PCM4202 [TI]

118dB SNR 立体声音频 ADC;
PCM4202
型号: PCM4202
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

118dB SNR 立体声音频 ADC

文件: 总32页 (文件大小:595K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SBAS290B − JULY 2003 − SEPTEMBER 2004  
High-Performance 24-Bit, 216kHz Sampling  
Stereo Audio Analog-to-Digital Converter  
FEATURES  
APPLICATIONS  
D
Two High-Performance Delta-Sigma  
D
D
D
D
D
Digital Recorders and Mixing Desks  
Digital Audio Effects Processors  
Broadcast Studio Equipment  
Surround-Sound Encoders  
High-End A/V Receivers  
Analog-to-Digital Converters  
− 24-Bit Linear PCM or 1-Bit Direct Stream  
Digital (DSD) Output Data  
− Supports PCM Output Sampling Rates up  
to 216kHz  
− Supports 64f and 128f DSD Output Data  
S
S
DESCRIPTION  
Rates  
D
Dynamic Performance: PCM Output  
The PCM4202 is a high-performance, stereo audio  
analog-to-digital (A/D) converter designed for professional  
and broadcast audio applications. The PCM4202  
architecture utilizes a 1-bit delta-sigma modulator per  
channel, incorporating a novel density modulated dither  
scheme for improved dynamic performance.  
− Dynamic Range (V = −60dBFS,  
IN  
f
= 1kHz, A-Weighted): 118dB  
IN  
− THD+N (V = −0.5dB, f = 1kHz): −105dB  
IN  
IN  
D
D
Dynamic Performance: DSD Output, 64f  
− Dynamic Range (A-Weighted): 115dB  
S
− THD+N (V = −0.5dB, f = 1kHz): −102dB  
IN  
IN  
The PCM4202 supports 24-bit linear PCM output data,  
with sampling frequencies up to 216kHz. The PCM4202  
can also be configured to output either 64x or 128x  
oversampled, 1-bit direct stream digital (DSD) data for  
each channel. Support for PCM and DSD output formats  
makes the PCM4202 suitable for a variety of digital audio  
recording and processing applications.  
Audio Serial Port  
− 24-Bit Linear PCM Output Data  
− Master or Slave Mode Operation  
− Supports Left-Justified, Right-Justified,  
2
and I SE Data Formats  
D
Additional PCM Output Features:  
The PCM4202 includes a flexible audio serial port inter-  
face, which supports standard audio data formats. Audio  
data format selection, sampling mode configuration, and  
high-pass filter functions are all programmed using dedi-  
cated control pins.  
− Linear-Phase Digital Decimation Filter  
− Digital High-Pass Filter for DC Removal  
− Clipping Flag Output for Each Channel  
Power Supplies: +5V Analog and +3.3V Digital  
Power Dissipation:  
D
D
The PCM4202 operates from a +5V analog power supply  
and a +3.3V digital power supply. The digital I/O pins are  
compatible with +3.3V logic families. The PCM4202 is  
available in a small SSOP-28 package.  
− f = 48kHz: 308mW typical  
S
− f = 96kHz: 338mW typical  
S
− f = 192kHz: 318mW typical  
S
D
D
D
Power-Down Mode  
Available in a SSOP-28 Package  
Pin- and Function-Compatible with the  
PCM1804  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
I S is a registered trademark of Royal Philips Electronics B.V., The Netherlands. All other trademarks are the property of their respective owners.  
ꢀꢆ ꢇ ꢈꢉ ꢁ ꢊꢋ ꢇꢌ ꢈ ꢍꢊꢍ ꢎꢏ ꢐꢑ ꢒ ꢓꢔ ꢕꢎꢑꢏ ꢎꢖ ꢗꢘ ꢒ ꢒ ꢙꢏꢕ ꢔꢖ ꢑꢐ ꢚꢘꢛ ꢜꢎꢗ ꢔꢕꢎ ꢑꢏ ꢝꢔ ꢕꢙꢞ ꢀꢒ ꢑꢝꢘ ꢗꢕꢖ  
ꢗ ꢑꢏ ꢐꢑꢒ ꢓ ꢕꢑ ꢖ ꢚꢙ ꢗ ꢎ ꢐꢎ ꢗ ꢔ ꢕꢎ ꢑꢏꢖ ꢚ ꢙꢒ ꢕꢟꢙ ꢕꢙ ꢒ ꢓꢖ ꢑꢐ ꢊꢙꢠ ꢔꢖ ꢋꢏꢖ ꢕꢒ ꢘꢓ ꢙꢏꢕ ꢖ ꢖꢕ ꢔꢏꢝ ꢔꢒ ꢝ ꢡ ꢔꢒ ꢒ ꢔ ꢏꢕꢢꢞ  
ꢀꢒ ꢑ ꢝꢘꢗ ꢕ ꢎꢑ ꢏ ꢚꢒ ꢑ ꢗ ꢙ ꢖ ꢖ ꢎꢏ ꢣ ꢝꢑ ꢙ ꢖ ꢏꢑꢕ ꢏꢙ ꢗꢙ ꢖꢖ ꢔꢒ ꢎꢜ ꢢ ꢎꢏꢗ ꢜꢘꢝ ꢙ ꢕꢙ ꢖꢕꢎ ꢏꢣ ꢑꢐ ꢔꢜ ꢜ ꢚꢔ ꢒ ꢔꢓ ꢙꢕꢙ ꢒ ꢖꢞ  
Copyright 2003−2004, Texas Instruments Incorporated  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate  
precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to  
damage because very small parametric changes could cause the device not to meet its published specifications.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
PCM4202  
+6.0  
UNIT  
V
V
V
V
V
CC  
Supply voltage  
+3.6  
DD  
Ground voltage differences  
Digital input voltage  
(any AGND to DGND)  
0.1  
FMT0, FMT1, S/M, FS0, FS1, FS2, SCKI,  
RST, HPFD, BCK, LRCK  
−0.3 to (V  
+ 0.3)  
V
DD  
Analog input voltage  
V L+, V L−, V R+, V R−  
IN IN IN IN  
−0.3 to (V  
+ 0.3)  
V
V
CC  
Input current (any pin except supplies)  
Operating temperature range  
10mA  
−10 to +70  
°C  
°C  
Storage temperature range, T  
STG  
−65 to +150  
(1)  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or  
any other conditions beyond those specified is not implied.  
PACKAGE/ORDERING INFORMATION  
For the most current package and ordering information, see the Package Option Addendum located at the end of this  
datasheet.  
PIN ASSIGNMENT  
VREF  
AGNDL  
VCOM  
L
1
2
3
4
5
6
7
8
9
28 VREF  
R
27 AGNDR  
26  
25  
L
VCOM  
R
VINL+  
V
INR+  
24 VINR  
VINL  
FMT0  
FMT1  
S/M  
23 AGND  
22 VCC  
PCM4202  
21  
20  
CLIPL  
CLIPR  
FS0  
FS1 10  
19 RST  
11  
12  
13  
18  
17  
16  
FS2  
HPFD  
DGND  
SCKI  
LRCK or DSDBCK  
BCK or DSDL  
VDD 14  
15 DATA or DSDR  
2
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
Terminal Functions  
TERMINAL  
NAME  
PIN NO.  
I/O  
DESCRIPTION  
1
2
3
V
L
Output  
Ground  
Output  
Left Channel Voltage Reference  
Left Channel Reference Ground  
REF  
AGNDL  
V
COM  
L
Left Channel DC Common-mode Voltage, +2.5V Typical  
Left Channel Non-inverting Analog Input  
Left Channel Inverting Analog Input  
Audio Data Format Selection  
4
V
L+  
L−  
Input  
Input  
IN  
5
V
IN  
6
FMT0  
FMT1  
S/M  
Input  
7
Input  
Audio Data Format Selection  
8
Input  
Audio Serial Port Slave/Master Mode Selection (0 = Master, 1 = Slave)  
Sampling Mode Selection  
9
FS0  
Input  
10  
11  
12  
13  
14  
15  
FS1  
Input  
Sampling Mode Selection  
FS2  
Input  
Sampling Mode Selection  
HPFD  
DGND  
Input  
High-pass Filter Disable (Active High)  
Digital Ground  
Ground  
Power  
Output  
V
DD  
Digital Power Supply, +3.3V  
DATA  
or DSDR  
Audio Serial Port Left and Right Channel PCM Data  
or Right Channel DSD Data  
16  
17  
BCK  
or DSDL  
I/O  
I/O  
Audio Serial Port Bit (or Data) Clock  
or Left Channel DSD Data Output  
LRCK  
or DSDBCK  
Audio Serial Port Left/Right (or Word) Clock  
or DSD Data Clock Output  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
SCKI  
RST  
Input  
Input  
System Clock  
Reset/Power-down (Active Low with internal pull-up)  
Right Channel Clipping Flag (Active High)  
Left Channel Clipping Flag (Active High)  
Analog Power Supply, +5V  
CLIPR  
CLIPL  
Output  
Output  
Power  
Ground  
Input  
V
CC  
AGND  
Analog Ground  
V
R−  
R+  
Right Channel Inverting Analog Input  
Right Channel Non-inverting Analog Input  
Right Channel DC Common-mode Voltage, +2.5V Typical  
Right Channel Reference Ground  
Right Channel Voltage Reference  
IN  
V
IN  
Input  
V
R
Output  
Ground  
Output  
COM  
AGNDR  
V R  
REF  
3
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
ELECTRICAL CHARACTERISTICS  
All parameters are specified at T = +25°C with V  
= +5V, V  
= +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise  
A
CC DD  
noted. System clock frequency is equal to 256f for Single and Dual Rate sampling modes, and 128f for Quad Rate sampling mode.  
S
S
PCM4202  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
RESOLUTION  
24  
Bits  
AUDIO DATA FORMAT  
Linear PCM interface formats  
Linear PCM word length  
Direct Stream Digital (DSD) output  
DIGITAL CHARACTERISTICS  
Input logic level  
2
Two’s complement, MSB first data  
I S, Left or Right Justified  
24  
1
Bits  
Bit  
V
0.7 x V  
0
V
DD  
V
IH  
DD  
V
0.3 x V  
V
IL  
DD  
Output logic level  
Input current  
V
I
= −2mA  
= +2mA  
OL  
0.8 x V  
V
OH  
OH  
DD  
V
I
0.2 x V  
+10  
−10  
+25  
−25  
54  
V
OL  
DD  
I
V
= V  
µA  
IH  
IN  
DD  
I
V
= 0V  
µA  
IL  
IN  
(1)  
Input current  
I
V
= V  
µA  
IH  
IN  
DD  
I
V
= 0V  
µA  
IL  
IN  
Single rate  
Dual rate  
Quad rate  
8
kHz  
kHz  
kHz  
%
(2)  
54  
108  
216  
55  
Sampling frequency  
f
S
108  
45  
System clock duty cycle  
50  
Single rate, SCKI = 256f  
Single rate, SCKI = 384f  
Single rate, SCKI = 512f  
Single rate, SCKI = 768f  
2.048  
3.072  
13.824  
20.736  
27.648  
38.4  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
S
S
S
S
4.096  
6.144  
(2)  
System clock frequency  
Dual rate, SCKI = 256f  
Dual rate, SCKI = 384f  
13.824  
20.736  
13.824  
20.736  
27.648  
38.4  
S
S
Quad rate, SCKI = 128f  
27.648  
38.4  
S
S
Quad rate, SCKI = 192f  
ANALOG OUTPUTS  
Input voltage, full-scale  
Input impedance  
Differential input  
6.0  
3
V
PP  
kΩ  
Common-mode rejection  
DC PERFORMANCE  
Output offset error  
85  
dB  
HPFD = 1  
4
4
3
% of FSR  
% of FSR  
% of FSR  
Gain error  
Gain mismatch channel-to-channel  
(1)  
(2)  
(3)  
Applies to the RST input, pin 19.  
Single, Dual, and Quad Rate sampling modes are described within this data sheet.  
Dynamic performance parameters are measured using an Audio Precision System Two Cascade or Cascade Plus test system. The  
measurementbandwidth is limited by using the Audio Precision 22Hz high-pass filter in combination with the Audio Precision 20kHz, f /2, or  
S
a user-defined 40kHz low-pass filter. All A-weighted measurements are performed using the Audio Precision A-weighting filter in combination  
with the previously mentioned filters.  
4
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
ELECTRICAL CHARACTERISTICS (continued)  
All parameters are specified at T = +25°C with V  
= +5V, V = +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise  
DD  
A
CC  
noted. System clock frequency is equal to 256f for Single and Dual Rate sampling modes, and 128f for Quad Rate sampling mode.  
S
S
PCM4202  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
(3)  
DYNAMIC PERFORMANCE  
f
= 48kHz, Single Rate  
BW = 20Hz to 20kHz  
S
Total harmonic distortion + noise  
Dynamic range  
THD+N  
THD+N  
THD+N  
V
= −0.5dBFS, f = 1kHz  
IN  
−105  
118  
−95  
dB  
dB  
dB  
dB  
IN  
V
V
= −60dBFS, f = 1kHz, A-Weighted  
IN  
112  
100  
IN  
Dynamic range, no weighting  
Channel separation  
V
= −60dBFS, f = 1kHz  
IN  
116  
IN  
120  
f
= 96kHz, Dual Rate  
BW = 20Hz to 40kHz  
= −0.5dBFS, f = 1kHz  
S
Total harmonic distortion + noise  
Dynamic range  
V
−105  
118  
dB  
dB  
dB  
dB  
IN  
IN  
= −60dBFS, f = 1kHz, A-Weighted  
IN  
IN  
= −60dBFS, f = 1kHz  
Dynamic range, no weighting  
Channel separation  
V
112  
IN  
IN  
120  
f
= 192kHz, Quad Rate  
BW = 20Hz to 40kHz  
= −0.5dBFS, f = 1kHz  
S
Total harmonic distortion + noise  
Dynamic range  
V
−103  
117  
dB  
dB  
dB  
dB  
IN  
IN  
V
= 0V  
, A-Weighted  
IN  
RMS  
= 0V  
Dynamic range, no weighting  
Channel separation  
V
108  
120  
IN  
RMS  
DSD Output, 64f Rate  
S
DSDBCK = 2.8224MHz  
= −0.5dBFS, f = 1kHz  
Total harmonic distortion + noise  
Dynamic range  
THD+N  
THD+N  
V
−102  
115  
dB  
dB  
dB  
IN  
IN  
V
V
= −60dBFS, f = 1kHz, A-Weighted  
IN  
IN  
Channel separation  
120  
DSD Output, 128f Rate  
S
DSDBCK = 5.6448MHz  
Total harmonic distortion + noise  
Dynamic range  
V
= −0.5dBFS, f = 1kHz  
IN  
−105  
118  
dB  
dB  
dB  
IN  
= −60dBFS, f = 1kHz, A-Weighted  
IN  
IN  
Channel separation  
120  
(1)  
(2)  
(3)  
Applies to the RST input, pin 19.  
Single, Dual, and Quad Rate sampling modes are described within this data sheet.  
Dynamic performance parameters are measured using an Audio Precision System Two Cascade or Cascade Plus test system. The  
measurementbandwidth is limited by using the Audio Precision 22Hz high-pass filter in combination with the Audio Precision 20kHz, f /2, or  
S
a user-defined 40kHz low-pass filter. All A-weighted measurements are performed using the Audio Precision A-weighting filter in combination  
with the previously mentioned filters.  
5
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
ELECTRICAL CHARACTERISTICS (continued)  
All parameters are specified at T = +25°C with V  
= +5V, V = +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise  
DD  
A
CC  
noted. System clock frequency is equal to 256f for Single and Dual Rate sampling modes, and 128f for Quad Rate sampling mode.  
S
S
PCM4202  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
DIGITAL DECIMATION FILTER  
Passband edge  
Single and Dual Rate  
Single and Dual Rate  
Single and Dual Rate  
Single and Dual Rate  
Single and Dual Rate  
Quad Rate  
0.453f  
Hz  
dB  
Hz  
dB  
sec  
Hz  
Hz  
dB  
Hz  
dB  
sec  
S
Passband ripple  
0.005  
Passband edge  
0.547f  
S
Stop band attenuation  
Group delay  
−100  
37/f  
S
Passband edge (−0.005dB)  
−3dB cutoff frequency  
Passband ripple  
0.375f  
S
Quad Rate  
0.490f  
S
Quad Rate  
0.005  
Passband edge  
Quad Rate  
0.770f  
S
Stop band attenuation  
Group delay  
Quad Rate  
−135  
Quad Rate  
9.5/f  
S
DIGITAL HIGH PASS FILTER  
Frequency response (−3dB)  
f /48000  
S
Hz  
POWER SUPPLY  
Voltage range  
V
V
+4.75  
+3.0  
+5.0  
+3.3  
+5.25  
+3.6  
VDC  
VDC  
CC  
DD  
Operating supply current  
V
f
= +5V, V  
= +3.3V  
= 48kHz, Single Rate  
CC  
DD  
55  
55  
55  
65  
65  
65  
mA  
mA  
mA  
S
f
= 96kHz, Dual Rate  
S
f
= 192kHz, Quad Rate  
S
I
V
= +5V, V  
= +3.3V  
= 48kHz, Single Rate  
DD  
CC DD  
f
10  
19  
13  
12  
25  
15  
mA  
mA  
mA  
S
f
= 96kHz, Dual Rate  
S
f
= 192kHz, Quad Rate  
S
Power-down mode current  
Total power dissipation  
V
= +5V, V = +3.3V, RST = 0  
DD  
CC  
I
I
Clocks applied  
Clocks applied  
10  
2
mA  
mA  
CC  
DD  
V
= +5V, V  
= +3.3V  
= 48kHz, Single Rate  
CC  
DD  
f
308  
338  
318  
365  
408  
375  
mW  
mW  
mW  
S
f
= 96kHz, Dual Rate  
S
f
= 192kHz, Quad Rate  
S
(1)  
(2)  
(3)  
Applies to the RST input, pin 19.  
Single, Dual, and Quad Rate sampling modes are described within this data sheet.  
Dynamic performance parameters are measured using an Audio Precision System Two Cascade or Cascade Plus test system. The  
measurementbandwidth is limited by using the Audio Precision 22Hz high-pass filter in combination with the Audio Precision 20kHz, f /2, or  
S
a user-defined 40kHz low-pass filter. All A-weighted measurements are performed using the Audio Precision A-weighting filter in combination  
with the previously mentioned filters.  
6
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
TYPICAL CHARACTERISTICS  
At T = +25°C with V  
= +5V, VDD = +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise noted.  
A
CC  
OVERALL CHARACTERISTICS  
SINGLE RATE FILTER  
STOP BAND ATTENUATION CHARACTERISTICS  
SINGLE RATE FILTER  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
fS = 48 kHz  
fS = 48 kHz  
0
50  
100  
150  
200  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.5  
Normalized Frequency (fS)  
0
1
0.75  
0.25  
Normalized Frequency (fS)  
TRANSIENT BAND CHARACTERISTICS  
SINGLE RATE FILTER  
PASSBAND RIPPLE CHARACTERISTICS  
SINGLE RATE FILTER  
0
0.02  
fS = 48kHz  
fS = 48kHz  
1
2
3
4
5
6
7
8
9
0
0.02  
0.04  
0.06  
0.08  
10  
0.1  
0.45  
0.47  
0.49  
0.51  
0.53  
0.55  
0
0.2  
0.4  
0.6  
0.1  
0.3  
0.5  
Normalized Frequency (fS)  
Normalized Frequency (fS)  
OVERALL CHARACTERISTICS  
DUAL RATE FILTER  
STOP BAND ATTENUATION CHARACTERISTICS  
DUAL RATE FILTER  
50  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
fS = 96kHz  
fS = 96kHz  
50  
100  
150  
200  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Normalized Frequency (fS)  
0.5  
Normalized Frequency (fS)  
0
1
0.75  
0.25  
7
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C with V  
= +5V, VDD = +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise noted.  
A
CC  
TRANSIENT BAND CHARACTERISTICS  
DUAL RATE FILTER  
PASSBAND RIPPLE CHARACTERISTICS  
DUAL RATE FILTER  
0
1
2
3
4
5
6
7
8
9
0.02  
0
fS = 96kHz  
fS = 96kHz  
0.02  
0.04  
0.06  
0.08  
10  
0.1  
0.45  
0.47  
0.49  
0.51  
0.53  
0.55  
0
0.2  
0.4  
0.6  
0.1  
0.3  
0.5  
Normalized Frequency (fS)  
Normalized Frequency (fS)  
OVERALL CHARACTERISTICS  
QUAD RATE FILTER  
STOP BAND ATTENUATION CHARACTERISTICS  
QUAD RATE FILTER  
50  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
fS = 192kHz  
fS = 192kHz  
50  
100  
150  
200  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Normalized Frequency (fS)  
1
0.5  
Normalized Frequency (fS)  
0
1
0.75  
0.25  
TRANSIENT BAND CHARACTERISTICS  
QUAD RATE FILTER  
PASSBAND RIPPLE CHARACTERISTICS  
QUAD RATE FILTER  
0
0.02  
0
fS = 192kHz  
fS = 192kHz  
1
2
3
4
5
6
7
8
9
3.90dB at 0.5fS  
0.02  
0.04  
0.06  
0.08  
10  
0.1  
0
0.2  
0.4  
0.6  
0.45  
0.47  
0.49  
0.51  
0.53  
0.55  
0.1  
0.3  
0.5  
Normalized Frequency (fS)  
Normalized Frequency (fS)  
8
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C with V  
= +5V, VDD = +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise noted.  
A
CC  
HIGH PASS FILTER  
HIGH PASS FILTER  
PASSBAND CHARACTERISTICS  
STOP BAND CHARACTERISTICS  
5
0.02  
0
20  
40  
60  
80  
0.02  
0.04  
0.06  
0.08  
0.1  
100  
0
20  
20  
0.1  
0.2  
0.3  
0.4  
10k 20k  
10k 20k  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Normalized Frequency (fS/1000)  
Normalized Frequency (fS/1000)  
FFT PLOT  
FFT PLOT  
(fS = 48kHz, fIN = 997Hz at 60dB)  
(fS = 48kHz, fIN = 997Hz at 20dB)  
0
0
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
180  
100  
1k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
(fS = 48kHz, No Input [Idle])  
(fS = 96kHz, fIN = 997Hz at 20dB)  
0
0
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
180  
100  
1k  
20  
100  
1k  
10k  
40k  
Frequency (Hz)  
Frequency (Hz)  
9
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C with V  
= +5V, VDD = +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise noted.  
A
CC  
FFT PLOT  
(fS = 96kHz, fIN = 997Hz at 60dB)  
FFT PLOT  
(fS = 96kHz, No Input [Idle])  
0
0
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
180  
20  
20  
20  
100  
1k  
10k  
40k  
20  
100  
1k  
10k  
40k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
(fS = 192kHz, fIN = 997Hz at 60dB)  
(fS = 192kHz, fIN = 997Hz at 20dB)  
0
0
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
180  
100  
1k  
10k  
100k  
20  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
THD+N vs AMPLITUDE  
(fS = 48kHz, fIN = 1kHz, BW = 10Hz to 20kHz)  
FFT PLOT  
(fS = 192kHz, No Input [Idle])  
90  
92  
94  
96  
98  
0
20  
40  
60  
80  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
100  
120  
140  
160  
180  
20  
140  
120  
100  
80  
60  
40  
0
100  
1k  
10k  
100k  
Input Amplitude (dB)  
Frequency (Hz)  
10  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C with V  
CC  
= +5V, VDD = +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise noted.  
A
THD+N vs FREQUENCY  
(fS = 48kHz, Input Amplitude = 0.5dB,  
THD+N vs AMPLITUDE  
BW = 10Hz to 20kHz)  
(fS = 96kHz, fIN = 1kHz, BW = 10Hz to 40kHz)  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
90  
92  
94  
96  
98  
90  
92  
94  
96  
98  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
20  
100  
1k  
10k 20k  
20  
140  
120  
100  
80  
60  
40  
0
Input Frequency (Hz)  
Input Amplitude (dB)  
THD+N vs FREQUENCY  
THD+N vs AMPLITUDE  
(fS = 192kHz, fIN = 1kHz, BW = 10Hz to 40kHz)  
(fS = 96kHz, Input Amplitude = 0.5dB,  
BW = 10Hz to 40kHz)  
90  
92  
94  
96  
98  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
90  
92  
94  
96  
98  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
20  
140  
120  
100  
80  
60  
40  
0
20  
100  
1k  
10k  
40k  
Input Amplitude (dB)  
Input Frequency (Hz)  
THD+N vs FREQUENCY  
(fS = 192kHz, Input Amplitude = 0.5dB,  
BW = 10Hz to 40kHz)  
90  
92  
94  
96  
98  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
20  
100  
1k  
10k  
80k  
Input Frequency (Hz)  
11  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
PRODUCT OVERVIEW  
The PCM4202 is a high-performance, stereo audio  
analog-to-digital (A/D) converter designed for use in  
professional and broadcast audio applications. The  
PCM4202 features 24-bit linear PCM or 1-bit Direct  
Stream Digital (DSD) data output capability for both  
channels. Sampling rates up to 216kHz are supported for  
PCM output formats, while 64x or 128x oversampled 1-bit  
data is supported for DSD output mode. Native support for  
both PCM and DSD data formats makes the PCM4202  
ideal for use in a wide variety of audio recording and  
processing applications.  
modulators, in addition to generating DC common-mode  
bias voltage outputs for use with external input circuitry.  
Linear phase digital decimation filtering is provided for the  
24-bit PCM data outputs, with a minimum stop band  
attenuation of −100dB for all sampling modes.  
The PCM output mode features clipping flag outputs for  
each channel, as well as a digital high-pass filter for DC  
removal. The PCM4202 may be configured using  
dedicated input pins for sampling mode and audio data  
format selection, high-pass filter enable/disable, and  
reset/power-down operation.  
The PCM4202 features 1-bit delta-sigma modulators  
employing density modulated dither for improved dynamic  
performance. Differential voltage inputs are utilized for the  
modulators, providing excellent common-mode rejection.  
On-chip voltage references are provided for the  
A +5V power supply is required for the analog section of  
the device, while a +3.3V power supply is required for the  
digital circuitry. Figure 1 shows the functional block  
diagram for the PCM4202.  
VINR+  
LRCK  
or DSDBCK  
Delta−Sigma  
Modulator  
Decimation  
Filter  
HPF  
VINR  
BCK  
or DSDL  
V
COMR  
AGNDR  
REFR  
DATA  
or DSDR  
Voltage  
Reference  
V
Audio  
Serial  
Port  
VREF  
AGNDL  
COML  
L
Voltage  
Reference  
CLIPR  
CLIPL  
S/M  
V
FMT0  
FMT1  
VIN  
L
Delta−Sigma  
Modulator  
Decimation  
Filter  
HPF  
V
INL+  
HPFD  
FS0  
Reset  
Logic  
Clock  
Control  
Power  
FS1  
FS2  
SCKI  
RST  
VCC AGND  
VDD DGND  
Figure 1. PCM4202 Functional Block Diagram  
12  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
Refer to the Applications Information section of this  
datasheet for the recommended voltage reference pin  
connections.  
ANALOG INPUTS  
The PCM4202 includes two channels of A/D conversion,  
each with its own pair of differential voltage input pins. The  
VINL+ (pin 4) and VINL− (pin 5) inputs correspond to Left  
channel input, while VINR+ (pin 25) and VINR− (pin 24)  
correspond to the Right channel input. The average input  
impedance of each input pin is 3k.  
Each analog input pair accepts a full-scale input voltage of  
approximately 6.0VPP differential, which corresponds to a  
2.12VRMS or +8.75dBu input swing. The analog input  
should not swing below analog ground or above the VCC  
power supply by more than 300mV. Refer to the  
Applications Information section of this datasheet for an  
example input buffer circuit.  
The PCM4202 analog inputs are internally biased to  
approximately VCC/2. This bias voltage is referred to as the  
common mode voltage, and is output at VCOML (pin 3) and  
VCOMR (pin 26), corresponding to the Left and Right  
channels, respectively. These outputs provide a level  
shifting voltage for biasing external input buffer circuitry.  
Although the VCOML and VCOMR outputs are internally  
buffered, the output current is limited to a few hundred µA.  
It is recommended to connect these pins to external nodes  
with greater than 1Mimpedance, or to buffer the outputs  
with a voltage follower circuit when driving multiple  
external or low impedance nodes.  
Refer to the Applications Information section of this  
datasheet for an example input buffer circuit that utilizes  
the common-mode bias voltage outputs.  
VOLTAGE REFERENCES AND COMMON MODE  
BIAS VOLTAGE OUTPUTS  
The PCM4202 includes two on-chip voltage references,  
one each for the Left and Right channels. The VREFL (pin  
1) and VREFR (pin 28) outputs correspond to high  
reference outputs for Left and Right channels,  
respectively. De-coupling capacitors are connected  
between each of these pins and the corresponding  
reference ground pin, either AGNDL (pin 2) for the VREFL  
output or AGNDR (pin 27) for the VREFR output. It is  
recommended to have at least a 0.1µF X7R ceramic chip  
capacitor connected in parallel with a 33µF low ESR  
tantalum chip capacitor for de-coupling purposes. The  
SYSTEM CLOCK INPUT  
The PCM4202 requires an external system clock, from  
which the modulator oversampling and digital sub-system  
clocks are derived. The system clock is applied at the  
SCKI input (pin 18). The frequency of the system clock is  
dependent upon the desired PCM output sampling  
frequency or DSD data rate, along with the sampling mode  
selection. Table 1 shows the corresponding system clock  
frequencies for common output sampling and data rates,  
along with the corresponding sampling modes. Timing  
requirements for the system clock are shown in Figure 2.  
V
REFL and VREFR outputs should not be utilized to bias  
external circuitry, because they are not buffered. Use the  
COML (pin 3) and VCOMR (pin 26) outputs to bias external  
circuitry, as described in the following paragraphs.  
V
Table 1. System Clock Frequencies for Common Output Sampling and Data Rates  
SYSTEM CLOCK FREQUENCY (MHz)  
SAMPLING FREQUENCY, f  
(kHz)  
S
128f  
192f  
256f  
384f  
512f  
768f  
S
SAMPLING MODE  
Single Rate  
Single Rate  
Single Rate  
Dual Rate  
S
S
S
S
S
32  
44.1  
48  
n/a  
n/a  
n/a  
n/a  
8.192  
11.2896  
12.288  
22.5792  
24.576  
n/a  
12.288  
16.9344  
18.432  
33.8688  
36.864  
n/a  
16.384  
22.5792  
24.576  
n/a  
24.576  
33.8688  
36.864  
n/a  
n/a  
n/a  
88.2  
96  
n/a  
n/a  
Dual Rate  
n/a  
n/a  
n/a  
n/a  
Quad Rate  
176.4  
192  
22.5792  
24.576  
n/a  
33.8688  
36.864  
n/a  
n/a  
n/a  
Quad Rate  
n/a  
n/a  
n/a  
n/a  
DSD Output  
DSD Output  
128f Data (Single Rate)  
11.2896  
11.2896  
16.9344  
16.9344  
22.5792  
n/a  
33.8688  
n/a  
S
64f Data (Dual Rate)  
n/a  
n/a  
S
13  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
t
SCKIH  
SCKI  
t
t
SCKI  
SCKIL  
DESCRIPTION  
System Clock Period  
PARAMETER  
tSCKI  
MIN  
26  
MAX  
UNITS  
ns  
tSCKIH  
System Clock High Pulse Time  
System Clock Low Pulse Time  
12  
ns  
tSCKIL  
12  
ns  
Figure 2. System Clock Timing Requirements  
Table 3, and Table 4 indicate the sampling mode  
selections for PCM Master and Slave mode operation, as  
well as the DSD Output mode.  
SAMPLING MODES  
The PCM4202 may be operated in one of three PCM  
sampling modes, or at one of two DSD output data rates.  
The PCM sampling modes are referred to as Single Rate,  
Dual Rate, and Quad Rate.  
Table 2. Sampling Mode Selection for PCM  
Master Mode Operation  
Single Rate mode is utilized for sampling rates up to  
54kHz. The delta-sigma modulator oversamples the  
analog input signal by a rate equal to 128 times the desired  
output sampling rate.  
SAMPLING MODE WITH  
SYSTEM CLOCK RATE  
FS2  
0
FS1  
0
FS0  
0
Single Rate with f  
Single Rate with f  
Single Rate with f  
Single Rate with f  
= 768f  
= 512f  
= 384f  
= 256f  
SCKI  
SCKI  
SCKI  
SCKI  
SCKI  
SCKI  
S
S
S
S
0
0
1
Dual Rate mode is utilized for sampling rates higher than  
54kHz and up to 108kHz. The delta-sigma modulator  
oversamples the analog input signal by a rate equal to 64  
times the desired output sampling rate.  
0
1
0
0
1
1
1
0
0
Dual Rate with f  
Dual Rate with f  
= 384f  
= 256f  
S
1
0
1
S
Quad Rate mode is utilized for sampling frequencies  
higher than 108kHz and up to 216kHz. The delta-sigma  
modulator oversamples the analog input signal by a rate  
equal to 32 times the desired output sampling rate.  
1
1
0
Quad Rate with f  
= 192f  
SCKI  
SCKI  
S
S
1
1
1
Quad Rate with f  
= 128f  
For DSD output data, the user may select either 64fS or  
128fS oversampled data rates, where fS is the base  
sampling rate, which is 44.1kHz for Super Audio CD  
(SACD) applications. The 64fS data rate is analogous to  
the Dual Rate PCM sampling mode, where the analog  
input signal is oversampled by a rate equal to 64 times the  
base sampling rate. The 128fS data rate corresponds to  
the Single Rate PCM sampling mode, where the analog  
input signal is oversampled by a rate equal to 128 times the  
base sampling rate.  
Table 3. Sampling Mode Selection for PCM Slave  
Mode Operation  
FS2  
0
FS1  
0
FS0  
0
SAMPLING MODE  
Single Rate with Clock Auto-Detection  
Dual Rate with Clock Auto-Detection  
Quad Rate with Clock Auto-Detection  
Reserved  
0
0
1
0
1
0
0
1
1
1
0
0
Reserved  
1
0
1
Reserved  
Table 1 indicates the sampling mode utilized for common  
system clock and sampling rate combinations. The FS0  
(pin 9), FS1 (pin 10), and FS2 (pin 11) inputs are utilized  
to select the sampling mode for the PCM4202. If the state  
of the sampling mode pins is changed any time after  
power-up reset initialization, the user should issue an  
external forced reset to re-initialize the PCM4202. Table 2,  
1
1
0
Reserved  
1
1
1
Reserved  
14  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
In Slave mode, the PCM bit and left/right clocks (BCK and  
LRCK) are configured as input pins. DSD data formats are  
not supported in Slave mode. Slave mode supports  
commonly used PCM audio data formats, including Left  
Justified, Right Justified, and Philips I2S.  
Table 4. Sampling Mode Selection for DSD  
Output Mode Operation  
FS2 FS1 FS0  
SAMPLING MODE  
128f DSD Output Rate with f  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
= 768f  
= 512f  
= 384f  
= 256f  
S
SCKI  
SCKI  
SCKI  
SCKI  
SCKI  
SCKI  
S
S
S
S
128f DSD Output Rate with f  
S
In Master mode, the PCM bit and left/right clocks (BCK and  
LRCK respectively) are configured as output pins, and are  
derived from the system clock input (SCKI). Alternatively,  
the DSD output data may be provided at the port output.  
128f DSD Output Rate with f  
S
128f DSD Output Rate with f  
S
64f DSD Output Rate with f  
= 384f  
S
S
64f DSD Output Rate with f  
S
= 256f  
S
Table 5 shows the available data format selections.  
Figure 3 and Figure 4 illustrate the PCM and DSD data  
formats.  
Reserved  
Reserved  
Table 5. Audio Data Format Selection  
AUDIO DATA FORMATS  
FMT1  
FMT0  
AUDIO DATA FORMAT  
0
0
1
1
0
1
0
1
24-bit Left Justified  
As mentioned previously, the PCM4202 supports 24-bit  
linear PCM output data, as well as 1-bit DSD output data.  
The available data formats are dependent upon whether  
the PCM4202 is configured in Slave or Master mode. The  
S/M (pin 8), FMT0 (pin 6), and FMT1 (pin 7) inputs are  
utilized to select either Slave or Master mode and the  
corresponding audio data format.  
2
24-bit I S  
24-bit Right Justified  
1-bit DSD (Master Mode Only)  
Left Channel  
Right Channel  
LRCKI  
BCKI  
MSB  
LSB  
MSB  
LSB  
DATA  
(a) Left Justified Data Format  
LRCKI  
BCKI  
MSB  
LSB  
MSB  
LSB  
DATA  
(b) Right Justified Data Format  
LRCKI  
BCKI  
MSB  
LSB  
MSB  
LSB  
DATA  
(c) I2S Data Format  
1/fS  
2
Figure 3. PCM Data Formats: Left Justified, Right Justified, and Philips I S  
15  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
In Slave mode, the BCK and LRCK signals are inputs, with  
the clocks being generated by a master timing source,  
such as a DSP serial port, PLL clock synthesizer, or a  
crystal oscillator/divider circuit. The BCK rate is typically  
equal to 128fS in Single Rate sampling mode, and 64fS in  
Dual or Quad Rate sampling modes. Although other BCK  
clock rates are possible, they are not recommended as a  
result if potential clock phase sensitivity issues, which can  
degrade the dynamic performance of the PCM4202. The  
LRCK clock must be operated at fS, the output sampling  
rate.  
DSDBCK  
DSDL  
DN3 DN2 DN1 DN DN+1 DN+2 DN+3 DN+4  
DSDR  
Figure 4. DSD Output Data Format  
AUDIO SERIAL PORT OPERATION  
This section provides additional details regarding the  
PCM4202 audio serial port, utilized for 24-bit linear PCM  
or 1-bit DSD output data. PCM output operation will be  
described in this section, while DSD output mode  
operation will be described in the following section.  
Figure 5 illustrates the typical audio serial port  
connections between a PCM4202 and an audio signal  
processor when using the PCM output data formats.  
Figure 6 illustrates the audio serial port timing for both the  
Master and Slave modes of operation.  
For PCM data formats, the serial port is comprised of three  
signals: BCK (pin 16), LRCK (pin 17), and DATA (pin 15).  
The BCK signal functions as the data (or bit) clock for the  
serial audio data. The LRCK is the left/right word clock for  
the audio serial port. The LRCK and BCK clocks must be  
synchronous. The DATA signal is the serial audio data  
output, with data being clocked out on the falling edge of  
the BCK signal. DATA carries audio data for both the Left  
and Right channels.  
DSP  
FSX  
PCM4202  
LRCK  
CLKR  
DR  
BCK  
DATA  
SCKI  
As mentioned in the Audio Data Format section of this  
datasheet, the audio serial port can operate in Master or  
Slave mode. In Master mode, the BCK and LRCK clock  
signals are outputs, derived from the system clock input,  
SCKI. The BCK clock is fixed at 128fS for Single Rate  
sampling mode, and at 64fS for Dual or Quad Rate  
sampling modes. The LRCK clock operates at fS, the  
output sampling rate (that is, 48kHz, 96kHz, etc.).  
System Clock  
Figure 5. Typical Audio Serial Port Connections  
2
for Left Justified, Right Justified, and I S Data  
Formats  
tLRCKHL  
tLRCKHL  
tLRCKHL  
LRCK  
BCK  
tBCKP  
tBCKHL  
DATA  
tBCKDO  
DESCRIPTION  
MIN  
5
MAX  
UNITS  
µs  
PARAMETER  
tLRCKP  
LRCK Period  
LRCK High/Low Time  
tLRCKHL  
tBCKP  
tBCKHL  
tBCKDO  
2.25  
78  
µs  
BCK Period  
ns  
BCK High/Low Time  
35  
ns  
SDOUT Data Output Delay from BCK Falling Edge  
10  
ns  
2
Figure 6. Master and Slave Mode Audio Serial Port Timing: Left Justified, Right Justified, and Philips I S  
16  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
filter can be enabled or disabled for both the Left and Right  
channels using the HPFD input (pin 12). Driving the HPFD  
input low enables the high-pass filter. Driving the HPFD  
input high disables the high-pass filter.  
DSD OUTPUT MODE OPERATION  
The output port DSD mode operation consists of a single  
DSD data clock signal, DSDBCK (pin 17), along with two  
synchronous DSD data lines, DSDR (pin 15) and DSDL  
(pin 16). The data lines correspond to Right and Left  
channels, respectively. The DSD output rate is determined  
by the sampling mode settings for the device, discussed  
in the Sampling Modes section of this datasheet.  
The −3dB corner frequency for the high-pass filter scales  
with the output sampling rate, where f−3dB = fS/48000,  
where fS is the output sampling rate.  
For DSD output data, the serial port is configured in Master  
mode, with the DSDBCK derived from the system clock  
input, SCKI. The DSDBCK is equivalent to the  
oversampling clock supplied to the delta-sigma  
modulators. The DSD data outputs, DSDR through DSDL,  
are synchronous to the DSDBCK. The clock and data lines  
are then connected to a data capture or processing device.  
CLIPPING FLAGS  
The PCM4202 includes a clipping flag output for each  
channel. The outputs are designated CLIPL (pin 21) and  
CLIPR (pin 20), corresponding to the Left and Right  
channels, respectively. The clipping flags are only  
available when using PCM output data formats.  
A clipping flag is forced high as soon as the digital output  
of the decimation filter exceeds the full-scale range for the  
corresponding channel. The clipping flag output is held  
high for a maximum of (256 x N) / fS seconds, where N =  
128 for Single Rate sampling mode, 256 for Dual Rate  
sampling mode, and 512 for Quad Rate sampling mode.  
If the decimation filter output does not exceed the full-scale  
range during the initial hold period, the output returns to a  
low state upon termination of the hold period.  
Figure 7 illustrates the DSD port timing for both the DSD  
output mode.  
HIGH-PASS FILTER  
A digital high-pass filter is available for removing the DC  
component of the digitized input signal. The filter is located  
at the output of the digital decimation filter, and is available  
only when using PCM output data formats. The high-pass  
DSDBCK  
tDCKP  
tDCKHL  
DSDL  
DSDR  
tDCKDO  
DESCRIPTION  
MIN  
156  
70  
MAX  
UNITS  
PARAMETER  
tDCKP  
ns  
ns  
ns  
LRCK pulse width  
LRCK active edge to BCK sampling edge delay  
Data setup time  
tDCKP  
tDCKP  
10  
Figure 7. DSD Data Port Timing  
17  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
forced low. Once the initialization sequence is completed,  
the PCM4202 output is enabled. Figure 8 shows the  
power-on reset sequence timing.  
RESET OPERATION  
The PCM4202 includes two reset functions: power-on and  
externally controlled. This section describes the operation  
of each of these functions.  
The user may force a reset initialization sequence at any  
time while the system clock input is active by utilizing the  
RST input (pin 19). The RST input is active low, and  
requires a minimum low pulse width of 40ns. The  
low-to-high transition of the applied reset signal forces an  
initialization sequence to begin. As in the case of the  
power-on reset, the initialization sequence requires 1024  
system clock periods for completion. Figure 9 illustrates  
the reset sequence initiated when using the RST input.  
On power-up, the internal reset signal is forced low, forcing  
the PCM4202 into a reset state. The power-on reset circuit  
monitors the VDD (pin 14) and VCC (pin 22) power supplies.  
When the VDD supply exceeds +2.0V ( 400mV) and the  
VCC supply exceeds +4.0V ( 400mV), the internal reset  
signal is forced high. The PCM4202 then waits for the  
system clock input (SCKI) to become active. Once the  
system clock has been detected, the initialization  
sequence begins. The initialization sequence requires  
1024 system clock periods for completion. During the  
initialization sequence, the ADC output data pins are  
Figure 10 shows the state of the audio data outputs for the  
PCM4202 before, during and after the reset operations.  
~ 4.0V  
VCC  
0V  
~ 2.0V  
VDD  
0V  
Internal  
Reset  
1024 System Clock Periods  
Required for Initialization  
0V  
0V  
SCKI  
System Clock  
Indeterminate  
or Inactive  
Figure 8. Power-On Reset Sequence  
18  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
t
> 40ns  
RSTL  
RST  
0V  
0V  
1024 System Clock Periods  
Required for Initialization  
Internal  
Reset  
SCKI  
0V  
Figure 9. External Reset Sequence  
HI  
Internal  
Reset  
LO  
Output  
Data Pins  
Outputs are Forced Low  
for 1024 SCKI Periods  
Valid Output Data  
Outputs are Forced Low  
Valid Output Data  
Initialization  
Period  
Figure 10. ADC Digital Output State for Reset Operations  
19  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
A single ground plane is utilized for the analog and digital  
ground connections. This approach ensures a low  
impedance connection between the analog and digital  
ground pins. The +5V analog and +3.3V digital power  
connections are provided from separate supplies.  
POWER-DOWN OPERATION  
The PCM4202 can be forced to a power-down state by  
applying a low level to the RST input (pin 19) for a minimum  
of 65,536 system clock cycles. In power-down mode, all  
internal clocks are stopped, and output data pins are  
forced low. The system clock may then be removed to  
conserve additional power. Before exiting power-down  
mode, the system and audio clocks should be restarted.  
Once the clocks are active, the RST input may be driven  
high, which initiates a reset initialization sequence.  
Figure 11 illustrates the state of the output data pins during  
before, during, and upon exiting the power-down state.  
Figure 13 illustrates an example input buffer circuit,  
designed for balanced differential input signals. This circuit  
is utilized on the PCM4202EVM evaluation board. The  
2.7nF and 100pF capacitors shown at the output of the  
buffer should be located as close as possible to the analog  
input pins of the PCM4202. The buffer shown in Figure 13  
can be easily made to function as a single ended to  
differential converter by simply grounding the (−) input  
terminal of the buffer circuit.  
APPLICATIONS INFORMATION  
The input impedance for the VCOMIN pin of the OPA1632  
A typical connection diagram for the PCM4202 is shown  
in Figure 12. Capacitors for power supply and reference  
bypassing are shown with recommended values. Bypass  
capacitors should be located as close as possible to the  
power supply and reference pins of the PCM4202. Due to  
its small size, the 0.1µF capacitor can be located on the  
component (top) side of the board, while the larger 33µF  
capacitor can be located on the solder (bottom) side of the  
board.  
is relatively low and will load down the VCOML or VCOM  
R
outputs from the PCM4202. A voltage follower circuit is  
required to buffer these outputs, with a typical circuit  
configuration shown in Figure 14. An OPA227 is utilized as  
the buffer for the PCM4202EVM evaluation board.  
However, alternative op amps with comparable  
performance may be substituted.  
HI  
RST  
LO  
Outputs are  
Forced Low  
Outputs are  
Forced Low  
Output  
Data Pins  
Outputs are  
Forced Low  
Valid Output Data  
Valid Output Data  
1024  
65,536  
SCKI Periods  
Required for  
Initialization  
SCKI Periods  
Enter  
Power−Down  
State  
Figure 11. ADC Digital Output State for Power-Down Operations  
20  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
µ
µ
33 F  
33 F  
+
+
µ
µ
0.1 F  
0.1 F  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VREF  
AGNDL  
COML  
VINL+  
L
VREF  
AGNDR  
COMR  
VINR+  
R
µ
µ
0.1 F  
0.1 F  
3
Input Buffer  
V
V
4
Left Channel  
Analog Input  
Right Channel  
Analog Input  
5
INL  
VINR  
V
6
+5V  
FMT0  
FMT1  
S/M  
AGND  
VCC  
7
+
PCM4202  
µ
µ
33 F  
0.1 F  
8
From  
CLIPL  
CLIPR  
RST  
To Clipping  
Indicators  
µ
Logic, P,  
9
or  
FS0  
Hardwired  
Connection  
10  
11  
12  
13  
14  
To A/D or System Reset  
To Audio System Clock  
FS1  
FS2  
SCKI  
HPFD  
DGND  
VDD  
LRCK or DSDBCK  
BCK or DSDL  
Digital Audio  
Transmitter or  
Processor  
µ
0.1 F  
DATA or DSDR  
µ
33 F  
+
+3.3V  
Figure 12. Typical Connection Diagram  
21  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
270  
1nF  
15V  
µ
10 F  
+
µ
0.01 F  
6
7
100pF  
1k  
40.2  
40.2  
8
1
5
4
(+)  
EN  
+
To VIN  
Differential  
Analog Input  
OPA1632  
2.7nF  
1k  
( )  
VOCM  
To VIN  
100pF  
2
3
1k  
From  
Buffered VCOM  
in Figure 14.  
µ
0.01 F  
µ
0.1 F  
µ
10 F  
+
+15V  
1nF  
270  
Figure 13. Example Input Buffer Circuit  
OPA227  
PCM4202  
or equivalent  
VCOM  
L
To  
µ
0.1 F  
Buffered VCOM  
in Figure 13.  
or  
VCOM  
R
Figure 14. Example Buffer Circuit for V  
L and V  
R
COM  
COM  
22  
ꢀ ꢁꢂ ꢃ ꢄꢅ ꢄ  
www.ti.com  
SBAS290B − JULY 2003 − SEPTEMBER 2004  
COMPATIBILITY WITH THE PCM1804  
D
D
When operating in Master mode with Single Rate  
sampling selected, the audio serial port bit clock  
Although the PCM4202 and PCM1804 are pin- and  
function-compatible, there are a few differences between  
the two devices that the designer should be aware of.  
(BCK) is equal to 64f for the PCM1804, while the  
S
BCK rate is equal to 128f for the PCM4202.  
S
The following pins on the PCM4202 and PCM1804  
have different names, but they perform the same  
functions.  
DThese differences are noted here for clarity.  
The full-scale input of the PCM4202 is 6.0V  
PP  
differential, while it is 5.0V for the PCM1804. This  
PP  
is a result of the PCM4202 having an internal +3.0V  
voltage reference, and the PCM1804 having an  
internal +2.5V voltage reference.  
TERMINAL  
NUMBER  
PCM4202  
TERMINAL NAME  
PCM1804  
TERMINAL NAME  
9
FS0  
FS1  
OSR0  
OSR1  
OSR2  
BYPAS  
OVFR  
OVFL  
10  
11  
12  
20  
21  
D
D
The PCM1804 includes +5V tolerant digital inputs.  
The PCM4202 does not include these because the  
digital inputs are designed for interfacing to +3.3V  
logic.  
FS2  
HPFD  
CLIPR  
CLIPL  
The reset pin (RST) pin of the PCM4202 has an  
internal pull-up resistor. For the PCM1804, this pin  
has an internal pull-down resistor.  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM4202DB  
PCM4202DBR  
PCM4202DBT  
PCM4202DBTG4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SSOP  
SSOP  
DB  
DB  
DB  
DB  
28  
28  
28  
28  
50  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-10 to 70  
-10 to 70  
-10 to 70  
-10 to 70  
PCM4202  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
PCM4202  
PCM4202  
PCM4202  
250  
250  
RoHS & Green  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PCM4202DBR  
PCM4202DBT  
SSOP  
SSOP  
DB  
DB  
28  
28  
1000  
250  
330.0  
180.0  
16.4  
16.4  
8.45 10.55  
8.45 10.55  
2.5  
2.5  
12.0  
12.0  
16.2  
16.2  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
PCM4202DBR  
PCM4202DBT  
SSOP  
SSOP  
DB  
DB  
28  
28  
1000  
250  
356.0  
210.0  
356.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
DB SSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
PCM4202DB  
28  
50  
530  
10.5  
4000  
4.1  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DB0028A  
SSOP - 2 mm max height  
S
C
A
L
E
1
.
5
0
0
SMALL OUTLINE PACKAGE  
C
8.2  
7.4  
TYP  
A
0.1 C  
SEATING  
PIN 1 INDEX AREA  
PLANE  
26X 0.65  
28  
1
2X  
10.5  
9.9  
8.45  
NOTE 3  
14  
15  
0.38  
0.22  
28X  
0.15  
C A B  
5.6  
5.0  
B
NOTE 4  
2 MAX  
0.25  
GAGE PLANE  
(0.15) TYP  
SEE DETAIL A  
0.95  
0.55  
0.05 MIN  
0 -8  
A
15  
DETAIL A  
TYPICAL  
4214853/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-150.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DB0028A  
SSOP - 2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
28X (1.85)  
(R0.05) TYP  
28  
1
28X (0.45)  
26X (0.65)  
SYMM  
14  
15  
(7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4214853/B 03/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DB0028A  
SSOP - 2 mm max height  
SMALL OUTLINE PACKAGE  
28X (1.85)  
SYMM  
(R0.05) TYP  
28  
1
28X (0.45)  
26X (0.65)  
SYMM  
14  
15  
(7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4214853/B 03/2018  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

PCM4202-EP

High-Performance, 24 Bit, 216 kHz Sampling, Stereo Audio Analog-to-Digital Converte
TI

PCM4202DB

High-Performance 24-Bit, 216kHz Sampling Stereo Audio Analog-to-Digital Converter
BB

PCM4202DB

118dB SNR 立体声音频 ADC | DB | 28 | -10 to 70
TI

PCM4202DBR

High-Performance 24-Bit, 216kHz Sampling Stereo Audio Analog-to-Digital Converter
BB

PCM4202DBR

118dB SNR 立体声音频 ADC | DB | 28 | -10 to 70
TI

PCM4202DBRG4

118dB SNR Stereo Audio ADC 28-SSOP -10 to 70
TI

PCM4202DBT

High-Performance 24-Bit, 216kHz Sampling Stereo Audio Analog-to-Digital Converter
BB

PCM4202DBT

118dB SNR 立体声音频 ADC | DB | 28 | -10 to 70
TI

PCM4202DBTG4

118dB SNR 立体声音频 ADC | DB | 28 | -10 to 70
TI

PCM4202IDBREP

High-Performance, 24 Bit, 216 kHz Sampling, Stereo Audio Analog-to-Digital Converte
TI

PCM4204

HIGH PERFORMANCE 24 BIT 216KHZ SAMPLING FOUR CHANNEL AUDIO ANALOG TO DIGITAL CONVERTER
BB

PCM4204

118dB SNR 4 通道音频 ADC
TI