢꢯꢫ  
ꢀꢟ ꢞ ꢪꢥꢤ ꢢ ꢛꢞ ꢜ ꢧꢟ ꢞ ꢤ ꢦ ꢣ ꢣ ꢛꢜ ꢰ ꢪꢞ ꢦ ꢣ ꢜꢞꢢ ꢜꢦ ꢤꢦ ꢣꢣ ꢡꢟ ꢛꢩ ꢯ ꢛꢜꢤ ꢩꢥꢪ ꢦ ꢢꢦ ꢣꢢꢛ ꢜꢰ ꢞꢝ ꢡꢩ ꢩ ꢧꢡ ꢟ ꢡꢠ ꢦꢢꢦ ꢟ ꢣꢫ  
Copyright 2006, Texas Instruments Incorporated  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
ORDERING INFORMATION  
OPERATION  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
PACKAGE CODE  
PCM1792ADB  
Tube  
PCM1792ADB  
28-lead SSOP  
28DB  
−25°C to 85°C  
PCM1792A  
PCM1792ADBR  
Tape and reel  
ABSOLUTE MAXIMUM RATINGS  
(1)  
over operating free-air temperature range unless otherwise noted  
PCM1792A  
V
V
1, V 2L, V 2R  
CC CC  
−0.3 V to 6.5 V  
−0.3 V to 4 V  
0.1 V  
CC  
DD  
Supply voltage  
Supply voltage differences: V 1, V 2L and V 2R  
CC CC CC  
Ground voltage differences: AGND1, AGND2, AGND3L, AGND3R, and DGND  
0.1 V  
(2) (2)  
(2)  
(2)  
LRCK, DATA, BCK, SCK, MSEL, RST, MS , MDI, MC, MDO , ZEROL , ZEROR  
(3) (3) (3) (3)  
ZEROL , ZEROR , MDO , MS  
–0.3 V to 6.5 V  
Digital input  
voltage  
–0.3 V to (V  
+ 0.3 V) < 4 V  
DD  
+ 0.3 V) < 6.5 V  
Analog input voltage  
–0.3 V to (V  
CC  
Input current (any pins except supplies)  
Ambient temperature under bias  
Storage temperature  
10 mA  
–40°C to 125°C  
–55°C to 150°C  
150°C  
Junction temperature  
Lead temperature (soldering)  
Package temperature (IR reflow, peak)  
260°C, 5 s  
250°C  
(1)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2)  
(3)  
2
Input mode or I C mode.  
2
Output mode except for I C mode.  
ELECTRICAL CHARACTERISTICS  
all specifications at T = 25°C, V 1 = V 2L = V 2R = 5 V, f = 44.1 kHz, system clock = 256 f , and 24-bit data unless otherwise noted  
CC CC CC  
A
S
S
PCM1792ADB  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
RESOLUTION  
24  
Bits  
DATA FORMAT (PCM Mode)  
Audio data interface format  
Audio data bit length  
2
Standard, I S, left justified  
16-, 20-, 24-bit selectable  
MSB first, 2s complement  
Audio data format  
f
S
Sampling frequency  
10  
200  
kHz  
System clock frequency  
128, 192, 256, 384, 512, 768 f  
S
DATA FORMAT (DSD Mode)  
Audio data interface format  
Audio data bit length  
DSD (direct stream digital)  
1 Bit  
f
S
Sampling frequency  
2.8224  
MHz  
MHz  
System clock frequency  
2.8224  
11.2896  
DIGITAL INPUT/OUTPUT  
Logic family  
TTL compatible  
V
V
2
IH  
IL  
Input logic level  
Input logic current  
Output logic level  
Vdc  
µA  
0.8  
10  
I
I
V
V
= V  
DD  
= 0 V  
IH  
IN  
IN  
–10  
IL  
V
I
= −2 mA  
= 2 mA  
2.4  
OH  
OL  
OH  
OL  
Vdc  
V
I
0.4  
2
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
ELECTRICAL CHARACTERISTICS (Continued)  
all specifications at T = 25°C, V 1 = V 2L = V 2R = 5 V, f = 44.1 kHz, system clock = 256 f , and 24-bit data unless otherwise noted  
A
CC  
PARAMETER  
DYNAMIC PERFORMANCE (PCM MODE, 2-V RMS OUTPUT)  
CC  
CC  
S
S
PCM1792ADB  
TYP  
TEST CONDITIONS  
(1)(2)  
UNIT  
MIN  
MAX  
f
f
f
= 44.1 kHz  
= 96 kHz  
0.0004% 0.0008%  
S
S
S
0.0008%  
0.0015%  
127  
THD+N at V  
OUT  
= 0 dB  
= 192 kHz  
EIAJ, A-weighted, f = 44.1 kHz  
S
123  
EIAJ, A-weighted, f = 96 kHz  
S
127  
Dynamic range  
dB  
dB  
EIAJ, A-weighted, f = 192 kHz  
127  
S
EIAJ, A-weighted, f = 44.1 kHz  
S
EIAJ, A-weighted, f = 96 kHz  
S
123  
120  
127  
127  
Signal-to-noise ratio  
EIAJ, A-weighted, f = 192 kHz  
127  
S
f
S
f
S
f
S
= 44.1 kHz  
= 96 kHz  
123  
122  
Channel separation  
Level Linearity Error  
dB  
dB  
= 192 kHz  
120  
V
OUT  
= −120 dB  
1
(1)(3)  
DYNAMIC PERFORMANCE (PCM Mode, 4.5-V RMS Output)  
f
f
f
= 44.1 kHz  
= 96 kHz  
0.0004%  
0.0008%  
0.0015%  
129  
S
S
S
THD+N at V  
OUT  
= 0 dB  
= 192 kHz  
EIAJ, A-weighted, f = 44.1 kHz  
S
EIAJ, A-weighted, f = 96 kHz  
S
129  
Dynamic range  
dB  
dB  
dB  
EIAJ, A-weighted, f = 192 kHz  
129  
S
EIAJ, A-weighted, f = 44.1 kHz  
S
EIAJ, A-weighted, f = 96 kHz  
S
129  
129  
Signal-to-noise ratio  
EIAJ, A-weighted, f = 192 kHz  
129  
S
f
S
f
S
f
S
= 44.1 kHz  
= 96 kHz  
124  
123  
Channel separation  
= 192 kHz  
121  
(1)(3)  
DYNAMIC PERFORMANCE (MONO MODE)  
f
f
f
= 44.1 kHz  
= 96 kHz  
0.0004%  
0.0008%  
0.0015%  
132  
S
S
S
THD+N at V  
OUT  
= 0 dB  
= 192 kHz  
EIAJ, A-weighted, f = 44.1 kHz  
S
EIAJ, A-weighted, f = 96 kHz  
S
132  
Dynamic range  
dB  
dB  
EIAJ, A-weighted, f = 192 kHz  
132  
S
EIAJ, A-weighted, f = 44.1 kHz  
S
EIAJ, A-weighted, f = 96 kHz  
S
132  
132  
Signal-to-noise ratio  
EIAJ, A-weighted, f = 192 kHz  
132  
S
(1)  
Filter condition:  
THD+N: 20-Hz HPF, 20-kHz apogee LPF  
Dynamic range: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted  
Signal-to-noise ratio: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted  
Channel separation: 20-Hz HPF, 20-kHz AES17 LPF  
Analog performance specifications are measured using the System Twot Cascade audio measurement system by Audio Precisionin the  
averagingmode.  
(2)  
(3)  
Dynamic performance and dc accuracy are specified at the output of the postamplifier as shown in Figure 36.  
Dynamic performance and dc accuracy are specified at the output of the postamplifier as shown in Figure 37.  
Audio Precision and System Two are trademarks of Audio Precision, Inc.  
Other trademarks are the property of their respective owners.  
3
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
ELECTRICAL CHARACTERISTICS (Continued)  
all specifications at T = 25°C, V 1 = V 2L = V 2R = 5 V, f = 44.1 kHz, system clock = 256 f , and 24-bit data unless otherwise noted  
A
CC  
CC  
CC  
S
S
PCM1792ADB  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
(1) (2)  
DSD MODE DYNAMIC PERFORMANCE  
THD+N at FS  
(44.1 kHz, 64 f )  
S
4.5 V rms  
0.0005%  
128  
Dynamic range  
–60 dB, EIAJ, A-weighted  
dB  
dB  
Signal-to-noise ratio  
ANALOG OUTPUT  
Gain error  
EIAJ, A-weighted  
128  
–6  
–3  
–2  
2
0.5  
6
3
2
% of FSR  
% of FSR  
% of FSR  
mA p-p  
mA  
Gain mismatch, channel-to-channel  
Bipolar zero error  
At BPZ  
0.5  
Output current  
Full scale (0 dB)  
At BPZ  
7.8  
Center current  
–6.2  
DIGITAL FILTER PERFORMANCE  
De-emphasis error  
0.004  
dB  
FILTER CHARACTERISTICS–1: SHARP ROLLOFF  
0.00001 dB  
–3 dB  
0.454 f  
S
Pass band  
0.49 f  
S
Stop band  
0.546 f  
S
Pass-band ripple  
0.00001  
dB  
dB  
s
Stop-band attenuation  
Delay time  
Stop band = 0.546 f  
–130  
S
55/f  
S
FILTER CHARACTERISTICS–2: SLOW ROLLOFF  
0.04 dB  
–3 dB  
0.254 f  
0.46 f  
S
Pass band  
S
Stop band  
0.732 f  
S
Pass-band ripple  
Stop-band attenuation  
Delay time  
0.001  
dB  
dB  
s
Stop band = 0.732 f  
–100  
S
18/f  
S
(1)  
Filter condition:  
THD+N: 20-Hz HPF, 20-kHz apogee LPF  
Dynamic range: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted  
Signal-to-noise ratio: 20-Hz HPF, 20-kHz AES17 LPF, A-weighted  
Channel separation: 20-Hz HPF, 20-kHz AES17 LPF  
Analog performance specifications are measured using the System Two Cascade audio measurement system by Audio Precision in the averaging  
mode.  
(2)  
Dynamic performance and dc accuracy are specified at the output of the postamplifier as shown in Figure 38.  
4
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
ELECTRICAL CHARACTERISTICS (Continued)  
all specifications at T = 25°C, V 1 = V 2L = V 2R = 5 V, f = 44.1 kHz, system clock = 256 f , and 24-bit data unless otherwise noted  
A
CC  
CC  
CC  
S
S
PCM1792ADB  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
POWER SUPPLY REQUIREMENTS  
V
V
V
V
3
3.3  
5
3.6  
Vdc  
Vdc  
DD  
CC  
CC  
CC  
1
Voltage range  
2L  
2R  
4.75  
5.25  
15  
f
S
f
S
f
S
f
S
f
S
f
S
f
S
f
S
f
S
= 44.1 kHz  
= 96 kHz  
12  
23  
(1)  
(1)  
I
Supply current  
Supply current  
mA  
mA  
mW  
DD  
= 192 kHz  
= 44.1 kHz  
= 96 kHz  
45  
33  
40  
35  
I
CC  
= 192 kHz  
= 44.1 kHz  
= 96 kHz  
37  
205  
250  
335  
250  
(1)  
Power dissipation  
= 192 kHz  
TEMPERATURE RANGE  
Operation temperature  
Thermal resistance  
–25  
85  
°C  
θ
28-pin SSOP  
100  
°C/W  
JA  
(1)  
Input is BPZ data.  
PIN ASSIGNMENTS  
PCM1792A  
(TOP VIEW)  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
ZEROL  
V
2L  
CC  
2
ZEROR  
MSEL  
LRCK  
DATA  
BCK  
AGND3L  
3
I
I
L−  
L+  
OUT  
4
OUT  
5
AGND2  
6
V
V
V
1
CC  
7
SCK  
DGND  
L
R
COM  
COM  
REF  
8
9
V
I
DD  
MS  
MDI  
MC  
MDO  
RST  
10  
11  
12  
13  
14  
AGND1  
I
I
R−  
R+  
OUT  
OUT  
AGND3R  
2R  
V
CC  
5
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTIONS  
NAME  
AGND1  
AGND2  
AGND3L  
AGND3R  
BCK  
PIN  
19  
24  
27  
16  
6
Analog ground (internal bias)  
Analog ground (internal bias)  
Analog ground (L-channel DACFF)  
Analog ground (R-channel DACFF)  
(1)  
Bit clock input  
I
(1)  
DATA  
5
I
Serial audio data input for normal operation  
DGND  
8
Digital ground  
I
I
I
I
I
L+  
L–  
R+  
R–  
25  
26  
17  
18  
20  
4
O
O
O
O
L-channel analog current output+  
L-channel analog current output–  
R-channel analog current output+  
R-channel analog current output–  
Output current reference bias pin  
OUT  
OUT  
OUT  
OUT  
REF  
(1)  
Left and right clock (f ) input for normal operation  
LRCK  
MC  
I
S
(1)  
12  
11  
13  
10  
3
I
Mode control clock input  
(1)  
Mode control data input  
MDI  
I
(3)  
Mode control readback data output  
MDO  
MS  
I/O  
I/O  
I
(2)  
Mode control chip-select input  
2
(1)  
MSEL  
RST  
SCK  
I C/SPI select  
(1)  
14  
7
I
Reset  
System clock input  
Analog power supply, 5 V  
(1)  
I
V
V
V
V
V
V
1
23  
28  
15  
22  
21  
9
CC  
CC  
CC  
2L  
2R  
Analog power supply (L-channel DACFF), 5 V  
Analog power supply (R-channel DACFF), 5 V  
L-channel internal bias decoupling pin  
R-channel internal bias decoupling pin  
Digital power supply, 3.3 V  
L
COM  
COM  
DD  
R
(2)  
ZEROL  
ZEROR  
1
I/O  
I/O  
Zero flag for L-channel  
Zero flag for R-channel  
(2)  
2
(1)  
(2)  
(3)  
Schmitt-trigger input, 5-V tolerant  
Schmitt-trigger input and output. 5-V tolerant input and CMOS output  
Schmitt-trigger input and output. 5-V tolerant input. In I C mode, this pin becomes an open-drain 3-state output; otherwise, this pin is a CMOS  
output.  
2
6
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
FUNCTIONAL BLOCK DIAGRAM  
I
I
L−  
L+  
OUT  
LRCK  
BCK  
Current  
Segment  
DAC  
V
OUT  
L
DATA  
Audio  
Data Input  
I/F  
OUT  
RST  
I/V and Filter  
 8  
V
L
COM  
Oversampling  
Digital  
Advanced  
Segment  
DAC  
Bias  
and  
Vref  
I
REF  
Filter  
and  
Function  
Control  
MDO  
V
COM  
R
Modulator  
MDI  
MC  
I
R−  
OUT  
OUT  
Function  
Control  
I/F  
MS  
Current  
Segment  
DAC  
V R  
OUT  
MSEL  
I
R+  
I/V and Filter  
ZEROL  
ZEROR  
System  
Clock  
Manager  
Zero  
Detect  
Power Supply  
7
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
TYPICAL PERFORMANCE CURVES  
DIGITAL FILTER  
Digital Filter Response  
AMPLITUDE  
AMPLITUDE  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
−50  
0.00002  
0.00001  
−100  
−150  
−200  
0
−0.00001  
−0.00002  
0
1
2
3
4
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency[× f ]  
Frequency[× f ]  
S
S
Figure 1. Frequency Response, Sharp Rolloff  
Figure 2. Pass-Band Ripple, Sharp Rolloff  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
0
−50  
0
−2  
−4  
−6  
−8  
−100  
−150  
−200  
−10  
−12  
−14  
−16  
−18  
−20  
0
1
2
3
4
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Frequency[× f ]  
Frequency[× f ]  
S
S
Figure 3. Frequency Response, Slow Rolloff  
Figure 4. Transition Characteristics, Slow Rolloff  
8
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
De-Emphasis Filter  
DE-EMPHASIS LEVEL  
DE-EMPHASIS ERROR  
vs  
vs  
FREQUENCY  
FREQUENCY  
0
−2  
f
S
= 32 kHz  
f
S
= 32 kHz  
0.015  
0.010  
0.005  
−4  
0
−6  
−0.005  
−0.010  
−8  
−0.015  
−10  
−0.020  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
f − Frequency − kHz  
f − Frequency − kHz  
Figure 5  
Figure 6  
DE-EMPHASIS LEVEL  
vs  
DE-EMPHASIS ERROR  
vs  
FREQUENCY  
FREQUENCY  
0
−2  
0.020  
f
S
= 44.1 kHz  
f
S
= 44.1 kHz  
0.015  
0.010  
0.005  
−4  
0
−6  
−0.005  
−0.010  
−8  
−0.015  
−10  
−0.020  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
f − Frequency − kHz  
f − Frequency − kHz  
Figure 7  
Figure 8  
9
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
De-Emphasis Filter (Continued)  
DE-EMPHASIS LEVEL  
vs  
DE-EMPHASIS ERROR  
vs  
FREQUENCY  
FREQUENCY  
0
0.020  
f
S
= 48 kHz  
f = 48 kHz  
S
0.015  
−2  
−4  
0.010  
0.005  
0
−6  
−0.005  
−0.010  
−8  
−0.015  
−10  
−0.020  
0
2
4
6
8
10 12 14 16 18 20 22  
0
2
4
6
8
10 12 14 16 18 20 22  
f − Frequency − kHz  
f − Frequency − kHz  
Figure 9  
Figure 10  
10  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
ANALOG DYNAMIC PERFORMANCE  
Supply Voltage Characteristics  
TOTAL HARMONIC DISTORTION + NOISE  
DYNAMIC RANGE  
vs  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
132  
130  
128  
126  
124  
122  
0.01  
f
S
= 96 kHz  
f
S
= 48 kHz  
f
S
= 192 kHz  
f
= 192 kHz  
S
0.001  
f
S
= 96 kHz  
f
S
= 48 kHz  
5.00  
0.0001  
4.50  
4.75  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
V
CC  
− Supply Voltage − V  
V
CC  
− Supply Voltage − V  
Figure 12  
Figure 11  
SIGNAL-to-NOISE RATIO  
vs  
CHANNEL SEPARATION  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
132  
130  
128  
126  
124  
122  
130  
128  
126  
124  
122  
120  
f
= 96 kHz  
S
f
= 96 kHz  
S
f
S
= 192 kHz  
f
= 48 kHz  
S
f
= 48 kHz  
S
f
S
= 192 kHz  
4.50  
4.75  
V
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
− Supply Voltage − V  
V
CC  
− Supply Voltage − V  
CC  
Figure 13  
Figure 14  
NOTE: PCM mode, T = 25°C, V  
DD  
= 3.3 V, measurement circuit is Figure 37 (V = 4.5 V rms).  
OUT  
A
11  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
Temperature Characteristics  
TOTAL HARMONIC DISTORTION + NOISE  
DYNAMIC RANGE  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
132  
130  
128  
126  
124  
122  
0.01  
f
= 96 kHz  
S
f
= 48 kHz  
S
f
S
= 192 kHz  
f
S
= 192 kHz  
0.001  
f
= 96 kHz  
S
f
= 48 kHz  
S
0.0001  
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 15  
Figure 16  
SIGNAL-to-NOISE RATIO  
vs  
CHANNEL SEPARATION  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
132  
130  
128  
126  
124  
122  
130  
128  
126  
124  
122  
120  
f
= 96 kHz  
S
f
S
= 192 kHz  
f = 48 kHz  
S
f
S
= 48 kHz  
f
S
= 192 kHz  
f
= 96 kHz  
S
−50  
−25  
0
25  
50  
75  
100  
−50  
−25  
0
25  
50  
75  
100  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 17  
Figure 18  
NOTE: PCM mode, V  
= 3.3 V, V  
CC  
= 5 V, measurement circuit is Figure 37 (V  
= 4.5 V rms).  
DD  
OUT  
12  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
0
−20  
0
−20  
−40  
−40  
−60  
−60  
−80  
−80  
−100  
−120  
−140  
−160  
−180  
−100  
−120  
−140  
−160  
0
2
4
6
8
10 12 14 16 18 20  
0
10 20 30 40 50 60 70 80 90 100  
f − Frequency − kHz  
f − Frequency − kHz  
Figure 19. −60-dB Output Spectrum, BW = 20 kHz Figure 20. −60-dB Output Spectrum, BW = 100 kHz  
NOTE: PCM mode, f = 48 kHz, 32,768 point 8 average, T = 25°C, V  
DD  
= 3.5 V V  
CC  
= 5 V, measurement circuit is Figure 37.  
S
A
TOTAL HARMONIC DISTORTION + NOISE  
vs  
INPUT LEVEL  
10  
1
0.1  
0.01  
0.001  
0.0001  
−100  
−80  
−60  
−40  
−20  
0
Input Level − dBFS  
Figure 21. THD+N vs Input Level, PCM Mode  
NOTE: PCM mode, f = 48 kHz, T = 25°C, V  
DD  
= 3.3 V, V = 5 V, measurement circuit is Figure 37.  
CC  
S
A
13  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
AMPLITUDE  
vs  
FREQUENCY  
0
−20  
−40  
−60  
−80  
−100  
−120  
−140  
−160  
0
2
4
6
8
10 12 14 16 18 20  
f − Frequency − kHz  
Figure 22. −60-dB Output Spectrum, DSD Mode  
NOTE: DSD mode (FIR-4), 32,768 point 8 average, T = 25°C, V  
DD  
= 3.3 V, V = 5 V, measurement circuit is Figure 38.  
CC  
A
AMPLITUDE  
vs  
FREQUENCY  
−130  
−133  
−136  
−139  
−142  
−145  
−148  
−151  
−154  
−157  
−160  
0
2
4
6
8
10 12 14 16 18 20  
f − Frequency − kHz  
Figure 23. −150-dB Output Spectrum, DSD Mono Mode  
NOTE: DSD mode (FIR-4), 32,768 point 8 average, T = 25°C, V  
DD  
= 3.3 V, V = 5 V, measurement circuit is Figure 38.  
CC  
A
14  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
SYSTEM CLOCK AND RESET FUNCTIONS  
System Clock Input  
The PCM1792A requires a system clock for operating the digital interpolation filters and advanced segment DAC  
modulators. The system clock is applied at the SCK input (pin 7). The PCM1792A has a system clock detection circuit that  
automatically senses if the system clock is operating between 128 f and768 f . Table 1 shows examples of system clock  
S
S
frequencies for common audio sampling rates. If the oversampling rate of the delta-sigma modulator is selected as 128 f ,  
S
the system clock frequency is over 256 f .  
S
Figure 24 shows the timing requirements for the system clock input. For optimal performance, it is important to use a clock  
source with low phase jitter and noise. One of the Texas Instruments’ PLL1700 family of multiclock generators is an  
excellent choice for providing the PCM1792A system clock.  
Table 1. System Clock Rates for Common Audio Sampling Frequencies  
SYSTEM CLOCK FREQUENCY (f  
) (MHz)  
SCK  
SAMPLING FREQUENCY  
128 f  
192 f  
256 f  
384 f  
512 f  
768 f  
S
S
S
S
S
S
(1)  
(1)  
32 kHz  
44.1 kHz  
48 kHz  
4.096  
6.144  
8.192  
11.2896  
12.288  
24.576  
12.288  
16.9344  
18.432  
36.864  
16.384  
24.576  
33.8688  
36.864  
(1)  
5.6488  
8.4672  
9.216  
22.5792  
24.576  
(1)  
6.144  
(1)  
49.152  
(1)  
73.728  
96 kHz  
12.288  
24.576  
18.432  
36.864  
(1)  
49.152  
(1)  
73.728  
(2)  
(2)  
192 kHz  
(1)  
(2)  
2
This system clock rate is not supported in I C fast mode.  
This system clock rate is not supported for the given sampling frequency.  
t
(SCKH)  
H
2 V  
System Clock (SCK)  
0.8 V  
L
t
(SCKL)  
t
(SCY)  
PARAMETERS  
MIN  
MAX UNITS  
t
System clock pulse cycle time  
13  
ns  
ns  
ns  
(SCY)  
t
System clock pulse duration, HIGH  
System clock pulse duration, LOW  
0.4t  
(SCY)  
(SCKH)  
t
0.4t  
(SCY)  
(SCKL)  
Figure 24. System Clock Input Timing  
Power-On and External Reset Functions  
The PCM1792A includes a power-on reset function. Figure 25 shows the operation of this function. With V > 2 V, the  
DD  
power-on reset function is enabled. The initialization sequence requires 1024 system clocks from the time V > 2 V. After  
DD  
the initialization period, the PCM1792A is set to its default reset state, as described in the MODE CONTROL REGISTERS  
section of this data sheet.  
The PCM1792A also includes an external reset capability using the RST input (pin 14). This allows an external controller  
or master reset circuit to force the PCM1792A to initialize to its default reset state.  
Figure 26 shows the external reset operation and timing. The RST pin is set to logic 0 for a minimum of 20 ns. The RST  
pin is then set to a logic 1 state, thus starting the initialization sequence, which requires 1024 system clock periods. The  
external reset is especially useful in applications where there is a delay between the PCM1792A power up and system clock  
activation.  
15  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
V
DD  
2.4 V (Max)  
2 V (Typ)  
1.6 V (Min)  
Reset  
Reset Removal  
Internal Reset  
System Clock  
1024 System Clocks  
Figure 25. Power-On Reset Timing  
RST (Pin 14)  
50 % of V  
DD  
t
(RST)  
Reset  
Reset Removal  
Internal Reset  
System Clock  
1024 System Clocks  
PARAMETERS  
Reset pulse duration, LOW  
MIN  
20  
MAX UNITS  
t
ns  
(RST)  
Figure 26. External Reset Timing  
16  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
AUDIO DATA INTERFACE  
Audio Serial Interface  
The audio interface port is a 3-wire serial port. It includes LRCK (pin 4), BCK (pin 6), and DATA (pin 5). BCK is the serial  
audio bit clock, and it is used to clock the serial data present on DATA into the serial shift register of the audio interface.  
Serial data is clocked into the PCM1792A on the rising edge of BCK. LRCK is the serial audio left/right word clock.  
The PCM1792A requires the synchronization of LRCK and system clock, but does not need a specific phase relation  
between LRCK and system clock.  
If the relationship between LRCK and system clock changes more than 6 BCK, internal operation is initialized within 1/f  
S
and analog outputs are forced to the bipolar zero level until resynchronization between LRCK and system clock is  
completed.  
PCM Audio Data Formats and Timing  
2
The PCM1792A supports industry-standard audio data formats, including standard right-justified, I S, and left-justified. The  
data formats are shown in Figure 28. Data formats are selected using the format bits, FMT[2:0], in control register 18. The  
2
default data format is 24-bit I S. All formats require binary 2s complement, MSB-first audio data. Figure 27 shows a detailed  
timing diagram for the serial audio interface.  
50% of V  
50% of V  
50% of V  
LRCK  
BCK  
DD  
DD  
DD  
t
t
(BCL)  
t
(BCH)  
(LB)  
t
t
(BCY)  
(BL)  
DATA  
t
t
(DS)  
(DH)  
PARAMETERS  
MIN MAX UNITS  
t
t
t
t
t
t
t
BCK pulse cycle time  
BCK pulse duration, LOW  
BCK pulse duration, HIGH  
BCK rising edge to LRCK edge  
LRCK edge to BCK rising edge  
DATA setup time  
70  
30  
30  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(BCY)  
(BCL)  
(BCH)  
(BL)  
(LB)  
(DS)  
DATA hold time  
(DH)  
LRCK clock duty  
50% 2 bit clocks  
Figure 27. Timing of Audio Interface  
17  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
(1) Standard Data Format (Right-Justified); L-Channel = HIGH, R-Channel = LOW  
1/f  
S
LRCK  
R-Channel  
L-Channel  
BCK  
Audio Data Word = 16-Bit  
14 15 16  
1
2
15 16  
LSB  
1
2
15 16  
DATA  
MSB  
Audio Data Word = 20-Bit  
18 19 20  
1
2
19 20  
LSB  
1
2
19 20  
23 24  
DATA  
MSB  
Audio Data Word = 24-Bit  
22 23 24  
1
2
23 24  
LSB  
1
2
DATA  
MSB  
(2) Left-Justified Data Format; L-Channel = HIGH, R-Channel = LOW  
1/f  
S
LRCK  
BCK  
R-Channel  
L-Channel  
Audio Data Word = 24-Bit  
DATA  
1
2
23 24  
LSB  
1
2
23 24  
1
2
MSB  
2
(3) I S Data Format; L-Channel = LOW, R-Channel = HIGH  
1/f  
S
LRCK  
L-Channel  
R-Channel  
BCK  
Audio Data Word = 16-Bit  
DATA  
1
1
2
2
15 16  
LSB  
1
2
2
15 16  
1
1
2
2
MSB  
MSB  
Audio Data Word = 24-Bit  
DATA  
23 24  
LSB  
1
23 24  
Figure 28. Audio Data Input Formats  
18  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
External Digital Filter Interface and Timing  
The PCM1792A supports an external digital filter interface comprising a 3- or 4-wire synchronous serial port, which allows  
the use of an external digital filter. External filters include the Texas Instruments’ DF1704 and DF1706, the Pacific  
Microsonics PMD200, or a programmable digital signal processor.  
In the external DF mode, LRCK (pin 4), BCK (pin 6) and DATA (pin 5) are defined as WDCK, the word clock; BCK, the bit  
clock; and DATA, the monaural data. The external digital filter interface is selected by using the DFTH bit of control register  
20, which functions to bypass the internal digital filter of the PCM1792A.  
When the DFMS bit of control register 19 is set, the PCM1792A can process stereo data. In this case, ZEROL (pin 1) and  
ZEROR (pin 2) are defined as L-channel data and R-channel data, respectively.  
Detailed information for the external digital filter interface mode is provided in the APPLICATION FOR EXTERNAL  
DIGITAL FILTER INTERFACE section of this data sheet.  
Direct Stream Digital (DSD) Format Interface and Timing  
The PCM1792A supports the DSD-format interface operation, which includes out-of-band noise filtering using an internal  
analog FIR filter. For DSD operation, SCK (pin 7) is redefined as BCK, DATA (pin 5) as DATAL (left channel audio data),  
and LRCK (pin 4) as DATAR (right channel audio data). BCK (pin 6) must be forced low in the DSD mode. The DSD-format  
interface is activated by setting the DSD bit of control register 20.  
Detailed information for the DSD mode is provided in the APPLICATION FOR DSD-FORMAT (DSD MODE) INTERFACE  
section of this data sheet.  
TDMCA Interface  
The PCM1792A supports the time-division-multiplexed command and audio (TDMCA) data format to enable control of and  
communication with a number of external devices over a single serial interface.  
Detailed information for the TDMCA format is provided in the TDMCA Format section of this data sheet.  
19  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
FUNCTION DESCRIPTIONS  
Zero Detect  
The PCM1792A has a zero-detect function. When the PCM1792A detects the zero conditions as shown in Table 2, the  
PCM1792A sets ZEROL (pin 1) and ZEROR (pin 2) to HIGH.  
Table 2. Zero Conditions  
MODE  
DETECTING CONDITION AND TIME  
PCM  
DATA is continuously LOW for 1024 LRCKs.  
External DF Mode DATA is continuously LOW for 1024 WDCKs.  
DZ0  
There are an equal number of 1s and 0s in every 8 bits of DSD  
input data for 200 ms.  
DSD  
DZ1  
The input data is 1001 0110 continuously for 200 ms.  
Serial Control Interface  
2
The PCM1792A supports SPI and I C serial control interfaces that set the mode control registers as shown in Table 4. This  
2
serial control interface is selected by MSEL (pin 3); SPI is activated when MSEL is set to LOW, and I C is activated when  
MSEL is set to HIGH.  
SPI Interface  
The SPI interface is a 4-wire synchronous serial port which operates asynchronously to the serial audio interface and the  
system clock (SCK). The serial control interface is used to program and read the on-chip mode registers. The control  
interface includes MDO (pin 13), MDI (pin 11), MC (pin 12), and MS (pin 10). MDO is the serial data output, used to read  
back the values of the mode registers; MDI is the serial data input, used to program the mode registers; MC is the serial  
bit clock, used to shift data in and out of the control port, and MS is the mode control enable, used to enable the internal  
mode register access.  
Register Read/Write Operation  
All read/write operations for the serial control port use 16-bit data words. Figure 29 shows the control data word format.  
The most significant bit is the read/write (R/W) bit. For write operations, the R/W bit must be set to 0. For read operations,  
the R/W bit must be set to 1. There are seven bits, labeled IDX[6:0], that hold the register index (or address) for the read  
and write operations. The least significant eight bits, D[7:0], contain the data to be written to, or the data that was read from,  
the register specified by IDX[6:0].  
Figure 30 shows the functional timing diagram for writing or reading the serial control port. MS is held at a logic 1 state until  
a register needs to be written or read. To start the register write or read cycle, MS is set to logic 0. Sixteen clocks are then  
provided on MC, corresponding to the 16 bits of the control data word on MDI and readback data on MDO. After the eighth  
clock cycle has completed, the data from the indexed-mode control register appears on MDO during the read operation.  
After the sixteenth clock cycle has completed, the data is latched into the indexed-mode control register during the write  
operation. To write or read subsequent data, MS must be set to 1 once.  
20  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
MSB  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
LSB  
R/W IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Register Index (or Address)  
Register Data  
Figure 29. Control Data Word Format for MDI  
MS  
MC  
MDI  
MDO  
R/W A6 A5 A4 A3  
A2 A1 A0 D7 D6 D5 D4  
D3 D2 D1 D0  
High Impedance  
D7 D6 D5 D4  
D3 D2 D1 D0  
When Read Mode is Instructed  
NOTE: Bit 15 is used for selection of write or read. Setting R/W = 0 indicates a write, while R/W = 1 indicates a read. Bits 14−8 are used for the register  
address. Bits 7–0 are used for register data.  
Figure 30. Serial Control Format  
t
(MHH)  
MS  
50% of V  
DD  
t
t
(MCL)  
(MSS)  
t
t
(MSH)  
(MCH)  
MC  
50% of V  
50% of V  
DD  
t
(MCY)  
LSB  
MDI  
DD  
t
t
(MDS)  
(MOS)  
t
(MDH)  
MDO  
50% of V  
DD  
PARAMETER  
MIN  
100  
40  
MAX UNITS  
t
t
t
t
t
t
t
t
t
MC pulse cycle time  
MC low-level time  
MC high-level time  
MS high-level time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(MCY)  
(MCL)  
(MCH)  
(MHH)  
(MSS)  
(MSH)  
(MDH)  
(MDS)  
(MOS)  
40  
80  
MS falling edge to MC rising edge  
(1)  
15  
MS hold time  
15  
MDI hold time  
15  
MDI setup time  
15  
MC falling edge to MDO stable  
30  
ns  
(1)  
MC rising edge for LSB to MS rising edge  
Figure 31. Control Interface Timing  
21  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
2
I C Interface  
2
The PCM1792A supports the I C serial bus and the data transmission protocol for standard and fast mode as a slave  
2
device. This protocol is explained in I C specification 2.0.  
2
In I C mode, the control terminals are changed as follows.  
TERMINAL NAME  
TDMCA NAME  
ADR0  
PROPERTY  
Input  
DESCRIPTION  
2
I C address 0  
MS  
MDI  
MC  
2
I C address 1  
ADR1  
Input  
2
I C clock  
SCL  
Input  
2
I C data  
MDO  
SDA  
Input/output  
Slave Address  
MSB  
1
LSB  
R/W  
0
0
1
1
ADR1  
ADR0  
The PCM1792A has 7 bits for its own slave address. The first five bits (MSBs) of the slave address are factory preset to  
10011. The next two bits of the address byte are the device select bits which can be user-defined by the ADR1 and ADR0  
terminals. A maximum of four PCM1792As can be connected on the same bus at one time. Each PCM1792A responds  
when it receives its own slave address.  
Packet Protocol  
A master device must control packet protocol, which consists of start condition, slave address, read/write bit, data if write  
or acknowledge if read, and stop condition. The PCM1792A supports only slave receivers and slave transmitters.  
SDA  
SCL  
St  
1−7  
8
9
1−8  
9
1−8  
9
9
Sp  
Slave Address R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
R/W: Read Operation if 1; Otherwise, Write Operation  
DATA: 8 Bits (Byte)  
Start  
Condition  
Stop  
Condition  
ACK: Acknowledgement of a Byte if 0  
NACK:Not Acknowledgement if 1  
Write Operation  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
S
M
St  
Slave Address  
W
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
Sp  
Read Operation  
Transmitter  
Data Type  
M
M
M
S
S
M
S
M
M
M
St  
Slave Address  
R
ACK  
DATA  
ACK  
DATA  
ACK  
NACK  
Sp  
M: Master Device  
S: Slave Device  
Sp: Stop Condition  
St: Start Condition  
W: Write  
R: Read  
2
Figure 32. Basic I C Framework  
22  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
Write Register  
A master can write to any PCM1792A registers using single or multiple accesses. The master sends a PCM1792A slave  
address with a write bit, a register address, and the data. If multiple access is required, the address is that of the starting  
register, followed by the data to be transferred. When the data are received properly, the index register is incremented by  
1 automatically. When the index register reaches 0x7F, the next value is 0x0. When undefined registers are accessed, the  
PCM1792A does not send an acknowledgement. Figure 33 is a diagram of the write operation.  
Transmitter  
M
M
M
M
S
M
S
M
S
M
S
S
Data Type St  
Sp  
Slave Address  
W
ACK  
ACK  
ACK  
ACK  
ACK  
Reg Address  
Write Data 1  
Write Data 2  
M: Master Device  
S: Slave Device  
St: Start Condition  
ACK: Acknowledge Sp: Stop Condition W: Write  
Figure 33. Write Operation  
Read Register  
A master can read the PCM1792A register. The value of the register address is stored in an indirect index register in  
advance. The master sends a PCM1792A slave address with a read bit after storing the register address. Then the  
PCM1792A transfers the data which the index register points to. When the data are transferred during a multiple access,  
the index register is incremented by 1 automatically. (When first going into read mode immediately following a write, the  
index register is not incremented. The master can read the register that was previously written.) When the index register  
reaches 0x7F, the next value is 0x0. The PCM1792A outputs some data when the index register is 0x10 to 0x1F, even if  
it is not defined in Table 4. Figure 34 is a diagram of the read operation.  
Transmitter  
M
M
M
M
S
M
S
M
M
M
S
Slave  
M
S
Data Type St  
Sp  
Slave Address  
W
ACK  
ACK Sr  
R
ACK  
ACK  
NACK  
Reg Address  
Slave Address  
Data  
M: Master Device  
St: Start Condition  
W: Write  
S: Slave Device  
Sr: Repeated Start Condition ACK: Acknowledge  
R: Read  
Sp: Stop Condition  
NACK: Not Acknowledge  
Figure 34. Read Operation  
Noise Suppression  
The PCM1792A incorporates noise suppression using the system clock (SCK). However, there must be no more than two  
noise spikes in 600 ns. The noise suppression works for SCK frequencies between 8 MHz and 40 MHz in fast mode.  
However, it works incorrectly in the following conditions.  
Case 1:  
1. t  
2. t  
> 120 ns (t  
: period of SCK)  
(SCK)  
(SCK)  
+ t  
< t  
(D−HD)  
× 5  
(HI)  
(SCK)  
3. Spike noise exists on the first half of the SCL HIGH pulse.  
4. Spike noise exists on the SDA HIGH pulse just before SDA goes LOW.  
SCL  
Noise  
SDA  
When these conditions occur at the same time, the data is recognized as LOW.  
23  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
Case 2:  
1. t(  
> 120 ns  
SCK)  
2. t  
or t  
< t  
× 5  
(SCK)  
(S−HD)  
(RS−HD)  
3. Spike noise exists on both SCL and SDA during the hold time.  
SCL  
Noise  
SDA  
When these conditions occur at the same time, the PCM1792A fails to detect a start condition.  
Case 3:  
1. t  
2. t  
< 50 ns  
(SCK)  
(SP)  
> t  
(SCK)  
3. Spike noise exists on SCL just after SCL goes LOW.  
4. Spike noise exists on SDA just before SCL goes LOW.  
SCL  
SDA  
Noise  
When these conditions occur at the same time, the PCM1792A erroneously detects a start or stop condition.  
24  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
TIMING DIAGRAM  
Start  
Repeated Start  
(D-HD)  
Stop  
t
t
(SDA-F)  
t
t
t
t
(P-SU)  
(BUF)  
(D-SU)  
(SDA-R)  
SDA  
t
t
t
(SP)  
(SCL-R)  
(RS-HD)  
t
(LOW)  
SCL  
t
t
t
(RS-SU)  
(S-HD)  
(HI)  
t
(SCL-F)  
TIMING CHARACTERISTICS  
PARAMETER  
CONDITIONS  
Standard  
Fast  
MIN MAX  
100  
400  
4.7  
UNIT  
f
t
t
t
t
SCL clock frequency  
kHz  
(SCL)  
(BUF)  
(LOW)  
(HI)  
Standard  
Fast  
Bus free time between stop and start conditions  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for (repeated) start condition  
Hold time for (repeated) start condition  
Data setup time  
µs  
µs  
1.3  
Standard  
Fast  
4.7  
1.3  
Standard  
Fast  
4
µs  
ns  
µs  
ns  
µs  
ns  
600  
4.7  
Standard  
Fast  
(RS-SU)  
600  
4
t
t
Standard  
Fast  
(S-HD)  
600  
250  
100  
(RS-HD)  
Standard  
Fast  
t
t
t
t
t
t
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(D-SU)  
Standard  
Fast  
0
0
900  
900  
Data hold time  
(D-HD)  
Standard  
Fast  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
20 + 0.1 C  
1000  
300  
B
B
B
B
B
B
B
B
B
Rise time of SCL signal  
(SCL-R)  
(SCL-R1)  
(SCL-F)  
(SDA-R)  
(SDA-F)  
(P-SU)  
Standard  
Fast  
1000  
300  
Rise time of SCL signal after a repeated start condition and after an  
acknowledge bit  
Standard  
Fast  
1000  
300  
Fall time of SCL signal  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for stop condition  
Standard  
Fast  
1000  
300  
Standard  
Fast  
1000  
300  
B
4
Standard  
Fast  
µs  
ns  
pF  
ns  
600  
C
Capacitive load for SDA and SCL lines  
Pulse duration of suppressed spike  
400  
50  
(B)  
t
Fast  
(SP)  
Standard  
Fast  
V
NH  
Noise margin at high level for each connected device (including hysteresis)  
0.2 V  
DD  
V
25  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
MODE CONTROL REGISTERS  
User-Programmable Mode Controls  
The PCM1792A includes a number of user-programmable functions which are accessed via mode control registers. The  
registers are programmed using the serial control interface, which was previously discussed in this data sheet. Table 3 lists  
the available mode-control functions, along with their default reset conditions and associated register index.  
Table 3. User-Programmable Function Controls  
DF  
BYPASS  
FUNCTION  
Digital attenuation control  
DEFAULT  
REGISTER  
BIT  
PCM  
DSD  
0 dB  
Attenuation disabled  
Register 16 ATL[7:0] (for L-ch)  
Register 17 ATR[7:0] (for R-ch)  
yes  
0 dB to –120 dB and mute, 0.5 dB/step  
Attenuation load control  
Disabled, enabled  
Register 18 ATLD  
yes  
yes  
2
Input audio data format selection  
24-bit I S format  
Register 18 FMT[2:0]  
yes  
16-, 20-, 24-bit standard (right-justified) format  
24-bit MSB-first left-justified format  
2
16-/24-bit I S format  
(1)  
yes  
Sampling rate selection for de-emphasis  
Disabled, 44.1 kHz, 48 kHz, 32 kHz  
De-emphasis disabled  
De-emphasis disabled  
Mute disabled  
Register 18 DMF[1:0]  
Register 18 DME  
Register 18 MUTE  
Register 19 REV  
yes  
yes  
yes  
yes  
yes  
yes  
De-emphasis control  
Disabled, enabled  
Soft mute control  
Mute disabled, enabled  
Output phase reversal  
Normal, reverse  
Normal  
yes  
yes  
Attenuation speed selection  
×1 f  
Register 19 ATS[1:0]  
S
×1 f , ×(1/2) f , ×(1/4) f , ×(1/8) f  
S
S
S
S
DAC operation control  
Enabled, disabled  
DAC operation enabled Register 19 OPE  
yes  
yes  
yes  
Stereo DF bypass mode select  
Monaural, stereo  
Monaural  
Register 19 DFMS  
Register 19 FLT  
Digital filter rolloff selection  
Sharp rolloff, slow rolloff  
Sharp rolloff  
Disabled  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
Infinite zero mute control  
Disabled, enabled  
Register 19 INZD  
Register 20 SRST  
Register 20 DSD  
Register 20 DFTH  
Register 20 MONO  
Register 20 CHSL  
Register 20 OS[1:0]  
yes  
yes  
System reset control  
Reset operation, normal operation  
Normal operation  
Disabled  
yes  
yes  
DSD interface mode control  
DSD enabled, disabled  
Digital-filter bypass control  
DF enabled, DF bypass  
DF enabled  
Stereo  
yes  
yes  
yes  
yes  
yes  
Monaural mode selection  
Stereo, monaural  
yes  
yes  
Channel selection for monaural mode data  
L-channel, R-channel  
L-channel  
(2)  
yes  
Delta-sigma oversampling rate selection  
×64 f  
S
×64 f , ×128 f , ×32 f  
S
S
S
PCM zero output enable  
DSD zero output enable  
Enabled  
Disabled  
Register 21 PCMZ  
Register 21 DZ[1:0]  
yes  
yes  
Function available only for read  
Zero detection flag  
Not zero, zero detected  
Not zero = 0  
Zero detected = 1  
Register 22 ZFGL (for L-ch)  
ZFGR (for R-ch)  
yes  
yes  
yes  
Device ID (at TDMCA)  
Register 23 ID[4:0]  
(1)  
(2)  
When in DSD mode, DMF[1:0] is defined as DSD filter (analog FIR) performance selection.  
When in DSD mode, OS[1:0] is defined as DSD filter (analog FIR) operation rate selection.  
26  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
Register Map  
The mode control register map is shown in Table 4. Registers 16–21 include an R/W bit, which determines whether a  
register read (R/W = 1) or write (R/W = 0) operation is performed. Registers 22 and 23 are read-only.  
Table 4. Mode Control Register Map  
B15  
Register 16 R/W  
Register 17 R/W  
Register 18 R/W  
Register 19 R/W  
Register 20 R/W  
Register 21 R/W  
B14  
0
B13  
0
B12  
1
B11  
0
B10 B9 B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
ATL7 ATL6 ATL5 ATL4  
ATL3  
ATL2  
ATL1  
ATL0  
0
0
1
0
ATR7 ATR6 ATR5 ATR4 ATR3  
ATR2 ATR1 ATR0  
0
0
1
0
ATLD FMT2 FMT1 FMT0 DMF1 DMF0 DME MUTE  
0
0
1
0
REV ATS1 ATS0 OPE  
RSV  
DFMS  
FLT  
OS1  
DZ0  
INZD  
OS0  
0
0
1
0
RSV SRST DSD DFTH MONO CHSL  
0
0
1
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
ID4  
RSV  
RSV  
ID3  
DZ1  
RSV  
ID2  
PCMZ  
Register 22  
Register 23  
R
R
0
0
1
0
ZFGR ZFGL  
0
0
1
0
ID1  
ID0  
Register Definitions  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 16 R/W  
0
0
1
0
0
0
0
ATL7 ATL6 ATL5 ATL4 ATL3 ATL2 ATL1 ATL0  
Register 17 R/W  
0
0
1
0
0
0
1
ATR7 ATR6 ATR5 ATR4 ATR3 ATR2 ATR1 ATR0  
R/W: Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default value: 0  
ATx[7:0]: Digital Attenuation Level Setting  
These bits are available for read and write.  
Default value: 1111 1111b  
Each DAC output has a digital attenuator associated with it. The attenuator can be set from 0 dB to –120 dB, in 0.5-dB steps.  
Alternatively, the attenuator can be set to infinite attenuation (or mute).  
The attenuation data for each channel can be set individually. However, the data load control (the ATLD bit of control register  
18) is common to both attenuators. ATLD must be set to 1 in order to change an attenuator setting. The attenuation level  
can be set using the following formula:  
Attenuation level (dB) = 0.5 dB (ATx[7:0]  
– 255)  
DEC  
where: ATx[7:0]  
= 0 through 255  
DEC  
For ATx[7:0]  
= 0 through 14, the attenuator is set to infinite attenuation. The following table shows attenuation levels  
DEC  
for various settings:  
ATx[7:0]  
1111 1111b  
1111 1110b  
1111 1101b  
L
Decimal Value  
Attenuation Level Setting  
255  
254  
253  
L
0 dB, no attenuation (default)  
–0.5 dB  
–1.0 dB  
L
0001 0000b  
0000 1111b  
0000 1110b  
L
16  
15  
14  
L
–119.5 dB  
–120.0 dB  
Mute  
L
0000 0000b  
0
Mute  
27  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
B15 B14 B13 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 18 R/W  
0
0
1
0
0
1
0
ATLD FMT2 FMT1 FMT0 DMF1 DMF0 DME MUTE  
R/W: Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default value: 0  
ATLD: Attenuation Load Control  
This bit is available for read and write.  
Default value: 0  
ATLD = 0  
ATLD = 1  
Attenuation control disabled (default)  
Attenuation control enabled  
The ATLD bit is used to enable loading of the attenuation data contained in registers 16 and 17. When ATLD = 0, the  
attenuation settings remain at the previously programmed levels, ignoring new data loaded from registers 16 and 17. When  
ATLD = 1, attenuation data written to registers 16 and 17 is loaded normally.  
FMT[2:0]: Audio Interface Data Format  
These bits are available for read and write.  
Default value: 101  
For the external digital filter interface mode (DFTH mode), this register is operated as shown in the Application for  
Interfacing With an External Digital Filter section of this data sheet.  
FMT[2:0]  
000  
Audio Data Format Selection  
16-bit standard, right-justified format data  
20-bit standard, right-justified format data  
24-bit standard, right-justified format data  
24-bit MSB-first, left-justified format data  
001  
010  
011  
2
100  
16-bit I S format data  
2
101  
24-bit I S format data (default)  
110  
Reserved  
Reserved  
111  
The FMT[2:0] bits are used to select the data format for the serial audio interface.  
DMF[1:0]: Sampling Frequency Selection for the De-Emphasis Function  
These bits are available for read and write.  
Default value: 00  
DMF[1:0]  
De-Emphasis Sampling Frequency Selection  
00  
01  
10  
11  
Disabled (default)  
48 kHz  
44.1 kHz  
32 kHz  
The DMF[1:0] bits are used to select the sampling frequency used by the digital de-emphasis function when it is enabled  
by setting the DME bit. The de-emphasis curves are shown in the TYPICAL PERFORMANCE CURVES section of this  
data sheet.  
For the DSD mode, analog FIR filter performance can be selected using this register. Filter response plots are shown in  
the TYPICAL PERFORMANCE CURVES section of this data sheet. A register map is shown in the Configuration for the  
DSD Interface Mode section of this data sheet.  
28  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
DME: Digital De-Emphasis Control  
This bit is available for read and write.  
Default value: 0  
DME = 0  
DME = 1  
De-emphasis disabled (default)  
De-emphasis enabled  
The DME bit is used to enable or disable the de-emphasis function for both channels.  
MUTE: Soft Mute Control  
This bit is available for read and write.  
Default value: 0  
MUTE = 0  
MUTE = 1  
MUTE disabled (default)  
MUTE enabled  
The MUTE bit is used to enable or disable the soft mute function for both channels.  
Soft mute is operated as a 256-step attenuator. The speed for each step to dB (mute) is determined by the attenuation  
rate selected in the ATS register.  
B15 B14 B13 B12 B11 B10  
Register 19 R/W  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
1
0
0
1
1
REV ATS1 ATS0 OPE  
RSV DFMS  
FLT  
INZD  
R/W: Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default value: 0  
REV: Output Phase Reversal  
This bit is available for read and write.  
Default value: 0  
REV = 0  
REV = 1  
Normal output (default)  
Inverted output  
The REV bit is used to invert the output phase for both channels.  
ATS[1:0]: Attenuation Rate Select  
These bits are available for read and write.  
Default value: 00  
ATS[1:0]  
Attenuation Rate Selection  
LRCK/1 (default)  
LRCK/2  
00  
01  
10  
11  
LRCK/4  
LRCK/8  
The ATS[1:0] bits are used to select the rate at which the attenuator is decremented/incremented during level transitions.  
29  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
OPE: DAC Operation Control  
This bit is available for read and write.  
Default value: 0  
OPE = 0  
OPE = 1  
DAC operation enabled (default)  
DAC operation disabled  
The OPE bit is used to enable or disable the analog output for both channels. Disabling the analog outputs forces them  
to the bipolar zero level (BPZ) even if digital audio data is present on the input.  
DFMS: Stereo DF Bypass Mode Select  
This bit is available for read and write.  
Default value: 0  
DFMS = 0  
DFMS = 1  
Monaural (default)  
Stereo input enabled  
The DFMS bit is used to enable stereo operation in DF bypass mode. In the DF bypass mode, when DFMS is set to 0, the  
pin for the input data is DATA (pin 5) only, therefore the PCM1792A operates as a monaural DAC. When DFMS is set to  
1, the PCM1792A can operate as a stereo DAC with inputs of L-channel and R-channel data on ZEROL (pin 1) and ZEROR  
(pin 2), respectively.  
FLT: Digital Filter Rolloff Control  
This bit is available for read and write.  
Default value: 0  
FLT = 0  
FLT = 1  
Sharp rolloff (default)  
Slow rolloff  
The FLT bit is used to select the digital filter rolloff characteristic. The filter responses for these selections are shown in the  
TYPICAL PERFORMANCE CURVES section of this data sheet.  
INZD: Infinite Zero Detect Mute Control  
This bit is available for read and write.  
Default value: 0  
INZD = 0  
INZD = 1  
Infinite zero detect mute disabled (default)  
Infinite zero detect mute enabled  
The INZD bit is used to enable or disable the zero detect mute function. Setting INZD to 1 forces muted analog outputs  
to hold a bipolar zero level when the PCM1792A detects a zero condition in both channels. The infinite zero detect mute  
function is disabled in the DSD mode.  
B15 B14 B13 B12 B11 B10  
Register 20 R/W  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
1
0
1
0
0
RSV SRST DSD DFTH MONO CHSL OS1  
OS0  
R/W: Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default value: 0  
30  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
SRST: System Reset Control  
This bit is available for write only.  
Default value: 0  
SRST = 0  
SRST = 1  
Normal operation (default)  
System reset operation (generate one reset pulse)  
The SRST bit is used to reset the PCM1792A to the initial system condition.  
DSD: DSD Interface Mode Control  
This bit is available for read and write.  
Default value: 0  
DSD = 0  
DSD = 1  
DSD interface mode disabled (default)  
DSD interface mode enabled  
The DSD bit is used to enable or disable the DSD interface mode.  
DFTH: Digital Filter Bypass (or Through Mode) Control  
This bit is available for read and write.  
Default value: 0  
DFTH = 0  
DFTH = 1  
Digital filter enabled (default)  
Digital filter bypassed for external digital filter  
The DFTH bit is used to enable or disable the external digital filter interface mode.  
MONO: Monaural Mode Selection  
This bit is available for read and write.  
Default value: 0  
MONO = 0  
MONO = 1  
Stereo mode (default)  
Monaural mode  
The MONO function is used to change operation mode from the normal stereo mode to the monaural mode. When the  
monaural mode is selected, both DACs operate in a balanced mode for one channel of audio input data. Channel selection  
is available for L-channel or R-channel data, determined by the CHSL bit as described immediately following.  
CHSL: Channel Selection for Monaural Mode  
This bit is available for read and write.  
Default value: 0  
This bit is available when MONO = 1.  
CHSL = 0  
CHSL = 1  
L-channel selected (default)  
R-channel selected  
The CHSL bit selects L-channel or R-channel data to be used in monaural mode.  
31  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
OS[1:0]: Delta-Sigma Oversampling Rate Selection  
These bits are available for read and write.  
Default value: 00  
OS[1:0]  
00  
Operation Speed Select  
64 times f (default)  
S
01  
32 times f  
S
10  
128 times f  
Reserved  
S
11  
The OS bits are used to change the oversampling rate of delta-sigma modulation. Use of this function enables the designer  
to stabilize the conditions at the post low-pass filter for different sampling rates. As an application example, programming  
to set 128 times in 44.1-kHz operation, 64 times in 96-kHz operation, and 32 times in 192-kHz operation allows the use  
of only a single type (cutoff frequency) of post low-pass filter. The 128 f oversampling rate is not available at sampling rates  
S
above 100 kHz. If the 128-f oversampling rate is selected, a system clock of more than 256 f is required.  
S
S
In DSD mode, these bits are used to select the speed of the bit clock for DSD data coming into the analog FIR filter.  
B15 B14 B13 B12 B11 B10  
Register 21 R/W  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
1
0
1
0
1
RSV  
RSV  
RSV  
RSV  
RSV  
DZ1  
DZ0 PCMZ  
R/W: Read/Write Mode Select  
When R/W = 0, a write operation is performed.  
When R/W = 1, a read operation is performed.  
Default value: 0  
DZ[1:0]: DSD Zero Output Enable  
These bits are available for read and write.  
Default value: 00  
DZ[1:0]  
00  
Zero Output Enable  
Disabled (default)  
01  
Even pattern detect  
1x  
96 pattern detect  
H
The DZ bits are used to enable or disable the output zero flags, and to select the zero pattern in the DSD mode.  
PCMZ: PCM Zero Output Enable  
These bits are available for read and write.  
Default value: 1  
PCMZ = 0  
PCMZ = 1  
PCM zero output disabled  
PCM zero output enabled (default)  
The PCMZ bit is used to enable or disable the output zero flags in the PCM mode and the external DF mode.  
B15 B14 B13 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 22  
R
0
0
1
0
1
1
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV ZFGR ZFGL  
R: Read Mode Select  
Value is always 1, specifying the readback mode.  
32  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
ZFGx: Zero-Detection Flag  
Where x = L or R, corresponding to the DAC output channel. These bits are available only for readback.  
Default value: 00  
ZFGx = 0  
ZFGx = 1  
Not zero  
Zero detected  
These bits show zero conditions. Their status is the same as that of the zero flags at ZEROL (pin 1) and ZEROR (pin 2).  
See Zero Detect in the FUNCTION DESCRIPTIONS section.  
B15 B14 B13 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 23  
R
0
0
1
0
1
1
1
RSV  
RSV  
RSV  
ID4  
ID3  
ID2  
ID1  
ID0  
R: Read Mode Select  
Value is always 1, specifying the readback mode.  
ID[4:0]: Device ID  
The ID[4:0] bits hold a device ID in the TDMCA mode.  
TYPICAL CONNECTION DIAGRAM IN PCM MODE  
C
f
5 V  
R
f
0.1 µF  
ZEROL  
ZEROR  
MSEL  
LRCK  
DATA  
BCK  
V
2L  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
10 µF  
CC  
+
AGND3L  
Differential  
to  
Single  
Converter  
With  
Low-Pass  
Filter  
I L−  
OUT  
3
C
f
V
OUT  
I
L+  
4
OUT  
R
L-Channel  
f
PCM  
Audio  
Data  
5 V  
AGND2  
5
+
V
1
CC  
6
Source  
10 µF  
47 µF  
+
+
SCK  
V L  
COM  
7
C
f
PCM1792A  
DGND  
V
COM  
R
8
R
0.1 µF  
f
47 µF  
10 kΩ  
V
DD  
I
REF  
9
+
MS  
AGND1  
10  
11  
12  
13  
14  
Differential  
to  
Single  
Converter  
With  
Low-Pass  
Filter  
MDI  
MC  
I
R−  
R+  
C
f
OUT  
V
OUT  
R-Channel  
Controller  
I
OUT  
R
f
0.1 µF  
5 V  
AGND3R  
MDO  
RST  
+
V
CC  
2R  
10 µF  
3.3 V  
+
10 µF  
Figure 35. Typical Application Circuit for Standard PCM Audio Operation  
33  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
APPLICATION INFORMATION  
APPLICATION CIRCUIT  
The design of the application circuit is important in order to actually realize the high S/N ratio of which the  
PCM1792A is capable. This is because noise and distortion that are generated in an application circuit are not  
negligible.  
In the circuit of Figure 36, the output level is 2 V rms and 127 dB S/N is achieved.  
The circuit of Figure 37 can realize the highest performance. In this case the output level is set to 4.5 V rms  
and 129 dB S/N is achieved (stereo mode). In monaural mode, if the output of the L-channel and R-channel  
is used as a balanced output, 132 dB S/N is achieved (see Figure 39).  
th  
Figure 38 shows a circuit for the DSD mode, which is a 4 -order LPF in order to reduce the out-of-band noise.  
I/V Section  
The current of the PCM1792A on each of the output pins (I  
L+, I  
L–, I  
R+, I  
R–) is 7.8 mA p-p at  
OUT  
OUT  
OUT  
OUT  
0 dB (full scale). The voltage output level of the I/V converter (Vi) is given by following equation:  
Vi = 7.8 mA p-p × R (R : feedback resistance of I/V converter)  
f
f
An NE5534 operational amplifier is recommended for the I/V circuit to obtain the specified performance.  
Dynamic performance such as the gain bandwidth, settling time, and slew rate of the operational amplifier  
affects the audio dynamic performance of the I/V section.  
Differential Section  
The PCM1792A voltage outputs are followed by differential amplifier stages, which sum the differential signals  
for each channel, creating a single-ended I/V op-amp output. In addition, the differential amplifiers provide a  
low-pass filter function.  
The operational amplifier recommended for the IV circuit is the NE5534, and the operational amplifier  
recommended for the differential circuit is the Linear Technology LT1028, because its input noise is low.  
34  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
C
1
2200 pF  
R
1
750 Ω  
V
CC  
V
CC  
C
3
C
11  
0.1 µF  
2700 pF  
R
270 Ω  
5
C
15  
0.1 µF  
C
22 pF  
17  
C
33 pF  
19  
7
5
R
560 Ω  
7
2
3
8
6
3
+
I –  
OUT  
5
R
100 Ω  
2
3
7
+
6
U
1
NE5534  
U
4
3
LT1028  
4
R
4
C
12  
0.1 µF  
560 Ω  
R
6
270 Ω  
C
16  
0.1 µF  
C
4
V
EE  
2700 pF  
V
EE  
C
2
2200 pF  
R
2
750 Ω  
V
CC  
C
13  
0.1 µF  
C
22 pF  
18  
7
5
2
3
8
6
+
I +  
OUT  
U
2
NE5534  
4
V
V
= 15 V  
= –15 V  
= 217 kHz  
CC  
EE  
C
14  
0.1 µF  
f
c
V
EE  
Figure 36. Measurement Circuit for PCM, V  
= 2 V rms  
OUT  
35  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
C
1
2200 pF  
R
1
820 Ω  
V
CC  
V
CC  
C
3
C
11  
0.1 µF  
2700 pF  
R
360 Ω  
5
C
15  
0.1 µF  
C
22 pF  
17  
C
33 pF  
19  
7
5
R
360 Ω  
7
2
3
8
6
3
+
I –  
OUT  
5
R
7
100 Ω  
2
3
+
6
U
1
NE5534  
U
4
3
LT1028  
4
R
4
C
12  
0.1 µF  
360 Ω  
R
6
360 Ω  
C
16  
0.1 µF  
C
4
V
EE  
2700 pF  
V
EE  
C
2
2200 pF  
R
2
820 Ω  
V
CC  
C
13  
0.1 µF  
C
22 pF  
18  
7
5
2
3
8
6
+
I +  
OUT  
U
2
NE5534  
4
V
V
= 15 V  
= –15 V  
= 162 kHz  
CC  
EE  
C
14  
0.1 µF  
f
c
V
EE  
Figure 37. Measurement Circuit for PCM, V  
= 4.5 V rms  
OUT  
36  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
C
1
2200 pF  
R
1
820 Ω  
V
CC  
V
CC  
C
5
C
11  
0.1 µF  
10000 pF  
R
330 Ω  
5
C
15  
0.1 µF  
C
22 pF  
17  
C
33 pF  
19  
7
5
R
110 Ω  
R
220 Ω  
R
68 Ω  
7
2
3
8
6
3
8
10  
+
I –  
OUT  
5
R
100 Ω  
2
3
7
+
6
C
3
C
4
U
1
18000 pF  
47000 pF  
NE5534  
U
4
3
LT1028  
4
R
4
R
9
220 Ω  
R
11  
68 Ω  
C
12  
0.1 µF  
110 Ω  
R
6
330 Ω  
C
14  
0.1 µF  
C
6
V
EE  
10000 pF  
V
EE  
C
2
2200 pF  
R
2
820 Ω  
V
CC  
C
13  
0.1 µF  
C
22 pF  
18  
7
5
2
3
8
6
+
I +  
OUT  
U
2
NE5534  
4
V
V
= 15 V  
= –15 V  
= 38 kHz  
CC  
EE  
C
14  
0.1 µF  
f
c
V
EE  
Figure 38. Measurement Circuit for DSD  
37  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
I
L– (Pin 26)  
L+ (Pin 25)  
I
I
+
OUT  
OUT  
OUT+  
Figure 37  
Circuit  
I
OUT  
OUT  
3
2
1
I
R– (Pin 18)  
R+ (Pin 17)  
I
I
+
OUT  
OUT  
OUT–  
Figure 37  
Circuit  
Balanced Out  
I
OUT  
OUT  
Figure 39. Measurement Circuit for Monaural Mode  
APPLICATION FOR EXTERNAL DIGITAL FILTER INTERFACE  
DFMS = 0  
External Filter Device  
PCM1792A  
ZEROL  
ZEROR  
MSEL  
LRCK  
DATA  
BCK  
1
2
3
WDCK (Word Clock)  
4
5
6
7
DATA  
BCK  
SCK  
SCK  
DFMS = 1  
External Filter Device  
PCM1792A  
DATA_L  
ZEROL  
ZEROR  
MSEL  
LRCK  
DATA  
BCK  
1
DATA_R  
2
3
4
5
6
7
WDCK (Word Clock)  
BCK  
SCK  
SCK  
Figure 40. Connection Diagram for External DIgital Filter (Internal DF Bypass Mode) Application  
38  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
Application for Interfacing With an External Digital Filter  
For some applications, it may be desirable to use an external digital filter to perform the interpolation function,  
as it can provide improved stop-band attenuation when compared to the internal digital filter of the PCM1792A.  
The PCM1792A supports several external digital filters, including:  
D Texas Instruments DF1704 and DF1706  
D Pacific Microsonics PMD200 HDCD filter/decoder IC  
D Programmable digital signal processors  
The external digital filter application mode is accessed by programming the following bits in the corresponding  
control register:  
D DFTH = 1 (register 20)  
The pins used to provide the serial interface for the external digital filter are shown in the connection diagram  
of Figure 40. The word (WDCK) signal must be operated at 8× or 4× the desired sampling frequency, f .  
S
System Clock (SCK) and Interface Timing  
The PCM1792A in an application using an external digital filter requires the synchronization of WDCK and the  
system clock. The system clock is phase-free with respect to WDCK. Interface timing among WDCK, BCK,  
DATAL, and DATAR is shown in Figure 42.  
Audio Format  
The PCM1792A in the external digital filter interface mode supports right-justified audio formats including 16-bit,  
20-bit, and 24-bit audio data, as shown in Figure 41. The audio format is selected by the FMT[2:0] bits of control  
register 18.  
1/4 f or 1/8 f  
S
S
WDCK  
BCK  
Audio Data Word = 16-Bit  
15 16  
1
2
3
4
8
5
9
6
7
8
9
10 11 12 13 14 15 16  
LSB  
DATA  
MSB  
Audio Data Word = 20-Bit  
19 20  
1
5
2
6
3
4
8
5
9
6
7
10 11 12 13 14 15 16 17 18 19 20  
LSB  
DATA  
MSB  
Audio Data Word = 24-Bit  
23 24  
1
2
3
4
7
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
LSB  
DATA  
MSB  
Figure 41. Audio Data Input Format for External Digital Filter (Internal DF Bypass Mode) Application  
39  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
WDCK  
(LRCK)  
50% of V  
DD  
DD  
DD  
t
t
t
(LB)  
(BCH)  
(BCL)  
50% of V  
50% of V  
BCK  
t
t
(BCY)  
(BL)  
DATA  
t
t
(DS)  
(DH)  
PARAMETER  
MIN  
20  
7
MAX UNITS  
t
t
t
t
t
t
t
BCK pulse cycle time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(BCY)  
(BCL)  
(BCH)  
(BL)  
BCK pulse duration, LOW  
BCK pulse duration, HIGH  
7
BCK rising edge to WDCK falling edge  
WDCK falling edge to BCK rising edge  
DATA setup time  
5
5
(LB)  
5
(DS)  
DATA hold time  
5
(DH)  
Figure 42. Audio Interface Timing for External Digital Filter (Internal DF Bypass Mode) Application  
Functions Available in the External Digital Filter Mode  
The external digital filter mode allows access to the majority of the PCM1792A mode control functions.  
The following table shows the register mapping available when the external digital filter mode is selected, along  
with descriptions of functions which are modified when using this mode selection.  
B15 B14 B13 B12 B11 B10  
B9  
0
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 16 R/W  
Register 17 R/W  
Register 18 R/W  
Register 19 R/W  
Register 20 R/W  
Register 21 R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
FMT2 FMT1 FMT0  
1
1
REV  
SRST  
0
OPE  
DFMS  
INZD  
OS0  
PCMZ  
0
0
1
MONO CHSL OS1  
0
1
Register 22  
R
1
0
ZFGR ZFGL  
NOTE: 1: Bit is required for selection of external digital filter mode.  
–: Function is disabled. No operation even if data bit is set  
FMT[2:0]: Audio Data Format Selection  
Default value: 000  
FMT[2:0]  
000  
Audio Data Format Select  
16-bit right-justified format (default)  
20-bit right-justified format  
24-bit right-justified format  
N/A  
001  
010  
Other  
40  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
OS[1:0]: Delta-Sigma Modulator Oversampling Rate Selection  
Default value: 00  
OS[1:0]  
00  
Operation Speed Select  
8 times WDCK (default)  
4 times WDCK  
01  
10  
16 times WDCK  
11  
Reserved  
The effective oversampling rate is determined by the oversampling performed by both the external digital filter  
and the delta-sigma modulator. For example, if the external digital filter is 8× oversampling, and the user selects  
OS[1:0] = 00, then the delta-sigma modulator oversamples by 8×, resulting in an effective oversampling rate  
of 64×. The 16× WDCK oversampling rate is not available above a 100-kHz sampling rate. If the oversampling  
rate selected is 16× WDCK, the system clock frequency must be over 256 f .  
S
APPLICATION FOR DSD FORMAT (DSD MODE) INTERFACE  
DSD Decoder  
PCM1792A  
ZEROL  
ZEROR  
MSEL  
LRCK  
DATA  
BCK  
1
2
3
4
5
6
7
DATA_R  
DATA_L  
Bit Clock  
SCK  
Figure 43. Connection Diagram in DSD Mode  
Feature  
This mode is used for interfacing directly to a DSD decoder, which is found in Super Audio CDt (SACD)  
applications.  
The DSD mode is accessed by programming the following bit in the corresponding control register.  
DSD = 1 (register 20)  
The DSD mode provides a low-pass filtering function. The filtering is provided using an analog FIR filter  
structure. Four FIR responses are available and are selected by the DMF[1:0] bits of control register 18.  
The DSD bit must be set before inputting DSD data; otherwise, the PCM1792A erroneously detects the TDMCA  
mode, and commands are not accepted through the serial control interface.  
Super Audio CD is a trademark of Sony Kabushiki Kaisha TA Sony Corporation, Japan.  
41  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
Pin Assignment When Using DSD Format Interface  
Several pins are redefined for DSD mode operation. These include:  
D DATA (pin 5): DSDL as L-channel DSD data input  
D LRCK (pin 4): DSDR as R-channel DSD data input  
D SCK (pin 7): DBCK as bit-clock input  
D BCK (pin 6): Set LOW (N/A)  
t = 1/(64 × 44.1 kHz)  
DBCK  
DSDL  
DSDR  
D0  
D1  
D2  
D3  
D4  
Figure 44. Normal Data Output Form From DSD Decoder  
t
t
(BCL)  
(BCH)  
50% of V  
DBCK  
DD  
t
(BCY)  
DSDL  
DSDR  
50% of V  
DD  
t
t
(DH)  
(DS)  
PARAMETER  
MIN MAX UNITS  
(1)  
t
DBCK pulse cycle time  
DBCK high-level time  
DBCK low-level time  
85  
ns  
ns  
ns  
ns  
ns  
(BCY)  
t
30  
30  
10  
10  
(BCH)  
t
(BCL)  
(DS)  
(DH)  
t
t
DSDL, DSDR setup time  
DSDL, DSDR hold time  
(1)  
2.8224 MHz × 4. (2.8224 MHz = 64 × 44.1 kHz. This value is  
specified as a sampling rate of DSD.)  
Figure 45. Timing for DSD Audio Interface  
42  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
ANALOG FIR FILTER PERFORMANCE IN DSD MODE  
GAIN  
vs  
GAIN  
vs  
FREQUENCY  
FREQUENCY  
0
−1  
−2  
−3  
−4  
−5  
−6  
0
−10  
−20  
−30  
−40  
−50  
−60  
f
= 185 kHz  
c
(1)  
Gain = –6.6 dB  
0
50  
100  
150  
200  
0
500  
1000  
1500  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 46. DSD Filter-1, Low BW  
Figure 47. DSD Filter-1, High BW  
GAIN  
vs  
GAIN  
vs  
FREQUENCY  
FREQUENCY  
0
−1  
−2  
−3  
−4  
−5  
−6  
0
−10  
−20  
−30  
−40  
−50  
−60  
f
= 77 kHz  
c
(1)  
Gain = –6 dB  
0
50  
100  
150  
200  
0
500  
1000  
1500  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 48. DSD Filter-2, Low BW  
Figure 49. DSD Filter-2, High BW  
(1)  
This gain is in comparison to PCM 0 dB, when the DSD input signal efficiency is 50%.  
All specifications at DBCK = 2.8224 MHz (44.1 kHz × 64 f ), and 50% modulation DSD data input, unless otherwise noted.  
S
43  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
GAIN  
vs  
GAIN  
vs  
FREQUENCY  
FREQUENCY  
0
−1  
−2  
−3  
−4  
−5  
−6  
0
−10  
−20  
−30  
−40  
−50  
−60  
f
= 85 kHz  
c
(1)  
Gain = –1.5 dB  
0
50  
100  
150  
200  
0
500  
1000  
1500  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 50. DSD Filter-3, Low BW  
Figure 51. DSD Filter-3, High BW  
GAIN  
vs  
GAIN  
vs  
FREQUENCY  
FREQUENCY  
0
−1  
−2  
−3  
−4  
−5  
−6  
0
−10  
−20  
−30  
−40  
−50  
−60  
f
= 94 kHz  
c
(1)  
Gain = –3.3 dB  
0
50  
100  
150  
200  
0
500  
1000  
1500  
f – Frequency – kHz  
f – Frequency – kHz  
Figure 52. DSD Filter-4, Low BW  
Figure 53. DSD Filter-4, High BW  
(1)  
This gain is in comparison to PCM 0 dB, when the DSD input signal efficiency is 50%.  
All specifications at DBCK = 2.8224 MHz (44.1 kHz × 64 f ), and 50% modulation DSD data input, unless otherwise noted.  
S
44  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
DSD MODE CONFIGURATION AND FUNCTION CONTROLS  
Configuration for the DSD Interface Mode  
DSD = 1 (Register 20, B5)  
B15 B14 B13 B12 B11 B10  
B9  
0
B8  
0
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Register 16 R/W  
Register 17 R/W  
Register 18 R/W  
Register 19 R/W  
Register 20 R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
DMF1 DMF0  
1
1
REV  
SRST  
OPE  
0
0
1
MONO CHSL OS1  
OS0  
Register 21  
Register 22  
R
R
0
1
DZ1  
DZ0  
1
0
ZFGR ZFGL  
NOTE: –: Function is disabled. No operation even if data bit is set  
DMF[1:0]: Analog FIR Performance Selection  
Default value: 00  
DMF[1:0]  
Analog-FIR Performance Select  
00  
01  
10  
11  
FIR-1 (default)  
FIR-2  
FIR-3  
FIR-4  
Plots for the four analog FIR filter responses are shown in the TYPICAL PERFORMANCE CURVES section  
of this data sheet.  
OS[1:0]: Analog-FIR Operation-Speed Selection  
Default value: 00  
OS[1:0]  
00  
Operation Speed Select  
f
f
(default)  
/2  
DBCK  
DBCK  
01  
10  
Reserved  
f /4  
DBCK  
11  
The OS bit in the DSD mode is used to select the operating rate of the analog FIR. The OS bits must be set  
before setting the DSD bit to1.  
TDMCA Format  
The PCM1792A supports the time-division-multiplexed command and audio (TDMCA) data format to simplify  
the host control serial interface. The TDMCA format is designed not only for the McBSP of TI DSPs but also  
for any programmable devices. The TDMCA format can transfer not only audio data but also command data,  
so that it can be used together with any kind of device that supports the TDMCA format. The TDMCA frame  
consists of command field, extended command field, and some audio data fields. Those audio data are  
transported to IN devices (such as a DAC) and/or from OUT devices (such as an ADC). The PCM1792A is an  
IN device. LRCK and BCK are used with both IN and OUT devices so that the sample frequency of all devices  
in a system must be the same. The TDMCA mode supports a maximum of 30 device IDs. The maximum number  
of audio channels depends on the BCK frequency.  
45  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
TDMCA Mode Determination  
The PCM1792A recognizes the TDMCA mode automatically when it receives an LRCK signal with a pulse  
duration of two BCK clocks. If the TDMCA mode operation is not needed, the duty cycle of LRCK must be 50%.  
Figure 54 shows the LRCK and BCK timing that determines the TDMCA mode. The PCM1792A enters the  
TDMCA mode after two continuous TDMCA frames. Any TDMCA commands can be issued during the next  
TDMCA frame after the TDMCA mode is entered.  
Command  
Accept  
Pre-TDMCA Frame  
TDMCA Frame  
LRCK  
2 BCK  
BCK  
Figure 54. LRCK and BCK Timing of Determination TDMCA Mode  
TDMCA Terminals  
TDMCA requires six signals, of which four signals are for command and audio data interface, and one pair is  
for daisy chaining. Those signals can be shared as in the following table. The DO signal has a 3-state output  
so that it can be connected directly to other devices.  
TERMINAL TDMCA  
PROPERTY  
input  
DESCRIPTION  
NAME  
NAME  
LRCK  
LRCK  
TDMCA frame start signal. It must be the same as the sampling frequency.  
TDMCA clock. Its frequency must be high enough to communicate a TDMCA frame within an LRCK  
cycle.  
BCK  
BCK  
input  
DATA  
MDO  
MC  
DI  
DO  
input  
output  
input  
TDMCA command and audio data input signal  
TDMCA command data 3-state output signal  
TDMCA daisy-chain input signal  
DCI  
DCO  
MS  
output  
TDMCA daisy-chain output signal  
Device ID Determination  
The TDMCA mode also supports a multichip implementation in one system. This means a host controller (DSP)  
can simultaneously support several TDMCA devices, which can be of the same type or different types, including  
PCM devices. The PCM devices are categorized as IN device, OUT device, IN/OUT device, and NO device.  
The IN device has an input port to get audio data, the OUT device has an output port to supply audio data, the  
IN/OUT device has both input and output ports for audio data, and the NO device has no port for audio data  
but needs command data from the host. A DAC is an IN device, an ADC is an OUT device, a CODEC is an  
IN/OUT device, and a PLL is a NO device. The PCM1792A is an IN device. For the host controller to distinguish  
the devices, each device is assigned its own device ID by the daisy chain. The devices obtain their own device  
IDs automatically by connecting their DCI to the DCO of the preceding device and their DCO to the DCI of the  
following device in the daisy chain. The daisy chains are categorized as the IN chain and the OUT chain, which  
are completely independent and equivalent. Figure 55 shows an example daisy chain connection. If a system  
needs to chain the PCM1792A and a NO device in the same IN or OUT chain, the NO device should be chained  
at the back end of the chain because it does not require any audio data. Figure 56 shows an example of TDMCA  
system including an IN chain and an OUT chain with a TI DSP. For a device to get its own device ID, the DID  
signal must be set to 1 (see the Command Field section for details), and LRCK and BCK must be driven in the  
TDMCA mode for all PCM devices which are chained. The device at the top of the chain knows its device ID  
is 1 because its DCI is fixed HIGH. Other devices count the BCK pulses and observe their own DCI signal to  
determine their position and ID. Figure 57 shows the initialization of each device ID.  
46  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
IN Chain  
• • •  
• • •  
• • •  
IN  
IN  
IN Device  
IN Device  
NO Device  
NO Device  
NO Device  
NO Device  
IN/OUT  
Device  
IN/OUT  
Device  
• • •  
OUT Device  
OUT Device  
OUT  
OUT  
• • •  
OUT Chain  
Figure 55. Daisy-Chain Connection  
47  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
DCII  
LRCK  
BCK  
DI  
IN/OUT  
Device  
(DIX1700)  
DCOI  
DCIO  
DO  
DCOO  
Device ID = 1  
LRCK  
BCK  
DI  
DCI  
IN Device  
(PCM1792A)  
DCO  
DO  
Device ID = 2  
LRCK  
BCK  
DI  
DCI  
NO Device  
DCO  
DO  
Device ID = 3  
FSX  
FSR  
CLKX  
CLKR  
LRCK  
BCK  
DI  
DCI  
OUT Device  
DX  
DCO  
DR  
DO  
Device ID = 2  
TI DSP  
LRCK  
BCK  
DI  
DCI  
OUT Device  
DCO  
DO  
Device ID = 3  
Figure 56. IN Daisy-Chain and OUT Daisy-Chain Connection for a Multichip System  
48  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
LRCK  
BCK  
DID  
Command Field  
DI  
Device ID = 1  
Device ID = 2  
DCO1  
DCO1  
DCI2  
Device ID = 3  
DCO2  
DCI3  
58 BCK  
Device ID = 30 DCO29  
DCI30  
Figure 57. Device ID Determination Sequence  
TDMCA Frame  
In general, the TDMCA frame consists of the command field, extended command (EMD) field, and audio data  
fields. All of them are 32 bits in length, but the lowest byte has no meaning. The MSB is transferred first for each  
field. The command field is always transferred as the first packet of the frame. The EMD field is transferred if  
the EMD flag of the command field is HIGH. If any EMD packets are transferred, no audio data follows the EMD  
packets. This frame is for quick system initialization. All devices of a daisy chain should respond to the command  
field and extended command field. The PCM1792A has two audio channels that can be selected by OPE  
(register 19). If this OPE bit is not set to HIGH, those audio channels are transferred. Figure 58 shows the  
general TDMCA frame. If some DACs are enabled, but corresponding audio data packets are not transferred,  
the analog outputs are unpredictable.  
1/f  
S
LRCK  
BCK  
[For Initialization]  
Don’t  
Care  
DI  
EMD  
CMD  
CMD  
EMD  
EMD  
CMD  
EMD  
EMD  
32 Bits  
DO  
CMD  
CMD  
CMD  
CMD  
CMD  
CMD  
[For Operation]  
Don’t  
Care  
Ch(n)  
Ch2  
Ch2  
Ch4  
Ch4  
CMD  
Ch1  
Ch1  
Ch3  
Ch3  
DI  
DO  
CMD  
Ch(m)  
Figure 58. General TDMCA Frame  
49  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
1/f (256 PBCK Clocks)  
S
7 Packets × 32 Bits  
LRCK  
BCK  
Don’t  
Care  
DI  
CMD  
Ch2  
IN and OUT Channel Orders are Completely Independent  
Ch1 Ch2  
Ch4  
Ch5  
Ch6  
Ch1  
CMD  
Ch3  
DO  
CMD  
Figure 59. TDMCA Frame Example of 6-Ch DAC and 2-Ch ADC With Command Read  
Command Field  
The normal command field is defined as follows. When the DID bit (MSB) is 1, this frame is used only for device  
ID determination, and all remaining bits in the field are ignored.  
31  
30  
29  
28  
24  
23  
22  
16 15  
8
7
0
command  
DID EMD DCS  
device ID  
R/W  
register ID  
data  
not used  
Bit 31: Device ID enable flag  
The PCM1792A operates to get its own device ID for TDMCA initialization if this bit is HIGH.  
Bit 30: Extended command enable flag  
The EMD packet will be transferred if this bit is HIGH, otherwise skipped. Once this bit is HIGH, this frame does  
not contain any audio data. This is for system initialization.  
Bit 29: Daisy-chain selection flag  
HIGH designates OUT-chain devices, LOW designates IN-chain devices. The PCM1792A is an IN device, so  
the DCS bit must be set to LOW.  
Bits[28:24]: Device ID. It is 5 bits length, and it can be defined.  
These bits identify the order of a device in the IN or OUT daisy chain. The top of the daisy chain defines device  
ID 1 and successive devices are numbered 2, 3, 4, etc. All devices for which the DCI is fixed HIGH are also  
defined as ID 1. The maximum device ID is 30 each in the IN and OUT chains. If a device ID of 0x1F is used,  
all devices are selected as broadcast when in the write mode. If a device ID of 0x00 is used, no device is  
selected.  
Bit 23: Command Read/Write flag  
If this bit is HIGH, the command is a read operation.  
Bits[22:16]: Register ID  
It is 7 bits in length.  
Bits[15:8]: Command data  
It is 8 bits in length. Any valid data can be chosen for each register.  
Bits[7:0]: Not used  
These bits are never transported when a read operation is performed.  
Extended command field  
The extended command field is the same as the command field, except that it does not have a DID flag.  
31  
30  
29  
28  
24  
23  
22  
16 15  
8
7
0
extended command rsvd EMD DCS  
device ID  
R/W  
register ID  
data  
not used  
50  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
Audio Fields  
The audio field is 32 bits in length and the audio data is transferred MSB first, so the other fields must be stuffed  
with 0s as shown in the following example.  
31  
16  
12  
8
7
4 3  
0
audio data MSB  
24 bits  
LSB  
All 0s  
TDMCA Register Requirements  
TDMCA mode requires device ID and audio channel information, previously described. The OPE bit in register  
19 indicates audio channel availability and register 23 indicates the device ID. Register 23 is used only in the  
TDMCA mode. See the mode control register map (Table 4).  
Register Write/Read Operation  
The command supports register write and read operations. If the command requests to read one register, the  
read data is transferred on DO during the data phase of the timing cycle. The DI signal can be retrieved at the  
positive edge of BCK, and the DO signal is driven at the negative edge of BCK. DO is activated one BCK cycle  
early to compensate for the output delay caused by high impedance. Figure 60 shows the TDMCA write and  
read timing.  
Register ID Phase  
Data Phase  
BCK  
Read Mode and Proper Register ID  
Write Data Retrieved, if Write Mode  
DI  
Read Data Driven, if Read Mode  
1 BCK Early  
DO  
DOEN  
(Internal)  
Figure 60. TDMCA Write and Read Operation Timing  
TDMCA-Mode Operation  
DCO specifies the owner of the next audio channel in TDMCA-mode operation. When a device retrieves its own  
audio channel data, DCO goes HIGH during the last audio channel period. Figure 61 shows the DCO output  
timing in TDMCA-mode operation. The host controller ignores the behavior of DCI and DCO. DCO indicates  
the last audio channel of each device. Therefore, DCI means the next audio channel is allocated.  
If some devices are skipped due to no active audio channel, the skipped devices must notify the next device  
that the DCO will be passed through the next DCI. Figure 62 and Figure 63 show DCO timing with skip  
operation. Figure 64 shows the ac timing of the daisy-chain signals.  
51  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
1/f (384 PBCK Clocks)  
S
9 Packets y 32 Bits  
LRCK  
BCK  
IN Daisy Chain  
Ch2 Ch3 Ch4 Ch5  
CMD Ch1  
Ch6 Ch7 Ch8  
Don’t Care  
CMD  
DI  
DCI1  
DID = 1  
DID = 2  
DCO1  
DCI2  
DCO2  
DCI3  
DID = 3  
DID = 4  
DCO3  
DCI4  
DCO4  
Figure 61. DCO Output Timing of TDMCA Mode Operation  
1/f (256 PBCK Clocks)  
S
5 Packets × 32 Bits  
LRCK  
BCK  
DI  
CMD  
Ch1  
Ch2  
Ch15  
Ch16  
Don’t Care  
CMD  
DCI  
DID = 1  
DID = 2  
DCO  
DCI  
2 PBCK Delay  
14 PBCK Delay  
DCO  
DCI  
DID = 8  
DCO  
Figure 62. DCO Output Timing With Skip Operation  
52  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
Command Packet  
LRCK  
BCK  
DI  
DID EMD  
DCO1  
DCO2  
Figure 63. DCO Output Timing With Skip Operation (for Command Packet 1)  
53  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
LRCK  
t
t
(BL)  
(LB)  
BCK  
t
t
t
(DH)  
(BCY)  
(DS)  
DI  
t
(DOE)  
DO  
t
t
(DH)  
(DS)  
DCI  
DCO  
t
(COE)  
PARAMETER  
MIN MAX UNITS  
t
BCK pulse cycle time  
LRCK setup time  
LRCK hold time  
DI setup time  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(BCY)  
t
t
t
t
t
t
(LB)  
3
(BL)  
(DS)  
(DH)  
(DS)  
(DH)  
0
DI hold time  
3
DCI setup time  
DCI hold time  
0
3
(1)  
DO output delay  
t
8
6
(DOE)  
(1)  
DCO output delay  
t
(COE)  
(1)  
Load capacitance is 10 pF.  
Figure 64. AC Timing of Daisy-Chain Signals  
54  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
THEORY OF OPERATION  
Upper  
6 Bits  
0–62  
Level  
ICOB  
Decoder  
0–66  
Current  
Segment  
DAC  
Advanced  
DWA  
Digital Input  
Analog Output  
24 Bits  
8 f  
rd  
3 -Order  
S
5-Level  
Sigma-Delta  
0–4  
Level  
MSB  
and  
Lower 18 Bits  
Figure 65. Advanced Segments DAC  
The PCM1792A uses TI’s advanced segment DAC architecture to achieve excellent dynamic performance and  
improved tolerance to clock jitter. The PCM1792A provides balanced current outputs.  
Digital input data via the digital filter is separated into six upper bits and 18 lower bits. The six upper bits are  
converted to inverted complementary offset binary (ICOB) code. The lower 18 bits, associated with the MSB,  
are processed by a five-level third-order delta-sigma modulator operated at 64 f by default. The 1 level of the  
S
modulator is equivalent to the 1 LSB of the ICOB code converter. The data groups processed in the ICOB  
converter and third-order delta-sigma modulator are summed together to an up to 66-level digital code, and then  
processed by data-weighted averaging (DWA) to reduce the noise produced by element mismatch. The data  
of up to 66 levels from the DWA is converted to an analog output in the differential-current segment section.  
This architecture has overcome the various drawbacks of conventional multibit processing and also achieves  
excellent dynamic performance.  
55  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆꢇ  
www.ti.com  
SLES105B − FEBRUARY 2004 − REVISED NOVEMBER 2006  
Analog output  
The following table and Figure 66 show the relationship between the digital input code and analog output.  
800000 (–FS)  
–2.3  
000000 (BPZ)  
–6.2  
7FFFFF (+FS)  
I
N [mA]  
P [mA]  
–10.1  
OUT  
I
–10.1  
–6.2  
–2.3  
–7.575  
OUT  
V
N [V]  
P [V]  
–1.725  
–7.575  
–2.821  
–4.650  
–4.650  
0
OUT  
V
–1.725  
OUT  
V
[V]  
2.821  
OUT  
NOTE: V  
N is the output of U1, V  
measurementcircuit of Figure 36.  
P is the output of U2, and V  
OUT  
is the output of U3 in the  
OUT  
OUT  
OUTPUT CURRENT  
vs  
INPUT CODE  
0
−2  
I N  
OUT  
−4  
−6  
−8  
I P  
OUT  
−10  
−12  
800000(–FS)  
000000(BPZ)  
7FFFFF(+FS)  
Input Code – Hex  
Figure 66. The Relationship Between Digital Input and Analog Output  
56  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM1792ADB  
PCM1792ADBG4  
PCM1792ADBR  
ACTIVE  
SSOP  
SSOP  
SSOP  
DB  
28  
28  
28  
47  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-25 to 85  
-25 to 85  
-25 to 85  
PCM1792  
A
ACTIVE  
ACTIVE  
DB  
47  
NIPDAU  
NIPDAU  
PCM1792  
A
DB  
2000 RoHS & Green  
PCM1792  
A
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Feb-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PCM1792ADBR  
SSOP  
DB  
28  
2000  
330.0  
16.4  
8.2  
10.5  
2.5  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SSOP DB 28  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
PCM1792ADBR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
PCM1792ADB  
PCM1792ADB  
DB  
DB  
DB  
DB  
DB  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
28  
28  
28  
28  
28  
47  
47  
500  
530  
500  
530  
530  
10.6  
10.5  
10.6  
10.5  
10.5  
500  
4000  
500  
9.6  
4.1  
9.6  
4.1  
4.1  
PCM1792ADBG4  
PCM1792ADBG4  
PCM1792ADBR  
47  
47  
4000  
4000  
2000  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DB0028A  
SSOP - 2 mm max height  
S
C
A
L
E
1
.
5
0
0
SMALL OUTLINE PACKAGE  
C
8.2  
7.4  
TYP  
A
0.1 C  
SEATING  
PIN 1 INDEX AREA  
PLANE  
26X 0.65  
28  
1
2X  
10.5  
9.9  
8.45  
NOTE 3  
14  
15  
0.38  
0.22  
28X  
0.15  
C A B  
5.6  
5.0  
B
NOTE 4  
2 MAX  
0.25  
GAGE PLANE  
(0.15) TYP  
SEE DETAIL A  
0.95  
0.55  
0.05 MIN  
0 -8  
A
15  
DETAIL A  
TYPICAL  
4214853/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-150.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DB0028A  
SSOP - 2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
28X (1.85)  
(R0.05) TYP  
28  
1
28X (0.45)  
26X (0.65)  
SYMM  
14  
15  
(7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4214853/B 03/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DB0028A  
SSOP - 2 mm max height  
SMALL OUTLINE PACKAGE  
28X (1.85)  
SYMM  
(R0.05) TYP  
28  
1
28X (0.45)  
26X (0.65)  
SYMM  
14  
15  
(7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4214853/B 03/2018  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY