PCM6480-Q1 [TI]

具有集成麦克风偏置和输入诊断功能的汽车类 4 通道模拟和 4 通道数字音频 ADC;
PCM6480-Q1
型号: PCM6480-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成麦克风偏置和输入诊断功能的汽车类 4 通道模拟和 4 通道数字音频 ADC

文件: 总170页 (文件大小:6077K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
具有集成麦克风偏置和输入故障诊断功能PCM6480-Q1 汽车8 通道、  
768kHz ADC  
对模拟和数字麦克风输入采样可以非常高效地实现车  
1 特性  
内有源噪声消除 (ANC) 语音识别 (VR) 用。  
PCM6480-Q1 包含高性能的音频模数转换器 (ADC),  
可支持最10VRMS 的模拟输入信号。该器件具有集成  
的高电压、可编程麦克风偏置和输入诊断电路可直接  
连接到基于麦克风的汽车系统提供全面的直流耦合输  
入故障诊断功能。该器件集成了一个高效的升压转换  
以通过外部低电压 3.3V 电源系统内随时可用的  
电源产生高电压麦克风偏置。PCM6480-Q1 集成了  
可编程通道增益、数字音量控制、低抖动锁相环  
(PLL)、可编程高通滤波器 (HPF)、双二阶滤波器、低  
延迟滤波器模式并可实现高达 768kHz 的采样率。  
PCM6480-Q1 支持时分多路复用 (TDM)I2S 或左平  
(LJ) 音频格式并可通过  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等1-40°C TA +125°C  
• 最8 通道音频同步转换  
4 通道模拟麦克风输入或线路输入  
4 通道数PDM 麦克风输入  
ADC 性能:  
– 线路差分输入动态范围110dB  
– 麦克风差分输入动态范围110dB  
THD+N-95dB  
ADC 模拟输入电压:  
– 差10VRMS 满量程输入  
– 单5VRMS 满量程输入  
ADC 采样(fS) = 8kHz 768kHz  
• 可编程通道设置:  
I2C SPI 接口进行控制。  
器件信息  
器件型号(1)  
封装  
封装尺寸标称值)  
– 模拟输入通道增益0dB 42dB  
– 数字音量控制100dB 27dB  
– 增益校准分辨率0.1dB  
5.00mm x 5.00mm  
间距0.5mm  
PCM6480-Q1  
WQFN (32)  
– 相位校准分辨率163ns  
• 可编程麦克风偏置5V 9V)  
• 可编程麦克风模拟输入故障诊断:  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
MICBIAS  
BSTOUT  
BSTSW  
BSTVDD  
IN1P  
IN1M  
SHDNZ  
GPIO1  
– 开路输入或短路输入  
– 接地短路、MICBIAS VBAT  
– 麦克风偏置过流保护  
Boost Converter and  
PLL and Clock  
Generation  
Programmable MICBIAS  
IN2P  
IN2M  
Noise  
Cancellation  
Microphones  
IN3P  
IN3M  
FSYNC  
BCLK  
Audio Serial  
Programmable  
4-Channel ADC  
with Front-End PGA  
and Input Attenuator  
• 低延迟信号处理滤波器选择  
• 可编HPF 和双二阶数字滤波器  
I2C SPI 控制  
Interface  
(TDM, I2S, LJ)  
Digital Filters and  
Biquads  
IN4P  
IN4M  
SDOUT  
SDA_SSZ  
PDMDIN2_GPI2  
PDMCLK2_GPIO3  
SCL_MOSI  
Voice  
Recognition  
Digital  
4-Channel Digital  
PDM Microphones  
Simultaneous  
Sampling  
Input Diagnostics,  
Regulators and  
Voltage Reference  
• 音频串行数据接口:  
I2  
Control Interf ace  
C or SPI  
ADDR0_SCLK  
ADDR1_MISO  
Microphones  
PDMDIN1_GPI1  
– 格式TDMI2S 或左平(LJ)  
– 字长16 位、20 位、24 32 位  
– 主/从接口  
PDMCLK1_GPIO2  
VBAT_IN VREF  
AVSS  
IOVDD  
AVDD  
AREG  
DREG  
VSS  
简化版应用示意图  
3.3V 单电源运行  
I/O 电源运行3.3V 1.8V  
• 功耗:  
48kHz < 20mW/通道  
2 应用  
汽车有源噪声消除  
汽车音响主机  
数字驾驶舱处理单元  
汽车外部放大器  
3 说明  
PCM6480-Q1 是一款高性能音频转换器最多可支持  
对脉冲密度调制 (PDM) 麦克风输入的 4 通道模拟麦克  
风输入或线路输入进行同步采样。该集成器件通过同时  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBASA30  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
Table of Contents  
8 Detailed Description......................................................21  
8.1 Overview...................................................................21  
8.2 Functional Block Diagram.........................................22  
8.3 Feature Description...................................................23  
8.4 Device Functional Modes..........................................64  
8.5 Programming............................................................ 65  
8.6 Register Maps...........................................................69  
9 Application and Implementation................................155  
9.1 Application Information........................................... 155  
9.2 Typical Application.................................................. 156  
9.3 What To Do and What Not To Do............................160  
10 Power Supply Recommendations............................161  
11 Layout.........................................................................162  
11.1 Layout Guidelines................................................. 162  
11.2 Layout Example.................................................... 163  
12 Device and Documentation Support........................164  
12.1 Device Support..................................................... 164  
12.2 Documentation Support........................................ 164  
12.3 接收文档更新通知................................................. 164  
12.4 支持资源................................................................164  
12.5 Trademarks...........................................................164  
12.6 静电放电警告........................................................ 164  
12.7 术语表................................................................... 164  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings ....................................... 6  
7.2 ESD Ratings .............................................................. 6  
7.3 Recommended Operating Conditions ........................6  
7.4 Thermal Information ...................................................7  
7.5 Electrical Characteristics ............................................7  
7.6 Timing Requirements: I2C Interface ......................... 11  
7.7 Switching Characteristics: I2C Interface ...................12  
7.8 Timing Requirements: SPI Interface ........................ 13  
7.9 Switching Characteristics: SPI Interface ..................13  
7.10 Timing Requirements: TDM, I2S or LJ Interface .... 13  
7.11 Switching Characteristics: TDM, I2S or LJ  
Interface ..................................................................... 14  
7.12 Timing Requirements: PDM Digital Microphone  
Interface ..................................................................... 14  
7.13 Switching Characteristics: PDM Digial  
Microphone Interface ..................................................15  
7.14 Timing Diagrams.....................................................15  
7.15 Typical Characteristics............................................17  
Information.................................................................. 165  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2020  
*
Initial release.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
5 Device Comparison Table  
FEATURE  
PCM6020-Q1  
PCM6240-Q1  
PCM6260-Q1  
PCM6480-Q1  
PCM6340-Q1  
PCM6360-Q1  
Control interface  
I2C or SPI  
Digital audio serial  
interface  
TDM or I2S or left-justified (LJ)  
Audio analog channel  
2
0
4
0
6
0
4
4
4
0
6
0
Audio PDM input channel  
5 (multiplexed  
with PDM  
interface)  
General-purpose input or  
output pins  
5
5
1
5
1
Microphone bias voltage  
Programmable 5 V to 9 V in steps of 0.5 V  
Powered directly using external  
high-voltage HVDD (as high as 12  
V) supply  
Microphone bias LDO  
supply  
Generated using integrated efficient boost converter with external low-  
voltage BSTVDD = 3.3-V supply  
Input fault diagnostics  
Package  
Comprehensive input fault diagnostics for DC-coupled microphone inputs with programmable thresholds  
WQFN (RTV), 32-pin, 5.00 mm x 5.00 mm (0.5-mm pitch)  
Package, and control registers compatible; replacements of each other. See the Scalable Automotive Audio  
Solutions Using the PCM6xx0-Q1 Family of Products application report for further details.  
Compatibility  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
AVDD  
AREG  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
ADDR0_SCLK  
ADDR1_MISO  
SHDNZ  
BSTVDD  
BSTSW  
BSTOUT  
MICBIAS  
VREF  
VBAT_IN  
Thermal Pad (VSS)  
PDMCLK1_GPIO2  
PDMDIN1_GPI1  
PDMCLK2_GPIO3  
PDMDIN2_GPI2  
AVSS  
Not to scale  
6-1. RTV Package, 32-Pin WQFN With Exposed Thermal Pad, Top View  
6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
AVDD  
AREG  
Analog supply  
Analog supply  
Analog supply  
Analog supply  
Analog supply  
Analog  
Analog power (3.3 V, nominal)  
2
Analog on-chip regulator output voltage for analog supply (1.8 V, nominal)  
Boost converter supply voltage (3.3 V, nominal)  
Boost converter switch input  
3
BSTVDD  
BSTSW  
BSTOUT  
MICBIAS  
VREF  
4
5
Boost converter output voltage  
6
MICBIAS output (programmable output up to 9 V)  
Analog reference voltage filter output  
Analog ground; short directly to the board ground plane  
Analog input 1P pin  
7
Analog  
8
AVSS  
Analog supply  
Analog input  
Analog input  
9
IN1P  
10  
IN1M  
Analog input 1M pin  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
11  
NAME  
IN2P  
IN2M  
IN3P  
IN3M  
IN4P  
IN4M  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input 2P pin  
Analog input 2M pin  
Analog input 3P pin  
Analog input 3M pin  
Analog input 4P pin  
Analog input 4M pin  
12  
13  
14  
15  
16  
PDM microphone data input 2 or general-purpose digital input 2 (multipurpose  
functions such as daisy-chain input, PLL input clock source, and so forth)  
17  
18  
19  
20  
PDMDIN2_GPI2  
PDMCLK2_GPIO3  
PDMDIN1_GPI1  
PDMCLK1_GPIO2  
Digital input  
Digital I/O  
Digital input  
Digital I/O  
PDM microphone clock output 2 or general-purpose digital input/output 3  
(multipurpose functions such as daisy-chain input, audio data output, PLL input  
clock source, interrupt, and so forth)  
PDM microphone data input 1 or general-purpose digital input 1 (multipurpose  
functions such as daisy-chain input, PLL input clock source, and so forth)  
PDM microphone clock output 1 or general-purpose digital input/output 2  
(multipurpose functions such as daisy-chain input, audio data output, PLL input  
clock source, interrupt, and so forth)  
21  
22  
VBAT_IN  
SHDNZ  
Analog  
Analog VBAT input monitoring pin (used for input diagnostics)  
Device hardware shutdown and reset (active low)  
Digital input  
For I2C operation: I2C slave address A1 pin.  
For SPI operation: SPI slave output pin.  
23  
24  
25  
ADDR1_MISO  
ADDR0_SCLK  
SCL_MOSI  
Digital I/O  
Digital input  
Digital input  
For I2C operation: I2C slave address A0 pin.  
For SPI operation : SPI serial bit clock.  
For I2C operation: clock pin for I2C control bus.  
For SPI operation: SPI slave input pin.  
For I2C operation: data pin for I2C control bus.  
For SPI operation: SPI slave-select pin.  
26  
27  
28  
SDA_SSZ  
IOVDD  
Digital I/O  
Digital supply  
Digital I/O  
Digital I/O power supply (1.8 V or 3.3 V, nominal)  
General-purpose digital input/output 1 (multipurpose functions such as daisy-chain  
input, audio data output, PLL input clock source, interrupt, and so forth)  
GPIO1  
29  
30  
31  
32  
SDOUT  
BCLK  
Digital output  
Digital I/O  
Audio serial data interface bus output  
Audio serial data interface bus bit clock  
FSYNC  
DREG  
Digital I/O  
Audio serial data interface bus frame synchronization signal  
Digital regulator output voltage for digital core supply (1.5 V, nominal)  
Digital supply  
Thermal pad shorted to the internal device ground. Short the thermal pad directly to  
the board ground plane.  
Thermal Pad (VSS)  
Ground supply  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over the operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
40  
40  
65  
MAX  
UNIT  
AVDD to AVSS  
3.9  
Supply voltage  
BSTVDD to VSS (thermal pad)  
IOVDD to VSS (thermal pad)  
AVSS to VSS (thermal pad)  
VBAT_IN to AVSS  
3.9  
V
3.9  
Ground voltage differences  
Battery voltage  
0.3  
V
V
V
V
18  
Analog input voltage  
Digital input voltage  
Analog input pins voltage to AVSS  
Digital input pins voltage to VSS (thermal pad)  
Operating ambient, TA  
18  
IOVDD + 0.3  
125  
Temperature  
Junction, TJ  
150  
°C  
Storage, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Corner package pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per  
AEC Q100-011  
All other non-corner package  
pins  
±500  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
POWER  
AVDD(1)  
BSTVDD  
Analog supply voltage to AVSS  
3.0  
3.0  
3.3  
3.3  
3.3  
1.8  
3.6  
3.6  
V
V
Boost converter supply voltage to VSS (thermal pad)  
IO supply voltage to VSS (thermal pad) - IOVDD 3.3-V operation  
IO supply voltage to VSS (thermal pad) - IOVDD 1.8-V operation  
3.0  
3.6  
IOVDD  
V
1.65  
1.95  
INPUTS  
VBAT_IN  
VBAT_IN input pin voltage to AVSS  
0
0
12.6  
18  
V
V
Analog input pins voltage to AVSS for line-in recording  
14.2  
MICBIAS  
INxx  
Analog input pins voltage to AVSS for microphone recording  
0.1  
V
0.1  
Analog input pins voltage to AVSS during short to VBAT_IN  
Digital input pins voltage to VSS (thermal pad)  
VBAT_IN  
IOVDD  
V
V
0
TEMPERATURE  
TA Operating ambient temperature  
125  
°C  
40  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.3 Recommended Operating Conditions (continued)  
MIN  
NOM  
MAX  
UNIT  
OTHERS  
GPIOx or GPIx (used as MCLK input) clock frequency  
SCL and SDA bus capacitance for I2C interface supports standard-mode  
36.864(2)  
400  
MHz  
pF  
and fast-mode  
Cb  
CL  
SCL and SDA bus capacitance for I2C interface supports fast-mode plus  
550  
50  
Digital output load capacitance  
20  
pF  
Boost converter inductor for 6MHz clocking mode (recommended inductor  
CIGW201610GL2R2MLE)  
2.2  
µH  
(1) AVSS and VSS (thermal pad); all ground pins must be tied together and must not differ in voltage by more than 0.2 V.  
(2) MCLK input rise time (VIL to VIH) and fall time (VIH to VIL) must be less than 5 ns. For better audio noise performance, MCLK input  
must be used with low jitter.  
7.4 Thermal Information  
PCM6480-Q1  
THERMAL METRIC(1)  
RTV (WQFN)  
32 PINS  
30.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
17.0  
11.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
10.9  
ψJB  
RθJC(bot)  
1.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data,  
BCLK = 256 × fS, TDM slave mode and PLL on (unless otherwise noted)  
PARAMETER  
ADC PERFORMANCE FOR LINE INPUT RECORDING  
AC-coupled input, input fault diagnostic not  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
supported  
Differential input full-  
10  
VRMS  
DC-coupled input, DC common-mode voltage  
INxP = INxM = 7.1 V, input fault diagnostic not  
supported  
scale AC signal voltage  
AC-coupled input, input fault diagnostic not  
supported  
Single-ended input full-  
scale AC signal voltage  
5
VRMS  
DC-coupled input, DC common-mode voltage  
INxP = INxM = 7.1 V, input fault diagnostic not  
supported  
IN1 differential AC-coupled input selected and AC  
signal shorted to ground, 0-dB channel gain  
105  
110  
110  
101  
Signal-to-noise ratio, A- IN1 differential DC-coupled input selected and AC  
SNR  
dB  
weighted(1) (2)  
signal shorted to ground, 0-dB channel gain  
IN1 differential DC-coupled input selected and AC  
signal shorted to ground, 12-dB channel gain  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data,  
BCLK = 256 × fS, TDM slave mode and PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
IN1 differential AC-coupled input selected and –  
60-dB full-scale AC signal input, 0-dB channel  
gain  
110  
IN1 differential DC-coupled input selected and –  
60-dB full-scale AC signal input, 0-dB channel  
gain  
Dynamic range, A-  
weighted(2)  
DR  
110  
101  
dB  
IN1 differential DC-coupled input selected and –  
72-dB full-scale AC signal input, 12-dB channel  
gain  
IN1 differential AC-coupled input selected and –  
1-dB full-scale AC signal input, 0-dB channel gain  
95  
95  
78  
IN1 differential DC-coupled input selected and –  
1-dB full-scale AC signal input, 0-dB channel gain  
Total harmonic  
distortion(2)  
THD+N  
dB  
dB  
IN1 differential DC-coupled input selected and –  
13-dB full-scale AC signal input, 12-dB channel  
gain  
91  
Channel gain control  
range  
Programmable 1-dB steps  
0
42  
ADC PERFORMANCE FOR MICROPHONE INPUT RECORDING  
AC-coupled input, input fault diagnostic not  
supported. CHx_MIC_RANGE register bit is set to  
high.  
DC-coupled input, DC differential common-mode  
voltage INxP INxM > 3.4 V, DC common-  
mode voltage INxP < (MICBIAS 1.7 V) and DC  
common-mode voltage INxM > 1.7 V.  
Differential input full-  
scale AC signal  
voltage(3)  
10  
VRMS  
CHx_MIC_RANGE register bit is set to high to  
support AC differential signal max swing > 2  
Vrms(4)  
.
IN1 differential AC-coupled input selected and AC  
signal shorted to ground, 0-dB channel gain  
110  
110  
Signal-to-noise ratio, A-  
weighted(1) (2)  
IN1 differential DC-coupled input selected and  
AC-signal shorted to ground, DC differential  
common-mode voltage IN1P IN1M < 5.0 V, 0-  
dB channel gain  
SNR  
dB  
dB  
105  
IN1 differential AC-coupled input selected and –  
60-dB full-scale AC signal input, 0-dB channel  
gain  
110  
110  
Dynamic range, A-  
weighted(2)  
DR  
IN1 differential DC-coupled input selected and –  
60-dB full-scale AC signal input, DC differential  
common-mode voltage IN1P IN1M < 5.0 V, 0-  
dB channel gain  
IN1 differential AC-coupled input selected and –  
1-dB full-scale AC signal input, 0-dB channel gain  
92  
90  
Total harmonic  
distortion(2)  
THD+N  
dB  
dB  
IN1 differential DC-coupled input selected and –  
15-dB full-scale AC signal input, 0-dB channel  
gain  
78  
Channel gain control  
range  
Programmable 1-dB steps  
0
42  
ADC OTHER PARAMETERS  
Differential input, between INxP and INxM  
Single-ended input, between INxP and INxM  
50  
25  
Input impedance  
kΩ  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data,  
BCLK = 256 × fS, TDM slave mode and PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
100  
7.35  
16  
NOM  
MAX  
UNIT  
Digital volume control  
range  
Programmable 0.5-dB steps  
27  
dB  
Output data sample rate Programmable  
768  
32  
kHz  
Bits  
Output data sample  
Programmable  
word length  
First-order IIR filter with programmable  
coefficients,  
3-dB point (default setting)  
Digital high-pass filter  
cutoff frequency  
12  
Hz  
1-dB full-scale AC signal line-in input to non  
measurement channel  
Interchannel isolation  
dB  
dB  
134  
0.1  
Interchannel gain  
mismatch  
6-dB full-scale AC signal line-in input, 0-dB  
channel gain  
Interchannel phase  
mismatch  
1-kHz sinusoidal signal  
0.01  
92  
Degrees  
dB  
Power-supply rejection 100-mVPP, 1-kHz sinusoidal signal on AVDD,  
ratio  
PSRR  
CMRR  
differential input selected, 0-dB channel gain  
Differential microphone input selected, 0-dB  
channel gain, 1-VRMS AC input, 1-kHz signal on  
both pins and measure level at output,  
CHx_CFG0 D3-2 register bits set to 2b'10 to  
configure device in high CMRR performance  
mode  
Common-mode  
rejection ratio  
70  
dB  
MICROPHONE BIAS  
MICBIAS noise  
MICBIAS voltage  
BW = 20 Hz to 20 kHz, A-weighted, 1-μF  
capacitor between MICBIAS and AVSS  
6.8  
µVRMS  
Programmable 0.5-V steps  
5
9
V
MICBIAS current drive MICBIAS voltage 9 V  
80  
mA  
MICBIAS load  
regulation  
MICBIAS voltage 9 V, measured up to maximum  
load  
0
1
%
MICBIAS over current  
protection threshold  
MICBIAS voltage 9 V  
82  
mA  
INPUT DIAGNOSTICS  
Fault monitoring  
repetition rate  
Programmable, DC-coupled input  
1
4
8
ms  
ms  
Fault monitoring repetition rate 4-ms, DC-coupled  
input  
Fault response time  
16  
Threshold voltage for  
(INxx AVSS) input  
shorted to ground  
Programmable 60-mV steps, DC-coupled input  
Programmable 30-mV steps, DC-coupled input  
Programmable 30-mV steps, DC-coupled input  
Programmable 30-mV steps, DC-coupled input  
0
0
0
0
900  
450  
450  
450  
mV  
mV  
mV  
mV  
Threshold voltage for  
(INxP INxM) input  
shorted together  
Threshold voltage for  
(MICBIAS INxx) input  
shorted to MICBIAS  
Threshold voltage for  
(VBAT INxx) input  
shorted to VBAT_IN  
DIGITAL I/O  
Low-level digital input  
logic voltage threshold  
0.25 ×  
IOVDD  
VIL(SHDNZ)  
SHDNZ pin  
V
0.3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data,  
BCLK = 256 × fS, TDM slave mode and PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
High-level digital input  
logic voltage threshold  
0.75 ×  
IOVDD  
IOVDD +  
0.3  
VIH(SHDNZ)  
SHDNZ pin  
V
All digital pins except SDA and SCL, IOVDD 1.8-  
V operation  
0.35 ×  
IOVDD  
0.3  
0.3  
Low-level digital input  
logic voltage threshold  
VIL  
V
V
V
All digital pins except SDA and SCL, IOVDD 3.3-  
V operation  
0.8  
All digital pins except SDA and SCL, IOVDD 1.8-  
V operation  
0.65 ×  
IOVDD  
IOVDD +  
0.3  
High-level digital input  
logic voltage threshold  
VIH  
All digital pins except SDA and SCL, IOVDD 3.3-  
V operation  
IOVDD +  
0.3  
2
All digital pins except SDA and SCL, IOL = 2  
mA, IOVDD 1.8-V operation  
0.45  
0.4  
Low-level digital output  
voltage  
VOL  
All digital pins except SDA and SCL, IOL = 2  
mA, IOVDD 3.3-V operation  
All digital pins except SDA and SCL, IOH = 2 mA,  
IOVDD 1.8-V operation  
IOVDD –  
0.45  
High-level digital output  
voltage  
VOH  
V
All digital pins except SDA and SCL, IOH = 2 mA,  
IOVDD 3.3-V operation  
2.4  
Low-level digital input  
logic voltage threshold  
0.3 ×  
IOVDD  
VIL(I2C)  
SDA and SCL  
V
V
V
V
0.5  
High-level digital input  
logic voltage threshold  
0.7 ×  
IOVDD  
IOVDD +  
0.5  
VIH(I2C)  
VOL1(I2C)  
VOL2(I2C)  
SDA and SCL  
Low-level digital output  
voltage  
0.4  
SDA, IOL(I2C) = 3 mA, IOVDD > 2 V  
SDA, IOL(I2C) = 2 mA, IOVDD 2 V  
Low-level digital output  
voltage  
0.2 x  
IOVDD  
SDA, VOL(I2C) = 0.4 V, standard-mode or fast-  
mode  
3
20  
Low-level digital output  
current  
IOL(I2C)  
mA  
SDA, VOL(I2C) = 0.4 V, fast-mode plus  
All digital pins, input = 0 V  
Input logic-low leakage  
for digital inputs  
IIL  
0.1  
0.1  
5
5
5
µA  
µA  
pF  
5  
Input logic-high leakage  
for digital inputs  
IIH  
All digital pins, input = IOVDD  
All digital pins  
5  
Input capacitance for  
digital inputs  
CIN  
Pulldown resistance for  
digital I/O pins when  
asserted on  
RPD  
20  
kΩ  
TYPICAL SUPPLY CURRENT CONSUMPTION  
IAVDD  
0.5  
0.1  
Current consumption in  
hardware shutdown  
mode  
IBSTVDD  
IIOVDD  
IAVDD  
SHDNZ = 0, all device external clocks stopped  
All device external clocks stopped  
fS = 48 kHz, BCLK = 256 × fS  
µA  
µA  
0.1  
4
Current consumption in  
sleep mode (software  
shutdown mode)  
IBSTVDD  
IIOVDD  
IAVDD  
0.1  
0.1  
Current consumption  
when MICBIAS ON,  
MICBIAS voltage 9 V,  
40 mA load, ADC off  
2.1  
IBSTVDD  
IIOVDD  
162.5  
0.01  
mA  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data,  
BCLK = 256 × fS, TDM slave mode and PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
13.5  
0
MAX  
UNIT  
IAVDD  
Current consumption  
with ADC 2-channel  
analog input operation  
at fS 16-kHz  
IBSTVDD  
IIOVDD  
IAVDD  
MICBIAS off, PLL on, BCLK = 512 × fS  
mA  
0.1  
13.5  
0
Current consumption  
with ADC 2-channel  
analog input operation  
at fS 48-kHz  
IBSTVDD  
IIOVDD  
IAVDD  
MICBIAS off, PLL off, BCLK = 512 × fS  
mA  
mA  
mA  
0.1  
24.7  
0
Current consumption  
with ADC 4-channel  
analog input operation  
at fS 48-kHz  
IBSTVDD  
IIOVDD  
IAVDD  
MICBIAS off, PLL on, BCLK = 256 × fS  
0.2  
9.7  
0
Current consumption  
with 4-channel digial  
PDM input operation at and GPIO3 configured as PDMCLK = 64 × fS  
fS 48 kHz  
MICBIAS off, PLL on, BCLK = 256 × fS, GPIO2  
IBSTVDD  
IIOVDD  
IAVDD  
3.1  
28.5  
0
Current consumption  
with ADC 4-channel  
analog input and 4-  
channel digial PDM  
input operation at fS 48  
kHz  
IBSTVDD  
MICBIAS off, PLL on, BCLK = 256 × fS, GPIO2  
and GPIO3 configured as PDMCLK = 64 × fS  
mA  
IIOVDD  
3.2  
(1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the AC signal input shorted to ground, measured A-  
weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter can  
result in higher THD and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, can affect dynamic specification values.  
(3) Microphone inputs support a 2 VRMS differential input full-scale AC signal voltage, if the CHx_MIC_RANGE register bit is set to low  
(default value). However, if the input DC common-mode differential voltage is higher than 4 V, then TI recommends setting the  
CHx_MIC_RANGE register bit high to avoid any saturation resulting from the high input DC common-mode differential voltage.  
(4) If the CHx_MIC_RANGE register bit is set to high (default value is low) in DC-coupled input configuration mode, then the input  
differential DC common-mode along with input differential AC signal must be less than 10 VRMS for differential input configuration  
mode. Similarly, for single-ended input configuration mode, the input DC common-mode voltage along with the input AC signal must be  
less than 5 VRMS  
.
7.6 Timing Requirements: I2C Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V (unless otherwise noted); see Figure 7-1 for timing diagram  
MIN  
NOM  
MAX  
UNIT  
STANDARD-MODE  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
Hold time (repeated) START condition. After this period, the first  
clock pulse is generated.  
tHD;STA  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
4.7  
4
μs  
μs  
μs  
μs  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
4.7  
0
3.45  
Data setup time  
250  
SDA and SCL rise time  
1000  
300  
ns  
tf  
SDA and SCL fall time  
ns  
tSU;STO  
tBUF  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
4
μs  
μs  
4.7  
FAST-MODE  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.6 Timing Requirements: I2C Interface (continued)  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V (unless otherwise noted); see Figure 7-1 for timing diagram  
MIN  
NOM  
MAX  
400  
UNIT  
fSCL  
SCL clock frequency  
0
kHz  
Hold time (repeated) START condition. After this period, the first  
clock pulse is generated.  
tHD;STA  
0.6  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
0.9  
Data setup time  
100  
20  
SDA and SCL rise time  
300  
300  
ns  
20 ×  
(IOVDD /  
5.5 V)  
tf  
SDA and SCL fall time  
ns  
tSU;STO  
Setup time for STOP condition  
0.6  
1.3  
μs  
μs  
tBUF  
Bus free time between a STOP and START condition  
FAST-MODE PLUS  
fSCL  
SCL clock frequency  
0
1000  
kHz  
Hold time (repeated) START condition. After this period, the first  
clock pulse is generated.  
tHD;STA  
0.26  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
0.5  
0.26  
0.26  
0
μs  
μs  
μs  
μs  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
Data setup time  
50  
SDA and SCL Rise Time  
120  
120  
ns  
20 ×  
(IOVDD /  
5.5 V)  
tf  
SDA and SCL Fall Time  
ns  
tSU;STO  
tBUF  
Setup time for STOP condition  
0.26  
0.5  
μs  
μs  
Bus free time between a STOP and START condition  
7.7 Switching Characteristics: I2C Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V (unless otherwise noted); see Figure 7-1 for timing diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
200  
200  
TYP  
MAX  
1250  
850  
UNIT  
ns  
Standard-mode  
td(SDA)  
SCL to SDA delay  
Fast-mode  
ns  
Fast-mode plus  
400  
ns  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.8 Timing Requirements: SPI Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 7-2 for timing  
diagram  
MIN  
40  
18  
18  
16  
16  
20  
8
NOM  
MAX  
UNIT  
ns  
t(SCLK)  
tH(SCLK)  
tL(SCLK)  
tLEAD  
SCLK period  
SCLK high pulse duration  
SCLK low pulse duration  
Enable lead time  
ns  
ns  
ns  
tTRAIL  
Enable trail time  
ns  
tDSEQ  
Sequential transfer delay  
MOSI data setup time  
MOSI data hold time  
SCLK rise time  
ns  
tSU(MOSI)  
tHLD(MOSI)  
tr(SCLK)  
tf(SCLK)  
ns  
8
ns  
10% - 90% rise time  
90% - 10% fall time  
6
6
ns  
SCLK fall time  
ns  
7.9 Switching Characteristics: SPI Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 7-2 for timing  
diagram  
PARAMETER  
TEST CONDITIONS  
IOVDD = 1.8 V  
MIN  
TYP  
MAX  
18  
UNIT  
ta(MISO)  
td(MISO)  
tdis(MISO)  
MISO access time  
ns  
IOVDD = 3.3 V  
14  
50% of SCLK to 50% of MISO,  
IOVDD = 1.8 V  
19  
15  
SCLK to MISO delay  
MISO disable time  
ns  
ns  
50% of SCLK to 50% of MISO,  
IOVDD = 3.3 V  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
18  
14  
7.10 Timing Requirements: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 7-3 for timing  
diagram  
MIN  
40  
18  
18  
8
NOM  
MAX  
UNIT  
ns  
t(BCLK)  
BCLK period  
tH(BCLK)  
tL(BCLK)  
tSU(FSYNC)  
tHLD(FSYNC)  
tr(BCLK)  
BCLK high pulse duration (1)  
BCLK low pulse duration (1)  
FSYNC setup time  
FSYNC hold time  
BCLK rise time  
ns  
ns  
ns  
8
ns  
10% - 90% rise time  
90% - 10% fall time  
10  
10  
ns  
tf(BCLK)  
BCLK fall time  
ns  
(1) The BCLK minimum high or low pulse duration must be higher than 25 ns (to meet the timing specifications), if the SDOUT data line is  
latched on the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.11 Switching Characteristics: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 7-3 for timing  
diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
50% of BCLK to 50% of  
SDOUT, IOVDD = 1.8 V  
18  
td(SDOUT-BCLK)  
BCLK to SDOUT delay  
ns  
50% of BCLK to 50% of  
SDOUT, IOVDD = 3.3 V  
14  
18  
50% of FSYNC to 50% of  
SDOUT, IOVDD = 1.8 V  
FSYNC to SDOUT delay in TDM  
or LJ mode (for MSB data with  
TX_OFFSET = 0)  
td(SDOUT-FSYNC)  
ns  
50% of FSYNC to 50% of  
SDOUT, IOVDD = 3.3 V  
14  
BCLK output clock frequency;  
master mode (1)  
f(BCLK)  
24.576  
MHz  
ns  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
IOVDD = 1.8 V  
IOVDD = 3.3 V  
14  
14  
14  
14  
BCLK high pulse duration; master  
mode  
tH(BCLK)  
BCLK low pulse duration; master  
mode  
tL(BCLK)  
ns  
ns  
50% of BCLK to 50% of  
FSYNC, IOVDD = 1.8 V  
18  
14  
10  
10  
8
BCLK to FSYNC delay; master  
mode  
td(FSYNC)  
50% of BCLK to 50% of  
FSYNC, IOVDD = 3.3 V  
10% - 90% rise time, IOVDD =  
1.8 V  
tr(BCLK)  
BCLK rise time; master mode  
BCLK fall time; master mode  
ns  
ns  
10% - 90% rise time, IOVDD =  
3.3 V  
90% - 10% fall time, IOVDD =  
1.8 V  
tf(BCLK)  
90% - 10% fall time, IOVDD =  
3.3 V  
8
(1) The BCLK output clock frequency must be lower than 18.5 MHz (to meet the timing specifications), if the SDOUT data line is latched  
on the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
7.12 Timing Requirements: PDM Digital Microphone Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 7-4 for timing  
diagram  
MIN  
30  
0
NOM  
MAX  
UNIT  
ns  
tSU(PDMDINx)  
tHLD(PDMDINx)  
PDMDINx_GPIx setup time  
PDMDINx_GPIx hold time  
ns  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.13 Switching Characteristics: PDM Digial Microphone Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 7-4 for timing  
diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PDMCLKx_GPIOx clock  
frequency  
f(PDMCLK)  
tH(PDMCLK)  
tL(PDMCLK)  
0.768  
6.144  
MHz  
PDMCLKx_GPIOx high pulse  
duration  
72  
72  
ns  
ns  
PDMCLKx_GPIOx low pulse  
duration  
tr(PDMCLK)  
tf(PDMCLK)  
PDMCLKx_GPIOx rise time  
PDMCLKx_GPIOx fall time  
10% - 90% rise time  
18  
18  
ns  
ns  
90% - 10% fall time  
7.14 Timing Diagrams  
SDA  
tBUF  
tHD;STA  
tLOW  
tr  
td(SDA)  
SCL  
tHD;STA  
tHD;DAT  
tHIGH  
tSU;DAT  
tSU;STA  
tSU;STO  
STO  
STA  
tf  
STA  
STO  
7-1. I2C Interface Timing Diagram  
SSZ  
tDSEQ  
tLAG  
t(SCLK)  
tf(SCLK)  
tLEAD  
tr(SCLK)  
SCLK  
tL(SCLK)  
tH(SCLK)  
td(MISO)  
tdis(MISO)  
MISO  
MOSI  
MSB OUT  
LSB OUT  
BIT6...1  
BIT6...1  
ta(MISO)  
tSU(MOSI) tHLD(MOSI)  
MSB IN  
LSB IN  
7-2. SPI Interface Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
FSYNC  
tSU(FSYNC)  
tHLD(FSYNC)  
t(BCLK)  
tL(BCLK)  
BCLK  
tH(BCLK)  
tr(BCLK)  
tf(BCLK)  
td(FSYNC)  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
SDOUT  
7-3. TDM, I2S, LJ Interface Timing Diagram  
tSU(PDMDINx)  
tHLD(PDMDINx) tSU(PDMDINx)  
tHLD(PDMDINx)  
tH(PDMCLK)  
tL(PDMCLK)  
PDMCLK  
PDMDINx  
t(PDMCLK)  
tf(PDMCLK)  
tr(PDMCLK)  
Falling Edge Captured  
Rising Edge Captured  
7-4. PDM Digital Microphone Interface Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.15 Typical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data,  
BCLK = 256 × fS, TDM slave mode, PLL on, channel gain = 0 dB, linear phase decimation filter, and MICBIAS programmed  
voltage = 8 V (unless otherwise noted); all performance measurements are done by feeding the device analog input and  
PDM digital input signal using audio precision with a 20-kHz, low-pass filter and an A-weighted filter (unless otherwise noted)  
-60  
-60  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Input Amplitude (dB)  
Input Amplitude (dB)  
THLiDn+e  
THLiDn+e  
AC-coupled differential line input  
AC-coupled single-ended line input  
7-5. THD+N vs Input Amplitude  
7-6. THD+N vs Input Amplitude  
-60  
-70  
-60  
-70  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20  
50  
100  
500  
1000  
5000 10000 20000  
Line  
20  
50  
100  
500  
1000  
5000 10000 20000  
Line  
Frequency (Hz)  
Frequency (Hz)  
AC-coupled differential line input  
AC-coupled single-ended line input  
7-7. THD+N vs Input Frequency With a  
1-dBr Input (non A-weighted)  
7-8. THD+N vs Input Frequency With a  
1-dBr Input (non A-weighted)  
0
-20  
0
-20  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
50  
100  
500  
1000  
5000 10000 20000  
Line  
20  
50  
100  
500  
1000  
5000 10000 20000  
Line  
Frequency (Hz)  
Frequency (Hz)  
AC-coupled differential line input  
7-9. FFT With Idle Input (non A-weighted)  
AC-coupled differential line input  
7-10. FFT With a 60-dBr Input (non A-weighted)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.15 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data,  
BCLK = 256 × fS, TDM slave mode, PLL on, channel gain = 0 dB, linear phase decimation filter, and MICBIAS programmed  
voltage = 8 V (unless otherwise noted); all performance measurements are done by feeding the device analog input and  
PDM digital input signal using audio precision with a 20-kHz, low-pass filter and an A-weighted filter (unless otherwise noted)  
-60  
-60  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-12  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-12  
Input Amplitude (dB)  
Input Amplitude (dB)  
TMHIDC+_  
TMHIDC+_  
DC-coupled differential microphone input with DC common-  
mode 1NxP = 6 V and INxM = 2 V, high swing mode enabled  
DC-coupled single-ended microphone input with DC common-  
mode 1NxP = 4 V and INxM = 0 V, high swing mode enabled  
7-11. THD+N vs Input Amplitude  
7-12. THD+N vs Input Amplitude  
DC-coupled differential microphone input with DC common-  
mode 1NxP = 6 V and INxM = 2 V, High swing mode enabled  
DC-coupled single-ended microphone input with DC common-  
mode 1NxP = 4 V and INxM = 0 V, high swing mode enabled  
7-13. THD+N vs Input Frequency With a  
15-dBr Input (non A-weighted)  
7-14. THD+N vs Input Frequency With a  
15-dBr Input (non A-weighted)  
0
0
Channel-1  
Channel-2  
Channel-1  
Channel-2  
-20  
-20  
Channel-3  
Channel-4  
Channel-5  
Channel-3  
Channel-4  
Channel-5  
-40  
-40  
Channel-6  
-60  
Channel-6  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
20  
50  
100  
500  
1000  
5000 10000 20000  
MIC_  
20  
50  
100  
500  
1000  
5000 10000 20000  
MIC_  
Frequency (Hz)  
Frequency (Hz)  
DC-coupled differential microphone input with DC common-  
mode 1NxP = 6 V and INxM = 2 V, high swing mode enabled  
DC-coupled differential microphone input with DC common-  
mode 1NxP = 6 V and INxM = 2 V, high swing mode enabled  
7-15. FFT With Idle Input (non A-weighted)  
7-16. FFT With a 60-dBr Input (non A-weighted)  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.15 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data,  
BCLK = 256 × fS, TDM slave mode, PLL on, channel gain = 0 dB, linear phase decimation filter, and MICBIAS programmed  
voltage = 8 V (unless otherwise noted); all performance measurements are done by feeding the device analog input and  
PDM digital input signal using audio precision with a 20-kHz, low-pass filter and an A-weighted filter (unless otherwise noted)  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20  
50  
100  
500  
1000  
5000 10000 20000  
Line  
20  
50  
100  
500  
1000  
5000 10000 20000  
MIC_  
Frequency (Hz)  
Frequency (Hz)  
AC-coupled differential line input  
DC-coupled differential microphone input with DC common-  
mode 1NxP = 6 V and INxM = 2 V, high swing mode enabled  
7-17. Power-Supply Rejection Ratio vs Ripple Frequency  
7-18. Power-Supply Rejection Ratio vs Ripple Frequency  
With 1-VPP Amplitude  
With 1-VPP Amplitude  
0.5  
70  
68  
66  
64  
62  
60  
58  
56  
54  
MICBIAS 5.0 V  
MICBIAS 5.5 V  
MICBIAS 6.0 V  
MICBIAS 6.5 V  
0.4  
MICBIAS 7.0 V  
MICBIAS 7.5 V  
MICBIAS 8.0 V  
MICBIAS 8.5 V  
MICBIAS 9.0 V  
0.3  
0.2  
0.1  
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
MICBIAS LOAD (mA)  
MICBIAS LOAD (mA)  
Effi  
MICB  
DC-coupled differential microphone input with DC common-  
mode 1NxP = 6 V and INxM = 2 V, high swing mode enabled  
DC-coupled differential microphone input  
7-19. MICBIAS Load Regulation vs MICBIAS Load Current  
7-20. Boost Efficiency vs MICBIAS Load Current  
4th-order PDM modulator with PDMCLKx = 3.072 MHz  
4th-order PDM modulator with PDMCLKx = 3.072 MHz  
7-22. THD+N vs Input Frequency With a 20-dBFS Input  
7-21. THD+N vs Input Amplitude  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
7.15 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data,  
BCLK = 256 × fS, TDM slave mode, PLL on, channel gain = 0 dB, linear phase decimation filter, and MICBIAS programmed  
voltage = 8 V (unless otherwise noted); all performance measurements are done by feeding the device analog input and  
PDM digital input signal using audio precision with a 20-kHz, low-pass filter and an A-weighted filter (unless otherwise noted)  
4th-order PDM modulator with PDMCLKx = 3.072 MHz  
4th-order PDM modulator with PDMCLKx = 3.072 MHz  
7-23. FFT With a 60-dBFS Input (non A-weighted)  
7-24. Amplitude Response With a 20-dBFS Input  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The PCM6480-Q1 is a scalable device that consists of high-performance, low-power, flexible, multichannel,  
audio analog-to-digital converters (ADCs) with extensive feature integration. This device is intended for  
automotive applications such as vehicle cabin active noise cancellation, hands-free in-vehicle communication,  
emergency call, and multimedia applications. The PCM6480-Q1 is a high performance audio converter that  
supports simultaneous sampling of up to a 4-channel analog microphone or a line input along with up to a 4-  
channel digital pulse density-modulation (PDM) microphone input. The high dynamic range of this device  
enables far-field audio recording with high fidelity. This device integrates a host of features that reduce cost,  
board space, and power consumption in space-constrained automotive sub-system designs. Package,  
performance, and device-compatible configuration registers make this device well suited for scalable system  
designs.  
The PCM6480-Q1 consists of the following blocks:  
4-channel, multibit, high-performance delta-sigma (ΔΣ) ADCs  
4-channel pulse density modulation (PDM) digital microphone interface with high-performance decimation  
filter  
Configurable single-ended or differential audio inputs with high voltage signal swing  
High-voltage, low-noise programmable microphone bias output  
Highly flexible, comprehensive input fault diagnostic  
Automatic gain controller (AGC)  
Programmable decimation filters with linear-phase or low-latency filter  
Programmable channel gain, volume control, and biquad filters for each channel  
Programmable phase and gain calibration with fine resolution for each channel  
Programmable high-pass filter (HPF) and digital channel mixer  
Integrated low-jitter, phase-locked loop (PLL) supporting a wide range of system clocks  
Integrated digital and analog voltage regulators to support single-supply operation  
Communication to the PCM6480-Q1 for configuring the control registers is supported using an I2C or SPI  
interface. The device supports a highly flexible audio serial interface [time-division multiplexing (TDM), I2S, or  
left-justified (LJ)] to transmit audio data seamlessly in the system across devices.  
The device can support multiple devices by sharing the common I2C and TDM buses across devices. Moreover,  
the device includes a daisy-chain feature and a secondary audio serial output data pin. These features relax the  
shared TDM bus timing requirements and board design complexities when operating multiple devices for  
applications requiring high audio data bandwidth.  
8-1 lists the reference abbreviations used throughout this document to registers that control the device.  
8-1. Abbreviations for Register References  
REFERENCE  
ABBREVIATION  
DESCRIPTION  
EXAMPLE  
Single data bit. The value of a  
single bit in a register.  
Page y, register z, bit k  
Py_Rz_Dk  
Page 4, register 36, bit 0 = P4_R36_D0  
Range of data bits. A range of  
data bits (inclusive).  
Page y, register z, bits k-m  
Page y, register z  
Py_Rz_D[k:m]  
Py_Rz  
Page 4, register 36, bits 3-0 = P4_R36_D[3:0]  
Page 4, register 36 = P4_R36  
One entire register. All eight  
bits in the register as a unit.  
Range of registers. A range of  
registers in the same page.  
Page y, registers z-n  
Py_Rz-Rn  
Page 4, registers 36, 37, 38 = P4_R36-R38  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.2 Functional Block Diagram  
PDMDIN1_GPI1  
PDMDIN2_GPI2  
4-Channel Digital PDM  
Microphones  
and Multi-Function Pin  
(Faults, Interrupt, PLL Input  
Clock, etc)  
Audio Clock Generation  
PLL  
(Input Clock Source -  
BCLK, GPIOx, GPIx)  
Boost Converter  
PDMCLK1_GPIO2  
PDMCLK2_GPIO3  
GPIO1  
Programmable  
MICBIAS  
MICBIAS  
Input Attenuator  
and  
PGA  
IN1P  
IN1M  
ADC  
Ch1  
IN2P  
IN2M  
Input Attenuator  
and  
PGA  
ADC  
Ch2  
SDOUT  
BCLK  
Digital Filters  
(Low Latency  
LPF,  
Programmable  
Biquads)  
Audio Serial  
Interface  
(TDM, I2S, LJ)  
Input Attenuator  
and  
PGA  
IN3P  
IN3M  
FSYNC  
ADC  
Ch3  
IN4P  
IN4M  
Input Attenuator  
and  
PGA  
ADC  
Ch4  
SDA_SSZ  
SCL_MOSI  
I2C or SPI  
Control Interface  
Regulators / Current Bias /  
Voltage Reference  
ADDR0_SCLK  
ADDR1_MISO  
Input Diagnostics  
FAULTS  
SHDNZ  
8-1. Simplified Device Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Serial Interfaces  
This device has two serial interfaces: control and audio data. The control serial interface is used for device  
configuration. The audio data serial interface is used for transmitting audio data to the host device.  
8.3.1.1 Control Serial Interfaces  
The device contains configuration registers and programmable coefficients that can be set to the desired values  
for a specific system and application use. All registers can be accessed using either I2C or SPI communication to  
the device. For more information, see the Programming section.  
8.3.1.2 Audio Serial Interfaces  
Digital audio data flows between the host processor and the PCM6480-Q1 on the digital audio serial interface  
(ASI), or audio bus. This highly flexible ASI bus includes a TDM mode for multichannel operation, support for I2S  
or left-justified protocols format, programmable data length options, very flexible master-slave configurability for  
bus clock lines, and the ability to communicate with multiple devices within a system directly.  
The bus protocol TDM, I2S, or left-justified (LJ) format can be selected by using the ASI_FORMAT[1:0],  
P0_R7_D[7:6] register bits. As shown in 8-2 and 8-3, these modes are all most significant byte (MSB)-first,  
pulse code modulation (PCM) data format, with the output channel data word-length programmable as 16, 20,  
24, or 32 bits by configuring the ASI_WLEN[1:0], P0_R7_D[5:4] register bits.  
8-2. Audio Serial Interface Format  
P0_R7_D[7:6] : ASI_FORMAT[1:0]  
AUDIO SERIAL INTERFACE FORMAT  
00 (default)  
Time division multiplexing (TDM) mode  
01  
10  
11  
Inter IC sound (I2S) mode  
Left-justified (LJ) mode  
Reserved (do not use this setting)  
8-3. Audio Output Channel Data Word-Length  
P0_R7_D[5:4] : ASI_WLEN[1:0]  
AUDIO OUTPUT CHANNEL DATA WORD-LENGTH  
00  
01  
Output channel data word-length set to 16 bits  
Output channel data word-length set to 20 bits  
Output channel data word-length set to 24 bits  
Output channel data word-length set to 32 bits  
10  
11 (default)  
The frame sync pin, FSYNC, is used in this audio bus protocol to define the beginning of a frame and has the  
same frequency as the output data sample rates. The bit clock pin, BCLK, is used to clock out the digital audio  
data across the serial bus. The number of bit clock cycles in a frame must accommodate multiple device active  
output channels with the programmed data word length.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
A frame consists of multiple time-division channel slots (up to 64) to allow all output channel audio data  
transmissions to complete on the audio bus by a device or multiple PCM6480-Q1 devices sharing the same  
audio bus. The device supports up to eight output channels that can be configured to place their audio data on  
bus slot 0 to slot 63. 8-4 lists the output channel slot configuration settings. In I2S and LJ mode, the slots are  
divided into two sets, left-channel slots and right-channel slots, as described in the Inter IC Sound (I2S) Interface  
and Left-Justified (LJ) Interface sections.  
8-4. Output Channel Slot Assignment Settings  
P0_R11_D[5:0] : CH1_SLOT[5:0]  
00 0000 = 0d (default)  
00 0001 = 1d  
OUTPUT CHANNEL 1 SLOT ASSIGNMENT  
Slot 0 for TDM or left slot 0 for I2S, LJ.  
Slot 1 for TDM or left slot 1 for I2S, LJ.  
01 1111 = 31d  
10 0000 = 32d  
Slot 31 for TDM or left slot 31 for I2S, LJ.  
Slot 32 for TDM or right slot 0 for I2S, LJ.  
11 1110 = 62d  
11 1111 = 63d  
Slot 62 for TDM or right slot 30 for I2S, LJ.  
Slot 63 for TDM or right slot 31 for I2S, LJ.  
Similarly, the slot assignment setting for output channel 2 to channel 6 can be done using the CH2_SLOT  
(P0_R12) to CH6_SLOT (P0_R16) registers, respectively.  
The slot word length is the same as the output channel data word length set for the device. The output channel  
data word length must be set to the same value for all PCM6480-Q1 devices if all devices share the same ASI  
bus in a system. The maximum number of slots possible for the ASI bus in a system is limited by the available  
bus bandwidth, which depends upon the BCLK frequency, output data sample rate used, and the channel data  
word length configured.  
The device also includes a feature that offsets the start of the slot data transfer with respect to the frame sync by  
up to 31 cycles of the bit clock. 8-5 lists the programmable offset configuration settings.  
8-5. Programmable Offset Settings for the ASI Slot Start  
P0_R8_D[4:0] : TX_OFFSET[4:0]  
PROGRAMMABLE OFFSET SETTING FOR SLOT DATA TRANSMISSION START  
0 0000 = 0d (default)  
The device follows the standard protocol timing without any offset.  
Slot start is offset by one BCLK cycle, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by one BCLK cycle, as compared to  
standard protocol timing.  
0 0001 = 1d  
......  
......  
Slot start is offset by 30 BCLK cycles, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by 30 BCLK cycles, as compared to  
standard protocol timing.  
1 1110 = 30d  
Slot start is offset by 31 BCLK cycles, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by 31 BCLK cycles, as compared to  
standard protocol timing.  
1 1111 = 31d  
The device also features the ability to invert the polarity of the frame sync pin, FSYNC, used to transfer the audio  
data as compared to the default FSYNC polarity used in standard protocol timing. This feature can be set using  
the FSYNC_POL, P0_R7_D3 register bit. Similarly, the device can invert the polarity of the bit clock pin, BCLK,  
which can be set using the BCLK_POL, P0_R7_D2 register bit.  
8.3.1.2.1 Time Division Multiplexed Audio (TDM) Interface  
In TDM mode, also known as DSP mode, the rising edge of FSYNC starts the data transfer with the slot 0 data  
first. Immediately after the slot 0 data transmission, the remaining slot data are transmitted in order. FSYNC and  
each data bit (except the MSB of slot 0 when TX_OFFSET equals 0) is transmitted on the rising edge of BCLK.  
8-2 to 8-5 illustrate the protocol timing for TDM operation with various configurations.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
FSYNC  
BCLK  
SDOUT  
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-2 to Slot-7  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
8-2. TDM Mode Standard Protocol Timing (TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
nth Sample  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Slot-2 to Slot-7  
(Word Length : N)  
TX_OFFSET = 2  
TX_OFFSET = 2  
8-3. TDM Mode Protocol Timing (TX_OFFSET = 2)  
FSYNC  
BCLK  
1
0
N-1  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
0
N-1 N-2  
2
1
0
SDOUT  
3
2
1
0
N-1  
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Slot-2 to Slot-7  
(Word Length : N)  
TX_OFFSET = 2  
nth Sample  
8-4. TDM Mode Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 2)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-2 to Slot-7  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
8-5. TDM Mode Protocol Timing (TX_OFFSET = 0 and BCLK_POL = 1)  
For proper operation of the audio bus in TDM mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels times the programmed word length of the output channel data.  
The device supports FSYNC as a pulse with a 1-cycle-wide bit clock, but also supports multiples as well. For a  
higher BCLK frequency operation, using TDM mode with a TX_OFFSET value higher than 0 is recommended.  
8.3.1.2.2 Inter IC Sound (I2S) Interface  
The standard I2S protocol is defined for only two channels: left and right. The device extends the same protocol  
timing for multichannel operation. In I2S mode, the MSB of the left slot 0 is transmitted on the falling edge of  
BCLK in the second cycle after the falling edge of FSYNC. Immediately after the left slot 0 data transmission, the  
remaining left slot data are transmitted in order. The MSB of the right slot 0 is transmitted on the falling edge of  
BCLK in the second cycle after the rising edge of FSYNC. Immediately after the right slot 0 data transmission,  
the remaining right slot data are transmitted in order. FSYNC and each data bit is transmitted on the falling edge  
of BCLK. 8-6 to 8-9 illustrate the protocol timing for I2S operation with various configurations.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
8-6. I2S Mode Standard Protocol Timing (TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1  
N-1  
1
0
1
0
Left  
Slot-0  
(Word Length : N) (Word Length : N)  
Left  
Slot-2 to Slot-3  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 1  
TX_OFFSET = 1  
TX_OFFSET = 1  
nth Sample  
8-7. I2S Protocol Timing (TX_OFFSET = 1)  
FSYNC  
BCLK  
N-1 N-2  
1
0
N-1 N-2  
0
0
N-1  
1
0
N-1  
1
0
N-1 N-2  
0
N-1  
1
0
1
0
N-1 N-2  
SDOUT  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Left  
Slot-1 to Slot-3  
(Word Length : N)  
Right  
Slot-1 to Slot-3  
(Word Length : N)  
nth Sample  
8-8. I2S Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
8-9. I2S Protocol Timing (TX_OFFSET = 0 and BCLK_POL = 1)  
For proper operation of the audio bus in I2S mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the programmed word length  
of the output channel data. The device FSYNC low pulse must be a number of BCLK cycles wide that is greater  
than or equal to the number of active left slots times the data word length configured. Similarly, the FSYNC high  
pulse must be a number of BCLK cycles wide that is greater than or equal to the number of active right slots  
times the data word length configured.  
8.3.1.2.3 Left-Justified (LJ) Interface  
The standard LJ protocol is defined for only two channels: left and right. The device extends the same protocol  
timing for multichannel operation. In LJ mode, the MSB of the left slot 0 is transmitted in the same BCLK cycle  
after the rising edge of FSYNC. Each subsequent data bit is transmitted on the falling edge of BCLK.  
Immediately after the left slot 0 data transmission, the remaining left slot data are transmitted in order. The MSB  
of the right slot 0 is transmitted in the same BCLK cycle after the falling edge of FSYNC. Each subsequent data  
bit is transmitted on the falling edge of BCLK. Immediately after the right slot 0 data transmission, the remaining  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
right slot data are transmitted in order. FSYNC is transmitted on the falling edge of BCLK. 8-10 to 8-13  
illustrate the protocol timing for LJ operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
8-10. LJ Mode Standard Protocol Timing (TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1  
N-1  
1
0
1
0
Left  
Slot-0  
(Word Length : N) (Word Length : N)  
Left  
Slot-2 to Slot-3  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 2  
TX_OFFSET = 2  
TX_OFFSET = 2  
nth Sample  
8-11. LJ Protocol Timing (TX_OFFSET = 2)  
FSYNC  
BCLK  
N-1 N-2  
1
0
N-1 N-2  
0
0
N-1  
1
0
N-1  
1
0
N-1 N-2  
0
N-1  
1
0
1
0
N-1 N-2  
SDOUT  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Left  
Slot-1 to Slot-3  
(Word Length : N)  
Right  
Slot-1 to Slot-3  
(Word Length : N)  
nth Sample  
8-12. LJ Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 1  
TX_OFFSET = 1  
TX_OFFSET = 1  
nth Sample  
8-13. LJ Protocol Timing (TX_OFFSET = 1 and BCLK_POL = 1)  
For proper operation of the audio bus in LJ mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the programmed word length  
of the output channel data. The device FSYNC high pulse must be a number of BCLK cycles wide that is greater  
than or equal to the number of active left slots times the data word length configured. Similarly, the FSYNC low  
pulse must be number of BCLK cycles wide that is greater than or equal to the number of active right slots times  
the data word length configured. For a higher BCLK frequency operation, using LJ mode with a TX_OFFSET  
value higher than 0 is recommended.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.1.3 Using Multiple Devices With Shared Buses  
The device has many supported features and flexible options that can be used in the system to seamlessly  
connect multiple PCM6480-Q1 devices by sharing a single common I2C control bus and an audio serial interface  
bus. This architecture enables multiple applications to be applied to a system that require a microphone array for  
beam-forming operation, hands-free in-vehicle communication, car cabin active noise cancellation, and so forth.  
8-14 shows a diagram of multiple PCM6480-Q1 devices in a configuration where the control and audio data  
buses are shared.  
Control Bus œ I2C Interface  
PCM6xx0-Q1  
U1  
PCM6xx0-Q1  
U2  
PCM6xx0-Q1  
U3  
PCM6xx0-Q1  
U4  
Host Processor  
Audio Data Bus œ TDM, I2S, LJ Interface  
8-14. Multiple PCM6480-Q1 Devices With Shared Control and Audio Data Buses  
The PCM6480-Q1 consist of the following features to enable seamless connection and interaction of multiple  
devices using a shared bus:  
Supports up to four pin-programmable I2C slave addresses  
I2C broadcast simultaneously writes to (or triggers) all PCM6480-Q1 devices  
Supports up to 64 configuration output channel slots for the audio serial interface  
Tri-state feature (with enable and disable) for the unused audio data slots of the device  
Supports a bus-holder feature (with enable and disable) to keep the last driven value on the audio bus  
The GPIOx pin can be configured as a secondary output data lane for the audio serial interface  
The GPIOx or GPIx pin can be used in a daisy-chain configuration of multiple PCM6480-Q1 devices  
Supports one BCLK cycle data latching timing to relax the timing requirement for the high-speed interface  
Programmable master and slave options for the audio serial interface  
Ability to synchronize the multiple devices for the simultaneous sampling requirement across devices  
See the Multiple PCM6xx0-Q1 Devices With Shared TDM and I2C Bus application report for further details.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.2 Phase-Locked Loop (PLL) and Clock Generation  
The device has a smart auto-configuration block to generate all necessary internal clocks required for the ADC  
modulator and the digital filter engine used for signal processing. This configuration is done by monitoring the  
frequency of the FSYNC and BCLK signal on the audio bus.  
The device supports the various output data sample rates (of the FSYNC signal frequency) and the BCLK to  
FSYNC ratio to configure all clock dividers, including the PLL configuration, internally without host programming.  
8-6 and 8-7 list the supported FSYNC and BCLK frequencies.  
8-6. Supported FSYNC (Multiples or Submultiples of 48 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
RATIO  
FSYNC  
(8 kHz)  
FSYNC  
(16 kHz)  
FSYNC  
(24 kHz)  
FSYNC  
(32 kHz)  
FSYNC  
(48 kHz)  
FSYNC  
(96 kHz)  
FSYNC (192 FSYNC (384 FSYNC (768  
kHz)  
kHz)  
kHz)  
16  
24  
Reserved  
Reserved  
0.256  
0.256  
0.384  
0.384  
0.576  
0.512  
0.768  
0.768  
1.152  
1.536  
2.304  
3.072  
6.144  
12.288  
4.608  
9.216  
18.432  
32  
0.512  
0.768  
1.024  
1.536  
3.072  
6.144  
12.288  
24.576  
48  
0.384  
0.768  
1.152  
1.536  
2.304  
4.608  
9.216  
18.432  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
64  
0.512  
1.024  
1.536  
2.048  
3.072  
6.144  
12.288  
24.576  
96  
0.768  
1.536  
2.304  
3.072  
4.608  
9.216  
18.432  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
128  
192  
256  
384  
512  
1024  
2048  
1.024  
2.048  
3.072  
4.096  
6.144  
12.288  
18.432  
24.576  
Reserved  
Reserved  
Reserved  
Reserved  
24.576  
1.536  
3.072  
4.608  
6.144  
9.216  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2.048  
4.096  
6.144  
8.192  
12.288  
18.432  
24.576  
Reserved  
Reserved  
3.072  
6.144  
9.216  
12.288  
16.384  
Reserved  
Reserved  
4.096  
8.192  
12.288  
24.576  
Reserved  
8.192  
16.384  
Reserved  
16.384  
8-7. Supported FSYNC (Multiples or Submultiples of 44.1 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
RATIO  
FSYNC  
(7.35 kHz)  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
(44.1 kHz)  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
(14.7 kHz) (22.05 kHz) (29.4 kHz)  
(88.2 kHz) (176.4 kHz) (352.8 kHz) (705.6 kHz)  
16  
24  
Reserved  
Reserved  
Reserved  
0.3528  
Reserved  
0.3528  
0.4704  
0.7056  
0.9408  
1.4112  
0.3528  
0.5292  
0.7056  
1.0584  
1.4112  
0.4704  
0.7056  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
16.9344  
32  
0.9408  
1.4112  
2.8224  
5.6448  
11.2896  
22.5792  
48  
1.4112  
2.1168  
4.2336  
8.4672  
16.9344  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
64  
0.4704  
1.8816  
2.8224  
5.6448  
11.2896  
22.5792  
96  
0.7056  
2.1168  
2.8224  
4.2336  
8.4672  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
128  
192  
256  
384  
512  
1024  
2048  
0.9408  
1.8816  
2.8224  
3.7632  
5.6448  
7.5264  
15.0528  
Reserved  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
22.5792  
Reserved  
3.7632  
5.6448  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
1.4112  
5.6448  
8.4672  
1.8816  
7.5264  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
2.8224  
11.2896  
15.0528  
Reserved  
Reserved  
3.7632  
7.5264  
15.0528  
The status register ASI_STS, P0_R21, captures the device auto detect result for the FSYNC frequency and the  
BCLK to FSYNC ratio. If the device finds any unsupported combinations of FSYNC frequency and BCLK to  
FSYNC ratios, the device generates an ASI clock-error interrupt and mutes the record channels accordingly.  
The device uses an integrated, low-jitter, phase-locked loop (PLL) to generate internal clocks required for the  
ADC modulator and digital filter engine, as well as other control blocks. The device also supports an option to  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
use the BCLK, GPIOx, or the GPIx pin (as MCLK) as the audio clock source without using the PLL to reduce  
power consumption. However, the ADC performance may degrade based on jitter from the external clock  
source, and some processing features may not be supported if the external audio clock source frequency is not  
high enough. Therefore, TI recommends using the PLL for high-performance applications.  
The device also supports an audio bus master mode operation using the GPIOx or GPIx pin (as MCLK) as the  
reference input clock source and supports various flexible options and a wide variety of system clocks. More  
details and information on master mode configuration and operation are discussed in the Configuring and  
Operating TLV320ADCx140 as Audio Bus Master application report.  
The audio bus clock error detection and auto-detect feature automatically generates all internal clocks, but can  
be disabled using the ASI_ERR, P0_R9_D5 and AUTO_CLK_CFG, P0_R19_D6, register bits, respectively. In  
the system, this disable feature can be used to support custom clock frequencies that are not covered by the  
auto detect scheme. For such application use cases, care must be taken to ensure that the multiple clock  
dividers are all configured appropriately. Therefore, TI recommends using the PPC3 GUI for device configuration  
settings; for more details see the PCM6xx0Q1EVM-PDK Evaluation Module user's guide and the PurePath™  
Console Graphical Development Suite for Audio System Design and Development development suite.  
8.3.3 Analog Input Channel Configuration  
The PCM6480-Q1 consists of four pairs of analog input pins (INxP and INxM) that can be configured as either  
differential or single-ended inputs for the recording channel. The device supports simultaneous recording of up to  
four channels using the multichannel ADC. The input source for the analog pins can be either analog  
microphones or line, aux inputs from the system board. 8-8 describes how to set the input configuration for  
the record channel.  
8-8. Input Source Selection for the Record Channel  
P0_R60_D[6:5] :  
CH1_INSRC[1:0]  
INPUT CHANNEL 1 RECORD SOURCE SELECTION  
00 (default)  
01  
Analog differential input for channel 1  
Analog single-ended input for channel 1  
Reserved (do not use this setting)  
10 or 11  
Similarly, the input source selection setting for input channel 2 to channel 6 can be configured using the  
CH2_INSRC[1:0] (P0_R65_D[6:5]) to CH6_INSRC[1:0] (P0_R85_D[6:5]) registers bits, respectively.  
The device supports the input DC fault diagnostic feature for microphone recording with the DC-coupled inputs  
configuration; however, the device also supports an option for AC-coupled inputs if the DC diagnostic is not  
required for the specific input pins. This configuration can be done independently for each channel by setting the  
CH1_DC (P0_R60_D4) to CH6_DC (P0_R85_D4) register bits.  
For the DC-coupled line input configuration, the DC common-mode difference (INxP INxM) for the analog  
input pins must be 0 V to support the 10-VRMS full-scale differential input. For the DC-coupled microphone input  
configuration, the DC common-mode difference (INxP INxM) for the analog input pins must be within 3.4 V to  
5.0 V to support the 2-VRMS full-scale differential input in the default mode of operation. Alternatively, the device  
has a mode to support more than a 2-VRMS differential DC-coupled microphone signal by setting the  
CH1_MIC_IN_RANGE, P0_R60_D3, register bit for channel 1 and, similarly, the CH2_MIC_IN_RANGE,  
P0_R65_D3 to CH6_MIC_IN_RANGE, P0_R85_D3 registers bit (respectively) for channels 2 to 6. If the  
CH1_MIC_IN_RANGE bit is set high (the recommended setting to support a higher DC common-mode  
difference and a higher AC signal swing), then the device supports the maximum differential input voltage  
IN1PIN1M as high as 8.4 V (for the MICBIAS 9-V setting), including the AC signal and DC differential  
common-mode voltage. The DC differential common-mode voltage is later filtered out by the digital high-pass  
filter and the digital output full-scale corresponds to the 10-VRMS AC signal in this case.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-15 and 8-16 show how to connect a DC-coupled microphone for a differential and single-ended input,  
respectively. The value of the external bias resistor, R1, must be appropriately chosen based upon the  
microphone impedance. For a differential input, the value of the external bias resistor is recommended to be  
used for half of the microphone impedance, whereas for a single-ended input, the external bias resistor is  
recommended to be the same as the microphone impedance.  
MICBIAS  
PCM6xx0-Q1  
GND  
DC-Coupled  
Microphone  
Differential Input  
INxP  
INxM  
GND  
8-15. DC-Coupled Microphone Differential Input Connection  
MICBIAS  
PCM6xx0-Q1  
GND  
DC-Coupled  
Microphone  
Single-ended Input  
INxP  
INxM  
GND  
8-16. DC-Coupled Microphone Single-Ended Input Connection  
In AC-coupled mode, the value of the coupling capacitor must be so chosen that the high-pass filter formed by  
the coupling capacitor and the input impedance do not affect the signal content. At power-up, before proper  
recording can begin, this coupling capacitor must be charged up to the common-mode voltage. For single-ended  
input configuration, the INxM pin must be grounded after the AC coupling capacitor in AC-coupled mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-17 and 8-18 show how to connect an AC-coupled microphone or line source for a differential and single-  
ended input, respectively. In AC-coupled mode, the device input pins INxP and INxM, must be biased  
appropriately for the DC common-mode value either using the on-chip MICBIAS output voltage along with  
external bias resistor, R0, or using an external bias generator circuit. The maximum value for resistor R0  
depends upon the signal swing and the MICBIAS value programmed. See the PCM6xx0-Q1 AC Coupled  
External Resistor Calculator to calculate the R0 value for the desired system configuration.  
MICBIAS  
PCM6xx0-Q1  
GND  
C0 F  
INxP  
INxM  
AC-Coupled  
Microphone or Line  
Differential Input  
C0 F  
8-17. AC-Coupled Microphone or Line Differential Input Connection  
MICBIAS  
PCM6xx0-Q1  
GND  
C0 F  
INxP  
INxM  
AC-Coupled  
Microphone or Line  
Single-ended Input  
C0 F  
GND  
8-18. AC-Coupled Microphone or Line Single-Ended Input Connection  
8.3.4 Reference Voltage  
All audio data converters require a DC reference voltage. The PCM6480-Q1 achieves its low-noise performance  
by internally generating a low-noise reference voltage. This reference voltage is generated using a band-gap  
circuit with good PSRR performance. This audio converter reference voltage must be filtered externally using a  
minimum 1-µF capacitor connected from the VREF pin to the analog ground (AVSS).  
To achieve low power consumption, this audio reference block is powered down in sleep mode or software  
shutdown; see the Sleep Mode or Software Shutdown section for more details. When exiting sleep mode, the  
audio reference block is powered up using internal fast-charge scheme and the VREF pin settles to its steady-  
state voltage after the settling time (a function of the decoupling capacitor on the VREF pin). This time is  
approximately equal to 3.5 ms when using a 1-μF decoupling capacitor. If a higher value of the decoupling  
capacitor is used on the VREF pin, the fast-charge setting must be reconfigured using the VREF_QCHG,  
P0_R2_D[4:3] register bits, which support options of 3.5 ms (default), 10 ms, 50 ms, or 100 ms.  
8.3.5 Microphone Bias  
The device integrates a built-in, low-noise, programmable, high-voltage, microphone bias pin (MICBIAS) that can  
be used in the system for biasing the analog microphone. The integrated bias amplifier supports up to 80 mA of  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
load current, which can be used for multiple microphones and is designed to provide a combination of high  
PSRR, low noise, and programmable bias voltages to allow the biasing to be fine tuned for specific microphone  
combinations. The PCM6480-Q1 has an integrated efficient boost converter to generate the high voltage supply  
for the programmable microphone bias using an external, low-voltage, 3.3-V BSTVDD supply.  
When using the MICBIAS pin for biasing multiple microphones, TI recommends avoiding common impedance on  
the board layout for the MICBIAS connection to minimize coupling across microphones. 8-9 shows the  
available microphone bias programmable options.  
8-9. MICBIAS Programmable Settings  
P0_R59_D[7:4] : MBIAS_VAL[3:0]  
MICBIAS OUTPUT VOLTAGE  
0000 to 0110  
0111  
Reserved (do not use these settings)  
Set to 5.0 V  
Set to 5.5 V  
Set to 6.0 V  
Set to 6.5 V  
Set to 7.0 V  
Set to 7.5 V  
Set to 8.0 V  
Set to 8.5 V  
Set to 9.0 V  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
The microphone bias output can be powered on or powered off (default) by configuring the MICBIAS_PDZ,  
P0_R117_D7 register bit. Additionally, the device provides an option to configure the GPIOx pins to directly  
control the microphone bias output power on or power off. This feature is useful in some systems to control the  
microphone directly without engaging the host for I2C or SPI communication. The MICBIAS_PDZ, P0_R117_D7  
register bit value is ignored if the GPIOx pins are configured to control the microphone bias power on or power  
off.  
8.3.6 Input DC Fault Diagnostics  
Each input of the PCM6480-Q1 features highly comprehensive DC fault diagnostics that can be configured to  
detect fault conditions in the DC-coupled input configuration and trigger an interrupt request to a host processor.  
Diagnostics are enabled for each channel by configuring DIAG_CFG0, P0_R100. For channels with diagnostics  
enabled, the input pins are scanned automatically by an integrated SAR ADC with a programmable repetition  
rate. The repetition rate can be configured using the REP_RATE, P0_R103_D7-6 register bits. For fastest fault  
response time and also to get better signal integrity and signal chain performance for the record channel,  
REP_RATE must be configured to 0 (non-default setting) . The diagnostic processor averages eight consecutive  
samples per test to improve noise performance. The DC fault diagnostics is not supported in the AC-coupled  
input configuration.  
The device features various programmable threshold registers, P0_R101 to P0_R102, which can by configured  
by the host processor to define the fault region for a different category of fault condition detection. Additionally,  
there is also a debounce feature, configured with FAULT_DBNCE_SEL, P0_R103_D3-2. This feature sets the  
number of consecutive scan counts where the fault condition occurs before the latched status register is tripped,  
thus reducing false triggers by transient events. The device also has a moving average feature, P0_R104, which  
continuously averages out the newly measured data with old measured data and thus reduces the false triggers  
by any short-duration transient events.  
8.3.6.1 Fault Conditions  
8.3.6.1.1 Input Pin Short to Ground  
A short to ground fault occurs when the voltage of the input pin is measured below the threshold voltage with  
respect to ground (AVSS). The threshold can be set by configuring DIAG_SHT_GND, P0_R102_D7-4.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.6.1.2 Input Pin Short to MICBIAS  
A short to MICBIAS fault occurs when the difference between the voltage measured for the MICBIAS pin and the  
input pin (MICBIAS INxx) is less than the threshold. The threshold can be set by configuring  
DIAG_SHT_MICBIAS, P0_R102_D3-0.  
8.3.6.1.3 Open Inputs  
In the event that a microphone becomes disconnected from the inputs, the microphone bias resistors pull INxP  
to MICBIAS and INxM to ground. The combination of INxP shorted to MICBIAS and INxM shorted to ground for  
the same channel in a diagnostic sweep results in an open input fault condition.  
8.3.6.1.4 Short Between INxP and INxM  
An input terminal shorted fault occurs when the difference between the voltage measured for the input pin INxP  
and the input pin INxM of the same channel is less than the threshold. The threshold can be set by configuring  
DIAG_SHT_TERM, P0_R101_D7-4.  
8.3.6.1.5 Input Pin Overvoltage  
An input terminal overvoltage fault occurs when the voltage measured for the input pin is above the voltage  
measured for the MICBIAS pin.  
8.3.6.1.6 Input Pin Short to VBAT_IN  
A short to VBAT_IN fault occurs when the difference between the voltage measured for the VBAT_IN pin and the  
input pin, ABS(VBAT_IN INxx), is less than the threshold or both the VBAT_IN and INxx pin measured  
voltages are above 11.7 V. The threshold can be set by configuring DIAG_SHT_VBAT_IN, P0_R101_D3-0.  
When VBAT_IN is less than MICBIAS, false fault detections can exist based on the signal level of the INxx pin.  
To minimize false detections there is also a separate debounce count for this condition set by configuring  
VSHORT_DBNCE, P0_R106_D1.  
8.3.6.2 Fault Reporting  
Faults are reported in live and latched status registers. The live registers, P1_R45 to P1_R55, are updated  
continuously with each new scan and report the most recent measurements reported by the diagnostics  
processor. The latched status of each diagnostic fault is reported by the channel in P0_R46 to P0_R55, and a  
latched summary by the channel is reported in CHx_LTCH, P0_R45. If LTCH_CLR_ON_READ, P0_R40_D0, is  
set to '0', then the latched registers clear upon reading and are latched if the associated bit in the live fault  
registers transitions from a 0to a 1. A transition of any bit in the latched register from a 0to 1’  
triggers an interrupt request.  
For detecting a persistent fault, an additional mode is available for the latched registers. In this mode, the  
latched registers are only cleared upon reading if the status bit in the associated live status register is 0at  
the time of reading. This mode is enabled (default setting) by configuring LTCH_CLR_ON_READ, P0_R40_D0  
to a 1.  
8.3.6.2.1 Overcurrent and Overtemperature Protection  
The device has an overcurrent protection circuit that limits the current drawn out of the MICBIAS output to the  
maximum supported level when an external undesired short event occurs on the MICBIAS pin. The device sets  
the status flag, P0_R44_D4 bit, on an overcurrent detection. Additionally, the device has an overtemperature  
detection circuit that is enabled by default and sets the status flag, P0_R44_D5 bit, whenever the die junction  
temperature goes higher than the supported level.  
Additionally, the P0_R58 and P0_R40_D4:3 register can be configured to shutdown MICBIAS along with the on-  
chip boost on an overtemperature detection. TI recommends configuring PD_ON_FLT_CFG, P0_R40_D4-3 to  
"10" so that on an overtemperature detection, the device powers-down MICBIAS, the on-chip boost, and all ADC  
channels.  
More details and information on fault diagnostics are discussed in the PCM6xx0-Q1 Fault Diagnostics Features  
application report.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.7 Digital PDM Microphone Record Channel  
In addition to supporting analog microphones, the device also interfaces to digital PDM microphones and uses  
high order and high performance decimation filters to generate PCM output data which can be transmitted on  
audio serial interface to host. The PDMDINx_GPIx and PDMCLKx_GPIOx pins respectively and can be  
configured for PDMDIN and PDMCLK for digital PDM microphone recording. The device support up to four  
digital microphone recording channel.  
The device internally generates PCMCLK with a programmable frequency either 6.144 MHz, 3.072 MHz, 1.536  
MHz, or 768 kHz (for output data sample rates that are multiples or sub-multiples of 48 kHz) or 5.6448 MHz,  
2.8224 MHz, 1.4112 MHz, or 705.6 kHz (for output data sample rates that are multiples or sub-multiples of  
44.1 kHz) using PDMCLK_DIV[1:0], P0_R31_D[1:0] register bits. This PDMCLK can be routed on the  
PDMCLKx_GPIOx pin. As shown in 8-19, this clock can be connected to the external digital microphone  
device.  
VDD  
VDD  
VDD  
DATA  
IOVDD  
Digital  
PDM  
SEL Microphone  
U1  
CLK  
GND  
GND  
PCM6480-Q1  
VDD  
VDD  
PDMDINx_GPIx  
DATA  
CLK  
Digital  
PDM  
SEL Microphone  
U2  
PDMCLKx_GPOIx  
GND  
GND  
8-19. Digital PDM Microphones Connection Diagram to the PCM6480-Q1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
The single-bit output of the external digital microphone device can be connected to the PDMDINx_GPIx pins.  
The single data line can be shared by two digital microphones to place their data on the opposite edge of  
PDMCLK. Internally, the device latches the steady value of data on the rising edge of PDMCLK or the falling  
edge of PDMCLK based on the configuration register bits set in P0_R32_D[7:4]. 8-20 shows the digital PDM  
microphone interface timing diagram.  
PDMCLKx_GPIOx  
PDMDINx_GPIx  
D1[n]  
D2[n]  
D1[n+1]  
D2[n+1]  
D1[n+2]  
Mic-1  
Data  
Mic-2  
Data  
Mic-1  
Data  
Mic-2  
Data  
Mic-1  
Data  
(n+1)th Sample  
(n+2)th Sample  
nth Sample  
8-20. Digital PDM Microphone Protocol Timing Diagram  
When the digital microphone is used for recording, the analog section of the respective ADC channel is powered  
down and bypassed for power efficiency. Selecting the analog microphone or digital microphone for channel 1 to  
channel 4 is done by using the CH5_INSRC[1:0] (P0_R80_D[6:5]), CH6_INSRC[1:0] (P0_R85_D[6:5]),  
CH7_INSRC[1:0] (P0_R90_D[6:5]), and CH8_INSRC[1:0] (P0_R95_D[6:5]) register bits.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.8 Signal-Chain Processing  
The PCM6480-Q1 signal chain is comprised of very-low-noise, high-performance, and low-power analog blocks  
and highly flexible and programmable digital processing blocks. The high performance and flexibility combined  
with a compact package makes the PCM6480-Q1 optimized for a variety of end-equipment and applications that  
require multichannel audio capture. 8-21 shows a conceptual block diagram that highlights the various  
building blocks used in the signal chain, and how the blocks interact in the signal chain.  
INxP  
Phase  
Calibration  
Decimation  
Filters  
Input  
Attenuator  
PGA  
ADC  
INxM  
Output  
Channel  
Data to ASI  
Digital Summer/Mixer  
(Applies to Ch1-Ch4  
only)  
Gain  
Calibration  
Biquad  
Filters  
Digital Volume  
Control (DVC)  
HPF  
Ch1-Ch4 Processed Data after Gain  
Calibration  
8-21. Analog Input Signal-Chain Processing Flowchart  
The front-end input attenuator allows the device to accept the high-voltage input signal that is attenuated by the  
input attenuator circuit before being routed to a low-noise programmable gain amplifier (PGA). Along with a low-  
noise and low-distortion, multibit, delta-sigma ADC, the front-end PGA enables the PCM6480-Q1 to record a far-  
field audio signal with very high fidelity, both in quiet and loud environments. Moreover, the ADC architecture has  
inherent antialias filtering with a high rejection of out-of-band frequency noise around multiple modulator  
frequency components. Therefore, the device prevents noise from aliasing into the audio band during ADC  
sampling. Further on in the signal chain, an integrated, high-performance multistage digital decimation filter  
sharply cuts off any out-of-band frequency noise with high stop-band attenuation.  
The device also has an integrated programmable biquad filter that allows for custom low-pass, high-pass, or any  
other desired frequency shaping. Thus, the overall signal chain architecture removes the requirement to add  
external components for antialiasing low-pass filtering, and thus saves drastically on the external system  
component cost and board space. See the PCM6xx0-Q1 Integrated Analog Antialiasing Filter and Flexible Digital  
Filter application report for further details.  
The device also supports up to a 4-channel digital PDM microphone recording for channels using the  
PDMDINx_GPIx and PDMCLKx_GPIOx pins. The channel 1 to channel 4 signal chain block diagram is same as  
shown in 8-21; however, channel 5 to channel 8 only support a digital microphone recording option, as shown  
in 8-22, and do not support the digital summer or mixer option.  
PDMCLK  
High Performance  
Decimation  
Filters  
PDM  
Interface  
Digital Microphone  
Phase  
Calibration  
PDMIN  
Output  
Channel  
Data to ASI  
Gain  
Calibration  
Biquad  
Filters  
Digital Volume  
Control (DVC)  
HPF  
8-22. Digital PDM Input Signal-Chain Processing Flowchart  
The signal chain also consists of various highly programmable digital processing blocks, such as phase  
calibration, gain calibration, high-pass filter, digital summer or mixer, biquad filters, and volume control. The  
details on these processing blocks are discussed further in this section.  
The desired input channels for recording can be enabled or disabled by using the IN_CH_EN (P0_R115)  
register, and the output channels for the audio serial interface can be enabled or disabled by using the  
ASI_OUT_EN (P0_R116) register. In general, the device supports simultaneous power-up and power-down of all  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
active channels for simultaneous recording. However, based on the application needs, if some channels must be  
powered-up or powered-down dynamically when the other channel recording is on, then that use case is  
supported by setting the DYN_CH_PUPD_EN, P0_R117_D4 register bit to 1'b1 but do not power-down channel  
1 in this mode of operation.  
The device supports an input signal bandwidth up to 80 kHz, which allows the high-frequency non-audio signal  
to be recorded by using a 176.4-kHz (or higher) sample rate.  
For output sample rates of 48 kHz or lower, the device supports all features for 8-channel recording and various  
programmable processing blocks. However, for output sample rates higher than 48 kHz, there are limitations in  
the number of simultaneous channel recordings supported and the number of biquad filters and such. See the  
PCM6xx0-Q1 Sampling Rates and Programmable Processing Blocks Supported application report for further  
details.  
8.3.8.1 Programmable Channel Gain and Digital Volume Control  
The device has an independent programmable channel gain setting for each input channel that can be set to the  
appropriate value based on the maximum input signal expected in the system and the ADC VREF setting used  
(see the Reference Voltage section), which determines the ADC full-scale signal level.  
Configure the desired channel gain setting before powering up the ADC channel and do not change this setting  
while the ADC is powered on. The programmable range supported for each channel gain is from 0 dB to 42 dB  
in steps of 1 dB. To achieve low-noise performance, the device internal logic first maximizes the gain for the  
front-end low-noise analog PGA, and then applies any residual programmed channel gain in the digital  
processing block.  
8-10 shows the programmable options available for the channel gain.  
8-10. Channel Gain Programmable Settings  
P0_R61_D[7:2] : CH1_GAIN[5:0]  
00 0000 = 0d (default)  
00 0001 = 1d  
CHANNEL GAIN SETTING FOR INPUT CHANNEL 1  
Input channel 1 gain is set to 0 dB  
Input channel 1 gain is set to 1 dB  
Input channel 1 gain is set to 2 dB  
00 0010 = 2d  
10 1001 = 41d  
Input channel 1 gain is set to 41 dB  
Input channel 1 gain is set to 42 dB  
Reserved (do not use these settings)  
10 1010 = 42d  
10 1011 to 11 1111 = 43d to 63d  
Similarly, the channel gain setting for input channel 2 to channel 6 can be configured using the CH2_GAIN  
(P0_R66) to CH6_GAIN (P0_R86) register bits, respectively.  
The device also has a programmable digital volume control with a range from 100 dB to 27 dB in steps of  
0.5 dB with the option to mute the channel recording. The digital volume control value can be changed  
dynamically while the ADC channel is powered-up and recording. During volume control changes, the soft ramp-  
up or ramp-down volume feature is used internally to avoid any audible artifacts. Soft-stepping can be entirely  
disabled using the DISABLE_SOFT_STEP (P0_R108_D4) register bit.  
The digital volume control setting is independently available for each output channel, including the digital  
microphone record channel. However, the device also supports an option to gang-up the volume control setting  
for all channels together using the channel 1 digital volume control setting, regardless if channel 1 is powered up  
or powered down. This gang-up can be enabled using the DVOL_GANG (P0_R108_D7) register bit.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-11 shows the programmable options available for the digital volume control.  
8-11. Digital Volume Control (DVC) Programmable Settings  
P0_R62_D[7:0] : CH1_DVOL[7:0]  
DVC SETTING FOR OUTPUT CHANNEL 1  
0000 0000 = 0d  
Output channel 1 DVC is set to mute  
0000 0001 = 1d  
Output channel 1 DVC is set to 100 dB  
Output channel 1 DVC is set to 99.5 dB  
Output channel 1 DVC is set to 99 dB  
0000 0010 = 2d  
0000 0011 = 3d  
1100 1000 = 200d  
1100 1001 = 201d (default)  
1100 1010 = 202d  
Output channel 1 DVC is set to 0.5 dB  
Output channel 1 DVC is set to 0 dB  
Output channel 1 DVC is set to 0.5 dB  
1111 1101 = 253d  
1111 1110 = 254d  
1111 1111 = 255d  
Output channel 1 DVC is set to 26 dB  
Output channel 1 DVC is set to 26.5 dB  
Output channel 1 DVC is set to 27 dB  
Similarly, the digital volume control setting for output channel 2 to channel 6 can be configured using the  
CH2_DVOL (P0_R67) to CH6_DVOL (P0_R87) register bits, respectively.  
The internal digital processing engine soft ramps up the volume from a muted level to the programmed volume  
level when the channel is powered up, and the internal digital processing engine soft ramps down the volume  
from a programmed volume to mute when the channel is powered down. This soft-stepping of volume is done to  
prevent abruptly powering up and powering down the record channel. This feature can also be entirely disabled  
using the DISABLE_SOFT_STEP (P0_R108_D4) register bit.  
8.3.8.2 Programmable Channel Gain Calibration  
Along with the programmable channel gain and digital volume, this device also provides programmable channel  
gain calibration. The gain of each channel can be finely calibrated or adjusted in steps of 0.1 dB for a range of –  
0.8-dB to 0.7-dB gain error. This adjustment is useful when trying to match the gain across channels resulting  
from external components and microphone sensitivity. This feature, in combination with the regular digital  
volume control, allows the gains across all channels to be matched for a wide gain error range with a resolution  
of 0.1 dB. 8-12 shows the programmable options available for the channel gain calibration.  
8-12. Channel Gain Calibration Programmable Settings  
P0_R63_D[7:4] : CH1_GCAL[3:0]  
CHANNEL GAIN CALIBRATION SETTING FOR INPUT CHANNEL 1  
0000 = 0d  
Input channel 1 gain calibration is set to 0.8 dB  
0001 = 1d  
Input channel 1 gain calibration is set to 0.7 dB  
1000 = 8d (default)  
Input channel 1 gain calibration is set to 0 dB  
1110 = 14d  
1111 = 15d  
Input channel 1 gain calibration is set to 0.6 dB  
Input channel 1 gain calibration is set to 0.7 dB  
Similarly, the channel gain calibration setting for input channel 2 to channel 6 can be configured using the  
CH2_GCAL (P0_R68) to CH6_GCAL (P0_R88) register bits, respectively.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.8.3 Programmable Channel Phase Calibration  
In addition to the gain calibration, the phase delay in each channel can be finely calibrated or adjusted in steps  
of one modulator clock cycle for a cycle range of 0 to 255 for the phase error. The modulator clock, the same  
clock used for ADC_MOD_CLK, is 6.144 MHz (the output data sample rate is multiples or submultiples of 48  
kHz) or 5.6448 MHz (the output data sample rate is multiples or submultiples of 44.1 kHz). This feature is very  
useful for many applications that must match the phase with fine resolution between each channel, including any  
phase mismatch across channels resulting from external components or microphones. 8-13 shows the  
available programmable options for channel phase calibration.  
8-13. Channel Phase Calibration Programmable Settings  
P0_R64_D[7:0] : CH1_PCAL[7:0]  
0000 0000 = 0d (default)  
0000 0001 = 1d  
CHANNEL PHASE CALIBRATION SETTING FOR INPUT CHANNEL 1  
Input channel 1 phase calibration with no delay  
Input channel 1 phase calibration delay is set to one cycle of the modulator clock  
Input channel 1 phase calibration delay is set to two cycles of the modulator clock  
0000 0010 = 2d  
1111 1110 = 254d  
1111 1111 = 255d  
Input channel 1 phase calibration delay is set to 254 cycles of the modulator clock  
Input channel 1 phase calibration delay is set to 255 cycles of the modulator clock  
Similarly, the channel phase calibration setting for input channel 2 to channel 6 can be configured using the  
CH2_PCAL (P0_R69) to CH6_PCAL (P0_R89) register bits, respectively.  
8.3.8.4 Programmable Digital High-Pass Filter  
To remove the DC offset component and attenuate the undesired low-frequency noise content in the record data,  
the device supports a programmable high-pass filter (HPF). The HPF is not a channel-independent filter setting  
but is globally applicable for all ADC channels. This HPF is constructed using the first-order infinite impulse  
response (IIR) filter, and is efficient enough to filter out possible DC components of the signal. 8-14 shows the  
predefined 3-dB cutoff frequencies available that can be set by using the HPF_SEL[1:0] register bits of  
P0_R107. Additionally, to achieve a custom 3-dB cutoff frequency for a specific application, the device also  
allows the first-order IIR filter coefficients to be programmed when the HPF_SEL[1:0] register bits are set to  
2'b00. 8-23 illustrates a frequency response plot for the HPF filter.  
8-14. HPF Programmable Settings  
P0_R107_D[1:0] :  
HPF_SEL[1:0]  
-3-dB CUTOFF FREQUENCY  
SETTING  
-3-dB CUTOFF FREQUENCY AT  
16-kHz SAMPLE RATE  
-3-dB CUTOFF FREQUENCY AT  
48-kHz SAMPLE RATE  
00  
01 (default)  
10  
Programmable 1st-order IIR filter  
0.00025 × fS  
Programmable 1st-order IIR filter  
Programmable 1st-order IIR filter  
4 Hz  
32 Hz  
128 Hz  
12 Hz  
96 Hz  
0.002 × fS  
11  
0.008 × fS  
384 Hz  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
-33  
-36  
-39  
-42  
-45  
HPF -3 dB Cutoff = 0.00025 ì fS  
HPF -3 dB Cutoff = 0.002 ì fS  
HPF -3 dB Cutoff = 0.008 ì fS  
5E-5  
0.0001  
0.0005  
0.001  
Normalized Frequency (1/fS)  
0.005  
0.01  
0.05  
D003  
8-23. HPF Filter Frequency Response Plot  
方程1 gives the transfer function for the first-order programable IIR filter:  
00 + 01VF1  
231 F &1VF1  
: ;  
* V =  
(1)  
The frequency response for this first-order programmable IIR filter with default coefficients is flat at a gain of 0 dB  
(all-pass filter). The host device can override the frequency response by programming the IIR coefficients in 表  
8-15 to achieve the desired frequency response for high-pass filtering or any other desired filtering. If  
HPF_SEL[1:0] are set to 2'b00, the host device must write these coefficients values for the desired frequency  
response before powering-up any ADC channel for recording. These programmable coefficients are 32-bit,  
twos complement numbers. 8-15 shows the filter coefficients for the first-order IIR filter.  
8-15. 1st-Order IIR Filter Coefficients  
FILTER  
COEFFICIENT  
COEFFICIENT REGISTER  
MAPPING  
FILTER  
DEFAULT COEFFICIENT VALUE  
0x7FFFFFFF  
N0  
N1  
D1  
P4_R72-R75  
P4_R76-R79  
P4_R80-R83  
Programmable 1st-order IIR filter (can be  
allocated to HPF or any other desired filter)  
0x00000000  
0x00000000  
8.3.8.5 Programmable Digital Biquad Filters  
The device supports up to 12 programmable digital biquad filters. These highly efficient filters achieve the  
desired frequence response. In digital signal processing, a digital biquad filter is a second-order, recursive linear  
filter with two poles and two zeros. 方程2 gives the transfer function of each biquad filter:  
00 + 201VF1 + 02VF2  
231 F 2&1VF1 F &2VF2  
: ;  
* V =  
(2)  
The frequency response for the biquad filter section with default coefficients is flat at a gain of 0 dB (all-pass  
filter). The host device can override the frequency response by programming the biquad coefficients to achieve  
the desired frequency response for a low-pass, high-pass, or any other desired frequency shaping. The  
programmable coefficients for the mixer operation are located in the Programmable Coefficient Registers: Page  
2 and Programmable Coefficient Registers: Page 3 sections. If biquad filtering is required, then the host device  
must write these coefficients values before powering up any ADC channels for recording. These programmable  
coefficients are 32-bit, twos complement numbers. As described in 8-16, these biquad filters can be  
allocated for each output channel based on the BIQUAD_CFG[1:0] register setting of P0_R108. By setting  
BIQUAD_CFG[1:0] to 2'b00, the biquad filtering for all record channels is disabled and the host device can  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
choose this setting if no additional filtering is required for the system application. See the PCM6xx0-Q1  
Programmable Biquad Filter Configuration and Applications application report for further details.  
8-16. Biquad Filter Allocation to the Record Output Channel  
RECORD OUTPUT CHANNEL ALLOCATION USING P0_R108_D[6:5] REGISTER SETTING  
BIQUAD_CFG[1:0] = 2'b01  
(1 Biquad per Channel)  
BIQUAD_CFG[1:0] = 2'b10 (Default)  
(2 Biquads per Channel)  
BIQUAD_CFG[1:0] = 2'b11  
(3 Biquads per Channel)  
PROGRAMMABLE  
BIQUAD FILTER  
SUPPORTS ALL 8 CHANNELS  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Not used  
SUPPORTS UP TO 6 CHANNELS  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 5  
Allocated to output channel 6  
Allocated to output channel 5  
Allocated to output channel 6  
SUPPORTS UP TO 4 CHANNELS  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Biquad filter 1  
Biquad filter 2  
Biquad filter 3  
Biquad filter 4  
Biquad filter 5  
Biquad filter 6  
Biquad filter 7  
Biquad filter 8  
Biquad filter 9  
Biquad filter 10  
Biquad filter 11  
Biquad filter 12  
Not used  
Not used  
Not used  
Allocated to output channel 5  
Allocated to output channel 6  
Not used  
Not used  
8-17 shows the biquad filter coefficients mapping to the register space.  
8-17. Biquad Filter Coefficients Register Mapping  
PROGRAMMABLE BIQUAD BIQUAD FILTER COEFFICIENTS PROGRAMMABLE BIQUAD BIQUAD FILTER COEFFICIENTS  
FILTER  
REGISTER MAPPING  
FILTER  
REGISTER MAPPING  
Biquad filter 1  
Biquad filter 2  
Biquad filter 3  
Biquad filter 4  
Biquad filter 5  
Biquad filter 6  
P2_R8-R27  
Biquad filter 7  
Biquad filter 8  
Biquad filter 9  
Biquad filter 10  
Biquad filter 11  
Biquad filter 12  
P3_R8-R27  
P2_R28-R47  
P3_R28-R47  
P2_R48-R67  
P3_R48-R67  
P2_R68-R87  
P3_R68-R87  
P2_R88-R107  
P2_R108-R127  
P3_R88-R107  
P3_R108-R127  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.8.6 Programmable Channel Summer and Digital Mixer  
For applications that require an even higher SNR than that supported for each channel, the device digital  
summing mode can be used. In this mode, the digital record data are summed up across the channel with an  
equal weightage factor, which helps in reducing the effective record noise. 8-18 lists the configuration settings  
available for channel summing mode.  
8-18. Channel Summing Mode Programmable Settings  
SNR AND DYNAMIC RANGE  
P0_R107_D[3:2] : CH_SUM[2:0]  
CHANNEL SUMMING MODE FOR INPUT CHANNELS  
Channel summing mode is disabled  
BOOST  
00 (Default)  
Not applicable  
Output channel 1 = (input channel 1 + input channel 2) / 2  
Output channel 2 = (input channel 1 + input channel 2) / 2  
Output channel 3 = (input channel 3 + input channel 4) / 2  
Output channel 4 = (input channel 3 + input channel 4) / 2  
3-dB boost in SNR and dynamic  
range  
01  
3-dB boost in SNR and dynamic  
range  
Output channel 1 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Output channel 2 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
6-dB boost in SNR and dynamic  
range  
10  
11  
Output channel 3 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Output channel 4 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Reserved (do not use this setting)  
Not applicable  
The device additionally supports a fully programmable mixer feature that can mix the various input channels with  
their custom programmable scale factor to generate the final output channels. The programmable mixer feature  
is available only if CH_SUM[2:0] is set to 2'b00. The mixer function is only supported for input channel 1 to  
channel 4. 8-24 shows a block diagram that describes the mixer 1 operation to generate output channel 1.  
The programmable coefficients for the mixer operation are located in the Programmable Coefficient Registers:  
Page 4 section. All mixer coefficients are 32-bit, twos complement numbers using a 1.31 number format. The  
value of 0x7FFFFFFF is equivalent to +1 (0-dB gain), the value 0x00000000 is equivalent to mute (zero data),  
and any values in between set the mixer attenuation computed using 方程式 3. If the MSB is set to '1' then the  
attenuation remains the same but the signal phase is inverted.  
hex2dec (value) / 231  
(3)  
Attenuated by  
MIX1_CH1  
factor  
Input Channel-1  
Processed Data  
Attenuated by  
MIX1_CH2  
factor  
Input Channel-2  
Processed Data  
Output Channel-1  
Routed to Bi-Quad  
Filter  
+
Attenuated by  
MIX1_CH3  
factor  
Input Channel-3  
Processed Data  
Attenuated by  
MIX1_CH4  
factor  
Input Channel-4  
Processed Data  
8-24. Programmable Digital Mixer Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
A similar mixer operation is performed by mixer 2, mixer 3, and mixer 4 to generate output channel 2, channel 3,  
and channel 4, respectively.  
8.3.8.7 Configurable Digital Decimation Filters  
The device record channel includes a high dynamic range, built-in digital decimation filter to process the  
oversampled data from the multibit delta-sigma (ΔΣ) modulator to generate digital data at the same Nyquist  
sampling rate as the FSYNC rate. The decimation filter can be chosen from three different types, depending on  
the required frequency response, group delay, and phase linearity requirements for the target application. The  
selection of the decimation filter option can be done by configuring the DECI_FILT, P0_R107_D[5:4] register bits.  
8-19 shows the configuration register setting for the decimation filter mode selection for the record channel.  
8-19. Decimation Filter Mode Selection for the Record Channel  
P0_R107_D[5:4] : DECI_FILT[1:0]  
DECIMATION FILTER MODE SELECTION  
00 (default)  
Linear phase filters are used for the decimation  
01  
10  
11  
Low-latency filters are used for the decimation  
Ultra-low latency filters are used for the decimation  
Reserved (do not use this setting)  
8.3.8.7.1 Linear Phase Filters  
The linear phase decimation filters are the default filters set by the device and can be used for all applications  
that require a perfect linear phase with zero-phase deviation within the pass-band specification of the filter. The  
filter performance specifications and various plots for all supported output sampling rates are listed in this  
section.  
8.3.8.7.1.1 Sampling Rate: 8 kHz or 7.35 kHz  
8-25 and 8-26 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 8 kHz or 7.35 kHz. 8-20 lists the specifications for a decimation filter with an  
8-kHz or 7.35-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-25. Linear Phase Decimation Filter Magnitude 8-26. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-20. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
72.7  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
81.2  
17.1  
1/fS  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.8.7.1.2 Sampling Rate: 16 kHz or 14.7 kHz  
8-27 and 8-28 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 16 kHz or 14.7 kHz. 8-21 lists the specifications for a decimation filter with an 16-kHz  
or 14.7-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-27. Linear Phase Decimation Filter Magnitude 8-28. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-21. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.3  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
95.0  
15.7  
1/fS  
8.3.8.7.1.3 Sampling Rate: 24 kHz or 22.05 kHz  
8-29 and 8-30 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 24 kHz or 22.05 kHz. 8-22 lists the specifications for a decimation filter with an 24-kHz  
or 22.05-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-29. Linear Phase Decimation Filter Magnitude 8-30. Linear Phase Decimation Filter Pass-Band  
Response  
Ripple  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-22. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
MIN  
0.05  
73.0  
TYP  
MAX  
UNIT  
Pass-band ripple  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
96.4  
16.6  
1/fS  
8.3.8.7.1.4 Sampling Rate: 32 kHz or 29.4 kHz  
8-31 and 8-32 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 32 kHz or 29.4 kHz. 8-23 lists the specifications for a decimation filter with an 32-kHz  
or 29.4-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-31. Linear Phase Decimation Filter Magnitude 8-32. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-23. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.7  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
107.2  
16.9  
1/fS  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.8.7.1.5 Sampling Rate: 48 kHz or 44.1 kHz  
8-33 and 8-34 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 48 kHz or 44.1 kHz. 8-24 lists the specifications for a decimation filter with an 48-kHz  
or 44.1-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-33. Linear Phase Decimation Filter Magnitude 8-34. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-24. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.8  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
98.1  
17.1  
1/fS  
8.3.8.7.1.6 Sampling Rate: 96 kHz or 88.2 kHz  
8-35 and 8-36 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 96 kHz or 88.2 kHz. 8-25 lists the specifications for a decimation filter with an 96-kHz  
or 88.2-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-35. Linear Phase Decimation Filter Magnitude 8-36. Linear Phase Decimation Filter Pass-Band  
Response  
Ripple  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-25. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
MIN  
0.05  
73.6  
TYP  
MAX  
UNIT  
Pass-band ripple  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
97.9  
17.1  
1/fS  
8.3.8.7.1.7 Sampling Rate: 192 kHz or 176.4 kHz  
8-37 and 8-38 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 192 kHz or 176.4 kHz. 8-26 lists the specifications for a decimation filter with an 192-  
kHz or 176.4-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
0.2  
0.25  
Normalized Frequency (1/fS)  
0.3  
0.35  
0.4  
D001  
D001  
8-37. Linear Phase Decimation Filter Magnitude  
8-38. Linear Phase Decimation Filter Pass-Band  
Response  
Ripple  
8-26. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.3 × fS  
Frequency range is 0.473 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.3 × fS  
0.05  
dB  
0.05  
70.0  
Stop-band attenuation  
Group delay or latency  
dB  
111.0  
11.9  
1/fS  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.8.7.1.8 Sampling Rate: 384 kHz or 352.8 kHz  
8-39 and 8-40 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 384 kHz or 352.8 kHz. 8-27 lists the specifications for a decimation filter with an 384-  
kHz or 352.8-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
Normalized Frequency (1/fS)  
0.2  
0.25  
0.3  
D001  
D001  
8-39. Linear Phase Decimation Filter Magnitude 8-40. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-27. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
70.0  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.212 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.212 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
108.8  
7.2  
1/fS  
8.3.8.7.1.9 Sampling Rate: 768 kHz or 705.6 kHz  
8-41 and 8-42 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 768 kHz or 705.6 kHz. 8-28 lists the specifications for a decimation filter with an 768-  
kHz or 705.6-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
Normalized Frequency (1/fS)  
0.15  
0.2  
D001  
D001  
8-41. Linear Phase Decimation Filter Magnitude 8-42. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-28. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
75.0  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.113 × fS  
Frequency range is 0.58 × fS to 2 × fS  
Frequency range is 2 × fS onwards  
0.05  
dB  
Stop-band attenuation  
dB  
88.0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-28. Linear Phase Decimation Filter Specifications (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Group Delay or Latency Frequency range is 0 to 0.113 × fS  
5.9  
1/fS  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.8.7.2 Low-Latency Filters  
For applications where low latency with minimal phase deviation (within the audio band) is critical, the low-  
latency decimation filters on the PCM6480-Q1 can be used. The device supports these filters with a group delay  
of approximately seven samples with an almost linear phase response within the 0.365 × fS frequency band.  
This section provides the filter performance specifications and various plots for all supported output sampling  
rates for the low-latency filters.  
8.3.8.7.2.1 Sampling Rate: 16 kHz or 14.7 kHz  
8-43 shows the magnitude response and 8-44 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 16 kHz or 14.7 kHz. 8-29 lists the specifications for a decimation filter  
with a 16-kHz or 14.7-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-44. Low-Latency Decimation Filter Pass-Band  
8-43. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
8-29. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.451 × fS  
Frequency range is 0.61 × fS onwards  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
0.05  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
87.3  
dB  
7.6  
1/fS  
0.022  
0.25  
1/fS  
0.022  
0.21  
Degrees  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.8.7.2.2 Sampling Rate: 24 kHz or 22.05 kHz  
8-45 shows the magnitude response and 8-46 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 24 kHz or 22.05 kHz. 8-30 lists the specifications for a decimation  
filter with a 24-kHz or 22.05-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-46. Low-Latency Decimation Filter Pass-Band  
8-45. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
8-30. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.459 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.01  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
87.2  
dB  
7.5  
1/fS  
0.026  
0.30  
1/fS  
0.026  
0.26  
Degrees  
8.3.8.7.2.3 Sampling Rate: 32 kHz or 29.4 kHz  
8-47 shows the magnitude response and 8-48 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 32 kHz or 29.4 kHz. 8-31 lists the specifications for a decimation filter  
with a 32-kHz or 29.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-48. Low-Latency Decimation Filter Pass-Band  
8-47. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-31. Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
8.7  
1/fS  
0.026  
0.31  
1/fS  
0.026  
0.26  
Degrees  
8.3.8.7.2.4 Sampling Rate: 48 kHz or 44.1 kHz  
8-49 shows the magnitude response and 8-50 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 48 kHz or 44.1 kHz. 8-32 lists the specifications for a decimation filter  
with a 48-kHz or 44.1-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-50. Low-Latency Decimation Filter Pass-Band  
8-49. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
8-32. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.452 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.015  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
86.4  
dB  
7.7  
1/fS  
0.027  
0.30  
1/fS  
0.027  
0.25  
Degrees  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.8.7.2.5 Sampling Rate: 96 kHz or 88.2 kHz  
8-51 shows the magnitude response and 8-52 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 96 kHz or 88.2 kHz. 8-33 lists the specifications for a decimation filter  
with a 96-kHz or 88.2-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-52. Low-Latency Decimation Filter Pass-Band  
8-51. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
8-33. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.466 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.04  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
86.3  
dB  
7.7  
1/fS  
0.027  
0.30  
1/fS  
0.027  
0.26  
Degrees  
8.3.8.7.2.6 Sampling Rate: 192 kHz or 176.4 kHz  
8-53 shows the magnitude response and 8-54 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 192 kHz or 176.4 kHz. 8-34 lists the specifications for a decimation  
filter with a 192-kHz or 176.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-54. Low-Latency Decimation Filter Pass-Band  
8-53. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-34. Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 463 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
0.03  
85.6  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.03  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
0.027  
0.30  
1/fS  
0.027  
0.26  
Degrees  
8.3.8.7.3 Ultra-Low-Latency Filters  
For applications where ultra-low latency (within the audio band) is critical, the ultra-low-latency decimation filters  
on the PCM6480-Q1 can be used. The device supports these filters with a group delay of approximately four  
samples with an almost linear phase response within the 0.325 × fS frequency band. This section provides the  
filter performance specifications and various plots for all supported output sampling rates for the ultra-low-latency  
filters.  
8.3.8.7.3.1 Sampling Rate: 16 kHz or 14.7 kHz  
8-55 shows the magnitude response and 8-56 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 16 kHz or 14.7 kHz. 8-35 lists the specifications for a decimation filter  
with a 16-kHz or 14.7-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
8-56. Ultra-Low-Latency Decimation Filter Pass-  
8-55. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
8-35. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.45 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
0.05  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
87.2  
dB  
4.3  
1/fS  
0.512  
14.2  
1/fS  
0.512  
10.0  
Degrees  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.8.7.3.2 Sampling Rate: 24 kHz or 22.05 kHz  
8-57 shows the magnitude response and 8-58 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 24 kHz or 22.05 kHz. 8-36 lists the specifications for a decimation  
filter with a 24-kHz or 22.05-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
8-58. Ultra-Low-Latency Decimation Filter Pass-  
8-57. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
8-36. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.46 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
0.01  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
87.1  
dB  
4.1  
1/fS  
0.514  
14.3  
1/fS  
0.514  
10.0  
Degrees  
8.3.8.7.3.3 Sampling Rate: 32 kHz or 29.4 kHz  
8-59 shows the magnitude response and 8-60 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 32 kHz or 29.4 kHz. 8-37 lists the specifications for a decimation filter  
with an 32-kHz or 29.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
8-60. Ultra-Low-Latency Decimation Filter Pass-  
8-59. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-37. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
5.2  
1/fS  
0.492  
13.5  
1/fS  
0.492  
9.5  
Degrees  
8.3.8.7.3.4 Sampling Rate: 48 kHz or 44.1 kHz  
8-61 shows the magnitude response and 8-62 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 48 kHz or 44.1 kHz. 8-38 lists the specifications for a decimation filter  
with a 48-kHz or 44.1-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
8-62. Ultra-Low-Latency Decimation Filter Pass-  
8-61. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
8-38. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.452 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
0.015  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
86.4  
dB  
4.1  
1/fS  
0.525  
14.5  
1/fS  
0.525  
10.3  
Degrees  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.8.7.3.5 Sampling Rate: 96 kHz or 88.2 kHz  
8-63 shows the magnitude response and 8-64 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 96 kHz or 88.2 kHz. 8-39 lists the specifications for a decimation filter  
with a 96-kHz or 88.2-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
10  
0
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
3
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
-5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
8-64. Ultra-Low-Latency Decimation Filter Pass-  
8-63. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
8-39. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.466 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.1625 × fS  
Frequency range is 0 to 0.1625 × fS  
Frequency range is 0 to 0.1625 × fS  
0.04  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
86.3  
dB  
3.7  
1/fS  
0.091  
1.30  
1/fS  
0.091  
0.86  
Degrees  
8.3.8.7.3.6 Sampling Rate: 192 kHz or 176.4 kHz  
8-65 shows the magnitude response and 8-66 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 192 kHz or 176.4 kHz. 8-40 lists the specifications for a decimation  
filter with a 192-kHz or 176.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
10  
0
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
3
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
-5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
8-66. Ultra-Low-Latency Decimation Filter Pass-  
8-65. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-40. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.463 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.085 × fS  
Frequency range is 0 to 0.085 × fS  
Frequency range is 0 to 0.085 × fS  
MIN  
0.03  
85.6  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.03  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
3.7  
1/fS  
0.024  
0.18  
1/fS  
0.024  
0.12  
Degrees  
8.3.8.7.3.7 Sampling Rate: 384 kHz or 352.8 kHz  
8-67 shows the magnitude response and 8-68 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 384 kHz or 352.8 kHz. 8-41 lists the specifications for a decimation  
filter with a 384-kHz or 352.8-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2
10  
0
1.6  
1.2  
0.8  
0.4  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.4  
-0.8  
-1.2  
-1.6  
-2  
Pass-Band Ripple  
Phase Deviation  
0
0.05  
0.1 0.15  
Normalized Frequency (1/fS)  
0.2  
0.25  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-68. Ultra-Low-Latency Decimation Filter Pass-  
8-67. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
8-41. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.1 × fS  
Frequency range is 0.56 × fS onwards  
Frequency range is 0 to 0.157 × fS  
Frequency range is 0 to 0.157 × fS  
Frequency range is 0 to 0.157 × fS  
0.01  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
70.1  
dB  
4.1  
1/fS  
0.18  
2.07  
1/fS  
0.18  
0.85  
Degrees  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.3.9 Automatic Gain Controller (AGC)  
The device includes an automatic gain controller (AGC) for ADC recording that must be used only for the AC-  
coupled input configuration. As shown in 8-69, the AGC can be used to maintain a nominally constant output  
level when recording speech. Instead of manually setting the channel gain in AGC mode, the circuitry  
automatically adjusts the channel gain when the input signal becomes overly loud or very weak, such as when a  
person speaking into a microphone moves closer to or farther from the microphone. The AGC algorithm has  
several programmable parameters, including target level, maximum gain allowed, attack and release (or decay)  
time constants, and noise thresholds that allow the algorithm to be fine-tuned for any particular application.  
Input  
Signal  
Output  
Signal  
Target  
Level  
AGC  
Gain  
Decay Time  
Attack  
Time  
8-69. AGC Characteristics  
The target level (AGC_LVL) represents the nominal output level at which the AGC attempts to hold the ADC  
output signal level. The PCM6480-Q1 allows programming of different target levels, which can be programmed  
from 6 dB to 36 dB relative to a full-scale signal, and the AGC_LVL default value is set to 34 dB. The  
target level is recommended to be set with enough margin to prevent clipping when loud sounds occur. 8-42  
lists the AGC target level configuration settings.  
8-42. AGC Target Level Programmable Settings  
P0_R112_D[7:4] : AGC_LVL[3:0]  
AGC TARGET LEVEL FOR OUTPUT  
0000  
0001  
0010  
The AGC target level is the 6-dB output signal level  
The AGC target level is the 8-dB output signal level  
The AGC target level is the 10-dB output signal level  
1110 (default)  
The AGC target level is the 34-dB output signal level  
The AGC target level is the 36-dB output signal level  
1111  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
The maximum gain allowed (AGC_MAXGAIN) gives flexibility to the designer to restrict the maximum gain  
applied by the AGC. This feature limits the channel gain in situations where environmental noise is greater than  
the programmed noise threshold. The AGC_MAXGAIN can be programmed from 3 dB to 42 dB with steps of 3  
dB and the default value is set to 24 dB. 8-43 lists the AGC_MAXGAIN configuration settings.  
8-43. AGC Maximum Gain Programmable Settings  
P0_R112_D[3:0] :  
AGC MAXIMUM GAIN ALLOWED  
AGC_MAXGAIN[3:0]  
0000  
0001  
0010  
The AGC maximum gain allowed is 3 dB  
The AGC maximum gain allowed is 6 dB  
The AGC maximum gain allowed is 9 dB  
0111 (default)  
The AGC maximum gain allowed is 24 dB  
1110  
1111  
The AGC maximum gain allowed is 39 dB  
The AGC maximum gain allowed is 42 dB  
For further details on the AGC various configurable parameter and application use, see the Using the Automatic  
Gain Controller in PCM6xx0-Q1 application report.  
8.3.10 Interrupts, Status, and Digital I/O Pin Multiplexing  
Certain events in the device may require host processor intervention and can be used to trigger interrupts to the  
host processor. Such event are an audio serial interface (ASI) bus error and input DC fault diagnostic faults. The  
device powers down the record channels if any faults are detected with the ASI bus error clocks, such as:  
Invalid FSYNC frequency  
Invalid SBCLK to FSYNC ratio  
Long pauses of the SBCLK or FSYNC clocks  
When an ASI bus clock error is detected, the device shuts down the record channel as quickly as possible. After  
all ASI bus clock errors are resolved, the device volume ramps back to its previous state to recover the record  
channel. During an ASI bus clock error, the internal interrupt request (IRQ) interrupt signal asserts low if the  
clock error interrupt mask register bit INT_MASK0[7], P0_R51_D7 is set low. The clock fault is also available for  
readback in the live fault status register bit INT_LIVE0, P1_R44 and is also latched to the fault status register bit  
INT_LTCH0, P0_R44, which is a read-only register. Reading the latched fault status register, INT_LTCH0, clears  
all latched fault statuses. The device can be additionally configured to route the internal IRQ interrupt signal on  
the GPIOx pins and also can be configured as an open-drain output so that these pins can be wire-ANDed to the  
open-drain interrupt outputs of other devices.  
When an input DC fault event is detected, the internal IRQ signal is asserted if the interrupt mask registers  
INT_MASK1, P0_R42 and INT_MASK2, P0_R43 are configured appropriately to unmask all desired fault  
diagnostics interrupts. Each input channel can be independently set for an interrupt mask. 8-44 and 8-45  
list the mask settings available for the input DC diagnostics fault interrupts.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-44. Interrupt Mask Register 1 for DC Faults Diagnostic  
P0_R42 : INT_MASK1  
INT_MASK1[7]  
INT_MASK1[6]  
INT_MASK1[5]  
INT_MASK1[4]  
INT_MASK1[3]  
INT_MASK1[2]  
INTERRUPT MASK REGISTER 1 FOR DC FAULTS DIAGNOSTIC INTERRUPTS  
Channel 1 input DC faults diagnostic interrupt mask and unmask register bit  
Channel 2 input DC faults diagnostic interrupt mask and unmask register bit  
Channel 3 input DC faults diagnostic interrupt mask and unmask register bit  
Channel 4 input DC faults diagnostic interrupt mask and unmask register bit  
Channel 5 input DC faults diagnostic interrupt mask and unmask register bit  
Channel 6 input DC faults diagnostic interrupt mask and unmask register bit  
Short to VBAT_IN (when VBAT_IN is lower than MICBIAS) fault interrupt mask and unmask register  
bit  
INT_MASK1[1]  
INT_MASK1[0]  
Reserved  
8-45. Interrupt Mask Register 2 for DC Faults Diagnostic  
INTERRUPT MASK REGISTER 2 FOR DC FAULTS DIAGNOSTIC INTERRUPTS  
Open input fault interrupt mask and unmask register bit for all channels  
P0_R43 : INT_MASK2  
INT_MASK2[7]  
INT_MASK2[6]  
INT_MASK2[5]  
INT_MASK2[4]  
INT_MASK2[3]  
INT_MASK2[2]  
INT_MASK2[1]  
INT_MASK2[0]  
Inputs shorted together fault interrupt mask and unmask register bit for all channels  
INxP input shorted to ground fault interrupt mask and unmask register bit for all channels  
INxM input shorted to ground fault interrupt mask and unmask register bit for all channels  
INxP input shorted to MICBIAS fault interrupt mask and unmask register bit for all channels  
INxM input shorted to MICBIAS fault interrupt mask and unmask register bit for all channels  
INxP input shorted to VBAT_IN fault interrupt mask and unmask register bit for all channels  
INxM input shorted to VBAT_IN fault interrupt mask and unmask register bit for all channels  
The device supports the channel-specific input DC fault latched status registers for all channels from  
CH1_LTCH, P0_R46 to CH6_LTCH, P0_R51, which are read-only registers. The device also has a consolidated  
summary status register across channels for the input DC latched fault status register, CHx_LTCH, P0_R45 that  
the host can read to quickly know which channel fault has occurred. Reading the latched fault status registers,  
CH1_LTCH to CH6_LTCH, clears all the latched fault status including the summary status register, CHx_LTCH.  
8-46 shows various input DC fault diagnostics status bits that are supported by the device.  
8-46. Input DC Faults Diagnostic Latched Status  
P0_R46 : CH1_LTCH  
CH1_LTCH[7]  
CH1_LTCH[6]  
CH1_LTCH[5]  
CH1_LTCH[4]  
CH1_LTCH[3]  
CH1_LTCH[2]  
CH1_LTCH[1]  
CH1_LTCH[0]  
CHANNEL 1 INPUT FAULTS DIAGNOSTIC LATCHED STATUS  
Channel 1 open input fault detection status bit (self-clearing bit)  
Channel 1 inputs shorted together fault detection status bit (self-clearing bit)  
Channel 1 IN1P input shorted to ground fault detection status bit (self-clearing bit)  
Channel 1 IN1M input shorted to ground fault detection status bit (self-clearing bit)  
Channel 1 IN1P input shorted to MICBIAS fault detection status bit (self-clearing bit)  
Channel 1 IN1M input shorted to MICBIAS fault detection status bit (self-clearing bit)  
Channel 1 IN1P input shorted to VBAT_IN fault detection status bit (self-clearing bit)  
Channel 1 IN1M input shorted to VBAT_IN fault detection status bit (self-clearing bit)  
Similarly, the DC faults diagnostic latched status for input channel 2 to channel 6 can be monitored using the  
CH2_LTCH (P0_R47) to CH6_LTCH (P0_R51) registers, respectively.  
The device GPIOx pins can be additionally configured to route the internal IRQ interrupt signal on the GPIOx  
pins and also can be configured as an open-drain output so that this pin can be wire-ANDed to the open-drain  
interrupt outputs of other devices.  
The IRQ interrupt signal can either be configured as an active low or active high polarity by setting the INT_POL,  
P0_R40_D7 register bit. This signal can also be configured as a single pulse or a series of pulses by  
programming the INT_EVENT[1:0], P0_R40_D[6:5] register bits. If the interrupts are configured as a series of  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
pulses, the events trigger the start of pulses that stop when the latched fault status register is read to determine  
the cause of the interrupt.  
The device also supports read-only live status registers that determine if all the channels are powered up or  
down and if the device is in sleep mode or not. These status registers are located in P0_R118, DEV_STS0 and  
P0_R119, DEV_STS1.  
The device has a GPIO1 multifunction pin that can be configured for a desired specific function. Additionally, the  
PCM6480-Q1 has two more GPIO pins and two GPI pins supported that can be used in the system for the PDM  
microphone interface or for various other features. 8-47 shows all possible allocation of these multifunction  
pins for all the various features.  
8-47. Multifunction Pin Assignments  
ROW  
PIN FUNCTION  
GPIO1  
GPIO2  
GPIO3  
GPI1  
GPI2  
GPIO1_CFG  
[4:0]  
GPIO2_CFG  
[4:0]  
GPIO3_CFG  
[4:0]  
GPI1_CFG[4:0] GPI2_CFG[4:0]  
P0_R33[7:4]  
P0_R34[7:4]  
P0_R35[7:4]  
P0_R36[7:4]  
P0_R37[7:4]  
A
B
C
D
F
Pin disabled  
S(1)  
S (default)  
S (default)  
S (default)  
S (default)  
General-purpose output (GPO)  
Interrupt output (IRQ)  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
NS(2)  
NS  
NS  
S
NS  
NS  
NS  
S
S (default)  
Secondary ASI output (SDOUT2)  
MiCBIAS on/off input (BIASEN)  
General-purpose input (GPI)  
Master clock input (MCLK)  
ASI daisy-chain input (SDIN)  
S
S
S
S
S
G
H
I
S
S
S
S
S
S
(1) S means the feature mentioned in this row is supported for the respective GPIO1, GPOx, or GPIx pin mentioned in this column.  
(2) NS means the feature mentioned in this row is not supported for the respective GPIO1, GPOx, or GPIx pin mentioned in this column.  
Each GPIOx pin can be independently set for the desired drive configurations setting using the GPIOx_DRV[3:0]  
register bits. 8-48 lists the drive configuration settings.  
8-48. GPIOx Pins Drive Configuration Settings  
P0_R33_D[3:0] : GPIO1_DRV[3:0]  
GPIO OUTPUT DRIVE CONFIGURATION SETTINGS FOR GPIO1  
000  
001  
The GPIO1 pin is set to high impedance (floated)  
The GPIO1 pin is set to be driven active low or active high  
The GPIO1 pin is set to be driven active low or weak high (on-chip pullup)  
The GPIO1 pin is set to be driven active low or Hi-Z (floated)  
The GPIO1 pin is set to be driven weak low (on-chip pulldown) or active high  
The GPIO1 pin is set to be driven Hi-Z (floated) or active high  
Reserved (do not use these settings)  
010 (default)  
011  
100  
101  
110 and 111  
Similarly, the GPIO2 and GPIO3 pins can be configured using the GPIO2_DRV(P0_R34) and  
GPIO3_DRV(P0_R35) register bits, respectively.  
When configured as a general-purpose output (GPO), the GPIOx pin values can be driven by writing the  
GPIO_VAL P0_R38 registers. The GPIO_MON, P0_R39 register can be used to readback the status of the  
GPIOx and GPIx pins when configured as a general-purpose input (GPI).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Hardware Shutdown  
The device enters hardware shutdown mode when the SHDNZ pin is asserted low or the AVDD supply voltage is  
not applied to the device. In hardware shutdown mode, the device consumes the minimum quiescent current  
from the AVDD supply. All configuration registers and programmable coefficients lose their value in this mode,  
and I2C or SPI communication to the device is not supported.  
If the SHDNZ pin is asserted low when the device is in active mode, the device ramps down volume on the  
record data, powers down the analog and digital blocks, and puts the device into hardware shutdown mode in 25  
ms (typical). The device can also be immediately put into hardware shutdown mode from active mode if the  
SHDNZ_CFG[1:0], P0_R5_D[3:2], register bits are set to 2'b00. After the SHDNZ pin is asserted low, and after  
the device enters hardware shutdown mode, keep the SHDNZ pin low for at least 1 ms before releasing SHDNZ  
for further device operation.  
Assert the SHDNZ pin high only when the IOVDD supply settles to a steady voltage level. When the SHDNZ pin  
goes high, the device sets all configuration registers and programmable coefficients to their default values, and  
then enters sleep mode.  
8.4.2 Sleep Mode or Software Shutdown  
In sleep mode or software shutdown mode, the device consumes very low quiescent current from the AVDD  
supply and, at the same time, allows the I2C or SPI communication to wake the device for active operation.  
The device can also enter sleep mode when the host device sets the SLEEP_ENZ, P0_R2_D0 bit to 1'b0. If the  
SLEEP_ENZ bit is asserted low when the device is in active mode, the device ramps down the volume on the  
record data, powers down the analog and digital blocks, and enters sleep mode. However, the device still  
continues to retain the last programmed value of the device configuration registers and programmable  
coefficients.  
In sleep mode, do not perform any I2C or SPI transactions, except for exiting sleep mode in order to enter active  
mode. After entering sleep mode, wait at least 10 ms before starting I2C or SPI transactions to exit sleep mode.  
8.4.3 Active Mode  
If the host device exits sleep mode by setting the SLEEP_ENZ bit to 1'b1, the device enters active mode. In  
active mode, I2C or SPI transactions can be done to configure and power-up the device for active operation.  
After entering active mode, wait at least 1 ms before starting any I2C or SPI transactions in order to allow the  
device to complete the internal wake-up sequence.  
After configuring all other registers for the target application and system settings, configure the input and output  
channel enable registers, P0_R115 (IN_CH_EN) and P0_R116 (ASI_OUT_CH_EN), respectively. Lastly,  
configure the device power-up register, P0_R117 (PWR_CFG). All programmable coefficient values must be  
written before powering up the respective channel.  
In active mode, the power-up and power-down status of various blocks is monitored by reading the read-only  
device status bits located in the P0_R117 (DEV_STS0) and P0_R118 (DEV_STS1) registers.  
8.4.4 Software Reset  
A software reset can be done any time by asserting the SW_RESET bit, P0_R1_D0, which is a self-clearing bit.  
This software reset immediately shuts down the device, and restores all device configuration registers and  
programmable coefficients to their default values.  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.5 Programming  
The device contains configuration registers and programmable coefficients that can be set to the desired values  
for a specific system and application use. These registers are called device control registers and are each eight  
bits in width, mapped using a page scheme.  
Each page contains 128 configuration registers. All device configuration registers are stored in page 0, which is  
the default page setting at power up (and after a software reset). Page 1 consists of the live status registers and  
input diagnostic successive-approximation register (SAR) data for advanced diagnostic purposes. All  
programmable coefficient registers are located in page 2, page 3, and page 4. The current page of the device  
can be switched to a new desired page by using the PAGE[7:0] bits located in register 0 of every page.  
8.5.1 Control Serial Interfaces  
The device control registers can be accessed using either I2C or SPI communication to the device.  
By monitoring the SDA_SSZ, SCL_MOSI, ADDR0_SCLK, and ADDR1_MISO device pins, which are the  
multiplexed pins for the I2C or SPI Interface, the device automatically detects whether the host device is using  
I2C or SPI communication to configure the device. For a given end application, the host device must always use  
either the I2C or SPI interface, but not both, to configure the device.  
8.5.1.1 I2C Control Interface  
The device supports the I2C control protocol as a slave device and is capable of operating in standard mode,  
fast mode, and fast mode plus. The I2C control protocol requires a 7-bit slave address. The five most significant  
bits (MSBs) of the slave address are fixed at 10010 and cannot be changed. The two least significant bits (LSBs)  
are programmable and are controlled by the ADDR0_SCLK and ADDR1_MISO pins. These two pins must  
always be either pulled to VSS or IOVDD. If the I2C_BRDCAST_EN (P0_R2_D2) bit is set to 1'b1, then the I2C  
slave address is fixed to 1001000 in order to allow simultaneous I2C broadcast communication to all PCM6480-  
Q1 devices in the system. 8-49 lists the four possible device addresses resulting from this configuration.  
8-49. I2C Slave Address Settings  
ADDR1_MISO  
ADDR0_SCLK  
I2C_BRDCAST_EN (P0_R2_D2)  
I2C SLAVE ADDRESS  
1001 000  
0
0
1
1
X
0
1
0
1
X
0 (default)  
0 (default)  
0 (default)  
0 (default)  
1
1001 001  
1001 010  
1001 011  
1001 000  
8.5.1.1.1 General I2C Operation  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between the integrated circuits  
in a system using serial data transmission. The address and data 8-bit bytes are transferred MSB first. In  
addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit.  
Each transfer operation begins with the master device driving a START condition on the bus and ends with the  
master device driving a STOP condition on the bus. The bus uses transitions on the data pin (SDA) when the  
clock is at logic high to indicate START and STOP conditions. A high-to-low transition on SDA indicates a  
START, and a low-to-high transition indicates a STOP condition. Normal data-bit transitions must occur within the  
low time of the clock period.  
The master device drives a START condition followed by the 7-bit slave address and the read/write (R/W) bit to  
open communication with another device and then waits for an acknowledgment condition. The slave device  
holds SDA low during the acknowledge clock period to indicate acknowledgment. When this step occurs, the  
master device transmits the next byte of the sequence. Each slave device is addressed by a unique 7-bit slave  
address plus the R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a  
wired-AND connection.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
There is no limit on the number of bytes that can be transmitted between START and STOP conditions. When  
the last word transfers, the master device generates a STOP condition to release the bus. 8-70 shows a  
generic data transfer sequence.  
8- Bit Data for  
Register (N)  
8- Bit Data for  
Register (N+1)  
8-70. Typical I2C Sequence  
In the system, use external pullup resistors for the SDA and SCL signals to set the logic high level for the bus.  
The SDA and SCL voltages must not exceed the device supply voltage, IOVDD.  
8.5.1.1.2 I2C Single-Byte and Multiple-Byte Transfers  
The device I2C interface supports both single-byte and multiple-byte read/write operations for all registers.  
During multiple-byte read operations, the device responds with data, a byte at a time, starting at the register  
assigned, as long as the master device continues to respond with acknowledges.  
The device supports sequential I2C addressing. For write transactions, if a register is issued followed by data for  
that register and all the remaining registers that follow, a sequential I2C write transaction takes place. For I2C  
sequential write transactions, the register issued then serves as the starting point, and the amount of data  
subsequently transmitted, before a STOP or START condition is transmitted, determines how many registers are  
written.  
8.5.1.1.2.1 I2C Single-Byte Write  
As shown in 8-71, a single-byte data write transfer begins with the master device transmitting a START  
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of  
the data transfer. For a write-data transfer, the read/write bit must be set to 0. After receiving the correct I2C  
slave address and the read/write bit, the device responds with an acknowledge bit (ACK). Next, the master  
device transmits the register byte corresponding to the device internal register address being accessed. After  
receiving the register byte, the device again responds with an acknowledge bit (ACK). Then, the master  
transmits the byte of data to be written to the specified register. When finished, the slave device responds with  
an acknowledge bit (ACK). Finally, the master device transmits a STOP condition to complete the single-byte  
data write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
A6 A5 A4  
A3 A2 A1 A0  
Stop  
2
I C Device Address and  
Read/Write Bit  
Register  
Data Byte  
Condition  
8-71. I2C Single-Byte Write Transfer  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.5.1.1.2.2 I2C Multiple-Byte Write  
As shown in 8-72, a multiple-byte data write transfer is identical to a single-byte data write transfer except that  
multiple data bytes are transmitted by the master device to the slave device. After receiving each data byte, the  
device responds with an acknowledge bit (ACK). Finally, the master device transmits a STOP condition after the  
last data-byte write transfer.  
Register  
8-72. I2C Multiple-Byte Write Transfer  
8.5.1.1.2.3 I2C Single-Byte Read  
As shown in 8-73, a single-byte data read transfer begins with the master device transmitting a START  
condition followed by the I2C slave address and the read/write bit. For the data read transfer, both a write  
followed by a read are done. Initially, a write is done to transfer the address byte of the internal register address  
to be read. As a result, the read/write bit is set to 0.  
After receiving the slave address and the read/write bit, the device responds with an acknowledge bit (ACK). The  
master device then sends the internal register address byte, after which the device issues an acknowledge bit  
(ACK). The master device transmits another START condition followed by the slave address and the read/write  
bit again. This time, the read/write bit is set to 1, indicating a read transfer. Next, the device transmits the data  
byte from the register address being read. After receiving the data byte, the master device transmits a not-  
acknowledge (NACK) followed by a STOP condition to complete the single-byte data read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
2
2
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
Register  
I C Device Address and  
Read/Write Bit  
Data Byte  
8-73. I2C Single-Byte Read Transfer  
8.5.1.1.2.4 I2C Multiple-Byte Read  
As shown in 8-74, a multiple-byte data read transfer is identical to a single-byte data read transfer except that  
multiple data bytes are transmitted by the device to the master device. With the exception of the last data byte,  
the master device responds with an acknowledge bit after receiving each data byte. After receiving the last data  
byte, the master device transmits a not-acknowledge (NACK) followed by a STOP condition to complete the data  
read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
2
2
Register  
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
I C Device Address and  
Read/Write Bit  
First Data Byte  
Other Data Bytes  
Last Data Byte  
8-74. I2C Multiple-Byte Read Transfer  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.5.1.2 SPI Control Interface  
The general SPI protocol allows full-duplex, synchronous, serial communication between a host processor (the  
master) and peripheral devices (slaves). The SPI master (in this case, the host processor) generates the  
synchronizing clock (driven onto SCLK) and initiates transmissions by taking the slave-select pin SSZ from high  
to low. The SPI slave devices (such as the PCM6480-Q1) depend on a master to start and synchronize  
transmissions. A transmission begins when initiated by an SPI master. The byte from the SPI master begins  
shifting in on the slave MOSI pin under the control of the master serial clock (driven onto SCLK). When the byte  
shifts in on the MOSI pin, a byte shifts out on the MISO pin to the master shift register.  
The PCM6480-Q1 support a standard SPI control protocol with a clock polarity setting of 0 (typical  
microprocessor SPI control bit CPOL = 0) and a clock phase setting of 1 (typical microprocessor SPI control bit  
CPHA = 1). The SSZ pin can remain low between transmissions; however, the device only interprets the first  
eight bits transmitted after the falling edge of SSZ as a command byte, and the next eight bits as a data byte  
only if writing to a register. The device is entirely controlled by registers. Reading and writing these registers is  
accomplished by an 8-bit command sent to the MOSI pin prior to the data for that register. 8-50 shows the  
command structure. The first seven bits specify the address of the register that is being written or read, from 0 to  
127 (decimal). The command word ends with an R/W bit, which specifies the direction of data flow on the serial  
bus.  
In the case of a register write, set the R/W bit to 0. A second byte of data is sent to the MOSI pin and contains  
the data to be written to the register. A register read is accomplished in a similar fashion. The 8-bit command  
word sends the 7-bit register address, followed by the R/W bit equal to 1 to signify a register read. The 8-bit  
register data is then clocked out of the device on the MISO pin during the second eight SCLK clocks in the  
frame. The device supports sequential SPI addressing for a multiple-byte data write/read transfer until the SSZ  
pin is pulled high. A multiple-byte data write or read transfer is identical to a single-byte data write or read  
transfer, respectively, until all data byte transfers complete. The host device must keep the SSZ pin low during all  
data byte transfers. 8-75 shows the single-byte write transfer and 8-76 illustrates the single-byte read  
transfer.  
8-50. SPI Command Word  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ADDR(6)  
ADDR(5)  
ADDR(4)  
ADDR(3)  
ADDR(2)  
ADDR(1)  
ADDR(0)  
R/WZ  
SS  
SCLK  
MOSI  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
D(7)  
D(6)  
D(0)  
7-bit Register Address  
Write  
8-bit Register Data  
Hi-Z  
Hi-Z  
MISO  
8-75. SPI Single-Byte Write Transfer  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
SS  
SCLK  
MOSI  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
Don’t Care  
7-bit Register Address  
Read  
8-bit Register Data  
MISO  
D(7)  
D(6)  
D(0)  
8-76. SPI Single-Byte Read Transfer  
8.6 Register Maps  
This section describes the control registers for the device in detail. All registers are eight bits in width and are  
allocated to the device configuration and programmable coefficients settings. These registers are mapped  
internally using a page scheme that can be controlled using either I2C or SPI communication to the device. Each  
page contains 128 bytes of registers. All device configuration registers are stored in page 0, which is the default  
page setting at power up (and after a software reset). Page 1 consists of the live status registers and input  
diagnostic SAR data for advanced diagnostic purposes. All programmable coefficient registers are located in  
page 2, page 3, and page 4. The device current page can be switched to a new desired page by using the  
PAGE[7:0] bits located in register 0 of every page.  
Do not read from or write to reserved pages or reserved registers. Write only default values for the reserved bits  
in the valid registers.  
The procedure for register access across pages is:  
Select page N (write data N to register 0 regardless of the current page number)  
Read or write data from or to valid registers in page N  
Select the new page M (write data M to register 0 regardless of the current page number)  
Read or write data from or to valid registers in page M  
Repeat as needed  
8.6.1 Device Configuration Registers  
This section describes the device configuration registers for page 0 and page 1.  
8.6.1.1 Registers Access Type  
8-51 lists the access codes used for the PCM6xx0-Q1 registers.  
8-51. PCM6xx0-Q1 Access Type Codes  
ACCESS TYPE  
CODE  
DESCRIPTION  
Read Type  
R
R
Read  
R-W  
R/W  
Read or write  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.1.2 Page 0 Registers  
8-52 lists the memory-mapped registers for the Page 0 registers. All register offset addresses not listed in 表  
8-52 should be considered as reserved locations and the register contents should not be modified.  
8-52. PAGE 0 Registers  
Address  
0x0  
Acronym  
Register Name  
Reset Value  
0x00  
0x00  
0x00  
0x05  
0x30  
0x00  
0x00  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x02  
0x48  
0xFF  
0x10  
0x00  
0x22  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0x03  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Section  
PAGE_CFG  
SW_RESET  
SLEEP_CFG  
SHDN_CFG  
ASI_CFG0  
ASI_CFG1  
ASI_CFG2  
ASI_CH1  
Device page register  
8.6.1.2.1  
8.6.1.2.2  
8.6.1.2.3  
8.6.1.2.4  
8.6.1.2.5  
8.6.1.2.6  
8.6.1.2.7  
8.6.1.2.8  
8.6.1.2.9  
8.6.1.2.10  
8.6.1.2.11  
8.6.1.2.12  
8.6.1.2.13  
8.6.1.2.14  
8.6.1.2.15  
8.6.1.2.16  
8.6.1.2.17  
8.6.1.2.18  
8.6.1.2.19  
8.6.1.2.20  
8.6.1.2.21  
8.6.1.2.22  
8.6.1.2.23  
8.6.1.2.24  
8.6.1.2.25  
8.6.1.2.26  
8.6.1.2.27  
8.6.1.2.28  
8.6.1.2.29  
8.6.1.2.30  
8.6.1.2.31  
8.6.1.2.32  
8.6.1.2.33  
8.6.1.2.34  
8.6.1.2.35  
8.6.1.2.36  
8.6.1.2.37  
8.6.1.2.38  
8.6.1.2.39  
0x1  
Software reset register  
0x2  
Sleep mode register  
0x5  
Shutdown configuration register  
ASI configuration register 0  
0x7  
0x8  
ASI configuration register 1  
0x9  
ASI configuration register 2  
0xB  
Channel 1 ASI slot configuration register  
Channel 2 ASI slot configuration register  
Channel 3 ASI slot configuration register  
Channel 4 ASI slot configuration register  
Channel 5 ASI slot configuration register  
Channel 6 ASI slot configuration register  
Channel 7 ASI slot configuration register  
Channel 8 ASI slot configuration register  
ASI master mode configuration register 0  
ASI master mode configuration register 1  
ASI bus clock monitor status register  
Clock source configuration register  
PDM DINx sampling edge register  
GPIO configuration register 0  
0xC  
ASI_CH2  
0xD  
ASI_CH3  
0xE  
ASI_CH4  
0xF  
ASI_CH5  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x34  
0x35  
ASI_CH6  
ASI_CH7  
ASI_CH8  
MST_CFG0  
MST_CFG1  
ASI_STS  
CLK_SRC  
PDMIN_CFG  
GPIO_CFG0  
GPIO_CFG1  
GPIO_CFG2  
GPI_CFG0  
GPI_CFG1  
GPIO_VAL  
GPIO_MON  
INT_CFG  
GPIO configuration register 1  
GPIO configuration register 2  
GPI configuration register 0  
GPI configuration register 1  
GPIO output value register  
GPIO monitor value register  
Interrupt configuration register  
INT_MASK0  
INT_MASK1  
INT_MASK2  
INT_LTCH0  
CHx_LTCH  
CH1_LTCH  
CH2_LTCH  
CH3_LTCH  
CH4_LTCH  
INT_MASK3  
INT_LTCH1  
Interrupt mask register 0  
Interrupt mask register 1  
Interrupt mask register 2  
Latched interrupt readback register 0  
Channel diagnostic summary latched status register  
Channel 1 diagnostic latched status register  
Channel 2 diagnostic latched status register  
Channel 3 diagnostic latched status register  
Channel 4 diagnostic latched status register  
Interrupt mask register 3  
Latched interrupt readback register 1  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-52. PAGE 0 Registers (continued)  
Register Name  
Address  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x52  
0x53  
0x54  
0x55  
0x57  
0x58  
0x59  
0x5A  
0x5C  
0x5D  
0x5E  
0x5F  
0x61  
0x62  
0x63  
0x64  
Acronym  
Reset Value  
Section  
INT_LTCH2  
INT_LTCH3  
MBDIAG_CFG0  
MBDIAG_CFG1  
MBDIAG_CFG2  
BIAS_CFG  
CH1_CFG0  
CH1_CFG1  
CH1_CFG2  
CH1_CFG3  
CH1_CFG4  
CH2_CFG0  
CH2_CFG1  
CH2_CFG2  
CH2_CFG3  
CH2_CFG4  
CH3_CFG0  
CH3_CFG1  
CH3_CFG2  
CH3_CFG3  
CH3_CFG4  
CH4_CFG0  
CH4_CFG1  
CH4_CFG2  
CH4_CFG3  
CH4_CFG4  
CH5_CFG0  
CH5_CFG2  
CH5_CFG3  
CH5_CFG4  
CH6_CFG0  
CH6_CFG2  
CH6_CFG3  
CH6_CFG4  
CH7_CFG0  
CH7_CFG2  
CH7_CFG3  
CH7_CFG4  
CH8_CFG0  
CH8_CFG2  
CH8_CFG3  
CH8_CFG4  
DIAG_CFG0  
Latched interrupt readback register 2  
0x00  
0x00  
0xBA  
0x4B  
0x10  
0xD0  
0x10  
0x00  
0xC9  
0x80  
0x00  
0x10  
0x00  
0xC9  
0x80  
0x00  
0x10  
0x00  
0xC9  
0x80  
0x00  
0x10  
0x00  
0xC9  
0x80  
0x00  
0x10  
0xC9  
0x80  
0x00  
0x10  
0xC9  
0x80  
0x00  
0x00  
0xC9  
0x80  
0x00  
0x00  
0xC9  
0x80  
0x00  
0x00  
8.6.1.2.40  
8.6.1.2.41  
8.6.1.2.42  
8.6.1.2.43  
8.6.1.2.44  
8.6.1.2.45  
8.6.1.2.46  
8.6.1.2.47  
8.6.1.2.48  
8.6.1.2.49  
8.6.1.2.50  
8.6.1.2.51  
8.6.1.2.52  
8.6.1.2.53  
8.6.1.2.54  
8.6.1.2.55  
8.6.1.2.56  
8.6.1.2.57  
8.6.1.2.58  
8.6.1.2.59  
8.6.1.2.60  
8.6.1.2.61  
8.6.1.2.62  
8.6.1.2.63  
8.6.1.2.64  
8.6.1.2.65  
8.6.1.2.66  
8.6.1.2.67  
8.6.1.2.68  
8.6.1.2.69  
8.6.1.2.70  
8.6.1.2.71  
8.6.1.2.72  
8.6.1.2.73  
8.6.1.2.74  
8.6.1.2.75  
8.6.1.2.76  
8.6.1.2.77  
8.6.1.2.78  
8.6.1.2.79  
8.6.1.2.80  
8.6.1.2.81  
8.6.1.2.82  
Latched interrupt readback register 3  
MICBIAS diagnostic register 0  
MICBIAS diagnostic register 1  
MICBIAS diagnostic register 2  
Bias configuration register  
Channel 1 configuration register 0  
Channel 1 configuration register 1  
Channel 1 configuration register 2  
Channel 1 configuration register 3  
Channel 1 configuration register 4  
Channel 2 configuration register 0  
Channel 2 configuration register 1  
Channel 2 configuration register 2  
Channel 2 configuration register 3  
Channel 2 configuration register 4  
Channel 3 configuration register 0  
Channel 3 configuration register 1  
Channel 3 configuration register 2  
Channel 3 configuration register 3  
Channel 3 configuration register 4  
Channel 4 configuration register 0  
Channel 4 configuration register 1  
Channel 4 configuration register 2  
Channel 4 configuration register 3  
Channel 4 configuration register 4  
Channel 5 configuration register 0  
Channel 5 configuration register 2  
Channel 5 configuration register 3  
Channel 5 configuration register 4  
Channel 6 configuration register 0  
Channel 6 configuration register 2  
Channel 6 configuration register 3  
Channel 6 configuration register 4  
Channel 7 configuration register 0  
Channel 7 configuration register 2  
Channel 7 configuration register 3  
Channel 7 configuration register 4  
Channel 8 configuration register 0  
Channel 8 configuration register 2  
Channel 8 configuration register 3  
Channel 8 configuration register 4  
Input diagnostic configuration register 0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-52. PAGE 0 Registers (continued)  
Register Name  
Address  
0x65  
0x66  
0x67  
0x68  
0x6A  
0x6B  
0x6C  
0x70  
0x73  
0x74  
0x75  
0x76  
0x77  
0x7E  
Acronym  
Reset Value  
0x37  
Section  
DIAG_CFG1  
DIAG_CFG2  
DIAG_CFG3  
DIAG_CFG4  
BOOST_CFG  
DSP_CFG0  
DSP_CFG1  
AGC_CFG0  
IN_CH_EN  
Input diagnostic configuration register 1  
8.6.1.2.83  
8.6.1.2.84  
8.6.1.2.85  
8.6.1.2.86  
8.6.1.2.87  
8.6.1.2.88  
8.6.1.2.89  
8.6.1.2.90  
8.6.1.2.91  
8.6.1.2.92  
8.6.1.2.93  
8.6.1.2.94  
8.6.1.2.95  
8.6.1.2.96  
Input diagnostic configuration register 2  
Input diagnostic configuration register 3  
Input diagnostic configuration register 4  
Boost configuration register  
0x87  
0xB8  
0x00  
0x00  
DSP configuration register 0  
0x01  
DSP configuration register 1  
0x48  
AGC configuration register 0  
0xE7  
0xFC  
0x00  
Input channel enable configuration register  
ASI output channel enable configuration register  
Power up configuration register  
Device status value register 0  
ASI_OUT_CH_EN  
PWR_CFG  
0x00  
DEV_STS0  
DEV_STS1  
I2C_CKSUM  
0x00  
Device status value register 1  
0x80  
I2C Checksum  
0x00  
8.6.1.2.1 PAGE_CFG Register (Address = 0x0) [Reset = 0x0]  
PAGE_CFG is shown in 8-77 and described in 8-53.  
Return to the 8-52.  
The device memory map is divided into pages. This register sets the page.  
8-77. PAGE_CFG Register  
7
6
5
4
3
2
1
0
PAGE[7:0]  
R/W-00000000b  
8-53. PAGE_CFG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
PAGE[7:0]  
R/W  
00000000b These bits set the device page.  
0d = Page 0  
1d = Page 1  
255d = Page 255  
8.6.1.2.2 SW_RESET Register (Address = 0x1) [Reset = 0x0]  
SW_RESET is shown in 8-78 and described in 8-54.  
Return to the 8-52.  
This register is the software reset register. Asserting a software reset places all register values in their default  
power-on-reset (POR) state.  
8-78. SW_RESET Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000000b  
SW_RESET  
R/W-0b  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-54. SW_RESET Register Field Descriptions  
Bit  
7-1  
0
Field  
Type  
Reset  
0000000b  
0b  
Description  
RESERVED  
SW_RESET  
R
Reserved bits; Write only reset value  
R/W  
Software reset. This bit is self-clearing.  
0d = Do not reset  
1d = Reset  
8.6.1.2.3 SLEEP_CFG Register (Address = 0x2) [Reset = 0x0]  
SLEEP_CFG is shown in 8-79 and described in 8-55.  
Return to the 8-52.  
This register configures the regulator, VREF quick charge, I2C broadcast and sleep mode.  
8-79. SLEEP_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
R/W-00b  
VREF_QCHG[1:0]  
I2C_BRDCAST  
_EN  
RESERVED  
SLEEP_ENZ  
R/W-0b  
R/W-00b  
R/W-0b  
R-0b  
R/W-0b  
8-55. SLEEP_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
RESERVED  
0b  
Reserved bit; Write only reset value  
6-5  
4-3  
RESERVED  
00b  
00b  
Reserved bits; Write only reset values  
VREF_QCHG[1:0]  
The duration of the quick-charge for the VREF external capacitor is  
set using an internal series impedance of 200 Ω.  
0d = VREF quick-charge duration of 3.5 ms (typical)  
1d = VREF quick-charge duration of 10 ms (typical)  
2d = VREF quick-charge duration of 50 ms (typical)  
3d = VREF quick-charge duration of 100 ms (typical)  
2
I2C_BRDCAST_EN  
R/W  
0b  
I2C broadcast addressing setting.  
0d = I2C broadcast mode disabled; the I2C slave address is  
determined based on the ADDR pins  
1d = I2C broadcast mode enabled; the I2C slave address is fixed at  
1001 100  
1
0
RESERVED  
SLEEP_ENZ  
R
0b  
0b  
Reserved bit; Write only reset value  
R/W  
Sleep mode setting.  
0d = Device is in sleep mode  
1d = Device is not in sleep mode  
8.6.1.2.4 SHDN_CFG Register (Address = 0x5) [Reset = 0x5]  
SHDN_CFG is shown in 8-80 and described in 8-56.  
Return to the 8-52.  
This register configures the device shutdown  
8-80. SHDN_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000b  
SHDNZ_CFG[1:0]  
R/W-01b  
DREG_KA_TIME[1:0]  
R/W-01b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-56. SHDN_CFG Register Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
Reset  
0000b  
01b  
Description  
RESERVED  
SHDNZ_CFG[1:0]  
R
Reserved bits; Write only reset value  
Shutdown configuration.  
R/W  
0d = DREG is powered down immediately after SHDNZ asserts  
1d = DREG remains active to enable a clean shut down until a time-  
out is reached; after the time-out period, DREG is forced to power off  
2d = DREG remains active until the device cleanly shuts down  
3d = Reserved  
1-0  
DREG_KA_TIME[1:0]  
R/W  
01b  
These bits set how long DREG remains active after SHDNZ asserts.  
0d = DREG remains active for 30 ms (typical)  
1d = DREG remains active for 25 ms (typical)  
2d = DREG remains active for 10 ms (typical)  
3d = DREG remains active for 5 ms (typical)  
8.6.1.2.5 ASI_CFG0 Register (Address = 0x7) [Reset = 0x30]  
ASI_CFG0 is shown in 8-81 and described in 8-57.  
Return to the 8-52.  
This register is the ASI configuration register 0.  
8-81. ASI_CFG0 Register  
7
6
5
4
3
2
1
0
ASI_FORMAT[1:0]  
R/W-00b  
ASI_WLEN[1:0]  
R/W-11b  
FSYNC_POL  
R/W-0b  
BCLK_POL  
R/W-0b  
TX_EDGE  
R/W-0b  
TX_FILL  
R/W-0b  
8-57. ASI_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
ASI_FORMAT[1:0]  
R/W  
00b  
ASI protocol format.  
0d = TDM mode  
1d = I2S mode  
2d = LJ (left-justified) mode  
3d = Reserved  
5-4  
ASI_WLEN[1:0]  
R/W  
11b  
ASI word or slot length.  
0d = 16 bits  
1d = 20 bits  
2d = 24 bits  
3d = 32 bits  
3
2
1
FSYNC_POL  
BCLK_POL  
TX_EDGE  
R/W  
R/W  
R/W  
0b  
0b  
0b  
ASI FSYNC polarity.  
0d = Default polarity as per standard protocol  
1d = Inverted polarity with respect to standard protocol  
ASI BCLK polarity.  
0d = Default polarity as per standard protocol  
1d = Inverted polarity with respect to standard protocol  
ASI data output (on the primary and secondary data pin) transmit  
edge.  
0d = Default edge as per the protocol configuration setting in bit 2  
(BCLK_POL)  
1d = Inverted following edge (half cycle delay) with respect to the  
default edge setting  
0
TX_FILL  
R/W  
0b  
ASI data output (on the primary and secondary data pin) for any  
unused cycles  
0d = Always transmit 0 for unused cycles  
1d = Always use Hi-Z for unused cycles  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.1.2.6 ASI_CFG1 Register (Address = 0x8) [Reset = 0x0]  
ASI_CFG1 is shown in 8-82 and described in 8-58.  
Return to the 8-52.  
This register is the ASI configuration register 1.  
8-82. ASI_CFG1 Register  
7
6
5
4
3
2
1
0
TX_LSB  
R/W-0b  
TX_KEEPER[1:0]  
R/W-00b  
TX_OFFSET[4:0]  
R/W-00000b  
8-58. ASI_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TX_LSB  
R/W  
0b  
ASI data output (on the primary and secondary data pin) for LSB  
transmissions.  
0d = Transmit the LSB for a full cycle  
1d = Transmit the LSB for the first half cycle and Hi-Z for the second  
half cycle  
6-5  
4-0  
TX_KEEPER[1:0]  
TX_OFFSET[4:0]  
R/W  
R/W  
00b  
ASI data output (on the primary and secondary data pin) bus keeper.  
0d = Bus keeper is always disabled  
1d = Bus keeper is always enabled  
2d = Bus keeper is enabled during LSB transmissions only for one  
cycle  
3d = Bus keeper is enabled during LSB transmissions only for one  
and half cycles  
00000b  
ASI data MSB slot 0 offset (on the primary and secondary data pin).  
0d = ASI data MSB location has no offset and is as per standard  
protocol  
1d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is  
the left and right slot 0) offset of one BCLK cycle with respect to  
standard protocol  
2d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is  
the left and right slot 0) offset of two BCLK cycles with respect to  
standard protocol  
3d to 30d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ  
mode is the left and right slot 0) offset assigned as per configuration  
31d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is  
the left and right slot 0) offset of 31 BCLK cycles with respect to  
standard protocol  
8.6.1.2.7 ASI_CFG2 Register (Address = 0x9) [Reset = 0x0]  
ASI_CFG2 is shown in 8-83 and described in 8-59.  
Return to the 8-52.  
This register is the ASI configuration register 2.  
8-83. ASI_CFG2 Register  
7
6
5
4
3
2
1
0
ASI_DAISY  
RESERVED  
ASI_ERR  
ASI_ERR_RCO  
V
RESERVED  
R-0000b  
R/W-0b  
R-0b  
R/W-0b  
R/W-0b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-59. ASI_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASI_DAISY  
R/W  
0b  
ASI daisy chain connection.  
0d = All devices are connected in the common ASI bus  
1d = All devices are daisy-chained for the ASI bus  
6
5
RESERVED  
ASI_ERR  
R
0b  
0b  
Reserved bit; Write only reset value  
R/W  
ASI bus error detection.  
0d = Enable bus error detection  
1d = Disable bus error detection  
4
ASI_ERR_RCOV  
RESERVED  
R/W  
R
0b  
ASI bus error auto resume.  
0d = Enable auto resume after bus error recovery  
1d = Disable auto resume after bus error recovery and remain  
powered down until the host configures the device  
3-0  
0000b  
Reserved bits; Write only reset value  
8.6.1.2.8 ASI_CH1 Register (Address = 0xB) [Reset = 0x0]  
ASI_CH1 is shown in 8-84 and described in 8-60.  
Return to the 8-52.  
This register is the ASI slot configuration register for channel 1.  
8-84. ASI_CH1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH1_OUTPUT  
R/W-0b  
CH1_SLOT[5:0]  
R/W-000000b  
8-60. ASI_CH1 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R
0b  
Reserved bit; Write only reset value  
Channel 1 output line.  
6
CH1_OUTPUT  
R/W  
0b  
0d = Channel 1 output is on the ASI primary output pin (SDOUT)  
1d = Channel 1 output is on the ASI secondary output pin (GPIO1 or  
GPOx)  
5-0  
CH1_SLOT[5:0]  
R/W  
000000b  
Channel 1 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.2.9 ASI_CH2 Register (Address = 0xC) [Reset = 0x1]  
ASI_CH2 is shown in 8-85 and described in 8-61.  
Return to the 8-52.  
This register is the ASI slot configuration register for channel 2.  
8-85. ASI_CH2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH2_OUTPUT  
R/W-0b  
CH2_SLOT[5:0]  
R/W-000001b  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-85. ASI_CH2 Register (continued)  
8-61. ASI_CH2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
R
0b  
Reserved bit; Write only reset value  
Channel 2 output line.  
6
CH2_OUTPUT  
R/W  
0b  
0d = Channel 2 output is on the ASI primary output pin (SDOUT)  
1d = Channel 2 output is on the ASI secondary output pin (GPIO1 or  
GPOx)  
5-0  
CH2_SLOT[5:0]  
R/W  
000001b  
Channel 2 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.2.10 ASI_CH3 Register (Address = 0xD) [Reset = 0x2]  
ASI_CH3 is shown in 8-86 and described in 8-62.  
Return to the 8-52.  
This register is the ASI slot configuration register for channel 3.  
8-86. ASI_CH3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH3_OUTPUT  
R/W-0b  
CH3_SLOT[5:0]  
R/W-000010b  
8-62. ASI_CH3 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R
0b  
Reserved bit; Write only reset value  
Channel 3 output line.  
6
CH3_OUTPUT  
R/W  
0b  
0d = Channel 3 output is on the ASI primary output pin (SDOUT)  
1d = Channel 3 output is on the ASI secondary output pin (GPIO1 or  
GPOx)  
5-0  
CH3_SLOT[5:0]  
R/W  
000010b  
Channel 3 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.2.11 ASI_CH4 Register (Address = 0xE) [Reset = 0x3]  
ASI_CH4 is shown in 8-87 and described in 8-63.  
Return to the 8-52.  
This register is the ASI slot configuration register for channel 4.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-87. ASI_CH4 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH4_OUTPUT  
R/W-0b  
CH4_SLOT[5:0]  
R/W-000011b  
8-63. ASI_CH4 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R
0b  
Reserved bit; Write only reset value  
Channel 4 output line.  
6
CH4_OUTPUT  
R/W  
0b  
0d = Channel 4 output is on the ASI primary output pin (SDOUT)  
1d = Channel 4 output is on the ASI secondary output pin (GPIO1 or  
GPOx)  
5-0  
CH4_SLOT[5:0]  
R/W  
000011b  
Channel 4 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.2.12 ASI_CH5 Register (Address = 0xF) [Reset = 0x4]  
ASI_CH5 is shown in 8-88 and described in 8-64.  
Return to the 8-52.  
This register is the ASI slot configuration register for channel 5.  
8-88. ASI_CH5 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH5_OUTPUT  
R/W-0b  
CH5_SLOT[5:0]  
R/W-000100b  
8-64. ASI_CH5 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R
0b  
Reserved bit; Write only reset value  
6
CH5_OUTPUT  
R/W  
0b  
Channel 5 output line.  
0d = Channel 5 output is on the ASI primary output pin (SDOUT)  
1d = Channel 5 output is on the ASI secondary output pin (GPIO1 or  
GPOx)  
5-0  
CH5_SLOT[5:0]  
R/W  
000100b  
Channel 5 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.2.13 ASI_CH6 Register (Address = 0x10) [Reset = 0x5]  
ASI_CH6 is shown in 8-89 and described in 8-65.  
Return to the 8-52.  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
This register is the ASI slot configuration register for channel 6.  
8-89. ASI_CH6 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH6_OUTPUT  
R/W-0b  
CH6_SLOT[5:0]  
R/W-000101b  
8-65. ASI_CH6 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R
0b  
Reserved bit; Write only reset value  
Channel 6 output line.  
6
CH6_OUTPUT  
R/W  
0b  
0d = Channel 6 output is on the ASI primary output pin (SDOUT)  
1d = Channel 6 output is on the ASI secondary output pin (GPIO1 or  
GPOx)  
5-0  
CH6_SLOT[5:0]  
R/W  
000101b  
Channel 6 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.2.14 ASI_CH7 Register (Address = 0x11) [Reset = 0x6]  
ASI_CH7 is shown in 8-90 and described in 8-66.  
Return to the 8-52.  
This register is the ASI slot configuration register for channel 7.  
8-90. ASI_CH7 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH7_OUTPUT  
R/W-0b  
CH7_SLOT[5:0]  
R/W-000110b  
8-66. ASI_CH7 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R
0b  
Reserved bit; Write only reset value  
Channel 7 output line.  
6
CH7_OUTPUT  
R/W  
0b  
0d = Channel 7 output is on the ASI primary output pin (SDOUT)  
1d = Channel 7 output is on the ASI secondary output pin (GPIO1 or  
GPOx)  
5-0  
CH7_SLOT[5:0]  
R/W  
000110b  
Channel 7 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.2.15 ASI_CH8 Register (Address = 0x12) [Reset = 0x7]  
ASI_CH8 is shown in 8-91 and described in 8-67.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
Return to the 8-52.  
This register is the ASI slot configuration register for channel 8.  
8-91. ASI_CH8 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH8_OUTPUT  
R/W-0b  
CH8_SLOT[5:0]  
R/W-000111b  
8-67. ASI_CH8 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R
0b  
Reserved bit; Write only reset value  
Channel 8 output line.  
6
CH8_OUTPUT  
R/W  
0b  
0d = Channel 8 output is on the ASI primary output pin (SDOUT)  
1d = Channel 8 output is on the ASI secondary output pin (GPIO1 or  
GPOx)  
5-0  
CH8_SLOT[5:0]  
R/W  
000111b  
Channel 8 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.1.2.16 MST_CFG0 Register (Address = 0x13) [Reset = 0x2]  
MST_CFG0 is shown in 8-92 and described in 8-68.  
Return to the 8-52.  
This register is the ASI master mode configuration register 0.  
8-92. MST_CFG0 Register  
7
6
5
4
3
2
1
0
MST_SLV_CFG AUTO_CLK_CF AUTO_MODE_ BCLK_FSYNC_  
FS_MODE  
MCLK_FREQ_SEL[2:0]  
G
PLL_DIS  
GATE  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-010b  
8-68. MST_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MST_SLV_CFG  
R/W  
0b  
ASI master or slave configuration register setting.  
0d = Device is in slave mode (both BCLK and FSYNC are inputs to  
the device)  
1d = Device is in master mode (both BCLK and FSYNC are  
generated from the device)  
6
5
AUTO_CLK_CFG  
AUTO_MODE_PLL_DIS  
R/W  
R/W  
0b  
0b  
Automatic clock configuration setting.  
0d = Auto clock configuration is enabled (all internal clock divider and  
PLL configurations are auto derived)  
1d = Auto clock configuration is disabled (custom mode and device  
GUI must be used for the device configuration settings)  
Automatic mode PLL setting.  
0d = PLL is enabled in auto clock configuration  
1d = PLL is disabled in auto clock configuration  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-68. MST_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
BCLK_FSYNC_GATE  
R/W  
0b  
BCLK and FSYNC clock gate (valid when the device is in master  
mode).  
0d = Do not gate BCLK and FSYNC  
1d = Force gate BCLK and FSYNC when being transmitted from the  
device in master mode  
3
FS_MODE  
R/W  
R/W  
0b  
Sample rate setting (valid when the device is in master mode).  
0d = fS is a multiple (or submultiple) of 48 kHz  
1d = fS is a multiple (or submultiple) of 44.1 kHz  
2-0  
MCLK_FREQ_SEL[2:0]  
010b  
These bits select the MCLK (GPIO or GPIx) frequency for the PLL  
source clock input (valid when the device is in master mode and  
MCLK_FREQ_SEL_MODE = 0).  
0d = 12 MHz  
1d = 12.288 MHz  
2d = 13 MHz  
3d = 16 MHz  
4d = 19.2 MHz  
5d = 19.68 MHz  
6d = 24 MHz  
7d = 24.576 MHz  
8.6.1.2.17 MST_CFG1 Register (Address = 0x14) [Reset = 0x48]  
MST_CFG1 is shown in 8-93 and described in 8-69.  
Return to the 8-52.  
This register is the ASI master mode configuration register 1.  
8-93. MST_CFG1 Register  
7
6
5
4
3
2
1
0
FS_RATE[3:0]  
R/W-0100b  
FS_BCLK_RATIO[3:0]  
R/W-1000b  
8-69. MST_CFG1 Register Field Descriptions  
Bit  
7-4  
Field  
FS_RATE[3:0]  
Type  
Reset  
Description  
R/W  
0100b  
Programmed sample rate of the ASI bus (not used when the device  
is configured in slave mode auto clock configuration).  
0d = 7.35 kHz or 8 kHz  
1d = 14.7 kHz or 16 kHz  
2d = 22.05 kHz or 24 kHz  
3d = 29.4 kHz or 32 kHz  
4d = 44.1 kHz or 48 kHz  
5d = 88.2 kHz or 96 kHz  
6d = 176.4 kHz or 192 kHz  
7d = 352.8 kHz or 384 kHz  
8d = 705.6 kHz or 768 kHz  
9d to 15d = Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-69. MST_CFG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
FS_BCLK_RATIO[3:0]  
R/W  
1000b  
Programmed BCLK to FSYNC frequency ratio of the ASI bus (not  
used when the device is configured in slave mode auto clock  
configuration).  
0d = Ratio of 16  
1d = Ratio of 24  
2d = Ratio of 32  
3d = Ratio of 48  
4d = Ratio of 64  
5d = Ratio of 96  
6d = Ratio of 128  
7d = Ratio of 192  
8d = Ratio of 256  
9d = Ratio of 384  
10d = Ratio of 512  
11d = Ratio of 1024  
12d = Ratio of 2048  
13d = Reserved  
14d = Reserved  
15d = Reserved  
8.6.1.2.18 ASI_STS Register (Address = 0x15) [Reset = 0xFF]  
ASI_STS is shown in 8-94 and described in 8-70.  
Return to the 8-52.  
This register s the ASI bus clock monitor status register  
8-94. ASI_STS Register  
7
6
5
4
3
2
1
0
FS_RATE_STS[3:0]  
R-1111b  
FS_RATIO_STS[3:0]  
R-1111b  
8-70. ASI_STS Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
FS_RATE_STS[3:0]  
R
1111b  
Detected sample rate of the ASI bus.  
0d = 7.35 kHz or 8 kHz  
1d = 14.7 kHz or 16 kHz  
2d = 22.05 kHz or 24 kHz  
3d = 29.4 kHz or 32 kHz  
4d = 44.1 kHz or 48 kHz  
5d = 88.2 kHz or 96 kHz  
6d = 176.4 kHz or 192 kHz  
7d = 352.8 kHz or 384 kHz  
8d = 705.6 kHz or 768 kHz  
9d to 14d = Reserved  
15d = Invalid sample rate  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-70. ASI_STS Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
FS_RATIO_STS[3:0]  
R
1111b  
Detected BCLK to FSYNC frequency ratio of the ASI bus.  
0d = Ratio of 16  
1d = Ratio of 24  
2d = Ratio of 32  
3d = Ratio of 48  
4d = Ratio of 64  
5d = Ratio of 96  
6d = Ratio of 128  
7d = Ratio of 192  
8d = Ratio of 256  
9d = Ratio of 384  
10d = Ratio of 512  
11d = Ratio of 1024  
12d = Ratio of 2048  
13d = Reserved  
14d = Reserved  
15d = Invalid ratio  
8.6.1.2.19 CLK_SRC Register (Address = 0x16) [Reset = 0x10]  
CLK_SRC is shown in 8-95 and described in 8-71.  
Return to the 8-52.  
This register is the clock source configuration register.  
8-95. CLK_SRC Register  
7
6
5
4
3
2
1
0
DIS_PLL_SLV_ MCLK_FREQ_  
MCLK_RATIO_SEL[2:0]  
RESERVED  
CLK_SRC  
SEL_MODE  
R/W-0b  
R/W-0b  
R/W-010b  
R-000b  
8-71. CLK_SRC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DIS_PLL_SLV_CLK_SRC R/W  
0b  
Audio root clock source setting when the device is configured with  
the PLL disabled in the auto clock configuration for slave mode  
(AUTO_MODE_PLL_DIS = 1).  
0d = BCLK is used as the audio root clock source  
1d = MCLK (GPIOx or GPIx) is used as the audio root clock source  
(the MCLK to FSYNC ratio is as per MCLK_RATIO_SEL setting)  
6
MCLK_FREQ_SEL_MOD R/W  
E
0b  
Master mode MCLK (GPIOx or GPIx) frequency selection mode  
(valid when the device is in auto clock configuration).  
0d = MCLK frequency is based on the MCLK_FREQ_SEL (P0_R19)  
configuration  
1d = MCLK frequency is specified as a multiple of FSYNC in the  
MCLK_RATIO_SEL (P0_R22) configuration  
5-3  
MCLK_RATIO_SEL[2:0]  
R/W  
010b  
These bits select the MCLK (GPIOx or GPIx) to FSYNC ratio for  
master mode or when MCLK is used as the audio root clock source  
in slave mode.  
0d = Ratio of 64  
1d = Ratio of 256  
2d = Ratio of 384  
3d = Ratio of 512  
4d = Ratio of 768  
5d = Ratio of 1024  
6d = Ratio of 1536  
7d = Ratio of 2304  
2-0  
RESERVED  
R
000b  
Reserved bits; Write only reset values  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.1.2.20 PDMIN_CFG Register (Address = 0x20) [Reset = 0x0]  
PDMIN_CFG is shown in 8-96 and described in 8-72.  
Return to the 8-52.  
This register is the PDM DINx sampling edge configuration register.  
8-96. PDMIN_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
PDMDIN1_EDG PDMDIN2_EDG  
RESERVED  
R-0000b  
E
E
R/W-0b  
R/W-0b  
8-72. PDMIN_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00b  
0b  
Description  
7-6  
5
RESERVED  
R
Reserved bits; Write only reset value  
PDMDIN1_EDGE  
R/W  
PDMCLK latching edge used for channel 5 and channel 6 data.  
0d = Channel 5 data are latched on the negative edge, channel 6  
data are latched on the positive edge  
1d = Channel 5 data are latched on the positive edge, channel 6 data  
are latched on the negative edge  
4
PDMDIN2_EDGE  
RESERVED  
R/W  
R
0b  
PDMCLK latching edge used for channel 7 and channel 8 data.  
0d = Channel 7 data are latched on the negative edge, channel 8  
data are latched on the positive edge  
1d = Channel 7 data are latched on the positive edge, channel 8 data  
are latched on the negative edge  
3-0  
0000b  
Reserved bits; Write only reset value  
8.6.1.2.21 GPIO_CFG0 Register (Address = 0x21) [Reset = 0x22]  
GPIO_CFG0 is shown in 8-97 and described in 8-73.  
Return to the 8-52.  
This register is the GPIO configuration register 0.  
8-97. GPIO_CFG0 Register  
7
6
5
4
3
2
1
0
GPIO1_CFG[3:0]  
R/W-0010b  
RESERVED  
R-0b  
GPIO1_DRV[2:0]  
R/W-010b  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-73. GPIO_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPIO1_CFG[3:0]  
R/W  
0010b  
GPIO1 configuration.  
0d = GPIO1 is disabled  
1d = GPIO1 is configured as a general-purpose output (GPO)  
2d = GPIO1 is configured as a device interrupt output (IRQ)  
3d = GPIO1 is configured as a secondary ASI output (SDOUT2)  
4d = GPIO1 is configured as a PDM clock output (PDMCLK)  
5d = Reserved  
6d = Reserved  
7d = GPIO1 is configured as an input to power down all ADC  
channels  
8d = GPIO1 is configured as an input to control when MICBIAS turns  
on or off (MICBIAS_EN)  
9d = GPIO1 is configured as a general-purpose input (GPI)  
10d = GPIO1 is configured as a master clock input (MCLK)  
11d = GPIO1 is configured as an ASI input for daisy-chain (SDIN)  
12d = Reserved  
13d = Reserved  
14d = GPIO1 is configured as a PDM data input for channel 5 and  
channel 6 (PDMDIN1)  
15d = GPIO1 is configured as a PDM data input for channel 7 and  
channel 8 (PDMDIN2)  
3
RESERVED  
R
0b  
Reserved bit; Write only reset value  
2-0  
GPIO1_DRV[2:0]  
R/W  
010b  
GPIO1 output drive configuration (not used when GPIO1 is  
configured as SDOUT2).  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved  
8.6.1.2.22 GPIO_CFG1 Register (Address = 0x22) [Reset = 0x0]  
GPIO_CFG1 is shown in 8-98 and described in 8-74.  
Return to the 8-52.  
This register is the GPIO configuration register 1.  
8-98. GPIO_CFG1 Register  
7
6
5
4
3
2
1
0
GPIO2_CFG[3:0]  
R/W-0000b  
RESERVED  
R-0b  
GPIO2_DRV[2:0]  
R/W-000b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-74. GPIO_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPIO2_CFG[3:0]  
R/W  
0000b  
GPIO2 configuration.  
0d = GPIO2 is disabled  
1d = GPIO2 is configured as a general-purpose output (GPO)  
2d = GPIO2 is configured as a device interrupt output (IRQ)  
3d = GPIO2 is configured as a secondary ASI output (SDOUT2)  
4d = GPIO2 is configured as a PDM clock output (PDMCLK)  
5d = Reserved  
6d = Reserved  
7d = GPIO2 is configured as an input to power down all ADC  
channels  
8d = GPIO2 is configured as an input to control when MICBIAS turns  
on or off (MICBIAS_EN)  
9d = GPIO2 is configured as a general-purpose input (GPI)  
10d = GPIO2 is configured as a master clock input (MCLK)  
11d = GPIO2 is configured as an ASI input for daisy-chain (SDIN)  
12d = Reserved  
13d = Reserved  
14d = GPIO2 is configured as a PDM data input for channel 5 and  
channel 6 (PDMDIN1)  
15d = GPIO2 is configured as a PDM data input for channel 7 and  
channel 8 (PDMDIN2)  
3
RESERVED  
R
0b  
Reserved bit; Write only reset value  
2-0  
GPIO2_DRV[2:0]  
R/W  
000b  
GPIO2 output drive configuration (not used when GPIO2 is  
configured as SDOUT2).  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved  
8.6.1.2.23 GPIO_CFG2 Register (Address = 0x23) [Reset = 0x0]  
GPIO_CFG2 is shown in 8-99 and described in 8-75.  
Return to the 8-52.  
This register is the GPIO configuration register 2.  
8-99. GPIO_CFG2 Register  
7
6
5
4
3
2
1
0
GPIO3_CFG[3:0]  
R/W-0000b  
RESERVED  
R-0b  
GPIO3_DRV[2:0]  
R/W-000b  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-75. GPIO_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPIO3_CFG[3:0]  
R/W  
0000b  
GPIO3 configuration.  
0d = GPIO3 is disabled  
1d = GPIO3 is configured as a general-purpose output (GPO)  
2d = GPIO3 is configured as a device interrupt output (IRQ)  
3d = GPIO3 is configured as a secondary ASI output (SDOUT2)  
4d = GPIO3 is configured as a PDM clock output (PDMCLK)  
5d = Reserved  
6d = Reserved  
7d = GPIO3 is configured as an input to power down all ADC  
channels  
8d = GPIO3 is configured as an input to control when MICBIAS turns  
on or off (MICBIAS_EN)  
9d = GPIO3 is configured as a general-purpose input (GPI)  
10d = GPIO3 is configured as a master clock input (MCLK)  
11d = GPIO3 is configured as an ASI input for daisy-chain (SDIN)  
12d = Reserved  
13d = Reserved  
14d = GPIO3 is configured as a PDM data input for channel 5 and  
channel 6 (PDMDIN1)  
15d = GPIO3 is configured as a PDM data input for channel 7 and  
channel 8 (PDMDIN2)  
3
RESERVED  
R
0b  
Reserved bit; Write only reset value  
2-0  
GPIO3_DRV[2:0]  
R/W  
000b  
GPIO3 output drive configuration (not used when GPIO3 is  
configured as SDOUT2).  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved  
8.6.1.2.24 GPI_CFG0 Register (Address = 0x24) [Reset = 0x0]  
GPI_CFG0 is shown in 8-100 and described in 8-76.  
Return to the 8-52.  
This register is the GPI configuration register 0.  
8-100. GPI_CFG0 Register  
7
6
5
4
3
2
1
0
GPI1_CFG[3:0]  
R/W-0000b  
RESERVED  
R-0000b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-76. GPI_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPI1_CFG[3:0]  
R/W  
0000b  
GPI1 configuration.  
0d = GPI1 is disabled  
1d to 6d = Reserved  
7d = GPI1 is configured as an input to power down all ADC channels  
8d = GPI1 is configured as an input to control when MICBIAS turns  
on or off (MICBIAS_EN)  
9d = GPI1 is configured as a general-purpose input (GPI)  
10d = GPI1 is configured as a master clock input (MCLK)  
11d = GPI1 is configured as an ASI input for daisy-chain (SDIN)  
12d = Reserved  
13d = Reserved  
14d = GPI1 is configured as a PDM data input for channel 5 and  
channel 6 (PDMDIN1)  
15d = GPI1 is configured as a PDM data input for channel 7 and  
channel 8 (PDMDIN2)  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.1.2.25 GPI_CFG1 Register (Address = 0x25) [Reset = 0x0]  
GPI_CFG1 is shown in 8-101 and described in 8-77.  
Return to the 8-52.  
This register is the GPI configuration register 1.  
8-101. GPI_CFG1 Register  
7
6
5
4
3
2
1
0
GPI2_CFG[3:0]  
R/W-0000b  
RESERVED  
R-0000b  
8-77. GPI_CFG1 Register Field Descriptions  
Bit  
7-4  
Field  
GPI2_CFG[3:0]  
Type  
Reset  
Description  
R/W  
0000b  
GPI2 configuration.  
0d = GPI2 is disabled  
1d to 6d = Reserved  
7d = GPI2 is configured as an input to power down all ADC channels  
8d = GPI2 is configured as an input to control when MICBIAS turns  
on or off (MICBIAS_EN)  
9d = GPI2 is configured as a general-purpose input (GPI)  
10d = GPI2 is configured as a master clock input (MCLK)  
11d = GPI2 is configured as an ASI input for daisy-chain (SDIN)  
12d = Reserved  
13d = Reserved  
14d = GPI2 is configured as a PDM data input for channel 5 and  
channel 6 (PDMDIN1)  
15d = GPI2 is configured as a PDM data input for channel 7 and  
channel 8 (PDMDIN2)  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.1.2.26 GPIO_VAL Register (Address = 0x26) [Reset = 0x0]  
GPIO_VAL is shown in 8-102 and described in 8-78.  
Return to the 8-52.  
This register is the GPIO output value register.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-102. GPIO_VAL Register  
7
6
5
4
3
2
1
0
GPIO1_VAL  
R/W-0b  
GPIO2_VAL  
R/W-0b  
GPIO3_VAL  
R/W-0b  
RESERVED  
R-00000b  
8-78. GPIO_VAL Register Field Descriptions  
Bit  
Field  
GPIO1_VAL  
Type  
Reset  
Description  
7
R/W  
0b  
GPIO1 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
6
5
GPIO2_VAL  
GPIO3_VAL  
RESERVED  
R/W  
R/W  
R
0b  
GPIO2 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
0b  
GPIO3 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
4-0  
00000b  
Reserved bits; Write only reset value  
8.6.1.2.27 GPIO_MON Register (Address = 0x27) [Reset = 0x0]  
GPIO_MON is shown in 8-103 and described in 8-79.  
Return to the 8-52.  
This register is the GPIO monitor value register.  
8-103. GPIO_MON Register  
7
6
5
4
3
2
1
0
GPIO1_MON  
R-0b  
GPIO2_MON  
R-0b  
GPIO3_MON  
R-0b  
GPI1_MON  
R-0b  
GPI2_MON  
R-0b  
RESERVED  
R-000b  
8-79. GPIO_MON Register Field Descriptions  
Bit  
Field  
GPIO1_MON  
Type  
Reset  
Description  
7
R
0b  
GPIO1 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
6
5
GPIO2_MON  
GPIO3_MON  
GPI1_MON  
GPI2_MON  
RESERVED  
R
R
R
R
R
0b  
GPIO2 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
0b  
GPIO3 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
4
0b  
GPI1 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
3
0b  
GPI2 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
2-0  
000b  
Reserved bits; Write only reset value  
8.6.1.2.28 INT_CFG Register (Address = 0x28) [Reset = 0x0]  
INT_CFG is shown in 8-104 and described in 8-80.  
Return to the 8-52.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
This regiser is the interrupt configuration register.  
8-104. INT_CFG Register  
7
6
5
4
3
2
1
0
INT_POL  
INT_EVENT[1:0]  
PD_ON_FLT_CFG[1:0]  
R/W-00b  
LTCH_READ_C PD_ON_FLT_R LTCH_CLR_ON  
FG  
CV_CFG  
_READ  
R/W-0b  
R/W-00b  
R/W-0b  
R/W-0b  
R/W-0b  
8-80. INT_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_POL  
R/W  
0b  
Interrupt polarity.  
0d = Active low (IRQZ)  
1d = Active high (IRQ)  
6-5  
INT_EVENT[1:0]  
R/W  
R/W  
00b  
00b  
Interrupt event configuration.  
0d = INT asserts on any unmasked latched interrupts event  
Dont use  
2d = INT asserts for 2 ms (typical) for every 4-ms (typical) duration  
on any unmasked latched interrupts event  
3d = INT asserts for 2 ms (typical) one time on each pulse for any  
unmasked interrupts event  
4-3  
PD_ON_FLT_CFG[1:0]  
Powerdown configuration when fault detected for any channel or  
MICBIAS fault detected.  
0d = Faults event are not used for ADC and MICBIAS power down. It  
is recommend to set these bits as 2d to shutdown the blocks for  
which fault occurred.  
1d = Only unmasked faults are used for power down of respective  
ADC channel; In case of MICBIAS fault detected, MICBIAS and all  
ADC channels gets powered-down based on P0_R58 settings  
2d = Both masked or unmasked faults are used for power down of  
respective ADC channel; In case of MICBIAS fault detected,  
MICBIAS and all ADC channels gets powered-down based on  
P0_R58 settings.  
3d = Reserved  
2
1
LTCH_READ_CFG  
R/W  
0b  
0b  
Interrupt latch registers readback configuration.  
0d = All interrupts can be read through the LTCH registers  
1d = Only unmasked interrupts can be read through the LTCH  
registers  
PD_ON_FLT_RCV_CFG R/W  
Recovery configuration for ADC channels when fault goes away.  
0d = Auto recovery, ADC channels are re-powered up when fault  
goes away  
1d = Manual recovery, ADC channels are required to power-up  
manually using P0_R119 when fault goes away  
0
LTCH_CLR_ON_READ  
R/W  
0b  
Configuration for clearing LTCH register bits.  
0d = LTCH register bits are cleared on register read only if live status  
is zero  
1d = LTCH register bits are cleared on register read irrespective of  
live status and set only if live status goes again low to high  
8.6.1.2.29 INT_MASK0 Register (Address = 0x29) [Reset = 0xFF]  
INT_MASK0 is shown in 8-105 and described in 8-81.  
Return to the 8-52.  
This register is the interrupt masks register 0.  
8-105. INT_MASK0 Register  
7
6
5
4
3
2
1
0
INT_MASK0  
R/W-1b  
INT_MASK0  
R/W-1b  
INT_MASK0  
R/W-1b  
INT_MASK0  
R/W-1b  
RESERVED  
R/W-1b  
RESERVED  
R/W-1b  
RESERVED  
R/W-1b  
RESERVED  
R/W-1b  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-105. INT_MASK0 Register (continued)  
8-81. INT_MASK0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_MASK0  
INT_MASK0  
INT_MASK0  
INT_MASK0  
R/W  
1b  
ASI clock error mask.  
0d = Unmask  
1d = Mask  
6
5
4
R/W  
R/W  
R/W  
1b  
1b  
1b  
PLL lock interrupt mask.  
0d = Unmask  
1d = Mask  
Boost or MICBIAS over temperature interrupt mask.  
0d = Unmask  
1d = Mask  
Boost or MICBIAS over current interrupt mask.  
0d = Unmask  
1d = Mask  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
R/W  
1b  
1b  
1b  
1b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
8.6.1.2.30 INT_MASK1 Register (Address = 0x2A) [Reset = 0x3]  
INT_MASK1 is shown in 8-106 and described in 8-82.  
Return to the 8-52.  
This register is the interrupt masks register 1.  
8-106. INT_MASK1 Register  
7
6
5
4
3
2
1
0
INT_MASK1  
R/W-0b  
INT_MASK1  
R/W-0b  
INT_MASK1  
R/W-0b  
INT_MASK1  
R/W-0b  
RESERVED  
R/W-0b  
RESERVED  
R/W-0b  
RESERVED  
R/W-1b  
RESERVED  
R/W-1b  
8-82. INT_MASK1 Register Field Descriptions  
Bit  
Field  
INT_MASK1  
Type  
Reset  
Description  
7
R/W  
0b  
Channel 1 input DC faults diagnostic interrupt mask.  
0d = Unmask  
1d = Mask  
6
5
4
INT_MASK1  
INT_MASK1  
INT_MASK1  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Channel 2 input DC faults diagnostic interrupt mask.  
0d = Unmask  
1d = Mask  
Channel 3 input DC faults diagnostic interrupt mask.  
0d = Unmask  
1d = Mask  
Channel 4 input DC faults diagnostic interrupt mask.  
0d = Unmask  
1d = Mask  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
1b  
1b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.1.2.31 INT_MASK2 Register (Address = 0x2B) [Reset = 0x0]  
INT_MASK2 is shown in 8-107 and described in 8-83.  
Return to the 8-52.  
This register is the interrupt masks register 2.  
8-107. INT_MASK2 Register  
7
6
5
4
3
2
1
0
INT_MASK2  
R/W-0b  
INT_MASK2  
R/W-0b  
INT_MASK2  
R/W-0b  
INT_MASK2  
R/W-0b  
INT_MASK2  
R/W-0b  
INT_MASK2  
R/W-0b  
INT_MASK2  
R/W-0b  
INT_MASK2  
R/W-0b  
8-83. INT_MASK2 Register Field Descriptions  
Bit  
Field  
INT_MASK2  
Type  
Reset  
Description  
7
R/W  
0b  
Input diagnostics; Open inputs fault interrupt mask.  
0d = Unmask  
1d = Mask  
6
5
4
3
2
1
0
INT_MASK2  
INT_MASK2  
INT_MASK2  
INT_MASK2  
INT_MASK2  
INT_MASK2  
INT_MASK2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Input diagnostics; Inputs shorted fault interrupt mask.  
0d = Unmask  
1d = Mask  
Input diagnostics; INxP shorted to ground fault interrupt mask.  
0d = Unmask  
1d = Mask  
Input diagnostics; INxM shorted to ground fault interrupt mask.  
0d = Unmask  
1d = Mask  
Input diagnostics; INxP shorted to MICBIAS fault interrupt mask.  
0d = Unmask  
1d = Mask  
Input diagnostics; INxM shorted to MICBIAS fault interrupt mask.  
0d = Unmask  
1d = Mask  
Input diagnostics; INxP shorted to VBAT_IN fault interrupt mask.  
0d = Unmask  
1d = Mask  
Input diagnostics; INxM shorted to VBAT_IN fault interrupt mask.  
0d = Unmask  
1d = Mask  
8.6.1.2.32 INT_LTCH0 Register (Address = 0x2C) [Reset = 0x0]  
INT_LTCH0 is shown in 8-108 and described in 8-84.  
Return to the 8-52.  
This register is the latched Interrupt readback register 0.  
8-108. INT_LTCH0 Register  
7
6
5
4
3
2
1
0
INT_LTCH0  
R-0b  
INT_LTCH0  
R-0b  
INT_LTCH0  
R-0b  
INT_LTCH0  
R-0b  
RESERVED  
R-0b  
RESERVED  
R-0b  
RESERVED  
R-0b  
RESERVED  
R-0b  
8-84. INT_LTCH0 Register Field Descriptions  
Bit  
Field  
INT_LTCH0  
Type  
Reset  
Description  
7
R
0b  
Fault status for an ASI bus clock error (self-clearing bit).  
0d = No fault detected  
1d = Fault detected  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-84. INT_LTCH0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
INT_LTCH0  
R
0b  
Status of PLL lock (self-clearing bit).  
0d = No PLL lock detected  
1d = PLL lock detected  
5
4
INT_LTCH0  
R
R
0b  
0b  
Fault status for boost or MICBIAS over temperature (self-clearing  
bit).  
0d = No fault detected  
1d = Fault detected  
INT_LTCH0  
Fault status for boost or MICBIAS over current (self-clearing bit).  
0d = No fault detected  
1d = Fault detected  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
0b  
0b  
0b  
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
8.6.1.2.33 CHx_LTCH Register (Address = 0x2D) [Reset = 0x0]  
CHx_LTCH is shown in 8-109 and described in 8-85.  
Return to the 8-52.  
This register is the latched Interrupt status register for channel level diagnostic summary.  
8-109. CHx_LTCH Register  
7
6
5
4
3
2
1
0
STS_CHx_LTC STS_CHx_LTC STS_CHx_LTC STS_CHx_LTC  
RESERVED  
RESERVED  
STS_CHx_LTC  
H
RESERVED  
H
H
H
H
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
8-85. CHx_LTCH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
STS_CHx_LTCH  
STS_CHx_LTCH  
STS_CHx_LTCH  
STS_CHx_LTCH  
R
0b  
Status of CH1_LTCH (self-clearing bit).  
0d = No faults occurred in channel 1  
1d = Atleast a fault has occurred in channel 1  
R
R
R
0b  
0b  
0b  
Status of CH2_LTCH (self-clearing bit).  
0d = No faults occurred in channel 2  
1d = Atleast a fault has occurred in channel 2  
Status of CH3_LTCH (self-clearing bit).  
0d = No faults occurred in channel 3  
1d = Atleast a fault has occurred in channel 3  
Status of CH4_LTCH (self-clearing bit).  
0d = No faults occurred in channel 4  
1d = Atleast a fault has occurred in channel 4  
3
2
1
RESERVED  
R
R
R
0b  
0b  
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
RESERVED  
STS_CHx_LTCH  
Status of short to VBAT_IN fault detected when VBAT_IN is less than  
MICBIAS (self-clearing bit).  
0d = Short to VBAT_IN fault when VBAT_IN is less than MICBIAS  
has not occurred in any channel  
1d = Short to VBAT_IN fault when VBAT_IN is less than MICBIAS  
has occurred in atleast one channel  
0
RESERVED  
R
0b  
Reserved bit; Write only reset value  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.1.2.34 CH1_LTCH Register (Address = 0x2E) [Reset = 0x0]  
CH1_LTCH is shown in 8-110 and described in 8-86.  
Return to the 8-52.  
This register is the latched Interrupt status register for channel 1 fault diagnostic  
8-110. CH1_LTCH Register  
7
6
5
4
3
2
1
0
CH1_LTCH  
R-0b  
CH1_LTCH  
R-0b  
CH1_LTCH  
R-0b  
CH1_LTCH  
R-0b  
CH1_LTCH  
R-0b  
CH1_LTCH  
R-0b  
CH1_LTCH  
R-0b  
CH1_LTCH  
R-0b  
8-86. CH1_LTCH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1_LTCH  
CH1_LTCH  
CH1_LTCH  
CH1_LTCH  
CH1_LTCH  
CH1_LTCH  
CH1_LTCH  
CH1_LTCH  
R
0b  
Channel 1 open input fault status (self-clearing bit).  
0d = No open input detected  
1d = Open input detected  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Channel 1 input pair short fault status (self-clearing bit).  
0d = No input pair short detected  
1d = Input short to each other detected  
Channel 1 IN1P short to ground fault status (self-clearing bit).  
0d = IN1P no short to ground detected  
1d = IN1P short to ground detected  
Channel 1 IN1M short to ground fault status (self-clearing bit).  
0d = IN1M no short to ground detected  
1d = IN1M short to ground detected  
Channel 1 IN1P short to MICBIAS fault status (self-clearing bit).  
0d = IN1P no short to MICBIAS detected  
1d = IN1P short to MICBIAS detected  
Channel 1 IN1M short to MICBIAS fault status (self-clearing bit).  
0d = IN1M no short to MICBIAS detected  
1d = IN1M short to MICBIAS detected  
Channel 1 IN1P short to VBAT_IN fault status (self-clearing bit).  
0d = IN1P no short to VBAT_IN detected  
1d = IN1P short to VBAT_IN detected  
Channel 1 IN1M short to VBAT_IN fault status (self-clearing bit - This  
bit gets clear on reading Page-0, Register-54d, INT_LTCH2 register).  
0d = IN1M no short to VBAT_IN detected  
1d = IN1M short to VBAT_IN detected  
8.6.1.2.35 CH2_LTCH Register (Address = 0x2F) [Reset = 0x0]  
CH2_LTCH is shown in 8-111 and described in 8-87.  
Return to the 8-52.  
This register is the latched Interrupt status register for channel 2 fault diagnostic.  
8-111. CH2_LTCH Register  
7
6
5
4
3
2
1
0
CH2_LTCH  
R-0b  
CH2_LTCH  
R-0b  
CH2_LTCH  
R-0b  
CH2_LTCH  
R-0b  
CH2_LTCH  
R-0b  
CH2_LTCH  
R-0b  
CH2_LTCH  
R-0b  
CH2_LTCH  
R-0b  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-87. CH2_LTCH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH2_LTCH  
CH2_LTCH  
CH2_LTCH  
CH2_LTCH  
CH2_LTCH  
CH2_LTCH  
CH2_LTCH  
CH2_LTCH  
R
0b  
Channel 2 open input fault status (self-clearing bit).  
0d = No open input detected  
1d = Open input detected  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Channel 2 input pair short fault status (self-clearing bit).  
0d = No input pair short detected  
1d = Input short to each other detected  
Channel 2 IN2P short to ground fault status (self-clearing bit).  
0d = IN2P no short to ground detected  
1d = IN2P short to ground detected  
Channel 2 IN2M short to ground fault status (self-clearing bit).  
0d = IN2M no short to ground detected  
1d = IN2M short to ground detected  
Channel 2 IN2P short to MICBIAS fault status (self-clearing bit).  
0d = IN2P no short to MICBIAS detected  
1d = IN2P short to MICBIAS detected  
Channel 2 IN2M short to MICBIAS fault status (self-clearing bit).  
0d = IN2M no short to MICBIAS detected  
1d = IN2M short to MICBIAS detected  
Channel 2 IN2P short to VBAT_IN fault status (self-clearing bit).  
0d = IN2P no short to VBAT_IN detected  
1d = IN2P short to VBAT_IN detected  
Channel 2 IN2M short to VBAT_IN fault status (self-clearing bit - This  
bit gets clear on reading Page-0, Register-54d, INT_LTCH2 register).  
0d = IN2M no short to VBAT_IN detected  
1d = IN2M short to VBAT_IN detected  
8.6.1.2.36 CH3_LTCH Register (Address = 0x30) [Reset = 0x0]  
CH3_LTCH is shown in 8-112 and described in 8-88.  
Return to the 8-52.  
This register is the latched Interrupt status register for channel3 fault diagnostic  
8-112. CH3_LTCH Register  
7
6
5
4
3
2
1
0
CH3_LTCH  
R-0b  
CH3_LTCH  
R-0b  
CH3_LTCH  
R-0b  
CH3_LTCH  
R-0b  
CH3_LTCH  
R-0b  
CH3_LTCH  
R-0b  
CH3_LTCH  
R-0b  
CH3_LTCH  
R-0b  
8-88. CH3_LTCH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH3_LTCH  
CH3_LTCH  
CH3_LTCH  
CH3_LTCH  
CH3_LTCH  
R
0b  
Channel 3 open input fault status (self-clearing bit).  
0d = No open input detected  
1d = Open input detected  
6
5
4
3
R
R
R
R
0b  
0b  
0b  
0b  
Channel 3 input pair short fault status (self-clearing bit).  
0d = No input pair short detected  
1d = Input short to each other detected  
Channel 3 IN3P short to ground fault status (self-clearing bit).  
0d = IN3P no short to ground detected  
1d = IN3P short to ground detected  
Channel 3 IN3M short to ground fault status (self-clearing bit).  
0d = IN3M no short to ground detected  
1d = IN3M short to ground detected  
Channel 3 IN3P short to MICBIAS fault status (self-clearing bit).  
0d = IN3P no short to MICBIAS detected  
1d = IN3P short to MICBIAS detected  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-88. CH3_LTCH Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
CH3_LTCH  
R
0b  
Channel 3 IN3M short to MICBIAS fault status (self-clearing bit).  
0d = IN3M no short to MICBIAS detected  
1d = IN3M short to MICBIAS detected  
1
0
CH3_LTCH  
CH3_LTCH  
R
R
0b  
0b  
Channel 3 IN3P short to VBAT_IN fault status (self-clearing bit).  
0d = IN3P no short to VBAT_IN detected  
1d = IN3P short to VBAT_IN detected  
Channel 3 IN3M short to VBAT_IN fault status (self-clearing bit - This  
bit gets clear on reading Page-0, Register-54d, INT_LTCH2 register).  
0d = IN3M no short to VBAT_IN detected  
1d = IN3M short to VBAT_IN detected  
8.6.1.2.37 CH4_LTCH Register (Address = 0x31) [Reset = 0x0]  
CH4_LTCH is shown in 8-113 and described in 8-89.  
Return to the 8-52.  
This register is the latched Interrupt status register for channel 4 fault diagnostic.  
8-113. CH4_LTCH Register  
7
6
5
4
3
2
1
0
CH4_LTCH  
R-0b  
CH4_LTCH  
R-0b  
CH4_LTCH  
R-0b  
CH4_LTCH  
R-0b  
CH4_LTCH  
R-0b  
CH4_LTCH  
R-0b  
CH4_LTCH  
R-0b  
CH4_LTCH  
R-0b  
8-89. CH4_LTCH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH4_LTCH  
CH4_LTCH  
CH4_LTCH  
CH4_LTCH  
CH4_LTCH  
CH4_LTCH  
CH4_LTCH  
CH4_LTCH  
R
0b  
Channel 4 open input fault status (self-clearing bit).  
0d = No open input detected  
1d = Open input detected  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Channel 4 input pair short fault status (self-clearing bit).  
0d = No input pair short detected  
1d = Input short to each other detected  
Channel 4 IN4P short to ground fault status (self-clearing bit).  
0d = IN4P no short to ground detected  
1d = IN4P short to ground detected  
Channel 4 IN4M short to ground fault status (self-clearing bit).  
0d = IN4M no short to ground detected  
1d = IN4M short to ground detected  
Channel 4 IN4P short to MICBIAS fault status (self-clearing bit).  
0d = IN4P no short to MICBIAS detected  
1d = IN4P short to MICBIAS detected  
Channel 4 IN4M short to MICBIAS fault status (self-clearing bit).  
0d = IN4M no short to MICBIAS detected  
1d = IN4M short to MICBIAS detected  
Channel 4 IN4P short to VBAT_IN fault status (self-clearing bit).  
0d = IN4P no short to VBAT_IN detected  
1d = IN4P short to VBAT_IN detected  
Channel 4 IN4M short to VBAT_IN fault status (self-clearing bit - This  
bit gets clear on reading Page-0, Register-54d, INT_LTCH2 register).  
0d = IN4M no short to VBAT_IN detected  
1d = IN4M short to VBAT_IN detected  
8.6.1.2.38 INT_MASK3 Register (Address = 0x34) [Reset = 0x0]  
INT_MASK3 is shown in 8-114 and described in 8-90.  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
Return to the 8-52.  
This register is the interrupt masks register 3.  
8-114. INT_MASK3 Register  
7
6
5
4
3
2
1
0
INT_MASK3  
R/W-0b  
INT_MASK3  
R/W-0b  
INT_MASK3  
R/W-0b  
INT_MASK3  
R/W-0b  
INT_MASK3  
R/W-0b  
RESERVED  
R-000b  
8-90. INT_MASK3 Register Field Descriptions  
Bit  
Field  
INT_MASK3  
Type  
Reset  
Description  
7
R/W  
0b  
INxP over voltage fault mask.  
0d = Unmask  
1d = Mask  
6
5
INT_MASK3  
INT_MASK3  
INT_MASK3  
INT_MASK3  
RESERVED  
R/W  
R/W  
R/W  
R/W  
R
0b  
INxM over voltage fault mask.  
0d = Unmask  
1d = Mask  
0b  
MICBIAS high current fault mask.  
0d = Unmask  
1d = Mask  
4
0b  
MICBIAS low current fault mask.  
0d = Unmask  
1d = Mask  
3
0b  
MICBIAS over voltage fault mask.  
0d = Unmask  
1d = Mask  
2-0  
000b  
Reserved bits; Write only reset value  
8.6.1.2.39 INT_LTCH1 Register (Address = 0x35) [Reset = 0x0]  
INT_LTCH1 is shown in 8-115 and described in 8-91.  
Return to the 8-52.  
This register is the latched Interrupt readback register 1.  
8-115. INT_LTCH1 Register  
7
6
5
4
3
2
1
0
INT_LTCH1  
R-0b  
INT_LTCH1  
R-0b  
INT_LTCH1  
R-0b  
INT_LTCH1  
R-0b  
RESERVED  
R-0b  
RESERVED  
R-0b  
RESERVED  
R-00b  
8-91. INT_LTCH1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LTCH1  
INT_LTCH1  
INT_LTCH1  
R
0b  
Channel 1 IN1P over voltage fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-46d, CH1_LTCH register).  
0d = No IN1P over voltage fault detected  
1d = IN1P over voltage fault has detected  
6
5
R
R
0b  
0b  
Channel 2 IN2P over voltage fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-47d, CH2_LTCH register).  
0d = No IN2P over voltage fault detected  
1d = IN2P over voltage fault has detected  
Channel 3 IN3P over voltage fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-48d, CH3_LTCH register).  
0d = No IN3P over voltage fault detected  
1d = IN3P over voltage fault has detected  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-91. INT_LTCH1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
INT_LTCH1  
R
0b  
Channel 4 IN4P over voltage fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-49d, CH4_LTCH register).  
0d = No IN4P over voltage fault detected  
1d = IN4P over voltage fault has detected  
3
2
RESERVED  
RESERVED  
RESERVED  
R
R
R
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bits; Write only reset value  
0b  
1-0  
00b  
8.6.1.2.40 INT_LTCH2 Register (Address = 0x36) [Reset = 0x0]  
INT_LTCH2 is shown in 8-116 and described in 8-92.  
Return to the 8-52.  
This register is the latched Interrupt readback register 2.  
8-116. INT_LTCH2 Register  
7
6
5
4
3
2
1
0
INT_LTCH2  
R-0b  
INT_LTCH2  
R-0b  
INT_LTCH2  
R-0b  
INT_LTCH2  
R-0b  
RESERVED  
R-0b  
RESERVED  
R-0b  
RESERVED  
R-00b  
8-92. INT_LTCH2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LTCH2  
INT_LTCH2  
INT_LTCH2  
INT_LTCH2  
R
0b  
Channel 1 IN1M over voltage fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-46d, CH1_LTCH register).  
0d = No IN1M over voltage fault detected  
1d = IN1M over voltage fault has detected  
6
5
4
R
R
R
0b  
0b  
0b  
Channel 2 IN2M over voltage fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-47d, CH2_LTCH register).  
0d = No IN2M over voltage fault detected  
1d = IN2M over voltage fault has detected  
Channel 3 IN3M over voltage fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-48d, CH3_LTCH register).  
0d = No IN3M over voltage fault detected  
1d = IN3M over voltage fault has detected  
Channel 4 IN4M over voltage fault status (self-clearing bit - This bit  
gets clear on reading Page-0, Register-49d, CH4_LTCH register).  
0d = No IN4M over voltage fault detected  
1d = IN4M over voltage fault has detected  
3
2
RESERVED  
RESERVED  
RESERVED  
R
R
R
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bits; Write only reset value  
0b  
1-0  
00b  
8.6.1.2.41 INT_LTCH3 Register (Address = 0x37) [Reset = 0x0]  
INT_LTCH3 is shown in 8-117 and described in 8-93.  
Return to the 8-52.  
This register is the latched Interrupt readback register 3.  
8-117. INT_LTCH3 Register  
7
6
5
4
3
2
1
0
INT_LTCH3  
INT_LTCH3  
INT_LTCH3  
RESERVED  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-117. INT_LTCH3 Register (continued)  
R-0b  
R-0b  
R-0b  
R-00000b  
8-93. INT_LTCH3 Register Field Descriptions  
Bit  
Field  
INT_LTCH3  
Type  
Reset  
Description  
7
R
0b  
Fault status for MICBIAS high current (self-clearing bit).  
0d = No fault detected  
1d = Fault detected  
6
5
INT_LTCH3  
INT_LTCH3  
RESERVED  
R
R
R
0b  
Fault status for MICBIAS low current (self-clearing bit)  
0d = No fault detected  
1d = Fault detected  
0b  
Fault status for MICBIAS over voltage (self-clearing bit).  
0d = No fault detected  
1d = Fault detected  
4-0  
00000b  
Reserved bits; Write only reset value  
8.6.1.2.42 MBDIAG_CFG0 Register (Address = 0x38) [Reset = 0xBA]  
MBDIAG_CFG0 is shown in 8-118 and described in 8-94.  
Return to the 8-52.  
This register is the MICBIAS diagnostic configuration register 0.  
8-118. MBDIAG_CFG0 Register  
7
6
5
4
3
2
1
0
MBIAS_HIGH_CURR_THRS[7:0]  
R/W-10111010b  
8-94. MBDIAG_CFG0 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
MBIAS_HIGH_CURR_TH R/W  
RS[7:0]  
10111010b Threshold for MICBIAS high load current fault diagnostic.  
0d to 56d = Reserved  
57d = High load current threshold is set as 0 mA (typ)  
58d = High load current threshold is set as 0.54 mA (typ)  
59d = High load current threshold is set as 1.08 mA (typ)  
60d to 185d = High load current threshold is set as per configuration  
186d = High load current threshold is set as 69.66 mA (typ)  
187d to 241d = High load current threshold is set as per  
configuration  
242d = High load current threshold is set as 99.90 mA (typ)  
243d to 255d = Reserved  
8.6.1.2.43 MBDIAG_CFG1 Register (Address = 0x39) [Reset = 0x4B]  
MBDIAG_CFG1 is shown in 8-119 and described in 8-95.  
Return to the 8-52.  
This register is the MICBIAS diagnostic configuration register 1.  
8-119. MBDIAG_CFG1 Register  
7
6
5
4
3
2
1
0
MBIAS_LOW_CURR_THRS[7:0]  
R/W-01001011b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-95. MBDIAG_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MBIAS_LOW_CURR_TH R/W  
RS[7:0]  
01001011b Threshold for MICBIAS low load current fault diagnostic.  
0d to 56d = Reserved  
57d = Low load current threshold is set as 0 mA (typ)  
58d = Low load current threshold is set as 0.54 mA (typ)  
59d = Low load current threshold is set as 1.08 mA (typ)  
60d to 74d = Low load current threshold is set as per configuration  
75d = Low load current threshold is set as 9.72 mA (typ)  
76d to 241d = Low load current threshold is set as per configuration  
242d = Low load current threshold is set as 99.90 mA (typ)  
243d to 255d = Reserved  
8.6.1.2.44 MBDIAG_CFG2 Register (Address = 0x3A) [Reset = 0x10]  
MBDIAG_CFG2 is shown in 8-120 and described in 8-96.  
Return to the 8-52.  
This register is the MICBIAS diagnostic configuration register 2.  
8-120. MBDIAG_CFG2 Register  
7
6
5
4
3
2
1
0
PD_MBIAS_FA PD_MBIAS_FA PD_MBIAS_FA PD_MBIAS_FA  
RESERVED  
RESERVED  
ULT1  
ULT2  
ULT3  
ULT4  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R-000b  
8-96. MBDIAG_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PD_MBIAS_FAULT1  
PD_MBIAS_FAULT2  
PD_MBIAS_FAULT3  
PD_MBIAS_FAULT4  
R/W  
0b  
Powerdown configuration of MICBIAS fault 1  
0d = No powerdown when MICBIAS fault detected  
1d = MICBIAS and all ADC channels gets powerdown when low  
current fault occurs and P0_R40, PD_ON_FLT_CFG = 1d  
1d = MICBIAS and all ADC channels gets powerdown when high  
current fault occurs and P0_R40, PD_ON_FLT_CFG = 2d  
6
5
4
R/W  
R/W  
R/W  
0b  
0b  
1b  
Powerdown configuration of MICBIAS fault 2  
0d = No powerdown when MICBIAS fault detected  
1d = MICBIAS and all ADC channels gets powerdown when over  
voltage fault occurs and P0_R40, PD_ON_FLT_CFG = 1d  
1d = MICBIAS and all ADC channels gets powerdown when low  
current fault occurs and P0_R40, PD_ON_FLT_CFG = 2d  
Powerdown configuration of MICBIAS fault 3  
0d = No powerdown when MICBIAS fault detected  
1d = MICBIAS and all ADC channels gets powerdown when over  
temperature fault occurs and P0_R40, PD_ON_FLT_CFG = 1d  
1d = MICBIAS and all ADC channels gets powerdown when over  
voltage fault occurs and P0_R40, PD_ON_FLT_CFG = 2d  
Powerdown configuration of MICBIAS fault 4  
0d = No powerdown when MICBIAS fault detected  
1d = MICBIAS and all ADC channels gets powerdown when high  
current fault occurs and P0_R40, PD_ON_FLT_CFG = 1d  
1d = MICBIAS and all ADC channels gets powerdown when over  
temperature fault occurs and P0_R40, PD_ON_FLT_CFG = 2d. It is  
recommended to use this setting to protect chip from over  
temperature fault.  
3
RESERVED  
RESERVED  
R/W  
R
0b  
Reserved bit; Write only reset value  
Reserved bits; Write only reset value  
2-0  
000b  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.1.2.45 BIAS_CFG Register (Address = 0x3B) [Reset = 0xD0]  
BIAS_CFG is shown in 8-121 and described in 8-97.  
Return to the 8-52.  
This register is the MICBIAS configuration register.  
8-121. BIAS_CFG Register  
7
6
5
4
3
2
1
0
MBIAS_VAL[3:0]  
R/W-1101b  
RESERVED  
R-00b  
RESERVED  
R/W-00b  
8-97. BIAS_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
MBIAS_VAL[3:0]  
R/W  
1101b  
MICBIAS value.  
Dont use  
Dont use  
Dont use  
Dont use  
Dont use  
Dont use  
Dont use  
7d = Microphone bias is set to 5 V  
8d = Microphone bias is set to 5.5 V  
9d = Microphone bias is set to 6 V  
10d = Microphone bias is set to 6.5 V  
11d = Microphone bias is set to 7 V  
12d = Microphone bias is set to 7.5 V  
13d = Microphone bias is set to 8 V  
14d = Microphone bias is set to 8.5 V  
15d = Microphone bias is set to 9 V  
3-2  
1-0  
RESERVED  
RESERVED  
R
00b  
00b  
Reserved bits; Write only reset value  
Reserved bits; Write only reset values  
R/W  
8.6.1.2.46 CH1_CFG0 Register (Address = 0x3C) [Reset = 0x10]  
CH1_CFG0 is shown in 8-122 and described in 8-98.  
Return to the 8-52.  
This register is configuration register 0 for channel 1.  
8-122. CH1_CFG0 Register  
7
6
5
4
3
2
1
0
CH1_INTYP  
CH1_INSRC[1:0]  
CH1_DC  
CH1_MIC_IN_R  
ANGE  
CH1_PGA_CFG[1:0]  
CH1_AGCEN  
R/W-0b  
R/W-00b  
R/W-1b  
R/W-0b  
R/W-00b  
R/W-0b  
8-98. CH1_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1_INTYP  
R/W  
0b  
Channel 1 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH1_INSRC[1:0]  
R/W  
00b  
Channel 1 input configuration.  
0d = Analog differential input  
1d = Analog single-ended input  
2d = Reserved  
3d = Reserved  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-98. CH1_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
CH1_DC  
R/W  
1b  
Channel 1 input coupling.  
0d = AC-coupled input  
1d = DC-coupled input  
3
CH1_MIC_IN_RANGE  
R/W  
0b  
Channel 1 microphone input range.  
0d = Low swing mode; Differential input AC signal full-scale of 2-  
VRMS supported provided DC differential common mode voltage  
IN1P - IN1M < 4.2 V. Single-ended AC signal 1-VRMS supported  
provided DC common mode voltage is < 2.1 V.  
1d = High swing mode; Differential Input IN1P-IN1M peak voltage up  
to 14.14 V or single ended 7.07 V supported. User rquired to adjust  
the channel gain and digital volume control based on the max signal  
level used in system.  
2-1  
0
CH1_PGA_CFG[1:0]  
CH1_AGCEN  
R/W  
R/W  
00b  
0b  
Channel 1 CMRR Configuration.  
0d = High SNR performance mode  
Dont use  
2d = High CMRR performance mode  
3d = Reserved  
Channel 1 automatic gain controller (AGC) setting.  
0d = AGC disabled  
1d = AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108); This must be used only with AC-coupled input  
8.6.1.2.47 CH1_CFG1 Register (Address = 0x3D) [Reset = 0x0]  
CH1_CFG1 is shown in 8-123 and described in 8-99.  
Return to the 8-52.  
This register is configuration register 1 for channel 1.  
8-123. CH1_CFG1 Register  
7
6
5
4
3
2
1
0
CH1_GAIN[5:0]  
R/W-000000b  
RESERVED  
R/W-0b  
RESERVED  
R-0b  
8-99. CH1_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
CH1_GAIN[5:0]  
R/W  
000000b  
Channel 1 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1
0
RESERVED  
RESERVED  
R/W  
R
0b  
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
8.6.1.2.48 CH1_CFG2 Register (Address = 0x3E) [Reset = 0xC9]  
CH1_CFG2 is shown in 8-124 and described in 8-100.  
Return to the 8-52.  
This register is configuration register 2 for channel 1.  
8-124. CH1_CFG2 Register  
7
6
5
4
3
2
1
0
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-124. CH1_CFG2 Register (continued)  
CH1_DVOL[7:0]  
R/W-11001001b  
8-100. CH1_CFG2 Register Field Descriptions  
Bit  
Field  
CH1_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
11001001b Channel 1 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.2.49 CH1_CFG3 Register (Address = 0x3F) [Reset = 0x80]  
CH1_CFG3 is shown in 8-125 and described in 8-101.  
Return to the 8-52.  
This register is configuration register 3 for channel 1.  
8-125. CH1_CFG3 Register  
7
6
5
4
3
2
1
0
CH1_GCAL[3:0]  
R/W-1000b  
RESERVED  
R-0000b  
8-101. CH1_CFG3 Register Field Descriptions  
Bit  
7-4  
Field  
CH1_GCAL[3:0]  
Type  
Reset  
Description  
R/W  
1000b  
Channel 1 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.1.2.50 CH1_CFG4 Register (Address = 0x40) [Reset = 0x0]  
CH1_CFG4 is shown in 8-126 and described in 8-102.  
Return to the 8-52.  
This register is configuration register 4 for channel 1.  
8-126. CH1_CFG4 Register  
7
6
5
4
3
2
1
0
CH1_PCAL[7:0]  
R/W-00000000b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-102. CH1_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH1_PCAL[7:0]  
R/W  
00000000b Channel 1 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator  
clock  
2d = Phase calibration delay is set to two cycles of the modulator  
clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator  
clock  
8.6.1.2.51 CH2_CFG0 Register (Address = 0x41) [Reset = 0x10]  
CH2_CFG0 is shown in 8-127 and described in 8-103.  
Return to the 8-52.  
This register is configuration register 0 for channel 2.  
8-127. CH2_CFG0 Register  
7
6
5
4
3
2
1
0
CH2_INTYP  
CH2_INSRC[1:0]  
CH2_DC  
CH2_MIC_IN_R  
ANGE  
CH2_PGA_CFG[1:0]  
CH2_AGCEN  
R/W-0b  
R/W-00b  
R/W-1b  
R/W-0b  
R/W-00b  
R/W-0b  
8-103. CH2_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH2_INTYP  
R/W  
0b  
Channel 2 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH2_INSRC[1:0]  
R/W  
00b  
Channel 2 input configuration.  
0d = Analog differential input  
1d = Analog single-ended input  
2d = Reserved  
3d = Reserved  
4
3
CH2_DC  
R/W  
R/W  
1b  
0b  
Channel 2 input coupling.  
0d = AC-coupled input  
1d = DC-coupled input  
CH2_MIC_IN_RANGE  
Channel 2 microphone input range.  
0d = Low swing mode; Differential input AC signal full-scale of 2-  
VRMS supported provided DC differential common mode voltage  
IN1P - IN1M < 4.2 V. Single-ended AC signal 1-VRMS supported  
provided DC common mode voltage is < 2.1 V.  
1d = High swing mode; Differential Input IN1P-IN1M peak voltage up  
to 14.14 V or single ended 7.07 V supported. User rquired to adjust  
the channel gain and digital volume control based on the max signal  
level used in system.  
2-1  
0
CH2_PGA_CFG[1:0]  
CH2_AGCEN  
R/W  
R/W  
00b  
0b  
Channel 2 CMRR Configuration.  
0d = High SNR performance mode  
Dont use  
2d = High CMRR performance mode  
3d = Reserved  
Channel 2 automatic gain controller (AGC) setting.  
0d = AGC disabled  
1d = AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108); This must be used only with AC-coupled input  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.1.2.52 CH2_CFG1 Register (Address = 0x42) [Reset = 0x0]  
CH2_CFG1 is shown in 8-128 and described in 8-104.  
Return to the 8-52.  
This register is configuration register 1 for channel 2.  
8-128. CH2_CFG1 Register  
7
6
5
4
3
2
1
0
CH2_GAIN[5:0]  
R/W-000000b  
RESERVED  
R/W-0b  
RESERVED  
R-0b  
8-104. CH2_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
CH2_GAIN[5:0]  
R/W  
000000b  
Channel 2 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1
0
RESERVED  
RESERVED  
R/W  
R
0b  
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
8.6.1.2.53 CH2_CFG2 Register (Address = 0x43) [Reset = 0xC9]  
CH2_CFG2 is shown in 8-129 and described in 8-105.  
Return to the 8-52.  
This register is configuration register 2 for channel 2.  
8-129. CH2_CFG2 Register  
7
6
5
4
3
2
1
0
CH2_DVOL[7:0]  
R/W-11001001b  
8-105. CH2_CFG2 Register Field Descriptions  
Bit  
7-0  
Field  
CH2_DVOL[7:0]  
Type  
Reset  
Description  
R/W  
11001001b Channel 2 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.2.54 CH2_CFG3 Register (Address = 0x44) [Reset = 0x80]  
CH2_CFG3 is shown in 8-130 and described in 8-106.  
Return to the 8-52.  
This register is configuration register 3 for channel 2.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-130. CH2_CFG3 Register  
7
6
5
4
3
2
1
0
CH2_GCAL[3:0]  
R/W-1000b  
RESERVED  
R-0000b  
8-106. CH2_CFG3 Register Field Descriptions  
Bit  
7-4  
Field  
CH2_GCAL[3:0]  
Type  
Reset  
Description  
R/W  
1000b  
Channel 2 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.1.2.55 CH2_CFG4 Register (Address = 0x45) [Reset = 0x0]  
CH2_CFG4 is shown in 8-131 and described in 8-107.  
Return to the 8-52.  
This register is configuration register 4 for channel 2.  
8-131. CH2_CFG4 Register  
7
6
5
4
3
2
1
0
CH2_PCAL[7:0]  
R/W-00000000b  
8-107. CH2_CFG4 Register Field Descriptions  
Bit  
7-0  
Field  
CH2_PCAL[7:0]  
Type  
Reset  
Description  
R/W  
00000000b Channel 2 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator  
clock  
2d = Phase calibration delay is set to two cycles of the modulator  
clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator  
clock  
8.6.1.2.56 CH3_CFG0 Register (Address = 0x46) [Reset = 0x10]  
CH3_CFG0 is shown in 8-132 and described in 8-108.  
Return to the 8-52.  
This register is configuration register 0 for channel 3.  
8-132. CH3_CFG0 Register  
7
6
5
4
3
2
1
0
CH3_INTYP  
CH3_INSRC[1:0]  
CH3_DC  
CH3_MIC_IN_R  
ANGE  
CH3_PGA_CFG[1:0]  
CH3_AGCEN  
R/W-0b  
R/W-00b  
R/W-1b  
R/W-0b  
R/W-00b  
R/W-0b  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-132. CH3_CFG0 Register (continued)  
8-108. CH3_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH3_INTYP  
R/W  
0b  
Channel 3 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH3_INSRC[1:0]  
R/W  
00b  
Channel 3 input configuration.  
0d = Analog differential input  
1d = Analog single-ended input  
2d = Reserved  
3d = Reserved  
4
3
CH3_DC  
R/W  
R/W  
1b  
0b  
Channel 3 input coupling.  
0d = AC-coupled input  
1d = DC-coupled input  
CH3_MIC_IN_RANGE  
Channel 3 microphone input range.  
0d = Low swing mode; Differential input AC signal full-scale of 2-  
VRMS supported provided DC differential common mode voltage  
IN1P - IN1M < 4.2 V. Single-ended AC signal 1-VRMS supported  
provided DC common mode voltage is < 2.1 V.  
1d = High swing mode; Differential Input IN1P-IN1M peak voltage up  
to 14.14 V or single ended 7.07 V supported. User rquired to adjust  
the channel gain and digital volume control based on the max signal  
level used in system.  
2-1  
0
CH3_PGA_CFG[1:0]  
CH3_AGCEN  
R/W  
R/W  
00b  
0b  
Channel 3 CMRR Configuration.  
0d = High SNR performance mode  
Dont use  
2d = High CMRR performance mode  
3d = Reserved  
Channel 3 automatic gain controller (AGC) setting.  
0d = AGC disabled  
1d = AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108); This must be used only with AC-coupled input  
8.6.1.2.57 CH3_CFG1 Register (Address = 0x47) [Reset = 0x0]  
CH3_CFG1 is shown in 8-133 and described in 8-109.  
Return to the 8-52.  
This register is configuration register 1 for channel 3.  
8-133. CH3_CFG1 Register  
7
6
5
4
3
2
1
0
CH3_GAIN[5:0]  
R/W-000000b  
RESERVED  
R/W-0b  
RESERVED  
R-0b  
8-109. CH3_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
CH3_GAIN[5:0]  
R/W  
000000b  
Channel 3 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1
0
RESERVED  
RESERVED  
R/W  
R
0b  
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.1.2.58 CH3_CFG2 Register (Address = 0x48) [Reset = 0xC9]  
CH3_CFG2 is shown in 8-134 and described in 8-110.  
Return to the 8-52.  
This register is configuration register 2 for channel 3.  
8-134. CH3_CFG2 Register  
7
6
5
4
3
2
1
0
CH3_DVOL[7:0]  
R/W-11001001b  
8-110. CH3_CFG2 Register Field Descriptions  
Bit  
7-0  
Field  
CH3_DVOL[7:0]  
Type  
Reset  
Description  
R/W  
11001001b Channel 3 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.2.59 CH3_CFG3 Register (Address = 0x49) [Reset = 0x80]  
CH3_CFG3 is shown in 8-135 and described in 8-111.  
Return to the 8-52.  
This register is configuration register 3 for channel 3.  
8-135. CH3_CFG3 Register  
7
6
5
4
3
2
1
0
CH3_GCAL[3:0]  
R/W-1000b  
RESERVED  
R-0000b  
8-111. CH3_CFG3 Register Field Descriptions  
Bit  
7-4  
Field  
CH3_GCAL[3:0]  
Type  
Reset  
Description  
R/W  
1000b  
Channel 3 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.1.2.60 CH3_CFG4 Register (Address = 0x4A) [Reset = 0x0]  
CH3_CFG4 is shown in 8-136 and described in 8-112.  
Return to the 8-52.  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
This register is configuration register 4 for channel 3.  
8-136. CH3_CFG4 Register  
7
6
5
4
3
2
1
0
CH3_PCAL[7:0]  
R/W-00000000b  
8-112. CH3_CFG4 Register Field Descriptions  
Bit  
7-0  
Field  
CH3_PCAL[7:0]  
Type  
Reset  
Description  
R/W  
00000000b Channel 3 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator  
clock  
2d = Phase calibration delay is set to two cycles of the modulator  
clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator  
clock  
8.6.1.2.61 CH4_CFG0 Register (Address = 0x4B) [Reset = 0x10]  
CH4_CFG0 is shown in 8-137 and described in 8-113.  
Return to the 8-52.  
This register is configuration register 0 for channel 4.  
8-137. CH4_CFG0 Register  
7
6
5
4
3
2
1
0
CH4_INTYP  
CH4_INSRC[1:0]  
CH4_DC  
CH4_MIC_IN_R  
ANGE  
CH4_PGA_CFG[1:0]  
CH4_AGCEN  
R/W-0b  
R/W-00b  
R/W-1b  
R/W-0b  
R/W-00b  
R/W-0b  
8-113. CH4_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH4_INTYP  
R/W  
0b  
Channel 4 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH4_INSRC[1:0]  
R/W  
00b  
Channel 4 input configuration.  
0d = Analog differential input  
1d = Analog single-ended input  
2d = Reserved  
3d = Reserved  
4
3
CH4_DC  
R/W  
R/W  
1b  
0b  
Channel 4 input coupling.  
0d = AC-coupled input  
1d = DC-coupled input  
CH4_MIC_IN_RANGE  
Channel 4 microphone input range.  
0d = Low swing mode; Differential input AC signal full-scale of 2-  
VRMS supported provided DC differential common mode voltage  
IN1P - IN1M < 4.2 V. Single-ended AC signal 1-VRMS supported  
provided DC common mode voltage is < 2.1 V.  
1d = High swing mode; Differential Input IN1P-IN1M peak voltage up  
to 14.14 V or single ended 7.07 V supported. User rquired to adjust  
the channel gain and digital volume control based on the max signal  
level used in system.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-113. CH4_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-1  
CH4_PGA_CFG[1:0]  
R/W  
00b  
Channel 4 CMRR Configuration.  
0d = High SNR performance mode  
Dont use  
2d = High CMRR performance mode  
3d = Reserved  
0
CH4_AGCEN  
R/W  
0b  
Channel 4 automatic gain controller (AGC) setting.  
0d = AGC disabled  
1d = AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108); This must be used only with AC-coupled input  
8.6.1.2.62 CH4_CFG1 Register (Address = 0x4C) [Reset = 0x0]  
CH4_CFG1 is shown in 8-138 and described in 8-114.  
Return to the 8-52.  
This register is configuration register 1 for channel 4.  
8-138. CH4_CFG1 Register  
7
6
5
4
3
2
1
0
CH4_GAIN[5:0]  
R/W-000000b  
RESERVED  
R/W-0b  
RESERVED  
R-0b  
8-114. CH4_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
CH4_GAIN[5:0]  
R/W  
000000b  
Channel 4 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 1 dB  
2d = Channel gain is set to 2 dB  
3d to 41d = Channel gain is set as per configuration  
42d = Channel gain is set to 42 dB  
43d to 63d = Reserved  
1
0
RESERVED  
RESERVED  
R/W  
R
0b  
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
8.6.1.2.63 CH4_CFG2 Register (Address = 0x4D) [Reset = 0xC9]  
CH4_CFG2 is shown in 8-139 and described in 8-115.  
Return to the 8-52.  
This register is configuration register 2 for channel 4.  
8-139. CH4_CFG2 Register  
7
6
5
4
3
2
1
0
CH4_DVOL[7:0]  
R/W-11001001b  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-115. CH4_CFG2 Register Field Descriptions  
Bit  
Field  
CH4_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
11001001b Channel 4 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.2.64 CH4_CFG3 Register (Address = 0x4E) [Reset = 0x80]  
CH4_CFG3 is shown in 8-140 and described in 8-116.  
Return to the 8-52.  
This register is configuration register 3 for channel 4.  
8-140. CH4_CFG3 Register  
7
6
5
4
3
2
1
0
CH4_GCAL[3:0]  
R/W-1000b  
RESERVED  
R-0000b  
8-116. CH4_CFG3 Register Field Descriptions  
Bit  
7-4  
Field  
CH4_GCAL[3:0]  
Type  
Reset  
Description  
R/W  
1000b  
Channel 4 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.1.2.65 CH4_CFG4 Register (Address = 0x4F) [Reset = 0x0]  
CH4_CFG4 is shown in 8-141 and described in 8-117.  
Return to the 8-52.  
This register is configuration register 4 for channel 4.  
8-141. CH4_CFG4 Register  
7
6
5
4
3
2
1
0
CH4_PCAL[7:0]  
R/W-00000000b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-117. CH4_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH4_PCAL[7:0]  
R/W  
00000000b Channel 4 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator  
clock  
2d = Phase calibration delay is set to two cycles of the modulator  
clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator  
clock  
8.6.1.2.66 CH5_CFG0 Register (Address = 0x50) [Reset = 0x10]  
CH5_CFG0 is shown in 8-142 and described in 8-118.  
Return to the 8-52.  
This register is configuration register 0 for channel 5.  
8-142. CH5_CFG0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
CH5_INSRC[1:0]  
R/W-00b  
RESERVED  
R/W-1b  
RESERVED  
R/W-0b  
RESERVED  
R/W-00b  
RESERVED  
R/W-0b  
8-118. CH5_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0b  
Reserved bit; Write only reset value  
6-5  
CH5_INSRC[1:0]  
00b  
Channel 5 input configuration.  
0d = Reserved  
1d = Reserved  
2d = Digital microphone PDM input (Configure GPIO's/GPI's pin  
accordingly for PDMDIN1 and PDMCLK)  
3d = Channel-5 digital filter input is generated same as channel 1  
digital filter input (cloned input mode)  
4
3
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
R/W  
1b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bits; Write only reset values  
Reserved bit; Write only reset value  
0b  
2-1  
0
00b  
0b  
8.6.1.2.67 CH5_CFG2 Register (Address = 0x52) [Reset = 0xC9]  
CH5_CFG2 is shown in 8-143 and described in 8-119.  
Return to the 8-52.  
This register is configuration register 2 for channel 5.  
8-143. CH5_CFG2 Register  
7
6
5
4
3
2
1
0
CH5_DVOL[7:0]  
R/W-11001001b  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-119. CH5_CFG2 Register Field Descriptions  
Bit  
Field  
CH5_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
11001001b Channel 5 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.2.68 CH5_CFG3 Register (Address = 0x53) [Reset = 0x80]  
CH5_CFG3 is shown in 8-144 and described in 8-120.  
Return to the 8-52.  
This register is configuration register 3 for channel 5.  
8-144. CH5_CFG3 Register  
7
6
5
4
3
2
1
0
CH5_GCAL[3:0]  
R/W-1000b  
RESERVED  
R-0000b  
8-120. CH5_CFG3 Register Field Descriptions  
Bit  
7-4  
Field  
CH5_GCAL[3:0]  
Type  
Reset  
Description  
R/W  
1000b  
Channel 5 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.1.2.69 CH5_CFG4 Register (Address = 0x54) [Reset = 0x0]  
CH5_CFG4 is shown in 8-145 and described in 8-121.  
Return to the 8-52.  
This register is configuration register 4 for channel 5.  
8-145. CH5_CFG4 Register  
7
6
5
4
3
2
1
0
CH5_PCAL[7:0]  
R/W-00000000b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-121. CH5_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH5_PCAL[7:0]  
R/W  
00000000b Channel 5 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator  
clock  
2d = Phase calibration delay is set to two cycles of the modulator  
clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator  
clock  
8.6.1.2.70 CH6_CFG0 Register (Address = 0x55) [Reset = 0x10]  
CH6_CFG0 is shown in 8-146 and described in 8-122.  
Return to the 8-52.  
This register is configuration register 0 for channel 6.  
8-146. CH6_CFG0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
CH6_INSRC[1:0]  
R/W-00b  
RESERVED  
R/W-1b  
RESERVED  
R/W-0b  
RESERVED  
R/W-00b  
RESERVED  
R/W-0b  
8-122. CH6_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0b  
Reserved bit; Write only reset value  
6-5  
CH6_INSRC[1:0]  
00b  
Channel 6 input configuration.  
0d = Reserved  
1d = Reserved  
2d = Digital microphone PDM input (Configure GPIO's/GPI's pin  
accordingly for PDMDIN1 and PDMCLK)  
3d = Channel-5 digital filter input is generated same as channel 1  
digital filter input (cloned input mode)  
4
3
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
R/W  
1b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bits; Write only reset values  
Reserved bit; Write only reset value  
0b  
2-1  
0
00b  
0b  
8.6.1.2.71 CH6_CFG2 Register (Address = 0x57) [Reset = 0xC9]  
CH6_CFG2 is shown in 8-147 and described in 8-123.  
Return to the 8-52.  
This register is configuration register 2 for channel 6.  
8-147. CH6_CFG2 Register  
7
6
5
4
3
2
1
0
CH6_DVOL[7:0]  
R/W-11001001b  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-123. CH6_CFG2 Register Field Descriptions  
Bit  
Field  
CH6_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
11001001b Channel 6 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.1.2.72 CH6_CFG3 Register (Address = 0x58) [Reset = 0x80]  
CH6_CFG3 is shown in 8-148 and described in 8-124.  
Return to the 8-52.  
This register is configuration register 3 for channel 6.  
8-148. CH6_CFG3 Register  
7
6
5
4
3
2
1
0
CH6_GCAL[3:0]  
R/W-1000b  
RESERVED  
R-0000b  
8-124. CH6_CFG3 Register Field Descriptions  
Bit  
7-4  
Field  
CH6_GCAL[3:0]  
Type  
Reset  
Description  
R/W  
1000b  
Channel 6 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.1.2.73 CH6_CFG4 Register (Address = 0x59) [Reset = 0x0]  
CH6_CFG4 is shown in 8-149 and described in 8-125.  
Return to the 8-52.  
This register is configuration register 4 for channel 6.  
8-149. CH6_CFG4 Register  
7
6
5
4
3
2
1
0
CH6_PCAL[7:0]  
R/W-00000000b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-125. CH6_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH6_PCAL[7:0]  
R/W  
00000000b Channel 6 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator  
clock  
2d = Phase calibration delay is set to two cycles of the modulator  
clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator  
clock  
8.6.1.2.74 CH7_CFG0 Register (Address = 0x5A) [Reset = 0x0]  
CH7_CFG0 is shown in 8-150 and described in 8-126.  
Return to the 8-52.  
This register is configuration register 0 for channel 7.  
8-150. CH7_CFG0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH7_INSRC[1:0]  
R/W-00b  
RESERVED  
R-00000b  
8-126. CH7_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
R
0b  
Reserved bit; Write only reset value  
Channel-7 Input Configuration.  
6-5  
CH7_INSRC[1:0]  
R/W  
00b  
0d = Digital Microphone PDM Input (Configure GPIO's/GPI's pin  
accordingly for PDMDIN2 and PDMCLK)  
1d = Digital Microphone PDM Input (Configure GPIO's/GPI's pin  
accordingly for PDMDIN2 and PDMCLK)  
2d = Digital Microphone PDM Input (Configure GPIO's/GPI's pin  
accordingly for PDMDIN2 and PDMCLK)  
3d = Channel-7 Digital Filter Input is generated same as Channel-3  
Digital Filter Input (Cloned Input)  
4-0  
RESERVED  
R
00000b  
Reserved bits; Write only reset value  
8.6.1.2.75 CH7_CFG2 Register (Address = 0x5C) [Reset = 0xC9]  
CH7_CFG2 is shown in 8-151 and described in 8-127.  
Return to the 8-52.  
This register is configuration register 2 for channel 7.  
8-151. CH7_CFG2 Register  
7
6
5
4
3
2
1
0
CH7_DVOL[7:0]  
R/W-11001001b  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-127. CH7_CFG2 Register Field Descriptions  
Bit  
Field  
CH7_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
11001001b Channel-7 Digital Volume Control.  
0d = Digtial Volume is Mute  
1d = Digital Volume Control set to -100 dB  
2d = Digital Volume Control set to -99.5 dB  
3d to 200d = Digital Volume Control set to as per configuration  
201d = Digital Volume Control set to 0 dB  
202d = Digital Volume Control set to +0.5 dB  
203d to 253d = Digital Volume Control set to as per configuration  
254d = Digital Volume Control set to +26.5 dB  
255d = Digital Volume Control set to +27 dB  
8.6.1.2.76 CH7_CFG3 Register (Address = 0x5D) [Reset = 0x80]  
CH7_CFG3 is shown in 8-152 and described in 8-128.  
Return to the 8-52.  
This register is configuration register 3 for channel 7.  
8-152. CH7_CFG3 Register  
7
6
5
4
3
2
1
0
CH7_GCAL[3:0]  
R/W-1000b  
RESERVED  
R-0000b  
8-128. CH7_CFG3 Register Field Descriptions  
Bit  
7-4  
Field  
CH7_GCAL[3:0]  
Type  
Reset  
Description  
R/W  
1000b  
Channel-7 Gain Calibration.  
0d = Gain Calibration set to -0.8 dB  
1d = Gain Calibration set to -0.7 dB  
2d = Gain Calibration set to -0.6 dB  
3d to 7d = Gain Calibration set to as per configuration  
8d = Gain Calibration set to 0 dB  
9d = Gain Calibration set to +0.1 dB  
10d to 13d = Gain Calibration set to as per configuration  
14d = Gain Calibration set to +0.6 dB  
15d = Gain Calibration set to +0.7 dB  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.1.2.77 CH7_CFG4 Register (Address = 0x5E) [Reset = 0x0]  
CH7_CFG4 is shown in 8-153 and described in 8-129.  
Return to the 8-52.  
This register is configuration register 4 for channel 7.  
8-153. CH7_CFG4 Register  
7
6
5
4
3
2
1
0
CH7_PCAL[7:0]  
R/W-00000000b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-129. CH7_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH7_PCAL[7:0]  
R/W  
00000000b Channel-7 Phase Calibration with modulator clock resolution.  
0d = Phase Calibration with 0-cycle of modulator clock delay  
1d = Phase Calibration with 1-cycles of modulator clock delay  
2d = Phase Calibration with 1-cycles of modulator clock delay  
3d to 254d = Delay Value is as per configuration  
255d = Phase Calibration with 255-cycles of modulator clock delay  
8.6.1.2.78 CH8_CFG0 Register (Address = 0x5F) [Reset = 0x0]  
CH8_CFG0 is shown in 8-154 and described in 8-130.  
Return to the 8-52.  
This register is configuration register 0 for channel 8.  
8-154. CH8_CFG0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CH8_INSRC[1:0]  
R/W-00b  
RESERVED  
R-00000b  
8-130. CH8_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
R
0b  
Reserved bit; Write only reset value  
Channel-8 Input Configuration.  
6-5  
CH8_INSRC[1:0]  
R/W  
00b  
0d = Digital Microphone PDM Input (Configure GPIO's/GPI's pin  
accordingly for PDMDIN2 and PDMCLK)  
1d = Digital Microphone PDM Input (Configure GPIO's/GPI's pin  
accordingly for PDMDIN2 and PDMCLK)  
2d = Digital Microphone PDM Input (Configure GPIO's/GPI's pin  
accordingly for PDMDIN2 and PDMCLK)  
3d = Channel-8 Digital Filter Input is generated same as Channel-4  
Digital Filter Input (Cloned Input)  
4-0  
RESERVED  
R
00000b  
Reserved bits; Write only reset value  
8.6.1.2.79 CH8_CFG2 Register (Address = 0x61) [Reset = 0xC9]  
CH8_CFG2 is shown in 8-155 and described in 8-131.  
Return to the 8-52.  
This register is configuration register 2 for channel 8.  
8-155. CH8_CFG2 Register  
7
6
5
4
3
2
1
0
CH8_DVOL[7:0]  
R/W-11001001b  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-131. CH8_CFG2 Register Field Descriptions  
Bit  
Field  
CH8_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
11001001b Channel-8 Digital Volume Control.  
0d = Digtial Volume is Mute  
1d = Digital Volume Control set to -100 dB  
2d = Digital Volume Control set to -99.5 dB  
3d to 200d = Digital Volume Control set to as per configuration  
201d = Digital Volume Control set to 0 dB  
202d = Digital Volume Control set to +0.5 dB  
203d to 253d = Digital Volume Control set to as per configuration  
254d = Digital Volume Control set to +26.5 dB  
255d = Digital Volume Control set to +27 dB  
8.6.1.2.80 CH8_CFG3 Register (Address = 0x62) [Reset = 0x80]  
CH8_CFG3 is shown in 8-156 and described in 8-132.  
Return to the 8-52.  
This register is configuration register 3 for channel 8.  
8-156. CH8_CFG3 Register  
7
6
5
4
3
2
1
0
CH8_GCAL[3:0]  
R/W-1000b  
RESERVED  
R-0000b  
8-132. CH8_CFG3 Register Field Descriptions  
Bit  
7-4  
Field  
CH8_GCAL[3:0]  
Type  
Reset  
Description  
R/W  
1000b  
Channel-8 Gain Calibration.  
0d = Gain Calibration set to -0.8 dB  
1d = Gain Calibration set to -0.7 dB  
2d = Gain Calibration set to -0.6 dB  
3d to 7d = Gain Calibration set to as per configuration  
8d = Gain Calibration set to 0 dB  
9d = Gain Calibration set to +0.1 dB  
10d to 13d = Gain Calibration set to as per configuration  
14d = Gain Calibration set to +0.6 dB  
15d = Gain Calibration set to +0.7 dB  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.1.2.81 CH8_CFG4 Register (Address = 0x63) [Reset = 0x0]  
CH8_CFG4 is shown in 8-157 and described in 8-133.  
Return to the 8-52.  
This register is configuration register 4 for channel 8.  
8-157. CH8_CFG4 Register  
7
6
5
4
3
2
1
0
CH8_PCAL[7:0]  
R/W-00000000b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-133. CH8_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH8_PCAL[7:0]  
R/W  
00000000b Channel-8 Phase Calibration with modulator clock resolution.  
0d = Phase Calibration with 0-cycle of modulator clock delay  
1d = Phase Calibration with 1-cycles of modulator clock delay  
2d = Phase Calibration with 1-cycles of modulator clock delay  
3d to 254d = Delay Value is as per configuration  
255d = Phase Calibration with 255-cycles of modulator clock delay  
8.6.1.2.82 DIAG_CFG0 Register (Address = 0x64) [Reset = 0x0]  
DIAG_CFG0 is shown in 8-158 and described in 8-134.  
Return to the 8-52.  
This register is configuration register 0 for input fault diagnostics setting.  
8-158. DIAG_CFG0 Register  
7
6
5
4
3
2
1
0
CH1_DIAG_EN CH2_DIAG_EN CH3_DIAG_EN CH4_DIAG_EN  
RESERVED  
RESERVED  
INCL_SE_INM INCL_AC_COU  
P
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-134. DIAG_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1_DIAG_EN  
CH2_DIAG_EN  
CH3_DIAG_EN  
CH4_DIAG_EN  
R/W  
0b  
Channel 1 input (IN1P and IN1M) scan for diagnostics.  
0d = Diagnostic disabled  
1d = Diagnostic enabled  
6
5
4
R/W  
R/W  
R/W  
0b  
0b  
0b  
Channel 2 input (IN2P and IN2M) scan for diagnostics.  
0d = Diagnostic disabled  
1d = Diagnostic enabled  
Channel 3 input (IN3P and IN3M) scan for diagnostics.  
0d = Diagnostic disabled  
1d = Diagnostic enabled  
Channel 4 input (IN4P and IN4M) scan for diagnostics.  
0d = Diagnostic disabled  
1d = Diagnostic enabled  
3
2
1
RESERVED  
RESERVED  
INCL_SE_INM  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
INxM pin diagnostics scan selection for single-ended configuration.  
0d = INxM pins of single-ended channels are excluded for diagnosis  
1d = INxM pins of single-ended channels are included for diagnosis  
0
INCL_AC_COUP  
R/W  
0b  
AC-coupled channels pins scan selection for diagnostics.  
0d = INxP and INxM pins of AC-coupled channels are excluded for  
diagnosis  
1d = INxP and INxM pins of AC-coupled channels are included for  
diagnosis  
8.6.1.2.83 DIAG_CFG1 Register (Address = 0x65) [Reset = 0x37]  
DIAG_CFG1 is shown in 8-159 and described in 8-135.  
Return to the 8-52.  
This register is configuration register 1 for input fault diagnostics setting.  
8-159. DIAG_CFG1 Register  
7
6
5
4
3
2
1
0
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-159. DIAG_CFG1 Register (continued)  
DIAG_SHT_TERM[3:0]  
DIAG_SHT_VBAT_IN[3:0]  
R/W-0011b  
R/W-0111b  
8-135. DIAG_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_SHT_TERM[3:0]  
R/W  
0011b  
INxP and INxM terminal short detect threshold.  
0d = INxP and INxM terminal short detect threshold value is 0 mV  
(typ)  
1d = INxP and INxM terminal short detect threshold value is 30 mV  
(typ)  
2d = INxP and INxM terminal short detect threshold value is 60 mV  
(typ)  
10d to 13d = INxP and INxM terminal short detect threshold value is  
set as per configuration  
14d = INxP and INxM terminal short detect threshold value is 420  
mV (typ)  
15d = INxP and INxM terminal short detect threshold value is 450  
mV (typ)  
3-0  
DIAG_SHT_VBAT_IN[3:0] R/W  
0111b  
Short to VBAT_IN detect threshold.  
0d = Short to VBAT_IN detect threshold value is 0 mV (typ)  
1d = Short to VBAT_IN detect threshold value is 30 mV (typ)  
2d = Short to VBAT_IN detect threshold value is 60 mV (typ)  
10d to 13d = Short to VBAT_IN detect threshold value is set as per  
configuration  
14d = Short to VBAT_IN detect threshold value is 420 mV (typ)  
15d = Short to VBAT_IN detect threshold value is 450 mV (typ)  
8.6.1.2.84 DIAG_CFG2 Register (Address = 0x66) [Reset = 0x87]  
DIAG_CFG2 is shown in 8-160 and described in 8-136.  
Return to the 8-52.  
This register is configuration register 2 for input fault diagnostics setting.  
8-160. DIAG_CFG2 Register  
7
6
5
4
3
2
1
0
DIAG_SHT_GND[3:0]  
R/W-1000b  
DIAG_SHT_MICBIAS[3:0]  
R/W-0111b  
8-136. DIAG_CFG2 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
DIAG_SHT_GND[3:0]  
R/W  
1000b  
Short to ground detect threshold.  
0d = Short to ground detect threshold value is 0 mV (typ)  
1d = Short to ground detect threshold value is 60 mV (typ)  
2d = Short to ground detect threshold value is 120 mV (typ)  
10d to 13d = Short to ground detect threshold value is set as per  
configuration  
14d = Short to ground detect threshold value is 840 mV (typ)  
15d = Short to ground detect threshold value is 900 mV (typ)  
3-0  
DIAG_SHT_MICBIAS[3:0] R/W  
0111b  
Short to MICBIAS detect threshold.  
0d = Short to MICBIAS detect threshold value is 0 mV (typ)  
1d = Short to MICBIAS detect threshold value is 30 mV (typ)  
2d = Short to MICBIAS detect threshold value is 60 mV (typ)  
10d to 13d = Short to MICBIAS detect threshold value is set as per  
configuration  
14d = Short to MICBIAS detect threshold value is 420 mV (typ)  
15d = Short to MICBIAS detect threshold value is 450 mV (typ)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.1.2.85 DIAG_CFG3 Register (Address = 0x67) [Reset = 0xB8]  
DIAG_CFG3 is shown in 8-161 and described in 8-137.  
Return to the 8-52.  
This register is configuration register 3 for input fault diagnostics setting.  
8-161. DIAG_CFG3 Register  
7
6
5
4
3
2
1
0
REP_RATE[1:0]  
R/W-10b  
RESERVED  
R/W-11b  
FAULT_DBNCE_SEL[1:0]  
VSHORT_DBN DIAG_2X_THR  
CE  
ES  
R/W-10b  
R/W-0b  
R/W-0b  
8-137. DIAG_CFG3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
REP_RATE[1:0]  
R/W  
10b  
Fault monitoring scan repetition rate.  
0d = Countinuos back to back scanning of selected channels input  
pins without any idle time  
1d = Fault monitoring repetition rate of 1 ms for selected channels  
input pins scanning  
2d = Fault monitoring repetition rate of 4 ms for selected channels  
input pins scanning  
3d = Fault monitoring repetition rate of 8 ms for selected channels  
input pins scanning  
5-4  
3-2  
RESERVED  
R/W  
11b  
10b  
Reserved bits; Write only reset values  
FAULT_DBNCE_SEL[1:0] R/W  
Debounce count for all the faults (except VBAT_IN short when  
VBAT_IN < MICBIAS).  
0d = 16 counts for debounce to filter-out any false faults detection  
1d = 8 counts for debounce to filter-out any false faults detection  
2d = 4 counts for debounce to filter-out any false faults detection  
3d = No debounce count  
1
0
VSHORT_DBNCE  
DIAG_2X_THRES  
R/W  
R/W  
0b  
0b  
VBAT_IN short debounce count only when VBAT_IN < MICBIAS.  
0d = 16 counts for debounce to filter-out any false faults detection  
1d = 8 counts for debounce to filter-out any false faults detection  
Diagnostic thresholds range scale.  
0d = Thresholds same as configured in P0_R101 and P0_R102  
1d = All the configuration thresholds gets scale by 2 times  
8.6.1.2.86 DIAG_CFG4 Register (Address = 0x68) [Reset = 0x0]  
DIAG_CFG4 is shown in 8-162 and described in 8-138.  
Return to the 8-52.  
This register is configuration register 4 for input fault diagnostics setting.  
8-162. DIAG_CFG4 Register  
7
6
5
4
3
2
1
0
DIAG_MOV_AVG_CFG[1:0]  
MOV_AVG_DIS MOV_AVG_DIS  
_MBIAS_LOAD _TEMP_SENS  
RESERVED  
R-0000b  
R/W-00b  
R/W-0b  
R/W-0b  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-138. DIAG_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DIAG_MOV_AVG_CFG[1: R/W  
0]  
00b  
Moving average configuration.  
0d = Moving average disabled  
1d = Moving average enabled with 0.5 weightage for old scanned  
data and new scanned data  
2d = Moving average enabled with 0.75 weightage for old scanned  
data and 0.25 weightage for new scanned data  
3d = Reserved  
5
MOV_AVG_DIS_MBIAS_L R/W  
OAD  
0b  
Moving average configuration for MICBIAS high and low load current  
fault detection  
0d = Moving average as defined by DIAG_MOV_AVG_CFG setting  
1d = Moving average is forced disabled for MICBIAS load current  
fault detection to achieve faster response time  
4
MOV_AVG_DIS_TEMP_S R/W  
ENS  
0b  
Moving average configuration for over temperature fault detection  
0d = Moving average as defined by DIAG_MOV_AVG_CFG setting  
1d = Moving average is forced disabled for over temperature fault  
detection to achieve faster response time  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset values  
8.6.1.2.87 BOOST_CFG Register (Address = 0x6A) [Reset = 0x0]  
BOOST_CFG is shown in 8-163 and described in 8-139.  
Return to the 8-52.  
This register is configuration register for boost setting.  
8-163. BOOST_CFG Register  
7
6
5
4
3
2
1
0
BOOST_DIS  
R/W-0b  
RESERVED  
R/W-0b  
RESERVED  
R/W-0b  
RESERVED  
R/W-0b  
RESERVED  
R/W-0b  
RESERVED  
R-000b  
8-139. BOOST_CFG Register Field Descriptions  
Bit  
Field  
BOOST_DIS  
Type  
Reset  
Description  
7
R/W  
0b  
Boost Enable/Disable  
0d = Boost is enable  
1d = Boost is disable/bypass  
6
5
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
R/W  
R
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
0b  
4
0b  
3
0b  
2-0  
000b  
Reserved bits; Write only reset values  
8.6.1.2.88 DSP_CFG0 Register (Address = 0x6B) [Reset = 0x1]  
DSP_CFG0 is shown in 8-164 and described in 8-140.  
Return to the 8-52.  
This register is the digital signal processor (DSP) configuration register 0.  
8-164. DSP_CFG0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
DECI_FILT[1:0]  
R/W-00b  
CH_SUM[1:0]  
R/W-00b  
HPF_SEL[1:0]  
R/W-01b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-164. DSP_CFG0 Register (continued)  
8-140. DSP_CFG0 Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
Reset  
Description  
RESERVED  
DECI_FILT[1:0]  
R
00b  
Reserved bits; Write only reset value  
R/W  
00b  
Decimation filter response.  
0d = Linear phase  
1d = Low latency  
2d = Ultra-low latency  
Dont use  
3-2  
1-0  
CH_SUM[1:0]  
HPF_SEL[1:0]  
R/W  
R/W  
00b  
01b  
Channel summation mode for higher SNR  
0d = Channel summation mode is disabled  
1d = 2-channel summation mode is enabled to generate a (CH1 +  
CH2) / 2 and a (CH3 + CH4) / 2 output  
2d = 4-channel summation mode is enabled to generate a (CH1 +  
CH2 + CH3 + CH4) / 4 output  
3d = Reserved  
High-pass filter (HPF) selection.  
0d = Programmable first-order IIR filter for a custom HPF with default  
coefficient values in P4_R72 to P4_R83 set as the all-pass filter  
1d = HPF with a cutoff of 0.00025 x fS (12 Hz at fS = 48 kHz) is  
selected  
2d = HPF with a cutoff of 0.002 x fS (96 Hz at fS = 48 kHz) is selected  
3d = HPF with a cutoff of 0.008 x fS (384 Hz at fS = 48 kHz) is  
selected  
8.6.1.2.89 DSP_CFG1 Register (Address = 0x6C) [Reset = 0x48]  
DSP_CFG1 is shown in 8-165 and described in 8-141.  
Return to the 8-52.  
This register is the digital signal processor (DSP) configuration register 1.  
8-165. DSP_CFG1 Register  
7
6
5
4
3
2
1
0
DVOL_GANG  
BIQUAD_CFG[1:0]  
DISABLE_SOF  
T_STEP  
AGC_SEL  
RESERVED  
RESERVED  
R-00b  
R/W-0b  
R/W-10b  
R/W-0b  
R/W-1b  
R/W-0b  
8-141. DSP_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DVOL_GANG  
R/W  
0b  
DVOL control ganged across channels.  
0d = Each channel has its own DVOL CTRL settings as programmed  
in the CHx_DVOL bits  
1d = All active channels must use the channel 1 DVOL setting  
(CH1_DVOL) irrespective of whether channel 1 is turned on or not  
6-5  
BIQUAD_CFG[1:0]  
R/W  
10b  
Number of biquads per channel configuration.  
0d = No biquads per channel; biquads are all disabled  
1d = 1 biquad per channel  
2d = 2 biquads per channel  
3d = 3 biquads per channel  
4
3
DISABLE_SOFT_STEP  
AGC_SEL  
R/W  
R/W  
0b  
1b  
Soft-stepping disable during DVOL change, mute, and unmute.  
0d = Soft-stepping enabled  
1d = Soft-stepping disabled  
AGC master enable setting.  
0d = Reserved; Write always 1 to this register bit  
1d = AGC selected as configured for each channel using CHx_CFG0  
register  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-141. DSP_CFG1 Register Field Descriptions (continued)  
Bit  
2
Field  
Type  
R/W  
R
Reset  
Description  
RESERVED  
RESERVED  
0b  
Reserved bit; Write only reset value  
Reserved bits; Write only reset value  
1-0  
00b  
8.6.1.2.90 AGC_CFG0 Register (Address = 0x70) [Reset = 0xE7]  
AGC_CFG0 is shown in 8-166 and described in 8-142.  
Return to the 8-52.  
This register is the automatic gain controller (AGC) configuration register 0.  
8-166. AGC_CFG0 Register  
7
6
5
4
3
2
1
0
AGC_LVL[3:0]  
R/W-1110b  
AGC_MAXGAIN[3:0]  
R/W-0111b  
8-142. AGC_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
AGC_LVL[3:0]  
R/W  
1110b  
AGC output signal target level.  
0d = Output signal target level is -6 dB  
1d = Output signal target level is -8 dB  
2d = Output signal target level is -10 dB  
3d to 13d = Output signal target level is as per configuration  
14d = Output signal target level is -34 dB  
15d = Output signal target level is -36 dB  
3-0  
AGC_MAXGAIN[3:0]  
R/W  
0111b  
AGC maximum gain allowed.  
0d = Maximum gain allowed is 3 dB  
1d = Maximum gain allowed is 6 dB  
2d = Maximum gain allowed is 9 dB  
3d to 11d = Maximum gain allowed is as per configuration  
12d = Maximum gain allowed is 39 dB  
13d = Maximum gain allowed is 42 dB  
14d to 15d = Reserved  
8.6.1.2.91 IN_CH_EN Register (Address = 0x73) [Reset = 0xFC]  
IN_CH_EN is shown in 8-167 and described in 8-143.  
Return to the 8-52.  
This register is the input channel enable configuration register.  
8-167. IN_CH_EN Register  
7
6
5
4
3
2
1
0
IN_CH1_EN  
R/W-1b  
IN_CH2_EN  
R/W-1b  
IN_CH3_EN  
R/W-1b  
IN_CH4_EN  
R/W-1b  
IN_CH5_EN  
R/W-1b  
IN_CH6_EN  
R/W-1b  
IN_CH7_EN  
R/W-0b  
IN_CH8_EN  
R/W-0b  
8-143. IN_CH_EN Register Field Descriptions  
Bit  
Field  
IN_CH1_EN  
Type  
Reset  
Description  
7
R/W  
1b  
Input channel 1 enable setting.  
0d = Channel 1 is disabled  
1d = Channel 1 is enabled  
6
IN_CH2_EN  
R/W  
1b  
Input channel 2 enable setting.  
0d = Channel 2 is disabled  
1d = Channel 2 is enabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-143. IN_CH_EN Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
IN_CH3_EN  
R/W  
1b  
Input channel 3 enable setting.  
0d = Channel 3 is disabled  
1d = Channel 3 is enabled  
4
3
2
1
0
IN_CH4_EN  
IN_CH5_EN  
IN_CH6_EN  
IN_CH7_EN  
IN_CH8_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
1b  
1b  
1b  
0b  
0b  
Input channel 4 enable setting.  
0d = Channel 4 is disabled  
1d = Channel 4 is enabled  
Input channel 5 (PDM only) enable setting.  
0d = Channel 5 is disabled  
1d = Channel 5 is enabled  
Input channel 6 (PDM only) enable setting.  
0d = Channel 6 is disabled  
1d = Channel 6 is enabled  
Input channel 7 (PDM only) enable setting.  
0d = Channel 7 is disabled  
1d = Channel 7 is enabled  
Input channel 8 (PDM only) enable setting.  
0d = Channel 8 is disabled  
1d = Channel 8 is enabled  
8.6.1.2.92 ASI_OUT_CH_EN Register (Address = 0x74) [Reset = 0x0]  
ASI_OUT_CH_EN is shown in 8-168 and described in 8-144.  
Return to the 8-52.  
This register is the ASI output channel enable configuration register.  
8-168. ASI_OUT_CH_EN Register  
7
6
5
4
3
2
1
0
ASI_OUT_CH1 ASI_OUT_CH2 ASI_OUT_CH3 ASI_OUT_CH4 ASI_OUT_CH5 ASI_OUT_CH6 ASI_OUT_CH7 ASI_OUT_CH8  
_EN  
_EN  
_EN  
_EN  
_EN  
_EN  
_EN  
_EN  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
8-144. ASI_OUT_CH_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASI_OUT_CH1_EN  
ASI_OUT_CH2_EN  
ASI_OUT_CH3_EN  
ASI_OUT_CH4_EN  
ASI_OUT_CH5_EN  
ASI_OUT_CH6_EN  
ASI_OUT_CH7_EN  
R/W  
0b  
ASI output channel 1 enable setting.  
0d = Channel 1 output slot is in a tri-state condition  
1d = Channel 1 output slot is enabled  
6
5
4
3
2
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
ASI output channel 2 enable setting.  
0d = Channel 2 output slot is in a tri-state condition  
1d = Channel 2 output slot is enabled  
ASI output channel 3 enable setting.  
0d = Channel 3 output slot is in a tri-state condition  
1d = Channel 3 output slot is enabled  
ASI output channel 4 enable setting.  
0d = Channel 4 output slot is in a tri-state condition  
1d = Channel 4 output slot is enabled  
ASI output channel 5 enable setting.  
0d = Channel 5 output slot is in a tri-state condition  
1d = Channel 5 output slot is enabled  
ASI output channel 6 enable setting.  
0d = Channel 6 output slot is in a tri-state condition  
1d = Channel 6 output slot is enabled  
ASI output channel 7 enable setting.  
0d = Channel 7 output slot is in a tri-state condition  
1d = Channel 7 output slot is enabled  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-144. ASI_OUT_CH_EN Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
ASI_OUT_CH8_EN  
R/W  
0b  
ASI output channel 8 enable setting.  
0d = Channel 8 output slot is in a tri-state condition  
1d = Channel 8 output slot is enabled  
8.6.1.2.93 PWR_CFG Register (Address = 0x75) [Reset = 0x0]  
PWR_CFG is shown in 8-169 and described in 8-145.  
Return to the 8-52.  
This register is the power-up configuration register.  
8-169. PWR_CFG Register  
7
6
5
4
3
2
1
0
MICBIAS_PDZ  
ADC_PDZ  
PLL_PDZ  
DYN_CH_PUP  
D_EN  
DYN_MAXCH_SEL[1:0]  
RESERVED  
RESERVED  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-00b  
R/W-0b  
R-0b  
8-145. PWR_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MICBIAS_PDZ  
R/W  
0b  
Power control for MICBIAS.  
0d = Power down MICBIAS  
1d = Power up MICBIAS  
6
5
4
ADC_PDZ  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Power control for ADC and PDM channels.  
0d = Power down all ADC and PDM channels  
1d = Power up all enabled ADC and PDM channels  
PLL_PDZ  
Power control for the PLL.  
0d = Power down the PLL  
1d = Power up the PLL  
DYN_CH_PUPD_EN  
Dynamic channel power-up, power-down enable.  
0d = Channel power-up, power-down is not supported if any channel  
recording is on  
1d = Channel can be powered up or down individually, even if  
channel recording is on. Do not powered-down channel 1 if this bit is  
set to '1'  
3-2  
DYN_MAXCH_SEL[1:0]  
R/W  
00b  
Dynamic mode maximum channel select configuration.  
0d = Channel 1 and channel 2 are used with dynamic channel  
power-up, power-down feature enabled  
1d = Channel 1 to channel 4 are used with dynamic channel power-  
up, power-down feature enabled  
2d = Channel 1 to channel 6 are used with dynamic channel power-  
up, power-down feature enabled  
3d = Channel 1 to channel 8 are used with dynamic channel power-  
up, power-down feature enabled  
1
0
RESERVED  
RESERVED  
R/W  
R
0b  
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
8.6.1.2.94 DEV_STS0 Register (Address = 0x76) [Reset = 0x0]  
DEV_STS0 is shown in 8-170 and described in 8-146.  
Return to the 8-52.  
This register is the device status value register 0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-170. DEV_STS0 Register  
7
6
5
4
3
2
1
0
CH1_STATUS CH2_STATUS CH3_STATUS CH4_STATUS CH5_STATUS CH6_STATUS CH7_STATUS CH8_STATUS  
R-0b R-0b R-0b R-0b R-0b R-0b R-0b R-0b  
8-146. DEV_STS0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
CH1_STATUS  
CH2_STATUS  
CH3_STATUS  
CH4_STATUS  
CH5_STATUS  
CH6_STATUS  
CH7_STATUS  
CH8_STATUS  
R
0b  
ADC channel 1 power status.  
0d = ADC channel is powered down  
1d = ADC channel is powered up  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
ADC channel 2 power status.  
0d = ADC channel is powered down  
1d = ADC channel is powered up  
ADC channel 3 power status.  
0d = ADC channel is powered down  
1d = ADC channel is powered up  
ADC channel 4 power status.  
0d = ADC channel is powered down  
1d = ADC channel is powered up  
ADC channel 5 power status.  
0d = ADC channel is powered down  
1d = ADC channel is powered up  
ADC channel 6 power status.  
0d = ADC channel is powered down  
1d = ADC channel is powered up  
PDM channel 7 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
PDM channel 8 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
8.6.1.2.95 DEV_STS1 Register (Address = 0x77) [Reset = 0x80]  
DEV_STS1 is shown in 8-171 and described in 8-147.  
Return to the 8-52.  
This register is the device status value register 1.  
8-171. DEV_STS1 Register  
7
6
5
4
3
2
1
0
MODE_STS[2:0]  
BOOST_STS  
MBIAS_STS  
CHx_PD_FLT_ ALL_CHx_PD_ MAN_RCV_PD  
STS  
FLT_STS  
R-0b  
_FLT_CHK  
R/W-0b  
R-100b  
R-0b  
R-0b  
R-0b  
8-147. DEV_STS1 Register Field Descriptions  
Bit  
7-5  
Field  
Type  
Reset  
Description  
MODE_STS[2:0]  
R
100b  
Device mode status.  
4d = Device is in sleep mode or software shutdown mode  
6d = Device is in active mode with all ADC or PDM channels turned  
off  
7d = Device is in active mode with at least one ADC or PDM channel  
turned on  
4
BOOST_STS  
R
0b  
Boost power up status.  
0d = Boost is powered down  
1d = Boost is powered up  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-147. DEV_STS1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
MBIAS_STS  
R
0b  
MICBIAS power up status.  
0d = MICBIAS is powered down  
1d = MICBIAS is powered up  
2
CHx_PD_FLT_STS  
R
R
0b  
ADC channel power down status caused by INxx inputs faults.  
0d = No ADC channel is powered down caused by INxx inputs faults  
1d = Atleast a ADC channel is powered down caused by INxx inputs  
faults  
1
0
ALL_CHx_PD_FLT_STS  
0b  
0b  
ADC channel power down status caused by MICBIAS faults.  
0d = No ADC channel is powered down caused by MICBIAS faults  
1d = All ADC channels are powered down caused by MICBIAS faults  
MAN_RCV_PD_FLT_CHK R/W  
Manual recovery (self-clearing bit).  
0d = No effect  
1d = Recheck all fault status and re-powerup ADC channels and/or  
MICBIAS if they do not have any faults. Before setting this bit, reset  
P0_R58 register and re-configure P0_R58 to desired setting only  
after manual recover gets over.  
8.6.1.2.96 I2C_CKSUM Register (Address = 0x7E) [Reset = 0x0]  
I2C_CKSUM is shown in 8-172 and described in 8-148.  
Return to the 8-52.  
This register returns the I2C transactions checksum value  
8-172. I2C_CKSUM Register  
7
6
5
4
3
2
1
0
I2C_CKSUM[7:0]  
R/W-00000000b  
8-148. I2C_CKSUM Register Field Descriptions  
Bit  
7-0  
Field  
I2C_CKSUM[7:0]  
Type  
Reset  
Description  
R/W  
00000000b These bits return the I2C transactions checksum value. Writing to this  
register resets the checksum to the written value. This register is  
updated on writes to other registers on all pages.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.1.3 Page 1 Registers  
8-149 lists the memory-mapped registers for the Page 1 registers. All register offset addresses not listed in 表  
8-149 should be considered as reserved locations and the register contents should not be modified.  
8-149. PAGE 1 Registers  
Address  
0x0  
Acronym  
Register Name  
Reset Value  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x40  
0x00  
0x00  
0x00  
0x00  
0x01  
0x00  
0x02  
0x00  
0x03  
0x00  
0x04  
0x00  
0x05  
0x00  
0x06  
0x00  
0x07  
0x00  
0x08  
0x00  
0x09  
0x00  
0x0E  
Section  
PAGE_CFG  
Device page register  
8.6.1.3.1  
8.6.1.3.2  
8.6.1.3.3  
8.6.1.3.4  
8.6.1.3.5  
8.6.1.3.6  
8.6.1.3.7  
8.6.1.3.8  
8.6.1.3.9  
8.6.1.3.10  
8.6.1.3.11  
8.6.1.3.12  
8.6.1.3.13  
8.6.1.3.14  
8.6.1.3.15  
8.6.1.3.16  
8.6.1.3.17  
8.6.1.3.18  
8.6.1.3.19  
8.6.1.3.20  
8.6.1.3.21  
8.6.1.3.22  
8.6.1.3.23  
8.6.1.3.24  
8.6.1.3.25  
8.6.1.3.26  
8.6.1.3.27  
8.6.1.3.28  
8.6.1.3.29  
8.6.1.3.30  
8.6.1.3.31  
8.6.1.3.32  
8.6.1.3.33  
8.6.1.3.34  
8.6.1.3.35  
8.6.1.3.36  
8.6.1.3.37  
0x16  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x35  
0x37  
0x55  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x76  
0x77  
0x78  
0x79  
0x7E  
MBIAS_LOAD  
INT_LIVE0  
MICBIAS internal load sink configuration register  
Live interrupt readback register 0  
CHx_LIVE  
Channel diagnostic summary live status register  
Channel 1 diagnostic live status register  
Channel 2 diagnostic live status register  
Channel 3 diagnostic live status register  
Channel 4 diagnostic live status register  
Live interrupt readback register 1  
CH1_LIVE  
CH2_LIVE  
CH3_LIVE  
CH4_LIVE  
INT_LIVE1  
INT_LIVE3  
Live interrupt readback register 3  
MBIAS_OV_CFG  
DIAGDATA_CFG  
DIAG_MON_MSB_VBAT  
DIAG_MON_LSB_VBAT  
MICBIAS overvoltage threshold register  
Diagnostic data configuration register  
Diagnostic VBAT_IN data MSB byte register  
Diagnostic VBAT_IN data LSB nibble register  
DIAG_MON_MSB_MBIAS Diagnostic MICBIAS data MSB byte register  
DIAG_MON_LSB_MBIAS  
DIAG_MON_MSB_IN1P  
DIAG_MON_LSB_IN1P  
DIAG_MON_MSB_IN1M  
DIAG_MON_LSB_IN1M  
DIAG_MON_MSB_IN2P  
DIAG_MON_LSB_IN2P  
DIAG_MON_MSB_IN2M  
DIAG_MON_LSB_IN2M  
DIAG_MON_MSB_IN3P  
DIAG_MON_LSB_IN3P  
DIAG_MON_MSB_IN3M  
DIAG_MON_LSB_IN3M  
DIAG_MON_MSB_IN4P  
DIAG_MON_LSB_IN4P  
DIAG_MON_MSB_IN4M  
DIAG_MON_LSB_IN4M  
DIAG_MON_MSB_TEMP  
DIAG_MON_LSB_TEMP  
DIAG_MON_MSB_LOAD  
DIAG_MON_LSB_LOAD  
REV_ID  
Diagnostic MICBIAS data LSB nibble register  
Diagnostic IN1P data MSB byte register  
Diagnostic IN1P data LSB nibble register  
Diagnostic IN1M data MSB byte register  
Diagnostic IN1M data LSB nibble register  
Diagnostic IN2P data MSB byte register  
Diagnostic IN2P data LSB nibble register  
Diagnostic IN2M data MSB byte register  
Diagnostic IN2M data LSB nibble register  
Diagnostic IN3P data MSB byte register  
Diagnostic IN3P data LSB nibble register  
Diagnostic IN3M data MSB byte register  
Diagnostic IN3M data LSB nibble register  
Diagnostic IN4P data MSB byte register  
Diagnostic IN4P data LSB nibble register  
Diagnostic IN4M data MSB byte register  
Diagnostic IN4M data LSB nibble register  
Diagnostic temperature data MSB byte register  
Diagnostic temperature data LSB nibble register  
Diagnostic MICBIAS load current data MSB byte register 0x00  
Diagnostic MICBIAS load current data LSB nibble register 0x0F  
Silicon revision ID register  
0x20  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.1.3.1 PAGE_CFG Register (Address = 0x0) [Reset = 0x0]  
PAGE_CFG is shown in 8-173 and described in 8-150.  
Return to the 8-149.  
The device memory map is divided into pages. This register sets the page.  
8-173. PAGE_CFG Register  
7
6
5
4
3
2
1
0
PAGE[7:0]  
R/W-00000000b  
8-150. PAGE_CFG Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
PAGE[7:0]  
R/W  
00000000b These bits set the device page.  
0d = Page 0  
1d = Page 1  
255d = Page 255  
8.6.1.3.2 MBIAS_LOAD Register (Address = 0x16) [Reset = 0x0]  
MBIAS_LOAD is shown in 8-174 and described in 8-151.  
Return to the 8-149.  
This register is the MICBIAS internal load sink configuration register.  
8-174. MBIAS_LOAD Register  
7
6
5
4
3
2
1
0
MICBIAS_INT_  
LOAD_SINK_E  
N
MICBIAS_INT_LOAD_SINK_VAL[2:0]  
RESERVED  
R-0000b  
R/W-0b  
R/W-000b  
8-151. MBIAS_LOAD Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MICBIAS_INT_LOAD_SIN R/W  
K_EN  
0b  
MICBIAS internal load sink setting.  
0d = MICBIAS internal load sink is enabled with setting automatically  
calculated based on device configuration  
1d = MICBIAS internal load sink is enabled based on D6-4 register  
bits; This setting must be used for single-ended AC-coupled input to  
support high signal swing  
6-4  
MICBIAS_INT_LOAD_SIN R/W  
K_VAL[2:0]  
000b  
MICBIAS internal load sink current value.  
0d = MICBIAS internal load sink current is set to 0 mA (typ)  
1d = MICBIAS internal load sink current is set to 4.3 mA (typ)  
2d = MICBIAS internal load sink current is set to 8.6 mA (typ)  
3d = MICBIAS internal load sink current is set to 12.9 mA (typ)  
4d = MICBIAS internal load sink current is set to 17.2 mA (typ)  
5d = MICBIAS internal load sink current is set to 21.5 mA (typ)  
6d = MICBIAS internal load sink current is set to 25.8 mA (typ)  
7d = MICBIAS internal load sink current is set to 30.1 mA (typ)  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset values  
8.6.1.3.3 INT_LIVE0 Register (Address = 0x2C) [Reset = 0x0]  
INT_LIVE0 is shown in 8-175 and described in 8-152.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
Return to the 8-149.  
This register is the live Interrupt readback register 0.  
8-175. INT_LIVE0 Register  
7
6
5
4
3
2
1
0
INT_LIVE0  
R-0b  
INT_LIVE0  
R-0b  
INT_LIVE0  
R-0b  
INT_LIVE0  
R-0b  
RESERVED  
R-0b  
RESERVED  
R-0b  
RESERVED  
R-0b  
RESERVED  
R-0b  
8-152. INT_LIVE0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LIVE0  
INT_LIVE0  
INT_LIVE0  
INT_LIVE0  
R
0b  
Fault status for an ASI bus clock error.  
0d = No fault detected  
1d = Fault detected  
6
5
4
R
R
R
0b  
0b  
0b  
Status of PLL lock.  
0d = No PLL lock detected  
1d = PLL lock detected  
Fault status for boost or MICBIAS over temperature.  
0d = No fault detected  
1d = Fault detected  
Fault status for boost or MICBIAS over current.  
0d = No fault detected  
1d = Fault detected  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
0b  
0b  
0b  
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
8.6.1.3.4 CHx_LIVE Register (Address = 0x2D) [Reset = 0x0]  
CHx_LIVE is shown in 8-176 and described in 8-153.  
Return to the 8-149.  
This register is the live Interrupt status register for channel level diagnostic summary.  
8-176. CHx_LIVE Register  
7
6
5
4
3
2
1
0
STS_CHx_LIVE STS_CHx_LIVE STS_CHx_LIVE STS_CHx_LIVE RESERVED  
R-0b R-0b R-0b R-0b R-0b  
RESERVED STS_CHx_LIVE RESERVED  
R-0b R-0b R-0b  
8-153. CHx_LIVE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
STS_CHx_LIVE  
STS_CHx_LIVE  
STS_CHx_LIVE  
STS_CHx_LIVE  
RESERVED  
R
0b  
Status of CH1_LIVE.  
0d = No faults occurred in channel 1  
1d = Atleast a fault has occurred in channel 1  
R
R
R
R
0b  
0b  
0b  
0b  
Status of CH2_LIVE.  
0d = No faults occurred in channel 2  
1d = Atleast a fault has occurred in channel 2  
Status of CH3_LIVE.  
0d = No faults occurred in channel 3  
1d = Atleast a fault has occurred in channel 3  
Status of CH4_LIVE.  
0d = No faults occurred in channel 4  
1d = Atleast a fault has occurred in channel 4  
Reserved bit; Write only reset value  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-153. CHx_LIVE Register Field Descriptions (continued)  
Bit  
2
Field  
Type  
Reset  
Description  
RESERVED  
R
0b  
Reserved bit; Write only reset value  
1
STS_CHx_LIVE  
R
0b  
Status of short to VBAT_IN fault detected when VBAT_IN is less than  
MICBIAS.  
0d = Short to VBAT_IN fault when VBAT_IN is less than MICBIAS  
has not occurred in any channel  
1d = Short to VBAT_IN fault when VBAT_IN is less than MICBIAS  
has occurred in atleast one channel  
0
RESERVED  
R
0b  
Reserved bit; Write only reset value  
8.6.1.3.5 CH1_LIVE Register (Address = 0x2E) [Reset = 0x0]  
CH1_LIVE is shown in 8-177 and described in 8-154.  
Return to the 8-149.  
This register is the live Interrupt status register for channel 1 fault diagnostic  
8-177. CH1_LIVE Register  
7
6
5
4
3
2
1
0
CH1_LIVE  
R-0b  
CH1_LIVE  
R-0b  
CH1_LIVE  
R-0b  
CH1_LIVE  
R-0b  
CH1_LIVE  
R-0b  
CH1_LIVE  
R-0b  
CH1_LIVE  
R-0b  
CH1_LIVE  
R-0b  
8-154. CH1_LIVE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1_LIVE  
CH1_LIVE  
CH1_LIVE  
CH1_LIVE  
CH1_LIVE  
CH1_LIVE  
CH1_LIVE  
CH1_LIVE  
R
0b  
Channel 1 open input fault status.  
0d = No open input detected  
1d = Open input detected  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Channel 1 input pair short fault status.  
0d = No input pair short detected  
1d = Input short to each other detected  
Channel 1 IN1P short to ground fault status.  
0d = IN1P no short to ground detected  
1d = IN1P short to ground detected  
Channel 1 IN1M short to ground fault status.  
0d = IN1M no short to ground detected  
1d = IN1M short to ground detected  
Channel 1 IN1P short to MICBIAS fault status.  
0d = IN1P no short to MICBIAS detected  
1d = IN1P short to MICBIAS detected  
Channel 1 IN1M short to MICBIAS fault status.  
0d = IN1M no short to MICBIAS detected  
1d = IN1M short to MICBIAS detected  
Channel 1 IN1P short to VBAT_IN fault status.  
0d = IN1P no short to VBAT_IN detected  
1d = IN1P short to VBAT_IN detected  
Channel 1 IN1M short to VBAT_IN fault status.  
0d = IN1M no short to VBAT_IN detected  
1d = IN1M short to VBAT_IN detected  
8.6.1.3.6 CH2_LIVE Register (Address = 0x2F) [Reset = 0x0]  
CH2_LIVE is shown in 8-178 and described in 8-155.  
Return to the 8-149.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: PCM6480-Q1  
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
This register is the live Interrupt status register for channel 2 fault diagnostic.  
8-178. CH2_LIVE Register  
7
6
5
4
3
2
1
0
CH2_LIVE  
R-0b  
CH2_LIVE  
R-0b  
CH2_LIVE  
R-0b  
CH2_LIVE  
R-0b  
CH2_LIVE  
R-0b  
CH2_LIVE  
R-0b  
CH2_LIVE  
R-0b  
CH2_LIVE  
R-0b  
8-155. CH2_LIVE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH2_LIVE  
CH2_LIVE  
CH2_LIVE  
CH2_LIVE  
CH2_LIVE  
CH2_LIVE  
CH2_LIVE  
CH2_LIVE  
R
0b  
Channel 2 open input fault status.  
0d = No open input detected  
1d = Open input detected  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Channel 2 input pair short fault status.  
0d = No input pair short detected  
1d = Input short to each other detected  
Channel 2 IN2P short to ground fault status.  
0d = IN2P no short to ground detected  
1d = IN2P short to ground detected  
Channel 2 IN2M short to ground fault status.  
0d = IN2M no short to ground detected  
1d = IN2M short to ground detected  
Channel 2 IN2P short to MICBIAS fault status.  
0d = IN2P no short to MICBIAS detected  
1d = IN2P short to MICBIAS detected  
Channel 2 IN2M short to MICBIAS fault status.  
0d = IN2M no short to MICBIAS detected  
1d = IN2M short to MICBIAS detected  
Channel 2 IN2P short to VBAT_IN fault status.  
0d = IN2P no short to VBAT_IN detected  
1d = IN2P short to VBAT_IN detected  
Channel 2 IN2M short to VBAT_IN fault status.  
0d = IN2M no short to VBAT_IN detected  
1d = IN2M short to VBAT_IN detected  
8.6.1.3.7 CH3_LIVE Register (Address = 0x30) [Reset = 0x0]  
CH3_LIVE is shown in 8-179 and described in 8-156.  
Return to the 8-149.  
This register is the live Interrupt status register for channel3 fault diagnostic  
8-179. CH3_LIVE Register  
7
6
5
4
3
2
1
0
CH3_LIVE  
R-0b  
CH3_LIVE  
R-0b  
CH3_LIVE  
R-0b  
CH3_LIVE  
R-0b  
CH3_LIVE  
R-0b  
CH3_LIVE  
R-0b  
CH3_LIVE  
R-0b  
CH3_LIVE  
R-0b  
8-156. CH3_LIVE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH3_LIVE  
R
0b  
Channel 3 open input fault status.  
0d = No open input detected  
1d = Open input detected  
6
CH3_LIVE  
R
0b  
Channel 3 input pair short fault status.  
0d = No input pair short detected  
1d = Input short to each other detected  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-156. CH3_LIVE Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
CH3_LIVE  
CH3_LIVE  
CH3_LIVE  
CH3_LIVE  
CH3_LIVE  
CH3_LIVE  
R
0b  
Channel 3 IN3P short to ground fault status.  
0d = IN3P no short to ground detected  
1d = IN3P short to ground detected  
4
3
2
1
0
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
Channel 3 IN3M short to ground fault status.  
0d = IN3M no short to ground detected  
1d = IN3M short to ground detected  
Channel 3 IN3P short to MICBIAS fault status.  
0d = IN3P no short to MICBIAS detected  
1d = IN3P short to MICBIAS detected  
Channel 3 IN3M short to MICBIAS fault status.  
0d = IN3M no short to MICBIAS detected  
1d = IN3M short to MICBIAS detected  
Channel 3 IN3P short to VBAT_IN fault status.  
0d = IN3P no short to VBAT_IN detected  
1d = IN3P short to VBAT_IN detected  
Channel 3 IN3M short to VBAT_IN fault status.  
0d = IN3M no short to VBAT_IN detected  
1d = IN3M short to VBAT_IN detected  
8.6.1.3.8 CH4_LIVE Register (Address = 0x31) [Reset = 0x0]  
CH4_LIVE is shown in 8-180 and described in 8-157.  
Return to the 8-149.  
This register is the live Interrupt status register for channel 4 fault diagnostic.  
8-180. CH4_LIVE Register  
7
6
5
4
3
2
1
0
CH4_LIVE  
R-0b  
CH4_LIVE  
R-0b  
CH4_LIVE  
R-0b  
CH4_LIVE  
R-0b  
CH4_LIVE  
R-0b  
CH4_LIVE  
R-0b  
CH4_LIVE  
R-0b  
CH4_LIVE  
R-0b  
8-157. CH4_LIVE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH4_LIVE  
CH4_LIVE  
CH4_LIVE  
CH4_LIVE  
CH4_LIVE  
CH4_LIVE  
CH4_LIVE  
R
0b  
Channel 4 open input fault status.  
0d = No open input detected  
1d = Open input detected  
6
5
4
3
2
1
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
Channel 4 input pair short fault status.  
0d = No input pair short detected  
1d = Input short to each other detected  
Channel 4 IN4P short to ground fault status.  
0d = IN4P no short to ground detected  
1d = IN4P short to ground detected  
Channel 4 IN4M short to ground fault status.  
0d = IN4M no short to ground detected  
1d = IN4M short to ground detected  
Channel 4 IN4P short to MICBIAS fault status.  
0d = IN4P no short to MICBIAS detected  
1d = IN4P short to MICBIAS detected  
Channel 4 IN4M short to MICBIAS fault status.  
0d = IN4M no short to MICBIAS detected  
1d = IN4M short to MICBIAS detected  
Channel 4 IN4P short to VBAT_IN fault status.  
0d = IN4P no short to VBAT_IN detected  
1d = IN4P short to VBAT_IN detected  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-157. CH4_LIVE Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
CH4_LIVE  
R
0b  
Channel 4 IN4M short to VBAT_IN fault status.  
0d = IN4M no short to VBAT_IN detected  
1d = IN4M short to VBAT_IN detected  
8.6.1.3.9 INT_LIVE1 Register (Address = 0x35) [Reset = 0x0]  
INT_LIVE1 is shown in 8-181 and described in 8-158.  
Return to the 8-149.  
This register is the live Interrupt readback register 1.  
8-181. INT_LIVE1 Register  
7
6
5
4
3
2
1
0
INT_LIVE1  
R-0b  
INT_LIVE1  
R-0b  
INT_LIVE1  
R-0b  
INT_LIVE1  
R-0b  
RESERVED  
R-0b  
RESERVED  
R-0b  
RESERVED  
R-00b  
8-158. INT_LIVE1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LIVE1  
INT_LIVE1  
INT_LIVE1  
INT_LIVE1  
R
0b  
Channel 1 IN1P over voltage fault status.  
0d = No IN1P over voltage fault detected  
1d = IN1P over voltage fault has detected  
6
5
4
R
R
R
0b  
0b  
0b  
Channel 2 IN2P over voltage fault status.  
0d = No IN2P over voltage fault detected  
1d = IN2P over voltage fault has detected  
Channel 3 IN3P over voltage fault status.  
0d = No IN3P over voltage fault detected  
1d = IN3P over voltage fault has detected  
Channel 4 IN4P over voltage fault status.  
0d = No IN4P over voltage fault detected  
1d = IN4P over voltage fault has detected  
3
2
RESERVED  
RESERVED  
RESERVED  
R
R
R
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bits; Write only reset value  
0b  
1-0  
00b  
8.6.1.3.10 INT_LIVE3 Register (Address = 0x37) [Reset = 0x0]  
INT_LIVE3 is shown in 8-182 and described in 8-159.  
Return to the 8-149.  
This register is the live Interrupt readback register 3.  
8-182. INT_LIVE3 Register  
7
6
5
4
3
2
1
0
INT_LIVE3  
R-0b  
INT_LIVE3  
R-0b  
INT_LIVE3  
R-0b  
RESERVED  
R-00000b  
8-159. INT_LIVE3 Register Field Descriptions  
Bit  
Field  
INT_LIVE3  
Type  
Reset  
Description  
7
R
0b  
Fault status for MICBIAS high current.  
0d = No fault detected  
1d = Fault detected  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-159. INT_LIVE3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
INT_LIVE3  
INT_LIVE3  
RESERVED  
R
0b  
Fault status for MICBIAS low current.  
0d = No fault detected  
1d = Fault detected  
5
R
R
0b  
Fault status for MICBIAS over voltage.  
0d = No fault detected  
1d = Fault detected  
4-0  
00000b  
Reserved bits; Write only reset value  
8.6.1.3.11 MBIAS_OV_CFG Register (Address = 0x55) [Reset = 0x40]  
MBIAS_OV_CFG is shown in 8-183 and described in 8-160.  
Return to the 8-149.  
This register is the MICBIAS overvoltage configuration register.  
8-183. MBIAS_OV_CFG Register  
7
6
5
4
3
2
1
0
MBIAS_OV_THRES[2:0]  
R/W-010b  
RESERVED  
R-00000b  
8-160. MBIAS_OV_CFG Register Field Descriptions  
Bit  
7-5  
Field  
Type  
Reset  
Description  
MBIAS_OV_THRES[2:0] R/W  
010b  
MICBIAS overvoltage fault detection threshold above MICBIAS  
programmed voltage.  
0d = No threshold over programmed voltage  
1d = 10mV (typ) threshold over programmed voltage  
2d = 40mV (typ) threshold over programmed voltage (default)  
3d to 6d = Threshold value is set as per configuration with step size  
of 30mV (typ)  
7d = 190mV (typ) threshold over programmed voltage (default)  
4-0  
RESERVED  
R
00000b  
Reserved bits; Write only reset value  
8.6.1.3.12 DIAGDATA_CFG Register (Address = 0x59) [Reset = 0x0]  
DIAGDATA_CFG is shown in 8-184 and described in 8-161.  
Return to the 8-149.  
This register is the diagnostic data configuration register.  
8-184. DIAGDATA_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000b  
RESERVED  
HOLD_SAR_D  
ATA  
R-000b  
R/W-0b  
8-161. DIAGDATA_CFG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
0000b  
000b  
Description  
7-4  
3-1  
RESERVED  
RESERVED  
Reserved bits; Write only reset values  
Reserved bits; Write only reset values  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-161. DIAGDATA_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
HOLD_SAR_DATA  
R/W  
0b  
Hold SAR data update during register readback.  
0d = Data update is not held, data register is continuously updated;  
this setting must be used when moving average is enabled for fault  
detection  
1d = Data update is held, data register readback can be done  
8.6.1.3.13 DIAG_MON_MSB_VBAT Register (Address = 0x5A) [Reset = 0x0]  
DIAG_MON_MSB_VBAT is shown in 8-185 and described in 8-162.  
Return to the 8-149.  
This register is the MSB data byte of VBAT_IN monitoring.  
8-185. DIAG_MON_MSB_VBAT Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_VBAT[7:0]  
R-00000000b  
8-162. DIAG_MON_MSB_VBAT Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DIAG_MON_MSB_VBAT[  
7:0]  
R
00000000b Diagnostic SAR monitor data MSB byte.  
8.6.1.3.14 DIAG_MON_LSB_VBAT Register (Address = 0x5B) [Reset = 0x0]  
DIAG_MON_LSB_VBAT is shown in 8-186 and described in 8-163.  
Return to the 8-149.  
This register is the LSB data nibble of VBAT_IN monitoring.  
8-186. DIAG_MON_LSB_VBAT Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_VBAT[3:0]  
R-0000b  
CHANNEL_ID[3:0]  
R-0000b  
8-163. DIAG_MON_LSB_VBAT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_VBAT[3  
:0]  
R
0000b  
Diagnostic SAR monitor data LSB nibble.  
3-0  
CHANNEL_ID[3:0]  
R
0000b  
Channel ID value.  
8.6.1.3.15 DIAG_MON_MSB_MBIAS Register (Address = 0x5C) [Reset = 0x0]  
DIAG_MON_MSB_MBIAS is shown in 8-187 and described in 8-164.  
Return to the 8-149.  
This register is the MSB data byte of MICBIAS monitoring.  
8-187. DIAG_MON_MSB_MBIAS Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_MBIAS[7:0]  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-187. DIAG_MON_MSB_MBIAS Register (continued)  
R-00000000b  
8-164. DIAG_MON_MSB_MBIAS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_MBIA  
S[7:0]  
R
00000000b Diagnostic SAR monitor data MSB byte.  
8.6.1.3.16 DIAG_MON_LSB_MBIAS Register (Address = 0x5D) [Reset = 0x1]  
DIAG_MON_LSB_MBIAS is shown in 8-188 and described in 8-165.  
Return to the 8-149.  
This register is the LSB data nibble of MICBIAS monitoring.  
8-188. DIAG_MON_LSB_MBIAS Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_MBIAS[3:0]  
R-0000b  
CHANNEL_ID[3:0]  
R-0001b  
8-165. DIAG_MON_LSB_MBIAS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_MBIAS[ R  
3:0]  
0000b  
Diagnostic SAR monitor data LSB nibble.  
3-0  
CHANNEL_ID[3:0]  
R
0001b  
Channel ID value.  
8.6.1.3.17 DIAG_MON_MSB_IN1P Register (Address = 0x5E) [Reset = 0x0]  
DIAG_MON_MSB_IN1P is shown in 8-189 and described in 8-166.  
Return to the 8-149.  
This register is the MSB data byte of IN1P monitoring.  
8-189. DIAG_MON_MSB_IN1P Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH1P[7:0]  
R-00000000b  
8-166. DIAG_MON_MSB_IN1P Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DIAG_MON_MSB_CH1P[  
7:0]  
R
00000000b Diagnostic SAR monitor data MSB byte.  
8.6.1.3.18 DIAG_MON_LSB_IN1P Register (Address = 0x5F) [Reset = 0x2]  
DIAG_MON_LSB_IN1P is shown in 8-190 and described in 8-167.  
Return to the 8-149.  
This register is the LSB data nibble of IN1P monitoring.  
8-190. DIAG_MON_LSB_IN1P Register  
7
6
5
4
3
2
1
0
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-190. DIAG_MON_LSB_IN1P Register (continued)  
DIAG_MON_LSB_CH1P[3:0]  
CHANNEL_ID[3:0]  
R-0000b  
R-0010b  
8-167. DIAG_MON_LSB_IN1P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH1P[3 R  
:0]  
0000b  
Diagnostic SAR monitor data LSB nibble.  
3-0  
CHANNEL_ID[3:0]  
R
0010b  
Channel ID value.  
8.6.1.3.19 DIAG_MON_MSB_IN1M Register (Address = 0x60) [Reset = 0x0]  
DIAG_MON_MSB_IN1M is shown in 8-191 and described in 8-168.  
Return to the 8-149.  
This register is the MSB data byte of IN1M monitoring.  
8-191. DIAG_MON_MSB_IN1M Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH1N[7:0]  
R-00000000b  
8-168. DIAG_MON_MSB_IN1M Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DIAG_MON_MSB_CH1N[  
7:0]  
R
00000000b Diagnostic SAR monitor data MSB byte.  
8.6.1.3.20 DIAG_MON_LSB_IN1M Register (Address = 0x61) [Reset = 0x3]  
DIAG_MON_LSB_IN1M is shown in 8-192 and described in 8-169.  
Return to the 8-149.  
This register is the LSB data nibble of IN1M monitoring.  
8-192. DIAG_MON_LSB_IN1M Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH1N[3:0]  
R-0000b  
CHANNEL_ID[3:0]  
R-0011b  
8-169. DIAG_MON_LSB_IN1M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH1N[3 R  
:0]  
0000b  
Diagnostic SAR monitor data LSB nibble.  
3-0  
CHANNEL_ID[3:0]  
R
0011b  
Channel ID value.  
8.6.1.3.21 DIAG_MON_MSB_IN2P Register (Address = 0x62) [Reset = 0x0]  
DIAG_MON_MSB_IN2P is shown in 8-193 and described in 8-170.  
Return to the 8-149.  
This register is the MSB data byte of IN2P monitoring.  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-193. DIAG_MON_MSB_IN2P Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH2P[7:0]  
R-00000000b  
8-170. DIAG_MON_MSB_IN2P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIAG_MON_MSB_CH2P[  
7:0]  
R
00000000b Diagnostic SAR monitor data MSB byte.  
8.6.1.3.22 DIAG_MON_LSB_IN2P Register (Address = 0x63) [Reset = 0x4]  
DIAG_MON_LSB_IN2P is shown in 8-194 and described in 8-171.  
Return to the 8-149.  
This register is the LSB data nibble of IN2P monitoring.  
8-194. DIAG_MON_LSB_IN2P Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH2P[3:0]  
R-0000b  
CHANNEL_ID[3:0]  
R-0100b  
8-171. DIAG_MON_LSB_IN2P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH2P[3 R  
:0]  
0000b  
Diagnostic SAR monitor data LSB nibble.  
3-0  
CHANNEL_ID[3:0]  
R
0100b  
Channel ID value.  
8.6.1.3.23 DIAG_MON_MSB_IN2M Register (Address = 0x64) [Reset = 0x0]  
DIAG_MON_MSB_IN2M is shown in 8-195 and described in 8-172.  
Return to the 8-149.  
This register is the MSB data byte of IN2M monitoring.  
8-195. DIAG_MON_MSB_IN2M Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH2N[7:0]  
R-00000000b  
8-172. DIAG_MON_MSB_IN2M Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DIAG_MON_MSB_CH2N[  
7:0]  
R
00000000b Diagnostic SAR monitor data MSB byte.  
8.6.1.3.24 DIAG_MON_LSB_IN2M Register (Address = 0x65) [Reset = 0x5]  
DIAG_MON_LSB_IN2M is shown in 8-196 and described in 8-173.  
Return to the 8-149.  
This register is the LSB data nibble of IN2M monitoring.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-196. DIAG_MON_LSB_IN2M Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH2N[3:0]  
R-0000b  
CHANNEL_ID[3:0]  
R-0101b  
8-173. DIAG_MON_LSB_IN2M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH2N[3 R  
:0]  
0000b  
Diagnostic SAR monitor data LSB nibble.  
3-0  
CHANNEL_ID[3:0]  
R
0101b  
Channel ID value.  
8.6.1.3.25 DIAG_MON_MSB_IN3P Register (Address = 0x66) [Reset = 0x0]  
DIAG_MON_MSB_IN3P is shown in 8-197 and described in 8-174.  
Return to the 8-149.  
This register is the MSB data byte of IN3P monitoring.  
8-197. DIAG_MON_MSB_IN3P Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH3P[7:0]  
R-00000000b  
8-174. DIAG_MON_MSB_IN3P Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DIAG_MON_MSB_CH3P[  
7:0]  
R
00000000b Diagnostic SAR monitor data MSB byte.  
8.6.1.3.26 DIAG_MON_LSB_IN3P Register (Address = 0x67) [Reset = 0x6]  
DIAG_MON_LSB_IN3P is shown in 8-198 and described in 8-175.  
Return to the 8-149.  
This register is the LSB data nibble of IN3P monitoring.  
8-198. DIAG_MON_LSB_IN3P Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH3P[3:0]  
R-0000b  
CHANNEL_ID[3:0]  
R-0110b  
8-175. DIAG_MON_LSB_IN3P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH3P[3 R  
:0]  
0000b  
Diagnostic SAR monitor data LSB nibble.  
3-0  
CHANNEL_ID[3:0]  
R
0110b  
Channel ID value.  
8.6.1.3.27 DIAG_MON_MSB_IN3M Register (Address = 0x68) [Reset = 0x0]  
DIAG_MON_MSB_IN3M is shown in 8-199 and described in 8-176.  
Return to the 8-149.  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
This register is the MSB data byte of IN3M monitoring.  
8-199. DIAG_MON_MSB_IN3M Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH3N[7:0]  
R-00000000b  
8-176. DIAG_MON_MSB_IN3M Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DIAG_MON_MSB_CH3N[  
7:0]  
R
00000000b Diagnostic SAR monitor data MSB byte.  
8.6.1.3.28 DIAG_MON_LSB_IN3M Register (Address = 0x69) [Reset = 0x7]  
DIAG_MON_LSB_IN3M is shown in 8-200 and described in 8-177.  
Return to the 8-149.  
This register is the LSB data nibble of IN3M monitoring.  
8-200. DIAG_MON_LSB_IN3M Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH3N[3:0]  
R-0000b  
CHANNEL_ID[3:0]  
R-0111b  
8-177. DIAG_MON_LSB_IN3M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH3N[3 R  
:0]  
0000b  
Diagnostic SAR monitor data LSB nibble.  
3-0  
CHANNEL_ID[3:0]  
R
0111b  
Channel ID value.  
8.6.1.3.29 DIAG_MON_MSB_IN4P Register (Address = 0x6A) [Reset = 0x0]  
DIAG_MON_MSB_IN4P is shown in 8-201 and described in 8-178.  
Return to the 8-149.  
This register is the MSB data byte of IN4P monitoring.  
8-201. DIAG_MON_MSB_IN4P Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH4P[7:0]  
R-00000000b  
8-178. DIAG_MON_MSB_IN4P Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DIAG_MON_MSB_CH4P[  
7:0]  
R
00000000b Diagnostic SAR monitor data MSB byte.  
8.6.1.3.30 DIAG_MON_LSB_IN4P Register (Address = 0x6B) [Reset = 0x8]  
DIAG_MON_LSB_IN4P is shown in 8-202 and described in 8-179.  
Return to the 8-149.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
This register is the LSB data nibble of IN4P monitoring.  
8-202. DIAG_MON_LSB_IN4P Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH4P[3:0]  
R-0000b  
CHANNEL_ID[3:0]  
R-1000b  
8-179. DIAG_MON_LSB_IN4P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH4P[3 R  
:0]  
0000b  
Diagnostic SAR monitor data LSB nibble.  
3-0  
CHANNEL_ID[3:0]  
R
1000b  
Channel ID value.  
8.6.1.3.31 DIAG_MON_MSB_IN4M Register (Address = 0x6C) [Reset = 0x0]  
DIAG_MON_MSB_IN4M is shown in 8-203 and described in 8-180.  
Return to the 8-149.  
This register is the MSB data byte of IN4M monitoring.  
8-203. DIAG_MON_MSB_IN4M Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_CH4N[7:0]  
R-00000000b  
8-180. DIAG_MON_MSB_IN4M Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DIAG_MON_MSB_CH4N[  
7:0]  
R
00000000b Diagnostic SAR monitor data MSB byte.  
8.6.1.3.32 DIAG_MON_LSB_IN4M Register (Address = 0x6D) [Reset = 0x9]  
DIAG_MON_LSB_IN4M is shown in 8-204 and described in 8-181.  
Return to the 8-149.  
This register is the LSB data nibble of IN4M monitoring.  
8-204. DIAG_MON_LSB_IN4M Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_CH4N[3:0]  
R-0000b  
CHANNEL_ID[3:0]  
R-1001b  
8-181. DIAG_MON_LSB_IN4M Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_CH4N[3 R  
:0]  
0000b  
Diagnostic SAR monitor data LSB nibble.  
3-0  
CHANNEL_ID[3:0]  
R
1001b  
Channel ID value.  
8.6.1.3.33 DIAG_MON_MSB_TEMP Register (Address = 0x76) [Reset = 0x0]  
DIAG_MON_MSB_TEMP is shown in 8-205 and described in 8-182.  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
Return to the 8-149.  
This register is the MSB data byte of temperature monitoring.  
8-205. DIAG_MON_MSB_TEMP Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_TEMP[7:0]  
R-00000000b  
8-182. DIAG_MON_MSB_TEMP Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DIAG_MON_MSB_TEMP[  
7:0]  
R
00000000b Diagnostic SAR monitor data MSB byte.  
8.6.1.3.34 DIAG_MON_LSB_TEMP Register (Address = 0x77) [Reset = 0xE]  
DIAG_MON_LSB_TEMP is shown in 8-206 and described in 8-183.  
Return to the 8-149.  
This register is the LSB data nibble of temperature monitoring.  
8-206. DIAG_MON_LSB_TEMP Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_TEMP[3:0]  
R-0000b  
CHANNEL_ID[3:0]  
R-1110b  
8-183. DIAG_MON_LSB_TEMP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_TEMP[  
3:0]  
R
0000b  
Diagnostic SAR monitor data LSB nibble.  
3-0  
CHANNEL_ID[3:0]  
R
1110b  
Channel ID value.  
8.6.1.3.35 DIAG_MON_MSB_LOAD Register (Address = 0x78) [Reset = 0x0]  
DIAG_MON_MSB_LOAD is shown in 8-207 and described in 8-184.  
Return to the 8-149.  
This register is the MSB data byte of MICBIAS load current monitoring.  
8-207. DIAG_MON_MSB_LOAD Register  
7
6
5
4
3
2
1
0
DIAG_MON_MSB_LOAD[7:0]  
R-00000000b  
8-184. DIAG_MON_MSB_LOAD Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DIAG_MON_MSB_LOAD[  
7:0]  
R
00000000b Diagnostic SAR monitor data MSB byte.  
8.6.1.3.36 DIAG_MON_LSB_LOAD Register (Address = 0x79) [Reset = 0xF]  
DIAG_MON_LSB_LOAD is shown in 8-208 and described in 8-185.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
Return to the 8-149.  
This register is the LSB data nibble of MICBIAS load current monitoring.  
8-208. DIAG_MON_LSB_LOAD Register  
7
6
5
4
3
2
1
0
DIAG_MON_LSB_LOAD[3:0]  
R-0000b  
CHANNEL_ID[3:0]  
R-1111b  
8-185. DIAG_MON_LSB_LOAD Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
DIAG_MON_LSB_LOAD[3 R  
:0]  
0000b  
Diagnostic SAR monitor data LSB nibble.  
3-0  
CHANNEL_ID[3:0]  
R
1111b  
Channel ID value.  
8.6.1.3.37 REV_ID Register (Address = 0x7E) [Reset = 0x20]  
REV_ID is shown in 8-209 and described in 8-186.  
Return to the 8-149.  
This register is the silicon revision ID register.  
8-209. REV_ID Register  
7
6
5
4
3
2
1
0
REV_ID[3:0]  
R-0010b  
RESERVED  
R-0000b  
8-186. REV_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0010b  
0000b  
Description  
7-4  
3-0  
REV_ID[3:0]  
RESERVED  
R
Returns the revision ID.  
Reserved bits; Write only reset values  
R
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.2 Programmable Coefficient Registers  
8.6.2.1 Programmable Coefficient Registers: Page 2  
This register page (shown in 8-187) consists of the programmable coefficients for the biquad 1 to biquad 6  
filters. To optimize the coefficients register transaction time for page 2, page 3, and page 4, the device also  
supports (by default) auto-incremented pages for the I2C and SPI burst writes and reads. After a transaction of  
register address 0x7F, the device auto increments to the next page at register 0x08 to transact the next  
coefficient value. These programmable coefficients are 32-bit, twos complement numbers. For a successful  
coefficient register transaction, the host device must write and read all four bytes starting with the most  
significant byte (BYT1) for a target coefficient register transaction. When using SPI for a coefficient register read  
transaction, the device transmits the first byte as a dummy read byte; therefore, the host must read five bytes,  
including the first dummy read byte and the last four bytes corresponding to the coefficient register value starting  
with the most significant byte (BYT1).  
8-187. Page 2 Programmable Coefficient Registers  
ADDRESS  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
ACRONYM  
RESET VALUE  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
REGISTER DESCRIPTION  
PAGE[7:0]  
8.6.1.2.1  
BQ1_N0_BYT1[7:0]  
BQ1_N0_BYT2[7:0]  
BQ1_N0_BYT3[7:0]  
BQ1_N0_BYT4[7:0]  
BQ1_N1_BYT1[7:0]  
BQ1_N1_BYT2[7:0]  
BQ1_N1_BYT3[7:0]  
BQ1_N1_BYT4[7:0]  
BQ1_N2_BYT1[7:0]  
BQ1_N2_BYT2[7:0]  
BQ1_N2_BYT3[7:0]  
BQ1_N2_BYT4[7:0]  
BQ1_D1_BYT1[7:0]  
BQ1_D1_BYT2[7:0]  
BQ1_D1_BYT3[7:0]  
BQ1_D1_BYT4[7:0]  
BQ1_D2_BYT1[7:0]  
BQ1_D2_BYT2[7:0]  
BQ1_D2_BYT3[7:0]  
BQ1_D2_BYT4[7:0]  
BQ2_N0_BYT1[7:0]  
BQ2_N0_BYT2[7:0]  
BQ2_N0_BYT3[7:0]  
BQ2_N0_BYT4[7:0]  
BQ2_N1_BYT1[7:0]  
BQ2_N1_BYT2[7:0]  
BQ2_N1_BYT3[7:0]  
BQ2_N1_BYT4[7:0]  
BQ2_N2_BYT1[7:0]  
BQ2_N2_BYT2[7:0]  
BQ2_N2_BYT3[7:0]  
BQ2_N2_BYT4[7:0]  
BQ2_D1_BYT1[7:0]  
BQ2_D1_BYT2[7:0]  
BQ2_D1_BYT3[7:0]  
BQ2_D1_BYT4[7:0]  
Programmable biquad 1, N0 coefficient byte[31:24]  
Programmable biquad 1, N0 coefficient byte[23:16]  
Programmable biquad 1, N0 coefficient byte[15:8]  
Programmable biquad 1, N0 coefficient byte[7:0]  
Programmable biquad 1, N1 coefficient byte[31:24]  
Programmable biquad 1, N1 coefficient byte[23:16]  
Programmable biquad 1, N1 coefficient byte[15:8]  
Programmable biquad 1, N1 coefficient byte[7:0]  
Programmable biquad 1, N2 coefficient byte[31:24]  
Programmable biquad 1, N2 coefficient byte[23:16]  
Programmable biquad 1, N2 coefficient byte[15:8]  
Programmable biquad 1, N2 coefficient byte[7:0]  
Programmable biquad 1, D1 coefficient byte[31:24]  
Programmable biquad 1, D1 coefficient byte[23:16]  
Programmable biquad 1, D1 coefficient byte[15:8]  
Programmable biquad 1, D1 coefficient byte[7:0]  
Programmable biquad 1, D2 coefficient byte[31:24]  
Programmable biquad 1, D2 coefficient byte[23:16]  
Programmable biquad 1, D2 coefficient byte[15:8]  
Programmable biquad 1, D2 coefficient byte[7:0]  
Programmable biquad 2, N0 coefficient byte[31:24]  
Programmable biquad 2, N0 coefficient byte[23:16]  
Programmable biquad 2, N0 coefficient byte[15:8]  
Programmable biquad 2, N0 coefficient byte[7:0]  
Programmable biquad 2, N1 coefficient byte[31:24]  
Programmable biquad 2, N1 coefficient byte[23:16]  
Programmable biquad 2, N1 coefficient byte[15:8]  
Programmable biquad 2, N1 coefficient byte[7:0]  
Programmable biquad 2, N2 coefficient byte[31:24]  
Programmable biquad 2, N2 coefficient byte[23:16]  
Programmable biquad 2, N2 coefficient byte[15:8]  
Programmable biquad 2, N2 coefficient byte[7:0]  
Programmable biquad 2, D1 coefficient byte[31:24]  
Programmable biquad 2, D1 coefficient byte[23:16]  
Programmable biquad 2, D1 coefficient byte[15:8]  
Programmable biquad 2, D1 coefficient byte[7:0]  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-187. Page 2 Programmable Coefficient Registers (continued)  
ADDRESS  
ACRONYM  
BQ2_D2_BYT1[7:0]  
BQ2_D2_BYT2[7:0]  
RESET VALUE  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
REGISTER DESCRIPTION  
Programmable biquad 2, D2 coefficient byte[31:24]  
Programmable biquad 2, D2 coefficient byte[23:16]  
Programmable biquad 2, D2 coefficient byte[15:8]  
Programmable biquad 2, D2 coefficient byte[7:0]  
Programmable biquad 3, N0 coefficient byte[31:24]  
Programmable biquad 3, N0 coefficient byte[23:16]  
Programmable biquad 3, N0 coefficient byte[15:8]  
Programmable biquad 3, N0 coefficient byte[7:0]  
Programmable biquad 3, N1 coefficient byte[31:24]  
Programmable biquad 3, N1 coefficient byte[23:16]  
Programmable biquad 3, N1 coefficient byte[15:8]  
Programmable biquad 3, N1 coefficient byte[7:0]  
Programmable biquad 3, N2 coefficient byte[31:24]  
Programmable biquad 3, N2 coefficient byte[23:16]  
Programmable biquad 3, N2 coefficient byte[15:8]  
Programmable biquad 3, N2 coefficient byte[7:0]  
Programmable biquad 3, D1 coefficient byte[31:24]  
Programmable biquad 3, D1 coefficient byte[23:16]  
Programmable biquad 3, D1 coefficient byte[15:8]  
Programmable biquad 3, D1 coefficient byte[7:0]  
Programmable biquad 3, D2 coefficient byte[31:24]  
Programmable biquad 3, D2 coefficient byte[23:16]  
Programmable biquad 3, D2 coefficient byte[15:8]  
Programmable biquad 3, D2 coefficient byte[7:0]  
Programmable biquad 4, N0 coefficient byte[31:24]  
Programmable biquad 4, N0 coefficient byte[23:16]  
Programmable biquad 4, N0 coefficient byte[15:8]  
Programmable biquad 4, N0 coefficient byte[7:0]  
Programmable biquad 4, N1 coefficient byte[31:24]  
Programmable biquad 4, N1 coefficient byte[23:16]  
Programmable biquad 4, N1 coefficient byte[15:8]  
Programmable biquad 4, N1 coefficient byte[7:0]  
Programmable biquad 4, N2 coefficient byte[31:24]  
Programmable biquad 4, N2 coefficient byte[23:16]  
Programmable biquad 4, N2 coefficient byte[15:8]  
Programmable biquad 4, N2 coefficient byte[7:0]  
Programmable biquad 4, D1 coefficient byte[31:24]  
Programmable biquad 4, D1 coefficient byte[23:16]  
Programmable biquad 4, D1 coefficient byte[15:8]  
Programmable biquad 4, D1 coefficient byte[7:0]  
Programmable biquad 4, D2 coefficient byte[31:24]  
Programmable biquad 4, D2 coefficient byte[23:16]  
Programmable biquad 4, D2 coefficient byte[15:8]  
Programmable biquad 4, D2 coefficient byte[7:0]  
Programmable biquad 5, N0 coefficient byte[31:24]  
Programmable biquad 5, N0 coefficient byte[23:16]  
Programmable biquad 5, N0 coefficient byte[15:8]  
Programmable biquad 5, N0 coefficient byte[7:0]  
Programmable biquad 5, N1 coefficient byte[31:24]  
Programmable biquad 5, N1 coefficient byte[23:16]  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
BQ2_D2_BYT3[7:0]  
BQ2_D2_BYT4[7:0]  
BQ3_N0_BYT1[7:0]  
BQ3_N0_BYT2[7:0]  
BQ3_N0_BYT3[7:0]  
BQ3_N0_BYT4[7:0]  
BQ3_N1_BYT1[7:0]  
BQ3_N1_BYT2[7:0]  
BQ3_N1_BYT3[7:0]  
BQ3_N1_BYT4[7:0]  
BQ3_N2_BYT1[7:0]  
BQ3_N2_BYT2[7:0]  
BQ3_N2_BYT3[7:0]  
BQ3_N2_BYT4[7:0]  
BQ3_D1_BYT1[7:0]  
BQ3_D1_BYT2[7:0]  
BQ3_D1_BYT3[7:0]  
BQ3_D1_BYT4[7:0]  
BQ3_D2_BYT1[7:0]  
BQ3_D2_BYT2[7:0]  
BQ3_D2_BYT3[7:0]  
BQ3_D2_BYT4[7:0]  
BQ4_N0_BYT1[7:0]  
BQ4_N0_BYT2[7:0]  
BQ4_N0_BYT3[7:0]  
BQ4_N0_BYT4[7:0]  
BQ4_N1_BYT1[7:0]  
BQ4_N1_BYT2[7:0]  
BQ4_N1_BYT3[7:0]  
BQ4_N1_BYT4[7:0]  
BQ4_N2_BYT1[7:0]  
BQ4_N2_BYT2[7:0]  
BQ4_N2_BYT3[7:0]  
BQ4_N2_BYT4[7:0]  
BQ4_D1_BYT1[7:0]  
BQ4_D1_BYT2[7:0]  
BQ4_D1_BYT3[7:0]  
BQ4_D1_BYT4[7:0]  
BQ4_D2_BYT1[7:0]  
BQ4_D2_BYT2[7:0]  
BQ4_D2_BYT3[7:0]  
BQ4_D2_BYT4[7:0]  
BQ5_N0_BYT1[7:0]  
BQ5_N0_BYT2[7:0]  
BQ5_N0_BYT3[7:0]  
BQ5_N0_BYT4[7:0]  
BQ5_N1_BYT1[7:0]  
BQ5_N1_BYT2[7:0]  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-187. Page 2 Programmable Coefficient Registers (continued)  
ADDRESS  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
ACRONYM  
RESET VALUE  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
REGISTER DESCRIPTION  
BQ5_N1_BYT3[7:0]  
Programmable biquad 5, N1 coefficient byte[15:8]  
Programmable biquad 5, N1 coefficient byte[7:0]  
Programmable biquad 5, N2 coefficient byte[31:24]  
Programmable biquad 5, N2 coefficient byte[23:16]  
Programmable biquad 5, N2 coefficient byte[15:8]  
Programmable biquad 5, N2 coefficient byte[7:0]  
Programmable biquad 5, D1 coefficient byte[31:24]  
Programmable biquad 5, D1 coefficient byte[23:16]  
Programmable biquad 5, D1 coefficient byte[15:8]  
Programmable biquad 5, D1 coefficient byte[7:0]  
Programmable biquad 5, D2 coefficient byte[31:24]  
Programmable biquad 5, D2 coefficient byte[23:16]  
Programmable biquad 5, D2 coefficient byte[15:8]  
Programmable biquad 5, D2 coefficient byte[7:0]  
Programmable biquad 6, N0 coefficient byte[31:24]  
Programmable biquad 6, N0 coefficient byte[23:16]  
Programmable biquad 6, N0 coefficient byte[15:8]  
Programmable biquad 6, N0 coefficient byte[7:0]  
Programmable biquad 6, N1 coefficient byte[31:24]  
Programmable biquad 6, N1 coefficient byte[23:16]  
Programmable biquad 6, N1 coefficient byte[15:8]  
Programmable biquad 6, N1 coefficient byte[7:0]  
Programmable biquad 6, N2 coefficient byte[31:24]  
Programmable biquad 6, N2 coefficient byte[23:16]  
Programmable biquad 6, N2 coefficient byte[15:8]  
Programmable biquad 6, N2 coefficient byte[7:0]  
Programmable biquad 6, D1 coefficient byte[31:24]  
Programmable biquad 6, D1 coefficient byte[23:16]  
Programmable biquad 6, D1 coefficient byte[15:8]  
Programmable biquad 6, D1 coefficient byte[7:0]  
Programmable biquad 6, D2 coefficient byte[31:24]  
Programmable biquad 6, D2 coefficient byte[23:16]  
Programmable biquad 6, D2 coefficient byte[15:8]  
Programmable biquad 6, D2 coefficient byte[7:0]  
BQ5_N1_BYT4[7:0]  
BQ5_N2_BYT1[7:0]  
BQ5_N2_BYT2[7:0]  
BQ5_N2_BYT3[7:0]  
BQ5_N2_BYT4[7:0]  
BQ5_D1_BYT1[7:0]  
BQ5_D1_BYT2[7:0]  
BQ5_D1_BYT3[7:0]  
BQ5_D1_BYT4[7:0]  
BQ5_D2_BYT1[7:0]  
BQ5_D2_BYT2[7:0]  
BQ5_D2_BYT3[7:0]  
BQ5_D2_BYT4[7:0]  
BQ6_N0_BYT1[7:0]  
BQ6_N0_BYT2[7:0]  
BQ6_N0_BYT3[7:0]  
BQ6_N0_BYT4[7:0]  
BQ6_N1_BYT1[7:0]  
BQ6_N1_BYT2[7:0]  
BQ6_N1_BYT3[7:0]  
BQ6_N1_BYT4[7:0]  
BQ6_N2_BYT1[7:0]  
BQ6_N2_BYT2[7:0]  
BQ6_N2_BYT3[7:0]  
BQ6_N2_BYT4[7:0]  
BQ6_D1_BYT1[7:0]  
BQ6_D1_BYT2[7:0]  
BQ6_D1_BYT3[7:0]  
BQ6_D1_BYT4[7:0]  
BQ6_D2_BYT1[7:0]  
BQ6_D2_BYT2[7:0]  
BQ6_D2_BYT3[7:0]  
BQ6_D2_BYT4[7:0]  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.2.2 Programmable Coefficient Registers: Page 3  
This register page (shown in 8-188) consists of the programmable coefficients for the biquad 7 to biquad 12  
filters. To optimize the coefficients register transaction time for page 2, page 3, and page 4, the device also  
supports (by default) auto-incremented pages for the I2C and SPI burst writes and reads. After a transaction of  
register address 0x7F, the device auto increments to the next page at register 0x08 to transact the next  
coefficient value. These programmable coefficients are 32-bit, twos complement numbers. For a successful  
coefficient register transaction, the host device must write and read all four bytes starting with the most  
significant byte (BYT1) for a target coefficient register transaction. When using SPI for a coefficient register read  
transaction, the device transmits the first byte as a dummy read byte; therefore, the host must read five bytes,  
including the first dummy read byte and the last four bytes corresponding to the coefficient register value starting  
with the most significant byte (BYT1).  
8-188. Page 3 Programmable Coefficient Registers  
ADDRESS  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
ACRONYM  
RESET VALUE  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
REGISTER DESCRIPTION  
PAGE[7:0]  
8.6.1.2.1  
BQ7_N0_BYT1[7:0]  
BQ7_N0_BYT2[7:0]  
BQ7_N0_BYT3[7:0]  
BQ7_N0_BYT4[7:0]  
BQ7_N1_BYT1[7:0]  
BQ7_N1_BYT2[7:0]  
BQ7_N1_BYT3[7:0]  
BQ7_N1_BYT4[7:0]  
BQ7_N2_BYT1[7:0]  
BQ7_N2_BYT2[7:0]  
BQ7_N2_BYT3[7:0]  
BQ7_N2_BYT4[7:0]  
BQ7_D1_BYT1[7:0]  
BQ7_D1_BYT2[7:0]  
BQ7_D1_BYT3[7:0]  
BQ7_D1_BYT4[7:0]  
BQ7_D2_BYT1[7:0]  
BQ7_D2_BYT2[7:0]  
BQ7_D2_BYT3[7:0]  
BQ7_D2_BYT4[7:0]  
BQ8_N0_BYT1[7:0]  
BQ8_N0_BYT2[7:0]  
BQ8_N0_BYT3[7:0]  
BQ8_N0_BYT4[7:0]  
BQ8_N1_BYT1[7:0]  
BQ8_N1_BYT2[7:0]  
BQ8_N1_BYT3[7:0]  
BQ8_N1_BYT4[7:0]  
BQ8_N2_BYT1[7:0]  
BQ8_N2_BYT2[7:0]  
BQ8_N2_BYT3[7:0]  
BQ8_N2_BYT4[7:0]  
BQ8_D1_BYT1[7:0]  
BQ8_D1_BYT2[7:0]  
BQ8_D1_BYT3[7:0]  
BQ8_D1_BYT4[7:0]  
BQ8_D2_BYT1[7:0]  
Programmable biquad 7, N0 coefficient byte[31:24]  
Programmable biquad 7, N0 coefficient byte[23:16]  
Programmable biquad 7, N0 coefficient byte[15:8]  
Programmable biquad 7, N0 coefficient byte[7:0]  
Programmable biquad 7, N1 coefficient byte[31:24]  
Programmable biquad 7, N1 coefficient byte[23:16]  
Programmable biquad 7, N1 coefficient byte[15:8]  
Programmable biquad 7, N1 coefficient byte[7:0]  
Programmable biquad 7, N2 coefficient byte[31:24]  
Programmable biquad 7, N2 coefficient byte[23:16]  
Programmable biquad 7, N2 coefficient byte[15:8]  
Programmable biquad 7, N2 coefficient byte[7:0]  
Programmable biquad 7, D1 coefficient byte[31:24]  
Programmable biquad 7, D1 coefficient byte[23:16]  
Programmable biquad 7, D1 coefficient byte[15:8]  
Programmable biquad 7, D1 coefficient byte[7:0]  
Programmable biquad 7, D2 coefficient byte[31:24]  
Programmable biquad 7, D2 coefficient byte[23:16]  
Programmable biquad 7, D2 coefficient byte[15:8]  
Programmable biquad 7, D2 coefficient byte[7:0]  
Programmable biquad 8, N0 coefficient byte[31:24]  
Programmable biquad 8, N0 coefficient byte[23:16]  
Programmable biquad 8, N0 coefficient byte[15:8]  
Programmable biquad 8, N0 coefficient byte[7:0]  
Programmable biquad 8, N1 coefficient byte[31:24]  
Programmable biquad 8, N1 coefficient byte[23:16]  
Programmable biquad 8, N1 coefficient byte[15:8]  
Programmable biquad 8, N1 coefficient byte[7:0]  
Programmable biquad 8, N2 coefficient byte[31:24]  
Programmable biquad 8, N2 coefficient byte[23:16]  
Programmable biquad 8, N2 coefficient byte[15:8]  
Programmable biquad 8, N2 coefficient byte[7:0]  
Programmable biquad 8, D1 coefficient byte[31:24]  
Programmable biquad 8, D1 coefficient byte[23:16]  
Programmable biquad 8, D1 coefficient byte[15:8]  
Programmable biquad 8, D1 coefficient byte[7:0]  
Programmable biquad 8, D2 coefficient byte[31:24]  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-188. Page 3 Programmable Coefficient Registers (continued)  
ADDRESS  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
ACRONYM  
RESET VALUE  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
REGISTER DESCRIPTION  
BQ8_D2_BYT2[7:0]  
Programmable biquad 8, D2 coefficient byte[23:16]  
Programmable biquad 8, D2 coefficient byte[15:8]  
Programmable biquad 8, D2 coefficient byte[7:0]  
Programmable biquad 9, N0 coefficient byte[31:24]  
Programmable biquad 9, N0 coefficient byte[23:16]  
Programmable biquad 9, N0 coefficient byte[15:8]  
Programmable biquad 9, N0 coefficient byte[7:0]  
Programmable biquad 9, N1 coefficient byte[31:24]  
Programmable biquad 9, N1 coefficient byte[23:16]  
Programmable biquad 9, N1 coefficient byte[15:8]  
Programmable biquad 9, N1 coefficient byte[7:0]  
Programmable biquad 9, N2 coefficient byte[31:24]  
Programmable biquad 9, N2 coefficient byte[23:16]  
Programmable biquad 9, N2 coefficient byte[15:8]  
Programmable biquad 9, N2 coefficient byte[7:0]  
Programmable biquad 9, D1 coefficient byte[31:24]  
Programmable biquad 9, D1 coefficient byte[23:16]  
Programmable biquad 9, D1 coefficient byte[15:8]  
Programmable biquad 9, D1 coefficient byte[7:0]  
Programmable biquad 9, D2 coefficient byte[31:24]  
Programmable biquad 9, D2 coefficient byte[23:16]  
Programmable biquad 9, D2 coefficient byte[15:8]  
Programmable biquad 9, D2 coefficient byte[7:0]  
Programmable biquad 10, N0 coefficient byte[31:24]  
Programmable biquad 10, N0 coefficient byte[23:16]  
Programmable biquad 10, N0 coefficient byte[15:8]  
Programmable biquad 10, N0 coefficient byte[7:0]  
Programmable biquad 10, N1 coefficient byte[31:24]  
Programmable biquad 10, N1 coefficient byte[23:16]  
Programmable biquad 10, N1 coefficient byte[15:8]  
Programmable biquad 10, N1 coefficient byte[7:0]  
Programmable biquad 10, N2 coefficient byte[31:24]  
Programmable biquad 10, N2 coefficient byte[23:16]  
Programmable biquad 10, N2 coefficient byte[15:8]  
Programmable biquad 10, N2 coefficient byte[7:0]  
Programmable biquad 10, D1 coefficient byte[31:24]  
Programmable biquad 10, D1 coefficient byte[23:16]  
Programmable biquad 10, D1 coefficient byte[15:8]  
Programmable biquad 10, D1 coefficient byte[7:0]  
Programmable biquad 10, D2 coefficient byte[31:24]  
Programmable biquad 10, D2 coefficient byte[23:16]  
Programmable biquad 10, D2 coefficient byte[15:8]  
Programmable biquad 10, D2 coefficient byte[7:0]  
Programmable biquad 11, N0 coefficient byte[31:24]  
Programmable biquad 11, N0 coefficient byte[23:16]  
Programmable biquad 11, N0 coefficient byte[15:8]  
Programmable biquad 11, N0 coefficient byte[7:0]  
Programmable biquad 11, N1 coefficient byte[31:24]  
Programmable biquad 11, N1 coefficient byte[23:16]  
Programmable biquad 11, N1 coefficient byte[15:8]  
BQ8_D2_BYT3[7:0]  
BQ8_D2_BYT4[7:0]  
BQ9_N0_BYT1[7:0]  
BQ9_N0_BYT2[7:0]  
BQ9_N0_BYT3[7:0]  
BQ9_N0_BYT4[7:0]  
BQ9_N1_BYT1[7:0]  
BQ9_N1_BYT2[7:0]  
BQ9_N1_BYT3[7:0]  
BQ9_N1_BYT4[7:0]  
BQ9_N2_BYT1[7:0]  
BQ9_N2_BYT2[7:0]  
BQ9_N2_BYT3[7:0]  
BQ9_N2_BYT4[7:0]  
BQ9_D1_BYT1[7:0]  
BQ9_D1_BYT2[7:0]  
BQ9_D1_BYT3[7:0]  
BQ9_D1_BYT4[7:0]  
BQ9_D2_BYT1[7:0]  
BQ9_D2_BYT2[7:0]  
BQ9_D2_BYT3[7:0]  
BQ9_D2_BYT4[7:0]  
BQ10_N0_BYT1[7:0]  
BQ10_N0_BYT2[7:0]  
BQ10_N0_BYT3[7:0]  
BQ10_N0_BYT4[7:0]  
BQ10_N1_BYT1[7:0]  
BQ10_N1_BYT2[7:0]  
BQ10_N1_BYT3[7:0]  
BQ10_N1_BYT4[7:0]  
BQ10_N2_BYT1[7:0]  
BQ10_N2_BYT2[7:0]  
BQ10_N2_BYT3[7:0]  
BQ10_N2_BYT4[7:0]  
BQ10_D1_BYT1[7:0]  
BQ10_D1_BYT2[7:0]  
BQ10_D1_BYT3[7:0]  
BQ10_D1_BYT4[7:0]  
BQ10_D2_BYT1[7:0]  
BQ10_D2_BYT2[7:0]  
BQ10_D2_BYT3[7:0]  
BQ10_D2_BYT4[7:0]  
BQ11_N0_BYT1[7:0]  
BQ11_N0_BYT2[7:0]  
BQ11_N0_BYT3[7:0]  
BQ11_N0_BYT4[7:0]  
BQ11_N1_BYT1[7:0]  
BQ11_N1_BYT2[7:0]  
BQ11_N1_BYT3[7:0]  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-188. Page 3 Programmable Coefficient Registers (continued)  
ADDRESS  
ACRONYM  
BQ11_N1_BYT4[7:0]  
BQ11_N2_BYT1[7:0]  
RESET VALUE  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
REGISTER DESCRIPTION  
Programmable biquad 11, N1 coefficient byte[7:0]  
Programmable biquad 11, N2 coefficient byte[31:24]  
Programmable biquad 11, N2 coefficient byte[23:16]  
Programmable biquad 11, N2 coefficient byte[15:8]  
Programmable biquad 11, N2 coefficient byte[7:0]  
Programmable biquad 11, D1 coefficient byte[31:24]  
Programmable biquad 11, D1 coefficient byte[23:16]  
Programmable biquad 11, D1 coefficient byte[15:8]  
Programmable biquad 11, D1 coefficient byte[7:0]  
Programmable biquad 11, D2 coefficient byte[31:24]  
Programmable biquad 11, D2 coefficient byte[23:16]  
Programmable biquad 11, D2 coefficient byte[15:8]  
Programmable biquad 11, D2 coefficient byte[7:0]  
Programmable biquad 12, N0 coefficient byte[31:24]  
Programmable biquad 12, N0 coefficient byte[23:16]  
Programmable biquad 12, N0 coefficient byte[15:8]  
Programmable biquad 12, N0 coefficient byte[7:0]  
Programmable biquad 12, N1 coefficient byte[31:24]  
Programmable biquad 12, N1 coefficient byte[23:16]  
Programmable biquad 12, N1 coefficient byte[15:8]  
Programmable biquad 12, N1 coefficient byte[7:0]  
Programmable biquad 12, N2 coefficient byte[31:24]  
Programmable biquad 12, N2 coefficient byte[23:16]  
Programmable biquad 12, N2 coefficient byte[15:8]  
Programmable biquad 12, N2 coefficient byte[7:0]  
Programmable biquad 12, D1 coefficient byte[31:24]  
Programmable biquad 12, D1 coefficient byte[23:16]  
Programmable biquad 12, D1 coefficient byte[15:8]  
Programmable biquad 12, D1 coefficient byte[7:0]  
Programmable biquad 12, D2 coefficient byte[31:24]  
Programmable biquad 12, D2 coefficient byte[23:16]  
Programmable biquad 12, D2 coefficient byte[15:8]  
Programmable biquad 12, D2 coefficient byte[7:0]  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
BQ11_N2_BYT2[7:0]  
BQ11_N2_BYT3[7:0]  
BQ11_N2_BYT4[7:0]  
BQ11_D1_BYT1[7:0]  
BQ11_D1_BYT2[7:0]  
BQ11_D1_BYT3[7:0]  
BQ11_D1_BYT4[7:0]  
BQ11_D2_BYT1[7:0]  
BQ11_D2_BYT2[7:0]  
BQ11_D2_BYT3[7:0]  
BQ11_D2_BYT4[7:0]  
BQ12_N0_BYT1[7:0]  
BQ12_N0_BYT2[7:0]  
BQ12_N0_BYT3[7:0]  
BQ12_N0_BYT4[7:0]  
BQ12_N1_BYT1[7:0]  
BQ12_N1_BYT2[7:0]  
BQ12_N1_BYT3[7:0]  
BQ12_N1_BYT4[7:0]  
BQ12_N2_BYT1[7:0]  
BQ12_N2_BYT2[7:0]  
BQ12_N2_BYT3[7:0]  
BQ12_N2_BYT4[7:0]  
BQ12_D1_BYT1[7:0]  
BQ12_D1_BYT2[7:0]  
BQ12_D1_BYT3[7:0]  
BQ12_D1_BYT4[7:0]  
BQ12_D2_BYT1[7:0]  
BQ12_D2_BYT2[7:0]  
BQ12_D2_BYT3[7:0]  
BQ12_D2_BYT4[7:0]  
Copyright © 2021 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8.6.2.3 Programmable Coefficient Registers: Page 4  
This register page (shown in 8-189) consists of the programmable coefficients for mixer 1 to mixer 4 and the  
first-order IIR filter. All mixer coefficients are 32-bit, twos complement numbers using a 1.31 number format.  
The value of 0x7FFFFFFF is equivalent to +1 (0-dB gain), the value 0x00000000 is equivalent to mute (zero  
data) and all values in between set the mixer attenuation computed using 方程式 4. If the MSB is set to '1' then  
the attenuation remains the same but the signal phase is inverted. All IIR filter programmable coefficients are 32-  
bit, twos complement numbers. For a successful coefficient register transaction, the host device must write  
and read all four bytes starting with the most significant byte (BYT1) for a target coefficient register transaction.  
When using SPI for a coefficient register read transaction, the device transits the first byte as a dummy read  
byte; therefore, the host must read five bytes, including the first dummy read byte and the last four bytes  
corresponding to the coefficient register value starting with the most significant byte (BYT1).  
hex2dec (value) / 231  
(4)  
8-189. Page 4 Programmable Coefficient Registers  
ADDRESS  
ACRONYM  
RESET VALUE  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
REGISTER DESCRIPTION  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
PAGE[7:0]  
8.6.1.2.1  
MIX1_CH1_BYT1[7:0]  
MIX1_CH1_BYT2[7:0]  
MIX1_CH1_BYT3[7:0]  
MIX1_CH1_BYT4[7:0]  
MIX1_CH2_BYT1[7:0]  
MIX1_CH2_BYT2[7:0]  
MIX1_CH2_BYT3[7:0]  
MIX1_CH2_BYT4[7:0]  
MIX1_CH3_BYT1[7:0]  
MIX1_CH3_BYT2[7:0]  
MIX1_CH3_BYT3[7:0]  
MIX1_CH3_BYT4[7:0]  
MIX1_CH4_BYT1[7:0]  
MIX1_CH4_BYT2[7:0]  
MIX1_CH4_BYT3[7:0]  
MIX1_CH4_BYT4[7:0]  
MIX2_CH1_BYT1[7:0]  
MIX2_CH1_BYT2[7:0]  
MIX2_CH1_BYT3[7:0]  
MIX2_CH1_BYT4[7:0]  
MIX2_CH2_BYT1[7:0]  
MIX2_CH2_BYT2[7:0]  
MIX2_CH2_BYT3[7:0]  
MIX2_CH2_BYT4[7:0]  
MIX2_CH3_BYT1[7:0]  
MIX2_CH3_BYT2[7:0]  
MIX2_CH3_BYT3[7:0]  
MIX2_CH3_BYT4[7:0]  
MIX2_CH4_BYT1[7:0]  
MIX2_CH4_BYT2[7:0]  
MIX2_CH4_BYT3[7:0]  
MIX2_CH4_BYT4[7:0]  
MIX3_CH1_BYT1[7:0]  
MIX3_CH1_BYT2[7:0]  
MIX3_CH1_BYT3[7:0]  
Digital mixer 1, channel 1 coefficient byte[31:24]  
Digital mixer 1, channel 1 coefficient byte[23:16]  
Digital mixer 1, channel 1 coefficient byte[15:8]  
Digital mixer 1, channel 1 coefficient byte[7:0]  
Digital mixer 1, channel 2 coefficient byte[31:24]  
Digital mixer 1, channel 2 coefficient byte[23:16]  
Digital mixer 1, channel 2 coefficient byte[15:8]  
Digital mixer 1, channel 2 coefficient byte[7:0]  
Digital mixer 1, channel 3 coefficient byte[31:24]  
Digital mixer 1, channel 3 coefficient byte[23:16]  
Digital mixer 1, channel 3 coefficient byte[15:8]  
Digital mixer 1, channel 3 coefficient byte[7:0]  
Digital mixer 1, channel 4 coefficient byte[31:24]  
Digital mixer 1, channel 4 coefficient byte[23:16]  
Digital mixer 1, channel 4 coefficient byte[15:8]  
Digital mixer 1, channel 4 coefficient byte[7:0]  
Digital mixer 2, channel 1 coefficient byte[31:24]  
Digital mixer 2, channel 1 coefficient byte[23:16]  
Digital mixer 2, channel 1 coefficient byte[15:8]  
Digital mixer 2, channel 1 coefficient byte[7:0]  
Digital mixer 2, channel 2 coefficient byte[31:24]  
Digital mixer 2, channel 2 coefficient byte[23:16]  
Digital mixer 2, channel 2 coefficient byte[15:8]  
Digital mixer 2, channel 2 coefficient byte[7:0]  
Digital mixer 2, channel 3 coefficient byte[31:24]  
Digital mixer 2, channel 3 coefficient byte[23:16]  
Digital mixer 2, channel 3 coefficient byte[15:8]  
Digital mixer 2, channel 3 coefficient byte[7:0]  
Digital mixer 2, channel 4 coefficient byte[31:24]  
Digital mixer 2, channel 4 coefficient byte[23:16]  
Digital mixer 2, channel 4 coefficient byte[15:8]  
Digital mixer 2, channel 4 coefficient byte[7:0]  
Digital mixer 3, channel 1 coefficient byte[31:24]  
Digital mixer 3, channel 1 coefficient byte[23:16]  
Digital mixer 3, channel 1 coefficient byte[15:8]  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: PCM6480-Q1  
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
8-189. Page 4 Programmable Coefficient Registers (continued)  
ADDRESS  
ACRONYM  
RESET VALUE  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
REGISTER DESCRIPTION  
Digital mixer 3, channel 1 coefficient byte[7:0]  
Digital mixer 3, channel 2 coefficient byte[31:24]  
Digital mixer 3, channel 2 coefficient byte[23:16]  
Digital mixer 3, channel 2 coefficient byte[15:8]  
Digital mixer 3, channel 2 coefficient byte[7:0]  
Digital mixer 3, channel 3 coefficient byte[31:24]  
Digital mixer 3, channel 3 coefficient byte[23:16]  
Digital mixer 3, channel 3 coefficient byte[15:8]  
Digital mixer 3, channel 3 coefficient byte[7:0]  
Digital mixer 3, channel 4 coefficient byte[31:24]  
Digital mixer 3, channel 4 coefficient byte[23:16]  
Digital mixer 3, channel 4 coefficient byte[15:8]  
Digital mixer 3, channel 4 coefficient byte[7:0]  
Digital mixer 4, channel 1 coefficient byte[31:24]  
Digital mixer 4, channel 1 coefficient byte[23:16]  
Digital mixer 4, channel 1 coefficient byte[15:8]  
Digital mixer 4, channel 1 coefficient byte[7:0]  
Digital mixer 4, channel 2 coefficient byte[31:24]  
Digital mixer 4, channel 2 coefficient byte[23:16]  
Digital mixer 4, channel 2 coefficient byte[15:8]  
Digital mixer 4, channel 2 coefficient byte[7:0]  
Digital mixer 4, channel 3 coefficient byte[31:24]  
Digital mixer 4, channel 3 coefficient byte[23:16]  
Digital mixer 4, channel 3 coefficient byte[15:8]  
Digital mixer 4, channel 3 coefficient byte[7:0]  
Digital mixer 4, channel 4 coefficient byte[31:24]  
Digital mixer 4, channel 4 coefficient byte[23:16]  
Digital mixer 4, channel 4 coefficient byte[15:8]  
Digital mixer 4, channel 4 coefficient byte[7:0]  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
MIX3_CH1_BYT4[7:0]  
MIX3_CH2_BYT1[7:0]  
MIX3_CH2_BYT2[7:0]  
MIX3_CH2_BYT3[7:0]  
MIX3_CH2_BYT4[7:0]  
MIX3_CH3_BYT1[7:0]  
MIX3_CH3_BYT2[7:0]  
MIX3_CH3_BYT3[7:0]  
MIX3_CH3_BYT4[7:0]  
MIX3_CH4_BYT1[7:0]  
MIX3_CH4_BYT2[7:0]  
MIX3_CH4_BYT3[7:0]  
MIX3_CH4_BYT4[7:0]  
MIX4_CH1_BYT1[7:0]  
MIX4_CH1_BYT2[7:0]  
MIX4_CH1_BYT3[7:0]  
MIX4_CH1_BYT4[7:0]  
MIX4_CH2_BYT1[7:0]  
MIX4_CH2_BYT2[7:0]  
MIX4_CH2_BYT3[7:0]  
MIX4_CH2_BYT4[7:0]  
MIX4_CH3_BYT1[7:0]  
MIX4_CH3_BYT2[7:0]  
MIX4_CH3_BYT3[7:0]  
MIX4_CH3_BYT4[7:0]  
MIX4_CH4_BYT1[7:0]  
MIX4_CH4_BYT2[7:0]  
MIX4_CH4_BYT3[7:0]  
MIX4_CH4_BYT4[7:0]  
IIR_N0_BYT1[7:0]  
Programmable first-order IIR, N0 coefficient byte[31:24]  
Programmable first-order IIR, N0 coefficient byte[23:16]  
Programmable first-order IIR, N0 coefficient byte[15:8]  
Programmable first-order IIR, N0 coefficient byte[7:0]  
Programmable first-order IIR, N1 coefficient byte[31:24]  
Programmable first-order IIR, N1 coefficient byte[23:16]  
Programmable first-order IIR, N1 coefficient byte[15:8]  
Programmable first-order IIR, N1 coefficient byte[7:0]  
Programmable first-order IIR, D1 coefficient byte[31:24]  
Programmable first-order IIR, D1 coefficient byte[23:16]  
Programmable first-order IIR, D1 coefficient byte[15:8]  
Programmable first-order IIR, D1 coefficient byte[7:0]  
IIR_N0_BYT2[7:0]  
IIR_N0_BYT3[7:0]  
IIR_N0_BYT4[7:0]  
IIR_N1_BYT1[7:0]  
IIR_N1_BYT2[7:0]  
IIR_N1_BYT3[7:0]  
IIR_N1_BYT4[7:0]  
IIR_D1_BYT1[7:0]  
IIR_D1_BYT2[7:0]  
IIR_D1_BYT3[7:0]  
IIR_D1_BYT4[7:0]  
Copyright © 2021 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The PCM6480-Q1 is a multichannel, automotive qualified audio analog-to-digital converter (ADC) that supports  
output sample rates of up to 768 kHz. The PCM6480-Q1 is a high-performance audio converter that supports  
simultaneous sampling of up to a 4-channel analog microphone or a line input along with up to a 4-channel  
digital pulse density-modulation (PDM) microphone input. The device integration enables both an in-cabin active  
noise cancellation (ANC) and a voice recognition (VR) application in a very efficient manner by using the analog  
and digital microphones input sampling simultaneously. The PCM6480-Q1 is intended for automotive  
applications such as vehicle cabin active noise cancellation, hands-free in-vehicle communication, emergency  
call, and multi-media applications. This device integrates a host of features to reduce cost, board space, and  
power consumption in space-constrained automotive subsystem designs.  
Communication to the PCM6480-Q1 for configuration of the control registers is supported using an I2C or SPI  
interface. The device supports a highly flexible audio serial interface (TDM, I2S, or LJ) to transmit audio data  
seamlessly in the system across devices.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
9.2 Typical Application  
9.2.1 Four-Channel Analog Microphone and Four-Channel PDM Microphone Simultaneous Recording  
Using the PCM6480-Q1  
9-1 shows a typical configuration of the PCM6480-Q1 for an application using four analog microphones and  
four digital PDM microphones for simultaneous recording operation with an I2C control interface and the TDM  
audio data slave interface.  
2.2 F  
3.3 V  
(3.0 V to 3.6 V)  
2.2 F  
10 F  
1 F  
3.3 V  
(3.0 V to 3.6 V)  
0.1 F  
GND  
1 F  
0.1 F  
0.1 F  
0.1 F  
GND  
VBAT_IN  
(Max 18V)  
2.2µH  
GND  
VBAT_IN  
GND  
GND  
10 F  
1 F  
DREG  
GND  
0.1 F  
MICBIAS  
GND  
VDD  
IN1P  
IN1M  
10 F  
Mic 1  
3.3 V  
(3.0 V to 3.6 V)  
OR  
IOVDD  
1.8 V  
(1.65 V to 1.95 V)  
0.1 F  
GND  
GND  
Thermal Pad  
(VSS)  
IN2P  
IN2M  
PCM6480-Q1  
Mic 2  
GND  
ADDR1_MISO  
(ADDR1)  
GND  
IN3P  
IN3M  
GND  
GND  
Mic 3  
ADDR0_SCLK  
(ADDR0)  
GND  
IN4P  
IN4M  
Mic 4  
R2 ꢁ  
R2 ꢁ  
GND  
VDD  
SEL  
CLK  
VDD  
SEL  
CLK  
VDD  
0.1 F  
GND  
VDD  
0.1 F  
GND  
DMIC3  
Rterm  
DMIC1  
Rterm  
Rterm  
DOUT  
VSS  
DOUT  
VSS  
Host  
Processor  
VDD  
SEL  
VSS  
VDD  
CLK  
CLK  
VDD  
0.1 F  
GND  
VDD  
0.1 F  
GND  
Rterm  
DMIC4  
SEL  
DMIC2  
VSS  
Rterm  
DOUT  
DOUT  
Rterm  
9-1. Four-Channel Analog Microphone and Four-Channel Digital Microphone Simultaenous Recording  
Copyright © 2021 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
9.2.1.1 Design Requirements  
9-1 lists the design parameters for this application.  
9-1. Design Parameters  
KEY PARAMETER  
SPECIFICATION  
AVDD, BSTVDD  
AVDD supply current  
IOVDD  
3.3 V  
28 mA (PLL on, all eight-channel record, fS = 44.1 kHz)  
1.8 V or 3.3 V  
< 28 mA (MICBIAS voltage = 8 V, microphone impedance = 680 Ω  
and R1 = 340 )  
Maximum MICBIAS current  
9.2.1.2 Detailed Design Procedure  
This section describes the necessary steps to configure the PCM6480-Q1 for this specific application. The  
following steps give a sequence of items that must be executed in the time between powering the device up and  
reading data from the device or transitioning from one mode to other mode of operation.  
1. Apply Power to Device:  
a. Power up the IOVDD, AVDD, and BSTVDD power supplies, keeping the SHDNZ pin voltage low  
b. The device now goes into hardware shutdown mode (ultra-low-power mode < 1 µA)  
2. Transition From Hardware Shutdown Mode to Sleep Mode (or Software Shutdown Mode):  
a. Release SHDNZ only when the IOVDD, AVDD, and BSTVDD power supplies settle to the steady-state  
operating voltage  
b. Wait for at least 1 ms to allow the device to initialize the internal registers  
c. The device now goes into sleep mode (low-power mode < 20 µA)  
3. Transition From Sleep Mode to Active Mode Whenever Required for the Record Operation:  
a. Wake-up the device by writing P0_R2 to disable sleep mode  
b. Wait for at least 1ms to allow the device internal wake-up sequence to complete  
c. Override the default configuration registers or programmable coefficients value as required (optional)  
d. Enable all desired input channels by writing P0_R115  
e. Enable all desired audio serial interface output channels by writing P0_R116  
f. Power-up the ADC, MICBIAS, and PLL by writing P0_R117  
g. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
This specific step can be done at any point in the sequence after step a  
See the Phase-Locked Loop (PLL) and Clock Generation section for the supported sample rates and the  
BCLK to FSYNC ratio  
h. The device recording data are now sent to the host processor via the TDM audio serial data bus  
i. Wait for at least 10 ms to allow the MICBIAS to power up  
j. Enable the fault diagnostics for all desired input channels by writing P0_R100  
4. Transition From Active Mode to Sleep Mode (Again) as Required in the System Low Power:  
a. Disable the fault diagnostics for all desired input channels by writing P0_R100  
b. Go to sleep mode by writing P0_R2 to enable sleep mode  
c. Wait at least 20 ms to allow the volume to gradually ramp down and for all blocks to power down  
d. Read P0_R119 to check the device shutdown and sleep mode status  
e. If the device P0_R119_D7 status bit is 1'b1, then stop FSYNC and BCLK in the system  
f. The device now goes into sleep mode (low-power mode < 20 µA) and retains all register values  
5. Transition From Sleep Mode to Active Mode (Again) as Required for the Record Operation:  
a. Wake-up the device by writing P0_R2 to disable sleep mode  
b. Wait for at least 1 ms to allow the device internal wake-up sequence to complete  
c. Apply FSYNC and BCLK with the desired output sample rates and BCLK to FSYNC ratio  
d. The device recording data are now sent to the host processor via the TDM audio serial data bus  
e. Wait for at least 10 ms to allow the MICBIAS to power up  
f. Enable the fault diagnostics for all desired input channels by writing P0_R100  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
6. Repeat Step 4 and Step 5 as Required for Mode Transitions  
7. Assert the SHDNZ Pin Low to Enter Hardware Shutdown Mode (Again) at Any Time  
8. Follow Step 2 Onwards to Exit Hardware Shutdown Mode (Again)  
9.2.1.2.1 Example Device Register Configuration Script for EVM Setup  
This section provides a typical EVM I2C register control script that shows how to set up the PCM6480-Q1 in a 4-  
channel digital PDM input and a 4-channel analog microphone record mode with differential inputs.  
#
# Key: w 98 XX YY ==> write to I2C address 0x98, to register 0xXX, data 0xYY  
#
#
# ==> comment delimiter  
# The following list gives an example sequence of items that must be executed in the time  
# between powering the device up and reading data from the device. Note that there are  
# other valid sequences depending on which features are used.  
#
# Refer to the PCM6xx0-Q1 EVM user guide for key jumper settings and audio connections:  
#
# 4-channel differential analog input : INP1/INM1 - Ch1, INP2/INM2 - Ch2, INP3/INM3 - Ch3 and INP4/  
INM4 - Ch4  
# High swing mode enabled  
# 4-channel digital PDM input : PDMDIN1_GPI1 - Ch5 and Ch6 and PDMDIN2_GPI2 - Ch7 and Ch8  
# FSYNC = 44.1 kHz (Output Data Sample Rate), BCLK = 11.2896 MHz (BCLK/FSYNC = 256)  
################################################################  
#
#
# Power up IOVDD, AVDD and BSTVDD power supplies keeping SHDNZ pin voltage LOW  
# Wait for IOVDD, AVDD and BSTVDD power supplies to settle to steady state operating voltage range.  
# Release SHDNZ to HIGH.  
# Wait for 1ms.  
#
# Wake-up device by I2C write into P0_R2 using internal AREG  
w 90 0281  
#
# Powerdown MICBIAS and ADC channels on fault detection (overtemperature, and so forth)  
w 90 28 10  
#
# Configure channel 1 DC-coupled, differential microphone input with high-swing mode  
w 90 3C 18  
#
# Configure channel 2 DC-coupled, differential microphone input with high-swing mode  
w 90 41 18  
#
# Configure channel 3 DC-coupled, differential microphone input with high-swing mode  
w 90 46 18  
#
# Configure channel 4 DC-coupled, differential microphone input with high-swing mode  
w 90 4B 18  
#
# Configure CH5_INSRC as Digital PDM Input by I2C write into P0_R80  
w 98 50 40  
#
# Configure CH6_INSRC as Digital PDM Input by I2C write into P0_R85  
w 98 55 40  
#
# Configure CH7_INSRC as Digital PDM Input by I2C write into P0_R90  
w 98 5A 40  
#
# Configure CH8_INSRC as Digital PDM Input by I2C write into P0_R95  
w 98 5F 40  
#
# Configure PDMCLK1_GPIO2 as PDMCLK by I2C write into P0_R34  
w 98 22 41  
#
# Configure PDMCLK1_GPIO3 as PDMCLK by I2C write into P0_R35  
w 98 23 41  
#
# Configure PDMDIN1_GPI1 as PDMDIN1 by I2C write into P0_R36  
w 98 24 E0  
#
# Configure PDMDIN2_GPI2 as PDMDIN2 by I2C write into P0_R37  
w 98 25 F0  
#
# Enable input channel 1 to channel 4 by I2C write into P0_R115  
Copyright © 2021 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
w 90 73 FF  
#
# Enable ASI output channel 1 to channel 4 slots by I2C write into P0_R116  
w 90 74 FF  
#
# Power-up ADC,MICBIAS and PLL by I2C write into P0_R117  
w 90 75 E0  
#
# Apply FSYNC = 44.1 kHz and BCLK = 11.2896 MHz and  
# Start recording data by host on ASI bus with TDM protocol 32-bit channel word length  
#
# Wait for 10 ms.  
# Enable diagnostics for channel 1 to channel 4 by I2C write into P0_R100  
w 90 64 F0  
#
9.2.1.3 Application Curves  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, BSTVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 44.1 kHz, 32-bit  
audio data, BCLK = 256 × fS, TDM slave mode, PLL on, channel gain = 0 dB, linear phase decimation filter, and  
MICBIAS programmed voltage = 8 V (unless otherwise noted); all measurements are done on the EVM by  
feeding the device analog input and PDM digital input signal using audio precision, however, in the real system  
application, the device performance is expected to be limited by single-bit PDM modulator digital microphone  
output performance; all performance measurements are done with a 20-kHz, low-pass filter and an A-weighted  
filter (unless otherwise noted)  
DC-coupled differential microphone input with DC common-  
mode 1NxP = ~6 V and INxM = ~2 V, high swing mode  
enabled, measured using an external audio input source  
DC-coupled differential microphone input with DC common-  
mode 1NxP = ~6 V and INxM = ~2 V, high swing mode  
enabled, measured using an external audio input source  
9-2. Analog Inputs FFT With a 60-dBr Input  
9-3. Analog Inputs THD+N vs Input Amplitude  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: PCM6480-Q1  
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
4th-order PDM modulator with PDMCLKx = 2.8224 MHz  
4th-order PDM modulator with PDMCLKx = 2.8224 MHz  
9-5. PDM Inputs THD+N vs Input Amplitude  
9-4. PDM Inputs FFT With a 60-dBFS Input  
9.3 What To Do and What Not To Do  
In master mode operation with I2S or LJ format, the device generates FSYNC half a cycle earlier than the normal  
protocol timing behavior expected. This timing behavior can still function for most of the system, however for  
further details and a suggested workaround for this weakness, see the Configuring and Operating  
TLV320ADCx140 as Audio Bus Master application report.  
The automatic gain controller (AGC) feature has some limitation when using sampling rates lower than 44.1 kHz.  
For further details about this limitation, see the Using the Automatic Gain Controller in PCM6xx0-Q1 application  
report.  
For I2C operation, if the ADDR0_SCLK pin is tied high, then the I2C bus must remain idle (which means the  
SDA_SSZ and SCL_MOSI pins must be high) when the SHDNZ pin is released from low to high.  
Copyright © 2021 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The power-supply sequence between the IOVDD and AVDD rails can be applied in any order. However, keep  
the SHDNZ pin low until the IOVDD supply voltage settles to a stable and supported operating voltage range.  
After the IOVDD and AVDD supplies are stable, set the SHDNZ pin high to initialize the device. BSTVDD can be  
either applied along with AVDD or later but before turning on the MICBIAS. 10-1 shows the power supply  
sequencing requirements.  
AVDD  
t1  
t3  
IOVDD  
SHDNZ  
t4  
t2  
10-1. Power-Supply Sequencing Requirement  
For the supply power-up requirement, t1 and t2 must be at least 100 µs. For the supply power-down requirement,  
t3 and t4 must be at least 10 ms. This time allows the device to ramp down the volume on the record data, and  
power down the analog and digital blocks, and lastly put the device into hardware shutdown mode. The device  
can also be immediately put into hardware shutdown mode from active mode if SHDNZ_CFG[1:0] is set to 2'b00  
using the P0_R5_D[3:2] bits. In that case, t3 and t4 are required to be at least 100 µs.  
Make sure that the supply ramp rate is slower than 1 V/µs and that the wait time between a power-down and a  
power-up event is at least 100 ms. For a supply ramp rate slower than 0.1 V/ms, the host device must apply a  
software reset as the first transaction before configuring the device.  
After releasing SHDNZ, or after a software reset, delay any additional I2C or SPI transactions to the device for at  
least 2 ms to allow the device to initialize the internal registers. See the Device Functional Modes section to  
operate the device in various modes after the device power supplies are settled to the recommended operating  
voltage levels.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Each system design and printed circuit board (PCB) layout is unique. The layout must be carefully reviewed in  
the context of a specific PCB design. However, the following guidelines can optimize the device performance:  
Connect the thermal pad to ground. Use a via pattern to connect the device thermal pad, the area directly  
under the device, to the ground planes. This connection helps dissipate heat from the device.  
The decoupling capacitors for the power supplies must be placed close to the device pins.  
The supply decoupling capacitors used must be of a ceramic type with low ESR.  
The boost converter inductor and decoupling capacitors for the power supplies must be placed close to the  
device pins.  
Route analog differential audio signals differentially on the PCB for better noise immunity. Avoid crossing  
digital and analog signals to avoid undesirable crosstalk.  
The device internal voltage references must be filtered using external capacitors. Place the filter capacitors  
near the VREF pin for optimal performance.  
Directly tap the MICBIAS pin to avoid common impedance when routing the biasing or supply for multiple  
microphones to avoid coupling across microphones.  
Place the MICBIAS capacitor (with low equivalent series resistance) close to the device with minimal trace  
impedance.  
Use MICBIAS and BSTOUT capacitors with a high voltage rating (> 25V) to support higher voltage MICBIAS  
operation.  
An external circuit must be used to suppress or filter the amount of high-frequency electromagnetic  
interference (EMI) noise found in the microphone input path resulting from long cables (if used) in the system.  
Use ground planes to provide the lowest impedance for power and signal current between the device and the  
decoupling capacitors. Treat the area directly under the device as a central ground area for the device, and  
all device grounds must be connected directly to that area.  
Copyright © 2021 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
11.2 Layout Example  
Audio output and digital interface  
1: AVDD  
2: AREG  
24: ADDR0_SCLK  
23: ADDR1_MISO  
22: SHDNZ  
3: BSTVDD  
4: BSTSW  
5: BSTOUT  
21: VBAT_IN  
20: PDMCLK1_GPIO2  
19: PDMDIN1_GPI1  
18: PDMCLK2_GPIO3  
17: PDMDIN2_GPI2  
6: MICBIAS  
7: VREF  
8: AVSS  
Analog input signals  
11-1. Layout Example of the PCM6480-Q1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: PCM6480-Q1  
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
PurePath™ console graphical development suite  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Multiple PCM6xx0-Q1 Devices With Shared TDM and I2C Bus application report  
Texas Instruments, PCM6xx0-Q1 Programmable Biquad Filter Configuration and Applications application  
report  
Texas Instruments, PCM6xx0-Q1 Sampling Rates and Programmable Processing Blocks Supported  
application report  
Texas Instruments, PCM6xx0-Q1 Integrated Analog Anti-Aliasing Filter and Flexible Digital Filter application  
report  
Texas Instruments, Configuring and Operating TLV320ADCx140 as Audio Bus Master application report  
Texas Instruments, Using the Automatic Gain Controller in PCM6xx0-Q1 application report  
Texas Instruments, PCM6xx0-Q1 Fault Diagnostics Features application report  
Texas Instruments, Scalable Automotive Audio Solutions Using the PCM6xx0-Q1 Family of Products  
application report  
Texas Instruments, PCM6xx0-Q1 Use-Case Scenarios in Automotive Audio Applications application report  
Texas Instruments, PCM6xx0-Q1 AC-Coupled External Resistor Calculator  
Texas Instruments, PCM6xx0-Q1 SIMULATION IBIS Models  
Texas Instruments, PCM6xx0Q1EVM-PDK Evaluation Module user's guide  
Texas Instruments, PurePathConsole Graphical Development Suite for Audio System Design and  
Development development suite  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
PurePathand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: PCM6480-Q1  
 
 
 
 
 
 
 
 
PCM6480-Q1  
ZHCSMY2 DECEMBER 2020  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: PCM6480-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM6480QRTVRQ1  
ACTIVE  
WQFN  
RTV  
32  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
PCM6480  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PCM6480QRTVRQ1  
WQFN  
RTV  
32  
3000  
330.0  
12.4  
5.3  
5.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RTV 32  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
PCM6480QRTVRQ1  
3000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY