PCM5252RHBR [TI]

具有 miniDSP 和智能放大器功能的 114dB 32 位立体声差分输出 DAC | RHB | 32 | -25 to 85;
PCM5252RHBR
型号: PCM5252RHBR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 miniDSP 和智能放大器功能的 114dB 32 位立体声差分输出 DAC | RHB | 32 | -25 to 85

放大器 转换器
文件: 总123页 (文件大小:2653K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
PCM5252Purepath™ 智能放大器 4.2VRMS DirectPath™114dB 音频立  
体声差分输出 DAC  
1 特性  
3 说明  
1
差分 DirectPath™ 接地偏置输出  
PCM5252是一款单片互补金属氧化物半导体 (CMOS)  
集成电路,由立体声数模转换器 (DAC) 和采用薄型小  
外形尺寸 (TSSOP) 封装的附加支持电路组成。  
智能放大器技术  
市场领先的低带外噪声  
可选数字滤波器延迟与性能  
无需隔离直流电流的电容器  
集成的负电荷泵  
PCM5252使用 TI 最新一代高级分段 DAC 架构产品,  
可实现出色的动态性能并提升针对时钟抖动的耐受度。  
PCM5252集成了一个完全可编程的 miniDSP 内核,允  
许开发人员将滤波器、动态范围控件、定制插值器等各  
类 功能 集成到相关产品中。  
智能静音系统;软斜升或斜降搭配模拟静音,实现  
120dB 静音信噪比 (SNR)  
具有 BCK 基准的集成高性能音频锁相环 (PLL),可  
在内部生成 SCK  
PCM5252集成了德州仪器 (TI) PurePath™ 智能放大  
器技术的 ROM 组件,可更多地以峰值功率(而非平均  
额定功率)驱动扬声器,同时不必担心扬声器因音圈偏  
移或热过载而受损。  
接收 16 位、24 位和 32 位音频数据  
PCM 数据样式:I2S,左对齐  
通用串行接口 (SPI) 或者 I2C 控制  
硬件配置  
PCM5252提供 4.2 VRMS 中央接地差分输出(设计人员  
无需在输出端连接隔直电容)以及传统意义上与单电源  
线路驱动器相关的外部静音电路。”  
LRCK BCK 被置为无效时,自动进入省电模  
1.8V 3.3V 故障安全低电压互补金属氧化物半导  
(LVCMOS) 数字输入  
器件上集成的 PLL 免除了对于系统时钟(通常称为主  
时钟)的需要,从而实现一个 3 线制 I2C 连接并减少  
了系统电磁干扰 (EMI)。  
单电源运算:  
3.3V 模拟电源、1.8V 3.3V 数字电源  
集成型加电复位  
相关框图请参见Functional Block Diagram。  
小型32-pin VQFN封装  
器件信息(1)  
2 应用  
部件名称  
PCM5252  
封装  
VQFN (32)  
封装尺寸(标称值)  
HiFi 智能手机  
5.00mm x 5.00mm  
A/V 接收器  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
DVDBD 播放器  
HDTV 接收器  
简化系统图  
2
DOUT  
I
S
2ch Single Ended  
BCK  
Current Segment DAC  
TAS5630B  
PCM1863/5  
miniDSPs,  
Filters  
LRCK  
IN  
AUX  
2ch Single Ended  
PCM5252  
TPA6120A2  
Analog  
Sensor  
BT Module  
WiLAN chip  
MSP430  
- Light Intensity  
- Ultrasonic  
- Battery Level  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASE63  
 
 
 
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 48  
Application and Implementation ........................ 54  
9.1 Application Information............................................ 54  
9.2 Typical Application .................................................. 54  
1
2
3
4
5
6
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison ............................................... 3  
Pin Configuration and Functions......................... 4  
6.1 Control Mode Effect On Pin Assignments ................ 4  
6.2 Pin Assignments ....................................................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings ............................................................ 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 8  
7.6 Switching Characteristics........................................ 11  
7.7 Timing Requirements: SCK Input ........................... 11  
7.8 Timing Requirements: PCM Audio Data................. 12  
7.9 Timing Requirements: I2S Master, See Figure 6 ... 12  
7.10 Timing Requirements: XSMT................................ 13  
7.11 Typical Characteristics.......................................... 14  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 17  
10 Power Supply Recommendations ..................... 56  
10.1 Power Supply Distribution and Requirements ...... 56  
10.2 Recommended Powerdown Sequence................. 57  
10.3 External Power Sense Undervoltage Protection  
Mode ........................................................................ 60  
7
10.4 Power-On Reset Function..................................... 62  
10.5 PCM5252 Power Modes ....................................... 63  
11 Layout................................................................... 65  
11.1 Layout Guidelines ................................................. 65  
11.2 Layout Example .................................................... 65  
12 Programming....................................................... 66  
12.1 Coefficient Data Formats ...................................... 66  
12.2 Power Down and Reset Behavior......................... 66  
13 Register Maps...................................................... 67  
13.1 PCM5252 Register Map........................................ 67  
14 器件和文档支持 ................................................... 115  
14.1 社区资源.............................................................. 115  
14.2 ..................................................................... 115  
14.3 静电放电警告....................................................... 115  
15 机械、封装和可订购信息..................................... 115  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注释  
2014 11 月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
5 Device Comparison  
Table 1. Typical Performance (3.3-V Power Supply)  
PARAMETER  
PCM5252  
SNR  
114 dB  
114 dB  
-93 dB  
Dynamic range  
THD+N at –1 dBFS  
Full-scale single-ended output  
Normal 8× oversampling digital filter latency  
Low latency 8× oversampling digital filter latency  
Sampling frequency  
4.2 VRMS (GND center)  
20/fS  
3.5/fS  
8 kHz to 384 kHz  
System clock multiples (fSCK): 64, 128, 192, 256, 384, 512, 768, 1024, 1152,  
1536, 2048, 3072  
Up to 50 MHz  
Copyright © 2014, Texas Instruments Incorporated  
3
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
6 Pin Configuration and Functions  
6.1 Control Mode Effect On Pin Assignments  
The PCM5252 supports control from I2C, SPI and Hardware Modes (referred to as HW mode). Selection of  
modes is done using MODE1 and MODE2 pins. (See the PCM5252 Pin Functions table.  
SPI Mode is selected by pulling MODE1 to DVDD.  
I2C Mode is selected by pulling MODE1 to DGND and MODE2 to DVDD.  
Hardware Control Mode is selected by pulling both MODE1 and MODE2 pins to DGND.  
6.2 Pin Assignments  
QFN Package  
32-Pin RHB  
Top View  
QFN Package  
32-Pin RHB  
Top View  
QFN Package  
32-Pin RHB  
Top View  
32 31 30 29 28 27 26 25  
32 31 30 29 28 27 26 25  
32 31 30 29 28 27 26 25  
XSMT  
LDOO  
1
2
3
4
5
6
7
8
24  
MODE2  
MODE1  
GPO  
XSMT  
LDOO  
1
2
3
4
5
6
7
8
24  
XSMT  
LDOO  
1
2
3
4
5
6
7
8
24  
MODE2  
MODE1  
ADR2  
MS  
23  
22  
21  
20  
19  
18  
17  
23  
22  
21  
20  
19  
18  
17  
23  
22  
21  
20  
19  
18  
17  
MODE1  
GPIO2  
GPIO3  
GPIO4  
DGND  
DVDD  
DGND  
DVDD  
DGND  
DVDD  
AGNS  
MAST  
GPIO3  
GPIO4  
GND  
GND  
GND  
CPVDD  
CAPP  
CPVDD  
CAPP  
CPVDD  
CAPP  
ATT0  
ATT1  
ATT2  
GPIO5  
SCL  
GPIO5  
MC  
CPGND  
CPGND  
CPGND  
CAPM  
CAPM  
SDA  
CAPM  
MOSI  
9
10 11 12 13 14 15 16  
9
10 11 12 13 14 15 16  
9
10 11 12 13 14 15 16  
Figure 1. I2C Control  
Figure 2. SPI Control  
Figure 3. Hardware Control  
PCM5252 Pin Functions  
PIN  
MODE, NAME  
I/O  
DESCRIPTION  
PIN  
I2C  
SPI  
HW  
XSMT  
1
2
I
-
Soft mute control(1) Soft mute (Low) / soft un-mute (High)  
Internal logic supply rail pin for decoupling, 1.8V  
Digital ground  
LDOO  
DGND  
DVDD  
CPVDD  
CAPP  
3
-
4
-
Digital power supply, 3.3V or 1.8V  
5
-
Charge pump power supply, 3.3V  
6
O
-
Charge pump flying capacitor pin for positive rail  
Charge pump ground  
CPGND  
CAPM  
VNEG  
OUTLP  
OUTLN  
OUTRN  
OUTRP  
AVDD  
7
8
O
O
Charge pump flying capacitor pin for negative rail  
Negative charge pump rail pin for decoupling, -3.3V  
Positive Differential Analog output from DAC left channel  
Negative Differential Analog output from DAC left channel  
Negative Differential Analog output from DAC right channel  
Positive Differential Analog output from DAC right channel.  
Analog power supply, 3.3V  
9
10  
11  
12  
13  
14  
15  
-
-
AGND  
Analog ground  
VCOM output (Optional mode selected by register; default setting is VREF mode.) When in  
VREF mode (default), this pin ties to GND. When in VCOM mode, decoupling capacitor to  
GND is required.  
I2C, SPI  
HW  
VCOM  
O
I
16  
DEMP  
DEMP: De-emphasis control for 44.1kHz sampling rate: Off (Low) / On (High)  
(1) Failsafe LVCMOS Schmitt trigger input.  
4
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Pin Assignments (continued)  
PCM5252 Pin Functions (continued)  
PIN  
MODE, NAME  
PIN  
I/O  
DESCRIPTION  
I2C  
SPI  
HW  
I2C  
Data for I2C(2)(1)  
Input data for SPI(1)  
SDA  
I/O  
I
17  
18  
MOSI  
SPI  
ATT2  
HW  
Digital gain and attenuation control pin  
Input clock for I2C(1)  
Input clock for SPI(1)  
I2C  
SCL  
I
MC  
SPI  
ATT1  
ATT0  
HW  
Digital gain and attenuation control pin  
General purpose digital input and output port  
Digital gain and attenuation control pin  
General purpose digital input and output port  
(3)  
(3)  
I2C, SPI  
HW  
GPIO5  
GPIO4  
19  
20  
21  
I/O  
I/O  
I/O  
I2C, SPI  
I2S Master clock select pin : Master (High) BCK/LRCK outputs, Slave (Low) BCK/LRCK  
inputs  
MAST  
AGNS  
HW  
(3)  
I2C, SPI  
HW  
GPIO3  
General purpose digital input and output port  
Analog gain selector : 0dB 2VRMS output (Low), -6dB 1VRMS output (High)  
2nd LSB address select bit for I2C(3)  
I2C  
ADR2  
I/O  
O
(3)  
22  
23  
GPIO2  
MODE1  
MS  
SPI  
General purpose digital input and output port  
GPO  
HW  
General Purpose Output (Low level)  
Mode control selection pin(1)  
MODE1 = Low, MODE2 = Low : Hardwired mode Reserved  
MODE1 = Low, MODE2 = High: I2C mode  
MODE1 = High: SPI mode  
I
I2C, HW  
SPI  
MODE2  
MODE2  
FLT  
MODE2 (See definition in Mode 1 description)  
MS pin (chip select for SPI)  
24  
25  
I
I2C, SPI  
GPIO6  
I/O  
General purpose digital input and output port  
I
HW  
Filter select : Normal latency (Low) / Low latency (High)  
SCK  
BCK  
DIN  
26  
27  
28  
29  
30  
31  
I
I/O  
I
System clock input(1)  
Audio data bit clock input (slave) or output (master)(1)  
Audio data input(1)  
-
NC  
No connect  
-
LRCK  
I/O  
Audio data word clock input (slave) or output (master)(1)  
I2C  
LSB address select bit for I2C  
ADR1  
MISO  
(GPIO1)  
Primary output data for SPI readback. Secondary; general purpose digital input/output port  
controlled by register  
32  
I/O  
SPI  
HW  
Audio format selection : I2S (Low) / Left justified (High)  
FMT  
(2) Open-drain configuration in out mode.  
(3) Internal Pulldown  
Copyright © 2014, Texas Instruments Incorporated  
5
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 2. Gain and Attenuation in Hardwired Mode  
ATT PIN CONDITION  
(ATT2 : ATT1 : ATT0)  
GAIN AND ATTENUATION LEVEL  
( 0 0 0 )  
0 dB  
+ 3 dB  
+ 6 dB  
+ 9 dB  
+ 12 dB  
+ 15 dB  
- 6 dB  
( 0 0 1 )  
( 0 1 0 )  
( 0 1 1 )  
( 1 0 0 )  
( 1 0 1 )  
( 1 1 0 )  
( 1 1 1 )  
- 3 dB  
6
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
3.9  
UNIT  
AVDD, CPVDD, DVDD  
Supply voltage  
V
LDO with DVDD at 1.8 V  
2.25  
2.25  
3.9  
DVDD at 1.8 V  
Digital input voltage  
V
DVDD at 3.3 V  
Analog input voltage  
3.9  
V
Storage temperature, Tstg  
125  
°C  
7.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
VCOM mode  
VREF mode  
1.8 V DVDD  
3.3 V DVDD  
3
3.2  
3.3  
3.3  
1.8  
3.3  
3.3  
3.46  
V
AVDD  
Analog power supply voltage  
Digital power supply voltage  
Referenced to AGND(1)  
3.46  
1.65  
3.1  
1.95  
V
DVDD  
Referenced to DGND(1)  
Referenced to CPGND(1)  
3.46  
CPVDD  
MCLK  
LOL, LOR  
CLOUT  
TJ  
Charge pump supply voltage  
Master clock frequency  
3.1  
3.46  
50  
V
MHz  
k  
pF  
Stereo line output load resistance  
Digital output load capacitance  
Operating junction temperature  
2
10  
10  
–25  
85  
°C  
(1) All grounds on board are tied together; they must not differ in voltage by more than 0.2-V maximum, for any combination of ground  
signals.  
7.4 Thermal Information  
PW  
THERMAL METRIC(1)  
UNIT  
20 PINS  
91.2  
25.3  
42  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1
ψJB  
41.5  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2014, Texas Instruments Incorporated  
7
 
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
7.5 Electrical Characteristics  
All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3V, fS = 48kHz, system clock = 512 fS and 24-bit data unless  
otherwise noted.  
PARAMETER  
Resolution  
Digital Input/Output  
Logic family: 3.3 V LVCMOS compatible  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
16  
24  
32  
Bits  
VIH  
VIL  
IIH  
Input logic level, high  
0.7×DVDD  
V
V
Input logic level, low  
0.3×DVDD  
10  
Input logic current, high  
Input logic current, low  
Output logic level, high  
Output logic level, low  
Logic family 1.8 V LVCMOS compatible  
Input logic level, high  
VIN = VDD  
VIN = 0 V  
µA  
µA  
V
IIL  
–10  
VOH  
VOL  
IOH = –4 mA  
IOL = 4 mA  
0.8×DVDD  
0.7×DVDD  
0.22×DVDD  
V
VIH  
VIL  
IIH  
V
V
Input logic level, low  
0.3×DVDD  
10  
Input logic current, high  
Input logic current, low  
Output logic level, high  
Output logic level, low  
VIN = VDD  
VIN = 0 V  
µA  
µA  
V
IIL  
–10  
VOH  
IOH = –2 mA  
IOL = 2 mA  
0.8×DVDD  
VOL  
0.22×DVDD  
–83  
V
Dynamic Performance (PCM Mode)(1)(2)  
fS = 48 kHz  
–93  
–93  
THD+N at –1 dBFS(2)  
fS = 96 kHz  
dB  
dB  
dB  
dB  
dB  
fS = 192 kHz  
–93  
EIAJ, A-weighted, fS = 48 kHz  
EIAJ, A-weighted, fS = 96 kHz  
EIAJ, A-weighted, fS = 192 kHz  
EIAJ, A-weighted, fS = 48 kHz  
EIAJ, A-weighted, fS = 96 kHz  
EIAJ, A-weighted, fS = 192 kHz  
EIAJ, A-weighted, fS = 48 kHz  
EIAJ, A-weighted, fS = 96 kHz  
EIAJ, A-weighted, fS = 192 kHz  
fS = 48 kHz  
108  
114  
Dynamic range(2)  
114  
114  
114  
Signal-to-noise ratio(2)  
114  
114  
113  
113  
123  
Signal to noise ratio with analog  
mute(2)(3)  
123  
113  
123  
100 / 95  
100 / 95  
100 / 95  
109 / 103  
109 / 103  
109 / 103  
Channel separation  
fS = 96 kHz  
fS = 192 kHz  
(1) Filter condition: THD+N: 20-Hz HPF, 20-kHz AES17 LPF; Dynamic range: 20-Hz HPF, 20-kHz AES17 LPF; A-weighted signal-to-noise  
ratio: 20-Hz HPF, 20-kHz AES17 LPF; A-weighted channel separation: 20-Hz HPF, 20-kHz AES17 LPF. Analog performance  
specifications are measured using the System Two Cascade™ audio measurement system by Audio Precision™ in the RMS mode.  
(2) Output load is 10 kΩ, with 470-Ω output resistor and a 2.2-nF shunt capacitor (see recommended output filter).  
(3) Assert XSMT or both L-ch and R-ch PCM data are Bipolar Zero.  
8
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Electrical Characteristics (continued)  
All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3V, fS = 48kHz, system clock = 512 fS and 24-bit data unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Analog Output  
Single Ended Output voltage  
Differential Output Voltage  
Gain error  
2.1  
4.2  
±2  
VRMS  
VRMS  
–6  
–6  
–2  
5
6
6
2
% of FSR  
% of FSR  
mV  
Gain mismatch, channel-to-channel  
Bipolar zero error (per pin)  
Load impedance  
±2  
At bipolar zero  
±1  
kΩ  
Filter Characteristics–1: Normal (8x)  
Pass band  
Stop band  
0.45fS  
±0.02  
0.55fS  
–60  
Stop band attenuation  
Pass-band ripple  
dB  
dB  
s
Delay time  
20fS  
3.5fS  
1.2fS  
Filter Characteristics–2: Low Latency (8x)  
Pass band  
0.47fS  
Stop band  
0.55fS  
–52  
Stop band attenuation  
Pass-band ripple  
dB  
dB  
s
±0.0001  
0.40fS  
Delay time  
Filter Characteristics–3: Asymmetric FIR (8x)  
Pass band  
Stop band  
0.72fS  
–52  
Stop band attenuation  
Pass-band ripple  
dB  
dB  
s
±0.05  
Delay time  
Filter Characteristics–4: High-Attenuation (8x)  
Pass band  
0.45fS  
Stop band  
0.45S  
Stop band attenuation  
Pass-band ripple  
–100  
dB  
dB  
s
±0.0005  
Delay time  
33.7fS  
Power Supply Requirements  
DVDD  
DVDD  
AVDD  
CPVDD  
Digital supply voltage  
Digital supply voltage  
Analog supply voltage  
Charge-pump supply voltage  
Target DVDD = 1.8 V  
Target DVDD = 3.3 V  
1.65  
1.8  
3.3  
3.3  
3.3  
11  
12  
14  
11  
12  
14  
0.3  
12  
13  
15  
1.95  
3.6  
3.6  
3.6  
14  
VDC  
VDC  
VDC  
VDC  
3
3
3
fS = 48 kHz, Input is Bipolar Zero data  
fS = 96 kHz, Input is Bipolar Zero data  
fS = 192 kHz, Input is Bipolar Zero data  
fS = 48 kHz, Input is 1kHz -1dBFS data  
fS = 96 kHz, Input is 1kHz -1dBFS data  
fS = 192 kHz, Input is 1kHz -1dBFS data  
fS = N/A, Power Down Mode  
IDD  
DVDD supply current at 1.8 V  
mA  
14  
IDD  
IDD  
IDD  
DVDD supply current at 1.8 V  
DVDD supply current at 1.8 V(4)  
DVDD supply current at 3.3 V  
mA  
mA  
mA  
0.6  
15  
fS = 48 kHz, Input is Bipolar Zero data  
fS = 96 kHz, Input is Bipolar Zero data  
fS = 192 kHz, Input is Bipolar Zero data  
(4) Power Down Mode, with LRCK, BCK, and SCK halted at Low level.  
Copyright © 2014, Texas Instruments Incorporated  
9
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3V, fS = 48kHz, system clock = 512 fS and 24-bit data unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fS = 48 kHz, Input is 1kHz -1dBFS data  
fS = 96 kHz, Input is 1kHz -1dBFS data  
fS = 192 kHz, Input is 1kHz -1dBFS data  
fS = N/A, Power Down Mode  
12  
15  
IDD  
IDD  
ICC  
DVDD supply current at 3.3 V  
DVDD supply current at 3.3 V(4)  
AVDD / CPVDD supply current  
13  
mA  
15  
0.5  
0.8  
16  
mA  
fS = 48 kHz, Input is Bipolar Zero data  
fS = 96 kHz, Input is Bipolar Zero data  
fS = 192 kHz, Input is Bipolar Zero data  
fS = 48 kHz, Input is 1kHz -1dBFS data  
fS = 96 kHz, Input is 1kHz -1dBFS data  
fS = 192 kHz, Input is 1kHz -1dBFS data  
fS = N/A, Power Down Mode  
11  
11  
mA  
11  
24  
32  
ICC  
AVDD / CPVDD supply current  
AVDD / CPVDD supply current(4)  
Power dissipation, DVDD = 1.8 V  
24  
mA  
mA  
mW  
24  
ICC  
0.2  
0.4  
78  
fS = 48 kHz, Input is Bipolar Zero data  
fS = 96 kHz, Input is Bipolar Zero data  
fS = 192 kHz, Input is Bipolar Zero data  
fS = 48 kHz, Input is 1kHz -1dBFS data  
fS = 96 kHz, Input is 1kHz -1dBFS data  
fS = 192 kHz, Input is 1kHz -1dBFS data  
fS = N/A (Power Down Mode)  
59.4  
61.2  
64.8  
99  
130.8  
Power dissipation, DVDD = 1.8 V  
Power dissipation, DVDD = 1.8 V(4)  
Power dissipation, DVDD = 3.3 V  
100.8  
104.4  
1.2  
mW  
mW  
mW  
fS = 48 kHz, Input is Bipolar Zero data  
fS = 96 kHz, Input is Bipolar Zero data  
fS = 192 kHz, Input is Bipolar Zero data  
fS = 48 kHz, Input is 1kHz -1dBFS data  
fS = 96 kHz, Input is 1kHz -1dBFS data  
fS = 192 kHz, Input is 1kHz -1dBFS data  
fS = N/A (Power Down Mode)  
79.2  
82.5  
89.1  
118.8  
122.1  
128.7  
2.3  
103  
155  
4
Power dissipation, DVDD = 3.3 V  
Power dissipation, DVDD = 3.3 V(4)  
mW  
mW  
10  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
7.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DATA FORMAT (PCM MODE)  
I2S, left-justified, right-justified, and  
TDM  
Audio data interface format  
Audio data bit length  
Audio data format  
16, 20, 24, 32-bit acceptable  
MSB first, twos-complement  
fS  
Sampling frequency(1)  
8
384  
kHz  
CLOCKS  
64, 128, 192, 256, 384, 512, 768,  
1024, 1152, 1536, 2048, or 3072  
fSCK, up to 50 Mhz  
System clock frequency  
Clock divider uses fractional divide  
D > 0, P=1  
6.7  
1
20  
20  
MHz  
MHz  
(2)  
PLL input frequency  
Clock divider uses integer divide  
D = 0, P=1  
(1) One sample time is defined as the reciprocal of the sampling frequency. 1 × tS = 1 / fS  
(2) With the appropriate P coefficient setting, the PLL accepts up to 50 MHz. This clock is then divided to meet the 20-MHz requirement.  
See PLL Calculation.  
7.7 Timing Requirements: SCK Input  
Figure 4 shows the timing requirements for the system clock input. For optimal performance, use a clock source with low  
phase jitter and noise.  
MIN  
20  
8
NOM  
MAX  
UNIT  
tSCY  
System clock pulse cycle time  
System clock pulse width, high  
1000  
ns  
DVDD = 1.8 V  
DVDD = 3.3 V  
DVDD = 1.8 V  
DVDD = 3.3 V  
tSCKH  
ns  
ns  
9
8
tSCKL  
System clock pulse width, low  
9
tSCKH  
"H"  
0.7*DVDD  
0.3*DVDD  
System Clock  
(SCK)  
"L"  
tSCKL  
tSCY  
Figure 4. Timing Requirements for SCK Input  
Copyright © 2014, Texas Instruments Incorporated  
11  
 
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
7.8 Timing Requirements: PCM Audio Data  
MIN  
40  
16  
16  
8
NOM  
MAX  
UNIT  
ns  
tBCY  
tBCL  
tBCH  
tBL  
BCK Pulse Cycle Time  
BCK Pulse Width LOW  
ns  
BCK Pulse Width HIGH  
ns  
BCK Rising Edge to LRCK Edge  
BCK frequency at DVDD = 3.3V  
BCK frequency at DVDD = 1.8V  
LRCK Edge to BCK Rising Edge  
DATA Set Up Time  
ns  
tBCK  
tBCK(1.8V)  
tLB  
24.576  
12.288  
MHz  
MHz  
ns  
8
8
8
tDS  
ns  
tDH  
DATA Hold Time  
ns  
tDOD  
DATA delay time from BCK falling edge  
15  
ns  
LRCK  
0.5 * DVDD  
(Input)  
tLB  
tBCH  
tBCL  
BCK  
0.5 * DVDD  
0.5 * DVDD  
0.5 * DVDD  
(Input)  
tBCY  
tBL  
DATA  
(Input)  
tDS  
tDH  
tDOD  
DATA  
(Output)  
Figure 5. PCM5252 Serial Audio Timing - Slave  
In software mode, The PCM5252 can act as an I2S master, generating BCK and LRCK as outputs from the SCK  
input.  
Table 3. I2S Master Mode Registers  
Register  
Page0, Register 9, D(0), D(4), and D(5)  
Register 32, D(6:0)  
Function  
I2S Master mode select  
BCK divider and LRCK divider  
Register 33, D(7:0)  
7.9 Timing Requirements: I2S Master, See Figure 6  
MIN  
40  
NOM  
MAX  
UNIT  
ns  
tBCY  
BCK Pulse Cycle Time  
tBCL  
BCK Pulse Width LOW  
16  
ns  
tBCH  
tBCK  
tBCK(1.8V)  
tLRD  
BCK Pulse Width HIGH  
16  
ns  
BCK frequency at DVDD = 3.3 V  
BCK frequency at DVDD = 1.8 V  
LRCKx delay time from BCKx falling edge  
DATA Set Up Time  
24.576  
12.288  
20  
MHz  
MHz  
ns  
–10  
8
tDS  
ns  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Timing Requirements: I2S Master, See Figure 6 (continued)  
MIN  
NOM  
MAX  
UNIT  
ns  
tDH  
DATA Hold Time  
8
tDOD  
DATA delay time from BCK falling edge at DVDD = 3.3 V  
DATA delay time from BCK falling edge at DVDD = 1.8 V  
15  
20  
ns  
tDOD(1.8V)  
ns  
tBCH  
tBCL  
BCK  
0. 5 * DVDD  
0. 5 * DVDD  
(Output)  
tLRD  
tBCY  
LRCK  
(Output)  
tDOD  
DATA  
0. 5 * DVDD  
(Output)  
tDS  
tDH  
DATA  
(Input)  
0. 5 * DVDD  
Figure 6. PCM5252 Serial Audio Timing - I2S Master  
7.10 Timing Requirements: XSMT  
MIN  
NOM  
MAX  
20  
UNIT  
ns  
tr  
tf  
Rise time  
Fall time  
20  
ns  
0.9 * DVDD  
XSMT  
0.1 * DVDD  
tr  
tf  
<20ns  
<20ns  
Figure 7. XSMT Timing for Soft Mute and Soft Un-Mute  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
7.11 Typical Characteristics  
All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3V, fS = 48kHz, system clock = 512 fS and 24-bit data unless  
otherwise noted.  
10  
10  
-10  
-10  
-30  
-30  
-50  
-50  
-70  
-70  
-90  
-90  
-110  
-110  
-100  
-80  
-60  
-40  
-20  
0
-100  
-80  
-60  
-40  
-20  
0
Input Level (dBFS)  
Input Level (dBFS)  
Figure 8. THD+N vs Input Level  
Figure 9. THD+N vs Input Level  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
5
10  
Frequency (kHz)  
15  
20  
0
5
10  
Frequency (kHz)  
15  
20  
Figure 11. FFT Plot At –60 db Input  
Figure 10. FFT Plot At –60 db Input  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
5
10  
15  
20  
0
5
10  
Frequency (kHz)  
15  
20  
Frequency (kHz)  
Figure 13. FFT Plot at BPZ  
Figure 12. FFT Plot at Bipolar Zero Data (BPZ)  
14  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Typical Characteristics (continued)  
All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3V, fS = 48kHz, system clock = 512 fS and 24-bit data unless  
otherwise noted.  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
5
10  
Frequency (kHz)  
15  
20  
Frequency (kHz)  
Figure 15. FFT Plot at BPZ With Analog Mute (AMUTE)  
Figure 14. FFT Plot at BPZ With Analog Mute (AMUTE)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50  
100  
150  
Frequency (kHz)  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Frequency (kHz)  
Figure 17. FFT Plot at –60 dB to 300 khz  
Figure 16. FFT Plot at –60 dB to 300 khz  
Copyright © 2014, Texas Instruments Incorporated  
15  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The PCM5252 PurePath™ Smart Amp enhances the bass, sound fidelity and increased loudness by driving the  
speaker to its thermal and mechanical limits.  
TI's PurePath™ Smart Amp technology allows speakers to be driven with more peak power than their average-  
power rating, without damage to the speaker by voice coil over excursion or thermal overload.  
Sophisticated speaker models (electro-mechanical-thermal) are used as a foundation for the protection and  
enhancement of the system. This is done by modeling the loudspeaker in the on-chip miniDSP and running an  
adaptive algorithm that modifies the output based on the modeled conditions of the speaker.  
TI provides a PurePath™ Console (PPC) GUI, including a TI learning board that measures the loudspeaker  
parameters. The PPC GUI generates the code for download to the device on boot-up.  
Smart Amp technology in the PCM5252 devices use information from the SOA (Safe Operating Area)  
characterization details for the loudspeaker, as well as real-world temperature, and uses this data in an adaptive  
control algorithm in order to control Smart Bass and Smart DRP (Dynamic Range Preservation). The protection  
side of the algorithm is also used for thermal protection and mechanical voice coil excursion protection.  
The integrated PLL on the device provided adds the flexibility to remove the system clock (commonly known as  
master clock), allowing a 3-wire I2S connection and reducing system EMI. In addition, the PLL is completely  
programmable, allowing the device to become the I2S clock master and drive a DSP serial port as a slave. The  
PLL also accepts a non-standard clock (up to 50 MHz) as a source to generate the audio related clock (for  
example, 24.576 MHz).  
Powersense undervoltage protection utilizes a two-level mute system. Upon clock error or system power failure,  
the device digitally attenuates the data (or last known good data) and then mutes the analog circuit.  
Compared with existing DAC technology, the PCM5252 devices offer up to 20 dB of lower out-of-band noise,  
reducing EMI and aliasing in downstream amplifiers/ADCs (from traditional 100-kHz OBN measurements to  
3 MHz).  
The PCM5252 devices accept industry-standard audio data formats with 16-bit to 32-bit data. Sample rates up to  
384 kHz are supported.  
16  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
8.2 Functional Block Diagram  
Current  
Segment  
DAC  
DIN (I2S)  
Digital  
Volume  
Control  
Differential  
Line Outputs  
DOUT (I2S)  
(through  
any GPIO)  
Current  
Segment  
DAC  
Zero Data  
Detector  
MOSI/SDA/ATT2  
MS/MODE2  
MODE1  
Advanced Mute Control  
SPI/I2C  
MC/SCL/ATT1  
MISO/ADR1/FMT  
Clock Halt  
Detection  
GPIO6/FLT  
GPIO5/ATT0  
GPIO4/MAST  
GPIO3/AGNS  
GPIO2/ADR2/DOUT  
GPIO  
Program  
RAM  
PCM5252  
LRCK  
CPVDD (3.3V)  
AVDD (3.3V)  
DVDD (1.8V or 3.3V)  
GND  
Power  
Supply  
PLL  
Clock  
BCK  
MCK  
UVP/  
Reset  
Charge  
VCom  
Pump  
POR  
CAPP  
CAPM  
VNEG  
UVP/XSMT  
8.3 Feature Description  
8.3.1 Terminology  
Control registers in this data sheet are given by REGISTER BIT/BYTE NAME (Page.x HEX ADDRESS). SE  
refers to single-ended analog inputs, DIFF refers to Differential analog inputs. SCK (System Clock) and MCLK  
(Master Clock) are used interchangeably. Sampling frequency is symbolized by fS. Full scale is symbolized by  
FS. Sample time as a unit is symbolized by tS.  
Copyright © 2014, Texas Instruments Incorporated  
17  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Feature Description (continued)  
8.3.2 Audio Data Interface  
8.3.2.1 Audio Serial Interface  
The audio interface port is a 3-wire serial port with the signals LRCK, BCK, and DIN. BCK is the serial audio bit  
clock, used to clock the serial data present on DIN into the serial shift register of the audio interface. Serial data  
is clocked into the PCM5252 on the rising edge of BCK. LRCK is the serial audio left/right word clock. LRCK  
polarity for left/right is given by the format selected.  
Table 4. PCM5252 Audio Data Formats, Bit Depths and Clock Rates  
MAX LRCK  
CONTROL MODE  
FORMAT  
DATA BITS  
SCK RATE [x fS]  
BCK RATE [x fS]  
FREQUENCY [fS]  
Up to 192 kHz  
384 kHz  
128 – 3072  
64, 128  
64, 48, 32  
64, 48, 32  
128, 256  
128, 256  
128  
I2S/LJ  
32, 24, 20, 16  
Software Control  
(SPI or I2S)  
Up to 48 kHz  
96 kHz  
128 – 3072  
128 – 512  
128, 192, 256  
128 – 3072  
64, 128  
TDM/DSP  
I2S/LJ  
32, 24, 20, 16  
32, 24, 20, 16  
192 kHz  
Up to 192 kHz  
384 kHz  
64, 48, 32  
64, 48, 32  
Hardware Control  
The PCM5252 requires the synchronization of LRCK and system clock, but does not need a specific phase  
relation between LRCK and system clock.  
If the relationship between LRCK and system clock changes more than ±5 SCK, internal operation (using an  
onchip oscillator) is initialized within one sample period and analog outputs are forced to the bipolar zero level  
until resynchronization between LRCK and system clock is completed.  
If the relationship between LRCK and BCK are invalid more than 4 LRCK periods, internal operation (using an  
onchip oscillator) is initialized within one sample period and analog outputs are forced to the bipolar zero level  
until resynchronization between LRCK and BCK is completed.  
18  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
8.3.2.2 PCM Audio Data Formats  
The PCM5252 supports industry-standard audio data formats, including standard I2S and left-justified. Data  
formats are selected via Register (Pg0Reg40). All formats require binary twos-complement, MSB-first audio data;  
up to 32-bit audio data is accepted.  
The PCM5252 also supports right-justified and TDM/DSP in software control mode. I2S, LJ, RJ, and TDM/DSP  
are selected using Register (Pg0Reg40). All formats require binary twos-complement, MSB-first audio data. Up  
to 32 bits are accepted. Default setting is I2S and 24-bit word length.  
1tS  
R-channel  
L-channel  
LRCK  
BCK  
Audio data word = 16-bit, BCK = 32, 48, 64fS  
1
2
15 16  
1
1
1
2
15 16  
DATA  
MSB  
LSB  
MSB  
LSB  
Audio data word = 24-bit, BCK = 48, 64fS  
-
,
2
1
2
24  
2
23 24  
DATA  
MSB  
LSB  
MSB  
LSB  
Audio data word = 32-bit, BCK = 64fS  
1
2
31 32  
2
31 32  
DATA  
MSB  
LSB  
MSB  
LSB  
Figure 18. Left-Justified Audio Data Format  
1tS  
LRCK  
BCK  
L-channel  
R-channel  
Audio data word = 16-bit, BCK = 32, 48, 64fS  
1
2
15 16  
1
2
15 16  
DATA  
MSB  
LSB  
MSB  
LSB  
Audio data word = 24-bit, BCK = 48, 64fS  
2
1
2
23 24  
1
23 24  
DATA  
MSB  
LSB  
MSB  
LSB  
Audio data word = 32-bit, BCK = 64fS  
1
2
31 32  
1
2
31 32  
DATA  
MSB  
LSB  
MSB  
LSB  
I2S Data Format; L-channel = LOW, R-channel = HIGH  
Figure 19. I2S Audio Data Format  
Copyright © 2014, Texas Instruments Incorporated  
19  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
NOTE  
In TDM Modes, Duty Cycle of LRCK should be 1x BCK at minimum. Rising edge is  
considered frame start.  
TDM/DSP Data Format; L-channel = FIRST, R-channel = LAST with OFFSET = 1  
Figure 20. TDM/DSP 2 Audio Data Format  
TDM/DSP Data Format; L-channel = FIRST, R-channel = LAST with OFFSET = N  
Figure 21. TDM/DSP 3 Audio Data Format  
20  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
8.3.2.3 Zero Data Detect  
The PCM5252 has a zero-detect function. When the device detects the continuous zero data for both left and  
right channels, or separate channels, Analog mutes are set to both OUTL and OUTR, or separate OUTL and  
OUTR. These are controlled by Page 0, Register 65, D(2:1) as shown in Table 5.  
Table 5. Zero Data Detection Mode  
ATMUTECTL  
VALUE  
FUNCTION  
Independently L-ch or R-ch are zero data for zero data  
detection  
0
Bit : 2  
Both L-ch and R-ch have to be zero data for zero data  
detection  
1 (Default)  
0
Zero detection and analog mute are disabled for R-ch  
Zero detection analog mute are enabled for R-ch  
Zero detection analog mute are disabled for L-ch  
Zero detection analog mute are enabled for L-ch  
Bit : 1  
Bit : 0  
1 (Default)  
0
1 (Default)  
Table 6. Zero Data Detection Time  
ATMUTETIML /  
ATMUTETIMR  
NUMBER OF LRCKs  
TIME AT 48 kHz  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1024  
5120  
21 ms  
106 ms  
10240  
25600  
51200  
102400  
256000  
512000  
213 ms  
533 ms  
1.066 sec  
2.133 sec  
5.333 sec  
10.66 sec  
8.3.3 XSMT Pin (Soft Mute / Soft Un-Mute)  
An external digital host controls the PCM5252 soft mute function by driving the XSMT pin with a specific  
minimum rise time (tr) and fall time (tf) for soft mute and soft un-mute. The PCM5252 requires tr and tf times of  
less than 20 ns. In the majority of applications, this is no problem; however, traces with high capacitance may  
have issues.  
When the XSMT pin is shifted from high to low (3.3 V to 0 V), a soft digital attenuation ramp begins. –1-dB  
attenuation is then applied every sample time from 0 dBFS to –. The soft attenuation ramp takes 104 samples.  
When the XSMT pin is shifted from low to high (0 V to 3.3 V), a soft digital un-mute is started. 1-dB gain steps  
are applied every sample time from –to 0 dBFS. The un-mute takes 104 samples.  
In systems where XSMT is not required, it can be directly connected to AVDD.  
Copyright © 2014, Texas Instruments Incorporated  
21  
 
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
8.3.4 Audio Processing  
8.3.4.1 PCM5252 Audio Processing Options  
8.3.4.1.1 Overview  
The PCM5252 features a programmable miniDSP core that offers Hybrid-Flows which are a RAM/ROM  
combination of code. Common functions are embedded in ROM, and custom RAM flows, created by TI can be  
run on the miniDSP core. The algorithms for the miniDSP must be loaded into the device after power up. The  
miniDSP can run up to 1024 instructions on every audio sample at a 48kHz sample rate. Development is done  
using Purepath™ Console software.  
NOTE  
At higher sampling frequencies, fewer instruction cycles are available. (For example, 512  
instructions can be done in a 96-kHz frame.)  
The PCM5252 supports two different code sources. ROM based process flow (See the next section for how to  
select) and RAM based process flow. In program 31 (RAM based), different algorithms can be called from ROM -  
such as EQ, DRC and Zero Crossing volume control. Please see the PurePath Studio Development Environment  
for more details.  
Smart Amplifier is another process flow that is available for use. Program 5 integrates a 2.1 Smart Amplifier  
system, without Smart Bass enhancement. A mixed RAM/ROM Mode is available using program 31 that can do  
a 2.0 Stereo Smart Amplifier with Smart Bass enhancement. However, the MIPS requirements for Smart  
Amplifier allow the process flow to work up to 48kHz sampling rate. Any higher sampling rates will require a  
custom process flow with limited processing (such as a simpler EQ and Dynamic Range Control),  
8.3.4.1.2 miniDSP Instruction Register  
Registers on Page 152-169 are 25-bit instructions for the miniDSP engine. For details, see Table 43. 7 bits of  
Instr(32:25) in Base register +0 are reserved bits. 1 bit of Instr(24) - (LSB) in Base register +0 is MSB bit of 25 bit  
instruction. These instructions control miniDSP operation. When the fully programmable miniDSP mode is  
enabled and the DAC channel is powered up, the read and write access to these registers is disabled.  
8.3.4.1.3 Digital Output  
The PCM5252 supports an SDOUT output. This can be selected within the process flow, and driven out of a  
GPIO pin selected in the register map (for example, Page 0 / Register 80). Users should note that the I2S output  
will be attenuated by 0.5 dB. A full scale (FS) output will actually be FS-0.5dB. This can be compensated for  
within the process flow using PurePath Studio. The I2S output can be a separate audio stream to the analog  
DAC output, allowing 2.1 and 2.2 systems to be implimented. By default, the SDOUT is not linked to the volume  
control registers on Page 0 / Register 60, 61, 62. However, it is possible to configure the SDOUT component in  
Purepath studio to mirror that register.  
8.3.4.1.4 Software  
Software development for the PCM5252 is supported through TI's comprehensive PurePath Console; a powerful,  
easy-to-use tool designed specifically to simplify software development on the PCM5252 miniDSP audio  
platform. The Graphical Development Environment consists of number of Hybrid Flows that can be downloaded  
to the device and run on the miniDSP.  
Please visit the PCM5252 product folder on www.ti.com to learn more about PurePath Console and the latest  
status on available, ready-to-use DSP algorithms.  
22  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
8.3.4.2 Interpolation Filter  
The PCM5252 provides 4 types of interpolation filters, selectable by writing to Page 0, Register 43, D(4:0).  
Additional RAM based Hybrid Flows can be implemented by selecting Program 31, and downloading instructions  
and coefficients to the device.  
Table 7. ROM Preset Programs  
PROGRAM  
NUMBER  
D(4:0)  
DESCRIPTION  
MINIMUM CYCLES  
0
1
2
3
4
5
6
7
:
0 0000  
0 0001  
0 0010  
0 0011  
0 0100  
0 0101  
0 0110  
0 0111  
:
Reserved  
Normal x8/x4/x2/x1 Interpolation Filter(1)  
Low Latency x8/x4/x2/x1 Interpolation Filter(1)  
High Attenuation x8/x4/x2 Interpolation Filter(1)  
Reserved  
256  
256  
512  
Reserved  
Reserved  
Asymmetric FIR Interpolation Filter(1)  
512  
Reserved  
RAM Process flow (e.g. can be used to implement Smart Amplifier 2.1  
Mode)  
31  
1 1111  
(1) At fs=44.1 kHz, de-emphasis filter is supported.  
The PCM5252 supports four sampling modes (single rate, dual rate, quad rate, and octal rate) which produce  
different oversampling rates (OSR) in the interpolation digital filter operation. These are shown in Table 8.  
Table 8. Sampling Modes and Oversampling Rates  
SAMPLING MODE  
SAMPLING FREQUENCY (fS) kHz  
OVERSAMPLING RATE (OSR)  
8
16  
Single Rate  
32  
8 or 16  
44.1  
48  
88.2  
96  
Dual Rate  
4
176.4  
192  
384  
Quad Rate  
Octal Rate  
2
1 (Bypass)  
Copyright © 2014, Texas Instruments Incorporated  
23  
 
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 9. Normal x8 Interpolation Filter, Single Rate  
PARAMETER  
CONDITION  
VALUE (TYP)  
VALUE (MAX)  
UNIT  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 ……. 0.45 × fS  
0.55 × fS ….. 7.455 × fS  
±0.01  
–60  
dB  
20 / fs  
S
SPACE  
0
1.0  
0.8  
−20  
−40  
0.6  
0.4  
−60  
0.2  
−80  
0.0  
−100  
−120  
−0.2  
−0.4  
0
0
1
2
3
4
50  
100  
150  
200  
Samples  
250  
300  
350  
400  
Frequency (x fS)  
G012  
G023  
Figure 22. Normal x8 Interpolation Filter  
Frequency Response  
Figure 23. Normal x8 Interpolation Filter  
Impulse Response  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (x fS)  
G034  
Figure 24. Normal x8 Interpolation Filter Passband Ripple  
24  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 10. Normal x4 Interpolation Filter, Dual Rate  
PARAMETER  
CONDITION  
VALUE (TYP)  
VALUE (MAX)  
UNIT  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 ……. 0.45 × fS  
0.55 × fS ….. 3.455 × fS  
±0.01  
–60  
dB  
20 / fs  
S
SPACE  
0
1.0  
0.8  
−20  
−40  
0.6  
0.4  
−60  
0.2  
−80  
0.0  
−100  
−0.2  
−0.4  
−120  
0
0
20  
40  
60  
80  
Samples  
100  
120  
140  
160  
1
2
Frequency (x fS)  
G020  
G009  
Figure 25. Normal x4 Interpolation Filter  
Frequency Response  
Figure 26. Normal x4 Interpolation Filter  
Impulse Response  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
0.0  
0.25  
Frequency (x fS)  
0.5  
G031  
Figure 27. Normal x4 Interpolation Filter Passband Ripple  
Copyright © 2014, Texas Instruments Incorporated  
25  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 11. Normal x2 Interpolation Filter, Quad Rate  
PARAMETER  
CONDITION  
VALUE (TYP)  
VALUE (MAX)  
UNIT  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 ……. 0.45 × fS  
0.55 × fS ….. 1.455 × fS  
±0.01  
–60  
dB  
20 / fs  
S
SPACE  
0
1.0  
0.8  
−20  
−40  
0.6  
0.4  
−60  
0.2  
−80  
0.0  
−100  
−120  
−0.2  
−0.4  
0
10  
20  
30  
40  
50  
Samples  
60  
70  
80  
90 100  
0
0.5  
1
Frequency (x fS)  
G017  
G006  
Figure 28. Normal x2 Interpolation Filter  
Frequency Response  
Figure 29. Normal x2 Interpolation Filter  
Impulse Response  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
−0.01  
−0.02  
−0.03  
−0.04  
−0.05  
0.0  
0.25  
Frequency (x fS)  
0.5  
G028  
Figure 30. Normal x2 Interpolation Filter Passband Ripple  
26  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 12. Low Latency x8 Interpolation Filter, Single Rate  
PARAMETER  
CONDITION  
VALUE (TYP)  
VALUE (MAX)  
UNIT  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 ……. 0.45 × fS  
0.55 × fS ….. 7.455 × fS  
±0.001  
–52  
dB  
3.5 × ts  
S
SPACE  
0
1.0  
0.8  
−20  
−40  
0.6  
0.4  
−60  
0.2  
0.0  
−80  
−0.2  
−0.4  
−0.6  
−100  
−120  
0
1
2
3
4
0
50  
100  
150  
200  
Samples  
250  
300  
350  
400  
Frequency (x fS)  
G011  
G022  
Figure 31. Low Latency x8 Interpolation Filter  
Frequency Response  
Figure 32. Low Latency x8 Interpolation Filter  
Impulse Response  
0.00010  
0.00008  
0.00006  
0.00004  
0.00002  
0.00000  
−0.00002  
−0.00004  
−0.00006  
−0.00008  
−0.00010  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (x fS)  
G033  
Figure 33. Low Latency x8 Interpolation Filter Passband Ripple  
Copyright © 2014, Texas Instruments Incorporated  
27  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 13. Low Latency x4 Interpolation Filter, Dual Rate  
PARAMETER  
CONDITION  
VALUE (TYP)  
VALUE (MAX)  
UNIT  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 ……. 0.45 × fS  
0.55 × fS ….. 3.455 × fS  
±0.001  
–52  
dB  
3.5 × ts  
S
SPACE  
0
1.0  
0.8  
−20  
−40  
0.6  
0.4  
−60  
0.2  
0.0  
−80  
−0.2  
−0.4  
−0.6  
−100  
−120  
0
20  
40  
60  
80  
Samples  
100 120 140 160 180  
0
1
2
Frequency (x fS)  
G019  
G008  
Figure 34. Low Latency x4 Interpolation Filter  
Frequency Response  
Figure 35. Low Latency x4 Interpolation Filter  
Impulse Response  
0.0001  
0.00008  
0.00006  
0.00004  
0.00002  
0
−0.00002  
−0.00004  
−0.00006  
−0.00008  
−0.0001  
0.0  
0.25  
0.5  
Frequency (x fS)  
G030  
Figure 36. Low Latency x4 Interpolation Filter Passband Ripple  
28  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 14. Low Latency ×2 Interpolation Filter, Quad Rate  
PARAMETER  
CONDITION  
VALUE (TYP)  
VALUE (MAX)  
UNIT  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 ……. 0.45 × fS  
0.55 × fS ….. 1.455 × fS  
±0.001  
–52  
dB  
3.5 × ts  
S
SPACE  
0
1.0  
0.8  
−20  
−40  
0.6  
0.4  
−60  
0.2  
−80  
0.0  
−100  
−0.2  
−0.4  
−120  
0
0
10  
20  
30  
40  
50  
Samples  
60  
70  
80  
90 100  
0.5  
1
Frequency (x fS)  
G016  
G005  
Figure 37. Low Latency x2 Interpolation Filter  
Frequency Response  
Figure 38. Low Latency x2 Interpolation Filter  
Impulse Response  
0.0001  
0.00008  
0.00006  
0.00004  
0.00002  
0
−0.00002  
−0.00004  
−0.00006  
−0.00008  
−0.0001  
0.0  
0.25  
0.5  
Frequency (x fS)  
G030  
Figure 39. Low Latency x2 Interpolation Filter Passband Ripple  
Copyright © 2014, Texas Instruments Incorporated  
29  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 15. Asymmetric FIR x8 Interpolation Filter, Single Rate  
PARAMETER  
CONDITION  
VALUE (TYP)  
VALUE (MAX)  
UNIT  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 ……. 0.40 × fS  
0.72 × fS ….. 7.28 × fS  
±0.05  
–50  
dB  
1.2 × ts  
S
SPACE  
0
1
0.8  
0.6  
0.4  
0.2  
0
−20  
−40  
−60  
−80  
−100  
−120  
−0.2  
−0.4  
0
0
1
2
3
4
10  
20  
30  
40  
50  
60  
70  
80  
Samples  
Frequency ( × fS)  
G003  
G006  
Figure 40. Asymmetric FIR x8 Interpolation Filter  
Frequency Response, Single Rate  
Figure 41. Asymmetric FIR x8 Interpolation Filter Impulse  
Response, Single Rate  
0.2  
0.15  
0.1  
0.05  
0
−0.05  
−0.1  
−0.15  
−0.2  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency ( × fS)  
G009  
Figure 42. Asymmetric FIR x8 Interpolation Filter Passband Ripple, Single Rate  
30  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 16. Asymmetric FIR x4 Interpolation Filter, Dual Rate  
PARAMETER  
CONDITION  
VALUE (TYP)  
VALUE (MAX)  
UNIT  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 ……. 0.40 × fS  
0.72 × fS ….. 3.28 × fS  
±0.05  
–50  
dB  
1.2 × ts  
S
SPACE  
0
1
0.8  
0.6  
0.4  
0.2  
0
−20  
−40  
−60  
−80  
−100  
−0.2  
−120  
0
−0.4  
0
1
2
10  
20  
30  
Samples  
40  
50  
60  
Frequency (x fS)  
G002  
G005  
Figure 43. Asymmetric FIR x4 Interpolation Filter  
Frequency Response, Dual Rate  
Figure 44. Asymmetric FIR x4 Interpolation Filter Impulse  
Response, Dual Rate  
0.2  
0.15  
0.1  
0.05  
0
−0.05  
−0.1  
−0.15  
−0.2  
0
0.5  
Frequency ( × fS)  
1
G008  
Figure 45. Asymmetric x4 Interpolation Filter Passband Ripple, Dual Rate  
Copyright © 2014, Texas Instruments Incorporated  
31  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 17. Asymmetric FIR x2 Interpolation Filter, Quad Rate  
PARAMETER  
CONDITION  
VALUE (TYP)  
VALUE (MAX)  
UNIT  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 ……. 0.40 × fS  
0.72 × fS ….. 1.28 × fS  
±0.05  
–50  
dB  
1.2 × ts  
S
SPACE  
0
1
0.8  
0.6  
0.4  
0.2  
0
−20  
−40  
−60  
−80  
−100  
−120  
−0.2  
−0.4  
0
0
0.5  
1
10  
20  
30  
40  
50  
Samples  
Frequency (x fS)  
G001  
G004  
Figure 46. Asymmetric FIR x2 Interpolation Filter  
Frequency Response, Quad Rate  
Figure 47. Asymmetric FIR x2 Interpolation Filter Impulse  
Response, Quad Rate  
0.2  
0.15  
0.1  
0.05  
0
−0.05  
−0.1  
−0.15  
−0.2  
0
0.25  
Frequency (x fS)  
0.5  
G100  
Figure 48. Asymmetric x2 Interpolation Filter Passband Ripple, Quad Rate  
32  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 18. High-Attentuation x8 Interpolation Filter, Single Rate  
PARAMETER  
CONDITION  
VALUE (TYP)  
VALUE (MAX)  
UNIT  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 ……. 0.45 × fS  
0.55 × fS ….. 7.455 × fS  
±0.0005  
–100  
dB  
33.7 × tS  
S
SPACE  
0
1
0.8  
0.6  
0.4  
0.2  
0
−20  
−40  
−60  
−80  
−100  
−0.2  
−0.4  
−120  
0
1
2
3
4
0
50 100 150 200 250 300 350 400 450 500 550 600  
Samples  
Frequency ( × fS)  
G003  
G006  
Figure 49. High-Attentuation x8 Interpolation Filter  
Frequency Response, Single Rate  
Figure 50. High-Attentuation x8 Interpolation Filter Impulse  
Response, Single Rate  
0.002  
0.0015  
0.001  
0.0005  
0
−0.0005  
−0.001  
−0.0015  
−0.002  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency ( × fS)  
G009  
Figure 51. High-Attentuation x8 Interpolation Filter Passband Ripple, Single Rate  
Copyright © 2014, Texas Instruments Incorporated  
33  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 19. High-Attentuation x4 Interpolation Filter, Dual Rate  
PARAMETER  
CONDITION  
VALUE (TYP)  
VALUE (MAX)  
UNIT  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 ……. 0.45 × fS  
0.55 × fS ….. 3.455 × fS  
±0.0005  
–100  
dB  
33.7 × tS  
S
SPACE  
0
1
0.8  
0.6  
0.4  
0.2  
0
−20  
−40  
−60  
−80  
−100  
−120  
−0.2  
−0.4  
0
0
1
2
50  
100  
150  
Samples  
200  
250  
300  
Frequency (x fS)  
G004  
G005  
Figure 52. High-Attentuation x4 Interpolation Filter  
Frequency Response, Dual Rate  
Figure 53. High-Attentuation x4 Interpolation Filter Impulse  
Response, Dual Rate  
0.002  
0.0015  
0.001  
0.0005  
0
−0.0005  
−0.001  
−0.0015  
−0.002  
0
0.25  
Frequency (x fS)  
0.5  
G101  
Figure 54. High-Attentuation x4 Interpolation Filter Passband Ripple, Dual Rate  
34  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 20. High-Attentuation x2 Interpolation Filter, Quad Rate  
PARAMETER  
CONDITION  
VALUE (TYP)  
VALUE (MAX)  
UNIT  
dB  
Filter Gain Pass Band  
Filter Gain Stop Band  
Filter Group Delay  
0 ……. 0.45 × fS  
0.55 × fS ….. 1.455 × fS  
±0.0005  
–100  
dB  
33.7 × tS  
S
SPACE  
0
1
0.8  
0.6  
0.4  
0.2  
0
−20  
−40  
−60  
−80  
−100  
−0.2  
−0.4  
−120  
0
0.5  
1
0
10 20 30 40 50 60 70 80 90 100 110 120  
Samples  
Frequency (x fS)  
G003  
G004  
Figure 55. High-Attentuation x2 Interpolation Filter  
Frequency Response, Quad Rate  
Figure 56. High-Attentuation x2 Interpolation Filter Impulse  
Response, Quad Rate  
0.002  
0.0015  
0.001  
0.0005  
0
−0.0005  
−0.001  
−0.0015  
−0.002  
0
0.25  
Frequency (x fS)  
0.5  
G102  
Figure 57. High-Attentuation x2 Interpolation Filter Passband Ripple, Quad Rate  
Copyright © 2014, Texas Instruments Incorporated  
35  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
8.3.4.3 Overview  
The PCM5252 features a configurable miniDSP core. The algorithms for the miniDSP are loaded into the device  
after power up. The miniDSP has direct access to the digital stereo audio stream, offering the possibility for  
advanced DSP algorithms with very low group delay. The miniDSP can run up to 1024 instructions on every  
audio sample at a 48 kHz sample rate.  
The PCM5252 Smart Amplifier uses a mix of code sources. ROM based process flow and RAM based process  
flow. In the program, different algorithms are called from ROM – such as EQ, DRC and Zero Crossing volume  
control enabling a faster program load.  
8.3.4.4 Smart SOA  
The "Safe Operating Area" (SOA) for a loudspeaker is based on its electro-mechanical-thermal model.  
Depending on a speaker's inefficiency, some of the power is dissipated as heat rather than mechanical/acoustic  
energy. By understanding the characteristics of the speaker, Smart Amp is able to drive the speaker harder,  
without causing the speaker to thermally overload; or, suffer voice coil over-exclusion and fail. SMART SOA are  
parameters that are differentiated by a PPC GUI into coefficients that the algorithm uses.  
8.3.4.5 Smart BASS  
Smart Bass is an intelligent True Bass Alignment algorithm. Smart Bass uses the combination of the speaker  
model and a desired target response selected by the user to equalize the speaker in the bass region. This target  
response is critical for the sound character and the user can apply the same target response to very different  
speakers and get the same sound.  
In conventional adaptive Bass Boost Algorithms, designers need to vary the amount of bass boost whenever the  
output volume is changed. This approach is very much an "open loop" process. Smart Bass is a new proprietary  
algorithm that combines: True bass extension (in bandwidth and amplitude) and Psycho-acoustic bass extension,  
with a smart adaptive control.  
Smart Bass varies the mix of True Bass extension and Psycho-acoustic bass extension in real time, depending  
on the loudspeakers position in its SOA.  
Smart Bass dynamically switches between True Bass and Psycho-acoustic extension based on a number of  
parameters such as:  
Capabilities and properties of the speaker, including Q compensation  
Music type  
Volume setting  
Temperature  
User preferences  
Designer preferences  
8.3.4.6 Smart Protection  
The two main failure mechanisms for loudspeakers are over temperature and over excursion. By modeling the  
current state of the speaker, Smart Protection adaptively changes various settings in Smart Amplifier to avoid  
over temperature and over excursion. Design engineers must first provide details of the loudspeaker (driver and  
enclosure) into the GUI. From there the appropriate coefficients are generated for the algorithm.  
8.3.4.7 Implementing a Real World Design  
Traditionally, system developers and hardware engineers use graphic equalizers in trial-and-error fashion to  
boost the bass for each new speaker until the sound is right (or "good enough" in many cases). However, this  
typically results in a strange combined response with too much phase shift. This process must be repeated every  
time a new speaker is selected. The Smart Bass concept uses the GUI to select a desired target response takes  
the speaker out of the equation. By this approach users can obtain a target response with minimum phase warp  
and time domain ringing which gives a speedy and tight bass. Conversely, users can select a target response  
that has lots of ringing to give a classical heavy ‘oomph’ bass.  
36  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
8.3.4.8 Digital Output  
The PCM5252 supports an SDOUT output. This can be selected within the process flow, and driven out of a  
GPIO pin selected in the register map (e.g. Page 0 / Register 80). The I2S output can be fed back to the signal  
host and used for echo cancellation.  
8.3.4.9 Software  
Software selection for the PCM5252 is supported through TI's comprehensive PurePathTM Console Development  
Environment; a powerful, easy-to-use tool designed specifically to simplify development on the PCM5252  
platform. Visit the PCM5252 product folder on www.ti.com to learn more about PurePath™ Console and the  
latest status on available, ready-to-use DSP algorithms.  
8.3.4.10 Process Flow  
An example of the default Process Flow available for the PCM5252 in the PurePath™ Console target is shown  
below:  
I2S  
Input  
DACL  
Stereo  
Volume  
Control  
Mono  
Bass  
Mix  
Left/Right  
DAC  
Analog Output  
DIN  
10  
BiQuads  
Smart  
Amp  
DACR  
GPIO3  
(SDOUT)  
I2S  
Output  
Left  
Right  
Figure 58. Example Processflow  
This process flow has from input to output:  
Volume block, from -110 db to +6 dB with 0.5 dB steps, including a fixed gain block of 0dB to 12 dB gain  
monobass mixer – mixes the bass into mono below the set frequency, useful for systems where left and right  
speaker shares the same cabinet volume, bypassed when not needed  
10 Biquads for filtering and EQ. The PPC GUI have an advanced biquad control where various filter and eq  
options can be set and controlled.  
SmartAmp block, containing all the blocks for bass Q compensation, bass alignment, excursion control and  
power limited  
Digital monitor output enabled on GPIO3  
Copyright © 2014, Texas Instruments Incorporated  
37  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
8.3.5 DAC and Differential Analog Outputs  
8.3.5.1 Analog Outputs  
The PCM5252 devices include a two-channel DAC, with differential outputs. Each pin has a full-scale output  
voltage is 2.1 Vrms with ground center output. This equates to a 4.2 Vrms differential output. A DC-coupled load is  
supported in addition to an AC-coupled load, if the load resistance conforms to the specification. The PCM5252  
DAC outputs on the OUTLP, OUTLN, OUTRP, and OUTRN terminals have market-leading low out-of-band  
noise, which offer up to 20-dB lower out-of-band noise compared with existing DAC technology.  
Many applications require an external low-pass RC filter (470 Ω + 1.2 nF) to provide sufficient out-of-band noise  
rejection. This RC filter provides the added advantage of improved protection against ESD damage.  
The PCM5252 can also support single ended outputs, using OUTLP and OUTRP respectively. A single 470-Ω  
and 2.2-nF capacitor can be used on each pin in single ended mode.  
The choice between VREF and VCOM modes affects the maximum output level. This is explained in  
Recommended Operating Conditions.  
Optional RC Low-Pass Filter  
P Output  
4.3nF  
470W  
470W  
N Output  
6
OUTLP  
OUTLN  
OUTRN  
OUTRP  
+
RC LPF  
Left Differential Output  
7
8
9
-
-
Right Differential Output RC LPF  
+
Figure 59. Optional Low Pass Filters  
8.3.5.2 Choosing Between VREF and VCOM Modes  
VREF mode is the default configuration. This mode allows full 2.1-Vrms signal output. As shown in Recommended  
Operating Conditions, the minimum AVDD to avoid clipping is 3.2 V.  
VCOM mode allows setting a custom common-mode voltage when required by the application. This somewhat  
limits the output signal swing before clipping.  
8.3.5.2.1 Voltage Reference and Output Levels  
The PCM5252 devices have an internal, fixed band-gap reference voltage, with default operation in VREF mode.  
No external decoupling capacitor is required for this mode.  
The PCM5252 devices can be operated with a common-mode voltage output (VCOM mode) at the VCOM pin by  
setting Page 1, Register 1, D(0) to 1. In this mode, an external decoupling capacitor is required.  
When using this DAC in VREF mode, the output-signal voltage is independent of the power-supply voltage: The  
D/A conversion gain in VREF mode yields a 2.1-Vrms output voltage with a digital full-scale input. However, in  
VREF mode, an output waveform may clip due to the limitations that may be present in the analog power supply  
voltage. On the other hand, the full-scale output voltage in VCOM mode is proportional to the analog power  
supply AVDD (for example, (2.1 × AVDD / 3.3) Vrms).  
38  
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
8.3.5.2.2 Mode Switching Sequence, from VREF Mode to VCOM Mode  
Following register setting sequence is recommended for changing VREF mode to VCOM mode.  
1. Page 0 / Register 2  
2. Page 1 / Register 8  
3. Page 1 / Register 9  
4.  
RQST = 1: Standby mode  
RCMF = 1: Fast ramp up on  
VCPD = 0: VCOM is power on  
Wait 3 ms with external capacitor = 1 µF  
RCMF = 0: Fast ramp up off  
OSEL = 1: VCOM mode  
5. Page 1 / Register 8  
6. Page 1 / Register 1  
7. Page 0 / Register 2  
RQST = 0: Normal mode  
8.3.5.3 Digital Volume Control  
A basic digital volume control with range from 24 dB to –103 dB and mute is available on each channels by Page  
0, Resister 61, D(7:0) for L-ch and Register 62, D(7:0) for R-ch. These volume controls all have 0.5-dB step  
programmability over most gain and attenuation ranges. Table 21 lists the detailed gain versus programmed  
setting for this basic volume control. Volume can be changed for both L-ch and R-ch at the same time or  
independently by Page 0, Register 60, D(1:0). When D(1:0) set 00 (default), independent control is selected.  
When D(1:0) set 01, R-ch accords with L-ch volume. When D(1:0) set 10, L-ch accords with R-ch volume. To set  
D(1:0) to 11 is prohibited.  
NOTE  
This volume control is done externally to the miniDSP and only influences the analog DAC  
output. Any changes to the SDOUT data should be done in the miniDSP process flow.  
Table 21. Digital Volume Control Settings  
GAIN  
SETTING  
GAIN  
(dB)  
BINARY DATA  
COMMENTS  
0
1
0000-0000  
0000-0001  
:
24.0  
23.5  
Positive maximum  
:
46  
47  
48  
49  
50  
51  
:
0010-1110  
0010-1111  
0011-0000  
0011-0001  
0011-0010  
0011-0011  
:
1.0  
0.5  
0.0  
No attenuation (default)  
–0.5  
–1.0  
–1.5  
253  
254  
255  
1111-1101  
1111-1110  
1111-1111  
–102.5  
–103  
∞  
Negative maximum  
Negative infinite (Mute)  
Ramp-up frequency and ramp-down frequency can be controlled by Page 0, Register 63, D(7:6) and D(3:2) as  
shown in Table 22. Also Ramp-up step and ramp-down step can be controlled by Page 0, Register 63 D(5:4) and  
D(1:0) as shown in Table 23.  
Copyright © 2014, Texas Instruments Incorporated  
39  
 
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 22. Ramp-Up or Down Frequency  
RAMP-UP  
SPEED  
RAMP-DOWN  
FREQUENCY  
EVERY N fS  
COMMENTS  
EVERY N fS  
COMMENTS  
00  
1
Default  
00  
01  
10  
11  
1
Default  
01  
2
2
10  
4
4
11  
Direct change  
Direct change  
Table 23. Ramp-Up or Down Step  
RAMP-UP  
STEP  
RAMP-DOWN  
STEP dB  
COMMENTS  
STEP  
STEP dB  
COMMENTS  
00  
01  
10  
11  
4.0  
2.0  
1.0  
0.5  
00  
01  
-4.0  
-2.0  
-1.0  
-0.5  
Default  
10  
11  
Default  
8.3.5.3.1 Emergency Ramp-Down  
Digital volume emergency ramp-down by is provided for situations such as I2S clock error and power supply  
failure. Ramp-down speed is controlled by Page 0, Register 64, D(7:6). Ramp-down step can be controlled by  
Page 0 Register 64, D(5:4). Default is ramp-down by every fS cycle with –4-dB step.  
8.3.5.4 Analog Gain Control  
Analog gain control can be selected between 2-Vrms FS (0 dB) or 1-Vrms FS (–6 dB). Gain is controlled through  
hardware by the AGNS pin, and through software (SPI/I2C), Page 1, Register 2, D4(L-ch) / D0(R-ch).  
40  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
8.3.6 Reset and System Clock Functions  
8.3.6.1 Clocking Overview  
The PCM5252 devices have flexible systems for clocking. Internally, the device requires a number of clocks,  
mostly at related clock rates to function correctly. All of these clocks can be derived from the serial audio  
interface in one form or another.  
Serial Audio  
Interface  
(Input)  
Delta  
Sigma  
Modulator  
miniDSP  
Current  
Segments  
I
Line Driver  
V
fS (24bit)  
16fS (24bit)  
128fS (~8 bit)  
+
(inc interpolator)  
-3V3  
-3v3 Charge  
Pump  
CPCK  
Figure 60. Audio Flow with Respective Clocks  
As shown in Figure 60 the data flows at the sample rate (fS). Once the data is brought into the serial audio  
interface, it gets processed, interpolated and modulated all the way to 128 × fS before arriving at the current  
segments for the final digital to analog conversion.  
The clock tree is shown in Figure 61.  
PLLEN (Pg0, Reg 4 0x04)  
SCK  
DSPCK (miniDSP Clock )  
Divider  
DDSP (Pg0, Reg 27 0x1B)  
SREF (Pg0, Reg 13 0x0D)  
SDAC (Pg0, Reg 14  
0x0E)  
BCK  
DAC  
CLK  
PLL  
SCK  
DACCK (DAC Clock )  
GPIO*  
SCK  
Divider  
Source  
GPIO* Mux  
K * R / P  
PLLCKIN  
PLLCK  
DDAC (Pg0, Reg 28 0x1C)  
CPCK (Charge Pump Clock )  
Divider  
Divider  
DNCP (Pg0, Reg 29 0x1D)  
K = J.D  
J = 1,2,3,…..,62,63  
D= 0000,0001,….,9998,9999  
R= 1,2,3,4,….,15,16  
P= 1,2,….,127,128  
OSRCK (Oversampling Ratio Clock )  
MUX  
Divide  
by 2  
DOSR (Pg0, Reg 30 0x1E)  
I16E (Pg0, Reg 34 0x22)  
Figure 61. PCM5252 Clock Distribution Tree  
The serial audio interface typically has 4 connections: SCK (system master clock), BCK (bit clock), LRCK (left  
right word clock), and DIN (data). The device has an internal PLL that is used to take either SCK or BCK and  
create the higher rate clocks required by the interpolating processor and the DAC clock. This allows the device to  
operate with or without an external SCK.  
In situations where the highest audio performance is required, it is suggested that the SCK is brought to the  
device, along with BCK and LRCK. The device should be configured so that the PLL is only providing a clock  
source to the miniDSP. By ensuring that the DACCK (DAC Clock) is being driven by the external SCK source,  
jitter evident in the PLL (in all PLLs) is kept out of the DAC, charge pump, and oversampling system.  
Copyright © 2014, Texas Instruments Incorporated  
41  
 
 
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Everything else should be a division of the incoming SCK. This is done by setting DAC CLK Source Mux (SDAC  
in Figure 61) to use SCK as a source, rather than the output of the SCK/PLL Mux. Code examples for this are  
available in SLASE12.  
When the Auto Clock Configuration bit is set (Page 0/ Register 0x25), no additional clocks configuration is  
required. However, when setting custom PLL values and so forth, the target output rates should match those  
shown in the recommended PLL values of Table 122.  
8.3.6.2 Clock Slave Mode With Master and System Clock (SCK) Input (4 Wire I2S)  
The PCM5252 requires a system clock to operate the digital interpolation filters and advanced segment DAC  
modulators. The system clock is applied at the SCK input and supports up to 50 MHz. The PCM5252 system-  
clock detection circuit automatically senses the system-clock frequency. Common audio sampling frequencies in  
the bands of 8 kHz, 16 kHz, (32 kHz - 44.1 kHz - 48 kHz), (88.2kHz - 96kHz), (176.4 kHz - 192 kHz), and 384  
kHz with ±4% tolerance are supported. Values in the parentheses are grouped when detected, (for example,  
88.2 kHZ and 96 kHz are detected as double rate, and 32 kHz, 44.1 kHz and 48 kHz are detected as single  
rate.)  
In the presence of a valid bit SCK, BCK and LRCK in software mode, the device will auto-configure the clock tree  
and PLL to drive the miniDSP as required.  
The sampling frequency detector sets the clock for the digital filter, Delta Sigma Modulator (DSM) and the  
Negative Charge Pump (NCP) automatically. Table 24 shows examples of system clock frequencies for common  
audio sampling rates.  
SCK rates that are not common to standard audio clocks, between 1 MHz and 50 MHz, are only supported in  
software mode by configuring various PLL and clock-divider registers. This programmability allows the device to  
become a clock master and drive the host serial port with LRCK and BCK, from a non-audio related clock (for  
example, using 12 MHz to generate 44.1 kHz [LRCK] and 2.8224 MHz [BCK]).  
Table 24. System Master Clock Inputs for Audio Related Clocks  
SYSTEM CLOCK FREQUENCY (fSCK) (MHz)  
SAMPLING  
FREQUENCY  
64 fS  
128 fS  
1.024(2)  
2.048(2)  
4.096(2)  
5.6488(2)  
6.144(2)  
11.2896(2)  
12.288(2)  
22.579  
192 fS  
1.536(2)  
3.072(2)  
6.144(2)  
8.4672(2)  
9.216(2)  
16.9344  
18.432  
256 fS  
2.048  
384 fS  
3.072  
512 fS  
4.096  
768 fS  
6.144  
1024 fS  
8.192  
1152 fS  
9.216  
1536 fS  
12.288  
24.576  
49.152  
2048 fS  
16.384  
36.864  
3072 fS  
24.576  
49.152  
(1)  
8 kHz  
16 kHz  
(1)  
4.096  
6.144  
8.192  
12.288  
24.576  
33.8688  
36.864  
16.384  
32.768  
45.1584  
49.152  
18.432  
36.864  
(1)  
(1)  
(1)  
32 kHz  
8.192  
12.288  
16.9344  
18.432  
33.8688  
36.864  
16.384  
22.5792  
24.576  
45.1584  
49.152  
(1)  
(1)  
(1)  
(1)  
(1)  
44.1 kHz  
48 kHz  
11.2896  
12.288  
22.5792  
24.576  
45.1584  
49.152  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
88.2 kHz  
96 kHz  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
176.4 kHz  
192 kHz  
384 kHz  
33.8688  
36.864  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
24.576  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
24.576  
49.152  
(1) This system clock rate is not supported for the given sampling frequency.  
(2) This system clock rate is supported by PLL mode.  
See Timing Requirements: PCM Audio Data for clock timing requirements.  
42  
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
8.3.6.3 Clock Slave Mode With BCK PLL to Generate Internal Clocks (3-Wire PCM)  
The system clock PLL mode allows designers to use a simple 3-wire I2S audio source. The 3-wire source  
reduces the need for a high frequency SCK, making PCB layout easier, and reduces high frequency  
electromagnetic interference.  
In hardwired mode, the internal PLL is disabled as soon as an external SCK is supplied.  
In hardwired mode, the device starts up expecting an external SCK input, but if BCK and LRCK start correctly  
while SCK remains at ground level for 16 successive LRCK periods, then the internal PLL starts, automatically  
generating an internal SCK from the BCK reference. Specific BCK rates are required to generate an appropriate  
master clock. Table 25 describes the minimum and maximum BCK per LRCK for the integrated PLL to  
automatically generate an internal SCK.  
In software mode, the user must set all the PLL registers and clock divider registers for referencing BCK. See  
Clock Generation Using the PLL for more information. Recommended values can be found in Table 122.  
Table 25. BCK Rates (MHz) by LRCK Sample Rate for  
PCM5252 PLL Operation  
BCK (fS)  
SAMPLE F (kHz)  
32  
64  
8
16  
1.024  
2.048  
2.8224  
3.072  
6.144  
12.288  
24.576  
32  
1.024  
1.4112  
1.536  
3.072  
6.144  
12.288  
44.1  
48  
96  
192  
384  
8.3.6.4 Clock Generation Using the PLL  
The PCM5252 supports a wide range of options to generate the required clocks for the DAC section as well as  
interface and other control blocks as shown in Figure 61.  
The clocks for the PLL require a source reference clock. This clock is sourced as the incoming BCK or SCK. In  
software mode, a GPIO can also be used.  
The source reference clock for the PLL reference clock is selected by programming the SRCREF value on Page  
0, Register 13, D(6:4). The PCM5252 provides several programmable clock dividers to achieve a variety of  
sampling rates for the DAC and clocks for the NCP, OSR and the miniDSP. OSRCK for OSR must be set at 16  
fS frequency by DOSR on Page0, Register 30, D(6:0). See Figure 61.  
If PLL functionality is not required, set the PLLEN value on Page 0, Register 4, D(0) to 0. In this situation, an  
external SCK is required.  
Table 26. PLL Configuration Registers  
CLOCK MULTIPLEXER  
SRCREF  
DIVIDER  
DDSP  
FUNCTION  
BITS  
PLL reference  
Page 0, Register 13, D(6:4)  
BITS  
FUNCTION  
miniDSP clock divider  
DAC clock divider  
NCP clock divider  
OSR clock divider  
External BCK Div  
External LRCK Div  
Page 0, Register 27, D(6:0)  
Page 0, Register 28, D(6:0)  
Page 0, Register 29, D(6:0)  
Page 0, Register 30, D(6:0)  
Page 0, Register 32, D(6:0)  
Page 0, Register 33, D(7:0)  
DACCK  
CPCK  
OSRCK  
DBCK  
DLRK  
Copyright © 2014, Texas Instruments Incorporated  
43  
 
 
 
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
8.3.6.5 PLL Calculation  
The PCM5252 has an on-chip PLL with fractional multiplication to generate the clock frequency needed by the  
audio DAC, Negative Charge Pump, Modulator and Digital Signal Processing blocks. The programmability of the  
PLL allows operation from a wide variety of clocks that may be available in the system. The PLL input (PLLCKIN)  
supports clock frequencies from 1 MHz to 50 MHz and is register programmable to enable generation of required  
sampling rates with fine precision.  
The PLL is enabled by default. The PLL can be turned on by writing to Page 0, Register 4, D(0). When the PLL  
is enabled, the PLL output clock PLLCK is given by Equation 1.  
PLLCKIN x R x J.D  
P
PLLCKIN x R x K  
P
PLLCK =  
or PLLCK =  
where  
R = 1, 2, 3,4, ... , 15, 16  
J = 4,5,6, . . . 63, and D = 0000, 0001, 0002, . . . 9999  
K = [J value].[D value]  
P = 1, 2, 3, ... 15  
(1)  
R, J, D, and P are programmable. J is the integer portion of K (the numbers to the left of the decimal point), while  
D is the fractional portion of K (the numbers to the right of the decimal point, assuming four digits of precision).  
8.3.6.5.1 Examples:  
If K = 8.5, then J = 8, D = 5000  
If K = 7.12, then J = 7, D = 1200  
If K = 14.03, then J = 14, D = 0300  
If K = 6.0004, then J = 6, D = 0004  
When the PLL is enabled and D = 0000, the following conditions must be satisfied:  
1 MHz ( PLLCKIN / P ) 20 MHz  
64 MHz (PLLCKIN x K x R / P ) 100 MHz (in VREF mode)  
72 MHz (PLLCKIN x K x R / P ) 86 MHz (in VCOM mode)  
1 J 63  
When the PLL is enabled and D 0000, the following conditions must be satisfied:  
6.667 MHz PLLCLKIN / P 20 MHz  
64 MHz (PLLCKIN x K x R / P ) 100 MHz (in VREF mode)  
72 MHz (PLLCK IN x K x R / P ) 86 MHz (in VCOM mode)  
4 J 11  
R = 1  
When the PLL is enabled,  
fS = (PLLCLKIN × K × R) / (2048 × P)  
The value of N is selected so that fS × N = PLLCLKIN x K x R / P is in the allowable range.  
Example: MCLK = 12 MHz and fS = 44.1 kHz, (N=2048)  
Select P = 1, R = 1, K = 7.5264, which results in J = 7, D = 5264  
Example: MCLK = 12 MHz and fS = 48.0 kHz, (N=2048)  
Select P = 1, R = 1, K = 8.192, which results in J = 8, D = 1920  
Values are written to the registers in Table 27.  
44  
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
8.3.6.5.1.1 Recommended PLL Settings  
Recommended values for the PLL can be found after the register descriptions in this data sheet. Different values  
are defined based on the device configuration for VREF or VCOM mode.  
Other configurations are possible, at your own risk.  
Table 27 show the details of the register locations, as well as the nomenclature for the table of registers found at  
the end of this document.  
Table 27. PLL Registers  
DIVIDER  
PLLE  
FUNCTION  
PLL enable  
PLL P  
BITS  
Page 0, Register 4, D(0)  
Page 0, Register 20, D(3:0)  
Page 0, Register 21, D(5:0)  
Page 0, Register 22, D(5:0)  
Page 0, Register 23, D(7:0)  
Page 0, Register 24, D(3:0)  
PPDV  
PJDV  
PLL J  
PDDV  
PRDV  
PLL D  
PLL R  
Table 28. PLL Configuration Recommendations  
COLUMN  
fS (kHz)  
DESCRIPTION  
Sampling frequency  
RSCK  
Ratio between sampling frequency and SCK frequency (SCK frequency = RSCK × sampling frequency)  
System master clock frequency at SCK input (pin 20)  
SCK (MHz)  
PLL VCO (MHz) PLL VCO frequency as PLLCK in Figure 61  
One of the PLL coefficients in Equation 1  
PLL REF (MHz) Internal reference clock frequency which is produced by SCK / P  
P
M = K * R  
K = J.D  
R
The final PLL multiplication factor computed from K and R as described in Equation 1  
One of the PLL coefficients in Equation 1  
One of the PLL coefficients in Equation 1  
PLL fS  
DSP fS  
NMAC  
Ratio between fS and PLL VCO frequency (PLL VCO / fS)  
Ratio between miniDSP operating clock rate and fS (PLL fS / NMAC)  
The miniDSP clock divider value in Table 26  
DSP CLK (MHz) The miniDSP operating frequency as DSPCK in Figure 61  
MOD fS  
Ratio between DAC operating clock frequency and fS (PLL fS / NDAC)  
DAC operating frequency as DACCK in Figure 61  
DAC clock divider value in Table 26  
MOD f (kHz)  
NDAC  
OSR clock divider value in Table 26 for generating OSRCK in Figure 61. DOSR must be chosen so that MOD fS / DOSR  
= 16 for correct operation.  
DOSR  
NCP  
CP f  
NCP (negative charge pump) clock divider value in Table 26  
Negative charge pump clock frequency (fS × MOD fS / NCP)  
Percentage of error between PLL VCO / PLL fS and fS (mismatch error).  
% Error  
This number is typically zero but can be non-zero especially when K is not an integer (D is not zero).  
This number may be non-zero only when the PCM5252 acts as a master.  
Copyright © 2014, Texas Instruments Incorporated  
45  
 
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
8.3.6.6 Clock Master Mode from Audio Rate Master Clock  
In Master Mode, the device generates bit clock (BCK) and left-right clock (LRCK) and outputs them on the  
appropriate pins. To configure the device in this mode, first put the device into reset, then use registers BCKO  
and LRKO (Pg 0, Reg 9 0x09). Then reset the LRCK and BCK divider counters using bits RBCK and RLRK (Pg  
0, Reg 12 0x0C). Finally, exit reset.  
An example of this is given in register programming examples in the PCM5242 data sheet (SLASE12.)  
Figure 62 shows a simplified serial port clock tree for the device in master mode.  
Audio Related System Clock(SCK)  
SCK  
Divider  
Q=1...128  
BCKO(Bit Clock Output In Master Mode)  
BCK  
LRCKO (LR Clock Output In Master Mode)  
Divider  
Q=1...128  
LRCK  
Figure 62. Simplified Clock Tree for SCK Sourced Master Mode  
In master mode, SCK is an input and BCK/LRCK are outputs. BCK and LRCK are integer divisions of SCK.  
Master mode with a non-audio rate master clock source will require external GPIOs to use the PLL in standalone  
mode.  
The PLL will also need to be configured to ensure that the onchip miniDSP processor can be driven at its  
maximum clock rate.  
Register changes that need to be done include switching the device into master mode, and setting the divider  
ratio.  
Here is an example of using 24.576 MCLK as a master clock source and driving the BCK and LRCK with integer  
dividers to create 48 kHz.  
In this mode, the DAC section of the device is also running from the PLL output. While the PLL inside the  
PCM5252 is one that has been specified to achieve the stated performance, using the SCK CMOS Oscillator  
source will have less jitter.  
To switch the DAC clocks (SDAC in the Figure 61) the following registers should be modified.  
Clock Tree Flex Mode (Page 253, Registers 0x3F and 0x40)  
DAC and OSR Source Clock Register (Page 0, Reg 14) – set to 0x30 (SCK input, and OSR is set to  
whatever the DAC source is)  
The DAC clock divider should be 16 FS.  
16 × 48 kHz = 768 kHz  
24.576 MHz (SCK in) / 768 kHz = 32  
Therefor, divide ratio for register DDAC (Page 0, Reg 28 0x1C) should be set to 32. The may the register  
is mapped gives 0x00 = 1, so 32 must be converted to 0x1F.  
An example configuration can be found in the PCM5242 data sheet (SLASE12).  
46  
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
8.3.6.7 Clock Master from a Non-Audio Rate Master Clock  
The classic example here is running a 12-MHz Master clock for a 48-kHz sampling system. Given the clock tree  
for the device (shown in Figure 61), a non-audio clock rate cannot be brought into the SCK to the PLL in master  
mode. Therefore, the PLL source must be configured to be a GPIO pin, and the output brought back into another  
GPIO pin.  
NON AUDIO SCK  
GPIOx  
PLL  
GPIOy  
NEW  
AUDIO  
Master Mode  
BCK Integer  
Divider  
SCK  
SCK  
Master Mode  
LRCK Integer  
Divider  
BCK OUT  
BCK  
LRCK OUT  
LRCK  
Figure 63. Application Diagram for Using Non-Audio Clock Sources to Generate Audio Clocks  
The clock flow through the system is shown in Figure 63. The newly-generated SCK must be brought out of the  
device on a GPIO pin, then brought into the SCK pin for integer division to create BCK and LRCK outputs.  
NOTE  
Pullup resistors must be used on BCK and LRCK in this mode to ensure the device does  
not go into sleep mode.  
A code example for configuring this mode is provided in the PCM5242 data sheet (SLASE12).  
Copyright © 2014, Texas Instruments Incorporated  
47  
 
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Choosing a Control Mode  
SPI Mode is selected by connecting MODE1 to DVDD. SPI Mode uses four signal lines and allows higher-speed  
full-duplex communication between the host and the PCM5252 device.  
I2C Mode is selected by connecting MODE1 to DGND and Mode2 to DVDD. I2C uses two signal lines for half-  
duplex communication, and is widely used in a variety of devices.  
Hardware Control Mode is selected by connecting both MODE1 and MODE2 pins to DGND. Hardware control is  
useful in applications that do not require on-the-fly device-reconfiguration changes in operating features such as  
gain or filter latency selection.  
See Pin Assignments for a comparison of pin assignments for the 32-pin VQFN.  
8.4.1.1 Software Control  
8.4.1.1.1 SPI Interface  
The SPI interface is a 4-wire synchronous serial port which operates asynchronously to the serial audio interface  
and the system clock (SCK). The serial control interface is used to program and read the on-chip mode registers.  
The control interface includes MISO (pin 24), MOSI (pin 11), MC (pin 12), and MS (pin 18). MISO (Master In  
Slave Out) is the serial data output, used to read back the values of the mode registers; MOSI (Master Out Slave  
In) is the serial data input, used to program the mode registers.  
MC is the serial bit clock, used to shift data in and out of the control port by falling edge of MC, and MS is the  
mode control enable with LOW active, used to enable the internal mode register access. If feedback from the  
device is not required, the MISO pin can be assigned to GPIO1 by register control.  
8.4.1.1.1.1 Register Read and Write Operation  
All read/write operations for the serial control port use 16-bit data words. Figure 64 shows the control data word  
format. The most significant bit is the read/write bit. For write operations, the bit must be set to 0. For read  
operations, the bit must be set to 1. There are seven bits, labeled IDX[6:0], that hold the register index (or  
address) for the read and write operations. The least significant eight bits, D[7:0], contain the data to be written  
to, or the data that was read from, the register specified by IDX[6:0].  
Figure 64 and Figure 65 show the functional timing diagram to write or read through the serial control port. MS is  
held at a logic-1 state until a register access. To start the register write or read cycle, set MS to logic 0. Sixteen  
clocks are then provided on MC, corresponding to the 16 bits of the control data word on MOSI and read-back  
data on MISO. After the eighth clock cycle has completed, the data from the indexed-mode control register  
appears on MISO during the read operation. After the sixteenth clock cycle has completed, the data is latched  
into the indexed-mode control register during the write operation. To write or read subsequent data, MS is set to  
logic 1 once (see tMHH in Figure 69).  
MSB  
LSB  
D0  
IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0 R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Register Index (or Address)  
Register Data  
Figure 64. Control Data Word Format; MDI  
NOTE  
B8 is used for selection of Write or Read. Setting = 0 indicates a Write, while = 1 indicates  
a Read. Bits 15–9 are used for register address. Bits 7–0 are used for register data.  
Multiple-byte write or read (up to 8 bytes) is supported while MS is kept low. The address  
field becomes the initial address, automatically incrementing for each byte.  
48  
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Device Functional Modes (continued)  
MS  
MC  
A6 A5 A4 A3 A2 A1 A0  
W
D7 D6 D5 D4 D3 D2 D1 D0  
MOSI  
MISO  
HI-Z  
Figure 65. Serial Control Format; Write, Single Byte  
MS  
MC  
ADDR  
BYTE 0  
BYTE 1  
BYTE 2  
BYTE 3  
HI-Z  
BYTE 4  
BYTE 5  
BYTE 6  
BYTE 7  
MOSI  
MISO  
W
Figure 66. Serial Control Format; Write, Multiple Byte  
MS  
MC  
MOSI  
MISO  
A6 A5 A4 A3 A2 A1 A0  
R
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
HI-Z  
HI-Z  
Figure 67. Serial Control Format; Read  
Copyright © 2014, Texas Instruments Incorporated  
49  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
MS  
MC  
ADDR  
BYTE 0  
BYTE 0  
BYTE 1  
BYTE 1  
BYTE 2  
BYTE 2  
BYTE 3  
BYTE 3  
BYTE 4  
BYTE 4  
BYTE 5  
BYTE 5  
BYTE 6  
BYTE 6  
BYTE 7  
MOSI  
MISO  
R
HI-Z  
HI-Z  
BYTE 7  
Figure 68. Serial Control Format; Read, Multiple Byte  
Figure 69. Control Interface Timing  
Table 29. Control Interface Timing  
MIN  
100  
40  
MAX  
UNIT  
ns  
tMCY MC Pulse Cycle Time  
tMCL MC Low Level Time  
tMCH MC High Level Time  
tMHH MS High Level Time  
tMSS MS Edge to MC Edge  
tMSH MS Hold Time(1)  
ns  
40  
ns  
20  
ns  
30  
ns  
30  
ns  
tMDH MDI Hold Time  
15  
ns  
tMDS MDI Set-up Time  
15  
ns  
tMOS MC Rise Edge to MDO Stable  
20  
ns  
(1) MC falling edge for LSB to MS rising edge.  
50  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
8.4.1.1.2 I2C Interface  
The PCM5252 supports the I2C serial bus and the data transmission protocol for standard and fast mode as a  
slave device.  
In I2C mode, the control terminals are changed as follows.  
Table 30. I2C Pins and Functions  
SIGNAL  
SDA  
PIN  
11  
12  
16  
24  
I/O  
DESCRIPTION  
I2C data  
I2C clock  
I2C address 2  
I2C address 1  
I/O  
SCL  
I
I
I
ADR2  
ADR1  
8.4.1.1.2.1 Slave Address  
Table 31. I2C Slave Address  
MSB  
1
LSB  
0
0
1
1
ADR2  
ADR1  
R/ W  
The PCM5252 has 7 bits for its own slave address. The first five bits (MSBs) of the slave address are factory  
preset to 10011 (0x9x). The next two bits of the address byte are the device select bits which can be user-  
defined by the ADR1 and ADR0 terminals. A maximum of four devices can be connected on the same bus at  
one time. This gives a range of 0x98, 0x9A, 0x9C and 0x9E. Each PCM5252 responds when it receives its own  
slave address.  
8.4.1.1.2.2 Register Address Auto-Increment Mode  
MSB  
INC  
LSB  
A0  
A6  
A5  
A4  
A3  
A2  
A1  
Figure 70. Auto Increment Mode  
Auto-increment mode allows multiple sequential register locations to be written to or read back in a single  
operation, and is especially useful for block write and read operations.  
8.4.1.1.2.3 Packet Protocol  
A master device must control packet protocol, which consists of start condition, slave address, read/write bit,  
data if write or acknowledge if read, and stop condition. The PCM5252 supports only slave receivers and slave  
transmitters.  
SDA  
SCL  
9
1–7  
8
9
1–8  
9
1–8  
9
Sp  
St  
Slave address  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
Start  
condition  
Stop  
condition  
R/W: Read operation if 1; otherwise, write operation  
ACK: Acknowledgement of a byte if 0  
DATA: 8 bits (byte)  
Figure 71. Packet Protocol  
Copyright © 2014, Texas Instruments Incorporated  
51  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 32. Write Operation - Basic I2C Framework  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
S
M
St  
slave address  
R/  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
Sp  
Table 33. Read Operation - Basic I2C Framework  
Transmitter  
Data Type  
M
M
M
S
S
M
S
M
M
M
St  
slave address  
R/  
ACK  
DATA  
ACK  
DATA  
ACK  
NACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition; Sp = Stop Condition  
8.4.1.1.2.4 Write Register  
A master can write to any PCM5252 registers using single or multiple accesses. The master sends a PCM5252  
slave address with a write bit, a register address with auto-increment bit, and the data. If auto-increment is  
enabled, the address is that of the starting register, followed by the data to be transferred. When the data is  
received properly, the index register is incremented by 1 automatically. When the index register reaches 0x7F,  
the next value is 0x0. Table 34 shows the write operation.  
Table 34. Write Operation  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
M
S
S
M
reg  
addr  
write  
data 1  
write  
data 2  
St  
slave addr  
W
ACK  
inc  
ACK  
ACK  
ACK  
ACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition; Sp = Stop Condition; W = Write; ACK =  
Acknowledge  
8.4.1.1.2.5 Read Register  
A master can read the PCM5252 register. The value of the register address is stored in an indirect index register  
in advance. The master sends a PCM5252 slave address with a read bit after storing the register address. Then  
the PCM5252 transfers the data which the index register points to. When auto-increment is enabled, the index  
register is incremented by 1 automatically. When the index register reaches 0x7F, the next value is 0x0. Table 35  
shows the read operation.  
Table 35. Read Operation  
Transmitter  
Data Type  
M
M
M
S
M
S
M
M
M
S
S
M
M
M
slave  
addr  
reg  
addr  
slave  
addr  
St  
W
ACK  
inc  
ACK  
Sr  
R
ACK  
data  
ACK  
NACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition; Sr = Repeated Start Condition; Sp = Stop Condition;  
W = Write; R = Read; NACK = Not acknowledge  
8.4.1.1.2.6 Timing Characteristics  
Repeated  
START  
START  
STOP  
tSDA-R  
tSDA-F  
tP-SU  
tBUF  
tD-HD  
tD-SU  
SDA  
tLOW  
tRS-HD  
tSP  
tSCL-R  
SCL  
tS-HD  
tHI  
tRS-SU  
tSCL-F  
Figure 72. Register Access Timing  
52  
Copyright © 2014, Texas Instruments Incorporated  
 
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 36. I2C Bus Timing  
MIN  
MAX  
100  
UNIT  
kHz  
Standard  
Fast  
fSCL  
tBUF  
tLOW  
tHI  
SCL clock frequency  
400  
kHz  
Standard  
4.7  
1.3  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for (repeated)START condition  
Hold time for (repeated)START condition  
Data setup time  
µs  
µs  
Fast  
Standard  
Fast  
4.7  
1.3  
Standard  
Fast  
4.0  
µs  
ns  
µs  
ns  
µs  
ns  
600  
Standard  
Fast  
4.7  
tRS-SU  
600  
tS-HD  
Standard  
Fast  
4.0  
tRS-HD  
600  
Standard  
Fast  
250  
tD-SU  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100  
Standard  
Fast  
0
900  
900  
tD-HD  
Data hold time  
0
Standard  
Fast  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
4.0  
1000  
300  
tSCL-R  
tSCL-R1  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
Rise time of SCL signal  
Standard  
Fast  
1000  
300  
Rise time of SCL signal after a repeated START  
condition and after an acknowledge bit  
Standard  
Fast  
1000  
300  
Fall time of SCL signal  
Standard  
Fast  
1000  
300  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
Standard  
Fast  
1000  
300  
Standard  
Fast  
µs  
ns  
pF  
ns  
V
600  
CB  
Capacitive load for SDA and SCL line  
Pulse width of spike suppressed  
400  
50  
tSP  
Fast  
VNH  
Noise margin at High level for each connected device (including hysteresis)  
0.2 × VDD  
8.4.2 VREF and VCOM Modes  
See Choosing Between VREF and VCOM Modes for information on configuring these modes.  
Copyright © 2014, Texas Instruments Incorporated  
53  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.2 Typical Application  
Differential outputs DAC's are regularly used where higher performance is required from them compared to  
single ended output DACs. They offer twice as much output voltage for the same power supply, along with noise  
cancelling effect of differential signaling. The PCM5252 makes an ideal front end for both analog input speaker  
amplifiers and headphone amplifiers with its higher voltage differential output and low noise floor.  
9.2.1 High Fidelity Smartphone Application  
A new trend in portable applications are termed "Hifi Smartphones". In these systems, a standard portable audio  
codec continues to be used for telephony, while a separate, higher performance DAC and Headphone Amplifier  
is used for music playback.  
Figure 73 shows a complete circuit schematic for such a system. The digital audio is fed into a high performance  
DAC. The PCM5252 is a 32-bit, stereo DAC. The PCM5252 is pin to pin and register set compatible with the  
PCM5242. The PCM5252 contains an expanded ROM that contains the Smart Amplifier Algorithm components.  
Vcc+  
Vcc-  
1.0mF  
0603  
10mF/25V  
10mF/25V  
0603 X5R  
0603 X5R  
+3.3V  
0.1mF/16V  
TPA6120A2RGY  
QFN14-RGY  
PowerPAD  
PCM5242RHB  
QFN32-RHB  
PowerPAD  
10mF/10V  
0603 X5R  
0402 X7R  
0.1mF/25V  
0.1mF/25V  
0.1mF/25V 0.1mF/25V  
0402 X7R  
0402 X7R  
0402 X7R  
0402 X7R  
24 23 22 21 20 19 18 17  
402W  
402W  
25  
16  
15  
14  
13  
12  
11  
10  
9
GPIO6/FLT  
SCK  
VCOM/DEMP  
AGND  
0603  
0603  
26  
27  
28  
29  
30  
31  
32  
14  
8
12 10  
1000pF/50V  
RIN+  
1
2
6
7
BCK  
AVDD  
LIN+  
LIN-  
RIN-  
HEADPHONE OUTPUT  
3
4
5
0603 COG  
402W  
402W  
NC  
NC  
NC  
NC  
OUTRP  
OUTRN  
OUTLN  
OUTLP  
DIN  
OUTRP  
OUTRN  
OUTLN  
OUTLP  
VNEG  
1
RIN-  
LIN-  
LIN+  
0603  
0603  
11  
NC  
PCM5242RHB  
QFN32-RHB  
39.2W  
3
2
RIGHT  
LEFT  
13  
9
402W  
402W  
NC  
LOUT  
0805 1/8W  
TPA6120A2  
RIN+  
0603  
0603  
39.2W  
LRCK  
ROUT  
0805 1/8W  
1000pF/50V  
ADR1/MISO/FMT  
3.5mm  
402W  
402W  
806W  
0603 COG  
806W  
0603  
806W  
0603  
1
2
3
4
5
6
7
8
2.2mF/25V  
0603  
0603  
+1.8V  
0603  
0805 X7R  
806W  
10.0kW  
0402  
0603  
XSMT  
2.2mF/25V  
0805 X7R  
2
1
2.2mH  
TPS65135  
SOFT MUTE  
+3.3V  
0.1mF/16V  
0402 X7R  
16  
15  
1
14  
13  
10  
9
Vcc+  
L1  
L2  
L2  
0.1mF/16V 2.2mF/25V  
+3.3V to +5/-5V POWER SUPPLY  
0402 X7R  
0805 X7R  
L1  
10mF/6.3V  
VIN  
EN  
OUTP  
OUTP  
FB  
+3.3V  
365kW  
0805 1/8W  
8
+1.8V  
10mF/6.3V  
100LS  
0603 X5R  
4
7
0.1mF/16V  
0402 X7R  
VAUX  
PGND  
TPS65135  
QFN16-RTE  
0603 X5R  
11  
12  
5
6
FBG  
0.1mF/16V 10mF/10V  
120kW  
0805 1/8W  
PowerPAD  
3
0402 X7R  
0603 X5R  
PGND OUTN  
GND OUTN  
2
0.1mF/16V  
0402 X7R  
10mF/6.3V  
487kW  
0805 1/8W  
0603 X5R  
Vcc-  
Figure 73. High Fidelity Smartphone Application  
54  
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Typical Application (continued)  
9.2.1.1 Design Requirements  
Directpath output to headphone amplifier  
1VRMS output, as 2VRMS may cause hearing damage into low impedance headphones  
Stereo differential inputs (DAC is differential)  
Be transparent to the user. (DAC SNR and THD+N performance all the way to the headphone)  
Automatic fS switching up to 384kHz  
3-wire I2S source  
9.2.1.2 Detailed Design Procedure  
For optimal performance, the TPA6120A2 is configured for use with differential inputs, stereo use, and a gain of  
1V/V.  
The TPA6120A2 requires a bipolar power supply to drive a ground centered output. The application employs a  
TPS65135 DC-DC converter that generates ±5V from a single 3.3V supply.  
The PCM5252 DAC is configured for a 1VRMS output so that clipping is avoided should the 3.3V power supply  
sag. The PCM5252 offers a ground centered output, so that no DC blocking capacitors are required between it  
and the TPA6120A2. (Page 1, Register 2)  
9.2.1.2.1 Initialization Script  
w 98 00 01 # PCM5252 to Page 1  
w 98 02 11 # PCM5252 output to 1 Vrms  
w 98 00 00 # PCM5252 back to page 0  
w 98 3B 66 # set auto mute time to six seconds of audio zero.  
w 98 3C 01 # Left Vol register controls both  
w 98 3D 4F # Change left channel volume, right will follow.  
w 98 3F BB # set vol changes for every 4 samples, 0.5 sample steps.  
9.2.1.3 Application Performance Plot  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
5
10  
Frequency (kHz)  
15  
20  
Figure 74. 2 FFT Plot At -60db Input  
In this particular application, the TPA6120A2's performance is transparent and the performance of the system is  
dictated by the PCM5252 DAC, even into a 32-Ω headphone load.  
Copyright © 2014, Texas Instruments Incorporated  
55  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Power Supply Distribution and Requirements  
The PCM5252 devices are powered through the pins shown in Figure 75.  
!ë55 3.3ë  
/të55 3.3ë  
5ë55 (1.8ë or 3.3v)  
[5hh 1.8ë  
5igiꢁꢀl /ore  
(5{t[, [ogic eꢁc)  
/ꢃꢀrge tump  
hscillꢀꢁor  
5igiꢁꢀl Lh  
5!/  
weference  
t[[  
!nꢀlog /ircuiꢁs  
1.8ë [5h  
/lock Iꢀlꢁ 5eꢁecꢁ  
5igiꢁꢀl /ircuiꢁs  
toꢂer /ircuiꢁs  
[ine 5river  
t/a186x  
Figure 75. Power Distribution Tree Within PCM5252  
Table 37. Power Supply Pin Descriptions  
NAME  
USAGE / DESCRIPTION  
AVDD  
DVDD  
Analog voltage supply; must be 3.3 V. This powers all analog circuitry that the DAC runs on.  
Digital voltage supply. This is used as the I/O voltage control and the input to the onchip LDO.  
Charge Pump Voltage Supply - must be 3.3 V  
CPVDD  
Output from the onchip LDO. Should be used with a 0.1-µF decoupling cap. Can be driven (used as power  
input) with a 1.8-V supply to bypass the onchip LDO for lower power consumption.  
LDOO  
AGND  
DGND  
Analog ground  
Digital ground  
56  
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
10.2 Recommended Powerdown Sequence  
Under certain conditions, the PCM5252 devices can exhibit some pops on power down. Pops are caused by a  
device not having enough time to detect power loss and start the muting process.  
The PCM5252 devices have two auto-mute functions to mute the device upon power loss (intentional or  
unintentional).  
10.2.1 XSMT = 0  
When the XSMT pin is pulled low, the incoming PCM data is attenuated to 0, closely followed by a hard analog  
mute. This process takes 150 sample times (ts) + 0.2 ms.  
Because this mute time is mainly dominated by the sampling frequency, systems sampling at 192 kHz will mute  
much faster than a 48-kHz system.  
10.2.2 Clock Error Detect  
When clock error is detected on the incoming data clock, the PCM5252 devices switch to an internal oscillator,  
and continue to the drive the output, while attenuating the data from the last known value. Once this process is  
complete, the PCM5252 outputs are hard muted to ground.  
Copyright © 2014, Texas Instruments Incorporated  
57  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Recommended Powerdown Sequence (continued)  
10.2.3 Planned Shutdown  
These auto-muting processes can be manipulated by system designs to mute before power loss in the following  
ways:  
1. Assert XSMT low 150 tS + 0.2 ms before power is removed.  
3.3V  
VDD  
0V  
150tS + 0.2ms  
High  
XSMT  
Low  
High  
2
I S Clocks  
SCK, BCK, LRCK  
Low  
Time  
Figure 76. Assert XSMT  
2. Stop I2S clocks (SCK, BCK, LRCK) 3 ms before powerdown as shown in Figure 77.  
3.3V  
VDD  
0V  
High  
XSMT  
Low  
3 ms  
High  
I2S Clocks  
SCK, BCK, LRCK  
Low  
Time  
Figure 77. Stop I2C Clocks  
10.2.4 Unplanned Shutdown  
Many systems use a low-noise regulator to provide an AVDD 3.3-V supply for the DAC. The XSMT Pin can take  
advantage of such a feature to measure the pre-regulated output from the system SMPS to mute the output  
before the entire SMPS discharges. Figure 78 shows how to configure such a system to use the XSMT pin. The  
XSMT pin can also be used in parallel with a GPIO pin from the system microcontroller/DSP or power supply.  
58  
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Recommended Powerdown Sequence (continued)  
“mute” signal  
MCU GPIO  
GND  
XSMT  
110V / 220V  
Linear  
Regulator  
PCM5xxx  
Audio DAC  
6V  
3.3V  
SMPS  
10  
F
GND  
GND  
Figure 78. Using the XSMT Pin  
Copyright © 2014, Texas Instruments Incorporated  
59  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
10.3 External Power Sense Undervoltage Protection Mode  
NOTE  
External Power Sense Undervoltage Protection Mode is supported only when  
DVDD = 3.3 V.  
The XSMT pin can also be used to monitor a system voltage, such as the 24-VDC LCD TV backlight, or 12-VDC  
system supply using a voltage divider created with two resistors. (See Figure 79.)  
If the XSMT pin makes a transition from 1 to 0 over 6 ms or more, the device switches into external  
undervoltage protection mode. This mode uses two trigger levels:  
When the XSMT pin level reaches 2 V, soft mute process begins.  
When the XSMT pin level reaches 1.2 V, analog mute engages, regardless of digital audio level, and  
shutdown begins. (DAC and related circuitry powers down).  
A timing diagram to show this is shown in Figure 80.  
NOTE  
The XSMT input pin voltage range is from –0.3 V to DVDD + 0.3 V. The ratio of external  
resistors must produce a voltage within this input range. Any increase in power supply  
(such as power supply positive noise or ripple) can pull the XSMT pin higher than DVDD +  
0.3 V.  
For example, if the PCM5252 is monitoring a 12-V input, and dividing the voltage by 4, then the voltage at XSMT  
during ideal power supply conditions is 3.3 V. A voltage spike higher than 14.4 V causes a voltage greater than  
3.6 V (DVDD + 0.3) on the XSMT pin, potentially damaging the device.  
Providing the divider is set appropriately, any DC voltage can be monitored.  
System  
VDD  
12V  
supply  
7.25kW  
XSMT  
2.75kW  
Figure 79. XSMT in External UVP Mode  
60  
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
External Power Sense Undervoltage Protection Mode (continued)  
Digital Attenuation Followed by Analog Mute  
0.9 * DVDD  
2.0 V  
1.2 V  
Analog Mute  
XSMT  
0.1 * DVDD  
tf  
Figure 80. XSMT Timing for Undervoltage Protection  
Copyright © 2014, Texas Instruments Incorporated  
61  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
10.4 Power-On Reset Function  
10.4.1 Power-On Reset, DVDD 3.3-V Supply  
The PCM5252 includes a power-on reset function, as shown in Figure 81. With VDD > 2.8 V, the power-on reset  
function is enabled. After the initialization period, the PCM5252 is set to its default reset state. Analog output will  
begin ramping after valid data has been passing through the device for the given group delay given by the digital  
interpolation filter selected.  
3.3V  
2.8V  
AVDD, DVDD,  
CPVDD  
Internal Reset  
Reset Removal  
Internal Reset  
4 ms  
I2S Clocks  
SCK, BCK, LRCK  
Figure 81. Power-On Reset Timing, DVDD = 3.3 V  
62  
Copyright © 2014, Texas Instruments Incorporated  
 
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Power-On Reset Function (continued)  
10.4.2 Power-On Reset, DVDD 1.8-V Supply  
The PCM5252 includes a power-on reset function, as shown in Figure 82. With AVDD greater than  
approximately 2.8 V, CPVDD greater than approximately 2.8 V, and DVDD greater than approximately 1.5 V, the  
power-on reset function is enabled. After the initialization period, the PCM5252 is set to its default reset state.  
3.3V  
2.8V  
AVDD, CPVDD  
1.8V  
1.5V  
DVDD, LDOO  
Internal Reset  
Reset Removal  
Internal Reset  
4 ms  
I2S Clocks  
SCK, BCK, LRCK  
Figure 82. Power-On Reset Timing, DVDD = 1.8 V  
10.5 PCM5252 Power Modes  
10.5.1 Setting Digital Power Supplies and I/O Voltage Rails  
The internal digital core of the PCM5252 devices run from a 1.8-V supply. This can be generated by the internal  
LDO, or by an external 1.8-V supply.  
DVDD is used to set the I/O voltage, and to be used as the input to the onchip LDO that creates the 1.8 V  
required by the digital core.  
For systems that require 3.3-V I/O support, but lower power consumption, DVDD should be connected to 3.3 V  
and LDOO can be connected to an external 1.8-V source. Doing so will disable the onchip LDO.  
When setting I/O voltage to be 1.8 V, both DVDD and LDOO must be provided with an external 1.8-V supply.  
10.5.2 Power Save Modes  
The PCM5252 devices offer two power-save modes: standby and power-down.  
When a clock error (SCK, BCK, and LRCK) or clock halt is detected, the PCM5252 device automatically enters  
standby mode. The DAC and line driver are also powered down. The device can also be placed in standby mode  
via software command.  
When BCK and LRCK remain at a low level for more than 1 second, the PCM5252 device automatically enters  
powerdown mode. Power-down mode disables the negative charge pump and bias/reference circuit, in addition  
to those disabled in standby mode. The device can also be placed in power-down mode via software command.  
The detection time of BCK and LRCK halt can be controlled by Page 0, Register 44, D(2:0).  
Copyright © 2014, Texas Instruments Incorporated  
63  
 
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
PCM5252 Power Modes (continued)  
When expected audio clocks (SCK, BCK, LRCK) are applied to the PCM5252 device, or if BCK and LRCK start  
correctly while SCK remains at ground level for 16 successive LRCK periods, the device starts its powerup  
sequence automatically.  
10.5.3 Power Save Parameter Programming  
Table 38. Power Save Registers  
REGISTER  
DESCRIPTION  
Page 0, Register 2, D(4)  
Page 0, Register 2, D(0)  
Software standby mode command  
Software power-down command  
Software power-up sequence command (required after software standby or power-  
down)  
Page 0, Register 2, D(4) and D(0)  
Page 0, Register 44, D(2:0)  
Detection time of BCK and LRCK halt  
64  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
11 Layout  
11.1 Layout Guidelines  
The PCM5252 family of devices are simple to layout. Most engineers use a shared common ground for an  
entire device. GND can consider AGND and DGND connected.  
Good system partitioning should keep digital clock and interface traces away from the differential analog  
outputs for highest analog performance. This reduces any high-speed clock return currents influencing the  
analog outputs.  
Power supply and charge pump decoupling capacitors should be placed as close as possible to the device.  
The thermal pad on the underside of the package should be connected to GND.  
The top layer should be used for routing signals, whilst the bottom layer can be used for GND.  
11.2 Layout Example  
a/Ü or /onnecꢁ ꢁo  
3.3ëꢂDb5  
24 23 22 21 20 19 18 17  
GPIO6  
SCK  
25  
16  
15  
14  
13  
12  
11  
10  
9
VCOM  
26  
27  
28  
29  
30  
31  
32  
AGND  
3.3ë  
AVDD  
BCK  
DIN  
LINEOUTRP  
LINEOUTRL  
LINEOUTLR  
LINEOUTLP  
VNEG  
t/a 5ꢀꢁꢀ  
{ource  
Thermal Pad  
(GND)  
NC  
!mplifier  
NC  
LRCK  
ADR1/MISO/GPIO1  
3.3ë ꢂ Db5  
1
2
3
4
5
6
7
8
3.3ë  
3.3ë  
Figure 83. PCM5252 Layout Example  
Copyright © 2014, Texas Instruments Incorporated  
65  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
12 Programming  
12.1 Coefficient Data Formats  
All mixer gain coefficients are 24-bit coefficients using a 4.20 number format. Numbers formatted as 4.20  
numbers have 4 bits to the left of the binary point and 20 bits to the right of the binary point. If the most  
significant bit is logic 0, the number is a positive number. If the most significant bit is a logic 1, then the number is  
a negative number. In this case, every bit must be inverted, a 1 added to the result.  
12.2 Power Down and Reset Behavior  
Register values including those in the Coefficient Memory and Instruction Memory should remain when the  
device is put into power down mode. (PG0 Reg 0x02).  
Register values in the device are reset to defaults when bit 0 or 4 of (Pg0, Reg 0x01) is set to 1. Please see the  
register description for more information.  
66  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
13 Register Maps  
13.1 PCM5252 Register Map  
In any page, register 0 is the Page Select Register. The register value selects the Register Page from 0 to 255  
for next read or write command.  
Table 39. Register Map Overview (continued)  
Table 39. Register Map Overview  
REGISTER  
NUMBER  
65  
DESCRIPTION  
REGISTER  
NUMBER  
DESCRIPTION  
Auto mute  
Page 0  
75 - 79  
80 - 85  
86, 87  
88, 89  
90  
Reserved  
0
Page select register  
Analog control register  
Standby, Powerdown requests  
Mute  
GPIOn output selection  
GPIO control  
Reserved  
1
2
3
DSP overflow  
Sample rate status  
Reserved  
4
PLL Lock Flag, PLL enable  
Reserved  
91 - 94  
95 - 107  
108  
5
6
SPI MISO function select  
De-emphasis enable, SDOUT select  
GPIO enables  
Analog mute monitor  
Reserved  
7
109 - 118  
119  
8
GPIO input  
9
BCK, LRCLK configuration  
DSP GPIO Input  
120  
Auto Mute flags  
Reserved  
10  
121  
11  
Reserved  
Page 1  
1
12  
Master mode BCK, LRCLK reset  
PLL clock source select  
Reserved  
Output amplitude type  
Analog gain control  
Reserved  
13  
2
14 - 19  
20 - 24  
25, 26  
27  
3, 4  
PLL dividers  
5
Undervoltage protection  
Analog mute control  
Analog gain boost  
VCOM configuration  
Reserved  
6
DSP clock divider  
DAC clock divider  
NCP clock divider  
OSR clock divider  
Reserved  
7
28  
8, 9  
29  
Page 44  
1
30  
Coefficient memory (CRAM) control  
31  
Pages 44 - 52 Coefficient buffer - A (256 coeffs x 24 bits) : See  
Table 41  
32, 33  
34  
Master mode dividers  
fS speed mode  
Pages 62 - 70 Coefficient buffer - B (256 coeffs x 24 bits) : See  
Table 42  
35, 36  
IDAC (number of DSP clock cycles available in  
one audio frame)  
71 - 252  
Reserved  
Pages 152 -  
186  
Instruction buffer (1024 instruction x 25 bits),  
I512 - I1023 are reserved.: See Table 43  
37  
Ignore various errors  
Reserved  
I2S configuration  
38,39  
40, 41  
42  
Pages 187 -  
252  
Reserved  
DAC data path  
Page 253  
43  
DSP program selection  
Clock missing detection period  
Auto mute time  
63, 64  
Clock Flex Mode  
Reserved  
44  
Pages 254 -  
255  
59  
60 - 64  
Digital volume  
Copyright © 2014, Texas Instruments Incorporated  
67  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
The PCM5252 has a register map split into multiple pages. Pages 0 and 1 control of the DAC and other on-chip  
peripherals. Pages 44 through 52 are used for Coefficient A memory, while Pages 62-70 are coefficient B  
memory. Pages 152-186 contain the miniDSP instruction memory. Page 253 is where the Clock Flex Mode  
register is located.  
Table 40. PCM5252 Register Page Structure  
Page:  
0
1
44-52  
62-70  
152-186  
253  
Func: Control  
Analog  
Control  
Coeffient A  
Coeffient B  
Instruction  
Desc: General  
Analog  
Control  
256 24-bit coefficients,  
30 coefficients per  
page,  
256 24-bit coefficients,  
30 coefficients per  
page,  
1024 24-bit instructions,  
30 instructions per  
page,  
Control and  
Configuration  
4 registers per  
coefficient  
4 registers per  
coefficient  
4 registers per  
instruction  
Table 41. Coefficient Buffer-A Map  
COEFF NO  
C0  
PAGE NO  
BASE REGISTER  
BASE REGISTER + 0  
Coef(23:16)  
Coef(23:16)  
..  
BASE REGISTER + 1  
Coef(15:8)  
Coef(15:8)  
..  
BASE REGISTER + 2  
Coef(7:0)  
Coef(7:0)  
..  
BASE REGISTER + 3  
Reserved.  
Reserved.  
..  
44  
44  
..  
8
C1  
12  
..  
..  
C29  
C30  
..  
44  
45  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C59  
C60  
..  
45  
46  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C89  
C90  
..  
46  
47  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C119  
C120  
..  
47  
48  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C149  
C150  
..  
48  
49  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C179  
C180  
..  
49  
50  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C209  
C210  
..  
50  
51  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C239  
C240  
..  
51  
52  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C255  
52  
68  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
68  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 42. Coefficient Buffer-B Map  
COEFF NO  
C0  
PAGE NO  
BASE REGISTER  
BASE REGISTER + 0  
Coef(23:16)  
Coef(23:16)  
..  
BASE REGISTER + 1  
Coef(15:8)  
Coef(15:8)  
..  
BASE REGISTER + 2  
BASE REGISTER + 3  
Reserved.  
Reserved.  
..  
62  
62  
..  
8
Coef(7:0)  
Coef(7:0)  
..  
C1  
12  
..  
..  
C29  
C30  
..  
62  
63  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C59  
C60  
..  
63  
64  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C89  
C90  
..  
64  
65  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C119  
C120  
..  
65  
66  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C149  
C150  
..  
66  
67  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C179  
C180  
..  
67  
68  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C209  
C210  
..  
68  
69  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C239  
C240  
..  
69  
70  
..  
124  
8
Coef(23:16)  
Coef(23:16)  
..  
Coef(15:8)  
Coef(15:8)  
..  
Coef(7:0)  
Coef(7:0)  
..  
Reserved.  
Reserved.  
..  
..  
C255  
70  
68  
Coef(23:16)  
Coef(15:8)  
Coef(7:0)  
Reserved.  
Table 43. miniDSP Instruction Map  
COEFF NO  
PAGE NO  
152  
152  
..  
BASE REGISTER  
BASE REGISTER + 0  
Instr(31:24)  
Instr(31:24)  
..  
BASE REGISTER + 1  
Instr(23:16)  
Instr(23:16)  
..  
BASE REGISTER + 2  
Instr(15:8)  
Instr(15:8)  
..  
BASE REGISTER + 3  
I0  
8
Instr(7:0)  
Instr(7:0)  
..  
I1  
12  
..  
..  
I29  
I30  
..  
152  
153  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I59  
I60  
..  
153  
154  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I89  
I90  
..  
154  
155  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I119  
I120  
..  
155  
156  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I149  
I150  
..  
156  
157  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I179  
I180  
..  
157  
158  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I209  
I210  
..  
158  
159  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
Copyright © 2014, Texas Instruments Incorporated  
69  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 43. miniDSP Instruction Map (continued)  
COEFF NO  
I239  
I240  
..  
PAGE NO  
159  
160  
..  
BASE REGISTER  
BASE REGISTER + 0  
Instr(31:24)  
Instr(31:24)  
..  
BASE REGISTER + 1  
Instr(23:16)  
Instr(23:16)  
..  
BASE REGISTER + 2  
Instr(15:8)  
Instr(15:8)  
..  
BASE REGISTER + 3  
Instr(7:0)  
Instr(7:0)  
..  
124  
8
..  
I269  
I270  
..  
160  
161  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I299  
I300  
..  
161  
162  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I329  
I330  
..  
162  
163  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I359  
I360  
..  
163  
164  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I389  
I390  
..  
164  
165  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I419  
I420  
..  
165  
166  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I449  
I450  
..  
166  
167  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I479  
I480  
..  
167  
168  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
..  
..  
I509  
I510  
I511  
..  
168  
169  
169  
..  
124  
8
Instr(31:24)  
Instr(31:24)  
Instr(31:24)  
..  
Instr(23:16)  
Instr(23:16)  
Instr(23:16)  
..  
Instr(15:8)  
Instr(15:8)  
Instr(15:8)  
..  
Instr(7:0)  
Instr(7:0)  
Instr(7:0)  
..  
12  
..  
I539  
I540  
..  
169  
170  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I569  
I570  
..  
170  
171  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I599  
I600  
..  
171  
172  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I629  
I630  
..  
172  
173  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I659  
I660  
..  
173  
174  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I689  
I690  
..  
174  
175  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I719  
I720  
..  
175  
176  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I749  
I750  
..  
176  
177  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I779  
177  
124  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
70  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 43. miniDSP Instruction Map (continued)  
COEFF NO  
I780  
..  
PAGE NO  
178  
..  
BASE REGISTER  
BASE REGISTER + 0  
Reserved.  
..  
BASE REGISTER + 1  
Reserved.  
..  
BASE REGISTER + 2  
BASE REGISTER + 3  
Reserved.  
..  
8
Reserved.  
..  
..  
I809  
I810  
..  
178  
179  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I839  
I840  
..  
179  
180  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I869  
I870  
..  
180  
181  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I899  
I900  
..  
181  
182  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I929  
I930  
..  
182  
183  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I959  
I960  
..  
183  
184  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I989  
I990  
..  
184  
185  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I1019  
I1020  
..  
185  
186  
..  
124  
8
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
Reserved.  
Reserved.  
..  
..  
I1023  
186  
20  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Copyright © 2014, Texas Instruments Incorporated  
71  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
13.1.1 Detailed Register Descriptions  
13.1.1.1 Register Map Summary  
Table 44. Register Map Summary  
DEC  
Page 0  
HEX  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
1
01  
02  
03  
04  
06  
07  
08  
09  
0A  
0C  
0D  
0E  
12  
13  
14  
15  
16  
17  
18  
1B  
1C  
1D  
1E  
20  
21  
22  
23  
24  
25  
28  
29  
2A  
2B  
2C  
3B  
3C  
3D  
3E  
3F  
40  
41  
50  
51  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSTM  
RQST  
RQML  
PLCK  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSTR  
RQPD  
RQMR  
PLLE  
2
3
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
4
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
6
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
FSMI1  
RSV  
FSMI0  
SDSL  
7
RSV  
RSV  
RSV  
DEMP  
G5OE  
BCKO  
DSPG4  
RSV  
RSV  
RSV  
8
RSV  
RSV  
G6OE  
BCKP  
DSPG5  
RSV  
G4OE  
RSV  
G3OE  
RSV  
G2OE  
RSV  
G1OE  
LRKO  
9
RSV  
RSV  
10  
12  
13  
14  
18  
19  
20  
21  
22  
23  
24  
27  
28  
29  
30  
32  
33  
34  
35  
36  
37  
40  
41  
42  
43  
44  
59  
60  
61  
62  
63  
64  
65  
80  
81  
DSPG7  
RSV  
DSPG6  
RSV  
DSPG3  
RSV  
DSPG2  
RSV  
DSPG1  
RBCK  
RSV  
DSPG0  
RLRK  
RSV  
SREF2  
SDAC2  
RSV  
SREF1  
SDAC1  
RSV  
SREF0  
SDAC0  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
GREF2  
RSV  
GREF1  
RSV  
GREF0  
RQSY  
PPDV0  
PJDV0  
PDDV8  
PDDV0  
PRDV0  
DDSP0  
DDAC0  
DNCP0  
DOSR0  
DBCK0  
DLRK0  
FSSP0  
IDAC8  
IDAC0  
IPLK  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
PPDV3  
PJDV3  
PDDV11  
PDDV3  
PRDV3  
DDSP3  
DDAC3  
DNCP3  
DOSR3  
DBCK3  
DLRK3  
RSV  
PPDV2  
PJDV2  
PDDV10  
PDDV2  
PRDV2  
DDSP2  
DDAC2  
DNCP2  
DOSR2  
DBCK2  
DLRK2  
RSV  
PPDV1  
PJDV1  
PDDV9  
PDDV1  
PRDV1  
DDSP1  
DDAC1  
DNCP1  
DOSR1  
DBCK1  
DLRK1  
FSSP1  
IDAC9  
IDAC1  
DCAS  
ALEN1  
AOFS1  
AUPR1  
PSEL1  
CMDP1  
AMTR1  
PCTL1  
VOLL1  
VOLR1  
VNUS1  
RSV  
RSV  
RSV  
PJDV5  
PDDV13  
PDDV5  
RSV  
PJDV4  
PDDV12  
PDDV4  
RSV  
RSV  
RSV  
PDDV7  
RSV  
PDDV6  
RSV  
RSV  
DDSP6  
DDAC6  
DNCP6  
DOSR6  
DBCK6  
DLRK6  
RSV  
DDSP5  
DDAC5  
DNCP5  
DOSR5  
DBCK5  
DLRK5  
RSV  
DDSP4  
DDAC4  
DNCP4  
DOSR4  
DBCK4  
DLRK4  
I16E  
RSV  
RSV  
RSV  
RSV  
DLRK7  
RSV  
IDAC15  
IDAC7  
RSV  
IDAC14  
IDAC6  
IDFS  
IDAC13  
IDAC5  
IDBK  
IDAC12  
IDAC4  
IDSK  
IDAC11  
IDAC3  
IDCH  
IDAC10  
IDAC2  
IDCM  
RSV  
RSV  
AFMT1  
AOFS5  
AUPL1  
RSV  
AFMT0  
AOFS4  
AUPL0  
PSEL4  
RSV  
RSV  
RSV  
ALEN0  
AOFS0  
AUPR0  
PSEL0  
CMDP0  
AMTR0  
PCTL0  
VOLL0  
VOLR0  
VNUS0  
RSV  
AOFS7  
RSV  
AOFS6  
RSV  
AOFS3  
RSV  
AOFS2  
RSV  
RSV  
RSV  
PSEL3  
RSV  
PSEL2  
CMDP2  
AMTR2  
RSV  
RSV  
RSV  
RSV  
RSV  
AMTL2  
RSV  
AMTL1  
RSV  
AMTL0  
RSV  
RSV  
RSV  
RSV  
VOLL7  
VOLR7  
VNDF1  
VEDF1  
RSV  
VOLL6  
VOLR6  
VNDF0  
VEDF0  
RSV  
VOLL5  
VOLR5  
VNDS1  
VEDS1  
RSV  
VOLL4  
VOLR4  
VNDS0  
VEDS0  
RSV  
VOLL3  
VOLR3  
VNUF1  
RSV  
VOLL2  
VOLR2  
VNUF0  
RSV  
RSV  
ACTL2  
G1SL2  
G2SL2  
AMLE1  
G1SL1  
G2SL1  
AMRE0  
G1SL0  
G2SL0  
RSV  
RSV  
RSV  
G1SL4  
G2SL4  
G1SL3  
G2SL3  
RSV  
RSV  
RSV  
72  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 44. Register Map Summary (continued)  
DEC  
82  
HEX  
52  
53  
54  
55  
56  
57  
5A  
5B  
5C  
5D  
5E  
5F  
6C  
6D  
72  
73  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
B7  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
DTBR7  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
BOTM  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
B6  
RSV  
B5  
RSV  
B4  
B3  
G3SL3  
G4SL3  
G5SL3  
G6SL3  
GOUT3  
GINV3  
R1OV  
DTSR3  
RSV  
B2  
B1  
B0  
G3SL4  
G4SL4  
G5SL4  
G6SL4  
GOUT4  
GINV4  
L1OV  
DTFS0  
RSV  
G3SL2  
G4SL2  
G5SL2  
G6SL2  
GOUT2  
GINV2  
L2OV  
DTSR2  
RSV  
G3SL1  
G4SL1  
G5SL1  
G6SL1  
GOUT1  
GINV1  
R2OV  
DTSR1  
RSV  
G3SL0  
G4SL0  
G5SL0  
G6SL0  
GOUT0  
GINV0  
SFOV  
83  
RSV  
RSV  
84  
RSV  
RSV  
85  
RSV  
RSV  
86  
RSV  
GOUT5  
GINV5  
RSV  
87  
RSV  
90  
RSV  
91  
DTFS2  
RSV  
DTFS1  
RSV  
DTSR0  
DTBR8  
DTBR0  
fSval  
92  
93  
DTBR6  
CDST  
RSV  
DTBR5  
PLL-L  
RSV  
DTBR4  
LrckBck  
LTSH  
RSV  
DTBR3  
fS-SCKr  
RSV  
DTBR2  
SCKval  
CKMF  
RSV  
DTBR1  
BCKval  
CSRF  
AMLM  
RSV  
94  
95  
CERF  
108  
109  
114  
115  
118  
119  
120  
121  
122  
123  
124  
125  
Page 1  
Dec  
1
RSV  
RSV  
RSV  
AMRM  
SHTM  
MTST0  
FSMM0  
PSTM0  
RSV  
RSV  
RSV  
SDTM  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
MTST1  
FSMM1  
PSTM1  
GPIN1  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
PSTM3  
GPIN3  
RSV  
PSTM2  
GPIN2  
RSV  
RSV  
GPIN5  
RSV  
GPIN4  
AMFL  
RSV  
RSV  
AMFR  
DAMD  
EIFM  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
G1MC2  
G3MC2  
G5MC2  
G1MC1  
G3MC1  
G5MC1  
G1MC0  
G3MC0  
G5MC0  
RSV  
G2MC2  
G4MC2  
G6MC2  
G2MC1  
G4MC1  
G6MC1  
G2MC0  
G4MC0  
G6MC0  
RSV  
RSV  
Hex  
01  
02  
05  
06  
07  
08  
09  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
RSV  
RSV  
UEPD  
RSV  
RSV  
RSV  
RSV  
b0  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
LAGN  
RSV  
RSV  
AGBL  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
OSEL  
RAGN  
UIPD  
2
5
6
AMCT  
AGBR  
RCMF  
VCPD  
7
8
9
Page 44  
Dec  
1
Hex  
01  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RSV  
RSV  
RSV  
RSV  
ACRM  
AMDC  
ACRS  
ACSW  
Page 253  
Dec  
63  
Hex  
3F  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
PLLFLEX17 PLLFLEX16 PLLFLEX15 PLLFLEX14 PLLFLEX13 PLLFLEX12 PLLFLEX11 PLLFLEX10  
PLLFLEX27 PLLFLEX26 PLLFLEX25 PLLFLEX24 PLLFLEX23 PLLFLEX22 PLLFLEX21 PLLFLEX20  
64  
40  
13.1.1.2 Page 0 Registers  
Table 45. Page 0 / Register 1  
Dec  
1
Hex  
01  
b7  
b6  
b5  
b4  
RSTM  
0
b3  
b2  
b1  
b0  
RSTR  
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
Copyright © 2014, Texas Instruments Incorporated  
73  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
RSV  
Reserved  
Reserved. Do not access.  
Reset Modules  
RSTM  
This bit resets the interpolation filter and the DAC modules. Since the DSP is also reset, the coeffient RAM  
content will also be cleared by the DSP. This bit is auto cleared and can be set only in standby mode.  
Default value: 0  
0: Normal  
1: Reset modules  
Reset Registers  
RSTR  
This bit resets the mode registers back to their initial values. The RAM content is not cleared, but the execution  
source will be back to ROM. This bit is auto cleared and must be set only when the DAC is in standby mode  
(resetting registers when the DAC is running is prohibited and not supported).  
Default value: 0  
0: Normal  
1: Reset mode registers  
Table 46. Page 0 / Register 2  
Dec  
2
Hex  
02  
b7  
b6  
b5  
b4  
RQST  
0
b3  
b2  
b1  
b0  
RQPD  
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
RQST  
Standby Request  
When this bit is set, the DAC will be forced into a system standby mode, which is also the mode the system  
enters in the case of clock errors. In this mode, most subsystems will be powered down but the charge pump  
and digital power supply.  
Default value: 0  
0: Normal operation  
1: Standby mode  
RQPD  
Powerdown Request  
When this bit is set, the DAC will be forced into powerdown mode, in which the power consumption would be  
minimum as the charge pump is also powered down. However, it will take longer to restart from this mode. This  
mode has higher precedence than the standby mode, that is, setting this bit along with bit 4 for standby mode  
will result in the DAC going into powerdown mode.  
Default value: 0  
0: Normal operation  
1: Powerdown mode  
Table 47. Page 0 / Register 3  
Dec  
Hex  
03  
b7  
b6  
b5  
b4  
RQML  
0
b3  
b2  
b1  
b0  
RQMR  
0
3
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
RQML  
Mute Left Channel  
This bit issues soft mute request for the left channel. The volume will be smoothly ramped down/up to avoid  
pop/click noise.  
Default value: 0  
0: Normal volume  
1: Mute  
74  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
RQMR  
ZHCSDH3 NOVEMBER 2014  
Mute Right Channel  
This bit issues soft mute request for the right channel. The volume will be smoothly ramped down/up to avoid  
pop/click noise.  
Default value: 0  
0: Normal volume  
1: Mute  
Table 48. Page 0 / Register 4  
Dec  
4
Hex  
04  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
PLLE  
1
RSV  
RSV  
RSV  
PLCK  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
PLCK  
PLL Lock Flag (Read Only)  
This bit indicates whether the PLL is locked or not. When the PLL is disabled this bit always shows that the  
PLL is not locked.  
0: The PLL is locked  
1: The PLL is not locked  
PLL Enable  
PLLE  
This bit enables or disables the internal PLL. When PLL is disabled, the master clock will be switched to the  
SCK.  
Default value: 1  
0: Disable PLL  
1: Enable PLL  
Table 49. Page 0 / Register 6  
Dec  
Hex  
06  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
FSMI1  
0
b0  
FSMI0  
0
6
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
FSMI[1:0]  
SPI MISO function sel  
These bits select the function of the SPI_MISO pin when in SPI mode. If the pin is set as GPIO, register  
readout via SPI is not possible.  
Default value: 00  
00: SPI_MISO  
01: GPIO1  
Others: Reserved (Do not set)  
Table 50. Page 0 / Register 7  
Dec  
7
Hex  
07  
b7  
b6  
b5  
b4  
DEMP  
0
b3  
b2  
b1  
b0  
SDSL  
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DEMP  
De-Emphasis Enable  
This bit enables or disables the de-emphasis filter. The default coefficients are for 44.1kHz sampling rate, but  
can be changed by reprogramming the appropriate coeffients in RAM.  
Copyright © 2014, Texas Instruments Incorporated  
75  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Default value: 0  
0: De-emphasis filter is disabled  
1: De-emphasis filter is enabled  
SDSL  
SDOUT Select  
This bit selects what is being output as SDOUT via GPIO pins.  
Default value: 0  
0: SDOUT is the DSP output (post-processing)  
1: SDOUT is the DSP input (pre-processing)  
Table 51. Page 0 / Register 8  
Dec  
8
Hex  
08  
b7  
b6  
b5  
G6OE  
0
b4  
G5OE  
0
b3  
G4OE  
0
b2  
G3OE  
0
b1  
G2OE  
0
b0  
G1OE  
0
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
G6OE  
G5OE  
G4OE  
G3OE  
G2OE  
G1OE  
GPIO6 Output Enable  
This bit sets the direction of the GPIO6 pin  
Default value: 0  
0: GPIO6 is input  
1: GPIO6 is output  
GPIO5 Output Enable  
This bit sets the direction of the GPIO5 pin  
Default value: 0  
0: GPIO5 is input  
1: GPIO5 is output  
GPIO4 Output Enable  
This bit sets the direction of the GPIO4 pin  
Default value: 0  
0: GPIO4 is input  
1: GPIO4 is output  
GPIO3 Output Enable  
This bit sets the direction of the GPIO3 pin  
Default value: 0  
0: GPIO3 is input  
1: GPIO3 is output  
GPIO2 Output Enable  
This bit sets the direction of the GPIO2 pin  
Default value: 0  
0: GPIO2 is input  
1: GPIO2 is output  
GPIO1 Output Enable  
This bit sets the direction of the GPIO1 pin  
Default value: 0  
0: GPIO1 is input  
1: GPIO1 is output  
76  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 52. Page 0 / Register 9  
Dec  
9
Hex  
09  
b7  
b6  
b5  
BCKP  
0
b4  
BCKO  
0
b3  
b2  
b1  
b0  
LRKO  
0
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
BCKP  
BCK Polarity  
This bit sets the inverted BCK mode. In inverted BCK mode, the DAC assumes that the LRCK and DIN edges  
are aligned to the rising edge of the BCK. Normally they are assumed to be aligned to the falling edge of the  
BCK.  
Default value: 0  
0: Normal BCK mode  
1: Inverted BCK mode  
BCK Output Enable  
BCKO  
This bit sets the BCK pin direction to output for I2S master mode operation. In I2S master mode the PCM5xxx  
outputs the reference BCK and LRCK, and the external source device provides the DIN according to these  
clocks. Use Page 0 / Register 32 to program the division factor of the SCK to yield the desired BCK rate  
(normally 64FS)  
Default value: 0  
0: BCK is input (I2S slave mode)  
1: BCK is output (I2S master mode)  
LRCLK Output Enable  
LRKO  
This bit sets the LRCK pin direction to output for I2S master mode operation. In I2S master mode the PCM5xxx  
outputs the reference BCK and LRCK, and the external source device provides the DIN according to these  
clocks. Use Page 0 / Register 33 to program the division factor of the BCK to yield 1FS for LRCK.  
Default value: 0  
0: LRCK is input (I2S slave mode)  
1: LRCK is output (I2S master mode)  
Table 53. Page 0 / Register 10  
Dec  
10  
Hex  
0A  
b7  
DSPG7  
0
b6  
DSPG6  
0
b5  
DSPG5  
0
b4  
DSPG4  
0
b3  
DSPG3  
0
b2  
DSPG2  
0
b1  
DSPG1  
0
b0  
DSPG0  
0
Reset Value  
DSPG[7:0]  
DSP GPIO Input  
The DSP accepts a 24-bit external control signals input. The value set in this register will go to bit 16:8 of this  
external input.  
Default value: 00000000  
Table 54. Page 0 / Register 12  
Dec  
12  
Hex  
0C  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
RBCK  
0
b0  
RLRK  
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
Master Mode BCK Divider Reset  
RBCK  
This bit, when set to 0, will reset the SCK divider to generate BCK clock for I2S master mode. To use I2S  
master mode, the divider must be enabled and programmed properly.  
Default value: 0  
0: Master mode BCK clock divider is reset  
Copyright © 2014, Texas Instruments Incorporated  
77  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
1: Master mode BCK clock divider is functional  
Master Mode LRCK Divider Reset  
RLRK  
This bit, when set to 0, will reset the BCK divider to generate LRCK clock for I2S master mode. To use I2S  
master mode, the divider must be enabled and programmed properly.  
Default value: 0  
0: Master mode LRCK clock divider is reset  
1: Master mode LRCK clock divider is functional  
Table 55. Page 0 / Register 13  
Dec  
13  
Hex  
0D  
b7  
b6  
SREF2  
0
b5  
SREF1  
0
b4  
SREF0  
0
b3  
b2  
b1  
b0  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
SREF[2:0]  
PLL Reference  
This bit select the source clock for internal PLL. This bit is ignored and overriden in clock auto set mode.  
Default value: 000  
000: The PLL reference clock is SCK  
001: The PLL reference clock is BCK  
010: Reserved  
011: The PLL reference clock is GPIO (selected using Page 0 / Register 18)  
others: Reserved (PLL reference is muted)  
PLL Reference  
SREF  
Default value: 0  
Table 56. Page 0 / Register 14  
Dec  
14  
Hex  
0E  
b7  
b6  
SDAC2  
0
b5  
SDAC1  
0
b4  
SDAC0  
0
b3  
b2  
b1  
b0  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
SDAC[2:0]  
DAC clock source  
These bits select the source clock for DAC clock divider.  
Default value: 000  
This Register requires use of the Clock Flex Register  
000: Master clock (PLL/SCK and OSC auto-select)  
001: PLL clock  
010: Reserved  
011: SCK clock  
100: BCK clock  
others: Reserved (muted)  
Table 57. Page 0 / Register 18  
Dec  
18  
Hex  
12  
b7  
b6  
b5  
b4  
b3  
b2  
GREF2  
0
b1  
GREF1  
0
b0  
GREF0  
0
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
78  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
RSV  
ZHCSDH3 NOVEMBER 2014  
Reserved  
Reserved. Do not access.  
GPIO Source for PLL reference clk  
GREF[2:0]  
These bits select the GPIO pins as clock input source when GPIO is selected as the PLL reference clock  
source.  
Default value: 000  
This register requires use of the Clock Flex Register.000: GPIO1  
001: GPIO2  
010: GPIO3  
011: GPIO4  
100: GPIO5  
101: GPIO6  
others: Reserved (muted)  
Table 58. Page 0 / Register 19  
Dec  
19  
Hex  
13  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RQSY  
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
RQSY  
Sync request  
This bit, when set to 1 will issue the clock resynchronization by synchronously resets the DAC, CP and OSR  
clocks. The actual clock resynchronization takes place when this bit is set back to 0, where the DAC, CP and  
OSR clocks are resumed at the beginning of the audio frame.  
Default value: 0  
0: Resume DAC, CP and OSR clocks synchronized to the beginning of audio frame  
1: Halt DAC, CP and OSR clocks as the beginning of resynchronization process  
Table 59. Page 0 / Register 20  
Dec  
20  
Hex  
14  
b7  
b6  
b5  
b4  
b3  
PPDV3  
0
b2  
PPDV2  
0
b1  
PPDV1  
0
b0  
PPDV0  
0
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
PPDV[3:0]  
PLL P  
These bits set the PLL divider P factor. These bits are ignored in clock auto set mode.  
Default value: 0000  
0000: P=1  
0001: P=2  
...  
1110: P=15  
1111: Prohibited (do not set this value)  
Table 60. Page 0 / Register 21  
Dec  
21  
Hex  
15  
b7  
b6  
b5  
PJDV5  
0
b4  
PJDV4  
0
b3  
PJDV3  
0
b2  
PJDV2  
0
b1  
PJDV1  
0
b0  
PJDV0  
0
RSV  
RSV  
Reset Value  
Copyright © 2014, Texas Instruments Incorporated  
79  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
RSV  
Reserved  
Reserved. Do not access.  
PLL J  
PJDV[5:0]  
These bits set the J part of the overall PLL multiplication factor J.D * R. These bits are ignored in clock auto set  
mode.  
Default value: 000000  
000000: Prohibited (do not set this value)  
000001: J=1  
000010: J=2  
...  
111111: J=63  
Table 61. Page 0 / Register 22  
Dec  
22  
Hex  
16  
b7  
b6  
b5  
PDDV13  
0
b4  
PDDV12  
0
b3  
PDDV11  
0
b2  
PDDV10  
0
b1  
PDDV9  
0
b0  
PDDV8  
0
RSV  
RSV  
Reset Value  
Table 62. Page 0 / Register 23  
Dec  
23  
Hex  
17  
b7  
PDDV7  
0
b6  
PDDV6  
0
b5  
PDDV5  
0
b4  
PDDV4  
0
b3  
PDDV3  
0
b2  
PDDV2  
0
b1  
PDDV1  
0
b0  
PDDV0  
0
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
PDDV[13:0]  
PLL D (MSB)  
These bits set the D part of the overall PLL multiplication factor J.D * R. These bits are ignored in clock auto  
set mode.  
Default value: 00000000000000  
0 (in decimal): D=0000  
1 (in decimal): D=0001  
...  
9999 (in decimal): D=9999  
others: Prohibited (do not set)  
Table 63. Page 0 / Register 24  
Dec  
24  
Hex  
18  
b7  
b6  
b5  
b4  
b3  
PRDV3  
0
b2  
PRDV2  
0
b1  
PRDV1  
0
b0  
PRDV0  
0
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
PRDV[3:0]  
PLL R  
These bits set the R part of the overall PLL multiplication factor J.D * R. These bits are ignored in clock auto  
set mode.  
Default value: 0000  
0000: R=1  
0001: R=2  
...  
1111: R=16  
80  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 64. Page 0 / Register 27  
Dec  
27  
Hex  
1B  
b7  
b6  
DDSP6  
0
b5  
DDSP5  
0
b4  
DDSP4  
0
b3  
DDSP3  
0
b2  
DDSP2  
0
b1  
DDSP1  
0
b0  
DDSP0  
0
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DDSP[6:0]  
DSP Clock Divider  
These bits set the source clock divider value for the DSP clock. These bits are ignored in clock auto set mode.  
Default value: 0000000  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
Table 65. Page 0 / Register 28  
Dec  
28  
Hex  
1C  
b7  
b6  
DDAC6  
0
b5  
DDAC5  
0
b4  
DDAC4  
0
b3  
DDAC3  
0
b2  
DDAC2  
0
b1  
DDAC1  
0
b0  
DDAC0  
0
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DDAC[6:0]  
DAC Clock Divider  
These bits set the source clock divider value for the DAC clock. These bits are ignored in clock auto set mode.  
Default value: 0000000  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
Table 66. Page 0 / Register 29  
Dec  
29  
Hex  
1D  
b7  
b6  
DNCP6  
0
b5  
DNCP5  
0
b4  
DNCP4  
0
b3  
DNCP3  
0
b2  
DNCP2  
0
b1  
DNCP1  
0
b0  
DNCP0  
0
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DNCP[6:0]  
NCP Clock Divider  
These bits set the source clock divider value for the CP clock. These bits are ignored in clock auto set mode.  
Default value: 0000000  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
Table 67. Page 0 / Register 30  
Dec  
30  
Hex  
1E  
b7  
b6  
DOSR6  
0
b5  
DOSR5  
0
b4  
DOSR4  
0
b3  
DOSR3  
0
b2  
DOSR2  
0
b1  
DOSR1  
0
b0  
DOSR0  
0
RSV  
Reset Value  
Copyright © 2014, Texas Instruments Incorporated  
81  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
RSV  
Reserved  
Reserved. Do not access.  
OSR Clock Divider  
DOSR[6:0]  
These bits set the source clock divider value for the OSR clock. These bits are ignored in clock auto set mode.  
Default value: 0000000  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
Table 68. Page 0 / Register 32  
Dec  
32  
Hex  
20  
b7  
b6  
DBCK6  
0
b5  
DBCK5  
0
b4  
DBCK4  
0
b3  
DBCK3  
0
b2  
DBCK2  
0
b1  
DBCK1  
0
b0  
DBCK0  
0
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DBCK[6:0]  
Master Mode BCK Divider  
These bits set the SCK divider value to generate I2S master BCK clock.  
Default value: 0000000  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
Table 69. Page 0 / Register 33  
Dec  
33  
Hex  
21  
b7  
DLRK7  
0
b6  
DLRK6  
0
b5  
DLRK5  
0
b4  
DLRK4  
0
b3  
DLRK3  
0
b2  
DLRK2  
0
b1  
DLRK1  
0
b0  
DLRK0  
0
Reset Value  
DLRK[7:0]  
Master Mode LRCK Divider  
These bits set the I2S master BCK clock divider value to generate I2S master LRCK clock.  
Default value: 00000000  
00000000: Divide by 1  
00000001: Divide by 2  
...  
11111111: Divide by 256  
Table 70. Page 0 / Register 34  
Dec  
34  
Hex  
22  
b7  
b6  
b5  
b4  
I16E  
0
b3  
b2  
b1  
FSSP1  
0
b0  
FSSP0  
0
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
I16E  
Reserved  
Reserved. Do not access.  
16x Interpolation  
This bit enables or disables the 16x interpolation mode  
Default value: 0  
0: 8x interpolation  
82  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
FSSP[1:0]  
ZHCSDH3 NOVEMBER 2014  
1: 16x interpolation  
FS Speed Mode  
These bits select the FS operation mode, which must be set according to the current audio sampling rate.  
These bits are ignored in clock auto set mode.  
Default value: 00  
00: Single speed (FS 48 kHz)  
01: Double speed (48 kHz < FS 96 kHz)  
10: Quad speed (96 kHz < FS 192 kHz)  
11: Octal speed (192 kHz < FS 384 kHz)  
Table 71. Page 0 / Register 35  
Dec  
35  
Hex  
23  
b7  
IDAC15  
0
b6  
IDAC14  
0
b5  
IDAC13  
0
b4  
IDAC12  
0
b3  
IDAC11  
0
b2  
IDAC10  
0
b1  
IDAC9  
0
b0  
IDAC8  
1
Reset Value  
Table 72. Page 0 / Register 36  
Dec  
36  
Hex  
24  
b7  
IDAC7  
0
b6  
IDAC6  
0
b5  
IDAC5  
0
b4  
IDAC4  
0
b3  
IDAC3  
0
b2  
IDAC2  
0
b1  
IDAC1  
0
b0  
IDAC0  
0
Reset Value  
IDAC[15:0]  
IDAC (MSB)  
These bits specify the number of DSP clock cycles available in one audio frame. The value should match the  
DSP clock FS ratio. These bits are ignored in clock auto set mode.  
Default value: 0000000100000000  
Table 73. Page 0 / Register 37  
Dec  
37  
Hex  
25  
b7  
b6  
IDFS  
0
b5  
IDBK  
0
b4  
IDSK  
0
b3  
IDCH  
0
b2  
IDCM  
0
b1  
DCAS  
0
b0  
IPLK  
0
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
IDFS  
Ignore FS Detection  
This bit controls whether to ignore the FS detection. When ignored, FS error will not cause a clock error.  
Default value: 0  
0: Regard FS detection  
1: Ignore FS detection  
IDBK  
IDSK  
IDCH  
Ignore BCK Detection  
This bit controls whether to ignore the BCK detection against LRCK. The BCK must be stable between 32FS  
and 256FS inclusive or an error will be reported. When ignored, a BCK error will not cause a clock error.  
Default value: 0  
0: Regard BCK detection  
1: Ignore BCK detection  
Ignore SCK Detection  
This bit controls whether to ignore the SCK detection against LRCK. Only some certain SCK ratios within some  
error margin are allowed. When ignored, an SCK error will not cause a clock error.  
Default value: 0  
0: Regard SCK detection  
1: Ignore SCK detection  
Ignore Clock Halt Detection  
Copyright © 2014, Texas Instruments Incorporated  
83  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
This bit controls whether to ignore the SCK halt (static or frequency is lower than acceptable) detection. When  
ignored an SCK halt will not cause a clock error.  
Default value: 0  
0: Regard SCK halt detection  
1: Ignore SCK halt detection  
IDCM  
Ignore LRCK/BCK Missing Detection  
This bit controls whether to ignore the LRCK/BCK missing detection. The LRCK/BCK need to be in low state  
(not only static) to be deemed missing. When ignored an LRCK/BCK missing will not cause the DAC go into  
powerdown mode.  
Default value: 0  
0: Regard LRCK/BCK missing detection  
1: Ignore LRCK/BCK missing detection  
Disable Clock Divider Autoset  
DCAS  
This bit enables or disables the clock auto set mode. When dealing with uncommon audio clock configuration,  
the auto set mode must be disabled and all clock dividers must be set manually. Addtionally, some clock  
detectors might also need to be disabled. The clock autoset feature will not work with PLL enabled in VCOM  
mode. In this case this feature has to be disabled and the clock dividers must be set manually.  
Default value: 0  
0: Enable clock auto set  
1: Disable clock auto set  
Ignore PLL Lock Detection  
IPLK  
This bit controls whether to ignore the PLL lock detection. When ignored, PLL unlocks will not cause a clock  
error. The PLL lock flag at Page 0 / Register 4, bit 4 is always correct regardless of this bit.  
Default value: 0  
0: PLL unlocks raise clock error  
1: PLL unlocks are ignored  
Table 74. Page 0 / Register 40  
Dec  
40  
Hex  
28  
b7  
b6  
b5  
AFMT1  
0
b4  
AFMT0  
0
b3  
b2  
b1  
ALEN1  
1
b0  
ALEN0  
0
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
AFMT[1:0]  
I2S Data Format  
These bits control both input and output audio interface formats for DAC operation.  
Default value: 00  
00: I2S  
01: TDM/DSP  
10: RTJ  
11: LTJ  
ALEN[1:0]  
I2S Word Length  
These bits control both input and output audio interface sample word lengths for DAC operation.  
Default value: 10  
00: 16 bits  
01: 20 bits  
10: 24 bits  
11: 32 bits  
84  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 75. Page 0 / Register 41  
Dec  
41  
Hex  
29  
b7  
AOFS7  
0
b6  
AOFS6  
0
b5  
AOFS5  
0
b4  
AOFS4  
0
b3  
AOFS3  
0
b2  
AOFS2  
0
b1  
AOFS1  
0
b0  
AOFS0  
0
Reset Value  
AOFS[7:0]  
I2S Shift  
These bits control the offset of audio data in the audio frame for both input and output. The offset is defined as  
the number of BCK from the starting (MSB) of audio frame to the starting of the desired audio sample.  
Default value: 00000000  
00000000: offset = 0 BCK (no offset)  
00000001: ofsset = 1 BCK  
00000010: offset = 2 BCKs  
. . .  
11111111: offset = 256 BCKs  
Table 76. Page 0 / Register 42  
Dec  
42  
Hex  
2A  
b7  
b6  
b5  
AUPL1  
0
b4  
AUPL0  
1
b3  
b2  
b1  
AUPR1  
0
b0  
AUPR0  
1
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
AUPL[1:0]  
Left DAC Data Path  
These bits control the left channel audio data path connection.  
Default value: 01  
00: Zero data (mute)  
01: Left channel data  
10: Right channel data  
11: Reserved (do not set)  
Right DAC Data Path  
AUPR[1:0]  
These bits control the right channel audio data path connection.  
Default value: 01  
00: Zero data (mute)  
01: Right channel data  
10: Left channel data  
11: Reserved (do not set)  
Table 77. Page 0 / Register 43  
Dec  
43  
Hex  
2B  
b7  
b6  
b5  
b4  
PSEL4  
0
b3  
PSEL3  
0
b2  
PSEL2  
0
b1  
PSEL1  
0
b0  
PSEL0  
1
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
PSEL[4:0]  
DSP Program Selection  
These bits select the DSP program to use for audio processing.  
Default value: 00001  
00000: Reserved (do not set)  
00001: 8x/4x/2x FIR interpolation filter with de-emphasis  
00010: 8x/4x/2x Low latency IIR interpolation filter with de-emphasis  
Copyright © 2014, Texas Instruments Incorporated  
85  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
00011: High attenuation x8/x4/x2 interpolation filter with de-emphasis  
00100: Reserved  
00101: Fixed process flow with configurable parameters  
00110: Reserved (do not set)  
00111: 8x Ringing-less low latency FIR interpolation filter without de-emphasis  
11111:  
others: Reserved (do not set)  
Table 78. Page 0 / Register 44  
Dec  
44  
Hex  
2C  
b7  
b6  
b5  
b4  
b3  
b2  
CMDP2  
0
b1  
CMDP1  
0
b0  
CMDP0  
0
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
Clock Missing Detection Period  
CMDP[2:0]  
These bits set how long both BCK and LRCK keep low before the audio clocks deemed missing and the DAC  
transitions to powerdown mode.  
Default value: 000  
000: about 1 second  
001: about 2 seconds  
010: about 3 seconds  
...  
111: about 8 seconds  
Table 79. Page 0 / Register 59  
Dec  
59  
Hex  
3B  
b7  
b6  
AMTL2  
0
b5  
AMTL1  
0
b4  
AMTL0  
0
b3  
b2  
AMTR2  
0
b1  
AMTR1  
0
b0  
AMTR0  
0
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
Auto Mute Time for Left Channel  
AMTL[2:0]  
These bits specify the length of consecutive zero samples at left channel before the channel can be auto  
muted. The times shown are for 48 kHz sampling rate and will scale with other rates.  
Default value: 000  
000: 21 ms  
001: 106 ms  
010: 213 ms  
011: 533 ms  
100: 1.07 sec  
101: 2.13 sec  
110: 5.33 sec  
111: 10.66 sec  
AMTR[2:0]  
Auto Mute Time for Right Channel  
These bits specify the length of consecutive zero samples at right channel before the channel can be auto  
muted. The times shown are for 48 kHz sampling rate and will scale with other rates.  
Default value: 000  
000: 21 ms  
001: 106 ms  
86  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
010: 213 ms  
011: 533 ms  
100: 1.07 sec  
101: 2.13 sec  
110: 5.33 sec  
111: 10.66 sec  
Table 80. Page 0 / Register 60  
Dec  
60  
Hex  
3C  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
PCTL1  
0
b0  
PCTL0  
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
PCTL[1:0]  
Digital Volume Control  
These bits control the behavior of the digital volume.  
Default value: 00  
00: The volume for Left and right channels are independent  
01: Right channel volume follows left channel setting  
10: Left channel volume follows right channel setting  
11: Reserved (The volume for Left and right channels are independent)  
Table 81. Page 0 / Register 61  
Dec  
61  
Hex  
3D  
b7  
VOLL7  
0
b6  
VOLL6  
0
b5  
VOLL5  
1
b4  
VOLL4  
1
b3  
VOLL3  
0
b2  
VOLL2  
0
b1  
VOLL1  
0
b0  
VOLL0  
0
Reset Value  
VOLL[7:0]  
Left Digital Volume  
These bits control the left channel digital volume. The digital volume is 24 dB to -103 dB in -0.5 dB step.  
Default value: 00110000  
00000000: +24.0 dB  
00000001: +23.5 dB  
. . .  
00101111: +0.5 dB  
00110000: 0.0 dB  
00110001: -0.5 dB  
...  
11111110: -103 dB  
11111111: Mute  
Table 82. Page 0 / Register 62  
Dec  
62  
Hex  
3E  
b7  
VOLR7  
0
b6  
VOLR6  
0
b5  
VOLR5  
1
b4  
VOLR4  
1
b3  
VOLR3  
0
b2  
VOLR2  
0
b1  
VOLR1  
0
b0  
VOLR0  
0
Reset Value  
VOLR[7:0]  
Right Digital Volume  
These bits control the right channel digital volume. The digital volume is 24 dB to -103 dB in -0.5 dB step.  
Default value: 00110000  
00000000: +24.0 dB  
Copyright © 2014, Texas Instruments Incorporated  
87  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
00000001: +23.5 dB  
. . .  
00101111: +0.5 dB  
00110000: 0.0 dB  
00110001: -0.5 dB  
...  
11111110: -103 dB  
11111111: Mute  
Table 83. Page 0 / Register 63  
Dec  
63  
Hex  
3F  
b7  
VNDF1  
0
b6  
VNDF0  
0
b5  
VNDS1  
1
b4  
VNDS0  
0
b3  
VNUF1  
0
b2  
VNUF0  
0
b1  
VNUS1  
1
b0  
VNUS0  
0
Reset Value  
VNDF[1:0]  
VNDS[1:0]  
VNUF[1:0]  
VNUS[1:0]  
Digital Volume Normal Ramp Down Frequency  
These bits control the frequency of the digital volume updates when the volume is ramping down. The setting  
here is applied to soft mute request, asserted by XSMUTE pin or Page 0 / Register 3.  
Default value: 00  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
Digital Volume Normal Ramp Down Step  
These bits control the step of the digital volume updates when the volume is ramping down. The setting here is  
applied to soft mute request, asserted by XSMUTE pin or Page 0 / Register 3.  
Default value: 10  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
Digital Volume Normal Ramp Up Frequency  
These bits control the frequency of the digital volume updates when the volume is ramping up. The setting here  
is applied to soft unmute request, asserted by XSMUTE pin or Page 0 / Register 3.  
Default value: 00  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly restore the volume (Instant unmute)  
Digital Volume Normal Ramp Up Step  
These bits control the step of the digital volume updates when the volume is ramping up. The setting here is  
applied to soft unmute request, asserted by XSMUTE pin or Page 0 / Register 3.  
Default value: 10  
00: Increment by 4 dB for each update  
01: Increment by 2 dB for each update  
10: Increment by 1 dB for each update  
11: Increment by 0.5 dB for each update  
Table 84. Page 0 / Register 64  
Dec  
64  
Hex  
40  
b7  
VEDF1  
0
b6  
VEDF0  
0
b5  
VEDS1  
0
b4  
VEDS0  
0
b3  
b2  
b1  
b0  
RSV  
RSV  
RSV  
RSV  
Reset Value  
88  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
RSV  
ZHCSDH3 NOVEMBER 2014  
Reserved  
Reserved. Do not access.  
VEDF[1:0]  
Digital Volume Emergency Ramp Down Frequency  
These bits control the frequency of the digital volume updates when the volume is ramping down due to clock  
error or power outage, which usually needs faster ramp down compared to normal soft mute.  
Default value: 00  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
Digital Volume Emergency Ramp Down Step  
VEDS[1:0]  
These bits control the step of the digital volume updates when the volume is ramping down due to clock error  
or power outage, which usually needs faster ramp down compared to normal soft mute.  
Default value: 00  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
Table 85. Page 0 / Register 65  
Dec  
65  
Hex  
41  
b7  
b6  
b5  
b4  
b3  
b2  
ACTL2  
1
b1  
AMLE1  
1
b0  
AMRE0  
1
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
ACTL[2:0]  
Auto Mute Control  
This bit controls the behavior of the auto mute upon zero sample detection. The time length for zero detection  
is set with Page 0 / Register 59.  
Default value: 111  
0: Auto mute left channel and right channel independently.  
1: Auto mute left and right channels only when both channels are about to be auto muted.  
Auto Mute Left Channel  
AMLE[1:0]  
This bit enables or disables auto mute on right channel. Note that when right channel auto mute is disabled and  
the Page 0 / Register 65, bit 2 is set to 1, the left channel will also never be auto muted.  
Default value: 11  
0: Disable right channel auto mute  
1: Enable right channel auto mute  
Auto Mute Right Channel  
AMRE  
This bit enables or disables auto mute on left channel. Note that when left channel auto mute is disabled and  
the Page 0 / Register 65, bit 2 is set to 1, the right channel will also never be auto muted.  
Default value: 1  
0: Disable left channel auto mute  
1: Enable left channel auto mute  
Table 86. Page 0 / Register 80  
Dec  
80  
Hex  
50  
b7  
b6  
b5  
b4  
G1SL4  
0
b3  
G1SL3  
0
b2  
G1SL2  
0
b1  
G1SL1  
0
b0  
G1SL0  
0
RSV  
RSV  
RSV  
Reset Value  
Copyright © 2014, Texas Instruments Incorporated  
89  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
RSV  
Reserved  
Reserved. Do not access.  
GPIO1 Output Selection  
G1SL[4:0]  
These bits select the signal to output to GPIO1. To actually output the selected signal, the GPIO1 must be set  
to output mode at Page 0 / Register 8.  
Default value: 00000  
00000: off (low)  
00001: DSP GPIO1 output  
00010: Register GPIO1 output (Page 0 / Register 86, bit 0)  
00011: Auto mute flag (asserted when both L and R channels are auto muted)  
00100: Auto mute flag for left channel  
00101: Auto mute flag for right channel  
00110: Clock invalid flag (clock error or clock changing or clock missing)  
00111: Serial audio interface data output (SDOUT)  
01000: Analog mute flag for left channel (low active)  
01001: Analog mute flag for right channel (low active)  
01010: PLL lock flag  
01011: Charge pump clock  
01100: Reserved  
01101: Reserved  
01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD  
010000: PLL Output/4 (Requires Clock Flex Register)  
OTHERS: RESERVED  
Table 87. Page 0 / Register 81  
Dec  
81  
Hex  
51  
b7  
b6  
b5  
b4  
G2SL4  
0
b3  
G2SL3  
0
b2  
G2SL2  
0
b1  
G2SL1  
0
b0  
G2SL0  
0
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
G2SL[4:0]  
GPIO2 Output Selection  
These bits select the signal to output to GPIO2. To actually output the selected signal, the GPIO2 must be set  
to output mode at Page 0 / Register 8.  
Default value: 00000  
00000: off (low)  
00001: DSP GPIO2 output  
00010: Register GPIO2 output (Page 0 / Register 86, bit 1)  
00011: Auto mute flag (asserted when both L and R channels are auto muted)  
00100: Auto mute flag for left channel  
00101: Auto mute flag for right channel  
00110: Clock invalid flag (clock error or clock changing or clock missing)  
00111: Serial audio interface data output (SDOUT)  
01000: Analog mute flag for left channel (low active)  
01001: Analog mute flag for right channel (low active)  
01010: PLL lock flag  
01011: Charge pump clock  
01100: Reserved  
01101: Reserved  
90  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD  
010000: PLL Output/4 (Requires Clock Flex Register)  
OTHERS: RESERVED  
Table 88. Page 0 / Register 82  
Dec  
82  
Hex  
52  
b7  
b6  
b5  
b4  
G3SL4  
0
b3  
G3SL3  
0
b2  
G3SL2  
0
b1  
G3SL1  
0
b0  
G3SL0  
0
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
G3SL[4:0]  
GPIO3 Output Selection  
These bits select the signal to output to GPIO3. To actually output the selected signal, the GPIO3 must be set  
to output mode at Page 0 / Register 8.  
Default value: 00000  
0000: off (low)  
0001: DSP GPIO3 output  
0010: Register GPIO3 output (Page 0 / Register 86, bit 2)  
00011: Auto mute flag (asserted when both L and R channels are auto muted)  
00100: Auto mute flag for left channel  
00101: Auto mute flag for right channel  
00110: Clock invalid flag (clock error or clock changing or clock missing)  
00111: Serial audio interface data output (SDOUT)  
01000: Analog mute flag for left channel (low active)  
01001: Analog mute flag for right channel (low active)  
01010: PLL lock flag  
01011: Charge pump clock  
01100: Reserved  
01101: Reserved  
01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD  
010000: PLL Output/4 (Requires Clock Flex Register)  
OTHERS: RESERVED  
Table 89. Page 0 / Register 83  
Dec  
83  
Hex  
53  
b7  
b6  
b5  
b4  
G4SL4  
0
b3  
G4SL3  
0
b2  
G4SL2  
0
b1  
G4SL1  
0
b0  
G4SL0  
0
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
G4SL[4:0]  
GPIO4 Output Selection  
These bits select the signal to output to GPIO4. To actually output the selected signal, the GPIO4 must be set  
to output mode at Page 0 / Register 8.  
Default value: 00000  
00000: off (low)  
00001: DSP GPIO4 output  
00010: Register GPIO4 output (Page 0 / Register 86, bit 3)  
00011: Auto mute flag (asserted when both L and R channels are auto muted)  
Copyright © 2014, Texas Instruments Incorporated  
91  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
00100: Auto mute flag for left channel  
00101: Auto mute flag for right channel  
00110: Clock invalid flag (clock error or clock changing or clock missing)  
00111: Serial audio interface data output (SDOUT)  
01000: Analog mute flag for left channel (low active)  
01001: Analog mute flag for right channel (low active)  
01010: PLL lock flag  
01011: Charge pump clock  
01100: Reserved  
01101: Reserved  
01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD  
010000: PLL Output/4 (Requires Clock Flex Register)  
OTHERS: RESERVED  
Table 90. Page 0 / Register 84  
Dec  
84  
Hex  
54  
b7  
b6  
b5  
b4  
G5SL4  
0
b3  
G5SL3  
0
b2  
G5SL2  
0
b1  
G5SL1  
0
b0  
G5SL0  
0
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
G5SL[4:0]  
GPIO5 Output Selection  
These bits select the signal to output to GPIO5. To actually output the selected signal, the GPIO5 must be set  
to output mode at Page 0 / Register 8.  
Default value: 00000  
00000: off (low)  
00001: DSP GPIO5 output  
00010: Register GPIO5 output (Page 0 / Register 86, bit 4  
00011: Auto mute flag (asserted when both L and R channels are auto muted)  
00100: Auto mute flag for left channel  
00101: Auto mute flag for right channel  
00110: Clock invalid flag (clock error or clock changing or clock missing)  
00111: Serial audio interface data output (SDOUT)  
01000: Analog mute flag for left channel (low active)  
01001: Analog mute flag for right channel (low active)  
01010: PLL lock flag  
01011: Charge pump clock  
01100: Reserved  
01101: Reserved  
01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD  
010000: PLL Output/4 (Requires Clock Flex Register)  
OTHERS: RESERVED  
Table 91. Page 0 / Register 85  
Dec  
85  
Hex  
55  
b7  
b6  
b5  
b4  
G6SL4  
0
b3  
G6SL3  
0
b2  
G6SL2  
0
b1  
G6SL1  
0
b0  
G6SL0  
0
RSV  
RSV  
RSV  
Reset Value  
92  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
RSV  
ZHCSDH3 NOVEMBER 2014  
Reserved  
Reserved. Do not access.  
GPIO6 Output Selection  
G6SL[4:0]  
These bits select the signal to output to GPIO6. To actually output the selected signal, the GPIO6 must be set  
to output mode at Page 0 / Register 8.  
Default value: 00000  
00000: off (low)  
00001: DSP GPIO6 output  
00010: Register GPIO6 output (Page 0 / Register 86, bit 5)  
00011: Auto mute flag (asserted when both L and R channels are auto muted)  
00100: Auto mute flag for left channel  
00101: Auto mute flag for right channel  
00110: Clock invalid flag (clock error or clock changing or clock missing)  
00111: Serial audio interface data output (SDOUT)  
01000: Analog mute flag for left channel (low active)  
01001: Analog mute flag for right channel (low active)  
01010: PLL lock flag  
01011: Charge pump clock  
01100: Reserved  
01101: Reserved  
01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD  
010000: PLL Output/4 (Requires Clock Flex Register)  
OTHERS: RESERVED  
Table 92. Page 0 / Register 86  
Dec  
86  
Hex  
56  
b7  
b6  
b5  
GOUT5  
0
b4  
GOUT4  
0
b3  
GOUT3  
0
b2  
GOUT2  
0
b1  
GOUT1  
0
b0  
GOUT0  
0
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
GOUT5  
GPIO6 Output Control  
This bit controls the GPIO6 output when the selection at Page 0 / Register 85 is set to 0010 (register output)  
Default value: 0  
0: Output low  
1: Output high  
GOUT4  
GOUT3  
GOUT2  
GPIO5 Output Control  
This bit controls the GPIO5 output when the selection at Page 0 / Register 84 is set to 0010 (register output)  
Default value: 0  
0: Output low  
1: Output high  
GPIO4 Output Control  
This bit controls the GPIO4 output when the selection at Page 0 / Register 83 is set to 0010 (register output)  
Default value: 0  
0: Output low  
1: Output high  
GPIO3 Output Control  
This bit controls the GPIO3 output when the selection at Page 0 / Register 82 is set to 0010 (register output)  
Default value: 0  
Copyright © 2014, Texas Instruments Incorporated  
93  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
0: Output low  
1: Output high  
GOUT1  
GOUT0  
GPIO2 Output Control  
This bit controls the GPIO2 output when the selection at Page 0 / Register 81 is set to 0010 (register output)  
Default value: 0  
0: Output low  
1: Output high  
GPIO1 Output Control  
This bit controls the GPIO1 output when the selection at Page 0 / Register 80 is set to 0010 (register output)  
Default value: 0  
0: Output low  
1: Output high  
Table 93. Page 0 / Register 87  
Dec  
87  
Hex  
57  
b7  
b6  
b5  
GINV5  
0
b4  
GINV4  
0
b3  
GINV3  
0
b2  
GINV2  
0
b1  
GINV1  
0
b0  
GINV0  
0
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
GINV5  
GINV4  
GINV3  
GINV2  
GINV1  
GINV0  
GPIO6 Output Inversion  
This bit controls the polarity of GPIO6 output. When set to 1, the output will be inverted for any signal being  
selected.  
Default value: 0  
0: Non-inverted  
1: Inverted  
GPIO5 Output Inversion  
This bit controls the polarity of GPIO5 output. When set to 1, the output will be inverted for any signal being  
selected.  
Default value: 0  
0: Non-inverted  
1: Inverted  
GPIO4 Output Inversion  
This bit controls the polarity of GPIO4 output. When set to 1, the output will be inverted for any signal being  
selected.  
Default value: 0  
0: Non-inverted  
1: Inverted  
GPIO3 Output Inversion  
This bit controls the polarity of GPIO3 output. When set to 1, the output will be inverted for any signal being  
selected.  
Default value: 0  
0: Non-inverted  
1: Inverted  
GPIO2 Output Inversion  
This bit controls the polarity of GPIO2 output. When set to 1, the output will be inverted for any signal being  
selected.  
Default value: 0  
0: Non-inverted  
1: Inverted  
GPIO1 Output Inversion  
94  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
This bit controls the polarity of GPIO1 output. When set to 1, the output will be inverted for any signal being  
selected.  
Default value: 0  
0: Non-inverted  
1: Inverted  
Table 94. Page 0 / Register 90  
Dec  
90  
Hex  
5A  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RSV  
RSV  
RSV  
L1OV  
R1OV  
L2OV  
R2OV  
SFOV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
L1OV  
Left1 Overflow (Read Only)  
This bit indicates whether the left channel of DSP first output port has overflow. This bit is sticky and is cleared  
when read.  
0: No overflow  
1: Overflow occurred  
R1OV  
L2OV  
R2OV  
SFOV  
Right1 Overflow (Read Only)  
The bit indicates whether the right channel of DSP first output port has overflow. This bit is sticky and is cleared  
when read.  
0: No overflow  
1: Overflow occurred  
Left2 Overflow (Read Only)  
This bit indicates whether the left channel of DSP second output port has overflow. This bit is sticky and is  
cleared when read.  
0: No overflow  
1: Overflow occurred  
Right2 Overflow (Read Only)  
The bit indicates whether the right channel of DSP second output port has overflow. This bit is sticky and is  
cleared when read.  
0: No overflow  
1: Overflow occurred  
Shifter Overflow (Read Only)  
This bit indicates whether overflow occurred in the DSP shifter (possible sample corruption). This bit is sticky  
and is cleared when read.  
0: No overflow  
1: Overflow occurred  
Table 95. Page 0 / Register 91  
Dec  
91  
Hex  
5B  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RSV  
DTFS2  
DTFS1  
DTFS0  
DTSR3  
DTSR2  
DTSR1  
DTSR0  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DTFS[2:0]  
Detected FS (Read Only)  
These bits indicate the currently detected audio sampling rate.  
000: Error (Out of valid range)  
001: 8 kHz  
010: 16 kHz  
Copyright © 2014, Texas Instruments Incorporated  
95  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
011: 32-48 kHz  
100: 88.2-96 kHz  
101: 176.4-192 kHz  
110: 384 kHz  
DTSR[3:0]  
Detected SCK Ratio (Read Only)  
These bits indicate the currently detected SCK ratio. Note that even if the SCK ratio is not indicated as error,  
clock error might still be flagged due to incompatible combination with the sampling rate. Specifically the SCK  
ratio must be high enough to allow enough DSP cycles for minimal audio processing when PLL is disabled. The  
absolute SCK frequency must also be lower than 50 MHz.  
0000: Ratio error (The SCK ratio is not allowed)  
0001: SCK = 32 FS  
0010: SCK = 48 FS  
0011: SCK = 64 FS  
0100: SCK = 128 FS  
0101: SCK = 192 FS  
0110: SCK = 256 FS  
0111: SCK = 384 FS  
1000: SCK = 512 FS  
1001: SCK = 768 FS  
1010: SCK = 1024 FS  
1011: SCK = 1152 FS  
1100: SCK = 1536 FS  
1101: SCK = 2048 FS  
1110: SCK = 3072 FS  
Table 96. Page 0 / Register 92  
Dec  
92  
Hex  
5C  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
DTBR8  
Reset Value  
Table 97. Page 0 / Register 93  
Dec  
93  
Hex  
5D  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
DTBR7  
DTBR6  
DTBR5  
DTBR4  
DTBR3  
DTBR2  
DTBR1  
DTBR0  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
Detected BCK Ratio (MSB) (Read Only)  
DTBR[8:0]  
These bits indicate the currently detected BCK ratio, that is, the number of BCK clocks in one audio frame.  
Note that for extreme case of BCK = 1 FS (which is not usable anyway), the detected ratio will be unreliable.  
Table 98. Page 0 / Register 94  
Dec  
94  
Hex  
5E  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RSV  
CDST  
PLL-L  
LrckBck  
fS-SCKr  
SCKval  
BCKval  
fSval  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
Clock Detector Status (Read Only)  
CDST  
This bit indicates whether the SCK clock is present or not.  
0: SCK is present  
96  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
PLL-L  
ZHCSDH3 NOVEMBER 2014  
1: SCK is missing (halted)  
PLL locked (Read Only)  
This bit indicates whether the PLL is locked or not. The PLL will be reported as unlocked when it is disabled.  
0: PLL is locked  
1: PLL is unlocked  
LrckBck  
fS-SCKr  
SCKval  
LRCK-BCK present (Read Only)  
This bit indicates whether the both LRCK and BCK are missing (tied low) or not.  
0: LRCK and/or BCK is present  
1: LRCK and BCK are missing  
Sample rate SCK ratio valid (Read Only)  
This bit indicates whether the combination of current sampling rate and SCK ratio is valid for clock auto set.  
0: The combination of FS/SCK ratio is valid  
1: Error (clock auto set is not possible)  
SCK valid (Read Only)  
This bit indicates whether the SCK is valid or not. The SCK ratio must be detectable to be valid. There is a  
limitation with this flag, that is, when the low period of LRCK is less than or equal to 5 BCKs, this flag will be  
asserted (SCK invalid reported).  
0: SCK is valid  
1: SCK is invalid  
BCKval  
fSval  
BCK valid (Read Only)  
This bit indicates whether the BCK is valid or not. The BCK ratio must be stable and in the range of 32-256FS  
to be valid.  
0: BCK is valid  
1: BCK is invalid  
fS valid (Read Only)  
This bit indicated whether the audio sampling rate is valid or not. The sampling rate must be detectable to be  
valid. There is a limitation with this flag, that is when this flag is asserted and Page 0 / Register 37 is set to  
ignore all asserted error flags such that the DAC recovers, this flag will be de-asserted (sampling rate invalid  
not reported anymore).  
0: Sampling rate is valid  
1: Sampling rate is invalid  
Table 99. Page 0 / Register 95  
Dec  
95  
Hex  
5F  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RSV  
RSV  
RSV  
LTSH  
RSV  
CKMF  
CSRF  
CERF  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
Latched Clock Halt (Read Only)  
LTSH  
This bit indicates whether SCK halt has occurred. The bit is cleared when read.  
0: SCK halt has not occurred  
1: SCK halt has occurred since last read  
Clock Missing (Read Only)  
CKMF  
CSRF  
This bit indicates whether the LRCK and BCK are missing (tied low).  
0: LRCK and/or BCK is present  
1: LRCK and BCK are missing  
Clock Resync Request (Read Only)  
This bit indicates whether the clock resynchronization is in progress.  
0: Not resynchronizing  
1: Clock resynchronization is in progress  
Copyright © 2014, Texas Instruments Incorporated  
97  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
CERF  
Clock Error (Read Only)  
This bit indicates whether a clock error is being reported.  
0: Clock is valid  
1: Clock is invalid (Error)  
Table 100. Page 0 / Register 108  
Dec  
108  
Hex  
6C  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
AMLM  
AMRM  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
Left Analog Mute Monitor (Read Only)  
AMLM  
This bit is a monitor for left channel analog mute status.  
0: Mute  
1: Unmute  
AMRM  
Right Analog Mute Monitor (Read Only)  
This bit is a monitor for right channel analog mute status.  
0: Mute  
1: Unmute  
Table 101. Page 0 / Register 109  
Dec  
109  
Hex  
6D  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RSV  
RSV  
RSV  
SDTM  
RSV  
RSV  
RSV  
SHTM  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
Short detect monitor (Read Only)  
SDTM  
This bit indicates whether line output short is occuring.  
0: Normal (No short)  
1: Line output is being shorted  
SHTM  
Short detected monitor (Read Only)  
This bit indicates whether line output short has occurred since last read. This bit is sticky and is cleared when  
read.  
0: No short  
1: Line output short occurred  
Table 102. Page 0 / Register 114  
Dec  
114  
Hex  
72  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
MTST1  
MTST0  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
MTST[1:0]  
MUTEZ status (Read Only)  
These bits indicate the output of the XSMUTE level decoder for monitoring purpose.  
11: 0.7 VDD XSMUTE  
01: 0.3 VDD XSMUTE < 0.7 VDD  
00: 0.3 VDD > XSMUTE  
98  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 103. Page 0 / Register 115  
Dec  
115  
Hex  
73  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
FSMM1  
FSMM0  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
FS Speed Mode Monitor (Read Only)  
FSMM[1:0]  
These bits indicate the actual FS operation mode being used. The actual value is the auto set one when clock  
auto set is active and register set one when clock auto set is disabled.  
00: Single speed (FS 48 kHz)  
01: Double speed (48 kHz < FS 96 kHz)  
10: Quad speed (96 kHz < FS 192 kHz)  
11: Octal speed (192 kHz < FS 384 kHz)  
Table 104. Page 0 / Register 118  
Dec  
118  
Hex  
76  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
BOTM  
RSV  
RSV  
RSV  
PSTM3  
PSTM2  
PSTM1  
PSTM0  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DSP Boot Done Flag (Read Only)  
BOTM  
This bit indicates whether the DSP boot is completed.  
0: DSP is booting  
1: DSP boot completed  
PSTM[3:0]  
Power State (Read Only)  
These bits indicate the current power state of the DAC.  
0000: Powerdown  
0001: Wait for CP voltage valid  
0010: Calibration  
0011: Calibration  
0100: Volume ramp up  
0101: Run (Playing)  
0110: Line output short / Low impedance  
0111: Volume ramp down  
1000: Standby  
Table 105. Page 0 / Register 119  
Dec  
119  
Hex  
77  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RSV  
RSV  
GPIN5  
GPIN4  
GPIN3  
GPIN2  
GPIN1  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
GPIN[5:0]  
GPIO Input States (Read Only)  
This bit indicates the logic level at GPIO6 pin.  
0: Low  
1: High  
Copyright © 2014, Texas Instruments Incorporated  
99  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 106. Page 0 / Register 120  
Dec  
120  
Hex  
78  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RSV  
RSV  
RSV  
AMFL  
RSV  
RSV  
RSV  
AMFR  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
AMFL  
Auto Mute Flag for Left Channel (Read Only)  
This bit indicates the auto mute status for left channel.  
0: Not auto muted  
1: Auto muted  
AMFR  
Auto Mute Flag for Right Channel (Read Only)  
This bit indicates the auto mute status for right channel.  
0: Not auto muted  
1: Auto muted  
Table 107. Page 0 / Register 121  
Dec  
121  
Hex  
79  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
DAMD  
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
DAMD  
DAC Mode  
This bit controls the DAC architecture to vary the DAC auditory signature.  
Default value: 0  
0: Mode1 - New hyper-advanced current-segment architecture  
1: Mode2 - Classic PCM1792 advanced current-segment architecture  
Table 108. Page 0 / Register 122  
Dec  
122  
Hex  
7A  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
EIFM  
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
External Interpolation Filter Mode  
EIFM  
This bit enables or disables the PCM1792 External Interpolation Filter Mode. This mode is used with a  
PCM1792 in external digital filter mode.  
Default value: 0  
0: Normal mode  
1: External Interpolation Filter Mode  
Table 109. Page 0 / Register 123  
Dec  
123  
Hex  
7B  
b7  
b6  
G1MC2  
0
b5  
G1MC1  
0
b4  
G1MC0  
0
b3  
b2  
G2MC2  
0
b1  
G2MC1  
0
b0  
G2MC0  
0
RSV  
RSV  
Reset Value  
100  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
RSV  
ZHCSDH3 NOVEMBER 2014  
Reserved  
Reserved. Do not access.  
G1MC[2:0]  
GPIO1 output for External Interpolation Filter Mode  
These bits select a signal to be output to GPIO1 in External Interpolation Filter mode.  
Default value: 000  
000: Logic low  
001: MS  
010: BCK (256FS)  
011: WDCK (8FS)  
100: DATAL  
101: DATAR  
110: Raw DIN (from DIN pin)  
111: Raw LRCK (from LRCK pin)  
G2MC[2:0]  
GPIO2 output for External Interpolation Filter Mode  
These bits select a signal to be output to GPIO2 in External Interpolation Filter mode.  
Default value: 000  
000: Logic low  
001: MS  
010: BCK (256FS)  
011: WDCK (8FS)  
100: DATAL  
101: DATAR  
110: Raw DIN (from DIN pin)  
111: Raw LRCK (from LRCK pin)  
Table 110. Page 0 / Register 124  
Dec  
124  
Hex  
7C  
b7  
b6  
G3MC2  
0
b5  
G3MC1  
0
b4  
G3MC0  
0
b3  
b2  
G4MC2  
0
b1  
G4MC1  
0
b0  
G4MC0  
0
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
GPIO3 output for External Interpolation Filter Mode  
G3MC[2:0]  
These bits select a signal to be output to GPIO3 in External Interpolation Filter Mode.  
Default value: 000  
000: Logic low  
001: MS  
010: BCK (256FS)  
011: WDCK (8FS)  
100: DATAL  
101: DATAR  
110: Raw DIN (from DIN pin)  
111: Raw LRCK (from LRCK pin)  
G4MC[2:0]  
GPIO4 output for External Interpolation Filter Mode  
These bits select a signal to be output to GPIO4 in External Interpolation Filter Mode.  
Default value: 000  
000: Logic low  
001: MS  
010: BCK (256FS)  
Copyright © 2014, Texas Instruments Incorporated  
101  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
011: WDCK (8FS)  
100: DATAL  
101: DATAR  
110: Raw DIN (from DIN pin)  
111: Raw LRCK (from LRCK pin)  
Table 111. Page 0 / Register 125  
Dec  
125  
Hex  
7D  
b7  
b6  
G5MC2  
0
b5  
G5MC1  
0
b4  
G5MC0  
0
b3  
b2  
G6MC2  
0
b1  
G6MC1  
0
b0  
G6MC0  
0
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
GPIO5 output for External Interpolation Filter Mode  
G5MC[2:0]  
These bits select a signal to be output to GPIO5 in External Interpolation Filter mode.  
Default value: 000  
000: Logic low  
001: MS  
010: BCK (256FS)  
011: WDCK (8FS)  
100: DATAL  
101: DATAR  
110: Raw DIN (from DIN pin)  
111: Raw LRCK (from LRCK pin)  
G6MC[2:0]  
GPIO6 output for External Interpolation Filter Mode  
These bits select a signal to be output to GPIO6 in External Interpolation Filter mode.  
Default value: 000  
000: Logic low  
001: MS  
010: BCK (256FS)  
011: WDCK (8FS)  
100: DATAL  
101: DATAR  
110: Raw DIN (from DIN pin)  
111: Raw LRCK (from LRCK pin)  
13.1.1.3 Page 1 Registers  
Table 112. Page 1 / Register 1  
Dec  
1
Hex  
01  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
OSEL  
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
OSEL  
Output Amplitude Type  
This bit selects the output amplitude type. The clock autoset feature will not work with PLL enabled in VCOM  
mode. In this case this feature has to be disabled via Page 0 / Register 37 and the clock dividers must be set  
manually.  
Default value: 0  
102  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
0: VREF mode (Constant output amplitude against AVDD variation)  
1: VCOM mode (Output amplitude is proportional to AVDD variation)  
Table 113. Page 1 / Register 2  
Dec  
2
Hex  
02  
b7  
b6  
b5  
b4  
LAGN  
0
b3  
b2  
b1  
b0  
RAGN  
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
LAGN  
Analog Gain Control for Left Channel  
This bit controls the left channel analog gain.  
Default value: 0  
0: 0 dB  
1:-6 dB  
RAGN  
Analog Gain Control for Right Channel  
This bit controls the right channel analog gain.  
Default value: 0  
0: 0 dB  
1: -6 dB  
Table 114. Page 1 / Register 5  
Dec  
Hex  
05  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
UEPD  
0
b0  
UIPD  
0
5
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
UEPD  
External UVP Control  
This bit enables or disables detection of power supply drop via XSMUTE pin (External Under Voltage  
Protection).  
Default value: 0  
0: Enabled  
1: Disabled  
UIPD  
Internal UVP Control  
This bit enables or disables internal detection of AVDD voltage drop (Internal Under Voltage Protection).  
Default value: 0  
0: Enabled  
1: Disabled  
Table 115. Page 1 / Register 6  
Dec  
Hex  
06  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
AMCT  
0
6
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
AMCT  
Analog Mute Control  
This bit enables or disables analog mute following digital mute.  
Default value: 0  
Copyright © 2014, Texas Instruments Incorporated  
103  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
0: Enabled  
1: Disabled  
Table 116. Page 1 / Register 7  
Dec  
7
Hex  
07  
b7  
b6  
b5  
b4  
AGBL  
0
b3  
b2  
b1  
b0  
AGBR  
0
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
Analog +10% Gain for Left Channel  
AGBL  
AGBR  
This bit enables or disables amplitude boost mode for left channel.  
Default value: 0  
0: Normal amplitude  
1: +10% (+0.8 dB) boosted amplitude  
Analog +10% Gain for Right Channel  
This bit enables or disables amplitude boost mode for right channel.  
Default value: 0  
0: Normal amplitude  
1: +10% (+0.8 dB) boosted amplitude  
Table 117. Page 1 / Register 8  
Dec  
Hex  
08  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RCMF  
0
8
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
RCMF  
VCOM Reference Ramp Up  
This bit controls the VCOM voltage ramp up speed.  
Default value: 0  
0: Normal ramp up, ~600ms with external capacitance = 1uF  
1: Fast ramp up, ~3ms with external capacitance = 1uF  
Table 118. Page 1 / Register 9  
Dec  
Hex  
09  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
VCPD  
1
9
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
VCPD  
Power down control for VCOM  
This bit controls VCOM powerdown switch.  
Default value: 1  
0: VCOM is powered on  
1: VCOM is powered down  
104  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
13.1.1.4 Page 44 Registers  
Table 119. Page 44 / Register 1  
Dec  
1
Hex  
01  
b7  
b6  
b5  
b4  
b3  
b2  
AMDC  
0
b1  
b0  
ACSW  
0
RSV  
RSV  
RSV  
RSV  
ACRM  
ACRS  
Reset Value  
RSV  
Reserved  
Reserved. Do not access.  
Active CRAM Monitor (Read Only)  
ACRM  
This bit indicates which CRAM is being accessed by the DSP when adaptive mode is disabled. When adaptive  
mode is enabled, this bit has no meaning.  
0: CRAM A is being used by the DSP  
1: CRAM B is being used by the DSP  
Adaptive Mode Control  
AMDC  
This bit controls the DSP adaptive mode. When in adaptive mode, only CRAM A is accessible via serial  
interface when the DSP is disabled (DAC in standby state), while when the DSP is enabled (DAC is run state)  
the CRAM A can only be accessed by the DSP and the CRAM B can only be accessed by the serial interface,  
or vice versa depending on the value of CRAMSTAT. When not in adaptive mode, both CRAM A and B can be  
accessed by the serial interface when the DSP is disabled, but when the DSP is enabled, no CRAM can be  
accessed by serial interface. The DSP can access either CRAM, which can be monitored at SWPMON.  
Default value: 0  
0: Adaptive mode disabled  
1: Adaptive mode enabled  
ACRS  
ACSW  
Active CRAM Selection (Read Only)  
This bit indicates which CRAM currently serves as the active one. The other CRAM serves as an update buffer,  
and can accessed by serial interface (SPI/I2C)  
0: CRAM A is active and being used by the DSP  
1: CRAM B is active and being used by the DSP  
Switch Active CRAM  
This bit is used to request switching roles of the two buffers, that is, switching the active buffer role between  
CRAM A and CRAM B. This bit is cleared automatically when the switching process completed.  
Default value: 0  
0: No switching requested or switching completed  
1: Switching is being requested  
13.1.1.5 Page 253 Registers  
Table 120. Page 253 / Register 63  
Dec  
63  
Hex  
3F  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
PLLFLEX1 PLLFLEX1 PLLFLEX1 PLLFLEX1 PLLFLEX1 PLLFLEX1 PLLFLEX1 PLLFLEX1  
7
6
5
4
3
2
1
0
Reset Value  
0
0
0
0
0
0
0
0
PLLFLEX1[7:0]  
Clock Flex Register #1  
Clock Flex Register #1. Write 0x11 to this register to allow advanced clock tree functions. See Clocking  
Overview section.  
Default value: 00000000  
Copyright © 2014, Texas Instruments Incorporated  
105  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 121. Page 253 / Register 64  
Dec  
64  
Hex  
40  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
PLLFLEX2 PLLFLEX2 PLLFLEX2 PLLFLEX2 PLLFLEX2 PLLFLEX2 PLLFLEX2 PLLFLEX2  
7
6
5
4
3
2
1
0
Reset Value  
0
0
0
0
0
0
0
0
PLLFLEX2[7:0]  
Clock Flex Register #2  
Clock Flex Register #2. Write 0xFF to this register to allow advanced clock tree functions. See Clocking  
Overview section.  
Default value: 00000000  
106  
版权 © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
13.1.2 PLL Tables for Software Controlled Devices  
Table 122. Recommended Clock Divider Settings for PLL as Master Clock (VREF Mode)  
PLL VCO  
(MHz)  
MOD F  
(kHz)  
fS (kHz) RSCK  
SCK (MHz)  
P
PLL REF (MHz)  
M = K*R  
K = J.D  
R
PLL fS  
DSP fS NMAC  
DSP CLK (MHz) MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
CP F (kHz)  
8
8
8
8
8
8
8
8
8
8
8
128  
192  
1.024  
1.536  
2.048  
3.072  
4.096  
6.144  
8.192  
9.216  
12.288  
16.384  
24.576  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
1
1
1
3
3
3
3
9
9
9
9
1.024  
1.536  
2.048  
1.024  
1.365  
2.048  
2.731  
1.024  
1.365  
1.82  
96  
64  
48  
96  
72  
48  
36  
96  
72  
54  
36  
48  
32  
48  
48  
36  
48  
36  
48  
36  
54  
36  
2
2
1
2
2
1
1
2
2
1
1
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
8.192  
8.192  
8.192  
8.192  
8.192  
8.192  
8.192  
8.192  
8.192  
8.192  
8.192  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
256  
384  
512  
768  
1024  
1152  
1536  
2048  
3072  
2.731  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
128  
192  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
12.7008  
16.9344  
22.5792  
33.8688  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
1
3
1
3
3
3
3
9
9
9
9
1.411  
0.706  
2.822  
1.411  
1.882  
2.822  
3.763  
1.411  
1.882  
2.509  
3.763  
64  
128  
32  
64  
48  
32  
24  
64  
48  
36  
24  
32  
32  
32  
32  
48  
32  
24  
32  
48  
36  
24  
2
4
1
2
1
1
1
2
1
1
1
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
8
8
8
8
8
8
8
8
8
8
8
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
256  
384  
512  
768  
1024  
1152  
1536  
2048  
3072  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
64  
1.024  
2.048  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
1
1
1
1
3
3
3
3
3
9
9
9
1.024  
2.048  
3.072  
4.096  
2.048  
2.731  
4.096  
5.461  
6.144  
2.731  
3.641  
5.461  
96  
48  
32  
24  
48  
36  
24  
18  
16  
36  
27  
18  
48  
48  
32  
24  
48  
36  
24  
18  
16  
36  
27  
18  
2
1
1
1
1
1
1
1
1
1
1
1
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
6
6
6
6
6
6
6
6
6
6
6
6
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
128  
192  
3.072  
256  
4.096  
384  
6.144  
512  
8.192  
768  
12.288  
16.384  
18.432  
24.576  
32.768  
49.152  
1024  
1152  
1536  
2048  
3072  
22.05  
22.05  
64  
1.4112  
2.8224  
90.3168  
90.3168  
1
1
1.411  
2.822  
64  
32  
32  
32  
2
1
4096  
4096  
1024  
1024  
4
4
22.5792  
22.5792  
256  
256  
5644.8  
5644.8  
16  
16  
16  
16  
0
0
4
4
1411.2  
1411.2  
128  
Copyright © 2014, Texas Instruments Incorporated  
107  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 122. Recommended Clock Divider Settings for PLL as Master Clock (VREF Mode) (continued)  
PLL VCO  
(MHz)  
MOD F  
(kHz)  
fS (kHz) RSCK  
SCK (MHz)  
P
PLL REF (MHz)  
M = K*R  
K = J.D  
R
PLL fS  
DSP fS NMAC  
DSP CLK (MHz) MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
CP F (kHz)  
22.05  
22.05  
22.05  
22.05  
22.05  
22.05  
22.05  
22.05  
22.05  
192  
256  
4.2336  
5.6448  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
3
1
3
3
3
3
9
9
9
1.411  
5.645  
2.822  
3.763  
5.645  
7.526  
2.822  
3.763  
5.018  
64  
16  
32  
24  
16  
12  
32  
24  
18  
32  
16  
32  
24  
16  
12  
32  
24  
18  
2
1
1
1
1
1
1
1
1
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
4
4
4
4
4
4
4
4
4
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
256  
256  
256  
256  
256  
256  
256  
256  
256  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
384  
8.4672  
512  
11.2896  
16.9344  
22.5792  
25.4016  
33.8688  
45.1584  
768  
1024  
1152  
1536  
2048  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
48  
1.024  
1.536  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
1
1
1
1
3
2
3
3
3
3
9
6
1.024  
1.536  
2.048  
4.096  
2.048  
4.096  
4.096  
5.461  
8.192  
10.923  
4.096  
8.192  
96  
64  
48  
24  
48  
24  
24  
18  
12  
9
48  
16  
24  
24  
48  
24  
24  
18  
12  
9
2
4
2
1
1
1
1
1
1
1
1
1
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
3
3
3
3
3
3
3
3
3
3
3
3
32.768  
32.768  
32.768  
32.768  
32.768  
32.768  
32.768  
32.768  
32.768  
32.768  
32.768  
32.768  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
64  
2.048  
128  
192  
256  
384  
512  
768  
1024  
1152  
1536  
4.096  
6.144  
8.192  
12.288  
16.384  
24.576  
32.768  
36.864  
49.152  
24  
12  
24  
12  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
32  
64  
1.4112  
2.8224  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
1
1
1
3
2
3
3
3
3
1.411  
2.822  
5.645  
2.822  
5.645  
5.645  
7.526  
11.29  
15.053  
64  
32  
16  
32  
16  
16  
12  
8
32  
16  
16  
32  
16  
16  
12  
8
2
2
1
1
1
1
1
1
1
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
2
2
2
2
2
2
2
2
2
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
128  
128  
128  
128  
128  
128  
128  
128  
128  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
16  
16  
16  
16  
16  
16  
16  
16  
16  
8
8
8
8
8
8
8
8
8
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
128  
192  
256  
384  
512  
768  
1024  
5.6448  
8.4672  
11.2896  
16.9344  
22.5792  
33.8688  
45.1584  
6
6
48  
48  
48  
48  
48  
48  
48  
48  
32  
1.536  
3.072  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
1
1
1
3
2
3
3
3
1.536  
3.072  
6.144  
3.072  
6.144  
6.144  
8.192  
12.288  
64  
32  
16  
32  
16  
16  
12  
8
32  
16  
16  
32  
16  
16  
12  
8
2
2
1
1
1
1
1
1
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
2
2
2
2
2
2
2
2
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
128  
128  
128  
128  
128  
128  
128  
128  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
8
8
8
8
8
8
8
8
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
64  
128  
192  
256  
384  
512  
768  
6.144  
9.216  
12.288  
18.432  
24.576  
36.864  
108  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
fS (kHz) RSCK  
ZHCSDH3 NOVEMBER 2014  
Table 122. Recommended Clock Divider Settings for PLL as Master Clock (VREF Mode) (continued)  
PLL VCO  
(MHz)  
MOD F  
(kHz)  
SCK (MHz)  
P
PLL REF (MHz)  
M = K*R  
K = J.D  
R
PLL fS  
DSP fS NMAC  
DSP CLK (MHz) MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
CP F (kHz)  
48  
1024  
49.152  
98.304  
3
16.384  
6
6
1
2048  
1024  
2
49.152  
128  
6144  
16  
8
0
4
1536  
96  
96  
96  
96  
96  
96  
96  
96  
32  
48  
3.072  
4.608  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
1
3
1
2
3
4
6
8
3.072  
1.536  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
32  
64  
16  
16  
16  
16  
16  
16  
16  
32  
8
2
2
2
1
1
1
1
1
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
512  
512  
512  
512  
512  
512  
512  
512  
2
2
2
2
2
2
2
2
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
64  
64  
64  
64  
64  
64  
64  
64  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
4
4
4
4
4
4
4
4
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
64  
6.144  
128  
192  
256  
384  
512  
12.288  
18.432  
24.576  
36.864  
49.152  
16  
16  
16  
16  
16  
192  
192  
192  
192  
192  
192  
32  
48  
6.144  
9.216  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
1
3
1
2
3
4
6.144  
3.072  
16  
32  
8
8
16  
4
2
2
2
1
1
1
512  
512  
512  
512  
512  
512  
256  
256  
256  
256  
256  
256  
2
2
2
2
2
2
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
32  
32  
32  
32  
32  
32  
6144  
6144  
6144  
6144  
6144  
6144  
16  
16  
16  
16  
16  
16  
2
2
2
2
2
2
0
0
0
0
0
0
4
4
4
4
4
4
1536  
1536  
1536  
1536  
1536  
1536  
64  
12.288  
24.576  
36.864  
49.152  
12.288  
12.288  
12.288  
12.288  
128  
192  
256  
8
8
8
8
8
8
384  
384  
384  
384  
32  
48  
12.288  
18.432  
24.576  
49.152  
98.304  
98.304  
98.304  
98.304  
2
3
2
4
6.144  
6.144  
16  
16  
8
8
8
4
8
2
2
2
1
256  
256  
256  
256  
128  
128  
128  
128  
2
2
2
2
49.152  
49.152  
49.152  
49.152  
16  
16  
16  
16  
6144  
6144  
6144  
6144  
16  
16  
16  
16  
1
1
1
1
0
0
0
0
4
4
4
4
1536  
1536  
1536  
1536  
64  
12.288  
12.288  
128  
8
Copyright © 2014, Texas Instruments Incorporated  
109  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
CP F  
Table 123. Recommended Clock Divider Settings for PLL as Master Clock (VCOM Mode)  
SCK  
PLL VCO  
(MHz)  
PLL REF  
(MHz)  
DSP CLK  
(MHz)  
MOD F  
(kHz)  
fS (kHz)  
RSCK  
P
M = K*R  
K = J.D  
R
PLL fS  
DSP fS  
NMAC  
MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
(MHz)  
1.024  
1.536  
2.048  
3.072  
4.096  
6.144  
8.192  
9.216  
12.288  
16.384  
24.576  
(kHz)  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
8
8
8
8
8
8
8
8
8
8
8
128  
192  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
1
1
1.024  
1.536  
2.048  
3.072  
2.048  
2.048  
2.048  
1.536  
2.048  
2.048  
2.048  
72  
48  
36  
24  
36  
36  
36  
48  
36  
36  
36  
36  
24  
36  
12  
36  
36  
36  
48  
36  
36  
36  
2
2
1
2
1
1
1
1
1
1
1
9216  
9216  
9216  
9216  
9216  
9216  
9216  
9216  
9216  
9216  
9216  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
256  
1
384  
1
512  
2
768  
3
1024  
1152  
1536  
2048  
3072  
4
6
6
8
12  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
128  
192  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
12.7008  
16.9344  
22.5792  
33.8688  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
1
1
1
2
2
3
4
6
8
8
8
1.411  
2.117  
2.822  
2.117  
2.822  
2.822  
2.822  
2.117  
2.117  
2.822  
4.234  
60  
40  
30  
40  
30  
30  
30  
40  
40  
30  
20  
30  
10  
30  
20  
30  
30  
30  
20  
40  
30  
20  
2
4
1
2
1
1
1
2
1
1
1
7680  
7680  
7680  
7680  
7680  
7680  
7680  
7680  
7680  
7680  
7680  
960  
960  
960  
960  
960  
960  
960  
960  
960  
960  
960  
8
8
8
8
8
8
8
8
8
8
8
10.584  
10.584  
10.584  
10.584  
10.584  
10.584  
10.584  
10.584  
10.584  
10.584  
10.584  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
256  
384  
512  
768  
1024  
1152  
1536  
2048  
3072  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
64  
1.024  
2.048  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
1
1
1
2
3
4
6
8
9
8
8
8
1.024  
2.048  
3.072  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
3.072  
4.096  
6.144  
72  
36  
24  
36  
36  
36  
36  
36  
36  
24  
18  
12  
36  
36  
24  
36  
36  
36  
36  
36  
36  
24  
18  
12  
2
1
1
1
1
1
1
1
1
1
1
1
4608  
4608  
4608  
4608  
4608  
4608  
4608  
4608  
4608  
4608  
4608  
4608  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
6
6
6
6
6
6
6
6
6
6
6
6
12.288  
12.288  
12.288  
12.288  
12.288  
12.288  
12.288  
12.288  
12.288  
12.288  
12.288  
12.288  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
128  
192  
3.072  
256  
4.096  
384  
6.144  
512  
8.192  
768  
12.288  
16.384  
18.432  
24.576  
32.768  
49.152  
1024  
1152  
1536  
2048  
3072  
22.05  
22.05  
22.05  
22.05  
64  
1.4112  
2.8224  
4.2336  
5.6448  
84.672  
84.672  
84.672  
84.672  
1
1
3
2
1.411  
2.822  
1.411  
2.822  
60  
30  
60  
30  
30  
30  
30  
30  
2
1
2
1
3840  
3840  
3840  
3840  
960  
960  
960  
960  
4
4
4
4
21.168  
21.168  
21.168  
21.168  
256  
256  
256  
256  
5644.8  
5644.8  
5644.8  
5644.8  
15  
15  
15  
15  
16  
16  
16  
16  
0
0
0
0
4
4
4
4
1411.2  
1411.2  
1411.2  
1411.2  
128  
192  
256  
110  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
Table 123. Recommended Clock Divider Settings for PLL as Master Clock (VCOM Mode) (continued)  
SCK  
(MHz)  
PLL VCO  
(MHz)  
PLL REF  
(MHz)  
DSP CLK  
(MHz)  
MOD F  
(kHz)  
CP F  
fS (kHz)  
RSCK  
P
M = K*R  
K = J.D  
R
PLL fS  
DSP fS  
NMAC  
MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
(kHz)  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
22.05  
22.05  
22.05  
22.05  
22.05  
22.05  
22.05  
384  
512  
8.4672  
11.2896  
16.9344  
22.5792  
25.4016  
33.8688  
45.1584  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
3
2
3
4
9
8
8
2.822  
5.645  
5.645  
5.645  
2.822  
4.234  
5.645  
30  
15  
15  
15  
30  
20  
15  
30  
15  
15  
15  
30  
20  
15  
1
1
1
1
1
1
1
3840  
3840  
3840  
3840  
3840  
3840  
3840  
960  
960  
960  
960  
960  
960  
960  
4
4
4
4
4
4
4
21.168  
21.168  
21.168  
21.168  
21.168  
21.168  
21.168  
256  
256  
256  
256  
256  
256  
256  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
15  
15  
15  
15  
15  
15  
15  
16  
16  
16  
16  
16  
16  
16  
0
0
0
0
0
0
0
4
4
4
4
4
4
4
768  
1024  
1152  
1536  
2048  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
48  
1.024  
1.536  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
1
1
1.024  
1.536  
2.048  
2.048  
2.048  
2.048  
2.048  
2.048  
4.096  
4.096  
4.096  
4.096  
72  
48  
36  
36  
36  
36  
36  
36  
18  
18  
18  
18  
36  
12  
18  
36  
36  
36  
36  
36  
18  
18  
18  
18  
2
4
2
1
1
1
1
1
1
1
1
1
2304  
2304  
2304  
2304  
2304  
2304  
2304  
2304  
2304  
2304  
2304  
2304  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
3
3
3
3
3
3
3
3
3
3
3
3
24.576  
24.576  
24.576  
24.576  
24.576  
24.576  
24.576  
24.576  
24.576  
24.576  
24.576  
24.576  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
64  
2.048  
1
128  
192  
256  
384  
512  
768  
1024  
1152  
1536  
4.096  
2
6.144  
3
8.192  
4
12.288  
16.384  
24.576  
32.768  
36.864  
49.152  
6
8
6
8
9
12  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
44.1  
32  
48  
1.4112  
2.1168  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
84.672  
1
1
1
1
2
2
3
4
6
8
1.411  
2.117  
2.822  
5.645  
4.234  
5.645  
5.645  
5.645  
5.645  
5.645  
60  
40  
30  
15  
20  
15  
15  
15  
15  
15  
30  
10  
15  
15  
20  
15  
15  
15  
15  
15  
2
4
2
1
1
1
1
1
1
1
1920  
1920  
1920  
1920  
1920  
1920  
1920  
1920  
1920  
1920  
960  
960  
960  
960  
960  
960  
960  
960  
960  
960  
2
2
2
2
2
2
2
2
2
2
42.336  
42.336  
42.336  
42.336  
42.336  
42.336  
42.336  
42.336  
42.336  
42.336  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
8
8
8
8
8
8
8
8
8
8
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
64  
2.8224  
128  
192  
256  
384  
512  
768  
1024  
5.6448  
8.4672  
11.2896  
16.9344  
22.5792  
33.8688  
45.1584  
48  
48  
48  
48  
48  
48  
48  
48  
48  
32  
48  
1.536  
2.304  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
1
1
1
2
3
4
6
4
6
1.536  
2.304  
3.072  
3.072  
3.072  
3.072  
3.072  
6.144  
6.144  
48  
32  
24  
24  
24  
24  
24  
12  
12  
24  
8
2
4
2
1
1
1
1
1
1
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
768  
768  
768  
768  
768  
768  
768  
768  
768  
2
2
2
2
2
2
2
2
2
36.864  
36.864  
36.864  
36.864  
36.864  
36.864  
36.864  
36.864  
36.864  
128  
128  
128  
128  
128  
128  
128  
128  
128  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
12  
12  
12  
12  
12  
12  
12  
12  
12  
8
8
8
8
8
8
8
8
8
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
64  
3.072  
12  
24  
24  
24  
24  
12  
12  
128  
192  
256  
384  
512  
768  
6.144  
9.216  
12.288  
18.432  
24.576  
36.864  
Copyright © 2014, Texas Instruments Incorporated  
111  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
CP F  
Table 123. Recommended Clock Divider Settings for PLL as Master Clock (VCOM Mode) (continued)  
SCK  
PLL VCO  
(MHz)  
PLL REF  
(MHz)  
DSP CLK  
(MHz)  
MOD F  
(kHz)  
fS (kHz)  
RSCK  
P
M = K*R  
K = J.D  
R
PLL fS  
DSP fS  
NMAC  
MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
(MHz)  
(kHz)  
48  
1024  
49.152  
73.728  
8
6.144  
12  
12  
1
1536  
768  
2
36.864  
128  
6144  
12  
8
0
4
1536  
96  
96  
96  
96  
96  
96  
96  
96  
32  
48  
3.072  
4.608  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
2
3
2
4
6
8
6
8
1.536  
1.536  
3.072  
3.072  
3.072  
3.072  
6.144  
6.144  
48  
48  
24  
24  
24  
24  
12  
12  
24  
24  
12  
24  
24  
24  
12  
12  
2
2
2
1
1
1
1
1
768  
768  
768  
768  
768  
768  
768  
768  
384  
384  
384  
384  
384  
384  
384  
384  
2
2
2
2
2
2
2
2
36.864  
36.864  
36.864  
36.864  
36.864  
36.864  
36.864  
36.864  
64  
64  
64  
64  
64  
64  
64  
64  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
12  
12  
12  
12  
12  
12  
12  
12  
4
4
4
4
4
4
4
4
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
64  
6.144  
128  
192  
256  
384  
512  
12.288  
18.432  
24.576  
36.864  
49.152  
192  
192  
192  
192  
192  
192  
32  
48  
6.144  
9.216  
73.728  
73.728  
73.728  
73.728  
73.728  
73.728  
2
3
4
8
6
8
3.072  
3.072  
3.072  
3.072  
6.144  
6.144  
24  
24  
24  
24  
12  
12  
12  
12  
12  
24  
12  
12  
2
2
2
1
1
1
384  
384  
384  
384  
384  
384  
192  
192  
192  
192  
192  
192  
2
2
2
2
2
2
36.864  
36.864  
36.864  
36.864  
36.864  
36.864  
32  
32  
32  
32  
32  
32  
6144  
6144  
6144  
6144  
6144  
6144  
12  
12  
12  
12  
12  
12  
2
2
2
2
2
2
0
0
0
0
0
0
4
4
4
4
4
4
1536  
1536  
1536  
1536  
1536  
1536  
64  
12.288  
24.576  
36.864  
49.152  
128  
192  
256  
384  
384  
384  
384  
32  
48  
12.288  
18.432  
24.576  
49.152  
73.728  
73.728  
73.728  
73.728  
2
3
4
8
6.144  
6.144  
6.144  
6.144  
12  
12  
12  
12  
6
6
2
2
2
1
192  
192  
192  
192  
96  
96  
96  
96  
2
2
2
2
36.864  
36.864  
36.864  
36.864  
16  
16  
16  
16  
6144  
6144  
6144  
6144  
12  
12  
12  
12  
1
1
1
1
0
0
0
0
4
4
4
4
1536  
1536  
1536  
1536  
64  
6
128  
12  
112  
Copyright © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
fS (kHz)  
ZHCSDH3 NOVEMBER 2014  
Table 124. Recommended Clock Divider Settings for SCK as Master Clock  
RSCK  
SCK (MHz)  
DSP fS  
NMAC  
DSP CLK  
(MHz)  
MOD fS  
MOD f (kHz)  
NDAC  
DOSR  
NCP  
CP f (kHz)  
8
8
8
8
8
8
8
8
8
256  
384  
2.048  
3.072  
4.096  
6.144  
8.192  
9.216  
12.288  
16.384  
24.576  
256  
384  
1
1
1
1
1
1
1
1
1
2.048  
3.072  
4.096  
6.144  
8.192  
9.216  
12.288  
16.384  
24.576  
256  
384  
512  
768  
512  
576  
768  
512  
768  
2048  
3072  
4096  
6144  
4096  
4608  
6144  
4096  
6144  
1
1
1
1
2
2
2
4
4
16  
24  
32  
48  
32  
36  
48  
32  
48  
2
2
2
4
2
4
4
2
4
1024  
1536  
2048  
1536  
2048  
1152  
1536  
2048  
1536  
512  
512  
768  
768  
1024  
1152  
1536  
2048  
3072  
1024  
1152  
1536  
2048  
3072  
11.025  
11.025  
11.025  
11.025  
11.025  
11.025  
256  
384  
2.8224  
4.2336  
256  
384  
1
1
1
1
1
1
2.822  
4.234  
256  
384  
384  
512  
512  
512  
2822.4  
4233.6  
4233.6  
5644.8  
5644.8  
5644.8  
1
1
3
3
4
6
16  
24  
24  
32  
32  
32  
2
4
4
4
4
4
1411.2  
1058.4  
1058.4  
1411.2  
1411.2  
1411.2  
1152  
1536  
2048  
3072  
12.7008  
16.9344  
22.5792  
33.8688  
1152  
1536  
2048  
3072  
12.701  
16.934  
22.579  
33.869  
16  
16  
16  
16  
16  
16  
16  
16  
256  
384  
4.096  
6.144  
256  
384  
1
1
1
1
1
1
1
1
4.096  
6.144  
256  
384  
256  
384  
288  
384  
256  
384  
4096  
6144  
4096  
6144  
4608  
6144  
4096  
6144  
1
1
2
2
4
4
8
8
16  
24  
16  
24  
18  
24  
16  
24  
2
4
2
4
4
4
2
4
2048  
1536  
2048  
1536  
1152  
1536  
2048  
1536  
512  
8.192  
512  
8.192  
768  
12.288  
18.432  
24.576  
32.768  
49.152  
768  
12.288  
18.432  
24.576  
32.768  
49.152  
1152  
1536  
2048  
3072  
1152  
1536  
2048  
3072  
22.05  
22.05  
22.05  
22.05  
22.05  
22.05  
22.05  
22.05  
256  
384  
5.6448  
8.4672  
256  
384  
1
1
1
1
1
1
1
1
5.645  
8.467  
256  
192  
256  
256  
256  
192  
256  
256  
5644.8  
4233.6  
5644.8  
5644.8  
5644.8  
4233.6  
5644.8  
5644.8  
1
2
2
3
4
6
6
8
16  
12  
16  
16  
16  
12  
16  
16  
4
4
4
4
4
4
4
4
1411.2  
1058.4  
1411.2  
1411.2  
1411.2  
1058.4  
1411.2  
1411.2  
512  
11.2896  
16.9344  
22.5792  
25.4016  
33.8688  
45.1584  
512  
11.29  
768  
768  
16.934  
22.579  
25.402  
33.869  
45.158  
1024  
1152  
1536  
2048  
1024  
1152  
1536  
2048  
32  
32  
32  
32  
32  
32  
32  
256  
384  
8.192  
12.288  
16.384  
24.576  
32.768  
36.864  
49.152  
256  
384  
1
1
1
1
1
1
1
8.192  
12.288  
16.384  
24.576  
32.768  
36.864  
49.152  
128  
128  
128  
128  
128  
128  
128  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
2
3
8
8
8
8
8
8
8
2
2
2
2
2
4
4
2048  
2048  
2048  
2048  
2048  
1024  
1024  
512  
512  
4
768  
768  
6
1024  
1152  
1536  
1024  
1152  
1536  
8
9
12  
44.1  
44.1  
44.1  
44.1  
44.1  
256  
384  
512  
768  
1024  
11.2896  
16.9344  
22.5792  
33.8688  
45.1584  
256  
384  
512  
768  
1024  
1
1
1
1
1
11.29  
16.934  
22.579  
33.869  
45.158  
128  
128  
128  
128  
128  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
2
3
4
6
8
8
8
8
8
8
4
4
4
4
4
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
48  
48  
48  
48  
48  
256  
384  
512  
768  
1024  
12.288  
18.432  
24.576  
36.864  
49.152  
256  
384  
512  
768  
1024  
1
1
1
1
1
12.288  
18.432  
24.576  
36.864  
49.152  
128  
128  
128  
128  
128  
6144  
6144  
6144  
6144  
6144  
2
3
4
6
8
8
8
8
8
8
4
4
4
4
4
1536  
1536  
1536  
1536  
1536  
96  
96  
96  
96  
192  
256  
384  
512  
18.432  
24.576  
36.864  
49.152  
192  
256  
384  
512  
1
1
1
1
18.432  
24.576  
36.864  
49.152  
48  
64  
64  
64  
4608  
6144  
6144  
6144  
4
4
6
8
3
4
4
4
6
4
4
4
768  
1536  
1536  
1536  
Copyright © 2014, Texas Instruments Incorporated  
113  
PCM5252  
ZHCSDH3 NOVEMBER 2014  
www.ti.com.cn  
Table 124. Recommended Clock Divider Settings for SCK as Master Clock (continued)  
fS (kHz)  
RSCK  
SCK (MHz)  
DSP fS  
NMAC  
DSP CLK  
(MHz)  
MOD fS  
MOD f (kHz)  
NDAC  
DOSR  
NCP  
CP f (kHz)  
192  
192  
192  
128  
192  
256  
24.576  
36.864  
49.152  
128  
192  
256  
1
1
1
24.576  
36.864  
49.152  
32  
32  
32  
6144  
6144  
6144  
4
6
8
2
2
2
4
4
4
1536  
1536  
1536  
384  
384  
64  
24.576  
49.152  
64  
1
1
24.576  
49.152  
16  
16  
6144  
6144  
4
8
1
1
4
4
1536  
1536  
128  
128  
114  
版权 © 2014, Texas Instruments Incorporated  
PCM5252  
www.ti.com.cn  
ZHCSDH3 NOVEMBER 2014  
14 器件和文档支持  
14.1 社区资源  
E2E™ 音频转换器论坛 TI  
E2E 社区  
14.2 商标  
PurePath is a trademark of Texas Instruments.  
System Two Cascade, Audio Precision are trademarks of Audio Precision.  
DirectPath is a trademark of Texas, Instruments, Inc..  
All other trademarks are the property of their respective owners.  
14.3 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
15 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014, Texas Instruments Incorporated  
115  
重要声明  
德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提  
供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。  
TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其  
他条款可能适用于其他类型 TI 产品及服务的使用或销售。  
复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文  
件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去  
相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。  
买方和在系统中整合 TI 产品的其他开发人员(总称设计人员)理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且  
应全权 负责并确保 应用的安全性, 及设计人员的 应用 (包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计  
人员就自己设计的 应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够 (1) 预见故障的危险后果,(2) 监视故障及其后  
果,以及 (3) 降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何 应用前, 将彻底测试该等 应用  
和 该等应用中所用 TI 产品的 功能。  
TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称“TI 资  
),旨在帮助设计人员开发整合了 TI 产品的 应用, 如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、  
访问或使用任何特定的 TI 资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI 资源。  
TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。  
TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。  
设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或  
其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限  
于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务  
的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权  
的许可。  
TI 资源系按原样提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡  
发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或  
与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关  
的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔  
偿,TI 概不负责。  
TI 已明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担  
任何责任。  
如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的  
应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准。设计人员不可将  
任何 TI 产品用于关乎性命的医疗设备,除非已由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是  
指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设  
备)。此类设备包括但不限于,美国食品药品监督管理局认定为 III 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备的  
所有医疗设备。  
TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的  
应用选择适合的 产品, 并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。  
设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2017 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM5252RHBR  
PCM5252RHBT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-25 to 85  
-25 to 85  
PCM5252  
PCM5252  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

PCM5252RHBT

具有 miniDSP 和智能放大器功能的 114dB 32 位立体声差分输出 DAC | RHB | 32 | -25 to 85
TI

PCM52JG-V

Audio Digital-to-Analog Converter
ETC

PCM53

Audio Digital-to-Analog Converter
ETC

PCM5310

24-Bit, 96-/192-kHz, Asynchronous, 4-Channel/4-Channel Audio Codec with 2-VRMS Driver, Headphone Driver, and 6 Audio Interface Ports
TI

PCM5310PAP

24-Bit, 96-/192-kHz, Asynchronous, 4-Channel/4-Channel Audio Codec with 2-VRMS Driver, Headphone Driver, and 6 Audio Interface Ports
TI

PCM5310PAPR

24-Bit, 96-/192-kHz, Asynchronous, 4-Channel/4-Channel Audio Codec with 2-VRMS Driver, Headphone Driver, and 6 Audio Interface Ports
TI

PCM53JG-I

Audio Digital-to-Analog Converter
ETC

PCM53JG-V

Audio Digital-to-Analog Converter
ETC

PCM53JP

Audio Digital-to-Analog Converter
ETC

PCM53JP-I

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.035us Settling Time, PDIP24,
BB

PCM53KP

Audio Digital-to-Analog Converter
ETC

PCM53KP-I

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.035us Settling Time, PDIP24,
BB