PCM6260-Q1 [TI]

具有集成可编程麦克风偏置、升压和输入诊断功能的汽车类 6 通道音频 ADC;
PCM6260-Q1
型号: PCM6260-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成可编程麦克风偏置、升压和输入诊断功能的汽车类 6 通道音频 ADC

文件: 总159页 (文件大小:4524K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
具有集成麦克风偏置和输入故障诊断功能的 PCM6xx0-Q1 汽车类、4 通道  
6 通道、768kHz 音频 ADC  
1 特性  
3 说明  
1
符合面向汽车 应用的 AEC-Q100 标准  
温度等级 1–40°C TA +125°C  
ADC 性能:  
4 通道 PCM6x40-Q1PCM6240-Q1PCM6340-  
Q1)和 6 通道 PCM6x60-Q1PCM6260-Q1、  
PCM6360-Q1)是高性能音频模数转换器 (ADC),支  
持高达 10VRMS 的模拟输入信号。PCM6x40-Q1 和  
PCM6x60-Q1 (PCM6xx0-Q1) 支持线路和麦克风输  
入,并允许单端和差分输入配置。这类器件具有集成的  
高电压、可编程麦克风偏置和输入诊断电路,可直接连  
接到基于麦克风的汽车系统,提供全面的直接耦合输入  
故障诊断功能。PCM62x0-Q1 集成了一个高效的升压  
转换器,以通过外部低电压 3.3V 电源产生高电压麦克  
风偏置;而 PCM63x0-Q1 直接使用系统内随时可用的  
外部高电压电源 (HVDD),以产生高电压、可编程的麦  
克风偏置。PCM6xx0-Q1 集成了可编程通道增益、数  
字音量控制、低抖动锁相环 (PLL)、可编程高通滤波器  
(HPF)、双二阶滤波器、低延迟滤波器模式,并可实现  
高达 768kHz 的采样率。PCM6xx0-Q1 支持时分多路  
复用 (TDM)I2S 或左平衡 (LJ) 音频格式,并可通过  
I2C SPI 接口进行控制。这些集成的高性能 特性以  
3.3V 单电源运行,使 PCM6xx0-Q1 系列特别适用  
于空间受限的汽车系统。  
线路差分输入动态范围:110dB  
麦克风差分输入动态范围:110dB  
THD+N-94dB  
通道相加模式可提高 SNR  
ADC 输入电压:  
差分 10VRMS 满量程输入  
单端 5VRMS 满量程输入  
ADC 采样率 (fS) = 8kHz 768kHz  
可编程通道设置:  
通道增益:0dB 42dB,步长 1dB  
数字音量控制:–100dB 27dB  
增益校准分辨率为 0.1dB  
相位校准分辨率为 163ns  
可编程麦克风偏置(5V 9V):  
具有集成的高效升压转换器,或  
具有外部高电压 HVDD 电源  
可编程麦克风输入故障诊断:  
器件信息(1)  
开路输入或短路输入  
接地短路、MICBIAS VBAT  
麦克风偏置过流保护  
器件型号  
封装  
封装尺寸(标称值)  
5.00mm x 5.00mm,间距  
0.5mm  
PCM6xx0-Q1  
WQFN (32)  
低延迟信号处理滤波器选择  
可编程 HPF 和双二阶数字滤波器  
I2C SPI 控制  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
简化的应用示意图 (PCM6260-Q1)  
音频串行数据接口:  
MICBIAS  
BSTOUT  
BSTSW  
BSTVDD  
IN1P  
IN1M  
格式:TDMI2S 或左平衡 (LJ)  
字长:16 位、20 位、24 位或 32 位  
/从接口  
SHDNZ  
GPIO1  
Boost Converter and  
PLL and Clock  
Generation  
Programmable MICBIAS  
IN2P  
IN2M  
Noise  
Cancellation  
Microphones  
IN3P  
IN3M  
FSYNC  
BCLK  
Multi-Channel ADC  
with Front-End PGA  
and Input Attenuator  
Audio Serial  
Programmable  
Interface  
(TDM, I2S, LJ)  
3.3V 单电源运行  
Digital Filters and  
Biquads  
IN4P  
IN4M  
SDOUT  
I/O 电源运行:3.3V 1.8V  
功耗:在 48kHz < 21.5mW/通道  
SDA_SSZ  
IN5P  
IN5M  
SCL_MOSI  
Input Diagnostics, Regulators  
and Voltage Reference  
I2  
C
or SPI  
Hands-free  
Calling  
Microphones  
ADDR0_SCLK  
ADDR1_MISO  
Control Interface  
IN6P  
IN6M  
2 应用  
VBAT_IN VREF  
AVSS AVDD IOVDD  
AREG  
DREG  
VSS  
汽车有源噪声消除  
汽车音响主机  
汽车外部放大器  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS884  
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 28  
8.4 Device Functional Modes........................................ 64  
8.5 Programming........................................................... 65  
8.6 Register Maps......................................................... 69  
Application and Implementation ...................... 142  
9.1 Application Information.......................................... 142  
9.2 Typical Applications .............................................. 142  
9.3 What To Do and What Not To Do......................... 145  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
器件比较............................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications....................................................... 12  
7.1 Absolute Maximum Ratings .................................... 12  
7.2 ESD Ratings............................................................ 12  
7.3 Recommended Operating Conditions..................... 12  
7.4 Thermal Information................................................ 13  
7.5 Electrical Characteristics......................................... 13  
7.6 Timing Requirements: I2C Interface........................ 17  
7.7 Switching Characteristics: I2C Interface.................. 17  
7.8 Timing Requirements: SPI Interface....................... 18  
7.9 Switching Characteristics: SPI Interface................. 18  
7.10 Timing Requirements: TDM, I2S or LJ Interface... 18  
9
10 Power Supply Recommendations ................... 146  
11 Layout................................................................. 147  
11.1 Layout Guidelines ............................................... 147  
11.2 Layout Examples................................................. 147  
12 器件和文档支持 ................................................... 149  
12.1 器件支持.............................................................. 149  
12.2 文档支持 ............................................................. 149  
12.3 相关链接.............................................................. 149  
12.4 接收文档更新通知 ............................................... 149  
12.5 社区资源.............................................................. 149  
12.6 ..................................................................... 150  
12.7 静电放电警告....................................................... 150  
12.8 Glossary.............................................................. 150  
13 机械、封装和可订购信息..................................... 151  
7.11 Switching Characteristics: TDM, I2S or LJ  
Interface ................................................................... 18  
7.12 Typical Characteristics.......................................... 20  
Detailed Description ............................................ 23  
8.1 Overview ................................................................. 23  
8.2 Functional Block Diagrams ..................................... 24  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2020 3 月  
*
最初发布版本。  
2
版权 © 2020, Texas Instruments Incorporated  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
5 器件比较表  
特性  
控制接口  
PCM6240-Q1  
PCM6260-Q1  
PCM6340-Q1  
PCM6360-Q1  
I2C SPI  
TDMI2S 或左平衡 (LJ)  
数字音频串行接口  
模拟音频通道  
4
5
6
1
4
5
6
1
通用输入或输出引脚  
麦克风偏置电压  
可编程范围为 5V 9V,阶跃为 0.5V  
配合使用集成的高效升压转换器和外部低电压 BSTVDD =  
3.3V 电源来产生  
麦克风偏置 LDO 电源  
使用外部高电压 HVDD 电源(高达 12V)直接供电  
输入故障诊断  
封装  
针对具有可编程阈值的直流耦合麦克风输入,提供全面的输入故障诊断  
WQFN (RTV)32 引脚,5.00mm x 5.00mm(间距为 0.5mm)  
Copyright © 2020, Texas Instruments Incorporated  
3
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
PCM6240-Q1 RTV Package  
32-Pin WQFN With Exposed Thermal Pad  
Top View  
Pin Functions: PCM6240-Q1  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
AVDD  
AREG  
BSTVDD  
BSTSW  
BSTOUT  
MICBIAS  
VREF  
AVSS  
IN1P  
Analog supply Analog power (3.3 V, nominal)  
2
Analog supply Analog on-chip regulator output voltage for analog supply (1.8 V, nominal)  
Analog supply Boost converter supply voltage (3.3 V, nominal)  
Analog supply Boost converter switch input  
3
4
5
Analog supply Boost converter output voltage  
6
Analog  
Analog  
MICBIAS output (programmable output up to 9 V)  
Analog reference voltage filter output  
7
8
Analog supply Analog ground. Short this pin directly to the board ground plane.  
Analog input Analog input 1P pin  
9
10  
11  
12  
13  
14  
15  
16  
IN1M  
Analog input Analog input 1M pin  
IN2P  
Analog input Analog input 2P pin  
IN2M  
Analog input Analog input 2M pin  
IN3P  
Analog input Analog input 3P pin  
IN3M  
Analog input Analog input 3M pin  
IN4P  
Analog input Analog input 4P pin  
IN4M  
Analog input Analog input 4M pin  
General-purpose digital input 2 (multipurpose functions such as daisy-chain input, PLL input  
clock source, and so forth)  
17  
18  
19  
GPI2  
GPIO3  
GPI1  
Digital input  
Digital I/O  
General-purpose digital input/output 3 (multipurpose functions such as daisy-chain input,  
audio data output, PLL input clock source, interrupt, and so forth)  
General-purpose digital input 1 (multipurpose functions such as daisy-chain input, PLL input  
clock source, and so forth)  
Digital input  
General-purpose digital input/output 2 (multipurpose functions such as daisy-chain input,  
audio data output, PLL input clock source, interrupt, and so forth)  
20  
21  
GPIO2  
Digital I/O  
Analog  
VBAT_IN  
Analog VBAT input monitoring pin (used for input diagnostics)  
4
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Pin Functions: PCM6240-Q1 (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
22  
SHDNZ  
Digital input  
Digital I/O  
Device hardware shutdown and reset (active low)  
For I2C operation: I2C slave address A1 pin  
For SPI operation: SPI slave output pin  
For I2C operation: I2C slave address A0 pin  
For SPI operation : SPI serial bit clock  
For I2C operation: clock pin for I2C control bus  
For SPI operation: SPI slave input pin  
23  
24  
25  
ADDR1_MISO  
ADDR0_SCLK  
SCL_MOSI  
Digital input  
Digital input  
Digital I/O  
For I2C operation: data pin for I2C control bus  
For SPI operation: SPI slave-select pin  
26  
27  
28  
SDA_SSZ  
IOVDD  
Digital supply Digital I/O power supply (1.8 V or 3.3 V, nominal)  
General-purpose digital input/output 1 (multipurpose functions such as daisy-chain input,  
Digital I/O  
GPIO1  
audio data output, PLL input clock source, interrupt, and so forth)  
29  
30  
31  
32  
SDOUT  
BCLK  
Digital output Audio serial data interface bus output  
Digital I/O  
Digital I/O  
Audio serial data interface bus bit clock  
FSYNC  
DREG  
Audio serial data interface bus frame synchronization signal  
Digital supply Digital regulator output voltage for digital core supply (1.5 V, nominal)  
Thermal pad shorted to internal device ground. Short the thermal pad directly to the board  
Thermal Pad (VSS)  
Ground supply  
ground plane.  
Copyright © 2020, Texas Instruments Incorporated  
5
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
PCM6260-Q1 RTV Package  
32-Pin WQFN With Exposed Thermal Pad  
Top View  
AVDD  
AREG  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
ADDR0_SCLK  
ADDR1_MISO  
SHDNZ  
VBAT_IN  
IN6M  
BSTVDD  
BSTSW  
BSTOUT  
MICBIAS  
VREF  
Thermal Pad (VSS)  
IN6P  
IN5M  
AVSS  
IN5P  
Not to scale  
Pin Functions: PCM6260-Q1  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
AVDD  
AREG  
BSTVDD  
BSTSW  
BSTOUT  
MICBIAS  
VREF  
AVSS  
IN1P  
Analog supply Analog power (3.3 V, nominal)  
2
Analog supply Analog on-chip regulator output voltage for analog supply (1.8 V, nominal)  
Analog supply Boost converter supply voltage (3.3 V, nominal)  
Analog supply Boost converter switch input  
3
4
5
Analog supply Boost converter output voltage  
6
Analog  
Analog  
MICBIAS output (programmable output up to 9 V)  
Analog reference voltage filter output  
7
8
Analog supply Analog ground. Short this pin directly to the board ground plane.  
Analog input Analog input 1P pin  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
IN1M  
Analog input Analog input 1M pin  
Analog input Analog input 2P pin  
IN2P  
IN2M  
Analog input Analog input 2M pin  
Analog input Analog input 3P pin  
IN3P  
IN3M  
Analog input Analog input 3M pin  
Analog input Analog input 4P pin  
IN4P  
IN4M  
Analog input Analog input 4M pin  
Analog input Analog input 5P pin  
IN5P  
IN5M  
Analog input Analog input 5M pin  
Analog input Analog input 6P pin  
IN6P  
IN6M  
Analog input Analog input 6M pin  
VBAT_IN  
SHDNZ  
Analog  
Analog VBAT input monitoring pin (used for input diagnostics)  
Device hardware shutdown and reset (active low)  
Digital input  
For I2C operation: I2C slave address A1 pin  
For SPI operation: SPI slave output pin  
For I2C operation: I2C slave address A0 pin  
For SPI operation : SPI serial bit clock  
For I2C operation: clock pin for I2C control bus  
For SPI operation: SPI slave input pin  
For I2C operation: data pin for I2C control bus  
For SPI operation: SPI slave-select pin  
23  
24  
25  
ADDR1_MISO  
ADDR0_SCLK  
SCL_MOSI  
Digital I/O  
Digital input  
Digital input  
Digital I/O  
26  
27  
SDA_SSZ  
IOVDD  
Digital supply Digital I/O power supply (1.8 V or 3.3 V, nominal)  
6
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Pin Functions: PCM6260-Q1 (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
General-purpose digital input/output 1 (multipurpose functions such as daisy-chain input,  
audio data output, PLL input clock source, interrupt, and so forth)  
28  
GPIO1  
Digital I/O  
29  
30  
31  
32  
SDOUT  
BCLK  
Digital output Audio serial data interface bus output  
Digital I/O  
Digital I/O  
Audio serial data interface bus bit clock  
FSYNC  
DREG  
Audio serial data interface bus frame synchronization signal  
Digital supply Digital regulator output voltage for digital core supply (1.5 V, nominal)  
Thermal pad shorted to internal device ground. Short the thermal pad directly to the board  
Thermal Pad (VSS)  
Ground supply  
ground plane.  
Copyright © 2020, Texas Instruments Incorporated  
7
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
PCM6340-Q1 RTV Package  
32-Pin WQFN With Exposed Thermal Pad  
Top View  
Pin Functions: PCM6340-Q1  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
AVDD  
AREG  
AVDD  
AVSS  
HVDD  
MICBIAS  
VREF  
AVSS  
IN1P  
Analog supply Analog power (3.3 V, nominal)  
2
Analog supply Analog on-chip regulator output voltage for analog supply (1.8 V, nominal)  
Analog supply Analog power (3.3 V, nominal)  
3
4
Analog supply Analog ground  
5
Analog supply Analog power (11 V, nominal)  
6
Analog  
Analog  
MICBIAS output (programmable output up to 9 V)  
Analog reference voltage filter output  
7
8
Analog supply Analog ground. Short this pin directly to the board ground plane.  
Analog input Analog input 1P pin  
9
10  
11  
12  
13  
14  
15  
16  
IN1M  
Analog input Analog input 1M pin  
IN2P  
Analog input Analog input 2P pin  
IN2M  
Analog input Analog input 2M pin  
IN3P  
Analog input Analog input 3P pin  
IN3M  
Analog input Analog input 3M pin  
IN4P  
Analog input Analog input 4P pin  
IN4M  
Analog input Analog input 4M pin  
General-purpose digital input 2 (multipurpose functions such as daisy-chain input, PLL input  
clock source, and so forth)  
17  
18  
19  
20  
GPI2  
GPIO3  
GPI1  
Digital input  
Digital I/O  
Digital input  
Digital I/O  
General-purpose digital input/output 3 (multipurpose functions such as daisy-chain input,  
audio data output, PLL input clock source, interrupt, and so forth)  
General-purpose digital input 1 (multipurpose functions such as daisy-chain input, PLL input  
clock source, and so forth)  
General-purpose digital input/output 2 (multipurpose functions such as daisy-chain input,  
audio data output, PLL input clock source, interrupt, and so forth)  
GPIO2  
21  
22  
VBAT_IN  
SHDNZ  
Analog  
Analog VBAT input monitoring pin (used for input diagnostics)  
Device hardware shutdown and reset (active low)  
Digital input  
8
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Pin Functions: PCM6340-Q1 (continued)  
PIN  
TYPE  
DESCRIPTION  
For I2C operation: I2C slave address A1 pin  
For SPI operation: SPI slave output pin  
For I2C operation: I2C slave address A0 pin  
For SPI operation: SPI serial bit clock  
For I2C operation: clock pin for I2C control bus  
For SPI operation: SPI slave input pin  
For I2C operation: data pin for I2C control bus  
For SPI operation: SPI slave-select pin  
NO.  
NAME  
23  
ADDR1_MISO  
Digital I/O  
Digital input  
Digital input  
Digital I/O  
24  
25  
ADDR0_SCLK  
SCL_MOSI  
26  
27  
28  
SDA_SSZ  
IOVDD  
Digital supply Digital I/O power supply (1.8 V or 3.3 V, nominal)  
General-purpose digital input/output 1 (multipurpose functions such as daisy-chain input,  
Digital I/O  
GPIO1  
audio data output, PLL input clock source, interrupt, and so forth)  
29  
30  
31  
32  
SDOUT  
BCLK  
Digital output Audio serial data interface bus output  
Digital I/O  
Digital I/O  
Audio serial data interface bus bit clock  
FSYNC  
DREG  
Audio serial data interface bus frame synchronization signal  
Digital supply Digital regulator output voltage for digital core supply (1.5 V, nominal)  
Thermal pad shorted to internal device ground. Short the thermal pad directly to the board  
Thermal Pad (VSS)  
Ground supply  
ground plane.  
Copyright © 2020, Texas Instruments Incorporated  
9
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
PCM6360-Q1 RTV Package  
32-Pin WQFN With Exposed Thermal Pad  
Top View  
Pin Functions: PCM6360-Q1  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
AVDD  
AREG  
AVDD  
AVSS  
HVDD  
MICBIAS  
VREF  
AVSS  
IN1P  
Analog supply Analog power (3.3 V, nominal)  
2
Analog supply Analog on-chip regulator output voltage for analog supply (1.8 V, nominal)  
Analog supply Analog power (3.3 V, nominal)  
3
4
Analog supply Analog ground  
5
Analog supply Analog power (11 V, nominal)  
6
Analog  
Analog  
MICBIAS output (programmable output up to 9 V)  
Analog reference voltage filter output  
7
8
Analog supply Analog ground. Short this pin directly to the board ground plane.  
Analog input Analog input 1P pin  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
IN1M  
Analog input Analog input 1M pin  
Analog input Analog input 2P pin  
IN2P  
IN2M  
Analog input Analog input 2M pin  
Analog input Analog input 3P pin  
IN3P  
IN3M  
Analog input Analog input 3M pin  
Analog input Analog input 4P pin  
IN4P  
IN4M  
Analog input Analog input 4M pin  
Analog input Analog input 5P pin  
IN5P  
IN5M  
Analog input Analog input 5M pin  
Analog input Analog input 6P pin  
IN6P  
IN6M  
Analog input Analog input 6M pin  
VBAT_IN  
SHDNZ  
Analog  
Analog VBAT input monitoring pin (used for input diagnostics)  
Device hardware shutdown and reset (active low)  
Digital input  
For I2C operation: I2C slave address A1 pin  
For SPI operation: SPI slave output pin  
For I2C operation: I2C slave address A0 pin  
For SPI operation: SPI serial bit clock  
23  
24  
ADDR1_MISO  
ADDR0_SCLK  
Digital I/O  
Digital input  
10  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Pin Functions: PCM6360-Q1 (continued)  
PIN  
TYPE  
DESCRIPTION  
For I2C operation: clock pin for I2C control bus  
For SPI operation: SPI slave input pin  
For I2C operation: data pin for I2C control bus  
For SPI operation: SPI slave-select pin  
NO.  
NAME  
25  
SCL_MOSI  
Digital input  
Digital I/O  
26  
27  
28  
SDA_SSZ  
IOVDD  
Digital supply Digital I/O power supply (1.8 V or 3.3V, nominal)  
General-purpose digital input/output 1 (multipurpose functions such as daisy-chain input,  
Digital I/O  
GPIO1  
audio data output, PLL input clock source, interrupt, and so forth)  
29  
30  
31  
32  
SDOUT  
BCLK  
Digital output Audio serial data interface bus output  
Digital I/O  
Digital I/O  
Audio serial data interface bus bit clock  
FSYNC  
DREG  
Audio serial data interface bus frame synchronization signal  
Digital supply Digital regulator output voltage for digital core supply (1.5 V, nominal)  
Thermal pad shorted to internal device ground. Short the thermal pad directly to the board  
Thermal Pad (VSS)  
Ground supply  
ground plane.  
Copyright © 2020, Texas Instruments Incorporated  
11  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over the operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
UNIT  
AVDD to AVSS  
BSTVDD(2) to VSS (thermal pad)  
3.9  
3.9  
Supply voltage  
V
IOVDD to VSS (thermal pad)  
HVDD(3) to VSS (thermal pad)  
3.9  
14  
Ground voltage differences  
Battery voltage  
AVSS to VSS (thermal pad)  
VBAT_IN to AVSS  
0.3  
V
V
V
V
18  
Analog input voltage  
Digital input voltage  
Analog input pins voltage to AVSS  
Digital input pins voltage to VSS (thermal pad)  
Operating ambient, TA  
18  
IOVDD + 0.3  
125  
Temperature  
Junction, TJ  
–40  
150  
°C  
Storage, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) BSTVDD supply is required only for PCM62x0-Q1  
(3) HVDD supply is required only for PCM63x0-Q1.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
Corner package pins  
All other non-corner package pins  
V
Charged-device model (CDM), per AEC  
Q100-011  
±500  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
POWER  
AVDD(1)  
BSTVDD(2)  
Analog supply voltage to AVSS  
3.0  
3.0  
3.3  
3.3  
3.3  
1.8  
11  
3.6  
3.6  
V
V
Boost converter supply voltage to VSS (thermal pad)  
IO supply voltage to VSS (thermal pad) - IOVDD 3.3-V operation  
IO supply voltage to VSS (thermal pad) - IOVDD 1.8-V operation  
MICBIAS LDO supply voltage to VSS (thermal pad)  
3.0  
3.6  
IOVDD  
V
V
1.65  
5.6  
1.95  
12  
HVDD(3)  
INPUTS  
VBAT_IN  
VBAT_IN input pin voltage to AVSS  
0
0
12.6  
18  
V
V
Analog input pins voltage to AVSS for line-in recording  
14.2  
MICBIAS –  
0.1  
INxx  
Analog input pins voltage to AVSS for microphone recording  
0.1  
V
Analog input pins voltage to AVSS during short to VBAT_IN  
Digital input pins voltage to VSS (thermal pad)  
VBAT_IN  
IOVDD  
V
V
0
TEMPERATURE  
TA Operating ambient temperature  
–40  
125  
°C  
(1) AVSS and VSS (thermal pad); all ground pins must be tied together and must not differ in voltage by more than 0.2 V.  
(2) BSTVDD is required only for the PCM62x0-Q1.  
(3) HVDD is required only for the PCM63x0-Q1 and the minimum voltage must be 0.6 V higher than the programmed MICBIAS value.  
12  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Recommended Operating Conditions (continued)  
MIN  
NOM  
MAX  
UNIT  
MHz  
pF  
OTHERS  
GPIOx or GPIx (used as MCLK input) clock frequency  
SCL and SDA bus capacitance for I2C interface supports standard-mode  
36.864  
400  
and fast-mode  
Cb  
CL  
SCL and SDA bus capacitance for I2C interface supports fast-mode plus  
Digital output load capacitance  
550  
50  
20  
pF  
Boost converter inductor for 6MHz clocking mode (recommended inductor  
CIGW201610GL2R2MLE)  
2.2  
µH  
7.4 Thermal Information  
PCM6xx0-Q1  
RTV (WQFN)  
32 PINS  
30.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
17.0  
11.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
10.9  
RθJC(bot)  
1.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, HVDD = 11 V (for the PCM63x0-Q1), fIN = 1-kHz sinusoidal  
signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS, TDM slave mode and PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
ADC PERFORMANCE FOR LINE INPUT RECORDING  
AC-coupled input, input fault diagnostic not supported  
Differential input full-scale  
AC signal voltage  
10  
5
VRMS  
DC-coupled input, DC common-mode voltage INxP =  
INxM = 7.1 V, input fault diagnostic not supported  
AC-coupled input, input fault diagnostic not supported  
Single-ended input full-  
scale AC signal voltage  
VRMS  
DC-coupled input, DC common-mode voltage INxP =  
INxM = 7.1 V, input fault diagnostic not supported  
IN1 differential AC-coupled input selected and AC signal  
shorted to ground, 0-dB channel gain  
TBD  
109  
109  
101  
110  
109  
101  
–94  
–94  
–92  
Signal-to-noise ratio, A-  
weighted(1)(2)  
IN1 differential DC-coupled input selected and AC signal  
shorted to ground, 0-dB channel gain  
SNR  
dB  
dB  
dB  
IN1 differential DC-coupled input selected and AC signal  
shorted to ground, 12-dB channel gain  
IN1 differential AC-coupled input selected and –60-dB  
full-scale AC signal input, 0-dB channel gain  
Dynamic range, A-  
weighted(2)  
IN1 differential DC-coupled input selected and –60-dB  
full-scale AC signal input, 0-dB channel gain  
DR  
IN1 differential DC-coupled input selected and –72-dB  
full-scale AC signal input, 12-dB channel gain  
IN1 differential AC-coupled input selected and –1-dB  
full-scale AC signal input, 0-dB channel gain  
TBD  
IN1 differential DC-coupled input selected and –1-dB  
full-scale AC signal input, 0-dB channel gain  
THD+N  
Total harmonic distortion(2)  
IN1 differential DC-coupled input selected and –13-dB  
full-scale AC signal input, 12-dB channel gain  
(1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the AC signal input shorted to ground, measured A-  
weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter can  
result in higher THD and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, can affect dynamic specification values.  
Copyright © 2020, Texas Instruments Incorporated  
13  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, HVDD = 11 V (for the PCM63x0-Q1), fIN = 1-kHz sinusoidal  
signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS, TDM slave mode and PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
Channel gain control range Programmable 1-dB steps  
0
42  
dB  
ADC PERFORMANCE FOR MICROPHONE INPUT RECORDING  
AC-coupled input, input fault diagnostic not  
supported. CHx_MIC_RANGE register bit is set to high.  
DC-coupled input, DC differential common-mode voltage  
INxP – INxM > 3.4 V, DC common-mode voltage INxP  
< (MICBIAS – 1.7 V) and DC common-mode voltage  
INxM > 1.7 V. CHx_MIC_RANGE register bit is set to  
high to support AC differential signal max swing > 2  
Differential input full-scale  
AC signal voltage(3)  
10  
VRMS  
Vrms(4)  
.
IN1 differential AC-coupled input selected and AC signal  
shorted to ground, 0-dB channel gain  
109  
109  
110  
109  
Signal-to-noise ratio, A-  
weighted(1)(2)  
SNR  
dB  
dB  
IN1 differential DC-coupled input selected and AC-signal  
shorted to ground, DC differential common-mode voltage  
IN1P – IN1M < 5.0 V, 0-dB channel gain  
TBD  
IN1 differential AC-coupled input selected and –60-dB  
full-scale AC signal input, 0-dB channel gain  
Dynamic range, A-  
weighted(2)  
DR  
IN1 differential DC-coupled input selected and –60-dB  
full-scale AC signal input, DC differential common-mode  
voltage IN1P – IN1M < 5.0 V, 0-dB channel gain  
IN1 differential AC-coupled input selected and –1-dB  
full-scale AC signal input, 0-dB channel gain  
–94  
–90  
THD+N  
Total harmonic distortion(2)  
dB  
dB  
IN1 differential DC-coupled input selected and –15-dB  
full-scale AC signal input, 0-dB channel gain  
TBD  
42  
Channel gain control range Programmable 1-dB steps  
0
ADC OTHER PARAMETERS  
Differential input, between INxP and INxM  
Single-ended input, between INxP and INxM  
50  
25  
Input impedance  
kΩ  
Digital volume control  
range  
Programmable 0.5-dB steps  
Programmable  
–100  
7.35  
16  
27  
768  
32  
dB  
kHz  
Bits  
Output data sample rate  
Output data sample word  
length  
Programmable  
First-order IIR filter with programmable coefficients,  
–3-dB point (default setting)  
Digital high-pass filter  
cutoff frequency  
12  
–132  
0.1  
Hz  
dB  
–1-dB full-scale AC signal line-in input to non  
measurement channel  
Interchannel isolation  
Interchannel gain  
mismatch  
–6-dB full-scale AC signal line-in input, 0-dB channel  
gain  
dB  
Interchannel phase  
mismatch  
1-kHz sinusoidal signal  
0.02  
89  
Degrees  
dB  
Power-supply rejection  
100-mVPP, 1-kHz sinusoidal signal on AVDD, differential  
input selected, 0-dB channel gain  
PSRR  
ratio  
Differential microphone input selected, 0-dB channel  
gain, 1-VRMS AC input, 1-kHz signal on both pins and  
measure level at output  
Common-mode rejection  
CMRR  
ratio  
80  
8
dB  
MICROPHONE BIAS  
BW = 20 Hz to 20 kHz, A-weighted, 1-μF capacitor  
between MICBIAS and AVSS  
MICBIAS noise  
µVRMS  
MICBIAS voltage  
Programmable 0.5-V steps  
5
0
9
80  
1
V
mA  
%
MICBIAS current drive  
MICBIAS load regulation  
MICBIAS voltage 9 V  
MICBIAS voltage 9 V, measured up to maximum load  
(3) Microphone inputs support a 2 VRMS differential input full-scale AC signal voltage, if the CHx_MIC_RANGE register bit is set to low  
(default value). However, if the input DC common-mode differential voltage is higher than 4 V, then TI recommends setting the  
CHx_MIC_RANGE register bit high to avoid any saturation resulting from the high input DC common-mode differential voltage.  
(4) If the CHx_MIC_RANGE register bit is set to high (default value is low) in DC-coupled input configuration mode, then the input  
differential DC common-mode along with input differential AC signal must be less than 10 VRMS for differential input configuration mode.  
Similarly, for single-ended input configuration mode, the input DC common-mode voltage along with the input AC signal must be less  
than 5 VRMS  
.
14  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, HVDD = 11 V (for the PCM63x0-Q1), fIN = 1-kHz sinusoidal  
signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS, TDM slave mode and PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
MICBIAS over current  
protection threshold  
85  
mA  
INPUT DIAGNOSTICS  
Fault monitoring repetition  
rate  
Programmable, DC-coupled input  
1
4
8
ms  
ms  
Fault response time  
Fault monitoring repetition rate 4-ms, DC-coupled input  
Programmable 60-mV steps, DC-coupled input  
16  
Threshold voltage for  
(INxx – AVSS) input  
shorted to ground  
0
0
0
0
900  
450  
450  
450  
mV  
mV  
mV  
mV  
Threshold voltage for  
(INxP – INxM) input  
shorted together  
Programmable 30-mV steps, DC-coupled input  
Programmable 30-mV steps, DC-coupled input  
Programmable 30-mV steps, DC-coupled input  
Threshold voltage for  
(MICBIAS – INxx) input  
shorted to MICBIAS  
Threshold voltage for  
(VBAT – INxx) input  
shorted to VBAT_IN  
DIGITAL I/O  
All digital pins except SDA and SCL, IOVDD 1.8-V  
operation  
0.35 ×  
IOVDD  
–0.3  
–0.3  
Low-level digital input logic  
voltage threshold  
VIL  
V
V
V
V
All digital pins except SDA and SCL, IOVDD 3.3-V  
operation  
0.8  
All digital pins except SDA and SCL, IOVDD 1.8-V  
operation  
0.65 ×  
IOVDD  
IOVDD +  
0.3  
High-level digital input logic  
voltage threshold  
VIH  
All digital pins except SDA and SCL, IOVDD 3.3-V  
operation  
IOVDD +  
0.3  
2
All digital pins except SDA and SCL, IOL = –2 mA,  
IOVDD 1.8-V operation  
0.45  
0.4  
Low-level digital output  
voltage  
VOL  
All digital pins except SDA and SCL, IOL = –2 mA,  
IOVDD 3.3-V operation  
All digital pins except SDA and SCL, IOH = 2 mA, IOVDD  
1.8-V operation  
IOVDD –  
0.45  
High-level digital output  
voltage  
VOH  
All digital pins except SDA and SCL, IOH = 2 mA, IOVDD  
3.3-V operation  
2.4  
Low-level digital input logic  
voltage threshold  
0.3 ×  
IOVDD  
VIL(I2C)  
SDA and SCL  
–0.5  
V
V
V
V
High-level digital input logic  
voltage threshold  
0.7 ×  
IOVDD  
IOVDD +  
0.5  
VIH(I2C)  
VOL1(I2C)  
VOL2(I2C)  
SDA and SCL  
Low-level digital output  
voltage  
SDA, IOL(I2C) = –3 mA, IOVDD > 2 V  
SDA, IOL(I2C) = –2 mA, IOVDD 2 V  
0.4  
Low-level digital output  
voltage  
0.2 x IOVDD  
SDA, VOL(I2C) = 0.4 V, standard-mode or fast-mode  
SDA, VOL(I2C) = 0.4 V, fast-mode plus  
3
Low-level digital output  
current  
IOL(I2C)  
mA  
20  
Input logic-low leakage for  
digital inputs  
IIL  
All digital pins, input = 0 V  
All digital pins, input = IOVDD  
All digital pins  
–5  
–5  
0.1  
0.1  
5
5
5
µA  
µA  
pF  
Input logic-high leakage for  
digital inputs  
IIH  
Input capacitance for  
digital inputs  
CIN  
Pulldown resistance for  
digital I/O pins when  
asserted on  
RPD  
20  
kΩ  
TYPICAL SUPPLY CURRENT CONSUMPTION  
IAVDD  
1
0.1  
0.1  
IBSTVDD, or  
IHVDD  
Current consumption in  
hardware shutdown mode  
SHDNZ = 0, all device external clocks stopped  
µA  
IIOVDD  
Copyright © 2020, Texas Instruments Incorporated  
15  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, HVDD = 11 V (for the PCM63x0-Q1), fIN = 1-kHz sinusoidal  
signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS, TDM slave mode and PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
IAVDD  
10  
Current consumption in  
sleep mode (software  
shutdown mode)  
IBSTVDD, or  
IHVDD  
All device external clocks stopped  
0.1  
µA  
IIOVDD  
IAVDD  
0.1  
1.4  
Current consumption when  
MICBIAS ON, MICBIAS  
voltage 9 V, 40 mA load,  
ADC off  
IBSTVDD  
IHVDD  
IIOVDD  
IAVDD  
164.3  
41.1  
0.01  
13.5  
fS = 48 kHz, BCLK = 256 × fS  
mA  
Current consumption with  
ADC 2-channel operation  
at fS 16-kHz, MICBIAS  
off, PLL on, BCLK = 512 ×  
fS  
IBSTVDD, or  
IHVDD  
0
mA  
mA  
mA  
mA  
IIOVDD  
IAVDD  
IBSTVDD, or  
IHVDD  
IIOVDD  
IAVDD  
IBSTVDD, or  
IHVDD  
IIOVDD  
IAVDD  
IBSTVDD, or  
0.2  
13.5  
Current consumption with  
ADC 2-channel operation  
at fS 48-kHz, MICBIAS off,  
PLL off, BCLK = 512 × fS  
0
0.4  
26  
Current consumption with  
ADC 4-channel operation  
at fS 48-kHz, MICBIAS  
off, PLL on, BCLK = 256 ×  
fS  
0
0.6  
35  
Current consumption with  
ADC 6-channel operation  
at fS 48 kHz, MICBIAS off,  
PLL on, BCLK = 256 ×  
fS, (PCM6x60-Q1)  
0
IHVDD  
IIOVDD  
0.8  
16  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
7.6 Timing Requirements: I2C Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V (unless otherwise noted); see Figure 1 for timing diagram  
MIN  
NOM  
MAX  
UNIT  
STANDARD-MODE  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
4.7  
4
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
4.7  
0
3.45  
Data setup time  
250  
SDA and SCL rise time  
1000  
300  
tf  
SDA and SCL fall time  
tSU;STO  
tBUF  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
4
4.7  
FAST-MODE  
fSCL  
SCL clock frequency  
0
400  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
0.6  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
ns  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
0.9  
Data setup time  
100  
20  
SDA and SCL rise time  
300  
300  
20 ×  
(IOVDD /  
5.5 V)  
tf  
SDA and SCL fall time  
ns  
tSU;STO  
Setup time for STOP condition  
0.6  
1.3  
μs  
μs  
tBUF  
Bus free time between a STOP and START condition  
FAST-MODE PLUS  
fSCL  
SCL clock frequency  
0
1000  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
0.26  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
0.5  
0.26  
0.26  
0
μs  
μs  
μs  
μs  
ns  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
Data setup time  
50  
SDA and SCL Rise Time  
120  
120  
20 ×  
(IOVDD /  
5.5 V)  
tf  
SDA and SCL Fall Time  
ns  
tSU;STO  
tBUF  
Setup time for STOP condition  
0.26  
0.5  
μs  
μs  
Bus free time between a STOP and START condition  
7.7 Switching Characteristics: I2C Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V (unless otherwise noted); see Figure 1 for timing diagram  
PARAMETER  
TEST CONDITIONS  
Standard-mode  
MIN  
300  
300  
TYP  
MAX  
1250  
850  
UNIT  
ns  
td(SDA)  
SCL to SDA delay  
Fast-mode  
ns  
Fast-mode plus  
400  
ns  
Copyright © 2020, Texas Instruments Incorporated  
17  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
7.8 Timing Requirements: SPI Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 2 for timing diagram  
MIN  
40  
18  
18  
16  
16  
20  
8
NOM  
MAX  
UNIT  
t(SCLK)  
tH(SCLK)  
tL(SCLK)  
tLEAD  
SCLK period  
ns  
SCLK high pulse duration  
SCLK low pulse duration  
Enable lead time  
ns  
ns  
ns  
tTRAIL  
Enable trail time  
ns  
tDSEQ  
Sequential transfer delay  
MOSI data setup time  
MOSI data hold time  
SCLK rise time  
ns  
tSU(MOSI)  
tHLD(MOSI)  
tr(SCLK)  
tf(SCLK)  
ns  
8
ns  
10% - 90% rise time  
90% - 10% fall time  
6
6
ns  
SCLK fall time  
ns  
7.9 Switching Characteristics: SPI Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 2 for timing diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
21  
UNIT  
ns  
ta(MISO)  
td(MISO)  
tdis(MISO)  
MISO access time  
SCLK to MISO delay  
MISO disable time  
50% of SCLK to 50% of MISO  
21  
ns  
21  
ns  
7.10 Timing Requirements: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 3 for timing diagram  
MIN  
40  
18  
18  
8
NOM  
MAX  
UNIT  
t(BCLK)  
BCLK period  
ns  
(1)  
tH(BCLK)  
tL(BCLK)  
tSU(FSYNC)  
tHLD(FSYNC)  
tr(BCLK)  
BCLK high pulse duration  
BCLK low pulse duration  
FSYNC setup time  
FSYNC hold time  
BCLK rise time  
ns  
(1)  
ns  
ns  
8
ns  
10% - 90% rise time  
90% - 10% fall time  
10  
10  
ns  
tf(BCLK)  
BCLK fall time  
ns  
(1) The BCLK minimum high or low pulse duration must be higher than 25 ns (to meet the timing specifications), if the SDOUT data line is  
latched on the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
7.11 Switching Characteristics: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 3 for timing diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
BCLK to SDOUT delay  
50% of BCLK to 50% of SDOUT  
21  
ns  
FSYNC to SDOUT delay in TDM  
or LJ mode (for MSB data with  
TX_OFFSET = 0)  
50% of FSYNC to 50% of  
SDOUT  
21  
ns  
BCLK output clock frequency;  
master mode  
f(BCLK)  
24.576  
MHz  
ns  
(1)  
BCLK high pulse duration;  
master mode  
tH(BCLK)  
tL(BCLK)  
td(FSYNC)  
14  
14  
BCLK low pulse duration; master  
mode  
ns  
BCLK to FSYNC delay; master  
mode  
50% of BCLK to 50% of FSYNC  
21  
ns  
tr(BCLK)  
tf(BCLK)  
BCLK rise time; master mode  
BCLK fall time; master mode  
10% - 90% rise time  
90% - 10% fall time  
8
8
ns  
ns  
(1) The BCLK output clock frequency must be lower than 18.5 MHz (to meet the timing specifications), if the SDOUT data line is latched on  
the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
18  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
SDA  
tBUF  
tHD;STA  
tLOW  
tr  
td(SDA)  
SCL  
tHD;STA  
tHD;DAT  
tHIGH  
tSU;DAT  
tSU;STA  
tSU;STO  
STO  
STA  
tf  
STA  
STO  
1. I2C Interface Timing Diagram  
SSZ  
tDSEQ  
tLAG  
t(SCLK)  
tf(SCLK)  
tLEAD  
tr(SCLK)  
SCLK  
tL(SCLK)  
tH(SCLK)  
td(MISO)  
tdis(MISO)  
MISO  
MOSI  
MSB OUT  
LSB OUT  
BIT6...1  
BIT6...1  
ta(MISO)  
tSU(MOSI) tHLD(MOSI)  
MSB IN  
LSB IN  
2. SPI Interface Timing Diagram  
FSYNC  
tSU(FSYNC)  
tHLD(FSYNC)  
t(BCLK)  
tL(BCLK)  
BCLK  
tH(BCLK)  
tr(BCLK)  
tf(BCLK)  
td(FSYNC)  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
SDOUT  
3. TDM/I2S/LJ Interface Timing Diagram  
版权 © 2020, Texas Instruments Incorporated  
19  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
7.12 Typical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, HVDD = 11 V (for the PCM63xQ1), fIN = 1-kHz sinusoidal  
signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS, TDM slave mode, PLL on, channel gain = 0 dB, linear phase  
decimation filter, and MICBIAS programmed voltage = 8 V (unless otherwise noted); all performance measurements are done  
with a 20-kHz, low-pass filter and an A-weighted filter  
-60  
-70  
-60  
-70  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Input Amplitude (dB)  
Input Amplitude (dB)  
THLiDn+e  
THLiDn+e  
AC-coupled differential line input  
4. THD+N vs Input Amplitude  
AC-coupled single-ended line input  
5. THD+N vs Input Amplitude  
-60  
-70  
-60  
-70  
Channel-1  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20  
50  
100  
500  
1000  
5000 10000 20000  
Line  
20  
50  
100  
500  
1000  
5000 10000 20000  
Line  
Frequency (Hz)  
Frequency (Hz)  
AC-coupled differential line input  
AC-coupled single-ended line input  
6. THD+N vs Input Frequency With a –1-dBr Input  
7. THD+N vs Input Frequency With a –1-dBr Input  
0
0
Channel-1  
Channel-2  
Channel-1  
Channel-2  
-20  
-20  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
50  
100  
500  
1000  
5000 10000 20000  
Line  
20  
50  
100  
500  
1000  
5000 10000 20000  
Line  
Frequency (Hz)  
Frequency (Hz)  
AC-coupled differential line input  
AC-coupled differential line input  
8. FFT With Idle Input  
9. FFT With a –60-dBr Input  
20  
版权 © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, HVDD = 11 V (for the PCM63xQ1), fIN = 1-kHz sinusoidal  
signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS, TDM slave mode, PLL on, channel gain = 0 dB, linear phase  
decimation filter, and MICBIAS programmed voltage = 8 V (unless otherwise noted); all performance measurements are done  
with a 20-kHz, low-pass filter and an A-weighted filter  
-60  
-60  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-12  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-12  
Input Amplitude (dB)  
Input Amplitude (dB)  
TMHIDC+_  
TMHIDC+_  
DC-coupled differential microphone input with DC common-mode  
1NxP = 6 V and INxM = 2 V, high swing mode enabled  
DC-coupled single-ended microphone input with DC common-  
mode 1NxP = 4 V and INxM = 0 V, high swing mode enabled  
10. THD+N vs Input Amplitude  
11. THD+N vs Input Amplitude  
-60  
-60  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
-70  
-70  
Channel-6  
-80  
Channel-6  
-80  
-90  
-100  
-110  
-120  
-130  
-90  
-100  
-110  
-120  
-130  
20  
50  
100  
500  
1000  
5000 10000 20000  
MIC_  
20  
50  
100  
500  
1000  
5000 10000 20000  
MIC_  
Frequency (Hz)  
Frequency (Hz)  
DC-coupled differential microphone input with DC common-mode  
1NxP = 6 V and INxM = 2 V, High swing mode enabled  
DC-coupled single-ended microphone input with DC common-  
mode 1NxP = 4 V and INxM = 0 V, high swing mode enabled  
12. THD+N vs Input Frequency With a –15-dBr Input  
13. THD+N vs Input Frequency With a –15-dBr Input  
0
0
Channel-1  
Channel-2  
Channel-1  
Channel-2  
-20  
-20  
Channel-3  
Channel-4  
Channel-5  
Channel-3  
Channel-4  
Channel-5  
-40  
-40  
Channel-6  
-60  
Channel-6  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
20  
50  
100  
500  
1000  
5000 10000 20000  
MIC_  
20  
50  
100  
500  
1000  
5000 10000 20000  
MIC_  
Frequency (Hz)  
Frequency (Hz)  
DC-coupled differential microphone input with DC common-mode  
1NxP = 6 V and INxM = 2 V, high swing mode enabled  
DC-coupled differential microphone input with DC common-mode  
1NxP = 6 V and INxM = 2 V, high swing mode enabled  
14. FFT With Idle Input  
15. FFT With a –60-dBr Input  
版权 © 2020, Texas Instruments Incorporated  
21  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, HVDD = 11 V (for the PCM63xQ1), fIN = 1-kHz sinusoidal  
signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS, TDM slave mode, PLL on, channel gain = 0 dB, linear phase  
decimation filter, and MICBIAS programmed voltage = 8 V (unless otherwise noted); all performance measurements are done  
with a 20-kHz, low-pass filter and an A-weighted filter  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20  
50  
100  
500  
1000  
5000 10000 20000  
Line  
20  
50  
100  
500  
1000  
5000 10000 20000  
MIC_  
Frequency (Hz)  
Frequency (Hz)  
AC-coupled differential line input  
DC-coupled differential microphone input with DC common-mode  
1NxP = 6 V and INxM = 2 V, high swing mode enabled  
16. Power-Supply Rejection Ratio vs Ripple Frequency  
17. Power-Supply Rejection Ratio vs Ripple Frequency  
With 1-VPP Amplitude  
With 1-VPP Amplitude  
0.5  
70  
MICBIAS 5.0 V  
MICBIAS 5.5 V  
MICBIAS 6.0 V  
MICBIAS 6.5 V  
68  
66  
64  
62  
60  
58  
56  
54  
0.4  
MICBIAS 7.0 V  
MICBIAS 7.5 V  
MICBIAS 8.0 V  
MICBIAS 8.5 V  
MICBIAS 9.0 V  
0.3  
0.2  
0.1  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
MICBIAS LOAD (mA)  
Effi  
MICBIAS LOAD (mA)  
MICB  
DC-coupled differential microphone input with DC common-mode  
1NxP = 6 V and INxM = 2 V, high swing mode enabled  
DC-coupled differential microphone input  
18. MICBIAS Load Regulation vs MICBIAS Load Current  
19. Boost Efficiency vs MICBIAS Load Current  
22  
版权 © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8 Detailed Description  
8.1 Overview  
The PCM6xx0-Q1 are a scalable family of devices that consist of high-performance, low-power, flexible,  
multichannel, audio analog-to-digital converters (ADCs) with extensive feature integration. These devices are  
intended for automotive applications such as vehicle cabin active noise cancellation, hands-free in-vehicle  
communication, emergency call, and multimedia applications. The high dynamic range of these devices enables  
far-field audio recording with high fidelity. These devices integrate a host of features that reduce cost, board  
space, and power consumption in space-constrained automotive sub-system designs. Package, performance,  
and device-compatible configuration registers make this family of devices well suited for scalable system  
designs.  
The PCM6xx0-Q1 consist of the following blocks:  
Multichannel, multibit, high-performance delta-sigma (ΔΣ) ADCs  
Configurable single-ended or differential audio inputs with high voltage signal swing  
High-voltage, low-noise programmable microphone bias output  
Highly flexible, comprehensive input fault diagnostic  
Automatic gain controller (AGC)  
Programmable decimation filters with linear-phase or low-latency filter  
Programmable channel gain, volume control, and biquad filters for each channel  
Programmable phase and gain calibration with fine resolution for each channel  
Programmable high-pass filter (HPF) and digital channel mixer  
Integrated low-jitter, phase-locked loop (PLL) supporting a wide range of system clocks  
Integrated digital and analog voltage regulators to support single-supply operation  
Communication to the PCM6xx0-Q1 for configuring the control registers is supported using an I2C or SPI  
interface. The device supports a highly flexible audio serial interface [time-division multiplexing (TDM), I2S, or  
left-justified (LJ)] to transmit audio data seamlessly in the system across devices.  
The device can support multiple devices by sharing the common I2C and TDM buses across devices. Moreover,  
the device includes a daisy-chain feature and a secondary audio serial output data pin. These features relax the  
shared TDM bus timing requirements and board design complexities when operating multiple devices for  
applications requiring high audio data bandwidth.  
1 lists the reference abbreviations used throughout this document to registers that control the device.  
1. Abbreviations for Register References  
REFERENCE  
ABBREVIATION  
DESCRIPTION  
EXAMPLE  
Single data bit. The value of a  
single bit in a register.  
Page y, register z, bit k  
Py_Rz_Dk  
Page 4, register 36, bit 0 = P4_R36_D0  
Range of data bits. A range of  
data bits (inclusive).  
Page y, register z, bits k-m  
Page y, register z  
Py_Rz_D[k:m]  
Py_Rz  
Page 4, register 36, bits 3-0 = P4_R36_D[3:0]  
Page 4, register 36 = P4_R36  
One entire register. All eight  
bits in the register as a unit.  
Range of registers. A range of  
registers in the same page.  
Page y, registers z-n  
Py_Rz-Rn  
Page 4, registers 36, 37, 38 = P4_R36-R38  
版权 © 2020, Texas Instruments Incorporated  
23  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.2 Functional Block Diagrams  
GPI1  
GPI2  
Audio Clock Generation  
PLL  
(Input Clock Source -  
BCLK, GPIOx, GPIx)  
Multi-Function Pin  
(Faults, Interrupt, PLL Input  
Clock, etc)  
Boost Converter  
GPIO1  
GPIO2  
GPIO3  
Programmable  
MICBIAS  
MICBIAS  
Input Attenuator  
and  
PGA  
IN1P  
IN1M  
ADC  
Ch1  
IN2P  
IN2M  
Input Attenuator  
and  
PGA  
ADC  
Ch2  
SDOUT  
BCLK  
Digital Filters  
(Low Latency  
LPF,  
Programmable  
Biquads)  
Audio Serial  
Interface  
(TDM, I2S, LJ)  
Input Attenuator  
and  
PGA  
IN3P  
IN3M  
FSYNC  
ADC  
Ch3  
IN4P  
IN4M  
Input Attenuator  
and  
PGA  
ADC  
Ch4  
SDA_SSZ  
SCL_MOSI  
I2C or SPI  
Control Interface  
Regulators / Current Bias /  
Voltage Reference  
ADDR0_SCLK  
ADDR1_MISO  
Input Diagnostics  
FAULTS  
SHDNZ  
20. Simplified Device Functional Block Diagram for the PCM6240-Q1  
24  
版权 © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Functional Block Diagrams (接下页)  
GPI1  
Audio Clock Generation  
PLL  
(Input Clock Source -  
BCLK, GPIOx, GPIx)  
GPI2  
Programmable  
High Voltage  
MICBIAS  
Multi-Function Pin  
(Faults, Interrupt, PLL Input  
Clock, etc)  
MICBIAS  
GPIO1  
GPIO2  
GPIO3  
Input Attenuator  
and  
PGA  
IN1P  
IN1M  
ADC  
Ch1  
IN2P  
IN2M  
Input Attenuator  
and  
PGA  
ADC  
Ch2  
SDOUT  
BCLK  
Digital Filters  
(Low Latency  
LPF,  
Programmable  
Biquads)  
Audio Serial  
Interface  
(TDM, I2S, LJ)  
Input Attenuator  
and  
PGA  
IN3P  
IN3M  
FSYNC  
ADC  
Ch3  
IN4P  
IN4M  
Input Attenuator  
and  
PGA  
ADC  
Ch4  
SDA_SSZ  
SCL_MOSI  
I2C or SPI  
Control Interface  
Regulators / Current Bias /  
Voltage Reference  
ADDR0_SCLK  
ADDR1_MISO  
Input Diagnostics  
FAULTS  
SHDNZ  
21. Simplified Device Functional Block Diagram for the PCM6340-Q1  
版权 © 2020, Texas Instruments Incorporated  
25  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Functional Block Diagrams (接下页)  
Audio Clock Generation  
PLL  
(Input Clock Source -  
BCLK, GPIO1)  
Multi-Function Pin  
(Faults, Interrupt, PLL Input  
Clock, etc)  
Boost Converter  
GPIO1  
Programmable  
MICBIAS  
MICBIAS  
IN1P  
IN1M  
Input Attenuator  
and PGA  
ADC  
Ch1  
IN2P  
IN2M  
Input Attenuator  
and PGA  
ADC  
Ch2  
SDOUT  
BCLK  
IN3P  
IN3M  
Input Attenuator  
and PGA  
ADC  
Ch3  
Digital Filters  
(Low Latency  
LPF,  
Programmable  
Biquads)  
Audio Serial  
Interface  
(TDM, I2S, LJ)  
IN4P  
IN4M  
Input Attenuator  
and PGA  
ADC  
Ch4  
FSYNC  
IN5P  
IN5M  
Input Attenuator  
and PGA  
ADC  
Ch5  
IN6P  
IN6M  
Input Attenuator  
and PGA  
ADC  
Ch6  
SDA_SSZ  
SCL_MOSI  
I2C or SPI  
Control Interface  
Regulators / Current Bias /  
Voltage Reference  
ADDR0_SCLK  
ADDR1_MISO  
Input Diagnostics  
FAULTS  
SHDNZ  
22. Simplified Device Functional Block Diagram for the PCM6260-Q1  
26  
版权 © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Functional Block Diagrams (接下页)  
Audio Clock Generation  
Multi-Function Pin  
PLL  
Programmable  
High Voltage  
MICBIAS  
(Faults, Interrupt, PLL Input  
GPIO1  
MICBIAS  
(Input Clock Source -  
Clock, etc)  
BCLK, GPIO1)  
IN1P  
IN1M  
Input Attenuator  
and PGA  
ADC  
Ch1  
IN2P  
IN2M  
Input Attenuator  
and PGA  
ADC  
Ch2  
SDOUT  
IN3P  
IN3M  
Input Attenuator  
and PGA  
ADC  
Ch3  
Digital Filters  
(Low Latency  
LPF,  
Programmable  
Biquads)  
Audio Serial  
Interface  
(TDM, I2S, LJ)  
BCLK  
IN4P  
IN4M  
Input Attenuator  
and PGA  
ADC  
Ch4  
FSYNC  
IN5P  
IN5M  
Input Attenuator  
and PGA  
ADC  
Ch5  
IN6P  
IN6M  
Input Attenuator  
and PGA  
ADC  
Ch6  
SDA_SSZ  
SCL_MOSI  
I2C or SPI  
Control Interface  
Regulators / Current Bias /  
Voltage Reference  
ADDR0_SCLK  
ADDR1_MISO  
Input Diagnostics  
FAULTS  
SHDNZ  
23. Simplified Device Functional Block Diagram for the PCM6360-Q1  
版权 © 2020, Texas Instruments Incorporated  
27  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Serial Interfaces  
This device has two serial interfaces: control and audio data. The control serial interface is used for device  
configuration. The audio data serial interface is used for transmitting audio data to the host device.  
8.3.1.1 Control Serial Interfaces  
The device contains configuration registers and programmable coefficients that can be set to the desired values  
for a specific system and application use. All these registers can be accessed using either I2C or SPI  
communication to the device. For more information, see the Programming section.  
8.3.1.2 Audio Serial Interfaces  
Digital audio data flows between the host processor and the PCM6xx0-Q1 on the digital audio serial interface  
(ASI), or audio bus. This highly flexible ASI bus includes a TDM mode for multichannel operation, support for I2S  
or left-justified protocols format, programmable data length options, very flexible master-slave configurability for  
bus clock lines, and the ability to communicate with multiple devices within a system directly.  
The bus protocol TDM, I2S, or left-justified (LJ) format can be selected by using the ASI_FORMAT[1:0],  
P0_R7_D[7:6] register bits. As shown in 2 and 3, these modes are all most significant byte (MSB)-first,  
pulse code modulation (PCM) data format, with the output channel data word-length programmable as 16, 20,  
24, or 32 bits by configuring the ASI_WLEN[1:0], P0_R7_D[5:4] register bits.  
2. Audio Serial Interface Format  
P0_R7_D[7:6] : ASI_FORMAT[1:0]  
AUDIO SERIAL INTERFACE FORMAT  
00 (default)  
Time division multiplexing (TDM) mode  
01  
10  
11  
Inter IC sound (I2S) mode  
Left-justified (LJ) mode  
Reserved (do not use this setting)  
3. Audio Output Channel Data Word-Length  
P0_R7_D[5:4] : ASI_WLEN[1:0]  
AUDIO OUTPUT CHANNEL DATA WORD-LENGTH  
00  
01  
Output channel data word-length set to 16 bits  
Output channel data word-length set to 20 bits  
Output channel data word-length set to 24 bits  
Output channel data word-length set to 32 bits  
10  
11 (default)  
The frame sync pin, FSYNC, is used in this audio bus protocol to define the beginning of a frame and has the  
same frequency as the output data sample rates. The bit clock pin, BCLK, is used to clock out the digital audio  
data across the serial bus. The number of bit clock cycles in a frame must accommodate multiple device active  
output channels with the programmed data word length.  
28  
版权 © 2020, Texas Instruments Incorporated  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
A frame consists of multiple time-division channel slots (up to 64) to allow all output channel audio data  
transmissions to complete on the audio bus by a device or multiple PCM6xx0-Q1 devices sharing the same  
audio bus. The device supports up to eight output channels that can be configured to place their audio data on  
bus slot 0 to slot 63. 4 lists the output channel slot configuration settings. In I2S and LJ mode, the slots are  
divided into two sets, left-channel slots and right-channel slots, as described in the Inter IC Sound (I2S) Interface  
and Left-Justified (LJ) Interface sections.  
4. Output Channel Slot Assignment Settings  
P0_R11_D[5:0] : CH1_SLOT[5:0]  
00 0000 = 0d (default)  
00 0001 = 1d  
OUTPUT CHANNEL 1 SLOT ASSIGNMENT  
Slot 0 for TDM or left slot 0 for I2S, LJ.  
Slot 1 for TDM or left slot 1 for I2S, LJ.  
01 1111 = 31d  
10 0000 = 32d  
Slot 31 for TDM or left slot 31 for I2S, LJ.  
Slot 32 for TDM or right slot 0 for I2S, LJ.  
11 1110 = 62d  
11 1111 = 63d  
Slot 62 for TDM or right slot 30 for I2S, LJ.  
Slot 63 for TDM or right slot 31 for I2S, LJ.  
Similarly, the slot assignment setting for output channel 2 to channel 6 can be done using the CH2_SLOT  
(P0_R12) to CH6_SLOT (P0_R16) registers, respectively.  
The slot word length is the same as the output channel data word length set for the device. The output channel  
data word length must be set to the same value for all PCM6xx0-Q1 devices if all devices share the same ASI  
bus in a system. The maximum number of slots possible for the ASI bus in a system is limited by the available  
bus bandwidth, which depends upon the BCLK frequency, output data sample rate used, and the channel data  
word length configured.  
The device also includes a feature that offsets the start of the slot data transfer with respect to the frame sync by  
up to 31 cycles of the bit clock. 5 lists the programmable offset configuration settings.  
5. Programmable Offset Settings for the ASI Slot Start  
P0_R8_D[4:0] : TX_OFFSET[4:0]  
PROGRAMMABLE OFFSET SETTING FOR SLOT DATA TRANSMISSION START  
0 0000 = 0d (default)  
The device follows the standard protocol timing without any offset.  
Slot start is offset by one BCLK cycle, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by one BCLK cycle, as compared to  
standard protocol timing.  
0 0001 = 1d  
......  
......  
Slot start is offset by 30 BCLK cycles, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by 30 BCLK cycles, as compared to  
standard protocol timing.  
1 1110 = 30d  
Slot start is offset by 31 BCLK cycles, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by 31 BCLK cycles, as compared to  
standard protocol timing.  
1 1111 = 31d  
The device also features the ability to invert the polarity of the frame sync pin, FSYNC, used to transfer the audio  
data as compared to the default FSYNC polarity used in standard protocol timing. This feature can be set using  
the FSYNC_POL, P0_R7_D3 register bit. Similarly, the device can invert the polarity of the bit clock pin, BCLK,  
which can be set using the BCLK_POL, P0_R7_D2 register bit.  
8.3.1.2.1 Time Division Multiplexed Audio (TDM) Interface  
In TDM mode, also known as DSP mode, the rising edge of FSYNC starts the data transfer with the slot 0 data  
first. Immediately after the slot 0 data transmission, the remaining slot data are transmitted in order. FSYNC and  
each data bit (except the MSB of slot 0 when TX_OFFSET equals 0) is transmitted on the rising edge of BCLK.  
24 to 27 illustrate the protocol timing for TDM operation with various configurations.  
版权 © 2020, Texas Instruments Incorporated  
29  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
FSYNC  
BCLK  
SDOUT  
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-2 to Slot-7  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
24. TDM Mode Standard Protocol Timing (TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
nth Sample  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Slot-2 to Slot-7  
(Word Length : N)  
TX_OFFSET = 2  
TX_OFFSET = 2  
25. TDM Mode Protocol Timing (TX_OFFSET = 2)  
FSYNC  
BCLK  
1
0
N-1  
2
1
0
N-1 N-2 N-3  
2
1
0
2
1
0
N-1 N-2 N-3  
0
N-1 N-2  
3
2
1
0
N-1  
SDOUT  
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Slot-2 to Slot-7  
(Word Length : N)  
TX_OFFSET = 2  
nth Sample  
26. TDM Mode Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 2)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-2 to Slot-7  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
27. TDM Mode Protocol Timing (TX_OFFSET = 0 and BCLK_POL = 1)  
For proper operation of the audio bus in TDM mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels times the programmed word length of the output channel data.  
The device supports FSYNC as a pulse with a 1-cycle-wide bit clock, but also supports multiples as well. For a  
higher BCLK frequency operation, using TDM mode with a TX_OFFSET value higher than 0 is recommended.  
30  
版权 © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.3.1.2.2 Inter IC Sound (I2S) Interface  
The standard I2S protocol is defined for only two channels: left and right. The device extends the same protocol  
timing for multichannel operation. In I2S mode, the MSB of the left slot 0 is transmitted on the falling edge of  
BCLK in the second cycle after the falling edge of FSYNC. Immediately after the left slot 0 data transmission, the  
remaining left slot data are transmitted in order. The MSB of the right slot 0 is transmitted on the falling edge of  
BCLK in the second cycle after the rising edge of FSYNC. Immediately after the right slot 0 data transmission,  
the remaining right slot data are transmitted in order. FSYNC and each data bit is transmitted on the falling edge  
of BCLK. 28 to 31 show the protocol timing for I2S operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
28. I2S Mode Standard Protocol Timing (TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1  
N-1  
1
0
1
0
Left  
Slot-0  
(Word Length : N) (Word Length : N)  
Left  
Slot-2 to Slot-3  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 1  
TX_OFFSET = 1  
TX_OFFSET = 1  
nth Sample  
29. I2S Protocol Timing (TX_OFFSET = 1)  
FSYNC  
BCLK  
N-1 N-2  
1
0
N-1 N-2  
0
0
N-1  
1
0
N-1  
1
0
N-1 N-2  
0
N-1  
1
0
N-1 N-2  
1
0
SDOUT  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Left  
Slot-1 to Slot-3  
(Word Length : N)  
Right  
Slot-1 to Slot-3  
(Word Length : N)  
nth Sample  
30. I2S Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
31. I2S Protocol Timing (TX_OFFSET = 0 and BCLK_POL = 1)  
版权 © 2020, Texas Instruments Incorporated  
31  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
For proper operation of the audio bus in I2S mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the programmed word length  
of the output channel data. The device FSYNC low pulse must be a number of BCLK cycles wide that is greater  
than or equal to the number of active left slots times the data word length configured. Similarly, the FSYNC high  
pulse must be a number of BCLK cycles wide that is greater than or equal to the number of active right slots  
times the data word length configured.  
8.3.1.2.3 Left-Justified (LJ) Interface  
The standard LJ protocol is defined for only two channels: left and right. The device extends the same protocol  
timing for multichannel operation. In LJ mode, the MSB of the left slot 0 is transmitted in the same BCLK cycle  
after the rising edge of FSYNC. Each subsequent data bit is transmitted on the falling edge of BCLK.  
Immediately after the left slot 0 data transmission, the remaining left slot data are transmitted in order. The MSB  
of the right slot 0 is transmitted in the same BCLK cycle after the falling edge of FSYNC. Each subsequent data  
bit is transmitted on the falling edge of BCLK. Immediately after the right slot 0 data transmission, the remaining  
right slot data are transmitted in order. FSYNC is transmitted on the falling edge of BCLK. 32 to 35  
illustrate the protocol timing for LJ operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
32. LJ Mode Standard Protocol Timing (TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1  
N-1  
1
0
1
0
Left  
Slot-0  
(Word Length : N) (Word Length : N)  
Left  
Slot-2 to Slot-3  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 2  
TX_OFFSET = 2  
TX_OFFSET = 2  
nth Sample  
33. LJ Protocol Timing (TX_OFFSET = 2)  
FSYNC  
BCLK  
N-1 N-2  
1
0
N-1 N-2  
0
0
N-1  
1
0
N-1  
1
0
N-1 N-2  
0
N-1  
1
0
N-1 N-2  
1
0
SDOUT  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Left  
Slot-1 to Slot-3  
(Word Length : N)  
Right  
Slot-1 to Slot-3  
(Word Length : N)  
nth Sample  
34. LJ Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 0)  
32  
版权 © 2020, Texas Instruments Incorporated  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 1  
TX_OFFSET = 1  
TX_OFFSET = 1  
nth Sample  
35. LJ Protocol Timing (TX_OFFSET = 1 and BCLK_POL = 1)  
For proper operation of the audio bus in LJ mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the programmed word length  
of the output channel data. The device FSYNC high pulse must be a number of BCLK cycles wide that is greater  
than or equal to the number of active left slots times the data word length configured. Similarly, the FSYNC low  
pulse must be number of BCLK cycles wide that is greater than or equal to the number of active right slots times  
the data word length configured. For a higher BCLK frequency operation, using LJ mode with a TX_OFFSET  
value higher than 0 is recommended.  
8.3.1.3 Using Multiple Devices With Shared Buses  
The device has many supported features and flexible options that can be used in the system to seamlessly  
connect multiple PCM6xx0-Q1 devices by sharing a single common I2C control bus and an audio serial interface  
bus. This architecture enables multiple applications to be applied to a system that require a microphone array for  
beam-forming operation, hands-free in-vehicle communication, car cabin active noise cancellation, and so forth.  
36 shows a diagram of multiple PCM6xx0-Q1 devices in a configuration where the control and audio data  
buses are shared.  
Control Bus œ I2C Interface  
PCM6xx0-Q1  
U1  
PCM6xx0-Q1  
U2  
PCM6xx0-Q1  
U3  
PCM6xx0-Q1  
U4  
Host Processor  
Audio Data Bus œ TDM, I2S, LJ Interface  
36. Multiple PCM6xx0-Q1 Devices With Shared Control and Audio Data Buses  
The PCM6xx0-Q1 consist of the following features to enable seamless connection and interaction of multiple  
devices using a shared bus:  
Supports up to four pin-programmable I2C slave addresses  
I2C broadcast simultaneously writes to (or triggers) all PCM6xx0-Q1 devices  
Supports up to 64 configuration output channel slots for the audio serial interface  
Tri-state feature (with enable and disable) for the unused audio data slots of the device  
Supports a bus-holder feature (with enable and disable) to keep the last driven value on the audio bus  
The GPIOx pin can be configured as a secondary output data lane for the audio serial interface  
The GPIOx or GPIx pin can be used in a daisy-chain configuration of multiple PCM6xx0-Q1 devices  
Supports one BCLK cycle data latching timing to relax the timing requirement for the high-speed interface  
Programmable master and slave options for the audio serial interface  
版权 © 2020, Texas Instruments Incorporated  
33  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Ability to synchronize the multiple devices for the simultaneous sampling requirement across devices  
See the Multiple PCM6xx0-Q1 Devices With Shared TDM and I2C Bus application report for further details.  
8.3.2 Phase-Locked Loop (PLL) and Clock Generation  
The device has a smart auto-configuration block to generate all necessary internal clocks required for the ADC  
modulator and the digital filter engine used for signal processing. This configuration is done by monitoring the  
frequency of the FSYNC and BCLK signal on the audio bus.  
The device supports the various output data sample rates (of the FSYNC signal frequency) and the BCLK to  
FSYNC ratio to configure all clock dividers, including the PLL configuration, internally without host programming.  
6 and 7 list the supported FSYNC and BCLK frequencies.  
6. Supported FSYNC (Multiples or Submultiples of 48 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
RATIO  
FSYNC  
(8 kHz)  
FSYNC  
(16 kHz)  
FSYNC  
(24 kHz)  
FSYNC  
(32 kHz)  
FSYNC  
(48 kHz)  
FSYNC  
(96 kHz)  
FSYNC  
(192 kHz)  
FSYNC  
(384 kHz)  
FSYNC  
(768 kHz)  
16  
24  
Reserved  
Reserved  
0.256  
0.256  
0.384  
0.512  
0.768  
1.024  
1.536  
2.048  
3.072  
4.096  
6.144  
8.192  
16.384  
Reserved  
0.384  
0.576  
0.512  
0.768  
0.768  
1.152  
1.536  
2.304  
3.072  
4.608  
6.144  
12.288  
9.216  
18.432  
32  
0.768  
1.024  
1.536  
3.072  
6.144  
12.288  
24.576  
48  
0.384  
1.152  
1.536  
2.304  
4.608  
9.216  
18.432  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
64  
0.512  
1.536  
2.048  
3.072  
6.144  
12.288  
24.576  
96  
0.768  
2.304  
3.072  
4.608  
9.216  
18.432  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
128  
192  
256  
384  
512  
1024  
2048  
1.024  
3.072  
4.096  
6.144  
12.288  
18.432  
24.576  
Reserved  
Reserved  
Reserved  
Reserved  
24.576  
1.536  
4.608  
6.144  
9.216  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2.048  
6.144  
8.192  
12.288  
18.432  
24.576  
Reserved  
Reserved  
3.072  
9.216  
12.288  
16.384  
Reserved  
Reserved  
4.096  
12.288  
24.576  
Reserved  
8.192  
16.384  
7. Supported FSYNC (Multiples or Submultiples of 44.1 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
RATIO  
FSYNC  
(7.35 kHz)  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
(44.1 kHz)  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
(14.7 kHz) (22.05 kHz) (29.4 kHz)  
(88.2 kHz) (176.4 kHz) (352.8 kHz) (705.6 kHz)  
16  
24  
Reserved  
Reserved  
Reserved  
0.3528  
Reserved  
0.3528  
0.4704  
0.7056  
0.9408  
1.4112  
1.8816  
2.8224  
3.7632  
5.6448  
7.5264  
15.0528  
Reserved  
0.3528  
0.5292  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
22.5792  
Reserved  
0.4704  
0.7056  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
16.9344  
32  
0.9408  
1.4112  
2.8224  
5.6448  
11.2896  
22.5792  
48  
1.4112  
2.1168  
4.2336  
8.4672  
16.9344  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
64  
0.4704  
1.8816  
2.8224  
5.6448  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
22.5792  
96  
0.7056  
2.8224  
4.2336  
8.4672  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
128  
192  
256  
384  
512  
1024  
2048  
0.9408  
3.7632  
5.6448  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
1.4112  
5.6448  
8.4672  
1.8816  
7.5264  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
2.8224  
11.2896  
15.0528  
Reserved  
Reserved  
3.7632  
7.5264  
15.0528  
34  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
The status register ASI_STS, P0_R21, captures the device auto detect result for the FSYNC frequency and the  
BCLK to FSYNC ratio. If the device finds any unsupported combinations of FSYNC frequency and BCLK to  
FSYNC ratios, the device generates an ASI clock-error interrupt and mutes the record channels accordingly.  
The device uses an integrated, low-jitter, phase-locked loop (PLL) to generate internal clocks required for the  
ADC modulator and digital filter engine, as well as other control blocks. The device also supports an option to  
use BCLK, GPIOx, or the GPIx pin (as MCLK) as the audio clock source without using the PLL to reduce power  
consumption. However, the ADC performance may degrade based on jitter from the external clock source, and  
some processing features may not be supported if the external audio clock source frequency is not high enough.  
Therefore, TI recommends using the PLL for high-performance applications. More details and information on how  
to configure and use the device in low-power mode without using the PLL are discussed in the PCM6xx0-Q1  
Power Consumption Matrix Across Various Usage Scenario application report.  
The device also supports an audio bus master mode operation using the GPIOx or GPIx pin (as MCLK) as the  
reference input clock source and supports various flexible options and a wide variety of system clocks. More  
details and information on master mode configuration and operation are discussed in the Configuring and  
Operating the PCM6xx0-Q1 as an Audio Bus Master application report.  
The audio bus clock error detection and auto-detect feature automatically generates all internal clocks, but can  
be disabled using the ASI_ERR, P0_R9_D5 and AUTO_CLK_CFG, P0_R19_D6, register bits, respectively. In  
the system, this disable feature can be used to support custom clock frequencies that are not covered by the  
auto detect scheme. For such application use cases, care must be taken to ensure that the multiple clock  
dividers are all configured appropriately. Therefore, TI recommends using the PPC3 GUI for device configuration  
settings; for more details see the PCM6xx0-Q1 Evaluation module user's guide and the PurePath™ console  
graphical development suite.  
8.3.3 Input Channel Configuration  
The PCM6x60-Q1 consist of six pairs and the PCM6x40-Q1 consist of four pairs of analog input pins (INxP and  
INxM) that can be configured as either differential or single-ended inputs for the recording channel. These  
devices support simultaneous recording of up to six channels in the PCM6x60-Q1 and four channels in the  
PCM6x40-Q1 using the multichannel ADC. The input source for the analog pins can be either analog  
microphones or line, aux inputs from the system board. 8 describes how to set the input configuration for the  
record channel.  
8. Input Source Selection for the Record Channel  
P0_R60_D[6:5] :  
CH1_INSRC[1:0]  
INPUT CHANNEL 1 RECORD SOURCE SELECTION  
00 (default)  
01  
Analog differential input for channel 1  
Analog single-ended input for channel 1  
Reserved (do not use this setting)  
10 or 11  
Similarly, the input source selection setting for input channel 2 to channel 6 can be configured using the  
CH2_INSRC[1:0] (P0_R65_D[6:5]) to CH6_INSRC[1:0] (P0_R85_D[6:5]) registers bits, respectively.  
The device supports the input DC fault diagnostic feature for microphone recording with the DC-coupled inputs  
configuration; however, the device also supports an option for AC-coupled inputs if the DC diagnostic is not  
required for the specific input pins. This configuration can be done independently for each channel by setting the  
CH1_DC (P0_R60_D4) to CH6_DC (P0_R85_D4) register bits.  
For the DC-coupled line input configuration, the DC common-mode difference (INxP – INxM) for the analog input  
pins must be 0 V to support the 10-VRMS full-scale differential input. For the DC-coupled microphone input  
configuration, the DC common-mode difference (INxP – INxM) for the analog input pins must be within 3.4 V to  
5.0 V to support the 2-VRMS full-scale differential input in the default mode of operation. Alternatively, the device  
has a mode to support more than a 2-VRMS differential DC-coupled microphone signal by setting the  
CH1_MIC_IN_RANGE, P0_R60_D3, register bit for channel 1 and, similarly, the CH2_MIC_IN_RANGE,  
P0_R65_D3 to CH6_MIC_IN_RANGE, P0_R85_D3 registers bit (respectively) for channels 2 to 6. If the  
CH1_MIC_IN_RANGE bit is set high (the recommended setting to support a higher DC common-mode difference  
and a higher AC signal swing), then the device supports the maximum differential input voltage IN1P–IN1M as  
high as 8.4 V (for the MICBIAS 9-V setting), including the AC signal and DC differential common-mode voltage.  
The DC differential common-mode voltage is later filtered out by the digital high-pass filter and the digital output  
full-scale corresponds to the 10-VRMS AC signal in this case.  
版权 © 2020, Texas Instruments Incorporated  
35  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
37 and 38 show how to connect a DC-coupled microphone for a differential and single-ended input,  
respectively. The value of the external bias resistor, R1, must be appropriately chosen based upon the  
microphone impedance. For a differential input, the value of the external bias resistor is recommended to be  
used for half of the microphone impedance, whereas for a single-ended input, the external bias resistor is  
recommended to be the same as the microphone impedance.  
MICBIAS  
PCM6xx0-Q1  
GND  
DC-Coupled  
Microphone  
Differential Input  
INxP  
INxM  
GND  
37. DC-Coupled Microphone Differential Input Connection  
MICBIAS  
PCM6xx0-Q1  
GND  
DC-Coupled  
Microphone  
Single-ended Input  
INxP  
INxM  
GND  
38. DC-Coupled Microphone Single-Ended Input Connection  
In AC-coupled mode, the value of the coupling capacitor must be so chosen that the high-pass filter formed by  
the coupling capacitor and the input impedance do not affect the signal content. At power-up, before proper  
recording can begin, this coupling capacitor must be charged up to the common-mode voltage. For single-ended  
input configuration, the INxM pin must be grounded after the AC coupling capacitor in AC-coupled mode.  
36  
版权 © 2020, Texas Instruments Incorporated  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
39 and 40 show how to connect an AC-coupled microphone or line source for a differential and single-  
ended input, respectively. In AC-coupled mode, the device input pins INxP and INxM, must be biased  
appropriately for the DC common-mode value either using the on-chip MICBIAS output voltage along with  
external bias resistor, R0, or using an external bias generator circuit. The maximum value for resistor R0  
depends upon the signal swing and the MICBIAS value programmed. See the PCM6xx0-Q1 AC-Coupled  
External Resistor Calculator to calculate the R0 value for the desired system configuration.  
MICBIAS  
PCM6xx0-Q1  
GND  
C0 F  
INxP  
INxM  
AC-Coupled  
Microphone or Line  
Differential Input  
C0 F  
39. AC-Coupled Microphone or Line Differential Input Connection  
MICBIAS  
PCM6xx0-Q1  
GND  
C0 F  
INxP  
INxM  
AC-Coupled  
Microphone or Line  
Single-ended Input  
C0 F  
GND  
40. AC-Coupled Microphone or Line Single-Ended Input Connection  
8.3.4 Reference Voltage  
All audio data converters require a DC reference voltage. The PCM6xx0-Q1 family achieves its low-noise  
performance by internally generating a low-noise reference voltage. This reference voltage is generated using a  
band-gap circuit with a good PSRR performance. This audio converter reference voltage must be filtered  
externally using a minimum 1-µF capacitor connected from the VREF pin to the analog ground (AVSS).  
To achieve low power consumption, this audio reference block is powered down in sleep mode or software  
shutdown; see the Sleep Mode or Software Shutdown section for more details. When exiting sleep mode, the  
audio reference block is powered up using internal fast-charge scheme and the VREF pin settles to its steady-  
state voltage after the settling time (a function of the decoupling capacitor on the VREF pin). This time is  
approximately equal to 3.5 ms when using a 1-μF decoupling capacitor. If a higher value of the decoupling  
capacitor is used on the VREF pin, the fast-charge setting must be reconfigured using the VREF_QCHG,  
P0_R2_D[4:3] register bits, which support options of 3.5 ms (default), 10 ms, 50 ms, or 100 ms.  
版权 © 2020, Texas Instruments Incorporated  
37  
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.3.5 Microphone Bias  
The device integrates a built-in, low-noise, programmable, high-voltage, microphone bias pin (MICBIAS) that can  
be used in the system for biasing the analog microphone. The integrated bias amplifier supports up to 80 mA of  
load current, which can be used for multiple microphones and is designed to provide a combination of high  
PSRR, low noise, and programmable bias voltages to allow the biasing to be fine tuned for specific microphone  
combinations. The PCM62x0-Q1 have an integrated efficient boost converter to generate the high voltage supply  
for the programmable microphone bias using an external, low-voltage, 3.3-V BSTVDD supply. However, The  
PCM63x0-Q1 require an external high-voltage supply, HVDD, which requires at least 600 mV higher than the  
programmed microphone bias voltage and must be lower than 12 V.  
When using the MICBIAS pin for biasing multiple microphones, TI recommends avoiding common impedance on  
the board layout for the MICBIAS connection to minimize coupling across microphones. 9 shows the available  
microphone bias programmable options.  
9. MICBIAS Programmable Settings  
P0_R59_D[7:4] : MBIAS_VAL[3:0]  
MICBIAS OUTPUT VOLTAGE  
Reserved (do not use these settings)  
0000 to 0110  
0111  
Set to 5.0 V  
Set to 5.5 V  
Set to 6.0 V  
Set to 6.5 V  
Set to 7.0 V  
Set to 7.5 V  
Set to 8.0 V  
Set to 8.5 V  
Set to 9.0 V  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
The microphone bias output can be powered on or powered off (default) by configuring the MICBIAS_PDZ,  
P0_R117_D7 register bit. Additionally, the device provides an option to configure the GPIOx pins to directly  
control the microphone bias output power on or power off. This feature is useful in some systems to control the  
microphone directly without engaging the host for I2C or SPI communication. The MICBIAS_PDZ, P0_R117_D7  
register bit value is ignored if the GPIOx pins are configured to control the microphone bias power on or power  
off.  
8.3.6 Input DC Fault Diagnostics  
Each input of the PCM6xx0-Q1 features highly comprehensive DC fault diagnostics that can be configured to  
detect fault conditions in the DC-coupled input configuration and trigger an interrupt request to a host processor.  
Diagnostics are enabled for each channel by configuring DIAG_CFG0, P0_R100. For channels with diagnostics  
enabled, the input pins are scanned automatically by an integrated SAR ADC. The diagnostic processor  
averages eight consecutive samples per test to improve noise performance. The DC fault diagnostics is not  
supported in the AC-coupled input configuration.  
The device features various programmable threshold registers, P0_R101 to P0_R102, which can by configured  
by the host processor to define the fault region for a different category of fault condition detection. Additionally,  
there is also a debounce feature, configured with FAULT_DBNCE_SEL, P0_R103_D3-2. This feature sets the  
number of consecutive scan counts where the fault condition occurs before the latched status register is tripped,  
thus reducing false triggers by transient events. The device also has a moving average feature, P0_R104, which  
continuously averages out the newly measured data with old measured data and thus reduces the false triggers  
by any short-duration transient events.  
8.3.6.1 Fault Conditions  
8.3.6.1.1 Input Pin Short to Ground  
A short to ground fault occurs when the voltage of the input pin is measured below the threshold voltage with  
respect to ground (AVSS). The threshold can be set by configuring DIAG_SHT_GND, P0_R102_D7-4.  
38  
版权 © 2020, Texas Instruments Incorporated  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.3.6.1.2 Input Pin Short to MICBIAS  
A short to MICBIAS fault occurs when the difference between the voltage measured for the MICBIAS pin and the  
input pin (MICBIAS – INxx) is less than the threshold. The threshold can be set by configuring  
DIAG_SHT_MICBIAS, P0_R102_D3-0.  
8.3.6.1.3 Open Inputs  
In the event that a microphone becomes disconnected from the inputs, the microphone bias resistors pull INxP to  
MICBIAS and INxM to ground. The combination of INxP shorted to MICBIAS and INxM shorted to ground for the  
same channel in a diagnostic sweep results in an open input fault condition.  
8.3.6.1.4 Short Between INxP and INxM  
An input terminal shorted fault occurs when the difference between the voltage measured for the input pin INxP  
and the input pin INxM of the same channel is less than the threshold. The threshold can be set by configuring  
DIAG_SHT_TERM, P0_R101_D7-4.  
8.3.6.1.5 Input Pin Overvoltage  
An input terminal overvoltage fault occurs when the voltage measured for the input pin is above the voltage  
measured for the MICBIAS pin.  
8.3.6.1.6 Input Pin Short to VBAT_IN  
A short to VBAT_IN fault occurs when the difference between the voltage measured for the VBAT_IN pin and the  
input pin, ABS(VBAT_IN – INxx), is less than the threshold or both the VBAT_IN and INxx pin measured voltages  
are above 11.7 V. The threshold can be set by configuring DIAG_SHT_VBAT_IN, P0_R101_D3-0.  
When VBAT_IN is less than MICBIAS, false fault detections can exist based on the signal level of the INxx pin.  
To minimize false detections there is also a separate debounce count for this condition set by configuring  
VSHORT_DBNCE, P0_R106_D1.  
8.3.6.2 Fault Reporting  
Faults are reported in live and latched status registers. The live registers, P1_R45 to P1_R55, are updated  
continuously with each new scan and report the most recent measurements reported by the diagnostics  
processor. The latched status of each diagnostic fault is reported by the channel in P0_R46 to P0_R55, and a  
latched summary by the channel is reported in CHx_LTCH, P0_R45. The latched registers clear upon reading,  
and are latched if the associated bit in the live fault registers transitions from a ‘0’ to a ‘1’. A transition of any bit  
in the latched register from a ‘0’ to ‘1’ triggers an interrupt request.  
For detecting a persistent fault, an additional mode is available for the latched registers. In this mode, the latched  
registers are only cleared upon reading if the status bit in the associated live status register is ‘0’ at the time of  
reading. This mode is enabled by configuring LTCH_CLR_ON_READ, P0_R40_D0 to a ‘1’.  
8.3.6.2.1 Overcurrent and Overtemperature Protection  
The device has an overcurrent protection circuit that limits the current drawn out of the MICBIAS output to the  
maximum supported level when an external undesired short event occurs on the MICBIAS pin. The device sets  
the status flag, P0_R44_D4 bit, on an overcurrent detection. Additionally, the device has an overtemperature  
detection circuit that is enabled by default and sets the status flag, P0_R44_D5 bit, whenever the die junction  
temperature goes higher than the supported level.  
Additionally, register P0_R58 and P0_R40_D4:3 can be configured to shutdown MICBIAS along with the on-chip  
boost on an overtemperature detection. TI recommends configuring PD_ON_FLT_CFG, P0_R40_D4-3 to "10" so  
that on an overtemperature detection, the device powers-down MICBIAS, the on-chip boost, and all ADC  
channels.  
More details and information on fault diagnostics are discussed in the PCM6xx0-Q1 Fault Diagnostics, Interrupts,  
and Protection Features application report.  
版权 © 2020, Texas Instruments Incorporated  
39  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.3.7 Signal-Chain Processing  
The PCM6xx0-Q1 signal chain is comprised of very-low-noise, high-performance, and low-power analog blocks  
and highly flexible and programmable digital processing blocks. The high performance and flexibility combined  
with a compact package makes the PCM6xx0-Q1 optimized for a variety of end-equipment and applications that  
require multichannel audio capture. 41 shows a conceptual block diagram that highlights the various building  
blocks used in the signal chain, and how the blocks interact in the signal chain.  
PDMCLK  
PDM  
Interface  
PDMIN  
Digital Microphone  
M
U
X
Phase  
Calibration  
Decimation  
Filters  
INP  
INM  
PGA  
ADC  
Output  
Channel  
Data to ASI  
Gain  
Calibration  
Digital  
Summer/Mixer  
Biquad  
Filters  
Digital Volume  
Control (DVC)  
HPF  
Other Input Channels Processed Data  
after Gain Calibration  
41. Signal-Chain Processing Flowchart  
The front-end input attenuator allows the device to accept the high-voltage input signal that is attenuated by the  
input attenuator circuit before being routed to a low-noise programmable gain amplifier (PGA). Along with a low-  
noise and low-distortion, multibit, delta-sigma ADC, the front-end PGA enables the PCM6xx0-Q1 to record a far-  
field audio signal with very high fidelity, both in quiet and loud environments. Moreover, the ADC architecture has  
inherent antialias filtering with a high rejection of out-of-band frequency noise around multiple modulator  
frequency components. Therefore, the device prevents noise from aliasing into the audio band during ADC  
sampling. Further on in the signal chain, an integrated, high-performance multistage digital decimation filter  
sharply cuts off any out-of-band frequency noise with high stop-band attenuation.  
The device also has an integrated programmable biquad filter that allows for custom low-pass, high-pass, or any  
other desired frequency shaping. Thus, the overall signal chain architecture removes the requirement to add  
external components for antialiasing low-pass filtering, and thus saves drastically on the external system  
component cost and board space. See the PCM6xx0-Q1 Integrated Analog Antialiasing Filter and Flexible Digital  
Filter application report for further details.  
The signal chain also consists of various highly programmable digital processing blocks, such as phase  
calibration, gain calibration, high-pass filter, digital summer or mixer, biquad filters, and volume control. The  
details on these processing blocks are discussed further in this section.  
The desired input channels for recording can be enabled or disabled by using the IN_CH_EN (P0_R115)  
register, and the output channels for the audio serial interface can be enabled or disabled by using the  
ASI_OUT_EN (P0_R116) register. In general, the device supports simultaneous power-up and power-down of all  
active channels for simultaneous recording. However, based on the application needs, if some channels must be  
powered-up or powered-down dynamically when the other channel recording is on, then that use case is  
supported by setting the DYN_CH_PUPD_EN, P0_R117_D4 register bit to 1'b1 but do not power-down channel  
1 in this mode of operation.  
The device supports an input signal bandwidth up to 80 kHz, which allows the high-frequency non-audio signal to  
be recorded by using a 176.4-kHz (or higher) sample rate.  
For output sample rates of 48 kHz or lower, the device supports all features for 6-channel recording and various  
programmable processing blocks. However, for output sample rates higher than 48 kHz, there are limitations in  
the number of simultaneous channel recordings supported and the number of biquad filters and such. See the  
PCM6xx0-Q1 Sampling Rates and Programmable Processing Blocks Supported application report for further  
details.  
40  
版权 © 2020, Texas Instruments Incorporated  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.3.7.1 Programmable Channel Gain and Digital Volume Control  
The device has an independent programmable channel gain setting for each input channel that can be set to the  
appropriate value based on the maximum input signal expected in the system and the ADC VREF setting used  
(see the Reference Voltage section), which determines the ADC full-scale signal level.  
Configure the desired channel gain setting before powering up the ADC channel and do not change this setting  
while the ADC is powered on. The programmable range supported for each channel gain is from 0 dB to 42 dB in  
steps of 1 dB. To achieve low-noise performance, the device internal logic first maximizes the gain for the front-  
end low-noise analog PGA, and then applies any residual programmed channel gain in the digital processing  
block.  
10 shows the programmable options available for the channel gain.  
10. Channel Gain Programmable Settings  
P0_R61_D[7:2] : CH1_GAIN[5:0]  
00 0000 = 0d (default)  
00 0001 = 1d  
CHANNEL GAIN SETTING FOR INPUT CHANNEL 1  
Input channel 1 gain is set to 0 dB  
Input channel 1 gain is set to 1 dB  
Input channel 1 gain is set to 2 dB  
00 0010 = 2d  
10 1001 = 41d  
Input channel 1 gain is set to 41 dB  
Input channel 1 gain is set to 42 dB  
Reserved (do not use these settings)  
10 1010 = 42d  
10 1011 to 11 1111 = 43d to 63d  
Similarly, the channel gain setting for input channel 2 to channel 6 can be configured using the CH2_GAIN  
(P0_R66) to CH6_GAIN (P0_R86) register bits, respectively.  
The device also has a programmable digital volume control with a range from –100 dB to 27 dB in steps of  
0.5 dB with the option to mute the channel recording. The digital volume control value can be changed  
dynamically while the ADC channel is powered-up and recording. During volume control changes, the soft ramp-  
up or ramp-down volume feature is used internally to avoid any audible artifacts. Soft-stepping can be entirely  
disabled using the DISABLE_SOFT_STEP (P0_R108_D4) register bit.  
The digital volume control setting is independently available for each output channel, including the digital  
microphone record channel. However, the device also supports an option to gang-up the volume control setting  
for all channels together using the channel 1 digital volume control setting, regardless if channel 1 is powered up  
or powered down. This gang-up can be enabled using the DVOL_GANG (P0_R108_D7) register bit.  
11 shows the programmable options available for the digital volume control.  
11. Digital Volume Control (DVC) Programmable Settings  
P0_R62_D[7:0] : CH1_DVOL[7:0]  
0000 0000 = 0d  
0000 0001 = 1d  
0000 0010 = 2d  
0000 0011 = 3d  
DVC SETTING FOR OUTPUT CHANNEL 1  
Output channel 1 DVC is set to mute  
Output channel 1 DVC is set to –100 dB  
Output channel 1 DVC is set to –99.5 dB  
Output channel 1 DVC is set to –99 dB  
1100 1000 = 200d  
1100 1001 = 201d (default)  
1100 1010 = 202d  
Output channel 1 DVC is set to –0.5 dB  
Output channel 1 DVC is set to 0 dB  
Output channel 1 DVC is set to 0.5 dB  
1111 1101 = 253d  
1111 1110 = 254d  
1111 1111 = 255d  
Output channel 1 DVC is set to 26 dB  
Output channel 1 DVC is set to 26.5 dB  
Output channel 1 DVC is set to 27 dB  
版权 © 2020, Texas Instruments Incorporated  
41  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Similarly, the digital volume control setting for output channel 2 to channel 6 can be configured using the  
CH2_DVOL (P0_R67) to CH6_DVOL (P0_R87) register bits, respectively.  
The internal digital processing engine soft ramps up the volume from a muted level to the programmed volume  
level when the channel is powered up, and the internal digital processing engine soft ramps down the volume  
from a programmed volume to mute when the channel is powered down. This soft-stepping of volume is done to  
prevent abruptly powering up and powering down the record channel. This feature can also be entirely disabled  
using the DISABLE_SOFT_STEP (P0_R108_D4) register bit.  
8.3.7.2 Programmable Channel Gain Calibration  
Along with the programmable channel gain and digital volume, this device also provides programmable channel  
gain calibration. The gain of each channel can be finely calibrated or adjusted in steps of 0.1 dB for a range of  
–0.8-dB to 0.7-dB gain error. This adjustment is useful when trying to match the gain across channels resulting  
from external components and microphone sensitivity. This feature, in combination with the regular digital volume  
control, allows the gains across all channels to be matched for a wide gain error range with a resolution of  
0.1 dB. 12 shows the programmable options available for the channel gain calibration.  
12. Channel Gain Calibration Programmable Settings  
P0_R63_D[7:4] : CH1_GCAL[3:0]  
CHANNEL GAIN CALIBRATION SETTING FOR INPUT CHANNEL 1  
Input channel 1 gain calibration is set to –0.8 dB  
Input channel 1 gain calibration is set to –0.7 dB  
0000 = 0d  
0001 = 1d  
1000 = 8d (default)  
Input channel 1 gain calibration is set to 0 dB  
1110 = 14d  
1111 = 15d  
Input channel 1 gain calibration is set to 0.6 dB  
Input channel 1 gain calibration is set to 0.7 dB  
Similarly, the channel gain calibration setting for input channel 2 to channel 6 can be configured using the  
CH2_GCAL (P0_R68) to CH6_GCAL (P0_R88) register bits, respectively.  
8.3.7.3 Programmable Channel Phase Calibration  
In addition to the gain calibration, the phase delay in each channel can be finely calibrated or adjusted in steps of  
one modulator clock cycle for a cycle range of 0 to 255 for the phase error. The modulator clock, the same clock  
used for ADC_MOD_CLK, is 6.144 MHz (the output data sample rate is multiples or submultiples of 48 kHz) or  
5.6448 MHz (the output data sample rate is multiples or submultiples of 44.1 kHz). This feature is very useful for  
many applications that must match the phase with fine resolution between each channel, including any phase  
mismatch across channels resulting from external components or microphones. 13 shows the available  
programmable options for channel phase calibration.  
13. Channel Phase Calibration Programmable Settings  
P0_R64_D[7:0] : CH1_PCAL[7:0]  
0000 0000 = 0d (default)  
0000 0001 = 1d  
CHANNEL PHASE CALIBRATION SETTING FOR INPUT CHANNEL 1  
Input channel 1 phase calibration with no delay  
Input channel 1 phase calibration delay is set to one cycle of the modulator clock  
Input channel 1 phase calibration delay is set to two cycles of the modulator clock  
0000 0010 = 2d  
1111 1110 = 254d  
1111 1111 = 255d  
Input channel 1 phase calibration delay is set to 254 cycles of the modulator clock  
Input channel 1 phase calibration delay is set to 255 cycles of the modulator clock  
Similarly, the channel phase calibration setting for input channel 2 to channel 6 can be configured using the  
CH2_PCAL (P0_R69) to CH6_PCAL (P0_R89) register bits, respectively.  
42  
版权 © 2020, Texas Instruments Incorporated  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.3.7.4 Programmable Digital High-Pass Filter  
To remove the DC offset component and attenuate the undesired low-frequency noise content in the record data,  
the device supports a programmable high-pass filter (HPF). The HPF is not a channel-independent filter setting  
but is globally applicable for all ADC channels. This HPF is constructed using the first-order infinite impulse  
response (IIR) filter, and is efficient enough to filter out possible DC components of the signal. 14 shows the  
predefined –3-dB cutoff frequencies available that can be set by using the HPF_SEL[1:0] register bits of  
P0_R107. Additionally, to achieve a custom –3-dB cutoff frequency for a specific application, the device also  
allows the first-order IIR filter coefficients to be programmed when the HPF_SEL[1:0] register bits are set to  
2'b00. 42 shows a frequency response plot for the HPF filter.  
14. HPF Programmable Settings  
P0_R107_D[1:0] :  
HPF_SEL[1:0]  
-3-dB CUTOFF FREQUENCY  
SETTING  
-3-dB CUTOFF FREQUENCY AT  
16-kHz SAMPLE RATE  
-3-dB CUTOFF FREQUENCY AT  
48-kHz SAMPLE RATE  
00  
01 (default)  
10  
Programmable 1st-order IIR filter  
0.00025 × fS  
Programmable 1st-order IIR filter  
Programmable 1st-order IIR filter  
4 Hz  
32 Hz  
128 Hz  
12 Hz  
96 Hz  
0.002 × fS  
11  
0.008 × fS  
384 Hz  
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
-33  
-36  
-39  
-42  
-45  
5E-5  
HPF -3 dB Cutoff = 0.00025 ì fS  
HPF -3 dB Cutoff = 0.002 ì fS  
HPF -3 dB Cutoff = 0.008 ì fS  
0.0001  
0.0005  
0.001  
Normalized Frequency (1/fS)  
0.005  
0.01  
0.05  
D003  
42. HPF Filter Frequency Response Plot  
公式 1 gives the transfer function for the first-order programable IIR filter:  
00 + 01VF1  
231 F &1VF1  
: ;  
* V =  
(1)  
The frequency response for this first-order programmable IIR filter with default coefficients is flat at a gain of 0 dB  
(all-pass filter). The host device can override the frequency response by programming the IIR coefficients in 表  
15 to achieve the desired frequency response for high-pass filtering or any other desired filtering. If  
HPF_SEL[1:0] are set to 2'b00, the host device must write these coefficients values for the desired frequency  
response before powering-up any ADC channel for recording. These programmable coefficients are 32-bit, two’s  
complement numbers. 15 shows the filter coefficients for the first-order IIR filter.  
15. 1st-Order IIR Filter Coefficients  
FILTER  
COEFFICIENT  
DEFAULT COEFFICIENT  
VALUE  
COEFFICIENT REGISTER  
MAPPING  
FILTER  
N0  
N1  
D1  
0x7FFFFFFF  
0x00000000  
0x00000000  
P4_R72-R75  
P4_R76-R79  
P4_R80-R83  
Programmable 1st-order IIR filter (can be  
allocated to HPF or any other desired filter)  
版权 © 2020, Texas Instruments Incorporated  
43  
 
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.3.7.5 Programmable Digital Biquad Filters  
The device supports up to 12 programmable digital biquad filters. These highly efficient filters achieve the desired  
frequence response. In digital signal processing, a digital biquad filter is a second-order, recursive linear filter  
with two poles and two zeros. 公式 2 gives the transfer function of each biquad filter:  
00 + 201VF1 + 02VF2  
231 F 2&1VF1 F &2VF2  
: ;  
* V =  
(2)  
The frequency response for the biquad filter section with default coefficients is flat at a gain of 0 dB (all-pass  
filter). The host device can override the frequency response by programming the biquad coefficients to achieve  
the desired frequency response for a low-pass, high-pass, or any other desired frequency shaping. The  
programmable coefficients for the mixer operation are located in the Programmable Coefficient Registers: Page =  
0x02 and Programmable Coefficient Registers: Page = 0x03 sections. If biquad filtering is required, then the host  
device must write these coefficients values before powering up any ADC channels for recording. These  
programmable coefficients are 32-bit, two’s complement numbers. As described in 16, these biquad filters can  
be allocated for each output channel based on the BIQUAD_CFG[1:0] register setting of P0_R108. By setting  
BIQUAD_CFG[1:0] to 2'b00, the biquad filtering for all record channels is disabled and the host device can  
choose this setting if no additional filtering is required for the system application. See the PCM6xx0-Q1  
Programmable Biquad Filter Configuration and Applications application report for further details.  
16. Biquad Filter Allocation to the Record Output Channel  
RECORD OUTPUT CHANNEL ALLOCATION USING P0_R108_D[6:5] REGISTER SETTING  
BIQUAD_CFG[1:0] = 2'b01  
(1 Biquad per Channel)  
BIQUAD_CFG[1:0] = 2'b10 (Default)  
(2 Biquads per Channel)  
BIQUAD_CFG[1:0] = 2'b11  
(3 Biquads per Channel)  
PROGRAMMABLE  
BIQUAD FILTER  
SUPPORTS ALL 8 CHANNELS  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Not used  
SUPPORTS UP TO 6 CHANNELS  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 5  
Allocated to output channel 6  
Allocated to output channel 5  
Allocated to output channel 6  
SUPPORTS UP TO 4 CHANNELS  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Biquad filter 1  
Biquad filter 2  
Biquad filter 3  
Biquad filter 4  
Biquad filter 5  
Biquad filter 6  
Biquad filter 7  
Biquad filter 8  
Biquad filter 9  
Biquad filter 10  
Biquad filter 11  
Biquad filter 12  
Not used  
Not used  
Not used  
Allocated to output channel 5  
Allocated to output channel 6  
Not used  
Not used  
17 shows the biquad filter coefficients mapping to the register space.  
17. Biquad Filter Coefficients Register Mapping  
PROGRAMMABLE BIQUAD  
FILTER  
BIQUAD FILTER COEFFICIENTS  
REGISTER MAPPING  
PROGRAMMABLE BIQUAD  
FILTER  
BIQUAD FILTER COEFFICIENTS  
REGISTER MAPPING  
Biquad filter 1  
Biquad filter 2  
Biquad filter 3  
Biquad filter 4  
Biquad filter 5  
Biquad filter 6  
P2_R8-R27  
P2_R28-R47  
P2_R48-R67  
P2_R68-R87  
P2_R88-R107  
P2_R108-R127  
Biquad filter 7  
Biquad filter 8  
Biquad filter 9  
Biquad filter 10  
Biquad filter 11  
Biquad filter 12  
P3_R8-R27  
P3_R28-R47  
P3_R48-R67  
P3_R68-R87  
P3_R88-R107  
P3_R108-R127  
44  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.3.7.6 Programmable Channel Summer and Digital Mixer  
For applications that require an even higher SNR than that supported for each channel, the device digital  
summing mode can be used. In this mode, the digital record data are summed up across the channel with an  
equal weightage factor, which helps in reducing the effective record noise. 18 lists the configuration settings  
available for channel summing mode.  
18. Channel Summing Mode Programmable Settings  
SNR AND DYNAMIC RANGE  
P0_R107_D[3:2] : CH_SUM[2:0]  
CHANNEL SUMMING MODE FOR INPUT CHANNELS  
Channel summing mode is disabled  
BOOST  
00 (Default)  
Not applicable  
Output channel 1 = (input channel 1 + input channel 2) / 2  
Output channel 2 = (input channel 1 + input channel 2) / 2  
Output channel 3 = (input channel 3 + input channel 4) / 2  
Output channel 4 = (input channel 3 + input channel 4) / 2  
3-dB boost in SNR and dynamic  
range  
01  
3-dB boost in SNR and dynamic  
range  
Output channel 1 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Output channel 2 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
6-dB boost in SNR and dynamic  
range  
10  
11  
Output channel 3 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Output channel 4 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Reserved (do not use this setting)  
Not applicable  
The device additionally supports a fully programmable mixer feature that can mix the various input channels with  
their custom programmable scale factor to generate the final output channels. The programmable mixer feature  
is available only if CH_SUM[2:0] is set to 2'b00. The mixer function is only supported for input channel 1 to  
channel 4. 43 shows a block diagram that describes the mixer 1 operation to generate output channel 1. The  
programmable coefficients for the mixer operation are located in the Programmable Coefficient Registers: Page =  
0x04 section. All mixer coefficients are 32-bit, two’s complement numbers using a 1.31 number format. The value  
of 0x7FFFFFFF is equivalent to +1 (0-dB gain), the value 0x00000000 is equivalent to mute (zero data), and any  
values in between set the mixer attenuation computed using 公式 3. If the MSB is set to '1' then the attenuation  
remains the same but the signal phase is inverted. All IIR filter programmable coefficients are 32-bit, two’s  
complement numbers.  
hex2dec (value) / 231  
(3)  
Attenuated by  
MIX1_CH1  
factor  
Input Channel-1  
Processed Data  
Attenuated by  
MIX1_CH2  
factor  
Input Channel-2  
Processed Data  
Output Channel-1  
Routed to Bi-Quad  
Filter  
+
Attenuated by  
MIX1_CH3  
factor  
Input Channel-3  
Processed Data  
Attenuated by  
MIX1_CH4  
factor  
Input Channel-4  
Processed Data  
43. Programmable Digital Mixer Block Diagram  
A similar mixer operation is performed by mixer 2, mixer 3, and mixer 4 to generate output channel 2, channel 3,  
and channel 4, respectively.  
版权 © 2020, Texas Instruments Incorporated  
45  
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.3.7.7 Configurable Digital Decimation Filters  
The device record channel includes a high dynamic range, built-in digital decimation filter to process the  
oversampled data from the multibit delta-sigma (ΔΣ) modulator to generate digital data at the same Nyquist  
sampling rate as the FSYNC rate. As illustrated in 41, this decimation filter can also be used for processing  
the oversampled PDM stream from the digital microphone. The decimation filter can be chosen from three  
different types, depending on the required frequency response, group delay, and phase linearity requirements for  
the target application. The selection of the decimation filter option can be done by configuring the DECI_FILT,  
P0_R107_D[5:4] register bits. 19 shows the configuration register setting for the decimation filter mode  
selection for the record channel.  
19. Decimation Filter Mode Selection for the Record Channel  
P0_R107_D[5:4] : DECI_FILT[1:0]  
DECIMATION FILTER MODE SELECTION  
Linear phase filters are used for the decimation  
00 (default)  
01  
10  
11  
Low-latency filters are used for the decimation  
Ultra-low latency filters are used for the decimation  
Reserved (do not use this setting)  
8.3.7.7.1 Linear Phase Filters  
The linear phase decimation filters are the default filters set by the device and can be used for all applications  
that require a perfect linear phase with zero-phase deviation within the pass-band specification of the filter. The  
filter performance specifications and various plots for all supported output sampling rates are listed in this  
section.  
8.3.7.7.1.1 Sampling Rate: 8 kHz or 7.35 kHz  
44 and 45 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 8 kHz or 7.35 kHz. 20 lists the specifications for a decimation filter with an  
8-kHz or 7.35-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
44. Linear Phase Decimation Filter Magnitude Response  
45. Linear Phase Decimation Filter Pass-Band Ripple  
20. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
72.7  
81.2  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
17.1  
1/fS  
46  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.3.7.7.1.2 Sampling Rate: 16 kHz or 14.7 kHz  
46 and 47 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 16 kHz or 14.7 kHz. 21 lists the specifications for a decimation filter with an 16-kHz or 14.7-  
kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
46. Linear Phase Decimation Filter Magnitude Response  
47. Linear Phase Decimation Filter Pass-Band Ripple  
21. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.3  
95.0  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
15.7  
1/fS  
8.3.7.7.1.3 Sampling Rate: 24 kHz or 22.05 kHz  
48 and 49 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 24 kHz or 22.05 kHz. 22 lists the specifications for a decimation filter with an 24-kHz or  
22.05-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
48. Linear Phase Decimation Filter Magnitude Response  
49. Linear Phase Decimation Filter Pass-Band Ripple  
22. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.0  
96.4  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
16.6  
1/fS  
版权 © 2020, Texas Instruments Incorporated  
47  
 
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.3.7.7.1.4 Sampling Rate: 32 kHz or 29.4 kHz  
50 and 51 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 32 kHz or 29.4 kHz. 23 lists the specifications for a decimation filter with an 32-kHz or 29.4-  
kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
50. Linear Phase Decimation Filter Magnitude Response  
51. Linear Phase Decimation Filter Pass-Band Ripple  
23. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.7  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
107.2  
16.9  
1/fS  
8.3.7.7.1.5 Sampling Rate: 48 kHz or 44.1 kHz  
52 and 53 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 48 kHz or 44.1 kHz. 24 lists the specifications for a decimation filter with an 48-kHz or 44.1-  
kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
52. Linear Phase Decimation Filter Magnitude Response  
53. Linear Phase Decimation Filter Pass-Band Ripple  
24. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.8  
98.1  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
17.1  
1/fS  
48  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.3.7.7.1.6 Sampling Rate: 96 kHz or 88.2 kHz  
54 and 55 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 96 kHz or 88.2 kHz. 25 lists the specifications for a decimation filter with an 96-kHz or 88.2-  
kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
54. Linear Phase Decimation Filter Magnitude Response  
55. Linear Phase Decimation Filter Pass-Band Ripple  
25. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
–0.05  
73.6  
97.9  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
17.1  
1/fS  
8.3.7.7.1.7 Sampling Rate: 192 kHz or 176.4 kHz  
56 and 57 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 192 kHz or 176.4 kHz. 26 lists the specifications for a decimation filter with an 192-kHz or  
176.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
0.2  
Normalized Frequency (1/fS)  
0.25  
0.3  
0.35  
0.4  
D001  
D001  
56. Linear Phase Decimation Filter Magnitude Response  
57. Linear Phase Decimation Filter Pass-Band Ripple  
26. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.3 × fS  
Frequency range is 0.473 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.3 × fS  
–0.05  
70.0  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
111.0  
11.9  
1/fS  
版权 © 2020, Texas Instruments Incorporated  
49  
 
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.3.7.7.1.8 Sampling Rate: 384 kHz or 352.8 kHz  
58 and 59 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 384 kHz or 352.8 kHz. 27 lists the specifications for a decimation filter with an 384-kHz or  
352.8-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
Normalized Frequency (1/fS)  
0.2  
0.25  
0.3  
D001  
D001  
58. Linear Phase Decimation Filter Magnitude Response  
59. Linear Phase Decimation Filter Pass-Band Ripple  
27. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.212 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.212 × fS  
–0.05  
70.0  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
108.8  
7.2  
1/fS  
8.3.7.7.1.9 Sampling Rate: 768 kHz or 705.6 kHz  
60 and 61 respectively show the magnitude response and the pass-band ripple for a decimation filter with a  
sampling rate of 768 kHz or 705.6 kHz. 28 lists the specifications for a decimation filter with an 768-kHz or  
705.6-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
Normalized Frequency (1/fS)  
0.15  
0.2  
D001  
D001  
60. Linear Phase Decimation Filter Magnitude Response  
61. Linear Phase Decimation Filter Pass-Band Ripple  
28. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.113 × fS  
Frequency range is 0.58 × fS to 2 × fS  
Frequency range is 2 × fS onwards  
–0.05  
75.0  
88.0  
0.05  
dB  
Stop-band attenuation  
dB  
Group Delay or Latency Frequency range is 0 to 0.113 × fS  
5.9  
1/fS  
50  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.3.7.7.2 Low-Latency Filters  
For applications where low latency with minimal phase deviation (within the audio band) is critical, the low-  
latency decimation filters on the PCM6xx0-Q1 can be used. The device supports these filters with a group delay  
of approximately seven samples with an almost linear phase response within the 0.365 × fS frequency band. This  
section provides the filter performance specifications and various plots for all supported output sampling rates for  
the low-latency filters.  
8.3.7.7.2.1 Sampling Rate: 16 kHz or 14.7 kHz  
62 shows the magnitude response and 63 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 16 kHz or 14.7 kHz. 29 lists the specifications for a decimation filter  
with a 16-kHz or 14.7-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
63. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
62. Low-Latency Decimation Filter Magnitude Response  
29. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.451 × fS  
Frequency range is 0.61 × fS onwards  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
MIN  
–0.05  
87.3  
TYP  
MAX  
UNIT  
dB  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.6  
1/fS  
–0.022  
–0.21  
0.022  
0.25  
1/fS  
Degrees  
版权 © 2020, Texas Instruments Incorporated  
51  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.3.7.7.2.2 Sampling Rate: 24 kHz or 22.05 kHz  
64 shows the magnitude response and 65 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 24 kHz or 22.05 kHz. 30 lists the specifications for a decimation filter  
with a 24-kHz or 22.05-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
65. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
64. Low-Latency Decimation Filter Magnitude Response  
30. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
–0.01  
87.2  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.459 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.5  
1/fS  
–0.026  
–0.26  
0.026  
0.30  
1/fS  
Degrees  
8.3.7.7.2.3 Sampling Rate: 32 kHz or 29.4 kHz  
66 shows the magnitude response and 67 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 32 kHz or 29.4 kHz. 31 lists the specifications for a decimation filter  
with a 32-kHz or 29.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
67. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
66. Low-Latency Decimation Filter Magnitude Response  
52  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
31. Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
8.7  
1/fS  
–0.026  
–0.26  
0.026  
0.31  
1/fS  
Degrees  
8.3.7.7.2.4 Sampling Rate: 48 kHz or 44.1 kHz  
68 shows the magnitude response and 69 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 48 kHz or 44.1 kHz. 32 lists the specifications for a decimation filter  
with a 48-kHz or 44.1-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
69. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
68. Low-Latency Decimation Filter Magnitude Response  
32. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.452 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
–0.015  
86.4  
TYP  
MAX  
UNIT  
dB  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
–0.027  
–0.25  
0.027  
0.30  
1/fS  
Degrees  
版权 © 2020, Texas Instruments Incorporated  
53  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.3.7.7.2.5 Sampling Rate: 96 kHz or 88.2 kHz  
70 shows the magnitude response and 71 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 96 kHz or 88.2 kHz. 33 lists the specifications for a decimation filter  
with a 96-kHz or 88.2-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
71. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
70. Low-Latency Decimation Filter Magnitude Response  
33. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.466 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
–0.04  
86.3  
TYP  
MAX  
UNIT  
dB  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
–0.027  
–0.26  
0.027  
0.30  
1/fS  
Degrees  
8.3.7.7.2.6 Sampling Rate: 192 kHz or 176.4 kHz  
72 shows the magnitude response and 73 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 192 kHz or 176.4 kHz. 34 lists the specifications for a decimation filter  
with a 192-kHz or 176.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
73. Low-Latency Decimation Filter Pass-Band Ripple  
D002  
and Phase Deviation  
72. Low-Latency Decimation Filter Magnitude Response  
54  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
34. Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 463 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
–0.03  
85.6  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.03  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
–0.027  
–0.26  
0.027  
0.30  
1/fS  
Degrees  
8.3.7.7.3 Ultra-Low-Latency Filters  
For applications where ultra-low latency (within the audio band) is critical, the ultra-low-latency decimation filters  
on the PCM6xx0-Q1 can be used. The device supports these filters with a group delay of approximately four  
samples with an almost linear phase response within the 0.325 × fS frequency band. This section provides the  
filter performance specifications and various plots for all supported output sampling rates for the ultra-low-latency  
filters.  
8.3.7.7.3.1 Sampling Rate: 16 kHz or 14.7 kHz  
74 shows the magnitude response and 75 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 16 kHz or 14.7 kHz. 35 lists the specifications for a decimation filter  
with a 16-kHz or 14.7-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
75. Ultra-Low-Latency Decimation Filter Pass-Band  
74. Ultra-Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
35. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.45 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
MIN  
–0.05  
87.2  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
4.3  
1/fS  
–0.512  
–10.0  
0.512  
14.2  
1/fS  
Degrees  
版权 © 2020, Texas Instruments Incorporated  
55  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.3.7.7.3.2 Sampling Rate: 24 kHz or 22.05 kHz  
76 shows the magnitude response and 77 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 24 kHz or 22.05 kHz. 36 lists the specifications for a decimation filter  
with a 24-kHz or 22.05-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
77. Ultra-Low-Latency Decimation Filter Pass-Band  
76. Ultra-Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
36. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.46 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
MIN  
–0.01  
87.1  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
4.1  
1/fS  
–0.514  
–10.0  
0.514  
14.3  
1/fS  
Degrees  
8.3.7.7.3.3 Sampling Rate: 32 kHz or 29.4 kHz  
78 shows the magnitude response and 79 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 32 kHz or 29.4 kHz. 37 lists the specifications for a decimation filter  
with an 32-kHz or 29.4-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
79. Ultra-Low-Latency Decimation Filter Pass-Band  
78. Ultra-Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
56  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
37. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
5.2  
1/fS  
–0.492  
–9.5  
0.492  
13.5  
1/fS  
Degrees  
8.3.7.7.3.4 Sampling Rate: 48 kHz or 44.1 kHz  
80 shows the magnitude response and 81 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 48 kHz or 44.1 kHz. 38 lists the specifications for a decimation filter  
with a 48-kHz or 44.1-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
81. Ultra-Low-Latency Decimation Filter Pass-Band  
80. Ultra-Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
38. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.452 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
MIN  
–0.015  
86.4  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
4.1  
1/fS  
–0.525  
–10.3  
0.525  
14.5  
1/fS  
Degrees  
版权 © 2020, Texas Instruments Incorporated  
57  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.3.7.7.3.5 Sampling Rate: 96 kHz or 88.2 kHz  
82 shows the magnitude response and 83 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 96 kHz or 88.2 kHz. 39 lists the specifications for a decimation filter  
with a 96-kHz or 88.2-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
10  
0
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
3
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
-5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
83. Ultra-Low-Latency Decimation Filter Pass-Band  
82. Ultra-Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
39. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.04  
86.3  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
Frequency range is 0 to 0.466 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.1625 × fS  
Frequency range is 0 to 0.1625 × fS  
Frequency range is 0 to 0.1625 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
3.7  
1/fS  
–0.091  
–0.86  
0.091  
1.30  
1/fS  
Degrees  
8.3.7.7.3.6 Sampling Rate: 192 kHz or 176.4 kHz  
84 shows the magnitude response and 85 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 192 kHz or 176.4 kHz. 40 lists the specifications for a decimation filter  
with a 192-kHz or 176.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
10  
0
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
3
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
-5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
85. Ultra-Low-Latency Decimation Filter Pass-Band  
84. Ultra-Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
58  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
40. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.463 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.085 × fS  
Frequency range is 0 to 0.085 × fS  
Frequency range is 0 to 0.085 × fS  
MIN  
–0.03  
85.6  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.03  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
3.7  
1/fS  
–0.024  
–0.12  
0.024  
0.18  
1/fS  
Degrees  
8.3.7.7.3.7 Sampling Rate: 384 kHz or 352.8 kHz  
86 shows the magnitude response and 87 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 384 kHz or 352.8 kHz. 41 lists the specifications for a decimation filter  
with a 384-kHz or 352.8-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2
10  
0
1.6  
1.2  
0.8  
0.4  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.4  
-0.8  
-1.2  
-1.6  
-2  
Pass-Band Ripple  
Phase Deviation  
0
0.05  
0.1 0.15  
Normalized Frequency (1/fS)  
0.2  
0.25  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
87. Ultra-Low-Latency Decimation Filter Pass-Band  
D002  
Ripple and Phase Deviation  
86. Ultra-Low-Latency Decimation Filter Magnitude  
Response  
41. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.1 × fS  
Frequency range is 0.56 × fS onwards  
Frequency range is 0 to 0.157 × fS  
Frequency range is 0 to 0.157 × fS  
Frequency range is 0 to 0.157 × fS  
MIN  
–0.04  
70.1  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
4.1  
1/fS  
–0.18  
–0.85  
0.18  
2.07  
1/fS  
Degrees  
版权 © 2020, Texas Instruments Incorporated  
59  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.3.8 Automatic Gain Controller (AGC)  
The device includes an automatic gain controller (AGC) for ADC recording that must be used only for the AC-  
coupled input configuration. As shown in 88, the AGC can be used to maintain a nominally constant output  
level when recording speech. Instead of manually setting the channel gain in AGC mode, the circuitry  
automatically adjusts the channel gain when the input signal becomes overly loud or very weak, such as when a  
person speaking into a microphone moves closer to or farther from the microphone. The AGC algorithm has  
several programmable parameters, including target level, maximum gain allowed, attack and release (or decay)  
time constants, and noise thresholds that allow the algorithm to be fine-tuned for any particular application.  
Input  
Signal  
Output  
Signal  
Target  
Level  
AGC  
Gain  
Decay Time  
Attack  
Time  
88. AGC Characteristics  
The target level (AGC_LVL) represents the nominal output level at which the AGC attempts to hold the ADC  
output signal level. The PCM6xx0-Q1 allows programming of different target levels, which can be programmed  
from –6 dB to –36 dB relative to a full-scale signal, and the AGC_LVL default value is set to –34 dB. The target  
level is recommended to be set with enough margin to prevent clipping when loud sounds occur. 42 lists the  
AGC target level configuration settings.  
42. AGC Target Level Programmable Settings  
P0_R112_D[7:4] : AGC_LVL[3:0]  
AGC TARGET LEVEL FOR OUTPUT  
The AGC target level is the –6-dB output signal level  
0000  
0001  
The AGC target level is the –8-dB output signal level  
The AGC target level is the –10-dB output signal level  
0010  
1110 (default)  
1111  
The AGC target level is the –34-dB output signal level  
The AGC target level is the –36-dB output signal level  
60  
版权 © 2020, Texas Instruments Incorporated  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
The maximum gain allowed (AGC_MAXGAIN) gives flexibility to the designer to restrict the maximum gain  
applied by the AGC. This feature limits the channel gain in situations where environmental noise is greater than  
the programmed noise threshold. The AGC_MAXGAIN can be programmed from 3 dB to 42 dB with steps of 3  
dB and the default value is set to 24 dB. 43 lists the AGC_MAXGAIN configuration settings.  
43. AGC Maximum Gain Programmable Settings  
P0_R112_D[3:0] : AGC_MAXGAIN[3:0]  
AGC MAXIMUM GAIN ALLOWED  
The AGC maximum gain allowed is 3 dB  
0000  
0001  
The AGC maximum gain allowed is 6 dB  
The AGC maximum gain allowed is 9 dB  
0010  
0111 (default)  
The AGC maximum gain allowed is 24 dB  
1110  
The AGC maximum gain allowed is 39 dB  
The AGC maximum gain allowed is 42 dB  
1111  
For further details on the AGC various configurable parameter and application use, see the Using the Automatic  
Gain Controller (AGC) in PCM6xx0-Q1 application report.  
8.3.9 Interrupts, Status, and Digital I/O Pin Multiplexing  
Certain events in the device may require host processor intervention and can be used to trigger interrupts to the  
host processor. Such event are an audio serial interface (ASI) bus error and input DC fault diagnostic faults. The  
device powers down the record channels if any faults are detected with the ASI bus error clocks, such as:  
Invalid FSYNC frequency  
Invalid SBCLK to FSYNC ratio  
Long pauses of the SBCLK or FSYNC clocks  
When an ASI bus clock error is detected, the device shuts down the record channel as quickly as possible. After  
all ASI bus clock errors are resolved, the device volume ramps back to its previous state to recover the record  
channel. During an ASI bus clock error, the internal interrupt request (IRQ) interrupt signal asserts low if the  
clock error interrupt mask register bit INT_MASK0[7], P0_R51_D7 is set low. The clock fault is also available for  
readback in the live fault status register bit INT_LIVE0, P1_R44 as well as latched to the fault status register bit  
INT_LTCH0, P0_R44, which is a read-only register. Reading the latched fault status register, INT_LTCH0, clears  
all latched fault statuses. The device can be additionally configured to route the internal IRQ interrupt signal on  
the GPIOx pins and also can be configured as an open-drain output so that these pins can be wire-ANDed to the  
open-drain interrupt outputs of other devices.  
When an input DC fault event is detected, the internal IRQ signal is asserted if the interrupt mask registers  
INT_MASK1, P0_R42 and INT_MASK2, P0_R43 are configured appropriately to unmask all the desired fault  
diagnostics interrupts. Each input channel can be independently set for an interrupt mask. 44 and 45 list  
the mask settings available for the input DC diagnostics fault interrupts.  
44. Interrupt Mask Register-1 for DC Faults Diagnostic  
P0_R42 : INT_MASK1  
INT_MASK1[7]  
INT_MASK1[6]  
INT_MASK1[5]  
INT_MASK1[4]  
INT_MASK1[3]  
INT_MASK1[2]  
INTERRUPT MASK REGISTER 1 FOR DC FAULTS DIAGNOSTIC INTERRUPTS  
Channel 1 input DC faults diagnostic interrupt mask and unmask register bit  
Channel 2 input DC faults diagnostic interrupt mask and unmask register bit  
Channel 3 input DC faults diagnostic interrupt mask and unmask register bit  
Channel 4 input DC faults diagnostic interrupt mask and unmask register bit  
Channel 5 input DC faults diagnostic interrupt mask and unmask register bit  
Channel 6 input DC faults diagnostic interrupt mask and unmask register bit  
Short to VBAT_IN (when VBAT_IN is lower than MICBIAS) fault interrupt mask and unmask register  
bit  
INT_MASK1[1]  
INT_MASK1[0]  
Reserved  
版权 © 2020, Texas Instruments Incorporated  
61  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
45. Interrupt Mask Register-2 for DC Faults Diagnostic  
P0_R43 : INT_MASK2  
INT_MASK2[7]  
INT_MASK2[6]  
INT_MASK2[5]  
INT_MASK2[4]  
INT_MASK2[3]  
INT_MASK2[2]  
INT_MASK2[1]  
INT_MASK2[0]  
INTERRUPT MASK REGISTER 2 FOR DC FAULTS DIAGNOSTIC INTERRUPTS  
Open input fault interrupt mask and unmask register bit for all channels  
Inputs shorted each other fault interrupt mask and unmask register bit for all channels  
IN1P input shorted to ground fault interrupt mask and unmask register bit for all channels  
IN1M input shorted to ground fault interrupt mask and unmask register bit for all channels  
IN1P input shorted to MICBIAS fault interrupt mask and unmask register bit for all channels  
IN1M input shorted to MICBIAS fault interrupt mask and unmask register bit for all channels  
IN1P input shorted to VBAT_IN fault interrupt mask and unmask register bit for all channels  
IN1M input shorted to VBAT_IN fault interrupt mask and unmask register bit for all channels  
The device supports the channel-specific input DC fault latched status registers for all channels from CH1_LTCH,  
P0_R46 to CH6_LTCH, P0_R51, which are read-only registers. The device also has a consolidated summary  
status register across channels for the input DC latched fault status register, CHx_LTCH, P0_R45 that the host  
can read to quickly know which channel fault has occurred. Reading the latched fault status registers,  
CH1_LTCH to CH6_LTCH, clears all the latched fault status including the summary status register, CHx_LTCH.  
46 shows various input DC fault diagnostics status bits that are supported by the device.  
46. Input DC Faults Diagnostic Latched Status  
P0_R46 : CH1_LTCH  
CH1_LTCH[7]  
CH1_LTCH[6]  
CH1_LTCH[5]  
CH1_LTCH[4]  
CH1_LTCH[3]  
CH1_LTCH[2]  
CH1_LTCH[1]  
CH1_LTCH[0]  
CHANNEL 1 INPUT FAULTS DIAGNOSTIC LATCHED STATUS  
Channel 1 open input fault detection status bit (self-clearing bit)  
Channel 1 inputs shorted together fault detection status bit (self-clearing bit)  
Channel 1 IN1P input shorted to ground fault detection status bit (self-clearing bit)  
Channel 1 IN1M input shorted to ground fault detection status bit (self-clearing bit)  
Channel 1 IN1P input shorted to MICBIAS fault detection status bit (self-clearing bit)  
Channel 1 IN1M input shorted to MICBIAS fault detection status bit (self-clearing bit)  
Channel 1 IN1P input shorted to VBAT_IN fault detection status bit (self-clearing bit)  
Channel 1 IN1M input shorted to VBAT_IN fault detection status bit (self-clearing bit)  
Similarly, the DC faults diagnostic latched status for input channel 2 to channel 6 can be monitored using the  
CH2_LTCH (P0_R47) to CH6_LTCH (P0_R51) registers, respectively.  
The device GPIOx pins can be additionally configured to route the internal IRQ interrupt signal on the GPIOx  
pins and also can be configured as an open-drain output so that this pin can be wire-ANDed to the open-drain  
interrupt outputs of other devices.  
The IRQ interrupt signal can either be configured as an active low or active high polarity by setting the INT_POL,  
P0_R40_D7 register bit. This signal can also be configured as a single pulse or a series of pulses by  
programming the INT_EVENT[1:0], P0_R40_D[6:5] register bits. If the interrupts are configured as a series of  
pulses, the events trigger the start of pulses that stop when the latched fault status register is read to determine  
the cause of the interrupt.  
The device also supports read-only live status registers that determine if all the channels are powered up or  
down and if the device is in sleep mode or not. These status registers are located in P0_R118, DEV_STS0 and  
P0_R119, DEV_STS1.  
62  
版权 © 2020, Texas Instruments Incorporated  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
The device has a GPIO1 multifunction pin that can be configured for a desired specific function. Additionally the  
PCM6x40-Q1 has two more GPIO pins and two GPI pins supported that can be used in the system for various  
other features. 47 shows all possible allocation of these multifunction pins for all the various features.  
47. Multifunction Pin Assignments  
ROW  
PIN FUNCTION  
GPIO1  
GPIO2  
GPIO3  
GPI1  
GPI2  
GPIO1_CFG  
[4:0]  
GPIO2_CFG  
[4:0]  
GPIO3_CFG  
[4:0]  
GPI1_CFG[4:0] GPI2_CFG[4:0]  
A
B
C
D
F
P0_R33[7:4]  
P0_R34[7:4]  
P0_R35[7:4]  
P0_R36[7:4]  
P0_R37[7:4]  
Pin disabled  
S(1)  
S (default)  
S (default)  
S (default)  
S (default)  
General-purpose output (GPO)  
Interrupt output (IRQ)  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
NS(2)  
NS  
NS  
S
NS  
NS  
NS  
S
S (default)  
Secondary ASI output (SDOUT2)  
MiCBIAS on/off input (BIASEN)  
General-purpose input (GPI)  
Master clock input (MCLK)  
ASI daisy-chain input (SDIN)  
S
S
S
S
S
G
H
I
S
S
S
S
S
S
(1) S means the feature mentioned in this row is supported for the respective GPIO1, GPOx, or GPIx pin mentioned in this column.  
(2) NS means the feature mentioned in this row is not supported for the respective GPIO1, GPOx, or GPIx pin mentioned in this column.  
Each GPIOx pin can be independently set for the desired drive configurations setting using the GPIOx_DRV[3:0]  
register bits. 48 lists the drive configuration settings.  
48. GPIOx Pins Drive Configuration Settings  
P0_R33_D[3:0] : GPIO1_DRV[3:0]  
GPIO OUTPUT DRIVE CONFIGURATION SETTINGS FOR GPIO1  
The GPIO1 pin is set to high impedance (floated)  
000  
001  
The GPIO1 pin is set to be driven active low or active high  
The GPIO1 pin is set to be driven active low or weak high (on-chip pullup)  
The GPIO1 pin is set to be driven active low or Hi-Z (floated)  
The GPIO1 pin is set to be driven weak low (on-chip pulldown) or active high  
The GPIO1 pin is set to be driven Hi-Z (floated) or active high  
Reserved (do not use these settings)  
010 (default)  
011  
100  
101  
110 and 111  
Similarly, the GPIO2 and GPIO3 pins can be configured using the GPIO2_DRV(P0_R34) and  
GPIO3_DRV(P0_R35) register bits, respectively.  
When configured as a general-purpose output (GPO), the GPIOx pin values can be driven by writing the  
GPIO_VAL P0_R38 registers. The GPIO_MON, P0_R39 register can be used to readback the status of the  
GPIOx and GPIx pins when configured as a general-purpose input (GPI).  
版权 © 2020, Texas Instruments Incorporated  
63  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Hardware Shutdown  
The device enters hardware shutdown mode when the SHDNZ pin is asserted low or the AVDD supply voltage is  
not applied to the device. In hardware shutdown mode, the device consumes the minimum quiescent current  
from the AVDD supply. All configuration registers and programmable coefficients lose their value in this mode,  
and I2C or SPI communication to the device is not supported.  
If the SHDNZ pin is asserted low when the device is in active mode, the device ramps down volume on the  
record data, powers down the analog and digital blocks, and puts the device into hardware shutdown mode in 25  
ms (typical). The device can also be immediately put into hardware shutdown mode from active mode if the  
SHDNZ_CFG[1:0], P0_R5_D[3:2], register bits are set to 2'b00. After the SHDNZ pin is asserted low, and after  
the device enters hardware shutdown mode, keep the SHDNZ pin low for at least 1 ms before releasing SHDNZ  
for further device operation.  
Assert the SHDNZ pin high only when the IOVDD supply settles to a steady voltage level. When the SHDNZ pin  
goes high, the device sets all configuration registers and programmable coefficients to their default values, and  
then enters sleep mode.  
8.4.2 Sleep Mode or Software Shutdown  
In sleep mode or software shutdown mode, the device consumes very low quiescent current from the AVDD  
supply and, at the same time, allows the I2C or SPI communication to wake the device for active operation.  
The device can also enter sleep mode when the host device sets the SLEEP_ENZ, P0_R2_D0 bit to 1'b0. If the  
SLEEP_ENZ bit is asserted low when the device is in active mode, the device ramps down the volume on the  
record data, powers down the analog and digital blocks, and enters sleep mode. However, the device still  
continues to retain the last programmed value of the device configuration registers and programmable  
coefficients.  
In sleep mode, do not perform any I2C or SPI transactions, except for exiting sleep mode in order to enter active  
mode. After entering sleep mode, wait at least 10 ms before starting I2C or SPI transactions to exit sleep mode.  
8.4.3 Active Mode  
If the host device exits sleep mode by setting the SLEEP_ENZ bit to 1'b1, the device enters active mode. In  
active mode, I2C or SPI transactions can be done to configure and power-up the device for active operation.  
After entering active mode, wait at least 1 ms before starting any I2C or SPI transactions in order to allow the  
device to complete the internal wake-up sequence.  
After configuring all other registers for the target application and system settings, configure the input and output  
channel enable registers, P0_R115 (IN_CH_EN) and P0_R116 (ASI_OUT_CH_EN), respectively. Lastly,  
configure the device power-up register, P0_R117 (PWR_CFG). All the programmable coefficient values must be  
written before powering up the respective channel.  
In active mode, the power-up and power-down status of various blocks is monitored by reading the read-only  
device status bits located in the P0_R117 (DEV_STS0) and P0_R118 (DEV_STS1) registers.  
8.4.4 Software Reset  
A software reset can be done any time by asserting the SW_RESET bit, P0_R1_D0, which is a self-clearing bit.  
This software reset immediately shuts down the device, and restores all device configuration registers and  
programmable coefficients to their default values.  
64  
版权 © 2020, Texas Instruments Incorporated  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.5 Programming  
The device contains configuration registers and programmable coefficients that can be set to the desired values  
for a specific system and application use. These registers are called device control registers and are each eight  
bits in width, mapped using a page scheme.  
Each page contains 128 configuration registers. All device configuration registers are stored in page 0, which is  
the default page setting at power up (and after a software reset). Page 1 consists of the live status registers and  
input diagnostic successive-approximation register (SAR) data for advanced diagnostic purposes. All  
programmable coefficient registers are located in page 2, page 3, and page 4. The current page of the device  
can be switched to a new desired page by using the PAGE[7:0] bits located in register 0 of every page.  
8.5.1 Control Serial Interfaces  
The device control registers can be accessed using either I2C or SPI communication to the device.  
By monitoring the SDA_SSZ, SCL_MOSI, ADDR0_SCLK, and ADDR1_MISO device pins, which are the  
multiplexed pins for the I2C or SPI Interface, the device automatically detects whether the host device is using  
I2C or SPI communication to configure the device. For a given end application, the host device must always use  
either the I2C or SPI interface, but not both, to configure the device.  
8.5.1.1 I2C Control Interface  
The device supports the I2C control protocol as a slave device, and is capable of operating in standard mode,  
fast mode, and fast mode plus. The I2C control protocol requires a 7-bit slave address. The five most significant  
bits (MSBs) of the slave address are fixed at 10010 and cannot be changed. The two least significant bits (LSBs)  
are programmable and are controlled by the ADDR0_SCLK and ADDR1_MISO pins. These two pins must  
always be either pulled to VSS or IOVDD. If the I2C_BRDCAST_EN (P0_R2_D2) bit is set to 1'b1, then the I2C  
slave address is fixed to 1001000 in order to allow simultaneous I2C broadcast communication to all PCM6xx0-  
Q1 devices in the system. 49 lists the four possible device addresses resulting from this configuration.  
49. I2C Slave Address Settings  
ADDR1_MISO  
ADDR0_SCLK  
I2C_BRDCAST_EN (P0_R2_D2)  
I2C SLAVE ADDRESS  
1001 000  
0
0
1
1
X
0
1
0
1
X
0 (default)  
0 (default)  
0 (default)  
0 (default)  
1
1001 001  
1001 010  
1001 011  
1001 000  
8.5.1.1.1 General I2C Operation  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between the integrated circuits in  
a system using serial data transmission. The address and data 8-bit bytes are transferred MSB first. In addition,  
each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer  
operation begins with the master device driving a START condition on the bus and ends with the master device  
driving a STOP condition on the bus. The bus uses transitions on the data pin (SDA) when the clock is at logic  
high to indicate START and STOP conditions. A high-to-low transition on SDA indicates a START, and a low-to-  
high transition indicates a STOP condition. Normal data-bit transitions must occur within the low time of the clock  
period.  
The master device drives a START condition followed by the 7-bit slave address and the read/write (R/W) bit to  
open communication with another device and then waits for an acknowledgment condition. The slave device  
holds SDA low during the acknowledge clock period to indicate acknowledgment. When this step occurs, the  
master device transmits the next byte of the sequence. Each slave device is addressed by a unique 7-bit slave  
address plus the R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a  
wired-AND connection.  
版权 © 2020, Texas Instruments Incorporated  
65  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
There is no limit on the number of bytes that can be transmitted between START and STOP conditions. When  
the last word transfers, the master device generates a STOP condition to release the bus. 89 shows a generic  
data transfer sequence.  
8- Bit Data for  
Register (N)  
8- Bit Data for  
Register (N+1)  
89. Typical I2C Sequence  
In the system, use external pullup resistors for the SDA and SCL signals to set the logic high level for the bus.  
The SDA and SCL voltages must not exceed the device supply voltage, IOVDD.  
8.5.1.1.2 I2C Single-Byte and Multiple-Byte Transfers  
The device I2C interface supports both single-byte and multiple-byte read/write operations for all registers. During  
multiple-byte read operations, the device responds with data, a byte at a time, starting at the register assigned,  
as long as the master device continues to respond with acknowledges.  
The device supports sequential I2C addressing. For write transactions, if a register is issued followed by data for  
that register and all the remaining registers that follow, a sequential I2C write transaction takes place. For I2C  
sequential write transactions, the register issued then serves as the starting point, and the amount of data  
subsequently transmitted, before a STOP or START condition is transmitted, determines how many registers are  
written.  
8.5.1.1.2.1 I2C Single-Byte Write  
As shown in 90, a single-byte data write transfer begins with the master device transmitting a START  
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of  
the data transfer. For a write-data transfer, the read/write bit must be set to 0. After receiving the correct I2C  
slave address and the read/write bit, the device responds with an acknowledge bit (ACK). Next, the master  
device transmits the register byte corresponding to the device internal register address being accessed. After  
receiving the register byte, the device again responds with an acknowledge bit (ACK). Then, the master transmits  
the byte of data to be written to the specified register. When finished, the slave device responds with an  
acknowledge bit (ACK). Finally, the master device transmits a STOP condition to complete the single-byte data  
write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
A6 A5 A4  
A3 A2 A1 A0  
Stop  
2
I C Device Address and  
Read/Write Bit  
Register  
Data Byte  
Condition  
90. I2C Single-Byte Write Transfer  
66  
版权 © 2020, Texas Instruments Incorporated  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.5.1.1.2.2 I2C Multiple-Byte Write  
As shown in 91, a multiple-byte data write transfer is identical to a single-byte data write transfer except that  
multiple data bytes are transmitted by the master device to the slave device. After receiving each data byte, the  
device responds with an acknowledge bit (ACK). Finally, the master device transmits a STOP condition after the  
last data-byte write transfer.  
Register  
91. I2C Multiple-Byte Write Transfer  
8.5.1.1.2.3 I2C Single-Byte Read  
As shown in 92, a single-byte data read transfer begins with the master device transmitting a START  
condition followed by the I2C slave address and the read/write bit. For the data read transfer, both a write  
followed by a read are done. Initially, a write is done to transfer the address byte of the internal register address  
to be read. As a result, the read/write bit is set to 0.  
After receiving the slave address and the read/write bit, the device responds with an acknowledge bit (ACK). The  
master device then sends the internal register address byte, after which the device issues an acknowledge bit  
(ACK). The master device transmits another START condition followed by the slave address and the read/write  
bit again. This time, the read/write bit is set to 1, indicating a read transfer. Next, the device transmits the data  
byte from the register address being read. After receiving the data byte, the master device transmits a not-  
acknowledge (NACK) followed by a STOP condition to complete the single-byte data read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
2
2
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
Register  
I C Device Address and  
Read/Write Bit  
Data Byte  
92. I2C Single-Byte Read Transfer  
8.5.1.1.2.4 I2C Multiple-Byte Read  
As shown in 93, a multiple-byte data read transfer is identical to a single-byte data read transfer except that  
multiple data bytes are transmitted by the device to the master device. With the exception of the last data byte,  
the master device responds with an acknowledge bit after receiving each data byte. After receiving the last data  
byte, the master device transmits a not-acknowledge (NACK) followed by a STOP condition to complete the data  
read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
2
2
Register  
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
I C Device Address and  
Read/Write Bit  
First Data Byte  
Other Data Bytes  
Last Data Byte  
93. I2C Multiple-Byte Read Transfer  
版权 © 2020, Texas Instruments Incorporated  
67  
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.5.1.2 SPI Control Interface  
The general SPI protocol allows full-duplex, synchronous, serial communication between a host processor (the  
master) and peripheral devices (slaves). The SPI master (in this case, the host processor) generates the  
synchronizing clock (driven onto SCLK) and initiates transmissions by taking the slave-select pin SSZ from high  
to low. The SPI slave devices (such as the PCM6xx0-Q1) depend on a master to start and synchronize  
transmissions. A transmission begins when initiated by an SPI master. The byte from the SPI master begins  
shifting in on the slave MOSI pin under the control of the master serial clock (driven onto SCLK). When the byte  
shifts in on the MOSI pin, a byte shifts out on the MISO pin to the master shift register.  
The PCM6xx0-Q1 support a standard SPI control protocol with a clock polarity setting of 0 (typical  
microprocessor SPI control bit CPOL = 0) and a clock phase setting of 1 (typical microprocessor SPI control bit  
CPHA = 1). The SSZ pin can remain low between transmissions; however, the device only interprets the first  
eight bits transmitted after the falling edge of SSZ as a command byte, and the next eight bits as a data byte only  
if writing to a register. The device is entirely controlled by registers. Reading and writing these registers is  
accomplished by an 8-bit command sent to the MOSI pin prior to the data for that register. 50 shows the  
command structure. The first seven bits specify the address of the register that is being written or read, from 0 to  
127 (decimal). The command word ends with an R/W bit, which specifies the direction of data flow on the serial  
bus.  
In the case of a register write, set the R/W bit to 0. A second byte of data is sent to the MOSI pin and contains  
the data to be written to the register. A register read is accomplished in a similar fashion. The 8-bit command  
word sends the 7-bit register address, followed by the R/W bit equal to 1 to signify a register read. The 8-bit  
register data is then clocked out of the device on the MISO pin during the second eight SCLK clocks in the  
frame. The device supports sequential SPI addressing for a multiple-byte data write/read transfer until the SSZ  
pin is pulled high. A multiple-byte data write or read transfer is identical to a single-byte data write or read  
transfer, respectively, until all data byte transfers complete. The host device must keep the SSZ pin low during all  
data byte transfers. 94 shows the single-byte write transfer and 95 illustrates the single-byte read transfer.  
50. SPI Command Word  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ADDR(6)  
ADDR(5)  
ADDR(4)  
ADDR(3)  
ADDR(2)  
ADDR(1)  
ADDR(0)  
R/WZ  
SS  
SCLK  
MOSI  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
D(7)  
D(6)  
D(0)  
7-bit Register Address  
Write  
8-bit Register Data  
Hi-Z  
Hi-Z  
MISO  
94. SPI Single-Byte Write Transfer  
SS  
SCLK  
MOSI  
Hi-Z  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
Don’t Care  
7-bit Register Address  
Read  
8-bit Register Data  
Hi-Z  
MISO  
D(7)  
D(6)  
D(0)  
95. SPI Single-Byte Read Transfer  
68  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.6 Register Maps  
This section describes the control registers for the device in detail. All registers are eight bits in width and are  
allocated to the device configuration and programmable coefficients settings. These registers are mapped  
internally using a page scheme that can be controlled using either I2C or SPI communication to the device. Each  
page contains 128 bytes of registers. All device configuration registers are stored in page 0, which is the default  
page setting at power up (and after a software reset). Page 1 consists of the live status registers and input  
diagnostic SAR data for advanced diagnostic purposes. All programmable coefficient registers are located in  
page 2, page 3, and page 4. The device current page can be switched to a new desired page by using the  
PAGE[7:0] bits located in register 0 of every page.  
Do not read from or write to reserved pages or reserved registers. Write only default values for the reserved bits  
in the valid registers.  
The procedure for register access across pages is:  
Select page N (write data N to register 0 regardless of the current page number)  
Read or write data from or to valid registers in page N  
Select the new page M (write data M to register 0 regardless of the current page number)  
Read or write data from or to valid registers in page M  
Repeat as needed  
8.6.1 Device Configuration Registers  
This section describes the device configuration registers for page 0 and page 1.  
8.6.1.1 Register Summary Table Page=0x00  
ADDRESS  
0x00  
0x01  
0x02  
0x05  
0x07  
0x08  
0x09  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x13  
0x14  
0x15  
0x16  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
REGISTER  
PAGE_CFG  
DESCRIPTION  
SECTION  
Device page register  
Software reset register  
Sleep mode register  
PAGE_CFG Register (P0_R0)  
SW_RESET Register (P0_R1)  
SLEEP_CFG Register (P0_R2)  
SHDN_CFG Register (P0_R5)  
ASI_CFG0 Register (P0_R7)  
ASI_CFG1 Register (P0_R8)  
ASI_CFG2 Register (P0_R9)  
ASI_CH1 Register (P0_R11)  
ASI_CH2 Register (P0_R12)  
ASI_CH3 Register (P0_R13)  
ASI_CH4 Register (P0_R14)  
ASI_CH5 Register (P0_R15)  
ASI_CH6 Register (P0_R16)  
MST_CFG0 Register (P0_R19)  
MST_CFG1 Register (P0_R20)  
ASI_STS Register (P0_R21)  
CLK_SRC Register (P0_R22)  
GPIO_CFG0 Register (P0_R33)  
GPIO_CFG1 Register (P0_R34)  
GPIO_CFG2 Register (P0_R35)  
GPI_CFG0 Register (P0_R36)  
GPI_CFG1 Register (P0_R37)  
GPIO_VAL Register (P0_R38)  
GPIO_MON Register (P0_R39)  
INT_CFG Register (P0_R40)  
INT_MASK0 Register (P0_R41)  
INT_MASK1 Register (P0_R42)  
INT_MASK2 Register (P0_R43)  
INT_LTCH0 Register (P0_R44)  
SW_RESET  
SLEEP_CFG  
SHDN_CFG  
ASI_CFG0  
ASI_CFG1  
ASI_CFG2  
ASI_CH1  
Shutdown configuration register  
ASI configuration register 0  
ASI configuration register 1  
ASI configuration register 2  
Channel 1 ASI slot configuration register  
Channel 2 ASI slot configuration register  
Channel 3 ASI slot configuration register  
Channel 4 ASI slot configuration register  
Channel 5 ASI slot configuration register  
Channel 6 ASI slot configuration register  
ASI master mode configuration register 0  
ASI master mode configuration register 1  
ASI bus clock monitor status register  
Clock source configuration register  
GPIO configuration register 0  
ASI_CH2  
ASI_CH3  
ASI_CH4  
ASI_CH5  
ASI_CH6  
MST_CFG0  
MST_CFG1  
ASI_STS  
CLK_SRC  
GPIO_CFG0  
GPIO_CFG1  
GPIO_CFG2  
GPI_CFG0  
GPI_CFG1  
GPIO_VAL  
GPIO_MON  
INT_CFG  
GPIO configuration register 1  
GPIO configuration register 2  
GPI configuration register 0  
GPI configuration register 1  
GPIO output value register  
GPIO monitor value register  
Interrupt configuration register  
Interrupt mask register 0  
INT_MASK0  
INT_MASK1  
INT_MASK2  
INT_LTCH0  
Interrupt mask register 1  
Interrupt mask register 2  
Latched interrupt readback register 0  
Copyright © 2020, Texas Instruments Incorporated  
69  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Register Maps (continued)  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x64  
0x65  
0x66  
0x67  
0x68  
0x6B  
0x6C  
CHx_LTCH  
CH1_LTCH  
CH2_LTCH  
CH3_LTCH  
CH4_LTCH  
CH5_LTCH  
CH6_LTCH  
INT_MASK3  
INT_LTCH1  
INT_LTCH2  
INT_LTCH3  
MBDIAG_CFG0  
MBDIAG_CFG1  
MBDIAG_CFG2  
BIAS_CFG  
CH1_CFG0  
CH1_CFG1  
CH1_CFG2  
CH1_CFG3  
CH1_CFG4  
CH2_CFG0  
CH2_CFG1  
CH2_CFG2  
CH2_CFG3  
CH2_CFG4  
CH3_CFG0  
CH3_CFG1  
CH3_CFG2  
CH3_CFG3  
CH3_CFG4  
CH4_CFG0  
CH4_CFG1  
CH4_CFG2  
CH4_CFG3  
CH4_CFG4  
CH5_CFG0  
CH5_CFG1  
CH5_CFG2  
CH5_CFG3  
CH5_CFG4  
CH6_CFG0  
CH6_CFG1  
CH6_CFG2  
CH6_CFG3  
CH6_CFG4  
DIAG_CFG0  
DIAG_CFG1  
DIAG_CFG2  
DIAG_CFG3  
DIAG_CFG4  
DSP_CFG0  
DSP_CFG1  
Channel diagnostic summary latched status register  
Channel 1 diagnostic latched status register  
Channel 2 diagnostic latched status register  
Channel 3 diagnostic latched status register  
Channel 4 diagnostic latched status register  
Channel 5 diagnostic latched status register  
Channel 6 diagnostic latched status register  
Interrupt mask register 3  
CHx_LTCH Register (P0_R45)  
CH1_LTCH Register (P0_R46)  
CH2_LTCH Register (P0_R47)  
CH3_LTCH Register (P0_R48)  
CH4_LTCH Register (P0_R49)  
CH5_LTCH Register (P0_R50)  
CH6_LTCH Register (P0_R51)  
INT_MASK3 Register (P0_R52)  
INT_LTCH1 Register (P0_R53)  
INT_LTCH2 Register (P0_R54)  
INT_LTCH3 Register (P0_R55)  
MBDIAG_CFG0 Register (P0_R56)  
MBDIAG_CFG1 Register (P0_R57)  
MBDIAG_CFG2 Register (P0_R58)  
BIAS_CFG Register (P0_R59)  
CH1_CFG0 Register (P0_R60)  
CH1_CFG1 Register (P0_R61)  
CH1_CFG2 Register (P0_R62)  
CH1_CFG3 Register (P0_R63)  
CH1_CFG4 Register (P0_R64)  
CH2_CFG0 Register (P0_R65)  
CH2_CFG1 Register (P0_R66)  
CH2_CFG2 Register (P0_R67)  
CH2_CFG3 Register (P0_R68)  
CH2_CFG4 Register (P0_R69)  
CH3_CFG0 Register (P0_R70)  
CH3_CFG1 Register (P0_R71)  
CH3_CFG2 Register (P0_R72)  
CH3_CFG3 Register (P0_R73)  
CH3_CFG4 Register (P0_R74)  
CH4_CFG0 Register (P0_R75)  
CH4_CFG1 Register (P0_R76)  
CH4_CFG2 Register (P0_R77)  
CH4_CFG3 Register (P0_R78)  
CH4_CFG4 Register (P0_R79)  
CH5_CFG0 Register (P0_R80)  
CH5_CFG1 Register (P0_R81)  
CH5_CFG2 Register (P0_R82)  
CH5_CFG3 Register (P0_R83)  
CH5_CFG4 Register (P0_R84)  
CH6_CFG0 Register (P0_R85)  
CH6_CFG1 Register (P0_R86)  
CH6_CFG2 Register (P0_R87)  
CH6_CFG3 Register (P0_R88)  
CH6_CFG4 Register (P0_R89)  
DIAG_CFG0 Register (P0_R100)  
DIAG_CFG1 Register (P0_R101)  
DIAG_CFG2 Register (P0_R102)  
DIAG_CFG3 Register (P0_R103)  
DIAG_CFG4 Register (P0_R104)  
DSP_CFG0 Register (P0_R107)  
DSP_CFG1 Register (P0_R108)  
Latched interrupt readback register 1  
Latched interrupt readback register 2  
Latched interrupt readback register 3  
MICBIAS diagnostic register 0  
MICBIAS diagnostic register 1  
MICBIAS diagnostic register 2  
Bias configuration register  
Channel 1 configuration register 0  
Channel 1 configuration register 1  
Channel 1 configuration register 2  
Channel 1 configuration register 3  
Channel 1 configuration register 4  
Channel 2 configuration register 0  
Channel 2 configuration register 1  
Channel 2 configuration register 2  
Channel 2 configuration register 3  
Channel 2 configuration register 4  
Channel 3 configuration register 0  
Channel 3 configuration register 1  
Channel 3 configuration register 2  
Channel 3 configuration register 3  
Channel 3 configuration register 4  
Channel 4 configuration register 0  
Channel 4 configuration register 1  
Channel 4 configuration register 2  
Channel 4 configuration register 3  
Channel 4 configuration register 4  
Channel 5 configuration register 0  
Channel 5 configuration register 1  
Channel 5 configuration register 2  
Channel 5 configuration register 3  
Channel 5 configuration register 4  
Channel 6 configuration register 0  
Channel 6 configuration register 1  
Channel 6 configuration register 2  
Channel 6 configuration register 3  
Channel 6 configuration register 4  
Input diagnostic configuration register 0  
Input diagnostic configuration register 1  
Input diagnostic configuration register 2  
Input diagnostic configuration register 3  
Input diagnostic configuration register 4  
DSP configuration register 0  
DSP configuration register 1  
70  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Register Maps (continued)  
0x70  
0x73  
0x74  
0x75  
0x76  
0x77  
AGC_CFG0  
IN_CH_EN  
AGC configuration register 0  
AGC_CFG0 Register (P0_R112)  
Input channel enable configuration register  
ASI output channel enable configuration register  
Power up configuration register  
IN_CH_EN Register (P0_R115)  
ASI_OUT_CH_EN Register (P0_R116)  
PWR_CFG Register (P0_R117)  
DEV_STS0 Register (P0_R118)  
DEV_STS1 Register (P0_R119)  
ASI_OUT_CH_EN  
PWR_CFG  
DEV_STS0  
Device status value register 0  
DEV_STS1  
Device status value register 1  
8.6.1.2 Register Summary Table Page=0x01  
ADDRESS  
0x00  
0x16  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x35  
0x37  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
REGISTER  
PAGE_CFG  
DESCRIPTION  
SECTION  
Device page register  
PAGE_CFG Register (P1_R0)  
MBIAS_LOAD  
MICBIAS internal load sink configuration register  
Live interrupt readback register 0  
MBIAS_LOAD Register (P1_R22)  
INT_LIVE0  
INT_LIVE0 Register (P1_R44)  
CHx_LIVE  
Channel diagnostic summary live status register  
Channel 1 diagnostic live status register  
Channel 2 diagnostic live status register  
Channel 3 diagnostic live status register  
Channel 4 diagnostic live status register  
Channel 5 diagnostic live status register  
Channel 6 diagnostic live status register  
Live interrupt readback register 1  
CHx_LIVE Register (P1_R45)  
CH1_LIVE  
CH1_LIVE Register (P1_R46)  
CH2_LIVE  
CH2_LIVE Register (P1_R47)  
CH3_LIVE  
CH3_LIVE Register (P1_R48)  
CH4_LIVE  
CH4_LIVE Register (P1_R49)  
CH5_LIVE  
CH5_LIVE Register (P1_R50)  
CH6_LIVE  
CH6_LIVE Register (P1_R51)  
INT_LIVE1  
INT_LIVE1 Register (P1_R53)  
INT_LIVE3  
Live interrupt readback register 3  
INT_LIVE3 Register (P1_R55)  
DIAGDATA_CFG  
Diagnostic data configuration register  
Diagnostic VBAT_IN data MSB byte register  
Diagnostic VBAT_IN data LSB nibble register  
Diagnostic MICBIAS data MSB byte register  
Diagnostic MICBIAS data LSB nibble register  
Diagnostic IN1P data MSB byte register  
Diagnostic IN1P data LSB nibble register  
Diagnostic IN1M data MSB byte register  
Diagnostic IN1M data LSB nibble register  
Diagnostic IN2P data MSB byte register  
Diagnostic IN2P data LSB nibble register  
Diagnostic IN2M data MSB byte register  
Diagnostic IN2M data LSB nibble register  
Diagnostic IN3P data MSB byte register  
Diagnostic IN3P data LSB nibble register  
Diagnostic IN3M data MSB byte register  
Diagnostic IN3M data LSB nibble register  
Diagnostic IN4P data MSB byte register  
Diagnostic IN4P data LSB nibble register  
Diagnostic IN4M data MSB byte register  
Diagnostic IN4M data LSB nibble register  
Diagnostic IN5P data MSB byte register  
Diagnostic IN5P data LSB nibble register  
Diagnostic IN5M data MSB byte register  
Diagnostic IN5M data LSB nibble register  
Diagnostic IN6P data MSB byte register  
Diagnostic IN6P data LSB nibble register  
Diagnostic IN6M data MSB byte register  
Diagnostic IN6M data LSB nibble register  
Diagnostic temperature data MSB byte register  
DIAGDATA_CFG Register (P1_R89)  
DIAG_MON_MSB_VBAT Register (P1_R90)  
DIAG_MON_LSB_VBAT Register (P1_R91)  
DIAG_MON_MSB_MBIAS Register (P1_R92)  
DIAG_MON_LSB_MBIAS Register (P1_R93)  
DIAG_MON_MSB_IN1P Register (P1_R94)  
DIAG_MON_LSB_IN1P Register (P1_R95)  
DIAG_MON_MSB_IN1M Register (P1_R96)  
DIAG_MON_LSB_IN1M Register (P1_R97)  
DIAG_MON_MSB_IN2P Register (P1_R98)  
DIAG_MON_LSB_IN2P Register (P1_R99)  
DIAG_MON_MSB_IN2M Register (P1_R100)  
DIAG_MON_LSB_IN2M Register (P1_R101)  
DIAG_MON_MSB_IN3P Register (P1_R102)  
DIAG_MON_LSB_IN3P Register (P1_R103)  
DIAG_MON_MSB_IN3M Register (P1_R104)  
DIAG_MON_LSB_IN3M Register (P1_R105)  
DIAG_MON_MSB_IN4P Register (P1_R106)  
DIAG_MON_LSB_IN4P Register (P1_R107)  
DIAG_MON_MSB_IN4M Register (P1_R108)  
DIAG_MON_LSB_IN4M Register (P1_R109)  
DIAG_MON_MSB_IN5P Register (P1_R110)  
DIAG_MON_LSB_IN5P Register (P1_R111)  
DIAG_MON_MSB_IN5M Register (P1_R112)  
DIAG_MON_LSB_IN5M Register (P1_R113)  
DIAG_MON_MSB_IN6P Register (P1_R114)  
DIAG_MON_LSB_IN6P Register (P1_R115)  
DIAG_MON_MSB_IN6M Register (P1_R116)  
DIAG_MON_LSB_IN6M Register (P1_R117)  
DIAG_MON_MSB_TEMP Register (P1_R118)  
DIAG_MON_MSB_VBAT  
DIAG_MON_LSB_VBAT  
DIAG_MON_MSB_MBIAS  
DIAG_MON_LSB_MBIAS  
DIAG_MON_MSB_IN1P  
DIAG_MON_LSB_IN1P  
DIAG_MON_MSB_IN1M  
DIAG_MON_LSB_IN1M  
DIAG_MON_MSB_IN2P  
DIAG_MON_LSB_IN2P  
DIAG_MON_MSB_IN2M  
DIAG_MON_LSB_IN2M  
DIAG_MON_MSB_IN3P  
DIAG_MON_LSB_IN3P  
DIAG_MON_MSB_IN3M  
DIAG_MON_LSB_IN3M  
DIAG_MON_MSB_IN4P  
DIAG_MON_LSB_IN4P  
DIAG_MON_MSB_IN4M  
DIAG_MON_LSB_IN4M  
DIAG_MON_MSB_IN5P  
DIAG_MON_LSB_IN5P  
DIAG_MON_MSB_IN5M  
DIAG_MON_LSB_IN5M  
DIAG_MON_MSB_IN6P  
DIAG_MON_LSB_IN6P  
DIAG_MON_MSB_IN6M  
DIAG_MON_LSB_IN6M  
DIAG_MON_MSB_TEMP  
Copyright © 2020, Texas Instruments Incorporated  
71  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
0x77  
0x78  
0x79  
DIAG_MON_LSB_TEMP  
DIAG_MON_MSB_LOAD  
DIAG_MON_LSB_LOAD  
Diagnostic temperature data LSB nibble register  
DIAG_MON_LSB_TEMP Register (P1_R119)  
DIAG_MON_MSB_LOAD Register (P1_R120)  
DIAG_MON_LSB_LOAD Register (P1_R121)  
Diagnostic MICBIAS load current data MSB byte register  
Diagnostic MICBIAS load current data LSB nibble register  
51 lists the access codes used for the PCM6xx0-Q1 registers.  
51. PCM6xx0-Q1 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
R-W  
R/W  
Read or write  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
8.6.1.3 Register Description: Page = 0x00  
8.6.1.3.1 PAGE_CFG Register (page = 0x00, address = 0x00) [reset = 0h]  
The device memory map is divided into pages. This register sets the page.  
Figure 96. PAGE_CFG Register  
7
6
5
4
3
2
1
0
PAGE[7:0]  
R/W-0h  
Table 52. PAGE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PAGE[7:0]  
R/W  
0h  
These bits set the device page.  
0d = Page 0  
1d = Page 1  
...  
255d = Page 255  
8.6.1.3.2 SW_RESET Register (page = 0x00, address = 0x01) [reset = 0h]  
This register is the software reset register. Asserting a software reset places all register values in their default  
power-on-reset (POR) state.  
Figure 97. SW_RESET Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
SW_RESET  
R/W-0h  
Table 53. SW_RESET Register Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
SW_RESET  
Reserved  
R/W  
0h  
Software reset. This bit is self-clearing.  
0d = Do not reset  
1d = Reset  
8.6.1.3.3 SLEEP_CFG Register (page = 0x00, address = 0x02) [reset = 0h]  
This register configures the regulator, VREF quick charge, I2C broadcast and sleep mode.  
72  
Copyright © 2020, Texas Instruments Incorporated  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Figure 98. SLEEP_CFG Register  
7
6
5
4
3
2
1
0
I2C_BRDCAST  
_EN  
Reserved  
RW-0h  
Reserved  
RW-0h  
VREF_QCHG[1:0]  
RW-0h  
Reserved  
R-0h  
SLEEP_ENZ  
RW-0h  
RW-0h  
Table 54. SLEEP_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
6-5  
4-3  
0h  
VREF_QCHG[1:0]  
0h  
The duration of the quick-charge for the VREF external capacitor is set using  
an internal series impedance of 200 ohm.  
0d = VREF quick-charge duration of 3.5 ms (typical)  
1d = VREF quick-charge duration of 10 ms (typical)  
2d = VREF quick-charge duration of 50 ms (typical)  
3d = VREF quick-charge duration of 100 ms (typical)  
2
I2C_BRDCAST_EN  
RW  
0h  
I2C broadcast addressing setting.  
0d = I2C broadcast mode disabled; the I2C slave address is determined  
based on the ADDR pins  
1d = I2C broadcast mode enabled; the I2C slave address is fixed at 1001  
100  
1
0
Reserved  
R
0h  
0h  
Reserved  
SLEEP_ENZ  
RW  
Sleep mode setting.  
0d = Device is in sleep mode  
1d = Device is not in sleep mode  
8.6.1.3.4 SHDN_CFG Register (page = 0x00, address = 0x05) [reset = 5h]  
This register configures the device shutdown  
Figure 99. SHDN_CFG Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
SHDNZ_CFG[1:0]  
RW-1h  
DREG_KA_TIME[1:0]  
RW-1h  
Table 55. SHDN_CFG Register Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
SHDNZ_CFG[1:0]  
RW  
1h  
Shutdown configuration.  
0d = DREG is powered down immediately after SHDNZ asserts  
1d = DREG remains active to enable a clean shut down until a time-out is  
reached; after the time-out period, DREG is forced to power off  
2d = DREG remains active until the device cleanly shuts down  
3d = Reserved  
1-0  
DREG_KA_TIME[1:0]  
RW  
1h  
These bits set how long DREG remains active after SHDNZ asserts.  
0d = DREG remains active for 30 ms (typical)  
1d = DREG remains active for 25 ms (typical)  
2d = DREG remains active for 10 ms (typical)  
3d = DREG remains active for 5 ms (typical)  
8.6.1.3.5 ASI_CFG0 Register (page = 0x00, address = 0x07) [reset = 30h]  
This register is the ASI configuration register 0.  
Figure 100. ASI_CFG0 Register  
7
6
5
4
3
2
1
0
ASI_FORMAT[1:0]  
RW-0h  
ASI_WLEN[1:0]  
RW-3h  
FSYNC_POL  
RW-0h  
BCLK_POL  
RW-0h  
TX_EDGE  
RW-0h  
TX_FILL  
RW-0h  
Copyright © 2020, Texas Instruments Incorporated  
73  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 56. ASI_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
ASI_FORMAT[1:0]  
RW  
0h  
ASI protocol format.  
0d = TDM mode  
1d = I2S mode  
2d = LJ (left-justified) mode  
3d = Reserved  
5-4  
ASI_WLEN[1:0]  
RW  
3h  
ASI word or slot length.  
0d = 16 bits  
1d = 20 bits  
2d = 24 bits  
3d = 32 bits  
3
2
1
FSYNC_POL  
BCLK_POL  
TX_EDGE  
RW  
RW  
RW  
0h  
0h  
0h  
ASI FSYNC polarity.  
0d = Default polarity as per standard protocol  
1d = Inverted polarity with respect to standard protocol  
ASI BCLK polarity.  
0d = Default polarity as per standard protocol  
1d = Inverted polarity with respect to standard protocol  
ASI data output (on the primary and secondary data pin) transmit edge.  
0d = Default edge as per the protocol configuration setting in bit 2  
(BCLK_POL)  
1d = Inverted following edge (half cycle delay) with respect to the default  
edge setting  
0
TX_FILL  
RW  
0h  
ASI data output (on the primary and secondary data pin) for any unused  
cycles  
0d = Always transmit 0 for unused cycles  
1d = Always use Hi-Z for unused cycles  
8.6.1.3.6 ASI_CFG1 Register (page = 0x00, address = 0x08) [reset = 0h]  
This register is the ASI configuration register 1.  
Figure 101. ASI_CFG1 Register  
7
6
5
4
3
2
1
0
TX_LSB  
RW-0h  
TX_KEEPER[1:0]  
RW-0h  
TX_OFFSET[4:0]  
RW-0h  
Table 57. ASI_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TX_LSB  
RW  
0h  
ASI data output (on the primary and secondary data pin) for LSB  
transmissions.  
0d = Transmit the LSB for a full cycle  
1d = Transmit the LSB for the first half cycle and Hi-Z for the second half  
cycle  
6-5  
4-0  
TX_KEEPER[1:0]  
RW  
RW  
0h  
0h  
ASI data output (on the primary and secondary data pin) bus keeper.  
0d = Bus keeper is always disabled  
1d = Bus keeper is always enabled  
2d = Bus keeper is enabled during LSB transmissions only for one cycle  
3d = Bus keeper is enabled during LSB transmissions only for one and half  
cycles  
TX_OFFSET[4:0]  
ASI data MSB slot 0 offset (on the primary and secondary data pin).  
0d = ASI data MSB location has no offset and is as per standard protocol  
1d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is the left  
and right slot 0) offset of one BCLK cycle with respect to standard protocol  
2d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is the left  
and right slot 0) offset of two BCLK cycles with respect to standard protocol  
3d to 30d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is  
the left and right slot 0) offset assigned as per configuration  
31d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is the left  
and right slot 0) offset of 31 BCLK cycles with respect to standard protocol  
74  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.6.1.3.7 ASI_CFG2 Register (page = 0x00, address = 0x09) [reset = 0h]  
This register is the ASI configuration register 2.  
Figure 102. ASI_CFG2 Register  
7
6
5
4
3
2
1
0
ASI_ERR_RCO  
V
ASI_DAISY  
RW-0h  
Reserved  
R-0h  
ASI_ERR  
RW-0h  
Reserved  
R-0h  
RW-0h  
Table 58. ASI_CFG2 Register Field Descriptions  
Bit  
Field  
ASI_DAISY  
Type  
Reset  
Description  
7
RW  
0h  
ASI daisy chain connection.  
0d = All devices are connected in the common ASI bus  
1d = All devices are daisy-chained for the ASI bus  
6
5
Reserved  
ASI_ERR  
R
0h  
0h  
Reserved  
RW  
ASI bus error detection.  
0d = Enable bus error detection  
1d = Disable bus error detection  
4
ASI_ERR_RCOV  
Reserved  
RW  
R
0h  
0h  
ASI bus error auto resume.  
0d = Enable auto resume after bus error recovery  
1d = Disable auto resume after bus error recovery and remain powered  
down until the host configures the device  
3-0  
Reserved  
8.6.1.3.8 ASI_CH1 Register (page = 0x00, address = 0x0B) [reset = 0h]  
This register is the ASI slot configuration register for channel 1.  
Figure 103. ASI_CH1 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH1_OUTPUT  
RW-0h  
CH1_SLOT[5:0]  
RW-0h  
Table 59. ASI_CH1 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH1_OUTPUT  
RW  
0h  
Channel 1 output line.  
0d = Channel 1 output is on the ASI primary output pin (SDOUT)  
0d = Channel 1 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH1_SLOT[5:0]  
RW  
0h  
Channel 1 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.3.9 ASI_CH2 Register (page = 0x00, address = 0x0C) [reset = 1h]  
This register is the ASI slot configuration register for channel 2.  
Figure 104. ASI_CH2 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH2_OUTPUT  
RW-0h  
CH2_SLOT[5:0]  
RW-1h  
Copyright © 2020, Texas Instruments Incorporated  
75  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 60. ASI_CH2 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
CH2_OUTPUT  
Reserved  
6
RW  
0h  
Channel 2 output line.  
0d = Channel 2 output is on the ASI primary output pin (SDOUT)  
0d = Channel 2 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH2_SLOT[5:0]  
RW  
1h  
Channel 2 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.3.10 ASI_CH3 Register (page = 0x00, address = 0x0D) [reset = 2h]  
This register is the ASI slot configuration register for channel 3.  
Figure 105. ASI_CH3 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH3_OUTPUT  
RW-0h  
CH3_SLOT[5:0]  
RW-2h  
Table 61. ASI_CH3 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH3_OUTPUT  
RW  
0h  
Channel 3 output line.  
0d = Channel 3 output is on the ASI primary output pin (SDOUT)  
0d = Channel 3 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH3_SLOT[5:0]  
RW  
2h  
Channel 3 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.3.11 ASI_CH4 Register (page = 0x00, address = 0x0E) [reset = 3h]  
This register is the ASI slot configuration register for channel 4.  
Figure 106. ASI_CH4 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH4_OUTPUT  
RW-0h  
CH4_SLOT[5:0]  
RW-3h  
Table 62. ASI_CH4 Register Field Descriptions  
Bit  
7
Field  
Reserved  
CH4_OUTPUT  
Type  
R
Reset  
0h  
Description  
Reserved  
6
RW  
0h  
Channel 4 output line.  
0d = Channel 4 output is on the ASI primary output pin (SDOUT)  
0d = Channel 4 output is on the ASI secondary output pin (GPIO1 or GPOx)  
76  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 62. ASI_CH4 Register Field Descriptions (continued)  
Bit  
Field  
CH4_SLOT[5:0]  
Type  
Reset  
Description  
5-0  
RW  
3h  
Channel 4 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.3.12 ASI_CH5 Register (page = 0x00, address = 0x0F) [reset = 4h]  
This register is the ASI slot configuration register for channel 5. Applicable only for PCM6x60-Q1.  
Figure 107. ASI_CH5 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH5_OUTPUT  
RW-0h  
CH5_SLOT[5:0]  
RW-4h  
Table 63. ASI_CH5 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH5_OUTPUT  
RW  
0h  
Channel 5 output line.  
0d = Channel 5 output is on the ASI primary output pin (SDOUT)  
0d = Channel 5 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH5_SLOT[5:0]  
RW  
4h  
Channel 5 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.3.13 ASI_CH6 Register (page = 0x00, address = 0x10) [reset = 5h]  
This register is the ASI slot configuration register for channel 6. Applicable only for PCM6x60-Q1.  
Figure 108. ASI_CH6 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH6_OUTPUT  
RW-0h  
CH6_SLOT[5:0]  
RW-5h  
Table 64. ASI_CH6 Register Field Descriptions  
Bit  
7
Field  
Reserved  
CH6_OUTPUT  
Type  
R
Reset  
0h  
Description  
Reserved  
6
RW  
0h  
Channel 6 output line.  
0d = Channel 6 output is on the ASI primary output pin (SDOUT)  
0d = Channel 6 output is on the ASI secondary output pin (GPIO1 or GPOx)  
Copyright © 2020, Texas Instruments Incorporated  
77  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 64. ASI_CH6 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-0  
CH6_SLOT[5:0]  
RW  
5h  
Channel 6 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.3.14 MST_CFG0 Register (page = 0x00, address = 0x13) [reset = 2h]  
This register is the ASI master mode configuration register 0.  
Figure 109. MST_CFG0 Register  
7
6
5
4
3
2
1
0
MST_SLV_CF AUTO_CLK_C AUTO_MODE_ BCLK_FSYNC_  
FS_MODE  
RW-0h  
MCLK_FREQ_SEL[2:0]  
RW-2h  
G
FG  
PLL_DIS  
GATE  
RW-0h  
RW-0h  
RW-0h  
RW-0h  
Table 65. MST_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MST_SLV_CFG  
RW  
0h  
ASI master or slave configuration register setting.  
0d = Device is in slave mode (both BCLK and FSYNC are inputs to the  
device)  
1d = Device is in master mode (both BCLK and FSYNC are generated from  
the device)  
6
AUTO_CLK_CFG  
RW  
0h  
Automatic clock configuration setting.  
0d = Auto clock configuration is enabled (all internal clock divider and PLL  
configurations are auto derived)  
1d = Auto clock configuration is disabled (custom mode and device GUI  
must be used for the device configuration settings)  
5
4
AUTO_MODE_PLL_DIS  
BCLK_FSYNC_GATE  
RW  
RW  
0h  
0h  
Automatic mode PLL setting.  
0d = PLL is enabled in auto clock configuration  
1d = PLL is disabled in auto clock configuration  
BCLK and FSYNC clock gate (valid when the device is in master mode).  
0d = Do not gate BCLK and FSYNC  
1d = Force gate BCLK and FSYNC when being transmitted from the device  
in master mode  
3
FS_MODE  
RW  
RW  
0h  
2h  
Sample rate setting (valid when the device is in master mode).  
0d = fS is a multiple (or submultiple) of 48 kHz  
1d = fS is a multiple (or submultiple) of 44.1 kHz  
2-0  
MCLK_FREQ_SEL[2:0]  
These bits select the MCLK (GPIO or GPIx) frequency for the PLL source  
clock input (valid when the device is in master mode and  
MCLK_FREQ_SEL_MODE = 0).  
0d = 12 MHz  
1d = 12.288 MHz  
2d = 13 MHz  
3d = 16 MHz  
4d = 19.2 MHz  
5d = 19.68 MHz  
6d = 24 MHz  
7d = 24.576 MHz  
8.6.1.3.15 MST_CFG1 Register (page = 0x00, address = 0x14) [reset = 48h]  
This register is the ASI master mode configuration register 1.  
78  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Figure 110. MST_CFG1 Register  
7
6
5
4
3
2
1
0
FS_RATE[3:0]  
RW-4h  
FS_BCLK_RATIO[3:0]  
RW-8h  
Table 66. MST_CFG1 Register Field Descriptions  
Bit  
Field  
FS_RATE[3:0]  
Type  
Reset  
Description  
7-4  
RW  
4h  
Programmed sample rate of the ASI bus (not used when the device is  
configured in slave mode auto clock configuration).  
0d = 7.35 kHz or 8 kHz  
1d = 14.7 kHz or 16 kHz  
2d = 22.05 kHz or 24 kHz  
3d = 29.4 kHz or 32 kHz  
4d = 44.1 kHz or 48 kHz  
5d = 88.2 kHz or 96 kHz  
6d = 176.4 kHz or 192 kHz  
7d = 352.8 kHz or 384 kHz  
8d = 705.6 kHz or 768 kHz  
9d to 15d = Reserved  
3-0  
FS_BCLK_RATIO[3:0]  
RW  
8h  
Programmed BCLK to FSYNC frequency ratio of the ASI bus (not used  
when the device is configured in slave mode auto clock configuration).  
0d = Ratio of 16  
1d = Ratio of 24  
2d = Ratio of 32  
3d = Ratio of 48  
4d = Ratio of 64  
5d = Ratio of 96  
6d = Ratio of 128  
7d = Ratio of 192  
8d = Ratio of 256  
9d = Ratio of 384  
10d = Ratio of 512  
11d = Ratio of 1024  
12d = Ratio of 2048  
13d = Reserved  
14d = Ratio of 144  
15d = Reserved  
8.6.1.3.16 ASI_STS Register (page = 0x00, address = 0x15) [reset = FFh]  
This register s the ASI bus clock monitor status register  
Figure 111. ASI_STS Register  
7
6
5
4
3
2
1
0
FS_RATE_STS[3:0]  
R-Fh  
FS_RATIO_STS[3:0]  
R-Fh  
Table 67. ASI_STS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
FS_RATE_STS[3:0]  
R
Fh  
Detected sample rate of the ASI bus.  
0d = 7.35 kHz or 8 kHz  
1d = 14.7 kHz or 16 kHz  
2d = 22.05 kHz or 24 kHz  
3d = 29.4 kHz or 32 kHz  
4d = 44.1 kHz or 48 kHz  
5d = 88.2 kHz or 96 kHz  
6d = 176.4 kHz or 192 kHz  
7d = 352.8 kHz or 384 kHz  
8d = 705.6 kHz or 768 kHz  
9d to 14d = Reserved  
15d = Invalid sample rate  
Copyright © 2020, Texas Instruments Incorporated  
79  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 67. ASI_STS Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
FS_RATIO_STS[3:0]  
R
Fh  
Detected BCLK to FSYNC frequency ratio of the ASI bus.  
0d = Ratio of 16  
1d = Ratio of 24  
2d = Ratio of 32  
3d = Ratio of 48  
4d = Ratio of 64  
5d = Ratio of 96  
6d = Ratio of 128  
7d = Ratio of 192  
8d = Ratio of 256  
9d = Ratio of 384  
10d = Ratio of 512  
11d = Ratio of 1024  
12d = Ratio of 2048  
13d = Reserved  
14d = Ratio of 144  
15d = Invalid ratio  
8.6.1.3.17 CLK_SRC Register (page = 0x00, address = 0x16) [reset = 10h]  
This register is the clock source configuration register.  
Figure 112. CLK_SRC Register  
7
6
5
4
3
2
1
0
DIS_PLL_SLV_ MCLK_FREQ_  
MCLK_RATIO_SEL[2:0]  
RW-2h  
Reserved  
R-0h  
CLK_SRC  
SEL_MODE  
RW-0h  
RW-0h  
Table 68. CLK_SRC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DIS_PLL_SLV_CLK_SRC RW  
0h  
Audio root clock source setting when the device is configured with the PLL  
disabled in the auto clock configuration for slave mode  
(AUTO_MODE_PLL_DIS = 1).  
0d = BCLK is used as the audio root clock source  
1d = MCLK (GPIOx or GPIx) is used as the audio root clock source (the  
MCLK to FSYNC ratio is as per MCLK_RATIO_SEL setting)  
6
MCLK_FREQ_SEL_MODE RW  
0h  
2h  
Master mode MCLK (GPIOx or GPIx) frequency selection mode (valid when  
the device is in auto clock configuration).  
0d = MCLK frequency is based on the MCLK_FREQ_SEL (P0_R19)  
configuration  
1d = MCLK frequency is specified as a multiple of FSYNC in the  
MCLK_RATIO_SEL (P0_R22) configuration  
5-3  
MCLK_RATIO_SEL[2:0]  
RW  
These bits select the MCLK (GPIOx or GPIx) to FSYNC ratio for master  
mode or when MCLK is used as the audio root clock source in slave mode.  
0d = Ratio of 64  
1d = Ratio of 256  
2d = Ratio of 384  
3d = Ratio of 512  
4d = Ratio of 768  
5d = Ratio of 1024  
6d = Ratio of 1536  
7d = Ratio of 2304  
2-0  
Reserved  
R
0h  
Reserved  
8.6.1.3.18 GPIO_CFG0 Register (page = 0x00, address = 0x21) [reset = 22h]  
This register is the GPIO configuration register 0.  
80  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Figure 113. GPIO_CFG0 Register  
7
6
5
4
3
2
1
0
GPIO1_CFG[3:0]  
RW-2h  
Reserved  
R-0h  
GPIO1_DRV[2:0]  
RW-2h  
Table 69. GPIO_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPIO1_CFG[3:0]  
RW  
2h  
GPIO1 configuration.  
0d = GPIO1 is disabled  
1d = GPIO1 is configured as a general-purpose output (GPO)  
2d = GPIO1 is configured as a device interrupt output (IRQ)  
3d = GPIO1 is configured as a secondary ASI output (SDOUT2)  
4d = Reserved  
5d = Reserved  
6d = Reserved  
7d = GPIO1 is configured as an input to power down all ADC channels  
8d = GPIO1 is configured as an input to control when MICBIAS turns on or  
off (MICBIAS_EN)  
9d = GPIO1 is configured as a general-purpose input (GPI)  
10d = GPIO1 is configured as a master clock input (MCLK)  
11d = GPIO1 is configured as an ASI input for daisy-chain (SDIN)  
12d = Reserved  
13d = Reserved  
14d = Reserved  
3
Reserved  
R
0h  
2h  
Reserved  
2-0  
GPIO1_DRV[2:0]  
RW  
GPIO1 output drive configuration (not used when GPIO1 is configured as  
SDOUT2).  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved  
8.6.1.3.19 GPIO_CFG1 Register (page = 0x00, address = 0x22) [reset = 0h]  
This register is the GPIO configuration register 1. Not applicable for PCM6x60-Q1.  
Figure 114. GPIO_CFG1 Register  
7
6
5
4
3
2
1
0
GPIO2_CFG[3:0]  
RW-0h  
Reserved  
R-0h  
GPIO2_DRV[2:0]  
RW-0h  
Table 70. GPIO_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPIO2_CFG[3:0]  
RW  
0h  
GPIO2 configuration.  
0d = GPIO2 is disabled  
1d = GPIO2 is configured as a general-purpose output (GPO)  
2d = GPIO2 is configured as a device interrupt output (IRQ)  
3d = GPIO2 is configured as a secondary ASI output (SDOUT2)  
4d = Reserved  
5d = Reserved  
6d = Reserved  
7d = GPIO2 is configured as an input to power down all ADC channels  
8d = GPIO2 is configured as an input to control when MICBIAS turns on or  
off (MICBIAS_EN)  
9d = GPIO2 is configured as a general-purpose input (GPI)  
10d = GPIO2 is configured as a master clock input (MCLK)  
11d = GPIO2 is configured as an ASI input for daisy-chain (SDIN)  
12d = Reserved  
13d = Reserved  
14d = Reserved  
3
Reserved  
R
0h  
Reserved  
Copyright © 2020, Texas Instruments Incorporated  
81  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 70. GPIO_CFG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
GPIO2_DRV[2:0]  
RW  
0h  
GPIO2 output drive configuration (not used when GPIO2 is configured as  
SDOUT2).  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved  
8.6.1.3.20 GPIO_CFG2 Register (page = 0x00, address = 0x23) [reset = 0h]  
This register is the GPIO configuration register 2. Not applicable for PCM6x60-Q1.  
Figure 115. GPIO_CFG2 Register  
7
6
5
4
3
2
1
0
GPIO3_CFG[3:0]  
RW-0h  
Reserved  
R-0h  
GPIO3_DRV[2:0]  
RW-0h  
Table 71. GPIO_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPIO3_CFG[3:0]  
RW  
0h  
GPIO3 configuration.  
0d = GPIO3 is disabled  
1d = GPIO3 is configured as a general-purpose output (GPO)  
2d = GPIO3 is configured as a device interrupt output (IRQ)  
3d = GPIO3 is configured as a secondary ASI output (SDOUT2)  
4d = Reserved  
5d = Reserved  
6d = Reserved  
7d = GPIO3 is configured as an input to power down all ADC channels  
8d = GPIO3 is configured as an input to control when MICBIAS turns on or  
off (MICBIAS_EN)  
9d = GPIO3 is configured as a general-purpose input (GPI)  
10d = GPIO3 is configured as a master clock input (MCLK)  
11d = GPIO3 is configured as an ASI input for daisy-chain (SDIN)  
12d = Reserved  
13d = Reserved  
14d = Reserved  
3
Reserved  
R
0h  
0h  
Reserved  
2-0  
GPIO3_DRV[2:0]  
RW  
GPIO3 output drive configuration (not used when GPIO3 is configured as  
SDOUT2).  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved  
8.6.1.3.21 GPI_CFG0 Register (page = 0x00, address = 0x24) [reset = 0h]  
This register is the GPI configuration register 0. Not applicable for PCM6x60-Q1.  
Figure 116. GPI_CFG0 Register  
7
6
5
4
3
2
1
0
GPI1_CFG[3:0]  
RW-0h  
Reserved  
R-0h  
82  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 72. GPI_CFG0 Register Field Descriptions  
Bit  
Field  
GPI1_CFG[3:0]  
Type  
Reset  
Description  
7-4  
RW  
0h  
GPI1 configuration.  
0d = GPI1 is disabled  
1d to 6d = Reserved  
7d = GPI1 is configured as an input to power down all ADC channels  
8d = GPI1 is configured as an input to control when MICBIAS turns on or off  
(MICBIAS_EN)  
9d = GPI1 is configured as a general-purpose input (GPI)  
10d = GPI1 is configured as a master clock input (MCLK)  
11d = GPI1 is configured as an ASI input for daisy-chain (SDIN)  
12d = Reserved  
13d = Reserved  
14d = Reserved  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.3.22 GPI_CFG1 Register (page = 0x00, address = 0x25) [reset = 0h]  
This register is the GPI configuration register 1. Not applicable for PCM6x60-Q1.  
Figure 117. GPI_CFG1 Register  
7
6
5
4
3
2
1
0
GPI2_CFG[3:0]  
RW-0h  
Reserved  
R-0h  
Table 73. GPI_CFG1 Register Field Descriptions  
Bit  
Field  
GPI2_CFG[3:0]  
Type  
Reset  
Description  
7-4  
RW  
0h  
GPI2 configuration.  
0d = GPI2 is disabled  
1d to 6d = Reserved  
7d = GPI2 is configured as an input to power down all ADC channels  
8d = GPI2 is configured as an input to control when MICBIAS turns on or off  
(MICBIAS_EN)  
9d = GPI2 is configured as a general-purpose input (GPI)  
10d = GPI2 is configured as a master clock input (MCLK)  
11d = GPI2 is configured as an ASI input for daisy-chain (SDIN)  
12d = Reserved  
13d = Reserved  
14d = Reserved  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.3.23 GPIO_VAL Register (page = 0x00, address = 0x26) [reset = 0h]  
This register is the GPIO output value register.  
Figure 118. GPIO_VAL Register  
7
6
5
4
3
2
1
0
GPIO1_VAL  
RW-0h  
GPIO2_VAL  
RW-0h  
GPIO3_VAL  
RW-0h  
Reserved  
R-0h  
Table 74. GPIO_VAL Register Field Descriptions  
Bit  
Field  
GPIO1_VAL  
Type  
Reset  
Description  
7
RW  
0h  
GPIO1 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
6
GPIO2_VAL  
RW  
0h  
GPIO2 output value when configured as a GPO. Not applicable for  
PCM6x60-Q1.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
Copyright © 2020, Texas Instruments Incorporated  
83  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 74. GPIO_VAL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
GPIO3_VAL  
RW  
0h  
GPIO3 output value when configured as a GPO. Not applicable for  
PCM6x60-Q1.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
4-0  
Reserved  
R
0h  
Reserved  
8.6.1.3.24 GPIO_MON Register (page = 0x00, address = 0x27) [reset = 0h]  
This register is the GPIO monitor value register.  
Figure 119. GPIO_MON Register  
7
6
5
4
3
2
1
0
GPIO1_MON  
R-0h  
GPIO2_MON  
R-0h  
GPIO3_MON  
R-0h  
GPI1_MON  
R-0h  
GPI2_MON  
R-0h  
Reserved  
R-0h  
Table 75. GPIO_MON Register Field Descriptions  
Bit  
Field  
GPIO1_MON  
Type  
Reset  
Description  
7
R
0h  
GPIO1 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
6
5
GPIO2_MON  
GPIO3_MON  
GPI1_MON  
GPI2_MON  
Reserved  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
GPIO2 monitor value when configured as a GPI. Not applicable for  
PCM6x60-Q1.  
0d = Input monitor value 0  
1d = Input monitor value 1  
GPIO3 monitor value when configured as a GPI. Not applicable for  
PCM6x60-Q1.  
0d = Input monitor value 0  
1d = Input monitor value 1  
4
GPI1 monitor value when configured as a GPI. Not applicable for PCM6x60-  
Q1.  
0d = Input monitor value 0  
1d = Input monitor value 1  
3
GPI2 monitor value when configured as a GPI. Not applicable for PCM6x60-  
Q1.  
0d = Input monitor value 0  
1d = Input monitor value 1  
2-0  
Reserved  
8.6.1.3.25 INT_CFG Register (page = 0x00, address = 0x28) [reset = 0h]  
This regiser is the interrupt configuration register.  
Figure 120. INT_CFG Register  
7
6
5
4
3
2
1
0
LTCH_READ_ PD_ON_FLT_R LTCH_CLR_O  
INT_POL  
RW-0h  
INT_EVENT[1:0]  
RW-0h  
PD_ON_FLT_CFG[1:0]  
RW-0h  
CFG  
CV_CFG  
N_READ  
RW-0h  
RW-0h  
RW-0h  
Table 76. INT_CFG Register Field Descriptions  
Bit  
Field  
INT_POL  
Type  
Reset  
Description  
7
RW  
0h  
Interrupt polarity.  
0b = Active low (IRQZ)  
1b = Active high (IRQ)  
84  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 76. INT_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-5  
INT_EVENT[1:0]  
RW  
0h  
Interrupt event configuration.  
0d = INT asserts on any unmasked latched interrupts event  
1d = Reserved  
2d = INT asserts for 2 ms (typical) for every 4-ms (typical) duration on any  
unmasked latched interrupts event  
3d = INT asserts for 2 ms (typical) one time on each pulse for any  
unmasked interrupts event  
4-3  
PD_ON_FLT_CFG[1:0]  
RW  
0h  
Powerdown configuration when fault detected for any channel or MICBIAS  
fault detected.  
0d = Faults event are not used for ADC and MICBIAS power down. It is  
recommend to set these bits as 2d to shutdown the blocks for which fault  
occurred.  
1d = Only unmasked faults are used for power down of respective ADC  
channel; In case of MICBIAS fault detected, MICBIAS and all ADC channels  
gets powered-down based on P0_R58 settings  
2d = Both masked or unmasked faults are used for power down of  
respective ADC channel; In case of MICBIAS fault detected, MICBIAS and  
all ADC channels gets powered-down based on P0_R58 settings.  
3d = Reserved  
2
1
LTCH_READ_CFG  
RW  
RW  
0h  
0h  
Interrupt latch registers readback configuration.  
0b = All interrupts can be read through the LTCH registers  
1b = Only unmasked interrupts can be read through the LTCH registers  
PD_ON_FLT_RCV_CFG  
Recovery configuration for ADC channels when fault goes away.  
0b = Auto recovery, ADC channels are re-powered up when fault goes away  
1b = Manual recovery, ADC channels are required to power-up manually  
using P0_R119 when fault goes away  
0
LTCH_CLR_ON_READ  
RW  
0h  
Configuration for clearing LTCH register bits.  
0 = LTCH register bits are cleared on register read only if live status is zero  
1 = LTCH register bits are cleared on register read irrespective of live status  
and set only if live status goes again low to high  
8.6.1.3.26 INT_MASK0 Register (page = 0x00, address = 0x29) [reset = FFh]  
This register is the interrupt masks register 0.  
Figure 121. INT_MASK0 Register  
7
6
5
4
3
2
1
0
INT_MASK0[7] INT_MASK0[6] INT_MASK0[5] INT_MASK0[4]  
RW-1h RW-1h RW-1h RW-1h  
Reserved  
RW-1h  
Reserved  
RW-1h  
Reserved  
RW-1h  
Reserved  
RW-1h  
Table 77. INT_MASK0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
INT_MASK0[7]  
INT_MASK0[6]  
INT_MASK0[5]  
INT_MASK0[4]  
RW  
1h  
ASI clock error mask.  
0b = Unmask  
1b = Mask  
RW  
RW  
RW  
1h  
1h  
1h  
PLL lock interrupt mask.  
0b = Unmask  
1b = Mask  
Boost or MICBIAS over temperature interrupt mask.  
0b = Unmask  
1b = Mask  
Boost or MICBIAS over current interrupt mask.  
0b = Unmask  
1b = Mask  
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
RW  
RW  
RW  
RW  
1h  
1h  
1h  
1h  
Reserved  
Reserved  
Reserved  
Reserved  
Copyright © 2020, Texas Instruments Incorporated  
85  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.6.1.3.27 INT_MASK1 Register (page = 0x00, address = 0x2A) [reset = 3h]  
This register is the interrupt masks register 1.  
Figure 122. INT_MASK1 Register  
7
6
5
4
3
2
1
0
INT_MASK1[7] INT_MASK1[6] INT_MASK1[5] INT_MASK1[4] INT_MASK1[3] INT_MASK1[2] INT_MASK1[1]  
RW-0h RW-0h RW-0h RW-0h RW-0h RW-0h RW-1h  
Reserved  
RW-1h  
Table 78. INT_MASK1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
INT_MASK1[7]  
INT_MASK1[6]  
INT_MASK1[5]  
INT_MASK1[4]  
INT_MASK1[3]  
RW  
0h  
Channel 1 input DC faults diagnostici interrupt mask.  
0b = Unmask  
1b = Mask  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
Channel 2 input DC faults diagnostici interrupt mask.  
0b = Unmask  
1b = Mask  
Channel 3 input DC faults diagnostici interrupt mask.  
0b = Unmask  
1b = Mask  
Channel 4 input DC faults diagnostici interrupt mask.  
0b = Unmask  
1b = Mask  
Channel 5 input DC faults diagnostici interrupt mask. Applicable only for  
PCM6x60-Q1.  
0b = Unmask  
1b = Mask  
2
1
0
INT_MASK1[2]  
INT_MASK1[1]  
Reserved  
RW  
RW  
RW  
0h  
1h  
1h  
Channel 6 input DC faults diagnostici interrupt mask. Applicable only for  
PCM6x60-Q1.  
0b = Unmask  
1b = Mask  
Input faults diagnostic interrupt mask for "short to VBAT_IN" detect when  
VBAT_IN voltage is less than MICBIAS voltage.  
0b = Unmask  
1b = Mask  
Reserved  
8.6.1.3.28 INT_MASK2 Register (page = 0x00, address = 0x2B) [reset = 0h]  
This register is the interrupt masks register 2.  
Figure 123. INT_MASK2 Register  
7
6
5
4
3
2
1
0
INT_MASK2[7] INT_MASK2[6] INT_MASK2[5] INT_MASK2[4] INT_MASK2[3] INT_MASK2[2] INT_MASK2[1] INT_MASK2[0]  
RW-0h RW-0h RW-0h RW-0h RW-0h RW-0h RW-0h RW-0h  
Table 79. INT_MASK2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
INT_MASK2[7]  
INT_MASK2[6]  
INT_MASK2[5]  
INT_MASK2[4]  
RW  
0h  
Input diagnostics; Open inputs fault interrupt mask.  
0b = Unmask  
1b = Mask  
RW  
RW  
RW  
0h  
0h  
0h  
Input diagnostics; Inputs shorted fault interrupt mask.  
0b = Unmask  
1b = Mask  
Input diagnostics; INxP shorted to ground fault interrupt mask.  
0b = Unmask  
1b = Mask  
Input diagnostics; INxM shorted to ground fault interrupt mask.  
0b = Unmask  
1b = Mask  
86  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 79. INT_MASK2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
INT_MASK2[3]  
INT_MASK2[2]  
INT_MASK2[1]  
INT_MASK2[0]  
RW  
0h  
Input diagnostics; INxP shorted to MICBIAS fault interrupt mask.  
0b = Unmask  
1b = Mask  
2
1
0
RW  
RW  
RW  
0h  
0h  
0h  
Input diagnostics; INxM shorted to MICBIAS fault interrupt mask.  
0b = Unmask  
1b = Mask  
Input diagnostics; INxP shorted to VBAT_IN fault interrupt mask.  
0b = Unmask  
1b = Mask  
Input diagnostics; INxM shorted to VBAT_IN fault interrupt mask.  
0b = Unmask  
1b = Mask  
8.6.1.3.29 INT_LTCH0 Register (page = 0x00, address = 0x2C) [reset = 0h]  
This register is the latched Interrupt readback register 0.  
Figure 124. INT_LTCH0 Register  
7
6
5
4
3
2
1
0
INT_LTCH0[7] INT_LTCH0[6] INT_LTCH0[5] INT_LTCH0[4]  
R-0h R-0h R-0h R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Table 80. INT_LTCH0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
INT_LTCH0[7]  
INT_LTCH0[6]  
INT_LTCH0[5]  
INT_LTCH0[4]  
R
0h  
Fault status for an ASI bus clock error (self-clearing bit).  
0b = No fault detected  
1b = Fault detected  
R
R
R
0h  
0h  
0h  
Status of PLL lock (self-clearing bit).  
0b = No PLL lock detected  
1b = PLL lock detected  
Fault status for boost or MICBIAS over temperature (self-clearing bit).  
0b = No fault detected  
1b = Fault detected  
Fault status for boost or MICBIAS over current (self-clearing bit).  
0b = No fault detected  
1b = Fault detected  
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
R
R
R
R
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
Reserved  
8.6.1.3.30 CHx_LTCH Register (page = 0x00, address = 0x2D) [reset = 0h]  
This register is the latched Interrupt status register for channel level diagnostic summary.  
Figure 125. CHx_LTCH Register  
7
6
5
4
3
2
1
0
STS_CHx_LTC STS_CHx_LTC STS_CHx_LTC STS_CHx_LTC STS_CHx_LTC STS_CHx_LTC STS_CHx_LTC  
Reserved  
R-0h  
H[7]  
H[6]  
H[5]  
H[4]  
H[3]  
H[2]  
H[1]  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
Table 81. CHx_LTCH Register Field Descriptions  
Bit  
Field  
STS_CHx_LTCH[7]  
Type  
Reset  
Description  
7
R
0h  
Status of CH1_LTCH (self-clearing bit).  
0b = No faults occurred in channel 1  
1b = Atleast a fault has occurred in channel 1  
Copyright © 2020, Texas Instruments Incorporated  
87  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 81. CHx_LTCH Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
STS_CHx_LTCH[6]  
R
0h  
Status of CH2_LTCH (self-clearing bit).  
0b = No faults occurred in channel 2  
1b = Atleast a fault has occurred in channel 2  
5
4
3
2
1
STS_CHx_LTCH[5]  
STS_CHx_LTCH[4]  
STS_CHx_LTCH[3]  
STS_CHx_LTCH[2]  
STS_CHx_LTCH[1]  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Status of CH3_LTCH (self-clearing bit).  
0b = No faults occurred in channel 3  
1b = Atleast a fault has occurred in channel 3  
Status of CH4_LTCH (self-clearing bit).  
0b = No faults occurred in channel 4  
1b = Atleast a fault has occurred in channel 4  
Status of CH5_LTCH (self-clearing bit). Applicable only for PCM6x60-Q1.  
0b = No faults occurred in channel 5  
1b = Atleast a fault has occurred in channel 5  
Status of CH6_LTCH (self-clearing bit). Applicable only for PCM6x60-Q1.  
0b = No faults occurred in channel 6  
1b = Atleast a fault has occurred in channel 6  
Status of short to VBAT_IN fault detected when VBAT_IN is less than  
MICBIAS (self-clearing bit).  
0b = Short to VBAT_IN fault when VBAT_IN is less than MICBIAS has not  
occurred in any channel  
1b = Short to VBAT_IN fault when VBAT_IN is less than MICBIAS has  
occurred in atleast one channel  
0
Reserved  
R
0h  
Reserved  
8.6.1.3.31 CH1_LTCH Register (page = 0x00, address = 0x2E) [reset = 0h]  
This register is the latched Interrupt status register for channel 1 fault diagnostic  
Figure 126. CH1_LTCH Register  
7
6
5
4
3
2
1
0
CH1_LTCH[7]  
R-0h  
CH1_LTCH[6]  
R-0h  
CH1_LTCH[5]  
R-0h  
CH1_LTCH[4]  
R-0h  
CH1_LTCH[3]  
R-0h  
CH1_LTCH[2]  
R-0h  
CH1_LTCH[1]  
R-0h  
CH1_LTCH[0]  
R-0h  
Table 82. CH1_LTCH Register Field Descriptions  
Bit  
Field  
CH1_LTCH[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 1 open input fault status (self-clearing bit).  
0b = No open input detected  
1b = Open input detected  
6
5
4
3
2
1
0
CH1_LTCH[6]  
CH1_LTCH[5]  
CH1_LTCH[4]  
CH1_LTCH[3]  
CH1_LTCH[2]  
CH1_LTCH[1]  
CH1_LTCH[0]  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Channel 1 input pair short fault status (self-clearing bit).  
0b = No input pair short detected  
1b = Input short to each other detected  
Channel 1 IN1P short to ground fault status (self-clearing bit).  
0b = IN1P no short to ground detected  
1b = IN1P short to ground detected  
Channel 1 IN1M short to ground fault status (self-clearing bit).  
0b = IN1M no short to ground detected  
1b = IN1M short to ground detected  
Channel 1 IN1P short to MICBIAS fault status (self-clearing bit).  
0b = IN1P no short to MICBIAS detected  
1b = IN1P short to MICBIAS detected  
Channel 1 IN1M short to MICBIAS fault status (self-clearing bit).  
0b = IN1M no short to MICBIAS detected  
1b = IN1M short to MICBIAS detected  
Channel 1 IN1P short to VBAT_IN fault status (self-clearing bit).  
0b = IN1P no short to VBAT_IN detected  
1b = IN1P short to VBAT_IN detected  
Channel 1 IN1M short to VBAT_IN fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-54d, INT_LTCH2 register).  
0b = IN1M no short to VBAT_IN detected  
1b = IN1M short to VBAT_IN detected  
88  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.6.1.3.32 CH2_LTCH Register (page = 0x00, address = 0x2F) [reset = 0h]  
This register is the latched Interrupt status register for channel 2 fault diagnostic.  
Figure 127. CH2_LTCH Register  
7
6
5
4
3
2
1
0
CH2_LTCH[7]  
R-0h  
CH2_LTCH[6]  
R-0h  
CH2_LTCH[5]  
R-0h  
CH2_LTCH[4]  
R-0h  
CH2_LTCH[3]  
R-0h  
CH2_LTCH[2]  
R-0h  
CH2_LTCH[1]  
R-0h  
CH2_LTCH[0]  
R-0h  
Table 83. CH2_LTCH Register Field Descriptions  
Bit  
Field  
CH2_LTCH[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 2 open input fault status (self-clearing bit).  
0b = No open input detected  
1b = Open input detected  
6
5
4
3
2
1
0
CH2_LTCH[6]  
CH2_LTCH[5]  
CH2_LTCH[4]  
CH2_LTCH[3]  
CH2_LTCH[2]  
CH2_LTCH[1]  
CH2_LTCH[0]  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Channel 2 input pair short fault status (self-clearing bit).  
0b = No input pair short detected  
1b = Input short to each other detected  
Channel 2 IN2P short to ground fault status (self-clearing bit).  
0b = IN2P no short to ground detected  
1b = IN2P short to ground detected  
Channel 2 IN2M short to ground fault status (self-clearing bit).  
0b = IN2M no short to ground detected  
1b = IN2M short to ground detected  
Channel 2 IN2P short to MICBIAS fault status (self-clearing bit).  
0b = IN2P no short to MICBIAS detected  
1b = IN2P short to MICBIAS detected  
Channel 2 IN2M short to MICBIAS fault status (self-clearing bit).  
0b = IN2M no short to MICBIAS detected  
1b = IN2M short to MICBIAS detected  
Channel 2 IN2P short to VBAT_IN fault status (self-clearing bit).  
0b = IN2P no short to VBAT_IN detected  
1b = IN2P short to VBAT_IN detected  
Channel 2 IN2M short to VBAT_IN fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-54d, INT_LTCH2 register).  
0b = IN2M no short to VBAT_IN detected  
1b = IN2M short to VBAT_IN detected  
8.6.1.3.33 CH3_LTCH Register (page = 0x00, address = 0x30) [reset = 0h]  
This register is the latched Interrupt status register for channel3 fault diagnostic  
Figure 128. CH3_LTCH Register  
7
6
5
4
3
2
1
0
CH3_LTCH[7]  
R-0h  
CH3_LTCH[6]  
R-0h  
CH3_LTCH[5]  
R-0h  
CH3_LTCH[4]  
R-0h  
CH3_LTCH[3]  
R-0h  
CH3_LTCH[2]  
R-0h  
CH3_LTCH[1]  
R-0h  
CH3_LTCH[0]  
R-0h  
Table 84. CH3_LTCH Register Field Descriptions  
Bit  
Field  
CH3_LTCH[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 3 open input fault status (self-clearing bit).  
0b = No open input detected  
1b = Open input detected  
6
5
4
CH3_LTCH[6]  
CH3_LTCH[5]  
CH3_LTCH[4]  
R
R
R
0h  
0h  
0h  
Channel 3 input pair short fault status (self-clearing bit).  
0b = No input pair short detected  
1b = Input short to each other detected  
Channel 3 IN3P short to ground fault status (self-clearing bit).  
0b = IN3P no short to ground detected  
1b = IN3P short to ground detected  
Channel 3 IN3M short to ground fault status (self-clearing bit).  
0b = IN3M no short to ground detected  
1b = IN3M short to ground detected  
Copyright © 2020, Texas Instruments Incorporated  
89  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 84. CH3_LTCH Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
CH3_LTCH[3]  
R
0h  
Channel 3 IN3P short to MICBIAS fault status (self-clearing bit).  
0b = IN3P no short to MICBIAS detected  
1b = IN3P short to MICBIAS detected  
2
1
0
CH3_LTCH[2]  
CH3_LTCH[1]  
CH3_LTCH[0]  
R
R
R
0h  
0h  
0h  
Channel 3 IN3M short to MICBIAS fault status (self-clearing bit).  
0b = IN3M no short to MICBIAS detected  
1b = IN3M short to MICBIAS detected  
Channel 3 IN3P short to VBAT_IN fault status (self-clearing bit).  
0b = IN3P no short to VBAT_IN detected  
1b = IN3P short to VBAT_IN detected  
Channel 3 IN3M short to VBAT_IN fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-54d, INT_LTCH2 register).  
0b = IN3M no short to VBAT_IN detected  
1b = IN3M short to VBAT_IN detected  
8.6.1.3.34 CH4_LTCH Register (page = 0x00, address = 0x31) [reset = 0h]  
This register is the latched Interrupt status register for channel 4 fault diagnostic.  
Figure 129. CH4_LTCH Register  
7
6
5
4
3
2
1
0
CH4_LTCH[7]  
R-0h  
CH4_LTCH[6]  
R-0h  
CH4_LTCH[5]  
R-0h  
CH4_LTCH[4]  
R-0h  
CH4_LTCH[3]  
R-0h  
CH4_LTCH[2]  
R-0h  
CH4_LTCH[1]  
R-0h  
CH4_LTCH[0]  
R-0h  
Table 85. CH4_LTCH Register Field Descriptions  
Bit  
Field  
CH4_LTCH[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 4 open input fault status (self-clearing bit).  
0b = No open input detected  
1b = Open input detected  
6
5
4
3
2
1
0
CH4_LTCH[6]  
CH4_LTCH[5]  
CH4_LTCH[4]  
CH4_LTCH[3]  
CH4_LTCH[2]  
CH4_LTCH[1]  
CH4_LTCH[0]  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Channel 4 input pair short fault status (self-clearing bit).  
0b = No input pair short detected  
1b = Input short to each other detected  
Channel 4 IN4P short to ground fault status (self-clearing bit).  
0b = IN4P no short to ground detected  
1b = IN4P short to ground detected  
Channel 4 IN4M short to ground fault status (self-clearing bit).  
0b = IN4M no short to ground detected  
1b = IN4M short to ground detected  
Channel 4 IN4P short to MICBIAS fault status (self-clearing bit).  
0b = IN4P no short to MICBIAS detected  
1b = IN4P short to MICBIAS detected  
Channel 4 IN4M short to MICBIAS fault status (self-clearing bit).  
0b = IN4M no short to MICBIAS detected  
1b = IN4M short to MICBIAS detected  
Channel 4 IN4P short to VBAT_IN fault status (self-clearing bit).  
0b = IN4P no short to VBAT_IN detected  
1b = IN4P short to VBAT_IN detected  
Channel 4 IN4M short to VBAT_IN fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-54d, INT_LTCH2 register).  
0b = IN4M no short to VBAT_IN detected  
1b = IN4M short to VBAT_IN detected  
8.6.1.3.35 CH5_LTCH Register (page = 0x00, address = 0x32) [reset = 0h]  
This register is the latched Interrupt status register for channel 5 fault diagnostic. Applicable only for PCM6x60-  
Q1.  
90  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Figure 130. CH5_LTCH Register  
7
6
5
4
3
2
1
0
CH5_LTCH[7]  
R-0h  
CH5_LTCH[6]  
R-0h  
CH5_LTCH[5]  
R-0h  
CH5_LTCH[4]  
R-0h  
CH5_LTCH[3]  
R-0h  
CH5_LTCH[2]  
R-0h  
CH5_LTCH[1]  
R-0h  
CH5_LTCH[0]  
R-0h  
Table 86. CH5_LTCH Register Field Descriptions  
Bit  
Field  
CH5_LTCH[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 5 open input fault status (self-clearing bit).  
0b = No open input detected  
1b = Open input detected  
6
5
4
3
2
1
0
CH5_LTCH[6]  
CH5_LTCH[5]  
CH5_LTCH[4]  
CH5_LTCH[3]  
CH5_LTCH[2]  
CH5_LTCH[1]  
CH5_LTCH[0]  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Channel 5 input pair short fault status (self-clearing bit).  
0b = No input pair short detected  
1b = Input short to each other detected  
Channel 5 IN5P short to ground fault status (self-clearing bit).  
0b = IN5P no short to ground detected  
1b = IN5P short to ground detected  
Channel 5 IN5M short to ground fault status (self-clearing bit).  
0b = IN5M no short to ground detected  
1b = IN5M short to ground detected  
Channel 5 IN5P short to MICBIAS fault status (self-clearing bit).  
0b = IN5P no short to MICBIAS detected  
1b = IN5P short to MICBIAS detected  
Channel 5 IN5M short to MICBIAS fault status (self-clearing bit).  
0b = IN5M no short to MICBIAS detected  
1b = IN5M short to MICBIAS detected  
Channel 5 IN5P short to VBAT_IN fault status (self-clearing bit).  
0b = IN5P no short to VBAT_IN detected  
1b = IN5P short to VBAT_IN detected  
Channel 5 IN5M short to VBAT_IN fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-54d, INT_LTCH2 register).  
0b = IN5M no short to VBAT_IN detected  
1b = IN5M short to VBAT_IN detected  
8.6.1.3.36 CH6_LTCH Register (page = 0x00, address = 0x33) [reset = 0h]  
This register is the latched Interrupt status register for channel 6 fault diagnostic. Applicable only for PCM6x60-  
Q1.  
Figure 131. CH6_LTCH Register  
7
6
5
4
3
2
1
0
CH6_LTCH[7]  
R-0h  
CH6_LTCH[6]  
R-0h  
CH6_LTCH[5]  
R-0h  
CH6_LTCH[4]  
R-0h  
CH6_LTCH[3]  
R-0h  
CH6_LTCH[2]  
R-0h  
CH6_LTCH[1]  
R-0h  
CH6_LTCH[0]  
R-0h  
Table 87. CH6_LTCH Register Field Descriptions  
Bit  
Field  
CH6_LTCH[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 6 open input fault status (self-clearing bit).  
0b = No open input detected  
1b = Open input detected  
6
5
4
3
CH6_LTCH[6]  
CH6_LTCH[5]  
CH6_LTCH[4]  
CH6_LTCH[3]  
R
R
R
R
0h  
0h  
0h  
0h  
Channel 6 input pair short fault status (self-clearing bit).  
0b = No input pair short detected  
1b = Input short to each other detected  
Channel 6 IN6P short to ground fault status (self-clearing bit).  
0b = IN6P no short to ground detected  
1b = IN6P short to ground detected  
Channel 6 IN6M short to ground fault status (self-clearing bit).  
0b = IN6M no short to ground detected  
1b = IN6M short to ground detected  
Channel 6 IN6P short to MICBIAS fault status (self-clearing bit).  
0b = IN6P no short to MICBIAS detected  
1b = IN6P short to MICBIAS detected  
Copyright © 2020, Texas Instruments Incorporated  
91  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 87. CH6_LTCH Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
CH6_LTCH[2]  
R
0h  
Channel 6 IN6M short to MICBIAS fault status (self-clearing bit).  
0b = IN6M no short to MICBIAS detected  
1b = IN6M short to MICBIAS detected  
1
0
CH6_LTCH[1]  
CH6_LTCH[0]  
R
R
0h  
0h  
Channel 6 IN6P short to VBAT_IN fault status (self-clearing bit).  
0b = IN6P no short to VBAT_IN detected  
1b = IN6P short to VBAT_IN detected  
Channel 6 IN6M short to VBAT_IN fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-54d, INT_LTCH2 register).  
0b = IN6M no short to VBAT_IN detected  
1b = IN6M short to VBAT_IN detected  
8.6.1.3.37 INT_MASK3 Register (page = 0x00, address = 0x34) [reset = 0h]  
This register is the interrupt masks register 3.  
Figure 132. INT_MASK3 Register  
7
6
5
4
3
2
1
0
INT_MASK3[7] INT_MASK3[6] INT_MASK3[5] INT_MASK3[4] INT_MASK3[3]  
RW-0h RW-0h RW-0h RW-0h RW-0h  
Reserved  
R-0h  
Table 88. INT_MASK3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_MASK3[7]  
INT_MASK3[6]  
INT_MASK3[5]  
INT_MASK3[4]  
INT_MASK3[3]  
Reserved  
RW  
0h  
INxP over voltage fault mask.  
0b = Unmask  
1b = Mask  
6
RW  
RW  
RW  
RW  
R
0h  
0h  
0h  
0h  
0h  
INxM over voltage fault mask.  
0b = Unmask  
1b = Mask  
5
MICBIAS high current fault mask.  
0b = Unmask  
1b = Mask  
4
MICBIAS low current fault mask.  
0b = Unmask  
1b = Mask  
3
MICBIAS over voltage fault mask.  
0b = Unmask  
1b = Mask  
2-0  
Reserved  
8.6.1.3.38 INT_LTCH1 Register (page = 0x00, address = 0x35) [reset = 0h]  
This register is the latched Interrupt readback register 1.  
Figure 133. INT_LTCH1 Register  
7
6
5
4
3
2
1
0
INT_LTCH1[7] INT_LTCH1[6] INT_LTCH1[5] INT_LTCH1[4] INT_LTCH1[3] INT_LTCH1[2]  
R-0h R-0h R-0h R-0h R-0h R-0h  
Reserved  
R-0h  
Table 89. INT_LTCH1 Register Field Descriptions  
Bit  
Field  
INT_LTCH1[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 1 IN1P over voltage fault status (self-clearing bit - This bit gets  
clear on reading Page-0, Register-46d, CH1_LTCH register).  
0b = No IN1P over voltage fault detected  
1b = IN1P over voltage fault has detected  
92  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 89. INT_LTCH1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
INT_LTCH1[6]  
INT_LTCH1[5]  
INT_LTCH1[4]  
INT_LTCH1[3]  
R
0h  
Channel 2 IN2P over voltage fault status (self-clearing bit - This bit gets  
clear on reading Page-0, Register-47d, CH2_LTCH register).  
0b = No IN2P over voltage fault detected  
1b = IN2P over voltage fault has detected  
5
4
3
R
R
R
0h  
0h  
0h  
Channel 3 IN3P over voltage fault status (self-clearing bit - This bit gets  
clear on reading Page-0, Register-48d, CH3_LTCH register).  
0b = No IN3P over voltage fault detected  
1b = IN3P over voltage fault has detected  
Channel 4 IN4P over voltage fault status (self-clearing bit - This bit gets  
clear on reading Page-0, Register-49d, CH4_LTCH register).  
0b = No IN4P over voltage fault detected  
1b = IN4P over voltage fault has detected  
Channel 5 IN5P over voltage fault status (self-clearing bit - This bit gets  
clear on reading Page-0, Register-50d, CH5_LTCH register). Applicable only  
for PCM6x60-Q1.  
0b = No IN5P over voltage fault detected  
1b = IN5P over voltage fault has detected  
2
INT_LTCH1[2]  
Reserved  
R
R
0h  
0h  
Channel 6 IN6P over voltage fault status (self-clearing bit - This bit gets  
clear on reading Page-0, Register-51d, CH6_LTCH register). Applicable only  
for PCM6x60-Q1.  
0b = No IN6P over voltage fault detected  
1b = IN6P over voltage fault has detected  
1-0  
Reserved  
8.6.1.3.39 INT_LTCH2 Register (page = 0x00, address = 0x36) [reset = 0h]  
This register is the latched Interrupt readback register 2.  
Figure 134. INT_LTCH2 Register  
7
6
5
4
3
2
1
0
INT_LTCH2[7] INT_LTCH2[6] INT_LTCH2[5] INT_LTCH2[4] INT_LTCH2[3] INT_LTCH2[2]  
R-0h R-0h R-0h R-0h R-0h R-0h  
Reserved  
R-0h  
Table 90. INT_LTCH2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
INT_LTCH2[7]  
INT_LTCH2[6]  
INT_LTCH2[5]  
INT_LTCH2[4]  
INT_LTCH2[3]  
R
0h  
Channel 1 IN1M over voltage fault status (self-clearing bit - This bit gets  
clear on reading Page-0, Register-46d, CH1_LTCH register).  
0b = No IN1M over voltage fault detected  
1b = IN1M over voltage fault has detected  
R
R
R
R
0h  
0h  
0h  
0h  
Channel 2 IN2M over voltage fault status (self-clearing bit - This bit gets  
clear on reading Page-0, Register-47d, CH2_LTCH register).  
0b = No IN2M over voltage fault detected  
1b = IN2M over voltage fault has detected  
Channel 3 IN3M over voltage fault status (self-clearing bit - This bit gets  
clear on reading Page-0, Register-48d, CH3_LTCH register).  
0b = No IN3M over voltage fault detected  
1b = IN3M over voltage fault has detected  
Channel 4 IN4M over voltage fault status (self-clearing bit - This bit gets  
clear on reading Page-0, Register-49d, CH4_LTCH register).  
0b = No IN4M over voltage fault detected  
1b = IN4M over voltage fault has detected  
Channel 5 IN5M over voltage fault status (self-clearing bit - This bit gets  
clear on reading Page-0, Register-50d, CH5_LTCH register). Applicable only  
for PCM6x60-Q1.  
0b = No IN5M over voltage fault detected  
1b = IN5M over voltage fault has detected  
Copyright © 2020, Texas Instruments Incorporated  
93  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 90. INT_LTCH2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
INT_LTCH2[2]  
R
0h  
Channel 6 IN6M over voltage fault status (self-clearing bit - This bit gets  
clear on reading Page-0, Register-51d, CH6_LTCH register). Applicable only  
for PCM6x60-Q1.  
0b = No IN6M over voltage fault detected  
1b = IN6M over voltage fault has detected  
1-0  
Reserved  
R
0h  
Reserved  
8.6.1.3.40 INT_LTCH3 Register (page = 0x00, address = 0x37) [reset = 0h]  
This register is the latched Interrupt readback register 3.  
Figure 135. INT_LTCH3 Register  
7
6
5
4
3
2
1
0
INT_LTCH3[7] INT_LTCH3[6] INT_LTCH3[5]  
R-0h R-0h R-0h  
Reserved  
R-0h  
Table 91. INT_LTCH3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LTCH3[7]  
INT_LTCH3[6]  
INT_LTCH3[5]  
Reserved  
R
0h  
Fault status for MICBIAS high current (self-clearing bit).  
0b = No fault detected  
1b = Fault detected  
6
R
R
R
0h  
0h  
0h  
Fault status for MICBIAS low current (self-clearing bit)  
0b = No fault detected  
1b = Fault detected  
5
Fault status for MICBIAS over voltage (self-clearing bit).  
0b = No fault detected  
1b = Fault detected  
4-0  
Reserved  
8.6.1.3.41 MBDIAG_CFG0 Register (page = 0x00, address = 0x38) [reset = BAh]  
This register is the MICBIAS diagnostic configuration register 0.  
Figure 136. MBDIAG_CFG0 Register  
7
6
5
4
3
2
1
0
MBIAS_HIGH_CURR_THRS[7:0]  
RW-BAh  
Table 92. MBDIAG_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MBIAS_HIGH_CURR_THR RW  
S[7:0]  
BAh  
Threshold for MICBIAS high load current fault diagnostic.  
0d to 56d = Reserved  
57d = High load current threshold is set as 0 mA (typ)  
58d = High load current threshold is set as 0.54 mA (typ)  
59d = High load current threshold is set as 1.08 mA (typ)  
60d to 185d = High load current threshold is set as per configuration  
186d = High load current threshold is set as 69.66 mA (typ)  
187d to 241d = High load current threshold is set as per configuration  
242d = High load current threshold is set as 99.90 mA (typ)  
243d to 255d = Reserved  
8.6.1.3.42 MBDIAG_CFG1 Register (page = 0x00, address = 0x39) [reset = 4Bh]  
This register is the MICBIAS diagnostic configuration register 1.  
94  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Figure 137. MBDIAG_CFG1 Register  
7
6
5
4
3
2
1
0
MBIAS_LOW_CURR_THRS[7:0]  
RW-4Bh  
Table 93. MBDIAG_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MBIAS_LOW_CURR_THR RW  
S[7:0]  
4Bh  
Threshold for MICBIAS low load current fault diagnostic.  
0d to 56d = Reserved  
57d = Low load current threshold is set as 0 mA (typ)  
58d = Low load current threshold is set as 0.54 mA (typ)  
59d = Low load current threshold is set as 1.08 mA (typ)  
60d to 74d = Low load current threshold is set as per configuration  
75d = Low load current threshold is set as 9.72 mA (typ)  
76d to 241d = Low load current threshold is set as per configuration  
242d = Low load current threshold is set as 99.90 mA (typ)  
243d to 255d = Reserved  
8.6.1.3.43 MBDIAG_CFG2 Register (page = 0x00, address = 0x3A) [reset = 10h]  
This register is the MICBIAS diagnostic configuration register 2.  
Figure 138. MBDIAG_CFG2 Register  
7
6
5
4
3
2
1
0
PD_MBIAS_FA PD_MBIAS_FA PD_MBIAS_FA PD_MBIAS_FA  
Reserved  
RW-0h  
Reserved  
R-0h  
ULT1  
ULT2  
ULT3  
ULT4  
RW-0h  
RW-0h  
RW-0h  
RW-1h  
Table 94. MBDIAG_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
PD_MBIAS_FAULT1  
PD_MBIAS_FAULT2  
PD_MBIAS_FAULT3  
PD_MBIAS_FAULT4  
RW  
0h  
Powerdown configuration of MICBIAS fault 1  
0b = No powerdown when MICBIAS fault detected  
1b = MICBIAS and all ADC channels gets powerdown when low current fault  
occurs and P0_R40, PD_ON_FLT_CFG = 1d  
1b = MICBIAS and all ADC channels gets powerdown when high current  
fault occurs and P0_R40, PD_ON_FLT_CFG = 2d  
RW  
RW  
RW  
0h  
0h  
1h  
Powerdown configuration of MICBIAS fault 2  
0b = No powerdown when MICBIAS fault detected  
1b = MICBIAS and all ADC channels gets powerdown when over voltage  
fault occurs and P0_R40, PD_ON_FLT_CFG = 1d  
1b = MICBIAS and all ADC channels gets powerdown when low current fault  
occurs and P0_R40, PD_ON_FLT_CFG = 2d  
Powerdown configuration of MICBIAS fault 3  
0b = No powerdown when MICBIAS fault detected  
1b = MICBIAS and all ADC channels gets powerdown when over  
temperature fault occurs and P0_R40, PD_ON_FLT_CFG = 1d  
1b = MICBIAS and all ADC channels gets powerdown when over voltage  
fault occurs and P0_R40, PD_ON_FLT_CFG = 2d  
Powerdown configuration of MICBIAS fault 4  
0b = No powerdown when MICBIAS fault detected  
1b = MICBIAS and all ADC channels gets powerdown when high current  
fault occurs and P0_R40, PD_ON_FLT_CFG = 1d  
1b = MICBIAS and all ADC channels gets powerdown when over  
temperature fault occurs and P0_R40, PD_ON_FLT_CFG = 2d. It is  
recommended to use this setting to protect chip from over temperature fault.  
3
Reserved  
Reserved  
RW  
R
0h  
0h  
Reserved  
Reserved  
2-0  
Copyright © 2020, Texas Instruments Incorporated  
95  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.6.1.3.44 BIAS_CFG Register (page = 0x00, address = 0x3B) [reset = D0h]  
This register is the MICBIAS configuration register.  
Figure 139. BIAS_CFG Register  
7
6
5
4
3
2
1
0
MBIAS_VAL[3:0]  
RW-Dh  
Reserved  
R-0h  
Reserved  
RW-0h  
Table 95. BIAS_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
MBIAS_VAL[3:0]  
RW  
Dh  
MICBIAS value.  
0d = Reserved  
1d = Reserved  
2d = Reserved  
3d = Reserved  
4d = Reserved  
5d = Reserved  
6d = Reserved  
7d = Microphone bias is set to 5 V  
8d = Microphone bias is set to 5.5 V  
9d = Microphone bias is set to 6 V  
10d = Microphone bias is set to 6.5 V  
11d = Microphone bias is set to 7 V  
12d = Microphone bias is set to 7.5 V  
13d = Microphone bias is set to 8 V  
14d = Microphone bias is set to 8.5 V  
15d = Microphone bias is set to 9 V  
3-2  
1-0  
Reserved  
Reserved  
R
0h  
0h  
Reserved  
Reserved  
RW  
8.6.1.3.45 CH1_CFG0 Register (page = 0x00, address = 0x3C) [reset = 10h]  
This register is configuration register 0 for channel 1.  
Figure 140. CH1_CFG0 Register  
7
6
5
4
3
2
1
0
CH1_MIC_IN_  
RANGE  
CH1_INTYP  
RW-0h  
CH1_INSRC[1:0]  
RW-0h  
CH1_DC  
RW-1h  
CH1_PGA_CFG[1:0]  
RW-0h  
CH1_AGCEN  
RW-0h  
RW-0h  
Table 96. CH1_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1_INTYP  
RW  
0h  
Channel 1 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH1_INSRC[1:0]  
RW  
0h  
Channel 1 input configuration.  
0d = Analog differential input  
1d = Analog single-ended input  
2d = Reserved  
3d = Reserved  
4
3
CH1_DC  
RW  
RW  
1h  
0h  
Channel 1 input coupling.  
0d = AC-coupled input  
1d = DC-coupled input  
CH1_MIC_IN_RANGE  
Channel 1 microphone input range.  
0d = Low swing mode; Differential input AC signal full-scale of 2-VRMS  
supported provided DC differential common mode voltage IN1P - IN1M < 4.2  
V. Single-ended AC signal 1-VRMS supported provided DC common mode  
voltage is < 2.1 V.  
1d = High swing mode; Differential Input IN1P-IN1M peak voltage up to  
14.14 V or single ended 7.07 V supported. User rquired to adjust the  
channel gain and digital volume control based on the max signal level used  
in system.  
96  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 96. CH1_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-1  
CH1_PGA_CFG[1:0]  
RW  
0h  
Channel 1 CMRR Configuration.  
0d = High SNR performance mode  
1d = Reserved  
2d = High CMRR performance mode  
3d = Reserved  
0
CH1_AGCEN  
RW  
0h  
Channel 1 automatic gain controller (AGC) setting.  
0d = AGC disabled  
1d = AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108); This must be used only with AC-coupled input  
8.6.1.3.46 CH1_CFG1 Register (page = 0x00, address = 0x3D) [reset = 0h]  
This register is configuration register 1 for channel 1.  
Figure 141. CH1_CFG1 Register  
7
6
5
4
3
2
1
0
CH1_GAIN[5:0]  
RW-0h  
Reserved  
RW-0h  
Reserved  
R-0h  
Table 97. CH1_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
CH1_GAIN[5:0]  
RW  
0h  
Channel 1 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1
0
Reserved  
Reserved  
RW  
R
0h  
0h  
Reserved  
Reserved  
8.6.1.3.47 CH1_CFG2 Register (page = 0x00, address = 0x3E) [reset = C9h]  
This register is configuration register 2 for channel 1.  
Figure 142. CH1_CFG2 Register  
7
6
5
4
3
2
1
0
CH1_DVOL[7:0]  
RW-C9h  
Table 98. CH1_CFG2 Register Field Descriptions  
Bit  
Field  
CH1_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
RW  
C9h  
Channel 1 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.3.48 CH1_CFG3 Register (page = 0x00, address = 0x3F) [reset = 80h]  
This register is configuration register 3 for channel 1.  
Copyright © 2020, Texas Instruments Incorporated  
97  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Figure 143. CH1_CFG3 Register  
7
6
5
4
3
2
1
0
CH1_GCAL[3:0]  
RW-8h  
Reserved  
R-0h  
Table 99. CH1_CFG3 Register Field Descriptions  
Bit  
Field  
CH1_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
RW  
8h  
Channel 1 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.3.49 CH1_CFG4 Register (page = 0x00, address = 0x40) [reset = 0h]  
This register is configuration register 4 for channel 1.  
Figure 144. CH1_CFG4 Register  
7
6
5
4
3
2
1
0
CH1_PCAL[7:0]  
RW-0h  
Table 100. CH1_CFG4 Register Field Descriptions  
Bit  
Field  
CH1_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
RW  
0h  
Channel 1 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.3.50 CH2_CFG0 Register (page = 0x00, address = 0x41) [reset = 10h]  
This register is configuration register 0 for channel 2.  
Figure 145. CH2_CFG0 Register  
7
6
5
4
3
2
1
0
CH2_MIC_IN_  
RANGE  
CH2_INTYP  
RW-0h  
CH2_INSRC[1:0]  
RW-0h  
CH2_DC  
RW-1h  
CH2_PGA_CFG[1:0]  
RW-0h  
CH2_AGCEN  
RW-0h  
RW-0h  
Table 101. CH2_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH2_INTYP  
RW  
0h  
Channel 2 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH2_INSRC[1:0]  
RW  
0h  
Channel 2 input configuration.  
0d = Analog differential input  
1d = Analog single-ended input  
2d = Reserved  
3d = Reserved  
98  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 101. CH2_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
CH2_DC  
RW  
1h  
Channel 2 input coupling.  
0d = AC-coupled input  
1d = DC-coupled input  
3
CH2_MIC_IN_RANGE  
RW  
0h  
Channel 2 microphone input range.  
0d = Low swing mode; Differential input AC signal full-scale of 2-VRMS  
supported provided DC differential common mode voltage IN1P - IN1M < 4.2  
V. Single-ended AC signal 1-VRMS supported provided DC common mode  
voltage is < 2.1 V.  
1d = High swing mode; Differential Input IN1P-IN1M peak voltage up to  
14.14 V or single ended 7.07 V supported. User rquired to adjust the  
channel gain and digital volume control based on the max signal level used  
in system.  
2-1  
0
CH2_PGA_CFG[1:0]  
CH2_AGCEN  
RW  
RW  
0h  
0h  
Channel 2 CMRR Configuration.  
0d = High SNR performance mode  
1d = Reserved  
2d = High CMRR performance mode  
3d = Reserved  
Channel 2 automatic gain controller (AGC) setting.  
0d = AGC disabled  
1d = AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108); This must be used only with AC-coupled input  
8.6.1.3.51 CH2_CFG1 Register (page = 0x00, address = 0x42) [reset = 0h]  
This register is configuration register 1 for channel 2.  
Figure 146. CH2_CFG1 Register  
7
6
5
4
3
2
1
0
CH2_GAIN[5:0]  
RW-0h  
Reserved  
RW-0h  
Reserved  
R-0h  
Table 102. CH2_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
CH2_GAIN[5:0]  
RW  
0h  
Channel 2 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1
0
Reserved  
Reserved  
RW  
R
0h  
0h  
Reserved  
Reserved  
8.6.1.3.52 CH2_CFG2 Register (page = 0x00, address = 0x43) [reset = C9h]  
This register is configuration register 2 for channel 2.  
Figure 147. CH2_CFG2 Register  
7
6
5
4
3
2
1
0
CH2_DVOL[7:0]  
RW-C9h  
Copyright © 2020, Texas Instruments Incorporated  
99  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 103. CH2_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH2_DVOL[7:0]  
RW  
C9h  
Channel 2 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.3.53 CH2_CFG3 Register (page = 0x00, address = 0x44) [reset = 80h]  
This register is configuration register 3 for channel 2.  
Figure 148. CH2_CFG3 Register  
7
6
5
4
3
2
1
0
CH2_GCAL[3:0]  
RW-8h  
Reserved  
R-0h  
Table 104. CH2_CFG3 Register Field Descriptions  
Bit  
Field  
CH2_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
RW  
8h  
Channel 2 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.3.54 CH2_CFG4 Register (page = 0x00, address = 0x45) [reset = 0h]  
This register is configuration register 4 for channel 2.  
Figure 149. CH2_CFG4 Register  
7
6
5
4
3
2
1
0
CH2_PCAL[7:0]  
RW-0h  
Table 105. CH2_CFG4 Register Field Descriptions  
Bit  
Field  
CH2_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
RW  
0h  
Channel 2 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.3.55 CH3_CFG0 Register (page = 0x00, address = 0x46) [reset = 10h]  
This register is configuration register 0 for channel 3.  
100  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Figure 150. CH3_CFG0 Register  
7
6
5
4
3
2
1
0
CH3_MIC_IN_  
RANGE  
CH3_INTYP  
RW-0h  
CH3_INSRC[1:0]  
RW-0h  
CH3_DC  
RW-1h  
CH3_PGA_CFG[1:0]  
RW-0h  
CH3_AGCEN  
RW-0h  
RW-0h  
Table 106. CH3_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH3_INTYP  
RW  
0h  
Channel 3 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH3_INSRC[1:0]  
RW  
0h  
Channel 3 input configuration.  
0d = Analog differential input  
1d = Analog single-ended input  
2d = Reserved  
3d = Reserved  
4
3
CH3_DC  
RW  
RW  
1h  
0h  
Channel 3 input coupling.  
0d = AC-coupled input  
1d = DC-coupled input  
CH3_MIC_IN_RANGE  
Channel 3 microphone input range.  
0d = Low swing mode; Differential input AC signal full-scale of 2-VRMS  
supported provided DC differential common mode voltage IN1P - IN1M < 4.2  
V. Single-ended AC signal 1-VRMS supported provided DC common mode  
voltage is < 2.1 V.  
1d = High swing mode; Differential Input IN1P-IN1M peak voltage up to  
14.14 V or single ended 7.07 V supported. User rquired to adjust the  
channel gain and digital volume control based on the max signal level used  
in system.  
2-1  
0
CH3_PGA_CFG[1:0]  
CH3_AGCEN  
RW  
RW  
0h  
0h  
Channel 3 CMRR Configuration.  
0d = High SNR performance mode  
1d = Reserved  
2d = High CMRR performance mode  
3d = Reserved  
Channel 3 automatic gain controller (AGC) setting.  
0d = AGC disabled  
1d = AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108); This must be used only with AC-coupled input  
8.6.1.3.56 CH3_CFG1 Register (page = 0x00, address = 0x47) [reset = 0h]  
This register is configuration register 1 for channel 3.  
Figure 151. CH3_CFG1 Register  
7
6
5
4
3
2
1
0
CH3_GAIN[5:0]  
RW-0h  
Reserved  
RW-0h  
Reserved  
R-0h  
Table 107. CH3_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
CH3_GAIN[5:0]  
RW  
0h  
Channel 3 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1
0
Reserved  
Reserved  
RW  
R
0h  
0h  
Reserved  
Reserved  
Copyright © 2020, Texas Instruments Incorporated  
101  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.6.1.3.57 CH3_CFG2 Register (page = 0x00, address = 0x48) [reset = C9h]  
This register is configuration register 2 for channel 3.  
Figure 152. CH3_CFG2 Register  
7
6
5
4
3
2
1
0
CH3_DVOL[7:0]  
RW-C9h  
Table 108. CH3_CFG2 Register Field Descriptions  
Bit  
Field  
CH3_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
RW  
C9h  
Channel 3 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.3.58 CH3_CFG3 Register (page = 0x00, address = 0x49) [reset = 80h]  
This register is configuration register 3 for channel 3.  
Figure 153. CH3_CFG3 Register  
7
6
5
4
3
2
1
0
CH3_GCAL[3:0]  
RW-8h  
Reserved  
R-0h  
Table 109. CH3_CFG3 Register Field Descriptions  
Bit  
Field  
CH3_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
RW  
8h  
Channel 3 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.3.59 CH3_CFG4 Register (page = 0x00, address = 0x4A) [reset = 0h]  
This register is configuration register 4 for channel 3.  
Figure 154. CH3_CFG4 Register  
7
6
5
4
3
2
1
0
CH3_PCAL[7:0]  
RW-0h  
102  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 110. CH3_CFG4 Register Field Descriptions  
Bit  
Field  
CH3_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
RW  
0h  
Channel 3 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.3.60 CH4_CFG0 Register (page = 0x00, address = 0x4B) [reset = 10h]  
This register is configuration register 0 for channel 4.  
Figure 155. CH4_CFG0 Register  
7
6
5
4
3
2
1
0
CH4_MIC_IN_  
RANGE  
CH4_INTYP  
RW-0h  
CH4_INSRC[1:0]  
RW-0h  
CH4_DC  
RW-1h  
CH4_PGA_CFG[1:0]  
RW-0h  
CH4_AGCEN  
RW-0h  
RW-0h  
Table 111. CH4_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH4_INTYP  
RW  
0h  
Channel 4 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH4_INSRC[1:0]  
RW  
0h  
Channel 4 input configuration.  
0d = Analog differential input  
1d = Analog single-ended input  
2d = Reserved  
3d = Reserved  
4
3
CH4_DC  
RW  
RW  
1h  
0h  
Channel 4 input coupling.  
0d = AC-coupled input  
1d = DC-coupled input  
CH4_MIC_IN_RANGE  
Channel 4 microphone input range.  
0d = Low swing mode; Differential input AC signal full-scale of 2-VRMS  
supported provided DC differential common mode voltage IN1P - IN1M < 4.2  
V. Single-ended AC signal 1-VRMS supported provided DC common mode  
voltage is < 2.1 V.  
1d = High swing mode; Differential Input IN1P-IN1M peak voltage up to  
14.14 V or single ended 7.07 V supported. User rquired to adjust the  
channel gain and digital volume control based on the max signal level used  
in system.  
2-1  
0
CH4_PGA_CFG[1:0]  
CH4_AGCEN  
RW  
RW  
0h  
0h  
Channel 4 CMRR Configuration.  
0d = High SNR performance mode  
1d = Reserved  
2d = High CMRR performance mode  
3d = Reserved  
Channel 4 automatic gain controller (AGC) setting.  
0d = AGC disabled  
1d = AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108); This must be used only with AC-coupled input  
8.6.1.3.61 CH4_CFG1 Register (page = 0x00, address = 0x4C) [reset = 0h]  
This register is configuration register 1 for channel 4.  
Figure 156. CH4_CFG1 Register  
7
6
5
4
3
2
1
0
CH4_GAIN[5:0]  
RW-0h  
Reserved  
RW-0h  
Reserved  
R-0h  
Copyright © 2020, Texas Instruments Incorporated  
103  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 112. CH4_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
CH4_GAIN[5:0]  
RW  
0h  
Channel 4 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1
0
Reserved  
Reserved  
RW  
R
0h  
0h  
Reserved  
Reserved  
8.6.1.3.62 CH4_CFG2 Register (page = 0x00, address = 0x4D) [reset = C9h]  
This register is configuration register 2 for channel 4.  
Figure 157. CH4_CFG2 Register  
7
6
5
4
3
2
1
0
CH4_DVOL[7:0]  
RW-C9h  
Table 113. CH4_CFG2 Register Field Descriptions  
Bit  
Field  
CH4_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
RW  
C9h  
Channel 4 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.3.63 CH4_CFG3 Register (page = 0x00, address = 0x4E) [reset = 80h]  
This register is configuration register 3 for channel 4.  
Figure 158. CH4_CFG3 Register  
7
6
5
4
3
2
1
0
CH4_GCAL[3:0]  
RW-8h  
Reserved  
R-0h  
Table 114. CH4_CFG3 Register Field Descriptions  
Bit  
Field  
CH4_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
RW  
8h  
Channel 4 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
104  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.6.1.3.64 CH4_CFG4 Register (page = 0x00, address = 0x4F) [reset = 0h]  
This register is configuration register 4 for channel 4.  
Figure 159. CH4_CFG4 Register  
7
6
5
4
3
2
1
0
CH4_PCAL[7:0]  
RW-0h  
Table 115. CH4_CFG4 Register Field Descriptions  
Bit  
Field  
CH4_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
RW  
0h  
Channel 4 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.3.65 CH5_CFG0 Register (page = 0x00, address = 0x50) [reset = 10h]  
This register is configuration register 0 for channel 5.  
Figure 160. CH5_CFG0 Register  
7
6
5
4
3
2
1
0
CH5_MIC_IN_  
RANGE  
CH5_INTYP  
RW-0h  
CH5_INSRC[1:0]  
RW-0h  
CH5_DC  
RW-1h  
CH5_PGA_CFG[1:0]  
RW-0h  
CH5_AGCEN  
RW-0h  
RW-0h  
Table 116. CH5_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH5_INTYP  
RW  
0h  
Channel 5 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH5_INSRC[1:0]  
RW  
0h  
Channel 5 input configuration.  
0d = Analog differential input  
1d = Analog single-ended input  
2d = Reserved  
4
3
CH5_DC  
RW  
RW  
1h  
0h  
Channel 5 input coupling.  
0d = AC-coupled input  
1d = DC-coupled input  
CH5_MIC_IN_RANGE  
Channel 5 microphone input range.  
0d = Low swing mode; Differential input AC signal full-scale of 2-VRMS  
supported provided DC differential common mode voltage IN1P - IN1M < 4.2  
V. Single-ended AC signal 1-VRMS supported provided DC common mode  
voltage is < 2.1 V.  
1d = High swing mode; Differential Input IN1P-IN1M peak voltage up to  
14.14 V or single ended 7.07 V supported. User rquired to adjust the  
channel gain and digital volume control based on the max signal level used  
in system.  
2-1  
0
CH5_PGA_CFG[1:0]  
CH5_AGCEN  
RW  
RW  
0h  
0h  
Channel 5 CMRR Configuration.  
0d = High SNR performance mode  
1d = Reserved  
2d = High CMRR performance mode  
3d = Reserved  
Channel 5 automatic gain controller (AGC) setting.  
0d = AGC disabled  
1d = AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108); This must be used only with AC-coupled input  
Copyright © 2020, Texas Instruments Incorporated  
105  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.6.1.3.66 CH5_CFG1 Register (page = 0x00, address = 0x51) [reset = 0h]  
This register is configuration register 1 for channel 5. Applicable only for PCM6x60-Q1.  
Figure 161. CH5_CFG1 Register  
7
6
5
4
3
2
1
0
CH5_GAIN[5:0]  
RW-0h  
Reserved  
RW-0h  
Reserved  
R-0h  
Table 117. CH5_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
CH5_GAIN[5:0]  
RW  
0h  
Channel 5 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1
0
Reserved  
Reserved  
RW  
R
0h  
0h  
Reserved  
Reserved  
8.6.1.3.67 CH5_CFG2 Register (page = 0x00, address = 0x52) [reset = C9h]  
This register is configuration register 2 for channel 5. Applicable only for PCM6x60-Q1.  
Figure 162. CH5_CFG2 Register  
7
6
5
4
3
2
1
0
CH5_DVOL[7:0]  
RW-C9h  
Table 118. CH5_CFG2 Register Field Descriptions  
Bit  
Field  
CH5_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
RW  
C9h  
Channel 5 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.3.68 CH5_CFG3 Register (page = 0x00, address = 0x53) [reset = 80h]  
This register is configuration register 3 for channel 5. Applicable only for PCM6x60-Q1.  
Figure 163. CH5_CFG3 Register  
7
6
5
4
3
2
1
0
CH5_GCAL[3:0]  
RW-8h  
Reserved  
R-0h  
106  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 119. CH5_CFG3 Register Field Descriptions  
Bit  
Field  
CH5_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
RW  
8h  
Channel 5 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.3.69 CH5_CFG4 Register (page = 0x00, address = 0x54) [reset = 0h]  
This register is configuration register 4 for channel 5. Applicable only for PCM6x60-Q1.  
Figure 164. CH5_CFG4 Register  
7
6
5
4
3
2
1
0
CH5_PCAL[7:0]  
RW-0h  
Table 120. CH5_CFG4 Register Field Descriptions  
Bit  
Field  
CH5_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
RW  
0h  
Channel 5 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.3.70 CH6_CFG0 Register (page = 0x00, address = 0x55) [reset = 10h]  
This register is configuration register 0 for channel 6.  
Figure 165. CH6_CFG0 Register  
7
6
5
4
3
2
1
0
CH6_MIC_IN_  
RANGE  
CH6_INTYP  
RW-0h  
CH6_INSRC[1:0]  
RW-0h  
CH6_DC  
RW-1h  
CH6_PGA_CFG[1:0]  
RW-0h  
CH6_AGCEN  
RW-0h  
RW-0h  
Table 121. CH6_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH6_INTYP  
RW  
0h  
Channel 6 input type.  
0d = Microphone input  
1d = Line input  
6-5  
4
CH6_INSRC[1:0]  
RW  
RW  
0h  
1h  
Channel 6 input configuration.  
0d = Analog differential input  
1d = Analog single-ended input  
2d = Reserved  
CH6_DC  
Channel 6 input coupling.  
0d = AC-coupled input  
1d = DC-coupled input  
Copyright © 2020, Texas Instruments Incorporated  
107  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 121. CH6_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
CH6_MIC_IN_RANGE  
RW  
0h  
Channel 6 microphone input range.  
0d = Low swing mode; Differential input AC signal full-scale of 2-VRMS  
supported provided DC differential common mode voltage IN1P - IN1M < 4.2  
V. Single-ended AC signal 1-VRMS supported provided DC common mode  
voltage is < 2.1 V.  
1d = High swing mode; Differential Input IN1P-IN1M peak voltage up to  
14.14 V or single ended 7.07 V supported. User rquired to adjust the  
channel gain and digital volume control based on the max signal level used  
in system.  
2-1  
0
CH6_PGA_CFG[1:0]  
CH6_AGCEN  
RW  
RW  
0h  
0h  
Channel 6 CMRR Configuration.  
0d = High SNR performance mode  
1d = Reserved  
2d = High CMRR performance mode  
3d = Reserved  
Channel 6 automatic gain controller (AGC) setting.  
0d = AGC disabled  
1d = AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108); This must be used only with AC-coupled input  
8.6.1.3.71 CH6_CFG1 Register (page = 0x00, address = 0x56) [reset = 0h]  
This register is configuration register 1 for channel 6. Applicable only for PCM6x60-Q1.  
Figure 166. CH6_CFG1 Register  
7
6
5
4
3
2
1
0
CH6_GAIN[5:0]  
RW-0h  
Reserved  
RW-0h  
Reserved  
R-0h  
Table 122. CH6_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
CH6_GAIN[5:0]  
RW  
0h  
Channel 6 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1
0
Reserved  
Reserved  
RW  
R
0h  
0h  
Reserved  
Reserved  
8.6.1.3.72 CH6_CFG2 Register (page = 0x00, address = 0x57) [reset = C9h]  
This register is configuration register 2 for channel 6. Applicable only for PCM6x60-Q1.  
Figure 167. CH6_CFG2 Register  
7
6
5
4
3
2
1
0
CH6_DVOL[7:0]  
RW-C9h  
108  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 123. CH6_CFG2 Register Field Descriptions  
Bit  
Field  
CH6_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
RW  
C9h  
Channel 6 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.3.73 CH6_CFG3 Register (page = 0x00, address = 0x58) [reset = 80h]  
This register is configuration register 3 for channel 6. Applicable only for PCM6x60-Q1.  
Figure 168. CH6_CFG3 Register  
7
6
5
4
3
2
1
0
CH6_GCAL[3:0]  
RW-8h  
Reserved  
R-0h  
Table 124. CH6_CFG3 Register Field Descriptions  
Bit  
Field  
CH6_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
RW  
8h  
Channel 6 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.3.74 CH6_CFG4 Register (page = 0x00, address = 0x59) [reset = 0h]  
This register is configuration register 4 for channel 6. Applicable only for PCM6x60-Q1.  
Figure 169. CH6_CFG4 Register  
7
6
5
4
3
2
1
0
CH6_PCAL[7:0]  
RW-0h  
Table 125. CH6_CFG4 Register Field Descriptions  
Bit  
Field  
CH6_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
RW  
0h  
Channel 6 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
8.6.1.3.75 DIAG_CFG0 Register (page = 0x00, address = 0x64) [reset = 0h]  
This register is configuration register 0 for input fault diagnostics setting.  
Copyright © 2020, Texas Instruments Incorporated  
109  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Figure 170. DIAG_CFG0 Register  
7
6
5
4
3
2
1
0
INCL_AC_COU  
P
CH1_DIAG_EN CH2_DIAG_EN CH3_DIAG_EN CH4_DIAG_EN CH5_DIAG_EN CH6_DIAG_EN INCL_SE_INM  
RW-0h RW-0h RW-0h RW-0h RW-0h RW-0h RW-0h  
RW-0h  
Table 126. DIAG_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
CH1_DIAG_EN  
CH2_DIAG_EN  
CH3_DIAG_EN  
CH4_DIAG_EN  
CH5_DIAG_EN  
RW  
0h  
Channel 1 input (IN1P and IN1M) scan for diagnostics.  
0b = Diagnostic disabled  
1b = Diagnostic enabled  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
Channel 2 input (IN2P and IN2M) scan for diagnostics.  
0b = Diagnostic disabled  
1b = Diagnostic enabled  
Channel 3 input (IN3P and IN3M) scan for diagnostics.  
0b = Diagnostic disabled  
1b = Diagnostic enabled  
Channel 4 input (IN4P and IN4M) scan for diagnostics.  
0b = Diagnostic disabled  
1b = Diagnostic enabled  
Channel 5 input (IN5P and IN5M) scan for diagnostics. Applicable only for  
PCM6x60-Q1.  
0b = Diagnostic disabled  
1b = Diagnostic enabled  
2
CH6_DIAG_EN  
RW  
0h  
Channel 6 input (IN6P and IN6M) scan for diagnostics. Applicable only for  
PCM6x60-Q1.  
0b = Diagnostic disabled  
1b = Diagnostic enabled  
1
0
INCL_SE_INM  
RW  
RW  
0h  
0h  
INxM pin diagnostics scan selection for single-ended configuration.  
0b = INxM pins of single-ended channels are excluded for diagnosis  
1b = INxM pins of single-ended channels are included for diagnosis  
INCL_AC_COUP  
AC-coupled channels pins scan selection for diagnostics.  
0b = INxP and INxM pins of AC-coupled channels are excluded for  
diagnosis  
1b = INxP and INxM pins of AC-coupled channels are included for diagnosis  
8.6.1.3.76 DIAG_CFG1 Register (page = 0x00, address = 0x65) [reset = 37h]  
This register is configuration register 1 for input fault diagnostics setting.  
Figure 171. DIAG_CFG1 Register  
7
6
5
4
3
2
1
0
DIAG_SHT_TERM[3:0]  
RW-3h  
DIAG_SHT_VBAT_IN[3:0]  
RW-7h  
Table 127. DIAG_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_SHT_TERM[3:0]  
RW  
3h  
INxP and INxM terminal short detect threshold.  
0d = INxP and INxM terminal short detect threshold value is 0 mV (typ)  
1d = INxP and INxM terminal short detect threshold value is 30 mV (typ)  
2d = INxP and INxM terminal short detect threshold value is 60 mV (typ)  
10d to 13d = INxP and INxM terminal short detect threshold value is set as  
per configuration  
14d = INxP and INxM terminal short detect threshold value is 420 mV (typ)  
15d = INxP and INxM terminal short detect threshold value is 450 mV (typ)  
110  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 127. DIAG_CFG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
DIAG_SHT_VBAT_IN[3:0] RW  
7h  
Short to VBAT_IN detect threshold.  
0d = Short to VBAT_IN detect threshold value is 0 mV (typ)  
1d = Short to VBAT_IN detect threshold value is 30 mV (typ)  
2d = Short to VBAT_IN detect threshold value is 60 mV (typ)  
10d to 13d = Short to VBAT_IN detect threshold value is set as per  
configuration  
14d = Short to VBAT_IN detect threshold value is 420 mV (typ)  
15d = Short to VBAT_IN detect threshold value is 450 mV (typ)  
8.6.1.3.77 DIAG_CFG2 Register (page = 0x00, address = 0x66) [reset = 87h]  
This register is configuration register 2 for input fault diagnostics setting.  
Figure 172. DIAG_CFG2 Register  
7
6
5
4
3
2
1
0
DIAG_SHT_GND[3:0]  
RW-8h  
DIAG_SHT_MICBIAS[3:0]  
RW-7h  
Table 128. DIAG_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_SHT_GND[3:0]  
RW  
8h  
Short to ground detect threshold.  
0d = Short to ground detect threshold value is 0 mV (typ)  
1d = Short to ground detect threshold value is 60 mV (typ)  
2d = Short to ground detect threshold value is 120 mV (typ)  
10d to 13d = Short to ground detect threshold value is set as per  
configuration  
14d = Short to ground detect threshold value is 840 mV (typ)  
15d = Short to ground detect threshold value is 900 mV (typ)  
3-0  
DIAG_SHT_MICBIAS[3:0] RW  
7h  
Short to MICBIAS detect threshold.  
0d = Short to MICBIAS detect threshold value is 0 mV (typ)  
1d = Short to MICBIAS detect threshold value is 30 mV (typ)  
2d = Short to MICBIAS detect threshold value is 60 mV (typ)  
10d to 13d = Short to MICBIAS detect threshold value is set as per  
configuration  
14d = Short to MICBIAS detect threshold value is 420 mV (typ)  
15d = Short to MICBIAS detect threshold value is 450 mV (typ)  
8.6.1.3.78 DIAG_CFG3 Register (page = 0x00, address = 0x67) [reset = B8h]  
This register is configuration register 3 for input fault diagnostics setting.  
Figure 173. DIAG_CFG3 Register  
7
6
5
4
3
2
1
0
VSHORT_DBN DIAG_2X_THR  
RESP_TIME[1:0]  
RW-2h  
Reserved  
RW-3h  
FAULT_DBNCE_SEL[1:0]  
RW-2h  
CE  
ES  
RW-0h  
RW-0h  
Table 129. DIAG_CFG3 Register Field Descriptions  
Bit  
Field  
RESP_TIME[1:0]  
Type  
Reset  
Description  
7-6  
RW  
2h  
Fault monitoring scan repetition rate.  
0d = Countinous back to back scaning of selected channels input pins  
without any idle time  
1d = Fault monitoring repetition rate of 1 ms for selectd channels input pins  
scanning  
2d = Fault monitoring repetition rate of 4 ms for selectd channels input pins  
scanning  
3d = Fault monitoring repetition rate of 8 ms for selectd channels input pins  
scanning  
5-4  
Reserved  
RW  
3h  
Reserved  
Copyright © 2020, Texas Instruments Incorporated  
111  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 129. DIAG_CFG3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-2  
FAULT_DBNCE_SEL[1:0] RW  
2h  
Debounce conut for all the faults (except VBAT_IN short when VBAT_IN <  
MICBIAS).  
0b = 16 counts for debounce to filter-out any false faults detection  
1b = 8 counts for debounce to filter-out any false faults detection  
2b = 4 counts for debounce to filter-out any false faults detection  
3b = No debounce count  
1
0
VSHORT_DBNCE  
DIAG_2X_THRES  
RW  
RW  
0h  
0h  
VBAT_IN short debounce count only when VBAT_IN < MICBIAS.  
0b = 16 counts for debounce to filter-out any false faults detection  
1b = 8 counts for debounce to filter-out any false faults detection  
Diagostic thresholds range scale.  
0d = Thresholds same as configrued in P0_R101 and P0_R102  
1d = All the configruation thresholds gets scale by 2 times  
8.6.1.3.79 DIAG_CFG4 Register (page = 0x00, address = 0x68) [reset = 0h]  
This register is configuration register 4 for input fault diagnostics setting.  
Figure 174. DIAG_CFG4 Register  
7
6
5
4
3
2
1
0
MOV_AVG_DI MOV_AVG_DI  
S_MBIAS_LOA S_TEMP_SEN  
DIAG_MOV_AVG_CFG[1:0]  
RW-0h  
Reserved  
R-0h  
D
S
RW-0h  
RW-0h  
Table 130. DIAG_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DIAG_MOV_AVG_CFG[1:0 RW  
]
0h  
Moving average configuration.  
0d = Moving average disabled  
1d = Moving average enabled with 0.5 weightage for old scaned data and  
new scaned data  
2d = Moving average enabled with 0.75 weightage for old scanned data and  
0.25 weightage for new scanned data  
3d = Reserved  
5
MOV_AVG_DIS_MBIAS_L RW  
OAD  
0h  
Moving average configuration for MICBIAS high and low load current fault  
detection  
0b = Moving average as defined by DIAG_MOV_AVG_CFG setting  
1b = Moving average is forced disabled for MICBIAS load current fault  
detection to achieve faster response time  
4
MOV_AVG_DIS_TEMP_S RW  
ENS  
0h  
0h  
Moving average configuration for over temperature fault detection  
0b = Moving average as defined by DIAG_MOV_AVG_CFG setting  
1b = Moving average is forced disabled for over temperature fault detection  
to achieve faster response time  
3-0  
Reserved  
R
Reserved  
8.6.1.3.80 DSP_CFG0 Register (page = 0x00, address = 0x6B) [reset = 1h]  
This register is the digital signal processor (DSP) configuration register 0.  
Figure 175. DSP_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
DECI_FILT[1:0]  
RW-0h  
CH_SUM[1:0]  
RW-0h  
HPF_SEL[1:0]  
RW-1h  
112  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 131. DSP_CFG0 Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
DECI_FILT[1:0]  
RW  
0h  
Decimation filter response.  
0d = Linear phase  
1d = Low latency  
2d = Ultra-low latency  
3-2  
1-0  
CH_SUM[1:0]  
HPF_SEL[1:0]  
RW  
RW  
0h  
1h  
Channel summation mode for higher SNR  
0d = Channel summation mode is disabled  
1d = 2-channel summation mode is enabled to generate a (CH1 + CH2) / 2  
and a (CH3 + CH4) / 2 output  
2d = 4-channel summation mode is enabled to generate a (CH1 + CH2 +  
CH3 + CH4) / 4 output  
3d = Reserved  
High-pass filter (HPF) selection.  
0d = Programmable first-order IIR filter for a custom HPF with default  
coefficient values in P4_R72 to P4_R83 set as the all-pass filter  
1d = HPF with a cutoff of 0.00025 x fS (12 Hz at fS = 48 kHz) is selected  
2d = HPF with a cutoff of 0.002 x fS (96 Hz at fS = 48 kHz) is selected  
3d = HPF with a cutoff of 0.008 x fS (384 Hz at fS = 48 kHz) is selected  
8.6.1.3.81 DSP_CFG1 Register (page = 0x00, address = 0x6C) [reset = 48h]  
This register is the digital signal processor (DSP) configuration register 1.  
Figure 176. DSP_CFG1 Register  
7
6
5
4
3
2
1
0
DISABLE_SOF  
T_STEP  
DVOL_GANG  
RW-0h  
BIQUAD_CFG[1:0]  
RW-2h  
AGC_SEL  
RW-1h  
Reserved  
RW-0h  
Reserved  
R-0h  
RW-0h  
Table 132. DSP_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DVOL_GANG  
RW  
0h  
DVOL control ganged across channels.  
0d = Each channel has its own DVOL CTRL settings as programmed in the  
CHx_DVOL bits  
1d = All active channels must use the channel 1 DVOL setting (CH1_DVOL)  
irrespective of whether channel 1 is turned on or not  
6-5  
BIQUAD_CFG[1:0]  
RW  
2h  
Number of biquads per channel configuration.  
0d = No biquads per channel; biquads are all disabled  
1d = 1 biquad per channel  
2d = 2 biquads per channel  
3d = 3 biquads per channel  
4
3
DISABLE_SOFT_STEP  
AGC_SEL  
RW  
RW  
0h  
1h  
Soft-stepping disable during DVOL change, mute, and unmute.  
0d = Soft-stepping enabled  
1d = Soft-stepping disabled  
AGC master enable setting.  
0d = Reserved; Write always 1 to this register bit  
1d = AGC selected as configured for each channel using CHx_CFG0  
register  
2
Reserved  
Reserved  
RW  
R
0h  
0h  
Reserved  
Reserved  
1-0  
8.6.1.3.82 AGC_CFG0 Register (page = 0x00, address = 0x70) [reset = E7h]  
This register is the automatic gain controller (AGC) configuration register 0.  
Copyright © 2020, Texas Instruments Incorporated  
113  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Figure 177. AGC_CFG0 Register  
7
6
5
4
3
2
1
0
AGC_LVL[3:0]  
RW-Eh  
AGC_MAXGAIN[3:0]  
RW-7h  
Table 133. AGC_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
AGC_LVL[3:0]  
RW  
Eh  
AGC output signal target level.  
0d = Output signal target level is -6 dB  
1d = Output signal target level is -8 dB  
2d = Output signal target level is -10 dB  
3d to 13d = Output signal target level is as per configuration  
14d = Output signal target level is -34 dB  
15d = Output signal target level is -36 dB  
3-0  
AGC_MAXGAIN[3:0]  
RW  
7h  
AGC maximum gain allowed.  
0d = Maximum gain allowed is 3 dB  
1d = Maximum gain allowed is 6 dB  
2d = Maximum gain allowed is 9 dB  
3d to 11d = Maximum gain allowed is as per configuration  
12d = Maximum gain allowed is 39 dB  
13d = Maximum gain allowed is 42 dB  
14d to 15d = Reserved  
8.6.1.3.83 IN_CH_EN Register (page = 0x00, address = 0x73) [reset = FCh]  
This register is the input channel enable configuration register.  
Figure 178. IN_CH_EN Register  
7
6
5
4
3
2
1
0
IN_CH1_EN  
RW-1h  
IN_CH2_EN  
RW-1h  
IN_CH3_EN  
RW-1h  
IN_CH4_EN  
RW-1h  
IN_CH5_EN  
RW-1h  
IN_CH6_EN  
RW-1h  
Reserved  
RW-0h  
Reserved  
RW-0h  
Table 134. IN_CH_EN Register Field Descriptions  
Bit  
Field  
IN_CH1_EN  
Type  
Reset  
Description  
7
RW  
1h  
Input channel 1 enable setting.  
0d = Channel 1 is disabled  
1d = Channel 1 is enabled  
6
5
4
3
2
IN_CH2_EN  
IN_CH3_EN  
IN_CH4_EN  
IN_CH5_EN  
IN_CH6_EN  
RW  
RW  
RW  
RW  
RW  
1h  
1h  
1h  
1h  
1h  
Input channel 2 enable setting.  
0d = Channel 2 is disabled  
1d = Channel 2 is enabled  
Input channel 3 enable setting.  
0d = Channel 3 is disabled  
1d = Channel 3 is enabled  
Input channel 4 enable setting.  
0d = Channel 4 is disabled  
1d = Channel 4 is enabled  
Input channel 5 enable setting. Applicable only for PCM6x60-Q1.  
0d = Channel 5 is disabled  
1d = Channel 5 is enabled  
Input channel 6 enable setting. Applicable only for PCM6x60-Q1.  
0d = Channel 6 is disabled  
1d = Channel 6 is enabled  
1
0
Reserved  
Reserved  
RW  
RW  
0h  
0h  
Reserved  
Reserved  
8.6.1.3.84 ASI_OUT_CH_EN Register (page = 0x00, address = 0x74) [reset = 0h]  
This register is the ASI output channel enable configuration register.  
114  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Figure 179. ASI_OUT_CH_EN Register  
7
6
5
4
3
2
1
0
ASI_OUT_CH1 ASI_OUT_CH2 ASI_OUT_CH3 ASI_OUT_CH4 ASI_OUT_CH5 ASI_OUT_CH6  
Reserved  
RW-0h  
Reserved  
RW-0h  
_EN  
_EN  
_EN  
_EN  
_EN  
_EN  
RW-0h  
RW-0h  
RW-0h  
RW-0h  
RW-0h  
RW-0h  
Table 135. ASI_OUT_CH_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
ASI_OUT_CH1_EN  
ASI_OUT_CH2_EN  
ASI_OUT_CH3_EN  
ASI_OUT_CH4_EN  
ASI_OUT_CH5_EN  
ASI_OUT_CH6_EN  
RW  
0h  
ASI output channel 1 enable setting.  
0d = Channel 1 output slot is in a tri-state condition  
1d = Channel 1 output slot is enabled  
RW  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
0h  
ASI output channel 2 enable setting.  
0d = Channel 2 output slot is in a tri-state condition  
1d = Channel 2 output slot is enabled  
ASI output channel 3 enable setting.  
0d = Channel 3 output slot is in a tri-state condition  
1d = Channel 3 output slot is enabled  
ASI output channel 4 enable setting.  
0d = Channel 4 output slot is in a tri-state condition  
1d = Channel 4 output slot is enabled  
ASI output channel 5 enable setting. Applicable only for PCM6x60-Q1.  
0d = Channel 5 output slot is in a tri-state condition  
1d = Channel 5 output slot is enabled  
ASI output channel 6 enable setting. Applicable only for PCM6x60-Q1.  
0d = Channel 6 output slot is in a tri-state condition  
1d = Channel 6 output slot is enabled  
1
0
Reserved  
Reserved  
RW  
RW  
0h  
0h  
Reserved  
Reserved  
8.6.1.3.85 PWR_CFG Register (page = 0x00, address = 0x75) [reset = 0h]  
This register is the power-up configuration register.  
Figure 180. PWR_CFG Register  
7
6
5
4
3
2
1
0
DYN_CH_PUP  
D_EN  
MICBIAS_PDZ  
RW-0h  
ADC_PDZ  
RW-0h  
PLL_PDZ  
RW-0h  
DYN_MAXCH_SEL[1:0]  
RW-0h  
Reserved  
RW-0h  
Reserved  
R-0h  
RW-0h  
Table 136. PWR_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MICBIAS_PDZ  
RW  
0h  
Power control for MICBIAS.  
0d = Power down MICBIAS  
1d = Power up MICBIAS  
6
5
4
ADC_PDZ  
RW  
RW  
RW  
0h  
0h  
0h  
Power control for ADC and PDM channels.  
0d = Power down all ADC and PDM channels  
1d = Power up all enabled ADC and PDM channels  
PLL_PDZ  
Power control for the PLL.  
0d = Power down the PLL  
1d = Power up the PLL  
DYN_CH_PUPD_EN  
Dynamic channel power-up, power-down enable.  
0d = Channel power-up, power-down is not supported if any channel  
recording is on  
1d = Channel can be powered up or down individually, even if channel  
recording is on. Do not powered-down channel 1 if this bit is set to '1'  
Copyright © 2020, Texas Instruments Incorporated  
115  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 136. PWR_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-2  
DYN_MAXCH_SEL[1:0]  
RW  
0h  
Dynamic mode maximum channel select configuration.  
0d = Channel 1 and channel 2 are used with dynamic channel power-up,  
power-down feature enabled  
1d = Channel 1 to channel 4 are used with dynamic channel power-up,  
power-down feature enabled  
2d = Channel 1 to channel 6 are used with dynamic channel power-up,  
power-down feature enabled  
1
0
Reserved  
Reserved  
RW  
R
0h  
0h  
Reserved  
Reserved  
8.6.1.3.86 DEV_STS0 Register (page = 0x00, address = 0x76) [reset = 0h]  
This register is the device status value register 0.  
Figure 181. DEV_STS0 Register  
7
6
5
4
3
2
1
0
CH1_STATUS CH2_STATUS CH3_STATUS CH4_STATUS CH5_STATUS CH6_STATUS  
R-0h R-0h R-0h R-0h R-0h R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Table 137. DEV_STS0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
CH1_STATUS  
CH2_STATUS  
CH3_STATUS  
CH4_STATUS  
CH5_STATUS  
CH6_STATUS  
R
0h  
ADC channel 1 power status.  
0d = ADC channel is powered down  
1d = ADC channel is powered up  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
ADC channel 2 power status.  
0d = ADC channel is powered down  
1d = ADC channel is powered up  
ADC channel 3 power status.  
0d = ADC channel is powered down  
1d = ADC channel is powered up  
ADC channel 4 power status.  
0d = ADC channel is powered down  
1d = ADC channel is powered up  
ADC channel 5 power status. Applicable only for PCM6x60-Q1.  
0d = ADC channel is powered down  
1d = ADC channel is powered up  
ADC channel 6 power status. Applicable only for PCM6x60-Q1.  
0d = ADC channel is powered down  
1d = ADC channel is powered up  
1
0
Reserved  
Reserved  
R
R
0h  
0h  
Reserved  
Reserved  
8.6.1.3.87 DEV_STS1 Register (page = 0x00, address = 0x77) [reset = 80h]  
This register is the device status value register 1.  
Figure 182. DEV_STS1 Register  
7
6
5
4
3
2
1
0
CHx_PD_FLT_ ALL_CHx_PD_ MAN_RCV_PD  
MODE_STS[2:0]  
R-4h  
BOOST_STS  
R-0h  
MBIAS_STS  
R-0h  
STS  
FLT_STS  
_FLT_CHK  
R-0h  
R-0h  
RW-0h  
116  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 138. DEV_STS1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
MODE_STS[2:0]  
R
4h  
Device mode status.  
4d = Device is in sleep mode or software shutdown mode  
6d = Device is in active mode with all ADC or PDM channels turned off  
7d = Device is in active mode with at least one ADC or PDM channel turned  
on  
4
3
2
1
0
BOOST_STS  
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Boost power up status.  
0d = Boost is powered down  
1d = Boost is powered up  
MBIAS_STS  
MICBIAS power up status.  
0d = MICBIAS is powered down  
1d = MICBIAS is powered up  
CHx_PD_FLT_STS  
ALL_CHx_PD_FLT_STS  
ADC channel power down status caused by INxx inputs faults.  
0d = No ADC channel is powered down caused by INxx inputs faults  
1d = Atleast a ADC channel is powered down caused by INxx inputs faults  
ADC channel power down status caused by MICBIAS faults.  
0d = No ADC channel is powered down caused by MICBIAS faults  
1d = All ADC channels are powered down caused by MICBIAS faults  
MAN_RCV_PD_FLT_CHK RW  
Manual recovery (self-clearing bit).  
0b = No effect  
1b = Recheck all fault status and re-powerup ADC channels and/or  
MICBIAS if they do not have any faults. Before setting this bit, reset P0_R58  
register and re-configure P0_R58 to desired setting only after manual  
recover gets over.  
8.6.1.4 Register Description: Page = 0x01  
8.6.1.4.1 PAGE_CFG Register (page = 0x01, address = 0x00) [reset = 0h]  
The device memory map is divided into pages. This register sets the page.  
Figure 183. PAGE_CFG Register  
7
6
5
4
3
2
1
0
PAGE[7:0]  
RW-0h  
Table 139. PAGE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PAGE[7:0]  
RW  
0h  
These bits set the device page.  
0d = Page 0  
1d = Page 1  
...  
255d = Page 255  
8.6.1.4.2 MBIAS_LOAD Register (page = 0x01, address = 0x16) [reset = 0h]  
This register is the MICBIAS internal load sink configuration register.  
Figure 184. MBIAS_LOAD Register  
7
6
5
4
3
2
1
0
MICBIAS_INT_  
LOAD_SINK_E  
N
MICBIAS_INT_LOAD_SINK_VAL[2:0]  
RW-0h  
Reserved  
R-0h  
RW-0h  
Copyright © 2020, Texas Instruments Incorporated  
117  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 140. MBIAS_LOAD Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MICBIAS_INT_LOAD_SIN RW  
K_EN  
0h  
MICBIAS internal load sink setting.  
0d = MICBIAS internal load sink is disabled.  
1d = MICBIAS internal load sink is enabled based on D6-4 register bits; This  
setting must be used for single-ended AC-coupled input to support high  
signal swing  
6-4  
MICBIAS_INT_LOAD_SIN RW  
K_VAL[2:0]  
0h  
MICBIAS internal load sink current value  
0d = MICBIAS internal load sink current is set to 0 mA (typ)  
1d = MICBIAS internal load sink current is set to 4.3 mA (typ)  
2d = MICBIAS internal load sink current is set to 8.6 mA (typ)  
3d = MICBIAS internal load sink current is set to 12.9 mA (typ)  
4d = MICBIAS internal load sink current is set to 17.2 mA (typ)  
5d = MICBIAS internal load sink current is set to 21.5 mA (typ)  
6d = MICBIAS internal load sink current is set to 25.8 mA (typ)  
7d = MICBIAS internal load sink current is set to 30.1 mA (typ)  
3-0  
Reserved  
R
0h  
Reserved  
8.6.1.4.3 INT_LIVE0 Register (page = 0x01, address = 0x2C) [reset = 0h]  
This register is the live Interrupt readback register 0.  
Figure 185. INT_LIVE0 Register  
7
6
5
4
3
2
1
0
INT_LIVE0[7]  
R-0h  
INT_LIVE0[6]  
R-0h  
INT_LIVE0[5]  
R-0h  
INT_LIVE0[4]  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Table 141. INT_LIVE0 Register Field Descriptions  
Bit  
Field  
INT_LIVE0[7]  
Type  
Reset  
Description  
7
R
0h  
Fault status for an ASI bus clock error.  
0b = No fault detected  
1b = Fault detected  
6
5
4
INT_LIVE0[6]  
INT_LIVE0[5]  
INT_LIVE0[4]  
R
R
R
0h  
0h  
0h  
Status of PLL lock.  
0b = No PLL lock detected  
1b = PLL lock detected  
Fault status for boost or MICBIAS over temperature.  
0b = No fault detected  
1b = Fault detected  
Fault status for boost or MICBIAS over current.  
0b = No fault detected  
1b = Fault detected  
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
R
R
R
R
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
Reserved  
8.6.1.4.4 CHx_LIVE Register (page = 0x01, address = 0x2D) [reset = 0h]  
This register is the live Interrupt status register for channel level diagnostic summary.  
Figure 186. CHx_LIVE Register  
7
6
5
4
3
2
1
0
STS_CHx_LIV STS_CHx_LIV STS_CHx_LIV STS_CHx_LIV STS_CHx_LIV STS_CHx_LIV STS_CHx_LIV  
Reserved  
R-0h  
E[7]  
E[6]  
E[5]  
E[4]  
E[3]  
E[2]  
E[1]  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
118  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 142. CHx_LIVE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
STS_CHx_LIVE[7]  
STS_CHx_LIVE[6]  
STS_CHx_LIVE[5]  
STS_CHx_LIVE[4]  
STS_CHx_LIVE[3]  
STS_CHx_LIVE[2]  
STS_CHx_LIVE[1]  
R
0h  
Status of CH1_LIVE.  
0b = No faults occurred in channel 1  
1b = Atleast a fault has occurred in channel 1  
6
5
4
3
2
1
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
Status of CH2_LIVE.  
0b = No faults occurred in channel 2  
1b = Atleast a fault has occurred in channel 2  
Status of CH3_LIVE.  
0b = No faults occurred in channel 3  
1b = Atleast a fault has occurred in channel 3  
Status of CH4_LIVE.  
0b = No faults occurred in channel 4  
1b = Atleast a fault has occurred in channel 4  
Status of CH5_LIVE. Applicable only for PCM6x60-Q1.  
0b = No faults occurred in channel 5  
1b = Atleast a fault has occurred in channel 5  
Status of CH6_LIVE. Applicable only for PCM6x60-Q1.  
0b = No faults occurred in channel 6  
1b = Atleast a fault has occurred in channel 6  
Status of short to VBAT_IN fault detected when VBAT_IN is less than  
MICBIAS.  
0b = Short to VBAT_IN fault when VBAT_IN is less than MICBIAS has not  
occurred in any channel  
1b = Short to VBAT_IN fault when VBAT_IN is less than MICBIAS has  
occurred in atleast one channel  
0
Reserved  
R
0h  
Reserved  
8.6.1.4.5 CH1_LIVE Register (page = 0x01, address = 0x2E) [reset = 0h]  
This register is the live Interrupt status register for channel 1 fault diagnostic  
Figure 187. CH1_LIVE Register  
7
6
5
4
3
2
1
0
CH1_LIVE[7]  
R-0h  
CH1_LIVE[6]  
R-0h  
CH1_LIVE[5]  
R-0h  
CH1_LIVE[4]  
R-0h  
CH1_LIVE[3]  
R-0h  
CH1_LIVE[2]  
R-0h  
CH1_LIVE[1]  
R-0h  
CH1_LIVE[0]  
R-0h  
Table 143. CH1_LIVE Register Field Descriptions  
Bit  
Field  
CH1_LIVE[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 1 open input fault status.  
0b = No open input detected  
1b = Open input detected  
6
5
4
3
2
1
CH1_LIVE[6]  
CH1_LIVE[5]  
CH1_LIVE[4]  
CH1_LIVE[3]  
CH1_LIVE[2]  
CH1_LIVE[1]  
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
Channel 1 input pair short fault status.  
0b = No input pair short detected  
1b = Input short to each other detected  
Channel 1 IN1P short to ground fault status.  
0b = IN1P no short to ground detected  
1b = IN1P short to ground detected  
Channel 1 IN1M short to ground fault status.  
0b = IN1M no short to ground detected  
1b = IN1M short to ground detected  
Channel 1 IN1P short to MICBIAS fault status.  
0b = IN1P no short to MICBIAS detected  
1b = IN1P short to MICBIAS detected  
Channel 1 IN1M short to MICBIAS fault status.  
0b = IN1M no short to MICBIAS detected  
1b = IN1M short to MICBIAS detected  
Channel 1 IN1P short to VBAT_IN fault status.  
0b = IN1P no short to VBAT_IN detected  
1b = IN1P short to VBAT_IN detected  
Copyright © 2020, Texas Instruments Incorporated  
119  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 143. CH1_LIVE Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
CH1_LIVE[0]  
R
0h  
Channel 1 IN1M short to VBAT_IN fault status.  
0b = IN1M no short to VBAT_IN detected  
1b = IN1M short to VBAT_IN detected  
8.6.1.4.6 CH2_LIVE Register (page = 0x01, address = 0x2F) [reset = 0h]  
This register is the live Interrupt status register for channel 2 fault diagnostic.  
Figure 188. CH2_LIVE Register  
7
6
5
4
3
2
1
0
CH2_LIVE[7]  
R-0h  
CH2_LIVE[6]  
R-0h  
CH2_LIVE[5]  
R-0h  
CH2_LIVE[4]  
R-0h  
CH2_LIVE[3]  
R-0h  
CH2_LIVE[2]  
R-0h  
CH2_LIVE[1]  
R-0h  
CH2_LIVE[0]  
R-0h  
Table 144. CH2_LIVE Register Field Descriptions  
Bit  
Field  
CH2_LIVE[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 2 open input fault status.  
0b = No open input detected  
1b = Open input detected  
6
5
4
3
2
1
0
CH2_LIVE[6]  
CH2_LIVE[5]  
CH2_LIVE[4]  
CH2_LIVE[3]  
CH2_LIVE[2]  
CH2_LIVE[1]  
CH2_LIVE[0]  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Channel 2 input pair short fault status.  
0b = No input pair short detected  
1b = Input short to each other detected  
Channel 2 IN2P short to ground fault status.  
0b = IN2P no short to ground detected  
1b = IN2P short to ground detected  
Channel 2 IN2M short to ground fault status.  
0b = IN2M no short to ground detected  
1b = IN2M short to ground detected  
Channel 2 IN2P short to MICBIAS fault status.  
0b = IN2P no short to MICBIAS detected  
1b = IN2P short to MICBIAS detected  
Channel 2 IN2M short to MICBIAS fault status.  
0b = IN2M no short to MICBIAS detected  
1b = IN2M short to MICBIAS detected  
Channel 2 IN2P short to VBAT_IN fault status.  
0b = IN2P no short to VBAT_IN detected  
1b = IN2P short to VBAT_IN detected  
Channel 2 IN2M short to VBAT_IN fault status.  
0b = IN2M no short to VBAT_IN detected  
1b = IN2M short to VBAT_IN detected  
8.6.1.4.7 CH3_LIVE Register (page = 0x01, address = 0x30) [reset = 0h]  
This register is the live Interrupt status register for channel3 fault diagnostic  
Figure 189. CH3_LIVE Register  
7
6
5
4
3
2
1
0
CH3_LIVE[7]  
R-0h  
CH3_LIVE[6]  
R-0h  
CH3_LIVE[5]  
R-0h  
CH3_LIVE[4]  
R-0h  
CH3_LIVE[3]  
R-0h  
CH3_LIVE[2]  
R-0h  
CH3_LIVE[1]  
R-0h  
CH3_LIVE[0]  
R-0h  
Table 145. CH3_LIVE Register Field Descriptions  
Bit  
Field  
CH3_LIVE[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 3 open input fault status.  
0b = No open input detected  
1b = Open input detected  
120  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 145. CH3_LIVE Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
CH3_LIVE[6]  
CH3_LIVE[5]  
CH3_LIVE[4]  
CH3_LIVE[3]  
CH3_LIVE[2]  
CH3_LIVE[1]  
CH3_LIVE[0]  
R
0h  
Channel 3 input pair short fault status.  
0b = No input pair short detected  
1b = Input short to each other detected  
5
4
3
2
1
0
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
Channel 3 IN3P short to ground fault status.  
0b = IN3P no short to ground detected  
1b = IN3P short to ground detected  
Channel 3 IN3M short to ground fault status.  
0b = IN3M no short to ground detected  
1b = IN3M short to ground detected  
Channel 3 IN3P short to MICBIAS fault status.  
0b = IN3P no short to MICBIAS detected  
1b = IN3P short to MICBIAS detected  
Channel 3 IN3M short to MICBIAS fault status.  
0b = IN3M no short to MICBIAS detected  
1b = IN3M short to MICBIAS detected  
Channel 3 IN3P short to VBAT_IN fault status.  
0b = IN3P no short to VBAT_IN detected  
1b = IN3P short to VBAT_IN detected  
Channel 3 IN3M short to VBAT_IN fault status.  
0b = IN3M no short to VBAT_IN detected  
1b = IN3M short to VBAT_IN detected  
8.6.1.4.8 CH4_LIVE Register (page = 0x01, address = 0x31) [reset = 0h]  
This register is the live Interrupt status register for channel 4 fault diagnostic.  
Figure 190. CH4_LIVE Register  
7
6
5
4
3
2
1
0
CH4_LIVE[7]  
R-0h  
CH4_LIVE[6]  
R-0h  
CH4_LIVE[5]  
R-0h  
CH4_LIVE[4]  
R-0h  
CH4_LIVE[3]  
R-0h  
CH4_LIVE[2]  
R-0h  
CH4_LIVE[1]  
R-0h  
CH4_LIVE[0]  
R-0h  
Table 146. CH4_LIVE Register Field Descriptions  
Bit  
Field  
CH4_LIVE[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 4 open input fault status.  
0b = No open input detected  
1b = Open input detected  
6
5
4
3
2
1
0
CH4_LIVE[6]  
CH4_LIVE[5]  
CH4_LIVE[4]  
CH4_LIVE[3]  
CH4_LIVE[2]  
CH4_LIVE[1]  
CH4_LIVE[0]  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Channel 4 input pair short fault status.  
0b = No input pair short detected  
1b = Input short to each other detected  
Channel 4 IN4P short to ground fault status.  
0b = IN4P no short to ground detected  
1b = IN4P short to ground detected  
Channel 4 IN4M short to ground fault status.  
0b = IN4M no short to ground detected  
1b = IN4M short to ground detected  
Channel 4 IN4P short to MICBIAS fault status.  
0b = IN4P no short to MICBIAS detected  
1b = IN4P short to MICBIAS detected  
Channel 4 IN4M short to MICBIAS fault status.  
0b = IN4M no short to MICBIAS detected  
1b = IN4M short to MICBIAS detected  
Channel 4 IN4P short to VBAT_IN fault status.  
0b = IN4P no short to VBAT_IN detected  
1b = IN4P short to VBAT_IN detected  
Channel 4 IN4M short to VBAT_IN fault status.  
0b = IN4M no short to VBAT_IN detected  
1b = IN4M short to VBAT_IN detected  
Copyright © 2020, Texas Instruments Incorporated  
121  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.6.1.4.9 CH5_LIVE Register (page = 0x01, address = 0x32) [reset = 0h]  
This register is the live Interrupt status register for channel 5 fault diagnostic. Applicable only for PCM6x60-Q1.  
Figure 191. CH5_LIVE Register  
7
6
5
4
3
2
1
0
CH5_LIVE[7]  
R-0h  
CH5_LIVE[6]  
R-0h  
CH5_LIVE[5]  
R-0h  
CH5_LIVE[4]  
R-0h  
CH5_LIVE[3]  
R-0h  
CH5_LIVE[2]  
R-0h  
CH5_LIVE[1]  
R-0h  
CH5_LIVE[0]  
R-0h  
Table 147. CH5_LIVE Register Field Descriptions  
Bit  
Field  
CH5_LIVE[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 5 open input fault status.  
0b = No open input detected  
1b = Open input detected  
6
5
4
3
2
1
0
CH5_LIVE[6]  
CH5_LIVE[5]  
CH5_LIVE[4]  
CH5_LIVE[3]  
CH5_LIVE[2]  
CH5_LIVE[1]  
CH5_LIVE[0]  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Channel 5 input pair short fault status.  
0b = No input pair short detected  
1b = Input short to each other detected  
Channel 5 IN5P short to ground fault status.  
0b = IN5P no short to ground detected  
1b = IN5P short to ground detected  
Channel 5 IN5M short to ground fault status.  
0b = IN5M no short to ground detected  
1b = IN5M short to ground detected  
Channel 5 IN5P short to MICBIAS fault status.  
0b = IN5P no short to MICBIAS detected  
1b = IN5P short to MICBIAS detected  
Channel 5 IN5M short to MICBIAS fault status.  
0b = IN5M no short to MICBIAS detected  
1b = IN5M short to MICBIAS detected  
Channel 5 IN5P short to VBAT_IN fault status.  
0b = IN5P no short to VBAT_IN detected  
1b = IN5P short to VBAT_IN detected  
Channel 5 IN5M short to VBAT_IN fault status.  
0b = IN5M no short to VBAT_IN detected  
1b = IN5M short to VBAT_IN detected  
8.6.1.4.10 CH6_LIVE Register (page = 0x01, address = 0x33) [reset = 0h]  
This register is the live Interrupt status register for channel 6 fault diagnostic. Applicable only for PCM6x60-Q1.  
Figure 192. CH6_LIVE Register  
7
6
5
4
3
2
1
0
CH6_LIVE[7]  
R-0h  
CH6_LIVE[6]  
R-0h  
CH6_LIVE[5]  
R-0h  
CH6_LIVE[4]  
R-0h  
CH6_LIVE[3]  
R-0h  
CH6_LIVE[2]  
R-0h  
CH6_LIVE[1]  
R-0h  
CH6_LIVE[0]  
R-0h  
Table 148. CH6_LIVE Register Field Descriptions  
Bit  
Field  
CH6_LIVE[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 6 open input fault status.  
0b = No open input detected  
1b = Open input detected  
6
5
4
CH6_LIVE[6]  
CH6_LIVE[5]  
CH6_LIVE[4]  
R
R
R
0h  
0h  
0h  
Channel 6 input pair short fault status.  
0b = No input pair short detected  
1b = Input short to each other detected  
Channel 6 IN6P short to ground fault status.  
0b = IN6P no short to ground detected  
1b = IN6P short to ground detected  
Channel 6 IN6M short to ground fault status.  
0b = IN6M no short to ground detected  
1b = IN6M short to ground detected  
122  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 148. CH6_LIVE Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
CH6_LIVE[3]  
CH6_LIVE[2]  
CH6_LIVE[1]  
CH6_LIVE[0]  
R
0h  
Channel 6 IN6P short to MICBIAS fault status.  
0b = IN6P no short to MICBIAS detected  
1b = IN6P short to MICBIAS detected  
2
1
0
R
R
R
0h  
0h  
0h  
Channel 6 IN6M short to MICBIAS fault status.  
0b = IN6M no short to MICBIAS detected  
1b = IN6M short to MICBIAS detected  
Channel 6 IN6P short to VBAT_IN fault status.  
0b = IN6P no short to VBAT_IN detected  
1b = IN6P short to VBAT_IN detected  
Channel 6 IN6M short to VBAT_IN fault status.  
0b = IN6M no short to VBAT_IN detected  
1b = IN6M short to VBAT_IN detected  
8.6.1.4.11 INT_LIVE1 Register (page = 0x01, address = 0x35) [reset = 0h]  
This register is the live Interrupt readback register 1.  
Figure 193. INT_LIVE1 Register  
7
6
5
4
3
2
1
0
INT_LIVE1[7]  
R-0h  
INT_LIVE1[6]  
R-0h  
INT_LIVE1[5]  
R-0h  
INT_LIVE1[4]  
R-0h  
INT_LIVE1[3]  
R-0h  
INT_LIVE1[2]  
R-0h  
Reserved  
R-0h  
Table 149. INT_LIVE1 Register Field Descriptions  
Bit  
Field  
INT_LIVE1[7]  
Type  
Reset  
Description  
7
R
0h  
Channel 1 IN1P over voltage fault status.  
0b = No IN1P over voltage fault detected  
1b = IN1P over voltage fault has detected  
6
5
INT_LIVE1[6]  
INT_LIVE1[5]  
INT_LIVE1[4]  
INT_LIVE1[3]  
INT_LIVE1[2]  
Reserved  
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
Channel 2 IN2P over voltage fault status.  
0b = No IN2P over voltage fault detected  
1b = IN2P over voltage fault has detected  
Channel 3 IN3P over voltage fault status.  
0b = No IN3P over voltage fault detected  
1b = IN3P over voltage fault has detected  
4
Channel 4 IN4P over voltage fault status.  
0b = No IN4P over voltage fault detected  
1b = IN4P over voltage fault has detected  
3
Channel 5 IN5P over voltage fault status. Applicable only for PCM6x60-Q1.  
0b = No IN5P over voltage fault detected  
1b = IN5P over voltage fault has detected  
2
Channel 6 IN6P over voltage fault status. Applicable only for PCM6x60-Q1.  
0b = No IN6P over voltage fault detected  
1b = IN6P over voltage fault has detected  
1-0  
Reserved  
8.6.1.4.12 INT_LIVE3 Register (page = 0x01, address = 0x37) [reset = 0h]  
This register is the live Interrupt readback register 3.  
Figure 194. INT_LIVE3 Register  
7
6
5
4
3
2
1
0
INT_LIVE3[7]  
R-0h  
INT_LIVE3[6]  
R-0h  
INT_LIVE3[5]  
R-0h  
Reserved  
R-0h  
Copyright © 2020, Texas Instruments Incorporated  
123  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 150. INT_LIVE3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LIVE3[7]  
R
0h  
Fault status for MICBIAS high current.  
0b = No fault detected  
1b = Fault detected  
6
5
INT_LIVE3[6]  
INT_LIVE3[5]  
Reserved  
R
R
R
0h  
0h  
0h  
Fault status for MICBIAS low current  
0b = No fault detected  
1b = Fault detected  
Fault status for MICBIAS over voltage.  
0b = No fault detected  
1b = Fault detected  
4-0  
Reserved  
8.6.1.4.13 DIAGDATA_CFG Register (page = 0x01, address = 0x59) [reset = 0h]  
This register is the diagnostic data configuration register.  
Figure 195. DIAGDATA_CFG Register  
7
6
5
4
3
2
1
0
HOLD_SAR_D  
ATA  
Reserved  
RW-0h  
Reserved  
R-0h  
RW-0h  
Table 151. DIAGDATA_CFG Register Field Descriptions  
Bit  
7-4  
3-1  
0
Field  
Type  
RW  
R
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
0h  
Reserved  
HOLD_SAR_DATA  
RW  
0h  
Hold SAR data update during register readback.  
0b= Data update is not held, data register is continuously updated; this  
setting must be used when moving average is enabled for fault detection  
1b= Data update is held, data register readback can be done  
8.6.1.4.14 DIAG_MON_MSB_VBAT Register (page = 0x01, address = 0x5A) [reset = 0h]  
This register is the MSB data byte of VBAT_IN monitoring.  
Figure 196. DIAG_MON_MSB_VBAT Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_VBAT[7:0]  
R-0h  
Table 152. DIAG_MON_MSB_VBAT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_VBAT[7:  
0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.15 DIAG_MON_LSB_VBAT Register (page = 0x01, address = 0x5B) [reset = 0h]  
This register is the LSB data nibble of VBAT_IN monitoring.  
Figure 197. DIAG_MON_LSB_VBAT Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_VBAT[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-0h  
124  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 153. DIAG_MON_LSB_VBAT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_VBAT[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
0h  
Channel ID value  
8.6.1.4.16 DIAG_MON_MSB_MBIAS Register (page = 0x01, address = 0x5C) [reset = 0h]  
This register is the MSB data byte of MICBIAS monitoring.  
Figure 198. DIAG_MON_MSB_MBIAS Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_MBIAS[7:0]  
R-0h  
Table 154. DIAG_MON_MSB_MBIAS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_MBIAS[  
7:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.17 DIAG_MON_LSB_MBIAS Register (page = 0x01, address = 0x5D) [reset = 1h]  
This register is the LSB data nibble of MICBIAS monitoring.  
Figure 199. DIAG_MON_LSB_MBIAS Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_MBIAS[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-1h  
Table 155. DIAG_MON_LSB_MBIAS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_MBIAS[3  
:0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
1h  
Channel ID value  
8.6.1.4.18 DIAG_MON_MSB_IN1P Register (page = 0x01, address = 0x5E) [reset = 0h]  
This register is the MSB data byte of IN1P monitoring.  
Figure 200. DIAG_MON_MSB_IN1P Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH1P[7:0]  
R-0h  
Table 156. DIAG_MON_MSB_IN1P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH1P[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.19 DIAG_MON_LSB_IN1P Register (page = 0x01, address = 0x5F) [reset = 2h]  
This register is the LSB data nibble of IN1P monitoring.  
Copyright © 2020, Texas Instruments Incorporated  
125  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Figure 201. DIAG_MON_LSB_IN1P Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH1P[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-2h  
Table 157. DIAG_MON_LSB_IN1P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH1P[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
2h  
Channel ID value  
8.6.1.4.20 DIAG_MON_MSB_IN1M Register (page = 0x01, address = 0x60) [reset = 0h]  
This register is the MSB data byte of IN1M monitoring.  
Figure 202. DIAG_MON_MSB_IN1M Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH1N[7:0]  
R-0h  
Table 158. DIAG_MON_MSB_IN1M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH1N[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.21 DIAG_MON_LSB_IN1M Register (page = 0x01, address = 0x61) [reset = 3h]  
This register is the LSB data nibble of IN1M monitoring.  
Figure 203. DIAG_MON_LSB_IN1M Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH1N[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-3h  
Table 159. DIAG_MON_LSB_IN1M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH1N[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
3h  
Channel ID value  
8.6.1.4.22 DIAG_MON_MSB_IN2P Register (page = 0x01, address = 0x62) [reset = 0h]  
This register is the MSB data byte of IN2P monitoring.  
Figure 204. DIAG_MON_MSB_IN2P Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH2P[7:0]  
R-0h  
Table 160. DIAG_MON_MSB_IN2P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH2P[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
126  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.6.1.4.23 DIAG_MON_LSB_IN2P Register (page = 0x01, address = 0x63) [reset = 4h]  
This register is the LSB data nibble of IN2P monitoring.  
Figure 205. DIAG_MON_LSB_IN2P Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH2P[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-4h  
Table 161. DIAG_MON_LSB_IN2P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH2P[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
4h  
Channel ID value  
8.6.1.4.24 DIAG_MON_MSB_IN2M Register (page = 0x01, address = 0x64) [reset = 0h]  
This register is the MSB data byte of IN2M monitoring.  
Figure 206. DIAG_MON_MSB_IN2M Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH2N[7:0]  
R-0h  
Table 162. DIAG_MON_MSB_IN2M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH2N[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.25 DIAG_MON_LSB_IN2M Register (page = 0x01, address = 0x65) [reset = 5h]  
This register is the LSB data nibble of IN2M monitoring.  
Figure 207. DIAG_MON_LSB_IN2M Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH2N[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-5h  
Table 163. DIAG_MON_LSB_IN2M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH2N[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
5h  
Channel ID value  
8.6.1.4.26 DIAG_MON_MSB_IN3P Register (page = 0x01, address = 0x66) [reset = 0h]  
This register is the MSB data byte of IN3P monitoring.  
Figure 208. DIAG_MON_MSB_IN3P Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH3P[7:0]  
R-0h  
Copyright © 2020, Texas Instruments Incorporated  
127  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 164. DIAG_MON_MSB_IN3P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH3P[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.27 DIAG_MON_LSB_IN3P Register (page = 0x01, address = 0x67) [reset = 6h]  
This register is the LSB data nibble of IN3P monitoring.  
Figure 209. DIAG_MON_LSB_IN3P Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH3P[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-6h  
Table 165. DIAG_MON_LSB_IN3P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH3P[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
6h  
Channel ID value  
8.6.1.4.28 DIAG_MON_MSB_IN3M Register (page = 0x01, address = 0x68) [reset = 0h]  
This register is the MSB data byte of IN3M monitoring.  
Figure 210. DIAG_MON_MSB_IN3M Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH3N[7:0]  
R-0h  
Table 166. DIAG_MON_MSB_IN3M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH3N[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.29 DIAG_MON_LSB_IN3M Register (page = 0x01, address = 0x69) [reset = 7h]  
This register is the LSB data nibble of IN3M monitoring.  
Figure 211. DIAG_MON_LSB_IN3M Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH3N[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-7h  
Table 167. DIAG_MON_LSB_IN3M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH3N[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
7h  
Channel ID value  
8.6.1.4.30 DIAG_MON_MSB_IN4P Register (page = 0x01, address = 0x6A) [reset = 0h]  
This register is the MSB data byte of IN4P monitoring.  
128  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Figure 212. DIAG_MON_MSB_IN4P Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH4P[7:0]  
R-0h  
Table 168. DIAG_MON_MSB_IN4P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH4P[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.31 DIAG_MON_LSB_IN4P Register (page = 0x01, address = 0x6B) [reset = 8h]  
This register is the LSB data nibble of IN4P monitoring.  
Figure 213. DIAG_MON_LSB_IN4P Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH4P[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-8h  
Table 169. DIAG_MON_LSB_IN4P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH4P[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
8h  
Channel ID value  
8.6.1.4.32 DIAG_MON_MSB_IN4M Register (page = 0x01, address = 0x6C) [reset = 0h]  
This register is the MSB data byte of IN4M monitoring.  
Figure 214. DIAG_MON_MSB_IN4M Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH4N[7:0]  
R-0h  
Table 170. DIAG_MON_MSB_IN4M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH4N[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.33 DIAG_MON_LSB_IN4M Register (page = 0x01, address = 0x6D) [reset = 9h]  
This register is the LSB data nibble of IN4M monitoring.  
Figure 215. DIAG_MON_LSB_IN4M Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH4N[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-9h  
Table 171. DIAG_MON_LSB_IN4M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH4N[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
9h  
Channel ID value  
Copyright © 2020, Texas Instruments Incorporated  
129  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.6.1.4.34 DIAG_MON_MSB_IN5P Register (page = 0x01, address = 0x6E) [reset = 0h]  
This register is the MSB data byte of IN5P monitoring. Applicable only for PCM6x60-Q1.  
Figure 216. DIAG_MON_MSB_IN5P Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH5P[7:0]  
R-0h  
Table 172. DIAG_MON_MSB_IN5P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH5P[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.35 DIAG_MON_LSB_IN5P Register (page = 0x01, address = 0x6F) [reset = Ah]  
This register is the LSB data nibble of IN5P monitoring. Applicable only for PCM6x60-Q1.  
Figure 217. DIAG_MON_LSB_IN5P Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH5P[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-Ah  
Table 173. DIAG_MON_LSB_IN5P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH5P[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
Ah  
Channel ID value  
8.6.1.4.36 DIAG_MON_MSB_IN5M Register (page = 0x01, address = 0x70) [reset = 0h]  
This register is the MSB data byte of IN5M monitoring. Applicable only for PCM6x60-Q1.  
Figure 218. DIAG_MON_MSB_IN5M Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH5N[7:0]  
R-0h  
Table 174. DIAG_MON_MSB_IN5M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH5N[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.37 DIAG_MON_LSB_IN5M Register (page = 0x01, address = 0x71) [reset = Bh]  
This register is the LSB data nibble of IN5M monitoring. Applicable only for PCM6x60-Q1.  
Figure 219. DIAG_MON_LSB_IN5M Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH5N[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-Bh  
Table 175. DIAG_MON_LSB_IN5M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH5N[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
130  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Table 175. DIAG_MON_LSB_IN5M Register Field Descriptions (continued)  
Bit  
Field  
CHANNEL_ID[3:0]  
Type  
Reset  
Description  
Channel ID value  
3-0  
R
Bh  
8.6.1.4.38 DIAG_MON_MSB_IN6P Register (page = 0x01, address = 0x72) [reset = 0h]  
This register is the MSB data byte of IN6P monitoring. Applicable only for PCM6x60-Q1.  
Figure 220. DIAG_MON_MSB_IN6P Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH6P[7:0]  
R-0h  
Table 176. DIAG_MON_MSB_IN6P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH6P[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.39 DIAG_MON_LSB_IN6P Register (page = 0x01, address = 0x73) [reset = Ch]  
This register is the LSB data nibble of IN6P monitoring. Applicable only for PCM6x60-Q1.  
Figure 221. DIAG_MON_LSB_IN6P Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH6P[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-Ch  
Table 177. DIAG_MON_LSB_IN6P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH6P[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
Ch  
Channel ID value  
8.6.1.4.40 DIAG_MON_MSB_IN6M Register (page = 0x01, address = 0x74) [reset = 0h]  
This register is the MSB data byte of IN6M monitoring. Applicable only for PCM6x60-Q1.  
Figure 222. DIAG_MON_MSB_IN6M Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH6N[7:0]  
R-0h  
Table 178. DIAG_MON_MSB_IN6M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH6N[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.41 DIAG_MON_LSB_IN6M Register (page = 0x01, address = 0x75) [reset = Dh]  
This register is the LSB data nibble of IN6M monitoring. Applicable only for PCM6x60-Q1.  
Figure 223. DIAG_MON_LSB_IN6M Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH6N[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-Dh  
Copyright © 2020, Texas Instruments Incorporated  
131  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Table 179. DIAG_MON_LSB_IN6M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH6N[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
Dh  
Channel ID value  
8.6.1.4.42 DIAG_MON_MSB_TEMP Register (page = 0x01, address = 0x76) [reset = 0h]  
This register is the MSB data byte of temperature monitoring.  
Figure 224. DIAG_MON_MSB_TEMP Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_TEMP[7:0]  
R-0h  
Table 180. DIAG_MON_MSB_TEMP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_TEMP[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.43 DIAG_MON_LSB_TEMP Register (page = 0x01, address = 0x77) [reset = Eh]  
This register is the LSB data nibble of temperature monitoring.  
Figure 225. DIAG_MON_LSB_TEMP Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_TEMP[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-Eh  
Table 181. DIAG_MON_LSB_TEMP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_TEMP[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
Eh  
Channel ID value  
8.6.1.4.44 DIAG_MON_MSB_LOAD Register (page = 0x01, address = 0x78) [reset = 0h]  
This register is the MSB data byte of MICBIAS load current monitoring.  
Figure 226. DIAG_MON_MSB_LOAD Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_LOAD[7:0]  
R-0h  
Table 182. DIAG_MON_MSB_LOAD Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_LOAD[7  
:0]  
R
0h  
Diagnostic SAR monitor data MSB byte  
8.6.1.4.45 DIAG_MON_LSB_LOAD Register (page = 0x01, address = 0x79) [reset = Fh]  
This register is the LSB data nibble of MICBIAS load current monitoring.  
132  
Copyright © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Figure 227. DIAG_MON_LSB_LOAD Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_LOAD[3:0]  
R-0h  
CHANNEL_ID[3:0]  
R-Fh  
Table 183. DIAG_MON_LSB_LOAD Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_LOAD[3:  
0]  
R
0h  
Diagnostic SAR monitor data LSB nibble  
3-0  
CHANNEL_ID[3:0]  
R
Fh  
Channel ID value  
版权 © 2020, Texas Instruments Incorporated  
133  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.6.2 Programmable Coefficient Registers  
8.6.2.1 Programmable Coefficient Registers: Page = 0x02  
This register page (shown in Register Description: Page = 0x00 ) consists of the programmable coefficients for  
the biquad 1 to biquad 6 filters. To optimize the coefficients register transaction time for page 2, page 3, and  
page 4, the device also supports (by default) auto-incremented pages for the I2C and SPI burst writes and reads.  
After a transaction of register address 0x7F, the device auto increments to the next page at register 0x08 to  
transact the next coefficient value. These programmable coefficients are 32-bit, two’s complement numbers.  
184. Page 0x02 Programmable Coefficient Registers  
ADDRESS  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
REGISTER  
RESET  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
DESCRIPTION  
PAGE[7:0]  
Device page register  
BQ1_N0_BYT1[7:0]  
BQ1_N0_BYT2[7:0]  
BQ1_N0_BYT3[7:0]  
BQ1_N0_BYT4[7:0]  
BQ1_N1_BYT1[7:0]  
BQ1_N1_BYT2[7:0]  
BQ1_N1_BYT3[7:0]  
BQ1_N1_BYT4[7:0]  
BQ1_N2_BYT1[7:0]  
BQ1_N2_BYT2[7:0]  
BQ1_N2_BYT3[7:0]  
BQ1_N2_BYT4[7:0]  
BQ1_D1_BYT1[7:0]  
BQ1_D1_BYT2[7:0]  
BQ1_D1_BYT3[7:0]  
BQ1_D1_BYT4[7:0]  
BQ1_D2_BYT1[7:0]  
BQ1_D2_BYT2[7:0]  
BQ1_D2_BYT3[7:0]  
BQ1_D2_BYT4[7:0]  
BQ2_N0_BYT1[7:0]  
BQ2_N0_BYT2[7:0]  
BQ2_N0_BYT3[7:0]  
BQ2_N0_BYT4[7:0]  
BQ2_N1_BYT1[7:0]  
BQ2_N1_BYT2[7:0]  
BQ2_N1_BYT3[7:0]  
BQ2_N1_BYT4[7:0]  
BQ2_N2_BYT1[7:0]  
BQ2_N2_BYT2[7:0]  
BQ2_N2_BYT3[7:0]  
BQ2_N2_BYT4[7:0]  
BQ2_D1_BYT1[7:0]  
BQ2_D1_BYT2[7:0]  
BQ2_D1_BYT3[7:0]  
BQ2_D1_BYT4[7:0]  
BQ2_D2_BYT1[7:0]  
BQ2_D2_BYT2[7:0]  
BQ2_D2_BYT3[7:0]  
BQ2_D2_BYT4[7:0]  
BQ3_N0_BYT1[7:0]  
BQ3_N0_BYT2[7:0]  
Programmable biquad 1, N0 coefficient byte[31:24]  
Programmable biquad 1, N0 coefficient byte[23:16]  
Programmable biquad 1, N0 coefficient byte[15:8]  
Programmable biquad 1, N0 coefficient byte[7:0]  
Programmable biquad 1, N1 coefficient byte[31:24]  
Programmable biquad 1, N1 coefficient byte[23:16]  
Programmable biquad 1, N1 coefficient byte[15:8]  
Programmable biquad 1, N1 coefficient byte[7:0]  
Programmable biquad 1, N2 coefficient byte[31:24]  
Programmable biquad 1, N2 coefficient byte[23:16]  
Programmable biquad 1, N2 coefficient byte[15:8]  
Programmable biquad 1, N2 coefficient byte[7:0]  
Programmable biquad 1, D1 coefficient byte[31:24]  
Programmable biquad 1, D1 coefficient byte[23:16]  
Programmable biquad 1, D1 coefficient byte[15:8]  
Programmable biquad 1, D1 coefficient byte[7:0]  
Programmable biquad 1, D2 coefficient byte[31:24]  
Programmable biquad 1, D2 coefficient byte[23:16]  
Programmable biquad 1, D2 coefficient byte[15:8]  
Programmable biquad 1, D2 coefficient byte[7:0]  
Programmable biquad 2, N0 coefficient byte[31:24]  
Programmable biquad 2, N0 coefficient byte[23:16]  
Programmable biquad 2, N0 coefficient byte[15:8]  
Programmable biquad 2, N0 coefficient byte[7:0]  
Programmable biquad 2, N1 coefficient byte[31:24]  
Programmable biquad 2, N1 coefficient byte[23:16]  
Programmable biquad 2, N1 coefficient byte[15:8]  
Programmable biquad 2, N1 coefficient byte[7:0]  
Programmable biquad 2, N2 coefficient byte[31:24]  
Programmable biquad 2, N2 coefficient byte[23:16]  
Programmable biquad 2, N2 coefficient byte[15:8]  
Programmable biquad 2, N2 coefficient byte[7:0]  
Programmable biquad 2, D1 coefficient byte[31:24]  
Programmable biquad 2, D1 coefficient byte[23:16]  
Programmable biquad 2, D1 coefficient byte[15:8]  
Programmable biquad 2, D1 coefficient byte[7:0]  
Programmable biquad 2, D2 coefficient byte[31:24]  
Programmable biquad 2, D2 coefficient byte[23:16]  
Programmable biquad 2, D2 coefficient byte[15:8]  
Programmable biquad 2, D2 coefficient byte[7:0]  
Programmable biquad 3, N0 coefficient byte[31:24]  
Programmable biquad 3, N0 coefficient byte[23:16]  
134  
版权 © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
184. Page 0x02 Programmable Coefficient Registers (接下页)  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
BQ3_N0_BYT3[7:0]  
BQ3_N0_BYT4[7:0]  
BQ3_N1_BYT1[7:0]  
BQ3_N1_BYT2[7:0]  
BQ3_N1_BYT3[7:0]  
BQ3_N1_BYT4[7:0]  
BQ3_N2_BYT1[7:0]  
BQ3_N2_BYT2[7:0]  
BQ3_N2_BYT3[7:0]  
BQ3_N2_BYT4[7:0]  
BQ3_D1_BYT1[7:0]  
BQ3_D1_BYT2[7:0]  
BQ3_D1_BYT3[7:0]  
BQ3_D1_BYT4[7:0]  
BQ3_D2_BYT1[7:0]  
BQ3_D2_BYT2[7:0]  
BQ3_D2_BYT3[7:0]  
BQ3_D2_BYT4[7:0]  
BQ4_N0_BYT1[7:0]  
BQ4_N0_BYT2[7:0]  
BQ4_N0_BYT3[7:0]  
BQ4_N0_BYT4[7:0]  
BQ4_N1_BYT1[7:0]  
BQ4_N1_BYT2[7:0]  
BQ4_N1_BYT3[7:0]  
BQ4_N1_BYT4[7:0]  
BQ4_N2_BYT1[7:0]  
BQ4_N2_BYT2[7:0]  
BQ4_N2_BYT3[7:0]  
BQ4_N2_BYT4[7:0]  
BQ4_D1_BYT1[7:0]  
BQ4_D1_BYT2[7:0]  
BQ4_D1_BYT3[7:0]  
BQ4_D1_BYT4[7:0]  
BQ4_D2_BYT1[7:0]  
BQ4_D2_BYT2[7:0]  
BQ4_D2_BYT3[7:0]  
BQ4_D2_BYT4[7:0]  
BQ5_N0_BYT1[7:0]  
BQ5_N0_BYT2[7:0]  
BQ5_N0_BYT3[7:0]  
BQ5_N0_BYT4[7:0]  
BQ5_N1_BYT1[7:0]  
BQ5_N1_BYT2[7:0]  
BQ5_N1_BYT3[7:0]  
BQ5_N1_BYT4[7:0]  
BQ5_N2_BYT1[7:0]  
BQ5_N2_BYT2[7:0]  
BQ5_N2_BYT3[7:0]  
BQ5_N2_BYT4[7:0]  
BQ5_D1_BYT1[7:0]  
BQ5_D1_BYT2[7:0]  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Programmable biquad 3, N0 coefficient byte[15:8]  
Programmable biquad 3, N0 coefficient byte[7:0]  
Programmable biquad 3, N1 coefficient byte[31:24]  
Programmable biquad 3, N1 coefficient byte[23:16]  
Programmable biquad 3, N1 coefficient byte[15:8]  
Programmable biquad 3, N1 coefficient byte[7:0]  
Programmable biquad 3, N2 coefficient byte[31:24]  
Programmable biquad 3, N2 coefficient byte[23:16]  
Programmable biquad 3, N2 coefficient byte[15:8]  
Programmable biquad 3, N2 coefficient byte[7:0]  
Programmable biquad 3, D1 coefficient byte[31:24]  
Programmable biquad 3, D1 coefficient byte[23:16]  
Programmable biquad 3, D1 coefficient byte[15:8]  
Programmable biquad 3, D1 coefficient byte[7:0]  
Programmable biquad 3, D2 coefficient byte[31:24]  
Programmable biquad 3, D2 coefficient byte[23:16]  
Programmable biquad 3, D2 coefficient byte[15:8]  
Programmable biquad 3, D2 coefficient byte[7:0]  
Programmable biquad 4, N0 coefficient byte[31:24]  
Programmable biquad 4, N0 coefficient byte[23:16]  
Programmable biquad 4, N0 coefficient byte[15:8]  
Programmable biquad 4, N0 coefficient byte[7:0]  
Programmable biquad 4, N1 coefficient byte[31:24]  
Programmable biquad 4, N1 coefficient byte[23:16]  
Programmable biquad 4, N1 coefficient byte[15:8]  
Programmable biquad 4, N1 coefficient byte[7:0]  
Programmable biquad 4, N2 coefficient byte[31:24]  
Programmable biquad 4, N2 coefficient byte[23:16]  
Programmable biquad 4, N2 coefficient byte[15:8]  
Programmable biquad 4, N2 coefficient byte[7:0]  
Programmable biquad 4, D1 coefficient byte[31:24]  
Programmable biquad 4, D1 coefficient byte[23:16]  
Programmable biquad 4, D1 coefficient byte[15:8]  
Programmable biquad 4, D1 coefficient byte[7:0]  
Programmable biquad 4, D2 coefficient byte[31:24]  
Programmable biquad 4, D2 coefficient byte[23:16]  
Programmable biquad 4, D2 coefficient byte[15:8]  
Programmable biquad 4, D2 coefficient byte[7:0]  
Programmable biquad 5, N0 coefficient byte[31:24]  
Programmable biquad 5, N0 coefficient byte[23:16]  
Programmable biquad 5, N0 coefficient byte[15:8]  
Programmable biquad 5, N0 coefficient byte[7:0]  
Programmable biquad 5, N1 coefficient byte[31:24]  
Programmable biquad 5, N1 coefficient byte[23:16]  
Programmable biquad 5, N1 coefficient byte[15:8]  
Programmable biquad 5, N1 coefficient byte[7:0]  
Programmable biquad 5, N2 coefficient byte[31:24]  
Programmable biquad 5, N2 coefficient byte[23:16]  
Programmable biquad 5, N2 coefficient byte[15:8]  
Programmable biquad 5, N2 coefficient byte[7:0]  
Programmable biquad 5, D1 coefficient byte[31:24]  
Programmable biquad 5, D1 coefficient byte[23:16]  
版权 © 2020, Texas Instruments Incorporated  
135  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
184. Page 0x02 Programmable Coefficient Registers (接下页)  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
BQ5_D1_BYT3[7:0]  
BQ5_D1_BYT4[7:0]  
BQ5_D2_BYT1[7:0]  
BQ5_D2_BYT2[7:0]  
BQ5_D2_BYT3[7:0]  
BQ5_D2_BYT4[7:0]  
BQ6_N0_BYT1[7:0]  
BQ6_N0_BYT2[7:0]  
BQ6_N0_BYT3[7:0]  
BQ6_N0_BYT4[7:0]  
BQ6_N1_BYT1[7:0]  
BQ6_N1_BYT2[7:0]  
BQ6_N1_BYT3[7:0]  
BQ6_N1_BYT4[7:0]  
BQ6_N2_BYT1[7:0]  
BQ6_N2_BYT2[7:0]  
BQ6_N2_BYT3[7:0]  
BQ6_N2_BYT4[7:0]  
BQ6_D1_BYT1[7:0]  
BQ6_D1_BYT2[7:0]  
BQ6_D1_BYT3[7:0]  
BQ6_D1_BYT4[7:0]  
BQ6_D2_BYT1[7:0]  
BQ6_D2_BYT2[7:0]  
BQ6_D2_BYT3[7:0]  
BQ6_D2_BYT4[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Programmable biquad 5, D1 coefficient byte[15:8]  
Programmable biquad 5, D1 coefficient byte[7:0]  
Programmable biquad 5, D2 coefficient byte[31:24]  
Programmable biquad 5, D2 coefficient byte[23:16]  
Programmable biquad 5, D2 coefficient byte[15:8]  
Programmable biquad 5, D2 coefficient byte[7:0]  
Programmable biquad 6, N0 coefficient byte[31:24]  
Programmable biquad 6, N0 coefficient byte[23:16]  
Programmable biquad 6, N0 coefficient byte[15:8]  
Programmable biquad 6, N0 coefficient byte[7:0]  
Programmable biquad 6, N1 coefficient byte[31:24]  
Programmable biquad 6, N1 coefficient byte[23:16]  
Programmable biquad 6, N1 coefficient byte[15:8]  
Programmable biquad 6, N1 coefficient byte[7:0]  
Programmable biquad 6, N2 coefficient byte[31:24]  
Programmable biquad 6, N2 coefficient byte[23:16]  
Programmable biquad 6, N2 coefficient byte[15:8]  
Programmable biquad 6, N2 coefficient byte[7:0]  
Programmable biquad 6, D1 coefficient byte[31:24]  
Programmable biquad 6, D1 coefficient byte[23:16]  
Programmable biquad 6, D1 coefficient byte[15:8]  
Programmable biquad 6, D1 coefficient byte[7:0]  
Programmable biquad 6, D2 coefficient byte[31:24]  
Programmable biquad 6, D2 coefficient byte[23:16]  
Programmable biquad 6, D2 coefficient byte[15:8]  
Programmable biquad 6, D2 coefficient byte[7:0]  
136  
版权 © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
8.6.2.2 Programmable Coefficient Registers: Page = 0x03  
This register page (shown in 185) consists of the programmable coefficients for the biquad 7 to biquad 12  
filters. To optimize the coefficients register transaction time for page 2, page 3, and page 4, the device also  
supports (by default) auto-incremented pages for the I2C and SPI burst writes and reads. After a transaction of  
register address 0x7F, the device auto increments to the next page at register 0x08 to transact the next  
coefficient value. These programmable coefficients are 32-bit, two’s complement numbers.  
185. Page 0x03 Programmable Coefficient Registers  
ADDR  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
REGISTER  
RESET  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
DESCRIPTION  
PAGE[7:0]  
Device page register  
BQ7_N0_BYT1[7:0]  
BQ7_N0_BYT2[7:0]  
BQ7_N0_BYT3[7:0]  
BQ7_N0_BYT4[7:0]  
BQ7_N1_BYT1[7:0]  
BQ7_N1_BYT2[7:0]  
BQ7_N1_BYT3[7:0]  
BQ7_N1_BYT4[7:0]  
BQ7_N2_BYT1[7:0]  
BQ7_N2_BYT2[7:0]  
BQ7_N2_BYT3[7:0]  
BQ7_N2_BYT4[7:0]  
BQ7_D1_BYT1[7:0]  
BQ7_D1_BYT2[7:0]  
BQ7_D1_BYT3[7:0]  
BQ7_D1_BYT4[7:0]  
BQ7_D2_BYT1[7:0]  
BQ7_D2_BYT2[7:0]  
BQ7_D2_BYT3[7:0]  
BQ7_D2_BYT4[7:0]  
BQ8_N0_BYT1[7:0]  
BQ8_N0_BYT2[7:0]  
BQ8_N0_BYT3[7:0]  
BQ8_N0_BYT4[7:0]  
BQ8_N1_BYT1[7:0]  
BQ8_N1_BYT2[7:0]  
BQ8_N1_BYT3[7:0]  
BQ8_N1_BYT4[7:0]  
BQ8_N2_BYT1[7:0]  
BQ8_N2_BYT2[7:0]  
BQ8_N2_BYT3[7:0]  
BQ8_N2_BYT4[7:0]  
BQ8_D1_BYT1[7:0]  
BQ8_D1_BYT2[7:0]  
BQ8_D1_BYT3[7:0]  
BQ8_D1_BYT4[7:0]  
BQ8_D2_BYT1[7:0]  
BQ8_D2_BYT2[7:0]  
BQ8_D2_BYT3[7:0]  
BQ8_D2_BYT4[7:0]  
BQ9_N0_BYT1[7:0]  
BQ9_N0_BYT2[7:0]  
BQ9_N0_BYT3[7:0]  
Programmable biquad 7, N0 coefficient byte[31:24]  
Programmable biquad 7, N0 coefficient byte[23:16]  
Programmable biquad 7, N0 coefficient byte[15:8]  
Programmable biquad 7, N0 coefficient byte[7:0]  
Programmable biquad 7, N1 coefficient byte[31:24]  
Programmable biquad 7, N1 coefficient byte[23:16]  
Programmable biquad 7, N1 coefficient byte[15:8]  
Programmable biquad 7, N1 coefficient byte[7:0]  
Programmable biquad 7, N2 coefficient byte[31:24]  
Programmable biquad 7, N2 coefficient byte[23:16]  
Programmable biquad 7, N2 coefficient byte[15:8]  
Programmable biquad 7, N2 coefficient byte[7:0]  
Programmable biquad 7, D1 coefficient byte[31:24]  
Programmable biquad 7, D1 coefficient byte[23:16]  
Programmable biquad 7, D1 coefficient byte[15:8]  
Programmable biquad 7, D1 coefficient byte[7:0]  
Programmable biquad 7, D2 coefficient byte[31:24]  
Programmable biquad 7, D2 coefficient byte[23:16]  
Programmable biquad 7, D2 coefficient byte[15:8]  
Programmable biquad 7, D2 coefficient byte[7:0]  
Programmable biquad 8, N0 coefficient byte[31:24]  
Programmable biquad 8, N0 coefficient byte[23:16]  
Programmable biquad 8, N0 coefficient byte[15:8]  
Programmable biquad 8, N0 coefficient byte[7:0]  
Programmable biquad 8, N1 coefficient byte[31:24]  
Programmable biquad 8, N1 coefficient byte[23:16]  
Programmable biquad 8, N1 coefficient byte[15:8]  
Programmable biquad 8, N1 coefficient byte[7:0]  
Programmable biquad 8, N2 coefficient byte[31:24]  
Programmable biquad 8, N2 coefficient byte[23:16]  
Programmable biquad 8, N2 coefficient byte[15:8]  
Programmable biquad 8, N2 coefficient byte[7:0]  
Programmable biquad 8, D1 coefficient byte[31:24]  
Programmable biquad 8, D1 coefficient byte[23:16]  
Programmable biquad 8, D1 coefficient byte[15:8]  
Programmable biquad 8, D1 coefficient byte[7:0]  
Programmable biquad 8, D2 coefficient byte[31:24]  
Programmable biquad 8, D2 coefficient byte[23:16]  
Programmable biquad 8, D2 coefficient byte[15:8]  
Programmable biquad 8, D2 coefficient byte[7:0]  
Programmable biquad 9, N0 coefficient byte[31:24]  
Programmable biquad 9, N0 coefficient byte[23:16]  
Programmable biquad 9, N0 coefficient byte[15:8]  
版权 © 2020, Texas Instruments Incorporated  
137  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
185. Page 0x03 Programmable Coefficient Registers (接下页)  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
BQ9_N0_BYT4[7:0]  
BQ9_N1_BYT1[7:0]  
BQ9_N1_BYT2[7:0]  
BQ9_N1_BYT3[7:0]  
BQ9_N1_BYT4[7:0]  
BQ9_N2_BYT1[7:0]  
BQ9_N2_BYT2[7:0]  
BQ9_N2_BYT3[7:0]  
BQ9_N2_BYT4[7:0]  
BQ9_D1_BYT1[7:0]  
BQ9_D1_BYT2[7:0]  
BQ9_D1_BYT3[7:0]  
BQ9_D1_BYT4[7:0]  
BQ9_D2_BYT1[7:0]  
BQ9_D2_BYT2[7:0]  
BQ9_D2_BYT3[7:0]  
BQ9_D2_BYT4[7:0]  
BQ10_N0_BYT1[7:0]  
BQ10_N0_BYT2[7:0]  
BQ10_N0_BYT3[7:0]  
BQ10_N0_BYT4[7:0]  
BQ10_N1_BYT1[7:0]  
BQ10_N1_BYT2[7:0]  
BQ10_N1_BYT3[7:0]  
BQ10_N1_BYT4[7:0]  
BQ10_N2_BYT1[7:0]  
BQ10_N2_BYT2[7:0]  
BQ10_N2_BYT3[7:0]  
BQ10_N2_BYT4[7:0]  
BQ10_D1_BYT1[7:0]  
BQ10_D1_BYT2[7:0]  
BQ10_D1_BYT3[7:0]  
BQ10_D1_BYT4[7:0]  
BQ10_D2_BYT1[7:0]  
BQ10_D2_BYT2[7:0]  
BQ10_D2_BYT3[7:0]  
BQ10_D2_BYT4[7:0]  
BQ11_N0_BYT1[7:0]  
BQ11_N0_BYT2[7:0]  
BQ11_N0_BYT3[7:0]  
BQ11_N0_BYT4[7:0]  
BQ11_N1_BYT1[7:0]  
BQ11_N1_BYT2[7:0]  
BQ11_N1_BYT3[7:0]  
BQ11_N1_BYT4[7:0]  
BQ11_N2_BYT1[7:0]  
BQ11_N2_BYT2[7:0]  
BQ11_N2_BYT3[7:0]  
BQ11_N2_BYT4[7:0]  
BQ11_D1_BYT1[7:0]  
BQ11_D1_BYT2[7:0]  
BQ11_D1_BYT3[7:0]  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Programmable biquad 9, N0 coefficient byte[7:0]  
Programmable biquad 9, N1 coefficient byte[31:24]  
Programmable biquad 9, N1 coefficient byte[23:16]  
Programmable biquad 9, N1 coefficient byte[15:8]  
Programmable biquad 9, N1 coefficient byte[7:0]  
Programmable biquad 9, N2 coefficient byte[31:24]  
Programmable biquad 9, N2 coefficient byte[23:16]  
Programmable biquad 9, N2 coefficient byte[15:8]  
Programmable biquad 9, N2 coefficient byte[7:0]  
Programmable biquad 9, D1 coefficient byte[31:24]  
Programmable biquad 9, D1 coefficient byte[23:16]  
Programmable biquad 9, D1 coefficient byte[15:8]  
Programmable biquad 9, D1 coefficient byte[7:0]  
Programmable biquad 9, D2 coefficient byte[31:24]  
Programmable biquad 9, D2 coefficient byte[23:16]  
Programmable biquad 9, D2 coefficient byte[15:8]  
Programmable biquad 9, D2 coefficient byte[7:0]  
Programmable biquad 10, N0 coefficient byte[31:24]  
Programmable biquad 10, N0 coefficient byte[23:16]  
Programmable biquad 10, N0 coefficient byte[15:8]  
Programmable biquad 10, N0 coefficient byte[7:0]  
Programmable biquad 10, N1 coefficient byte[31:24]  
Programmable biquad 10, N1 coefficient byte[23:16]  
Programmable biquad 10, N1 coefficient byte[15:8]  
Programmable biquad 10, N1 coefficient byte[7:0]  
Programmable biquad 10, N2 coefficient byte[31:24]  
Programmable biquad 10, N2 coefficient byte[23:16]  
Programmable biquad 10, N2 coefficient byte[15:8]  
Programmable biquad 10, N2 coefficient byte[7:0]  
Programmable biquad 10, D1 coefficient byte[31:24]  
Programmable biquad 10, D1 coefficient byte[23:16]  
Programmable biquad 10, D1 coefficient byte[15:8]  
Programmable biquad 10, D1 coefficient byte[7:0]  
Programmable biquad 10, D2 coefficient byte[31:24]  
Programmable biquad 10, D2 coefficient byte[23:16]  
Programmable biquad 10, D2 coefficient byte[15:8]  
Programmable biquad 10, D2 coefficient byte[7:0]  
Programmable biquad 11, N0 coefficient byte[31:24]  
Programmable biquad 11, N0 coefficient byte[23:16]  
Programmable biquad 11, N0 coefficient byte[15:8]  
Programmable biquad 11, N0 coefficient byte[7:0]  
Programmable biquad 11, N1 coefficient byte[31:24]  
Programmable biquad 11, N1 coefficient byte[23:16]  
Programmable biquad 11, N1 coefficient byte[15:8]  
Programmable biquad 11, N1 coefficient byte[7:0]  
Programmable biquad 11, N2 coefficient byte[31:24]  
Programmable biquad 11, N2 coefficient byte[23:16]  
Programmable biquad 11, N2 coefficient byte[15:8]  
Programmable biquad 11, N2 coefficient byte[7:0]  
Programmable biquad 11, D1 coefficient byte[31:24]  
Programmable biquad 11, D1 coefficient byte[23:16]  
Programmable biquad 11, D1 coefficient byte[15:8]  
138  
版权 © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
185. Page 0x03 Programmable Coefficient Registers (接下页)  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
BQ11_D1_BYT4[7:0]  
BQ11_D2_BYT1[7:0]  
BQ11_D2_BYT2[7:0]  
BQ11_D2_BYT3[7:0]  
BQ11_D2_BYT4[7:0]  
BQ12_N0_BYT1[7:0]  
BQ12_N0_BYT2[7:0]  
BQ12_N0_BYT3[7:0]  
BQ12_N0_BYT4[7:0]  
BQ12_N1_BYT1[7:0]  
BQ12_N1_BYT2[7:0]  
BQ12_N1_BYT3[7:0]  
BQ12_N1_BYT4[7:0]  
BQ12_N2_BYT1[7:0]  
BQ12_N2_BYT2[7:0]  
BQ12_N2_BYT3[7:0]  
BQ12_N2_BYT4[7:0]  
BQ12_D1_BYT1[7:0]  
BQ12_D1_BYT2[7:0]  
BQ12_D1_BYT3[7:0]  
BQ12_D1_BYT4[7:0]  
BQ12_D2_BYT1[7:0]  
BQ12_D2_BYT2[7:0]  
BQ12_D2_BYT3[7:0]  
BQ12_D2_BYT4[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Programmable biquad 11, D1 coefficient byte[7:0]  
Programmable biquad 11, D2 coefficient byte[31:24]  
Programmable biquad 11, D2 coefficient byte[23:16]  
Programmable biquad 11, D2 coefficient byte[15:8]  
Programmable biquad 11, D2 coefficient byte[7:0]  
Programmable biquad 12, N0 coefficient byte[31:24]  
Programmable biquad 12, N0 coefficient byte[23:16]  
Programmable biquad 12, N0 coefficient byte[15:8]  
Programmable biquad 12, N0 coefficient byte[7:0]  
Programmable biquad 12, N1 coefficient byte[31:24]  
Programmable biquad 12, N1 coefficient byte[23:16]  
Programmable biquad 12, N1 coefficient byte[15:8]  
Programmable biquad 12, N1 coefficient byte[7:0]  
Programmable biquad 12, N2 coefficient byte[31:24]  
Programmable biquad 12, N2 coefficient byte[23:16]  
Programmable biquad 12, N2 coefficient byte[15:8]  
Programmable biquad 12, N2 coefficient byte[7:0]  
Programmable biquad 12, D1 coefficient byte[31:24]  
Programmable biquad 12, D1 coefficient byte[23:16]  
Programmable biquad 12, D1 coefficient byte[15:8]  
Programmable biquad 12, D1 coefficient byte[7:0]  
Programmable biquad 12, D2 coefficient byte[31:24]  
Programmable biquad 12, D2 coefficient byte[23:16]  
Programmable biquad 12, D2 coefficient byte[15:8]  
Programmable biquad 12, D2 coefficient byte[7:0]  
版权 © 2020, Texas Instruments Incorporated  
139  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
8.6.2.3 Programmable Coefficient Registers: Page = 0x04  
This register page (shown in 186) consists of the programmable coefficients for mixer 1 to mixer 4 and the  
first-order IIR filter. All mixer coefficients are 32-bit, two’s complement numbers using a 1.31 number format. The  
value of 0x7FFFFFFF is equivalent to +1 (0-dB gain), the value 0x00000000 is equivalent to mute (zero data)  
and all values in between set the mixer attenuation computed using 公式 4. If the MSB is set to '1' then the  
attenuation remains the same but the signal phase is inverted. All IIR filter programmable coefficients are 32-bit,  
two’s complement numbers.  
hex2dec (value) / 231  
(4)  
186. Page 0x04 Programmable Coefficient Registers  
ADDR  
REGISTER  
RESET  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
DESCRIPTION  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
PAGE[7:0]  
Device page register  
MIX1_CH1_BYT1[7:0]  
MIX1_CH1_BYT2[7:0]  
MIX1_CH1_BYT3[7:0]  
MIX1_CH1_BYT4[7:0]  
MIX1_CH2_BYT1[7:0]  
MIX1_CH2_BYT2[7:0]  
MIX1_CH2_BYT3[7:0]  
MIX1_CH2_BYT4[7:0]  
MIX1_CH3_BYT1[7:0]  
MIX1_CH3_BYT2[7:0]  
MIX1_CH3_BYT3[7:0]  
MIX1_CH3_BYT4[7:0]  
MIX1_CH4_BYT1[7:0]  
MIX1_CH4_BYT2[7:0]  
MIX1_CH4_BYT3[7:0]  
MIX1_CH4_BYT4[7:0]  
MIX2_CH1_BYT1[7:0]  
MIX2_CH1_BYT2[7:0]  
MIX2_CH1_BYT3[7:0]  
MIX2_CH1_BYT4[7:0]  
MIX2_CH2_BYT1[7:0]  
MIX2_CH2_BYT2[7:0]  
MIX2_CH2_BYT3[7:0]  
MIX2_CH2_BYT4[7:0]  
MIX2_CH3_BYT1[7:0]  
MIX2_CH3_BYT2[7:0]  
MIX2_CH3_BYT3[7:0]  
MIX2_CH3_BYT4[7:0]  
MIX2_CH4_BYT1[7:0]  
MIX2_CH4_BYT2[7:0]  
MIX2_CH4_BYT3[7:0]  
MIX2_CH4_BYT4[7:0]  
MIX3_CH1_BYT1[7:0]  
MIX3_CH1_BYT2[7:0]  
MIX3_CH1_BYT3[7:0]  
MIX3_CH1_BYT4[7:0]  
MIX3_CH2_BYT1[7:0]  
MIX3_CH2_BYT2[7:0]  
MIX3_CH2_BYT3[7:0]  
MIX3_CH2_BYT4[7:0]  
MIX3_CH3_BYT1[7:0]  
Digital mixer 1, channel 1 coefficient byte[31:24]  
Digital mixer 1, channel 1 coefficient byte[23:16]  
Digital mixer 1, channel 1 coefficient byte[15:8]  
Digital mixer 1, channel 1 coefficient byte[7:0]  
Digital mixer 1, channel 2 coefficient byte[31:24]  
Digital mixer 1, channel 2 coefficient byte[23:16]  
Digital mixer 1, channel 2 coefficient byte[15:8]  
Digital mixer 1, channel 2 coefficient byte[7:0]  
Digital mixer 1, channel 3 coefficient byte[31:24]  
Digital mixer 1, channel 3 coefficient byte[23:16]  
Digital mixer 1, channel 3 coefficient byte[15:8]  
Digital mixer 1, channel 3 coefficient byte[7:0]  
Digital mixer 1, channel 4 coefficient byte[31:24]  
Digital mixer 1, channel 4 coefficient byte[23:16]  
Digital mixer 1, channel 4 coefficient byte[15:8]  
Digital mixer 1, channel 4 coefficient byte[7:0]  
Digital mixer 2, channel 1 coefficient byte[31:24]  
Digital mixer 2, channel 1 coefficient byte[23:16]  
Digital mixer 2, channel 1 coefficient byte[15:8]  
Digital mixer 2, channel 1 coefficient byte[7:0]  
Digital mixer 2, channel 2 coefficient byte[31:24]  
Digital mixer 2, channel 2 coefficient byte[23:16]  
Digital mixer 2, channel 2 coefficient byte[15:8]  
Digital mixer 2, channel 2 coefficient byte[7:0]  
Digital mixer 2, channel 3 coefficient byte[31:24]  
Digital mixer 2, channel 3 coefficient byte[23:16]  
Digital mixer 2, channel 3 coefficient byte[15:8]  
Digital mixer 2, channel 3 coefficient byte[7:0]  
Digital mixer 2, channel 4 coefficient byte[31:24]  
Digital mixer 2, channel 4 coefficient byte[23:16]  
Digital mixer 2, channel 4 coefficient byte[15:8]  
Digital mixer 2, channel 4 coefficient byte[7:0]  
Digital mixer 3, channel 1 coefficient byte[31:24]  
Digital mixer 3, channel 1 coefficient byte[23:16]  
Digital mixer 3, channel 1 coefficient byte[15:8]  
Digital mixer 3, channel 1 coefficient byte[7:0]  
Digital mixer 3, channel 2 coefficient byte[31:24]  
Digital mixer 3, channel 2 coefficient byte[23:16]  
Digital mixer 3, channel 2 coefficient byte[15:8]  
Digital mixer 3, channel 2 coefficient byte[7:0]  
Digital mixer 3, channel 3 coefficient byte[31:24]  
140  
版权 © 2020, Texas Instruments Incorporated  
 
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
186. Page 0x04 Programmable Coefficient Registers (接下页)  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
MIX3_CH3_BYT2[7:0]  
MIX3_CH3_BYT3[7:0]  
MIX3_CH3_BYT4[7:0]  
MIX3_CH4_BYT1[7:0]  
MIX3_CH4_BYT2[7:0]  
MIX3_CH4_BYT3[7:0]  
MIX3_CH4_BYT4[7:0]  
MIX4_CH1_BYT1[7:0]  
MIX4_CH1_BYT2[7:0]  
MIX4_CH1_BYT3[7:0]  
MIX4_CH1_BYT4[7:0]  
MIX4_CH2_BYT1[7:0]  
MIX4_CH2_BYT2[7:0]  
MIX4_CH2_BYT3[7:0]  
MIX4_CH2_BYT4[7:0]  
MIX4_CH3_BYT1[7:0]  
MIX4_CH3_BYT2[7:0]  
MIX4_CH3_BYT3[7:0]  
MIX4_CH3_BYT4[7:0]  
MIX4_CH4_BYT1[7:0]  
MIX4_CH4_BYT2[7:0]  
MIX4_CH4_BYT3[7:0]  
MIX4_CH4_BYT4[7:0]  
IIR_N0_BYT1[7:0]  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Digital mixer 3, channel 3 coefficient byte[23:16]  
Digital mixer 3, channel 3 coefficient byte[15:8]  
Digital mixer 3, channel 3 coefficient byte[7:0]  
Digital mixer 3, channel 4 coefficient byte[31:24]  
Digital mixer 3, channel 4 coefficient byte[23:16]  
Digital mixer 3, channel 4 coefficient byte[15:8]  
Digital mixer 3, channel 4 coefficient byte[7:0]  
Digital mixer 4, channel 1 coefficient byte[31:24]  
Digital mixer 4, channel 1 coefficient byte[23:16]  
Digital mixer 4, channel 1 coefficient byte[15:8]  
Digital mixer 4, channel 1 coefficient byte[7:0]  
Digital mixer 4, channel 2 coefficient byte[31:24]  
Digital mixer 4, channel 2 coefficient byte[23:16]  
Digital mixer 4, channel 2 coefficient byte[15:8]  
Digital mixer 4, channel 2 coefficient byte[7:0]  
Digital mixer 4, channel 3 coefficient byte[31:24]  
Digital mixer 4, channel 3 coefficient byte[23:16]  
Digital mixer 4, channel 3 coefficient byte[15:8]  
Digital mixer 4, channel 3 coefficient byte[7:0]  
Digital mixer 4, channel 4 coefficient byte[31:24]  
Digital mixer 4, channel 4 coefficient byte[23:16]  
Digital mixer 4, channel 4 coefficient byte[15:8]  
Digital mixer 4, channel 4 coefficient byte[7:0]  
Programmable first-order IIR, N0 coefficient byte[31:24]  
Programmable first-order IIR, N0 coefficient byte[23:16]  
Programmable first-order IIR, N0 coefficient byte[15:8]  
Programmable first-order IIR, N0 coefficient byte[7:0]  
Programmable first-order IIR, N1 coefficient byte[31:24]  
Programmable first-order IIR, N1 coefficient byte[23:16]  
Programmable first-order IIR, N1 coefficient byte[15:8]  
Programmable first-order IIR, N1 coefficient byte[7:0]  
Programmable first-order IIR, D1 coefficient byte[31:24]  
Programmable first-order IIR, D1 coefficient byte[23:16]  
Programmable first-order IIR, D1 coefficient byte[15:8]  
Programmable first-order IIR, D1 coefficient byte[7:0]  
IIR_N0_BYT2[7:0]  
IIR_N0_BYT3[7:0]  
IIR_N0_BYT4[7:0]  
IIR_N1_BYT1[7:0]  
IIR_N1_BYT2[7:0]  
IIR_N1_BYT3[7:0]  
IIR_N1_BYT4[7:0]  
IIR_D1_BYT1[7:0]  
IIR_D1_BYT2[7:0]  
IIR_D1_BYT3[7:0]  
IIR_D1_BYT4[7:0]  
版权 © 2020, Texas Instruments Incorporated  
141  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The PCM6xx0-Q1 are multichannel, automotive qualified audio ADCs that support output sample rates of up to  
384 kHz. The PCM6x60-Q1 support up to six analog microphones and the PCM6x40-Q1 support up to four  
analog microphones for simultaneous recording applications. The PCM6xx0-Q1 family is intended for automotive  
applications such as vehicle cabin active noise cancellation, hands-free in-vehicle communication, emergency  
call, and multi-media applications. These devices integrate a host of features to reduce cost, board space, and  
power consumption in space-constrained automotive subsystem designs.  
Communication to the PCM6xx0-Q1 for configuration of the control registers is supported using an I2C or SPI  
interface. The device supports a highly flexible audio serial interface (TDM, I2S, or LJ) to transmit audio data  
seamlessly in the system across devices.  
9.2 Typical Applications  
9.2.1 Four-Channel Analog Microphone Recording Using the PCM6240-Q1  
228 shows a typical configuration of the PCM6240-Q1 for an application using four analog microphones for  
simultaneous recording operation with an I2C control interface and the TDM audio data slave interface.  
2.2 F  
3.3 V  
(3.0 V to 3.6 V)  
10 F  
1 F  
2.2 F  
3.3 V  
(3.0 V to 3.6 V)  
0.1 F  
GND  
1 F  
0.1 F  
0.1 F  
GND  
0.1 F  
GND  
VBAT_IN  
(Max 18V)  
GND  
2.2µH  
GND  
10 F  
VBAT_IN  
MICBIAS  
1 F  
DREG  
GND  
0.1 F  
GND  
3.3 V  
(3.0 V to 3.6 V)  
OR  
IN1P  
IN1M  
1.8 V  
(1.65 V to 1.95 V)  
10 F  
Mic 1  
IOVDD  
0.1 F  
GND  
GND  
Thermal Pad  
(VSS)  
IN2P  
IN2M  
PCM6240-Q1  
Mic 2  
GND  
ADDR1_MISO  
(ADDR1)  
GND  
IN3P  
IN3M  
GND  
GND  
Mic 3  
ADDR0_SCLK  
(ADDR0)  
GND  
IN4P  
IN4M  
Mic 4  
R2 ꢁ  
R2 ꢁ  
GND  
Host  
Processor  
228. Four-Channel Analog Microphone Recording  
142  
版权 © 2020, Texas Instruments Incorporated  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
Typical Applications (接下页)  
9.2.1.1 Design Requirements  
187 lists the design parameters for this application.  
187. Design Parameters  
KEY PARAMETER  
AVDD, BSTVDD  
SPECIFICATION  
3.3 V  
AVDD supply current  
IOVDD  
24 mA (PLL on, four-channel record, fS = 44.1 kHz)  
1.8 V or 3.3 V  
< 28 mA (MICBIAS voltage = 8 V, microphone  
impedance = 680 and R1 = 340 )  
Maximum MICBIAS current  
9.2.1.2 Detailed Design Procedure  
This section describes the necessary steps to configure the PCM6240-Q1 for this specific application. The  
following steps give a sequence of items that must be executed in the time between powering the device up and  
reading data from the device or transitioning from one mode to other mode of operation.  
1. Apply Power to Device:  
a. Power up the IOVDD, AVDD, and BSTVDD power supplies, keeping the SHDNZ pin voltage low  
b. The device now goes into hardware shutdown mode (ultra-low-power mode < 1 µA)  
2. Transition From Hardware Shutdown Mode to Sleep Mode (or Software Shutdown Mode):  
a. Release SHDNZ only when the IOVDD, AVDD, and BSTVDD power supplies settle to steady-state  
operating voltage  
b. Wait for at least 1 ms to allow the device to initialize the internal registers  
c. The device now goes into sleep mode (low-power mode < 20 µA)  
3. Transition From Sleep Mode to Active Mode Whenever Required for the Record Operation:  
a. Wake-up the device by writing P0_R2 to disable sleep mode  
b. Wait for at least 1ms to allow the device internal wake-up sequence to complete  
c. Override the default configuration registers or programmable coefficients value as required (optional)  
d. Enable all desired input channels by writing P0_R115  
e. Enable all desired audio serial interface output channels by writing P0_R116  
f. Power-up the ADC, MICBIAS, and PLL by writing P0_R117  
g. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
This specific step can be done at any point in the sequence after step a  
See the Phase-Locked Loop (PLL) and Clock Generation section for the supported sample rates and the  
BCLK to FSYNC ratio  
h. The device recording data are now sent to the host processor via the TDM audio serial data bus  
i. Wait for at least 10 ms to allow the MICBIAS to power up  
j. Enable the fault diagnostics for all desired input channels by writing P0_R100  
4. Transition From Active Mode to Sleep Mode (Again) as Required in the System Low Power:  
a. Disable the fault diagnostics for all desired input channels by writing P0_R100  
b. Go to sleep mode by writing P0_R2 to enable sleep mode  
c. Wait at least 20 ms to allow the volume to gradually ramp down and for all blocks to power down  
d. Read P0_R119 to check the device shutdown and sleep mode status  
e. If the device P0_R119_D7 status bit is 1'b1, then stop FSYNC and BCLK in the system  
f. The device now goes into sleep mode (low-power mode < 20 µA) and retains all register values  
5. Transition From Sleep Mode to Active Mode (Again) as Required for the Record Operation:  
a. Wake-up the device by writing P0_R2 to disable sleep mode  
b. Wait for at least 1 ms to allow the device internal wake-up sequence to complete  
版权 © 2020, Texas Instruments Incorporated  
143  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
c. Apply FSYNC and BCLK with the desired output sample rates and BCLK to FSYNC ratio  
d. The device recording data are now sent to the host processor via the TDM audio serial data bus  
e. Wait for at least 10 ms to allow the MICBIAS to power up  
f. Enable the fault diagnostics for all desired input channels by writing P0_R100  
6. Repeat Step 4 and Step 5 as Required for Mode Transitions  
7. Assert the SHDNZ Pin Low to Enter Hardware Shutdown Mode (Again) at Any Time  
8. Follow Step 2 Onwards to Exit Hardware Shutdown Mode (Again)  
9.2.1.2.1 Example Device Register Configuration Script for EVM Setup  
This section provides a typical EVM I2C register control script that shows how to set up the PCM6240-Q1 in a 4-  
channel analog microphone record mode with differential inputs.  
#
# Key: w 98 XX YY ==> write to I2C address 0x98, to register 0xXX, data 0xYY  
#
#
# ==> comment delimiter  
# The following list gives an example sequence of items that must be executed in the time  
# between powering the device up and reading data from the device. Note that there are  
# other valid sequences depending on which features are used.  
#
# PCM6240-Q1EVM Key Jumper Settings and Audio Connections:  
# 1. TBD  
# 2. TBD  
# 3. TBD  
# Differential 4-channel : INP1/INM1 - Ch1, INP2/INM2 - Ch2, INP3/INM3 - Ch3 and INP4/INM4 - Ch4  
# High swing mode enabled  
# FSYNC = 44.1 kHz (Output Data Sample Rate), BCLK = 11.2896 MHz (BCLK/FSYNC = 256)  
################################################################  
#
#
# Power up IOVDD, AVDD and BSTVDD power supplies keeping SHDNZ pin voltage LOW  
# Wait for IOVDD, AVDD and BSTVDD power supplies to settle to steady state operating voltage range.  
# Release SHDNZ to HIGH.  
# Wait for 1ms.  
#
# Wake-up device by I2C write into P0_R2 using internal AREG  
w 90 02 81  
#
# Powerdown MICBIAS and ADC channels on fault detection (overtemperature, and so forth)  
w 90 28 10  
#
# Configure channel 1 DC-coupled, differential microphone input with high-swing mode  
w 90 3C 18  
#
# Configure channel 2 DC-coupled, differential microphone input with high-swing mode  
w 90 41 18  
#
# Configure channel 3 DC-coupled, differential microphone input with high-swing mode  
w 90 46 18  
#
# Configure channel 4 DC-coupled, differential microphone input with high-swing mode  
w 90 4B 18  
#
# Enable input channel 1 to channel 4 by I2C write into P0_R115  
w 90 73 F0  
#
# Enable ASI output channel 1 to channel 4 slots by I2C write into P0_R116  
w 90 74 F0  
#
# Power-up ADC,MICBIAS and PLL by I2C write into P0_R117  
w 90 75 E0  
#
# Apply FSYNC = 44.1 kHz and BCLK = 11.2896 MHz and  
# Start recording data by host on ASI bus with TDM protocol 32-bit channel word length  
#
# Wait for 10 ms.  
# Enable diagnostics for channel 1 to channel 4 by I2C write into P0_R100  
w 90 64 F0  
#
144  
版权 © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
9.2.1.3 Application Curves  
0
-60  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
-40  
Channel-1  
Channel-2  
Channel-3  
-20  
-70  
Channel-4  
-80  
-60  
-80  
-90  
-100  
-110  
-120  
-130  
-100  
-120  
-140  
-160  
-180  
-200  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-12  
20  
50  
100  
500  
1000  
5000 10000 20000  
EVM_  
Input Amplitude (dB)  
ETVHMD+_  
Frequency (Hz)  
DC-coupled differential microphone input with DC common-mode  
1NxP = ~6 V and INxM = ~2 V, high swing mode enabled,  
measured using an external audio input source  
DC-coupled differential microphone input with DC common-mode  
1NxP = ~6 V and INxM = ~2 V, high swing mode enabled,  
measured using an external audio input source  
230. THD+N vs Input Amplitude  
229. FFT With a –60-dBr Input  
9.3 What To Do and What Not To Do  
In master mode operation with I2S or LJ format, the device generates FSYNC half a cycle earlier than the normal  
protocol timing behavior expected. This timing behavior can still function for most of the system, however for  
further details and a suggested workaround for this weakness, see the Configuring and Operating the PCM6xx0-  
Q1 as an Audio Bus Master application report.  
The automatic gain controller (AGC) feature has some limitation when using sampling rates lower than 44.1 kHz.  
For further details about this limitation, see the Using the Automatic Gain Controller (AGC) in PCM6xx0-Q1  
application report.  
版权 © 2020, Texas Instruments Incorporated  
145  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The power-supply sequence between the IOVDD and AVDD rails can be applied in any order. However, keep  
the SHDNZ pin low until the IOVDD supply voltage settles to a stable and supported operating voltage range.  
After the IOVDD and AVDD supplies are stable, set the SHDNZ pin high to initialize the device. BSTVDD (or  
HVDD for the PCM63x0-Q1) can be either applied along with AVDD or later but before turning on the MICBIAS.  
231 shows the power supply sequencing requirements.  
AVDD  
t1  
t3  
IOVDD  
SHDNZ  
t4  
t2  
231. Power-Supply Sequencing Requirement  
For the supply power-up requirement, t1 and t2 must be at least 100 µs. For the supply power-down requirement,  
t3 and t4 must be at least 10 ms. This time allows the device to ramp down the volume on the record data, and  
power down the analog and digital blocks, and lastly put the device into hardware shutdown mode. The device  
can also be immediately put into hardware shutdown mode from active mode if SHDNZ_CFG[1:0] is set to 2'b00  
using the P0_R5_D[3:2] bits. In that case, t3 and t4 are required to be at least 100 µs.  
Make sure that the supply ramp rate is faster than 1 V/µs and that the wait time between a power-down and a  
power-up event is at least 100 ms.  
After the releasing SHDNZ, or after a software reset, delay any additional I2C or SPI transactions to the device  
for at least 2 ms to allow the device to initialize the internal registers. See the Device Functional Modes section  
to operate the device in various modes after the device power supplies are settled to the recommended  
operating voltage levels.  
146  
版权 © 2020, Texas Instruments Incorporated  
 
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
11 Layout  
11.1 Layout Guidelines  
Each system design and printed circuit board (PCB) layout is unique. The layout must be carefully reviewed in  
the context of a specific PCB design. However, the following guidelines can optimize the device performance:  
Connect the thermal pad to ground. Use a via pattern to connect the device thermal pad, the area directly  
under the device, to the ground planes. This connection helps dissipate heat from the device.  
The boost converter inductor and decoupling capacitors for the power supplies must be placed close to the  
device pins.  
Route analog differential audio signals differentially on the PCB for better noise immunity. Avoid crossing  
digital and analog signals to avoid undesirable crosstalk.  
The device internal voltage references must be filtered using external capacitors. Place the filter capacitors  
near the VREF pin for optimal performance.  
Directly tap the MICBIAS pin to avoid common impedance when routing the biasing or supply for multiple  
microphones to avoid coupling across microphones.  
An external circuit must be used to suppress or filter the amount of high-frequency electromagnetic  
interference (EMI) noise found in the microphone input path resulting from long cables (if used) in the system.  
Use ground planes to provide the lowest impedance for power and signal current between the device and the  
decoupling capacitors. Treat the area directly under the device as a central ground area for the device, and  
all device grounds must be connected directly to that area.  
11.2 Layout Examples  
Audio output and digital interface  
1: AVDD  
2: AREG  
24: ADDR0_SCLK  
23: ADDR1_MISO  
22: SHDNZ  
3: BSTVDD  
4: BSTSW  
5: BSTOUT  
21: VBAT_IN  
20: IN6M  
19: IN6P  
6: MICBIAS  
7: VREF  
18: IN5M  
8: AVSS  
17: IN5P  
Analog input signals  
232. Layout Example of the PCM6260-Q1  
版权 © 2020, Texas Instruments Incorporated  
147  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
Layout Examples (接下页)  
Audio output and digital interface  
24: ADDR0_SCLK  
23: ADDR1_MISO  
22: SHDNZ  
21: VBAT_IN  
20: IN6M  
1: AVDD  
2: AREG  
3: AVDD  
4: AVSS  
5: HVDD  
6: MICBIAS  
7: VREF  
19: IN6P  
18: IN5M  
8: AVSS  
17: IN5P  
Analog input signals  
233. Layout Example of the PCM6360-Q1  
148  
版权 © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
PurePath™ 控制台图形开发套件  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《具有共享 TDM I2C 总线的多个 PCM6xx0-Q1 器件》 应用报告  
德州仪器 (TI)PCM6xx0-Q1 可编程双二阶滤波器配置和 应用 》 应用报告  
德州仪器 (TI)《配置和操作 PCM6xx0-Q1 作为音频总线主设备》 应用报告  
德州仪器 (TI)PCM6xx0-Q1 采样率和受支持的可编程处理块》 应用报告  
德州仪器 (TI)《不同使用场景下的 PCM6xx0-Q1 功耗矩阵》 应用报告  
德州仪器 (TI)PCM6xx0-Q1 集成模拟抗混叠滤波器和灵活数字滤波器》 应用报告  
德州仪器 (TI)《使用 PCM6xx0-Q1 中的自动增益控制器 (AGC)应用报告  
德州仪器 (TI)PCM6xx0-Q1 故障诊断、中断和保护 特性》 应用报告  
德州仪器 (TI)PCM6xx0-Q1 交流耦合外部电阻器计算器》  
德州仪器 (TI)PCM6xx0-Q1 评估模块》 用户指南  
德州仪器 (TI)《适用于音频系统设计和开发的 PurePath™ 控制台图形开发套件》 开发套件  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
188. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
单击此处  
工具和软件  
单击此处  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
单击此处  
PCM6240-Q1  
PCM6260-Q1  
PCM6340-Q1  
PCM6360-Q1  
12.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
版权 © 2020, Texas Instruments Incorporated  
149  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
12.6 商标  
PurePath, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
150  
版权 © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2020, Texas Instruments Incorporated  
151  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
152  
版权 © 2020, Texas Instruments Incorporated  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
www.ti.com.cn  
ZHCSKX3 MARCH 2020  
版权 © 2020, Texas Instruments Incorporated  
153  
PCM6240-Q1, PCM6260-Q1, PCM6340-Q1, PCM6360-Q1  
ZHCSKX3 MARCH 2020  
www.ti.com.cn  
154  
版权 © 2020, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM6240QRTVRQ1  
PCM6260QRTVRQ1  
PCM6340QRTVRQ1  
PCM6360QRTVRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RTV  
RTV  
RTV  
RTV  
32  
32  
32  
32  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
PCM6240  
NIPDAU  
NIPDAU  
NIPDAU  
PCM6260  
PCM6340  
PCM6360  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

PCM6260QRTVRQ1

具有集成可编程麦克风偏置、升压和输入诊断功能的汽车类 6 通道音频 ADC | RTV | 32 | -40 to 125
TI

PCM63

Colinear⑩ 20-Bit Monolithic Audio DIGITAL-TO-ANALOG CONVERTER
BB

PCM6340-Q1

具有集成麦克风偏置和输入诊断功能的汽车类 4 通道音频 ADC
TI

PCM6340QRTVRQ1

具有集成麦克风偏置和输入诊断功能的汽车类 4 通道音频 ADC | RTV | 32 | -40 to 125
TI

PCM6360-Q1

具有集成麦克风偏置和输入诊断功能的汽车类 6 通道音频 ADC
TI

PCM6360QRTVRQ1

具有集成麦克风偏置和输入诊断功能的汽车类 6 通道音频 ADC | RTV | 32 | -40 to 125
TI

PCM63D

Converter,
BB

PCM63P

Colinear⑩ 20-Bit Monolithic Audio DIGITAL-TO-ANALOG CONVERTER
BB

PCM63P

Colinear 20-Bit Monolithic Audio IGITAL-TO-ANALOG CONVERTER
TI

PCM63P-1

Colinear 20-Bit Monolithic Audio Digital-to-Analog Converter 28-PDIP
TI

PCM63P-J

Colinear⑩ 20-Bit Monolithic Audio DIGITAL-TO-ANALOG CONVERTER
BB

PCM63P-J

Colinear 20-Bit Monolithic Audio IGITAL-TO-ANALOG CONVERTER
TI