PCMD3180IRTWR [TI]

8 通道 PDM 输入至 TDM 或 I2S 输出转换器 | RTW | 24 | -40 to 125;
PCMD3180IRTWR
型号: PCMD3180IRTWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8 通道 PDM 输入至 TDM 或 I2S 输出转换器 | RTW | 24 | -40 to 125

光电二极管 转换器
文件: 总113页 (文件大小:4107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
PCMD3180  
SBASA14 MAY 2020  
PCMD3180 Octal-Channel, PDM Input to TDM or I2S Output Converter  
1 Features  
2 Applications  
1
8-channel PDM microphones simultaneous  
conversion  
PDM input to TDM or I2S output converter  
performance:  
Video doorbell  
Smart speakers  
Building security gateway  
IP network cameras  
127-dB dynamic range (DR) with high  
performance 5th order PDM input  
GPS personal navigation device  
Video conference systems  
117-dB dynamic range (DR) with high  
performance 4th order PDM input  
3 Description  
The PCMD3180 is  
Channel summing mode, DR performance with  
high performance 4th order PDM input:  
a high-performance, pulse-  
density-modulation (PDM) input to time-division  
multiplexing (TDM) or I2S output converter that  
supports simultaneous sampling of up to eight digital  
channels for the PDM microphone input. The device  
integrates programable digital volume control, a  
microphone bias voltage, a phase-locked loop (PLL),  
a programmable high-pass filter (HPF), biquad filters,  
low-latency filter modes, and allows for output sample  
rates up to 768 kHz. The device supports time-  
division multiplexing (TDM), I2S, or left-justified (LJ)  
audio formats, and can be controlled with either the  
I2C or SPI interface. Additionally, the PCMD3180  
supports master and slave mode selection for the  
audio bus interface operation. These integrated high-  
performance features, along with the ability to be  
powered from a single-supply of 3.3 V or 1.8 V, make  
the device an excellent choice for space-constrained  
audio systems in far-field microphone recording  
applications.  
120-dB, 2-channel summing  
123-dB, 4-channel summing  
Programmable PDM clock output :  
768 kHz to 6.144 MHz  
Programmable output sample rate (fS) :  
8 kHz to 768 kHz  
Programmable channel settings:  
Digital volume control: –100 dB to 27 dB  
Gain calibration with 0.1-dB resolution  
Phase calibration with 163-ns resolution  
Microphone bias or supply voltage generation  
Low-latency signal processing filter selection  
Programmable HPF and biquad digital filters  
I2C or SPI controls  
Integrated high-performance audio PLL  
Automatic clock divider setting configurations  
Audio serial data interface:  
The PCMD3180 is specified from –40°C to +125°C,  
and is offered in a 24-pin WQFN package.  
Device Information(1)  
Format: TDM, I2S, or left-justified (LJ)  
Word length: 16 bits, 20 bits, 24 bits, or 32 bits  
Master or slave interface  
PART NUMBER  
PCMD3180  
PACKAGE  
BODY SIZE (NOM)  
4.00 mm × 4.00 mm with  
0.5-mm pitch  
WQFN (24)  
Single-supply operation: 3.3 V or 1.8 V  
I/O-supply operation: 3.3 V or 1.8 V  
Power consumption for 1.8-V supply:  
(1) For all available packages, see the package option addendum  
at the end of the data sheet.  
Simplified Block Diagram  
2.9 mW/channel at 16-kHz sample rate  
2.5 mW/channel at 48-kHz sample rate  
SHDNZ  
PDMDIN1_GPI1  
PLL and Clock Generation  
GPIO1  
PDMCLK1_GPO1  
PDMDIN2_GPI2  
PDMCLK2_GPO2  
FSYNC  
BCLK  
8-Channel  
Digital PDM  
Microphones  
Simultaneous  
Conversion  
Programmable  
Digital Filters,  
Biquads  
Audio Serial  
Interface  
SDOUT  
PDMDIN3_GPI3  
PDMCLK3_GPO3  
(TDM, I2S, LJ)  
SDA_SSZ  
PDMDIN4_GPI4  
PDMCLK4_GPO4  
MICBIAS  
SCL_MOSI  
MICBIAS, Regulators and  
Voltage Reference  
I2C or SPI Control  
Interface  
ADDR0_SCLK  
ADDR1_MISO  
VREF  
Thermal Pad  
(VSS)  
AVDD  
DREG  
AVSS  
IOVDD  
AREG  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table of Contents  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 16  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 49  
7.5 Programming........................................................... 50  
7.6 Register Maps......................................................... 54  
Application and Implementation ........................ 98  
8.1 Application Information............................................ 98  
8.2 Typical Applications ................................................ 98  
8.3 What to Do and What Not to Do ........................... 103  
Power Supply Recommendations.................... 104  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements: I2C Interface.......................... 9  
6.7 Switching Characteristics: I2C Interface.................... 9  
6.8 Timing Requirements: SPI Interface....................... 10  
6.9 Switching Characteristics: SPI Interface................. 10  
6.10 Timing Requirements: TDM, I2S or LJ Interface... 10  
8
9
10 Layout................................................................. 105  
10.1 Layout Guidelines ............................................... 105  
10.2 Layout Example .................................................. 105  
11 Device and Documentation Support ............... 106  
11.1 Documentation Support ...................................... 106  
6.11 Switching Characteristics: TDM, I2S or LJ  
11.2 Receiving Notification of Documentation  
Updates.................................................................. 106  
Interface ................................................................... 10  
11.3 Support Resources ............................................. 106  
11.4 Trademarks......................................................... 106  
11.5 Electrostatic Discharge Caution.......................... 106  
11.6 Glossary.............................................................. 106  
6.12 Timing Requirements: PDM Digital Microphone  
Interface ................................................................... 11  
6.13 Switching Characteristics: PDM Digial Microphone  
Interface ................................................................... 11  
6.14 Typical Characteristics.......................................... 13  
12 Mechanical, Packaging, and Orderable  
7
Detailed Description ............................................ 15  
Information ......................................................... 106  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
May 2020  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
5 Pin Configuration and Functions  
RTW Package  
24-Pin WQFN With Exposed Thermal Pad  
Top View  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
1
AVDD  
Analog supply  
Analog supply  
Analog power (1.8 V or 3.3 V, nominal)  
Analog on-chip regulator output voltage for analog supply (1.8 V, nominal) or external  
analog power (1.8 V, nominal). Connect a 10 µF and 0.1 µF low ESR capacitors in  
parallel to analog ground (AVSS)  
2
AREG  
3
4
5
VREF  
AVSS  
Analog  
Analog supply  
Analog  
Analog reference voltage filter output. Connect a 1 µF to analog ground (AVSS)  
Analog ground. Short this pin directly to the board ground plane.  
MICBIAS output. Connect a 1 µF to analog ground (AVSS)  
MICBIAS  
PDM microphone data input 1 or general-purpose digital input 1 (multipurpose functions  
such as digital microphone data, PLL input clock source, and so forth)  
6
PDMDIN1_GPI1  
PDMCLK1_GPO1  
PDMDIN2_GPI2  
PDMCLK2_GPO2  
PDMDIN3_GPI3  
PDMCLK3_GPO3  
PDMDIN4_GPI4  
Digital input  
Digital output  
Digital input  
Digital output  
Digital input  
Digital output  
Digital input  
PDM microphone clock output 1 or general-purpose digital output 1 (multipurpose  
functions such as digital microphone clock, interrupt, and so forth)  
7
PDM microphone data input 2 or general-purpose digital input 2 (multipurpose functions  
such as digital microphone data, PLL input clock source, and so forth)  
8
PDM microphone clock output 2 or general-purpose digital output 2 (multipurpose  
functions such as digital microphone clock, interrupt, and so forth)  
9
PDM microphone data input 3 or general-purpose digital input 3 (multipurpose functions  
such as digital microphone data, PLL input clock source, and so forth)  
10  
11  
12  
PDM microphone clock output 3 or general-purpose digital output 3 (multipurpose  
functions such as digital microphone clock, interrupt, and so forth)  
PDM microphone data input 4 or general-purpose digital input 4 (multipurpose functions  
such as digital microphone data, PLL input clock source, and so forth)  
PDM microphone clock output 4 or general-purpose digital output 4 (multipurpose  
functions such as digital microphone clock, interrupt, and so forth)  
13  
14  
15  
PDMCLK4_GPO4  
SHDNZ  
Digital output  
Digital input  
Digital I/O  
Device hardware shutdown and reset (active low)  
For I2C operation: I2C slave address A1 pin  
For SPI operation: SPI slave output pin  
ADDR1_MISO  
For I2C operation: I2C slave address A0 pin  
For SPI operation : SPI serial bit clock  
16  
17  
ADDR0_SCLK  
SCL_MOSI  
Digital input  
Digital input  
For I2C operation: clock pin for I2C control bus  
For SPI operation: SPI slave input pin  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
SDA_SSZ  
IOVDD  
For I2C operation: data pin for I2C control bus  
For SPI operation: SPI slave-select pin  
18  
19  
20  
Digital I/O  
Digital supply  
Digital I/O  
Digital I/O power supply (1.8 V or 3.3 V, nominal)  
General-purpose digital input/output 1 (multipurpose functions such as digital  
microphones clock or data, PLL input clock source, interrupt, and so forth)  
GPIO1  
21  
22  
23  
SDOUT  
BCLK  
Digital output  
Digital I/O  
Audio serial data interface bus output  
Audio serial data interface bus bit clock  
FSYNC  
Digital I/O  
Audio serial data interface bus frame synchronization signal  
Digital regulator output voltage for digital core supply (1.5 V, nominal). Connect a 10 µF  
and 0.1 µF low ESR capacitors in parallel to device ground (VSS)  
24  
DREG  
Digital supply  
Ground supply  
Thermal pad shorted to internal device ground. Short the thermal pad directly to the  
board ground plane.  
Thermal Pad  
Thermal Pad (VSS)  
4
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over the operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
3.9  
UNIT  
V
AVDD to AVSS  
Supply voltage  
AREG to AVSS  
2.0  
IOVDD to VSS (thermal pad)  
AVSS to VSS (thermal pad)  
3.9  
Ground voltage differences  
0.3  
V
Digital input except PDMDINx_GPIx pins voltage to  
VSS (thermal pad)  
–0.3  
–0.3  
IOVDD + 0.3  
AVDD + 0.3  
Digital input voltage  
Temperature  
V
Digital input PDMDINx_GPIx pins voltage to VSS  
(thermal pad)  
Operating ambient, TA  
Junction, TJ  
–40  
–40  
–65  
125  
150  
150  
°C  
Storage, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
POWER  
Analog supply voltage AVDD to AVSS (AREG is generated using onchip regulator) -  
AVDD 3.3-V operation  
3.0  
1.7  
3.3  
1.8  
3.6  
1.9  
AVDD,  
V
V
AREG(1)  
Analog supply voltage AVDD and AREG to AVSS (AREG internal regulator is  
shutdown) - AVDD 1.8-V operation  
IO supply voltage to VSS (thermal pad) - IOVDD 3.3-V operation  
IO supply voltage to VSS (thermal pad) - IOVDD 1.8-V operation  
3.0  
3.3  
1.8  
3.6  
IOVDD  
1.65  
1.95  
INPUTS  
Digital input except PDMDINx_GPIx pins voltage to VSS (thermal pad)  
Digital input PDMDINx_GPIx pins voltage to VSS (thermal pad)  
0
0
IOVDD  
AVDD  
V
V
TEMPERATURE  
TA  
Operating ambient temperature  
–40  
125  
°C  
OTHERS  
GPIOx or GPIx (used as MCLK input) clock frequency  
36.864  
400  
MHz  
pF  
SCL and SDA bus capacitance for I2C interface supports standard-mode and fast-  
mode  
Cb  
CL  
SCL and SDA bus capacitance for I2C interface supports fast-mode plus  
Digital output load capacitance  
550  
50  
20  
pF  
(1) AVSS and VSS (thermal pad): all ground pins must be tied together and must not differ in voltage by more than 0.2 V.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
6.4 Thermal Information  
PCMD3180  
RTW (WQFN)  
24 PINS  
32.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
25.0  
11.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
11.9  
RθJC(bot)  
2.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, PDMCLKx = 64 × fS, 32-bit audio data,  
BCLK = 256 × fS, TDM slave mode, PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PERFORMANCE FOR PDM INPUT CONVERSION  
No signal, input generated using 5th order PDM  
modulator  
128  
118  
127  
117  
Signal-to-noise ratio, A-  
weighted(1)(2)(3)  
SNR  
DR  
dB  
No signal, input generated using 4th order PDM  
modulator  
–60-dB full-scale signal input, input generated using 5th  
order PDM modulator  
Dynamic range, A-  
weighted(2)(3)  
dB  
–60-dB full-scale signal input, input generated using 4th  
order PDM modulator  
OTHER PARAMETERS  
Digital volume control  
Programmable 0.5-dB steps  
–100  
27  
dB  
range  
PDMCLKx output rate  
Output data sample rate  
Programmable  
Programmable  
0.7056  
7.35  
6.144  
768  
MHz  
kHz  
Output data sample word  
length  
Programmable  
16  
32  
Bits  
Hz  
Digital high-pass filter  
cutoff frequency  
First-order IIR filter with programmable coefficients, –3-  
dB point (default setting)  
12  
MICBIAS programmed to VREF and VREF programmed  
to either 2.75 V, 2.5 V, or 1.375 V  
VREF  
MICBIAS voltage  
V
Bypass to AVDD with 20-mA load  
AVDD – 0.2  
DIGITAL I/O  
All digital pins except PDMDINx_GPIx, SDA and SCL,  
IOVDD 1.8-V operation  
0.35 ×  
IOVDD  
–0.3  
–0.3  
Low-level digital input logic  
voltage threshold  
VIL  
V
V
V
All digital pins except PDMDINx_GPIx, SDA and SCL,  
IOVDD 3.3-V operation  
0.8  
All digital pins except PDMDINx_GPIx, SDA and SCL,  
IOVDD 1.8-V operation  
0.65 ×  
IOVDD  
IOVDD +  
0.3  
High-level digital input logic  
voltage threshold  
VIH  
All digital pins except PDMDINx_GPIx, SDA and SCL,  
IOVDD 3.3-V operation  
IOVDD +  
0.3  
2
All digital pins except PDMCLKx_GPOx, SDA and SCL,  
IOL = –2 mA, IOVDD 1.8-V operation  
0.45  
0.4  
Low-level digital output  
voltage  
VOL  
All digital pins except PDMCLKx_GPOx, SDA and SCL,  
IOL = –2 mA, IOVDD 3.3-V operation  
(1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with no signal, measured A-weighted over a 20-Hz to 20-  
kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
(3) The device performance parameters, SNR, DR and THD+N, are mainly limited by single-bit PDM modulator generated data output. The  
THD+N peformance for single-bit PDM modulator output itself is generally not so good for signal above –10-dB full-scale. The datasheet  
measured numbers are with using audio equipments consist of high performance PDM modulator output generator.  
6
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, PDMCLKx = 64 × fS, 32-bit audio data,  
BCLK = 256 × fS, TDM slave mode, PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
All digital pins except PDMCLKx_GPOx, SDA and SCL,  
IOH = 2 mA, IOVDD 1.8-V operation  
IOVDD –  
0.45  
High-level digital output  
voltage  
VOH  
V
All digital pins except PDMCLKx_GPOx, SDA and SCL,  
IOH = 2 mA, IOVDD 3.3-V operation  
2.4  
–0.5  
Low-level digital input logic  
voltage threshold  
VIL(I2C)  
SDA and SCL  
0.3 x IOVDD  
V
V
V
V
High-level digital input logic  
voltage threshold  
IOVDD +  
0.5  
VIH(I2C)  
VOL1(I2C)  
VOL2(I2C)  
SDA and SCL  
0.7 x IOVDD  
Low-level digital output  
voltage  
SDA, IOL(I2C) = –3 mA, IOVDD > 2 V  
SDA, IOL(I2C) = –2 mA, IOVDD 2 V  
0.4  
Low-level digital output  
voltage  
0.2 x IOVDD  
SDA, VOL(I2C) = 0.4 V, standard-mode or fast-mode  
SDA, VOL(I2C) = 0.4 V, fast-mode plus  
3
Low-level digital output  
current  
IOL(I2C)  
mA  
20  
0.25 ×  
IOVDD  
SHDNZ pin, AVDD 1.8-V operation  
SHDNZ pin, AVDD 3.3-V operation  
SHDNZ pin, AVDD 1.8-V operation  
–0.3  
–0.3  
V
V
V
Low-level digital input logic  
voltage threshold  
VIL(SHDNZ)  
0.9  
0.75 ×  
IOVDD  
IOVDD +  
0.3  
High-level digital input logic  
voltage threshold  
VIH(SHDNZ)  
IOVDD +  
0.3  
SHDNZ pin, AVDD 3.3-V operation  
2.25  
–5  
V
Input logic-low leakage for  
digital inputs  
IIL  
All digital pins except PDMDINx_GPIx pins, input = 0 V  
0.1  
0.1  
5
5
µA  
µA  
Input logic-high leakage for All digital pins except PDMDINx_GPIx pins, input =  
IIH  
–5  
digital inputs  
IOVDD  
0.35 ×  
AVDD  
All PDMDINx_GPIx digital pins, AVDD 1.8-V operation  
All PDMDINx_GPIx digital pins, AVDD 3.3-V operation  
All PDMDINx_GPIx digital pins, AVDD 1.8-V operation  
All PDMDINx_GPIx digital pins, AVDD 3.3-V operation  
–0.3  
–0.3  
Low-level digital input logic  
voltage threshold  
VIL(GPIx)  
V
V
0.8  
AVDD + 0.3  
AVDD + 0.3  
0.45  
0.65 ×  
AVDD  
High-level digital input logic  
voltage threshold  
VIH(GPIx)  
2
All PDMCLKx_GPOx digital pins, IOL = –2 mA, AVDD  
1.8-V operation  
Low-level digital output  
voltage  
VOL(GPOx)  
V
V
All PDMCLKx_GPOx digital pins, IOL = –2 mA, AVDD  
3.3-V operation  
0.4  
All PDMCLKx_GPOx digital pins, IOH = 2 mA, AVDD 1.8-  
V operation  
AVDD –  
0.45  
High-level digital output  
voltage  
VOH(GPOx)  
All PDMCLKx_GPOx digital pins, IOH = 2 mA, AVDD 3.3-  
V operation  
2.4  
–5  
–5  
Input logic-high leakage for  
digital inputs  
IIL(GPIx)  
IIH(GPIx)  
CIN  
All PDMDINx_GPIx digital pins, input = 0 V  
All PDMDINx_GPIx digital pins, input = AVDD  
All digital pins  
0.1  
0.1  
5
5
5
µA  
µA  
pF  
Input logic-high leakage for  
digital inputs  
Input capacitance for  
digital inputs  
Pulldown resistance for  
digital I/O pins when  
asserted on  
RPD  
20  
kΩ  
TYPICAL SUPPLY CURRENT CONSUMPTION  
IAVDD SHDNZ = 0, AVDD = 3.3 V  
1
1
SHDNZ = 0, AVDD = 1.8 V, external AREG supply  
(AREG shorted to AVDD)  
IAVDD  
Current consumption in  
hardware shutdown mode  
µA  
IIOVDD  
IIOVDD  
SHDNZ = 0, all external clocks stopped, IOVDD = 3.3 V  
SHDNZ = 0, all external clocks stopped, IOVDD = 1.8 V  
0.1  
0.1  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Electrical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, PDMCLKx = 64 × fS, 32-bit audio data,  
BCLK = 256 × fS, TDM slave mode, PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IAVDD  
IAVDD  
All external clocks stopped, AVDD = 3.3 V  
5
All external clocks stopped, AVDD = 1.8 V, external  
AREG supply (AREG shorted to AVDD)  
Current consumption in  
sleep mode (software  
shutdown mode)  
5
µA  
IIOVDD  
IIOVDD  
IAVDD  
All external clocks stopped, IOVDD = 3.3 V  
All external clocks stopped, IOVDD = 1.8 V  
AVDD = 3.3 V  
0.1  
0.1  
11.9  
Current consumption with  
8-channel PDM input  
recording, fS = 48 kHz,  
PDMCLKx = 64 × fS, PLL  
on and BCLK = 256 × fS  
AVDD = 1.8 V, external AREG supply (AREG shorted to  
AVDD)  
IAVDD  
11.3  
mA  
mA  
IIOVDD  
IIOVDD  
IAVDD  
IOVDD = 3.3 V  
IOVDD = 1.8 V  
AVDD = 3.3 V  
0.7  
0.4  
7.2  
Current consumption with  
4-channel PDM input  
recording, fS = 16 kHz,  
PDMCLKx = 96 × fS, PLL  
on and BCLK = 256 × fS  
AVDD = 1.8 V, external AREG supply (AREG shorted to  
AVDD)  
IAVDD  
6.5  
IIOVDD  
IIOVDD  
IOVDD = 3.3 V  
IOVDD = 1.8 V  
0.2  
0.1  
8
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
6.6 Timing Requirements: I2C Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V (unless otherwise noted); see Figure 1 for timing diagram  
MIN  
NOM  
MAX  
UNIT  
STANDARD-MODE  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
4.7  
4
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
4.7  
0
3.45  
Data setup time  
250  
SDA and SCL rise time  
1000  
300  
tf  
SDA and SCL fall time  
tSU;STO  
tBUF  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
4
4.7  
FAST-MODE  
fSCL  
SCL clock frequency  
0
400  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
0.6  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
ns  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
0.9  
Data setup time  
100  
20  
SDA and SCL rise time  
300  
300  
20 ×  
(IOVDD /  
5.5 V)  
tf  
SDA and SCL fall time  
ns  
tSU;STO  
Setup time for STOP condition  
0.6  
1.3  
μs  
μs  
tBUF  
Bus free time between a STOP and START condition  
FAST-MODE PLUS  
fSCL  
SCL clock frequency  
0
1000  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
0.26  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
0.5  
0.26  
0.26  
0
μs  
μs  
μs  
μs  
ns  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
Data setup time  
50  
SDA and SCL rise time  
120  
120  
20 ×  
(IOVDD /  
5.5 V)  
tf  
SDA and SCL fall time  
ns  
tSU;STO  
tBUF  
Setup time for STOP condition  
0.26  
0.5  
μs  
μs  
Bus free time between a STOP and START condition  
6.7 Switching Characteristics: I2C Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V (unless otherwise noted); see Figure 1 for timing diagram  
PARAMETER  
TEST CONDITIONS  
Standard-mode  
MIN  
250  
250  
TYP  
MAX  
1250  
850  
UNIT  
td(SDA)  
SCL to SDA delay  
Fast-mode  
ns  
Fast-mode plus  
400  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
6.8 Timing Requirements: SPI Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 2 for timing diagram  
MIN  
40  
18  
18  
16  
16  
20  
8
NOM  
MAX  
UNIT  
t(SCLK)  
tH(SCLK)  
tL(SCLK)  
tLEAD  
SCLK period  
ns  
SCLK high pulse duration  
SCLK low pulse duration  
Enable lead time  
ns  
ns  
ns  
tTRAIL  
Enable trail time  
ns  
tDSEQ  
Sequential transfer delay  
MOSI data setup time  
MOSI data hold time  
SCLK rise time  
ns  
tSU(MOSI)  
tHLD(MOSI)  
tr(SCLK)  
tf(SCLK)  
ns  
8
ns  
10% - 90% rise time  
90% - 10% fall time  
6
6
ns  
SCLK fall time  
ns  
6.9 Switching Characteristics: SPI Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 2 for timing diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
16  
UNIT  
ns  
ta(MISO)  
td(MISO)  
tdis(MISO)  
MISO access time  
SCLK to MISO delay  
MISO disable time  
50% of SCLK to 50% of MISO  
16  
ns  
20  
ns  
6.10 Timing Requirements: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 3 for timing diagram  
MIN  
40  
18  
18  
8
NOM  
MAX  
UNIT  
t(BCLK)  
BCLK period  
ns  
(1)  
tH(BCLK)  
tL(BCLK)  
tSU(FSYNC)  
tHLD(FSYNC)  
tr(BCLK)  
BCLK high pulse duration  
BCLK low pulse duration  
FSYNC setup time  
FSYNC hold time  
BCLK rise time  
ns  
(1)  
ns  
ns  
8
ns  
10% - 90% rise time  
90% - 10% fall time  
10  
10  
ns  
tf(BCLK)  
BCLK fall time  
ns  
(1) The BCLK minimum high or low pulse duration must be higher than 25 ns (to meet the timing specifications), if the SDOUT data line is  
latched on the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
6.11 Switching Characteristics: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 3 for timing diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
BCLK to SDOUT delay  
50% of BCLK to 50% of SDOUT  
18  
ns  
FSYNC to SDOUT delay in TDM  
or LJ mode (for MSB data with  
TX_OFFSET = 0)  
50% of FSYNC to 50% of  
SDOUT  
18  
ns  
BCLK output clock frequency:  
master mode  
f(BCLK)  
24.576  
MHz  
ns  
(1)  
BCLK high pulse duration:  
master mode  
tH(BCLK)  
tL(BCLK)  
td(FSYNC)  
14  
14  
BCLK low pulse duration: master  
mode  
ns  
BCLK to FSYNC delay: master  
mode  
50% of BCLK to 50% of FSYNC  
18  
ns  
tr(BCLK)  
tf(BCLK)  
BCLK rise time: master mode  
BCLK fall time: master mode  
10% - 90% rise time  
90% - 10% fall time  
8
8
ns  
ns  
(1) The BCLK output clock frequency must be lower than 18.5 MHz (to meet the timing specifications), if the SDOUT data line is latched on  
the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
10  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
6.12 Timing Requirements: PDM Digital Microphone Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 4 for timing diagram  
MIN  
30  
0
NOM  
MAX  
UNIT  
tSU(PDMDINx)  
tHLD(PDMDINx)  
PDMDINx setup time  
PDMDINx hold time  
ns  
ns  
6.13 Switching Characteristics: PDM Digial Microphone Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 4 for timing diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
0.768  
72  
TYP  
MAX  
UNIT  
MHz  
ns  
f(PDMCLK)  
tH(PDMCLK)  
tL(PDMCLK)  
tr(PDMCLK)  
tf(PDMCLK)  
PDMCLK clock frequency  
PDMCLK high pulse duration  
PDMCLK low pulse duration  
PDMCLK rise time  
6.144  
72  
ns  
10% - 90% rise time  
18  
18  
ns  
PDMCLK fall time  
90% - 10% fall time  
ns  
SDA  
tBUF  
tHD;STA  
tLOW  
tr  
td(SDA)  
SCL  
tHD;STA  
tHD;DAT  
tHIGH  
tSU;DAT  
tSU;STA  
tSU;STO  
STO  
STA  
tf  
STA  
STO  
Figure 1. I2C Interface Timing Diagram  
SSZ  
tDSEQ  
tLAG  
t(SCLK)  
tf(SCLK)  
tLEAD  
tr(SCLK)  
SCLK  
tL(SCLK)  
tH(SCLK)  
td(MISO)  
tdis(MISO)  
MISO  
MOSI  
MSB OUT  
LSB OUT  
BIT6...1  
BIT6...1  
ta(MISO)  
tSU(MOSI) tHLD(MOSI)  
MSB IN  
LSB IN  
Figure 2. SPI Interface Timing Diagram  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
FSYNC  
tSU(FSYNC)  
tHLD(FSYNC)  
t(BCLK)  
tL(BCLK)  
BCLK  
tH(BCLK)  
tr(BCLK)  
tf(BCLK)  
td(FSYNC)  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
SDOUT  
Figure 3. TDM (With BCLK_POL = 1), I2S, and LJ Interface Timing Diagram  
tSU(PDMDINx)  
tHLD(PDMDINx) tSU(PDMDINx)  
tHLD(PDMDINx)  
tH(PDMCLK)  
tL(PDMCLK)  
PDMCLK  
t(PDMCLK)  
tf(PDMCLK)  
tr(PDMCLK)  
PDMDINx  
Falling Edge Captured  
Rising Edge Captured  
Figure 4. PDM Digital Microphone Interface Timing Diagram  
12  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
6.14 Typical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, PDMCLKx = 64 × fS, 32-bit audio  
data, BCLK = 256 × fS, TDM slave mode, PLL on, and linear phase decimation filter (unless otherwise noted); all performance  
measurements are done with a 20-kHz, low-pass filter and an A-weighted filter (unless otherwise noted). All measurements  
are done by feeding the device PDM digital input signal using audio precision  
-70  
-80  
-70  
-80  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-7  
Channel-8  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-7  
Channel-8  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
20  
50  
100  
500  
1000  
5000 10000 20000  
PDM_  
Input Amplitude (dB)  
Frequency (Hz)  
PTDHMD+_  
Fifth order PDM modulator with PDMCLKx = 3.072 MHz  
Fifth order PDM modulator with PDMCLKx = 3.072 MHz  
Figure 5. THD+N vs Input Amplitude  
Figure 6. THD+N vs Input Frequency With a –20-dBr Input  
20  
10  
0
Channel-1  
Channel-2  
-20  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-7  
Channel-8  
0
-40  
-10  
-20  
-30  
-40  
-50  
-60  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-70  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-7  
Channel-8  
-80  
-90  
-100  
-110  
-120  
20  
50 100  
500 1000  
5000 10000  
100000  
20  
50  
100  
500  
1000  
5000 10000 20000  
PDM_  
Frequency (Hz)  
Freq  
Frequency (Hz)  
PDM_  
Fifth order PDM modulator with PDMCLKx = 3.072 MHz  
Fifth order PDM modulator with PDMCLKx = 3.072 MHz  
Figure 7. Frequency Response With a –20-dBr Input  
Figure 8. FFT With a –60-dBr Input  
-60  
-60  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
-70  
-70  
-80  
-80  
Channel-7  
Channel-8  
Channel-7  
Channel-8  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10 -1  
20  
50  
100  
500  
1000  
5000 10000 20000  
PDM_  
Input Amplitude (dB)  
Frequency (Hz)  
PTDHMD+_  
Fourth order PDM modulator with PDMCLKx = 3.072 MHz  
Fourth order PDM modulator with PDMCLKx = 3.072 MHz  
Figure 9. THD+N vs Input Amplitude  
Figure 10. THD+N vs Input Frequency With a –20-dBr Input  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, PDMCLKx = 64 × fS, 32-bit audio  
data, BCLK = 256 × fS, TDM slave mode, PLL on, and linear phase decimation filter (unless otherwise noted); all performance  
measurements are done with a 20-kHz, low-pass filter and an A-weighted filter (unless otherwise noted). All measurements  
are done by feeding the device PDM digital input signal using audio precision  
20  
0
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-7  
Channel-8  
10  
-20  
0
-40  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-7  
Channel-8  
20  
50 100  
500 1000  
5000 10000  
100000  
20  
50  
100  
500  
1000  
5000 10000 20000  
PDM_  
Frequency (Hz)  
Freq  
Frequency (Hz)  
PDM_  
Fourth order PDM modulator with PDMCLKx = 3.072 MHz  
Fourth order PDM modulator with PDMCLKx = 3.072 MHz  
Figure 11. Frequency Response With a –20-dBr Input  
Figure 12. FFT With a –60-dBr Input  
-40  
-40  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
-50  
-50  
-60  
-60  
Channel-7  
Channel-8  
Channel-7  
Channel-8  
-70  
-70  
-80  
-90  
-80  
-90  
-100  
-110  
-100  
-110  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10 -1  
20  
50  
100  
500  
1000  
5000 10000 20000  
PDM_  
Input Amplitude (dB)  
Frequency (Hz)  
PTDHMD+_  
Fourth order PDM modulator with PDMCLKx = 1.536 MHz  
Fourth order PDM modulator with PDMCLKx = 1.536 MHz  
Figure 13. THD+N vs Input Amplitude  
Figure 14. THD+N vs Input Frequency With a –20-dBr Input  
20  
10  
0
Channel-1  
Channel-2  
-20  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-7  
Channel-8  
0
-40  
-10  
-20  
-30  
-40  
-50  
-60  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-70  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-7  
Channel-8  
-80  
-90  
-100  
-110  
-120  
20  
50 100  
500 1000  
5000 10000  
100000  
20  
50  
100  
500  
1000  
5000 10000 20000  
PDM_  
Frequency (Hz)  
Freq  
Frequency (Hz)  
PDM_  
Fourth order PDM modulator with PDMCLKx = 1.536 MHz  
Fourth order PDM modulator with PDMCLKx = 1.536 MHz  
Figure 15. Frequency Response With a –20-dBr Input  
Figure 16. FFT With a –60-dBr Input  
14  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7 Detailed Description  
7.1 Overview  
The PCMD3180 is a high-performance, low-power, flexible, 8-channel, pulse-density-modulation (PDM) input to  
time-division multiplexing (TDM) or I2S audio output converter with extensive feature integration. This device is  
intended for applications in voice-activated systems, portable computing, communication, and entertainment  
applications. The low power consumption makes this device is suitable for battery powered portable audio  
systems. This device integrates a host of features that reduces cost, board space, and power consumption in  
space-constrained, battery-powered, consumer, home, and industrial applications.  
The PCMD3180 consists of the following blocks:  
Eight-channel, pulse density modulation (PDM) digital microphone interface with high-performance decimation  
filter  
Low-noise, microphone bias output to power the digital microphone  
Programmable decimation filters with linear-phase or low-latency filter  
Programmable digital volume control, biquad filters for each channel  
Programmable phase and gain calibration with fine resolution for each channel  
Programmable high-pass filter (HPF), and digital channel mixer  
Integrated low-jitter phase-locked loop (PLL) supporting a wide range of system clocks  
Integrated digital and analog voltage regulators to support single-supply operation  
Communication to the PCMD3180 to configure the control registers is supported using an I2C or SPI interface.  
The device supports a highly flexible audio serial interface [time-division multiplexing (TDM), I2S, or left-justified  
(LJ)] to transmit audio data seamlessly in the system across devices.  
The device can support multiple devices by sharing the common I2C and TDM buses across devices. Moreover,  
the device includes a daisy-chain feature and a secondary audio serial output data pin. These features relax the  
shared TDM bus timing requirements and board design complexities when operating multiple devices for  
applications requiring high audio data bandwidth.  
Table 1 lists the reference abbreviations used throughout this document to registers that control the device.  
Table 1. Abbreviations for Register References  
REFERENCE  
ABBREVIATION  
DESCRIPTION  
EXAMPLE  
Single data bit. The value of a  
single bit in a register.  
Page y, register z, bit k  
Py_Rz_Dk  
Page 4, register 36, bit 0 = P4_R36_D0  
Range of data bits. A range of  
data bits (inclusive).  
Page y, register z, bits k-m  
Page y, register z  
Py_Rz_D[k:m]  
Py_Rz  
Page 4, register 36, bits 3-0 = P4_R36_D[3:0]  
Page 4, register 36 = P4_R36  
One entire register. All eight  
bits in the register as a unit.  
Range of registers. A range of  
registers in the same page.  
Page y, registers z-n  
Py_Rz-Rn  
Page 4, registers 36, 37, 38 = P4_R36-R38  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: PCMD3180  
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.2 Functional Block Diagram  
Audio Clock Generation  
Multifunction Pins  
(Interrupt, PLL Input Clock)  
PLL  
(Input Clock Source - BCLK, GPIOx,  
GPIx)  
GPIO1  
PDMDIN1_GPI1  
PDMCLK1_GPO1  
8-Channel Digital PDM  
Microphones  
Simultaneous  
SDOUT  
BCLK  
High Performance  
Digital Filters  
(Low Latency LPF,  
Programmable  
Biquads)  
PDMDIN2_GPI2  
PDMCLK2_GPO2  
Conversion  
Audio Serial  
Interface (TDM,  
I2S, LJ)  
and  
PDMDIN3_GPI3  
PDMCLK3_GPO3  
General Purpose Input  
and Output  
PDMDIN4_GPI4  
PDMCLK4_GPO4  
FSYNC  
I2C or SPI Control  
Interface  
Programmable  
Microphone Bias  
Regulators, Current Bias  
and Voltage Reference  
MICBIAS  
SHDNZ  
7.3 Feature Description  
7.3.1 Serial Interfaces  
This device has two serial interfaces: control and audio data. The control serial interface is used for device  
configuration. The audio data serial interface is used for transmitting audio data to the host device.  
7.3.1.1 Control Serial Interfaces  
The device contains configuration registers and programmable coefficients that can be set to the desired values  
for a specific system and application use. All these registers can be accessed using either I2C or SPI  
communication to the device. For more information, see the Programming section.  
7.3.1.2 Audio Serial Interfaces  
Digital audio data flows between the host processor and the PCMD3180 on the digital audio serial interface  
(ASI), or audio bus. This highly flexible ASI bus includes a TDM mode for multichannel operation, support for I2S  
or left-justified protocols format, programmable data length options, very flexible master-slave configurability for  
bus clock lines and the ability to communicate with multiple devices within a system directly.  
16  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Feature Description (continued)  
The bus protocol TDM, I2S, or left-justified (LJ) format can be selected by using the ASI_FORMAT[1:0],  
P0_R7_D[7:6] register bits. As shown in Table 2 and Table 3, these modes are all most significant byte (MSB)-  
first, pulse code modulation (PCM) data format, with the output channel data word-length programmable as 16,  
20, 24, or 32 bits by configuring the ASI_WLEN[1:0], P0_R7_D[5:4] register bits.  
Table 2. Audio Serial Interface Format  
P0_R7_D[7:6] : ASI_FORMAT[1:0]  
AUDIO SERIAL INTERFACE FORMAT  
00 (default)  
Time division multiplexing (TDM) mode  
01  
10  
11  
Inter IC sound (I2S) mode  
Left-justified (LJ) mode  
Reserved (do not use this setting)  
Table 3. Audio Output Channel Data Word-Length  
P0_R7_D[5:4] : ASI_WLEN[1:0]  
AUDIO OUTPUT CHANNEL DATA WORD-LENGTH  
00  
01  
Output channel data word-length set to 16 bits  
Output channel data word-length set to 20 bits  
Output channel data word-length set to 24 bits  
Output channel data word-length set to 32 bits  
10  
11 (default)  
The frame sync pin, FSYNC, is used in this audio bus protocol to define the beginning of a frame and has the  
same frequency as the output data sample rates. The bit clock pin, BCLK, is used to clock out the digital audio  
data across the serial bus. The number of bit-clock cycles in a frame must accommodate multiple device active  
output channels with the programmed data word length.  
A frame consists of multiple time-division channel slots (up to 64) to allow all output channel audio data  
transmissions to complete on the audio bus by a device or multiple PCMD3180 devices sharing the same audio  
bus. The device supports up to eight output channels that can be configured to place their audio data on bus slot  
0 to slot 63. Table 4 lists the output channel slot configuration settings. In I2S and LJ mode, the slots are divided  
into two sets, left-channel slots and right-channel slots, as described in the Inter IC Sound (I2S) Interface and  
Left-Justified (LJ) Interface sections.  
Table 4. Output Channel Slot Assignment Settings  
P0_R11_D[5:0] : CH1_SLOT[5:0]  
00 0000 = 0d (default)  
00 0001 = 1d  
OUTPUT CHANNEL 1 SLOT ASSIGNMENT  
Slot 0 for TDM or left slot 0 for I2S, LJ.  
Slot 1 for TDM or left slot 1 for I2S, LJ.  
01 1111 = 31d  
10 0000 = 32d  
Slot 31 for TDM or left slot 31 for I2S, LJ.  
Slot 32 for TDM or right slot 0 for I2S, LJ.  
11 1110 = 62d  
11 1111 = 63d  
Slot 62 for TDM or right slot 30 for I2S, LJ.  
Slot 63 for TDM or right slot 31 for I2S, LJ.  
Similarly, the slot assignment setting for output channel 2 to channel 8 can be done using the CH2_SLOT  
(P0_R12) to CH8_SLOT (P0_R18) registers, respectively.  
The slot word length is the same as the output channel data word length set for the device. The output channel  
data word length must be set to the same value for all PCMD3180 devices if all devices share the same ASI bus  
in a system. The maximum number of slots possible for the ASI bus in a system is limited by the available bus  
bandwidth, which depends upon the BCLK frequency, output data sample rate used, and the channel data word  
length configured.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: PCMD3180  
 
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
The device also includes a feature that offsets the start of the slot data transfer with respect to the frame sync by  
up to 31 cycles of the bit clock. Table 5 lists the programmable offset configuration settings.  
Table 5. Programmable Offset Settings for the ASI Slot Start  
P0_R8_D[4:0] : TX_OFFSET[4:0]  
PROGRAMMABLE OFFSET SETTING FOR SLOT DATA TRANSMISSION START  
0 0000 = 0d (default)  
The device follows the standard protocol timing without any offset.  
Slot start is offset by one BCLK cycle, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by one BCLK cycle, as compared to  
standard protocol timing.  
0 0001 = 1d  
......  
......  
Slot start is offset by 30 BCLK cycles, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by 30 BCLK cycles, as compared to  
standard protocol timing.  
1 1110 = 30d  
Slot start is offset by 31 BCLK cycles, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by 31 BCLK cycles, as compared to  
standard protocol timing.  
1 1111 = 31d  
The device also features the ability to invert the polarity of the frame sync pin, FSYNC, used to transfer the audio  
data as compared to the default FSYNC polarity used in standard protocol timing. This feature can be set using  
the FSYNC_POL, P0_R7_D3 register bit. Similarly, the device can invert the polarity of the bit clock pin, BCLK,  
which can be set using the BCLK_POL, P0_R7_D2 register bit.  
7.3.1.2.1 Time Division Multiplexed Audio (TDM) Interface  
In TDM mode, also known as DSP mode, the rising edge of FSYNC starts the data transfer with the slot 0 data  
first. Immediately after the slot 0 data transmission, the remaining slot data are transmitted in order. FSYNC and  
each data bit (except the MSB of slot 0 when TX_OFFSET equals 0) is transmitted on the rising edge of BCLK.  
Figure 17 to Figure 20 illustrate the protocol timing for TDM operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-2 to Slot-7  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
Figure 17. TDM Mode Standard Protocol Timing (TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
nth Sample  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Slot-2 to Slot-7  
(Word Length : N)  
TX_OFFSET = 2  
TX_OFFSET = 2  
Figure 18. TDM Mode Protocol Timing (TX_OFFSET = 2)  
18  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
FSYNC  
BCLK  
1
0
N-1  
2
1
0
N-1 N-2 N-3  
2
1
0
2
1
0
N-1 N-2 N-3  
0
N-1 N-2  
3
2
1
0
N-1  
SDOUT  
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Slot-2 to Slot-7  
(Word Length : N)  
TX_OFFSET = 2  
nth Sample  
Figure 19. TDM Mode Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 2)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-2 to Slot-7  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
Figure 20. TDM Mode Protocol Timing (TX_OFFSET = 0 and BCLK_POL = 1)  
For proper operation of the audio bus in TDM mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels times the programmed word length of the output channel data.  
The device supports FSYNC as a pulse with a 1-cycle-wide bit clock, but also supports multiples as well. For a  
higher BCLK frequency operation, using TDM mode with a TX_OFFSET value higher than 0 is recommended.  
7.3.1.2.2 Inter IC Sound (I2S) Interface  
The standard I2S protocol is defined for only two channels: left and right. The device extends the same protocol  
timing for multichannel operation. In I2S mode, the MSB of the left slot 0 is transmitted on the falling edge of  
BCLK in the second cycle after the falling edge of FSYNC. Immediately after the left slot 0 data transmission, the  
remaining left slot data are transmitted in order. The MSB of the right slot 0 is transmitted on the falling edge of  
BCLK in the second cycle after the rising edge of FSYNC. Immediately after the right slot 0 data transmission,  
the remaining right slot data are transmitted in order. FSYNC and each data bit is transmitted on the falling edge  
of BCLK. Figure 21 to Figure 24 illustrate the protocol timing for I2S operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
Figure 21. I2S Mode Standard Protocol Timing (TX_OFFSET = 0)  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: PCMD3180  
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
FSYNC  
BCLK  
SDOUT  
N-1  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1  
N-1  
1
0
1
0
Left  
Slot-0  
(Word Length : N) (Word Length : N)  
Left  
Slot-2 to Slot-3  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 1  
TX_OFFSET = 1  
TX_OFFSET = 1  
nth Sample  
Figure 22. I2S Protocol Timing (TX_OFFSET = 1)  
FSYNC  
BCLK  
N-1 N-2  
1
0
N-1 N-2  
0
0
N-1  
1
0
N-1  
1
0
N-1 N-2  
0
N-1  
1
0
N-1 N-2  
1
0
SDOUT  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Left  
Slot-1 to Slot-3  
(Word Length : N)  
Right  
Slot-1 to Slot-3  
(Word Length : N)  
nth Sample  
Figure 23. I2S Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
Figure 24. I2S Protocol Timing (TX_OFFSET = 0 and BCLK_POL = 1)  
For proper operation of the audio bus in I2S mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the programmed word length  
of the output channel data. The device FSYNC low pulse must be a number of BCLK cycles wide that is greater  
than or equal to the number of active left slots times the data word length configured. Similarly, the FSYNC high  
pulse must be a number of BCLK cycles wide that is greater than or equal to the number of active right slots  
times the data word length configured.  
7.3.1.2.3 Left-Justified (LJ) Interface  
The standard LJ protocol is defined for only two channels: left and right. The device extends the same protocol  
timing for multichannel operation. In LJ mode, the MSB of the left slot 0 is transmitted in the same BCLK cycle  
after the rising edge of FSYNC. Each subsequent data bit is transmitted on the falling edge of BCLK.  
Immediately after the left slot 0 data transmission, the remaining left slot data are transmitted in order. The MSB  
of the right slot 0 is transmitted in the same BCLK cycle after the falling edge of FSYNC. Each subsequent data  
bit is transmitted on the falling edge of BCLK. Immediately after the right slot 0 data transmission, the remaining  
right slot data are transmitted in order. FSYNC is transmitted on the falling edge of BCLK. Figure 25 to Figure 28  
illustrate the protocol timing for LJ operation with various configurations.  
20  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
Figure 25. LJ Mode Standard Protocol Timing (TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1  
N-1  
1
0
1
0
Left  
Slot-0  
(Word Length : N) (Word Length : N)  
Left  
Slot-2 to Slot-3  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 2  
TX_OFFSET = 2  
TX_OFFSET = 2  
nth Sample  
Figure 26. LJ Protocol Timing (TX_OFFSET = 2)  
FSYNC  
BCLK  
N-1 N-2  
1
0
N-1 N-2  
0
0
N-1  
1
0
N-1  
1
0
N-1 N-2  
0
N-1  
1
0
N-1 N-2  
1
0
SDOUT  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Left  
Slot-1 to Slot-3  
(Word Length : N)  
Right  
Slot-1 to Slot-3  
(Word Length : N)  
nth Sample  
Figure 27. LJ Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 1  
TX_OFFSET = 1  
TX_OFFSET = 1  
nth Sample  
Figure 28. LJ Protocol Timing (TX_OFFSET = 1 and BCLK_POL = 1)  
For proper operation of the audio bus in LJ mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the programmed word length  
of the output channel data. The device FSYNC high pulse must be a number of BCLK cycles wide that is greater  
than or equal to the number of active left slots times the data word length configured. Similarly, the FSYNC low  
pulse must be number of BCLK cycles wide that is greater than or equal to the number of active right slots times  
the data word length configured. For a higher BCLK frequency operation, using LJ mode with a TX_OFFSET  
value higher than 0 is recommended.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.3.1.3 Using Multiple Devices With Shared Buses  
The device has many supported features and flexible options that can be used in the system to seamlessly  
connect multiple PCMD3180 devices by sharing a single common I2C control bus and an audio serial interface  
bus. This architecture enables multiple applications to be applied to a system that require a microphone array for  
beam-forming operation, audio conferencing, noise cancellation, and so forth. Figure 29 shows a diagram of  
multiple PCMD3180 devices in a configuration where the control and audio data buses are shared.  
Control Bus œ I2C Interface  
PCMD3180  
U1  
PCMD3180  
U2  
PCMD3180  
U3  
PCMD3180  
U4  
Host Processor  
Audio Data Bus œ TDM, I2S, LJ Interface  
Figure 29. Multiple PCMD3180 Devices With Shared Control and Audio Data Buses  
The PCMD3180 consists of the following features to enable seamless connection and interaction of multiple  
devices using a shared bus:  
Supports up to four pin-programmable I2C slave addresses  
I2C broadcast simultaneously writes to (or triggers) all PCMD3180 devices  
Supports up to 64 configuration output channel slots for the audio serial interface  
Tri-state feature (with enable and disable) for the unused audio data slots of the device  
Supports a bus-holder feature (with enable and disable) to keep the last driven value on the audio bus  
The GPIO1 or GPOx pin can be configured as a secondary output data lane for the audio serial interface  
The GPIO1 or GPIx pin can be used in a daisy-chain configuration of multiple PCMD3180 devices  
Supports one BCLK cycle data latching timing to relax the timing requirement for the high-speed interface  
Programmable master and slave options for the audio serial interface  
Ability to synchronize the multiple devices for the simultaneous sampling requirement across devices  
The system can also connect multiple PCMD3180 devices in combination with TLV320ADCx140 devices by  
sharing a single common I2C control bus and an audio serial interface bus. See the Multiple TLV320ADCx140  
Devices With Shared TDM and I2C Bus application report for further details.  
22  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.3.2 Phase-Locked Loop (PLL) and Clock Generation  
The device has a smart auto-configuration block to generate all necessary internal clocks required for the PDM  
clock generation and the digital filter engine used for signal processing. This configuration is done by monitoring  
the frequency of the FSYNC and BCLK signal on the audio bus.  
The device supports the various output data sample rates (of the FSYNC signal frequency) and the BCLK to  
FSYNC ratio to configure all clock dividers, including the PLL configuration, internally without host programming.  
Table 6 and Table 7 list the supported FSYNC and BCLK frequencies.  
Table 6. Supported FSYNC (Multiples or Submultiples of 48 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
RATIO  
FSYNC  
(8 kHz)  
FSYNC  
(16 kHz)  
FSYNC  
(24 kHz)  
FSYNC  
(32 kHz)  
FSYNC  
(48 kHz)  
FSYNC  
(96 kHz)  
FSYNC  
(192 kHz)  
FSYNC  
(384 kHz)  
FSYNC  
(768 kHz)  
16  
24  
Reserved  
Reserved  
0.256  
0.256  
0.384  
0.512  
0.768  
1.024  
1.536  
2.048  
3.072  
4.096  
6.144  
8.192  
16.384  
Reserved  
0.384  
0.576  
0.512  
0.768  
0.768  
1.152  
1.536  
2.304  
3.072  
4.608  
6.144  
12.288  
9.216  
18.432  
32  
0.768  
1.024  
1.536  
3.072  
6.144  
12.288  
24.576  
48  
0.384  
1.152  
1.536  
2.304  
4.608  
9.216  
18.432  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
64  
0.512  
1.536  
2.048  
3.072  
6.144  
12.288  
24.576  
96  
0.768  
2.304  
3.072  
4.608  
9.216  
18.432  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
128  
192  
256  
384  
512  
1024  
2048  
1.024  
3.072  
4.096  
6.144  
12.288  
18.432  
24.576  
Reserved  
Reserved  
Reserved  
Reserved  
24.576  
1.536  
4.608  
6.144  
9.216  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2.048  
6.144  
8.192  
12.288  
18.432  
24.576  
Reserved  
Reserved  
3.072  
9.216  
12.288  
16.384  
Reserved  
Reserved  
4.096  
12.288  
24.576  
Reserved  
8.192  
16.384  
Table 7. Supported FSYNC (Multiples or Submultiples of 44.1 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
RATIO  
FSYNC  
(7.35 kHz)  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
(44.1 kHz)  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
(14.7 kHz) (22.05 kHz) (29.4 kHz)  
(88.2 kHz) (176.4 kHz) (352.8 kHz) (705.6 kHz)  
16  
24  
Reserved  
Reserved  
Reserved  
0.3528  
Reserved  
0.3528  
0.4704  
0.7056  
0.9408  
1.4112  
1.8816  
2.8224  
3.7632  
5.6448  
7.5264  
15.0528  
Reserved  
0.3528  
0.5292  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
22.5792  
Reserved  
0.4704  
0.7056  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
16.9344  
32  
0.9408  
1.4112  
2.8224  
5.6448  
11.2896  
22.5792  
48  
1.4112  
2.1168  
4.2336  
8.4672  
16.9344  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
64  
0.4704  
1.8816  
2.8224  
5.6448  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
22.5792  
96  
0.7056  
2.8224  
4.2336  
8.4672  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
128  
192  
256  
384  
512  
1024  
2048  
0.9408  
3.7632  
5.6448  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
1.4112  
5.6448  
8.4672  
1.8816  
7.5264  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
2.8224  
11.2896  
15.0528  
Reserved  
Reserved  
3.7632  
7.5264  
15.0528  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: PCMD3180  
 
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
The status register ASI_STS, P0_R21, captures the device auto detect result for the FSYNC frequency and the  
BCLK to FSYNC ratio. If the device finds any unsupported combinations of FSYNC frequency and BCLK to  
FSYNC ratios, the device generates an ASI clock-error interrupt and mutes the record channels accordingly.  
The device uses an integrated, low-jitter, phase-locked loop (PLL) to generate internal clocks required for the  
PDM clock generation and digital filter engine, as well as other control blocks. The device also supports an  
option to use BCLK, GPIO1, or the GPIx pin (as MCLK) as the audio clock source without using the PLL to  
reduce power consumption. However, the PDM microphone performance may degrade based on jitter from the  
external clock source, and some processing features may not be supported if the external audio clock source  
frequency is not high enough. Therefore, TI recommends using the PLL for high-performance applications. More  
details and information on how to configure and use the device in low-power mode without using the PLL are  
discussed in the TLV320ADCx140 Power Consumption Matrix Across Various Usage Scenario application report.  
The device also supports an audio bus master mode operation using the GPIO1 or GPIx pin (as MCLK) as the  
reference input clock source and supports various flexible options and a wide variety of system clocks. More  
details and information on master mode configuration and operation are discussed in the Configuring and  
Operating the TLV320ADCx140 as Audio Bus Master application report.  
The audio bus clock error detection and auto-detect feature automatically generates all internal clocks, but can  
be disabled using the ASI_ERR, P0_R9_D5 and AUTO_CLK_CFG, P0_R19_D6, register bits, respectively. In  
the system, this disable feature can be used to support custom clock frequencies that are not covered by the  
auto detect scheme. For such application use cases, care must be taken to ensure that the multiple clock  
dividers are all configured appropriately. Therefore, TI recommends using the PPC3 GUI for device configuration  
settings; for more details see the ADCx140EVM-PDK user's guide and the PurePath™ Console Graphical  
Development Suite for Audio System Design and Development.  
7.3.3 Reference Voltage  
The PCMD3180 achieves low-noise performance by internally generating a low-noise reference voltage. This  
reference voltage is generated using a band-gap circuit with high PSRR performance and must be filtered  
externally using a 1-µF capacitor connected from the VREF pin to analog ground (AVSS).  
The value of this reference voltage can be configured using the P0_R59_D[1:0] register bits and must be set to  
an appropriate value based on the AVDD supply voltage available in the system. The default VREF value is set  
to 2.75 V, which require minimum AVDD voltage for this mode is 3 V. Table 8 lists the various VREF settings  
supported along with required AVDD range for that configuration.  
Table 8. VREF Programmable Settings  
P0_R59_D[1:0] : VREF_SEL[1:0]  
VREF OUTPUT VOLTAGE  
AVDD RANGE REQUIREMENT  
3 V to 3.6 V  
00 (default)  
2.75 V  
2.5 V  
01  
10  
11  
2.8 V to 3.6 V  
1.375 V  
Reserved  
1.7 V to 1.9 V  
Reserved  
To achieve low-power consumption, this audio reference block is powered down as described in the Sleep Mode  
or Software Shutdown section. When exiting sleep mode, the audio reference block is powered up using the  
internal fast-charge scheme and the VREF pin settles to its steady-state voltage after the settling time (a function  
of the decoupling capacitor on the VREF pin). This time is approximately equal to 3.5 ms when using a 1-μF  
decoupling capacitor. If a higher-value decoupling capacitor is used on the VREF pin, the fast-charge setting  
must be reconfigured using the VREF_QCHG, P0_R2_D[4:3] register bits, which support options of 3.5 ms  
(default), 10 ms, 50 ms, or 100 ms.  
24  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.3.4 Microphone Bias  
The device integrates a built-in, low-noise programmable microphone bias pin that can be used in the system for  
providing the supply to the MEMS digital microphone. The MICBIAS pin must be connected to external 1-µF to  
analog ground (AVSS). The MICBIAS pin supports up to 20 mA of load current that can be used for multiple  
microphones. When using this MICBIAS pin for biasing or supplying to multiple microphones, avoid any common  
impedance on the board layout for the MICBIAS connection to minimize coupling across microphones. In system,  
if MICBIAS pin is used as supply for digital microphones then TI recommends to use MICBIAS configuration as  
AVDD, so that the digital microphone's PDMCLKx and PDMDINx signals can be directly interface to PCMD3180  
without using any external level shifters. Table 9 shows the available microphone bias programmable options.  
Table 9. MICBIAS Programmable Settings  
P0_R59_D[6:4] : MBIAS_VAL[2:0]  
P0_R59_D[1:0] : VREF_SEL[1:0]  
MICBIAS OUTPUT VOLTAGE  
2.75 V (same as the VREF output)  
2.5 V (same as the VREF output)  
1.375 V (same as the VREF output)  
Reserved (do not use these settings)  
Same as AVDD  
00 (default)  
000 (default)  
01  
10  
001 to 101  
110  
XX  
XX  
XX  
111  
Reserved (do not use this setting)  
The microphone bias output can be powered on or powered off (default) by configuring the MICBIAS_PDZ,  
P0_R117_D7 register bit. Additionally, the device provides an option to configure the GPIO1 or GPIx pin to  
directly control the microphone bias output powering on or off. This feature is useful to control the microphone  
directly without engaging the host for I2C or SPI communication. The MICBIAS_PDZ, P0_R117_D7 register bit  
value is ignored if the GPIO1 or GPIx pin is configured to set the microphone bias on or off.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: PCMD3180  
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.3.5 Digital PDM Microphone Record Channel  
The device interfaces up to eight digital pulse-density-modulation (PDM) microphones for simultaneous  
conversion and uses high-order and high-performance decimation filters to generate pulse code modulation  
(PCM) output data that can be transmitted on the audio serial interface to the host using either time-division  
multiplexing (TDM), I2S, or left-justified (LJ) audio formats.  
The device internally generates PCMCLK with a programmable frequency of either 6.144 MHz, 3.072 MHz,  
1.536 MHz, or 768 kHz (for output data sample rates in multiples or submultiples of 48 kHz) or 5.6448 MHz,  
2.8224 MHz, 1.4112 MHz, or 705.6 kHz (for output data sample rates in multiples or submultiples of 44.1 kHz)  
using the PDMCLK_DIV[1:0], P0_R31_D[1:0] register bits. PDMCLK can be routed on the PDMCLKx_GPOx pin.  
This clock can be connected to the external digital microphone device. The device also support control register to  
independently configure each channel PDMDINx data to be latched using either rising edge or falling edge.  
Figure 30 shows a connection diagram of the digital PDM microphones.  
VDD  
VDD  
VDD  
DATA  
AVDD  
Digital  
PDM  
SEL Microphone  
U1  
CLK  
GND  
GND  
PCMD3180  
VDD  
VDD  
PDMDINx_GPIx  
DATA  
CLK  
Digital  
PDM  
SEL Microphone  
U2  
PDMCLKx_GPOx  
GND  
GND  
Figure 30. Digital PDM Microphones Connection Diagram to the PCMD3180  
The single-bit output of the external digital microphone device can be connected to the GPIx pin. This single data  
line can be shared by two digital microphones to place their data on the opposite edge of PDMCLK. Internally,  
the device latches the steady value of the data on the rising edge of PDMCLK or the falling edge of PDMCLK  
based on the configuration register bits set in P0_R32_D[7:4]. Figure 31 shows the digital PDM microphone  
interface timing diagram.  
PDMCLK  
PDMDINx  
D1[n]  
D2[n]  
D1[n+1]  
D2[n+1]  
D1[n+2]  
Mic-1  
Data  
Mic-2  
Data  
Mic-1  
Data  
Mic-2  
Data  
Mic-1  
Data  
(n+1)th Sample  
(n+2)th Sample  
nth Sample  
Figure 31. Digital PDM Microphone Protocol Timing Diagram  
26  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.3.6 Signal-Chain Processing  
The PCMD3180 signal chain is comprised of high-performance, low-power and highly flexible and programmable  
digital processing blocks. The high performance and flexibility combined with a compact package makes the  
PCMD3180 optimized for a wide variety of end-equipments and applications that require multichannel audio  
capture. Figure 32 shows a conceptual block diagram that highlights the various building blocks used in the  
signal chain, and how the blocks interact in the signal chain.  
PDMCLK  
High Performance  
Decimation  
Filters  
PDM  
Interface  
Digital Microphone  
Phase  
Calibration  
PDMDIN  
Output  
Channel  
Data to ASI  
Digital Summer/Mixer  
(Applies to Ch1-Ch4  
only)  
Gain  
Calibration  
Biquad  
Filters  
Digital Volume  
Control (DVC)  
HPF  
Ch1-Ch4 Processed Data after Gain  
Calibration  
Figure 32. Signal-Chain Processing Flowchart  
The device supports up to eight digital PDM microphone recording channels for simultaneous operation. The  
signal chain consists of various highly programmable digital processing blocks such as phase calibration, gain  
calibration, high-pass filter, digital summer or mixer, biquad filters, and volume control. The details on these  
processing blocks are discussed further in this section. Channels 1 to 4 in the signal chain block diagram of  
Figure 32 are as described in this section, however, channels 5 to 8 do not support the digital summer or mixer  
option.  
The desired input channels for recording can be enabled or disabled by using the IN_CH_EN (P0_R115)  
register, and the output channels for the audio serial interface can be enabled or disabled by using the  
ASI_OUT_EN (P0_R116) register. In general, the device supports simultaneous power-up and power-down of all  
active channels for simultaneous recording. However, based on the application needs, if some channels must be  
powered-up or powered-down dynamically when the other channel recording is on, then that use case is  
supported by setting the DYN_CH_PUPD_EN, P0_R117_D4 register bit to 1'b1 but do not power-down channel  
1 in this mode of operation.  
The device supports an input signal bandwidth up to 80 kHz, which allows the high-frequency non-audio signal to  
be recorded by using a 176.4-kHz (or higher) sample rate.  
For output sample rates of 48 kHz or lower, the device supports all features for 8-channel recording and various  
programmable processing blocks. However, for output sample rates higher than 48 kHz, there are limitations in  
the number of simultaneous channel recordings supported and the number of biquad filters and such. See the  
TLV320ADCx140 Sampling Rates and Programmable Processing Blocks Supported application report for further  
details.  
7.3.6.1 Programmable Digital Volume Control  
The device has a programmable digital volume control with a range from –100 dB to 27 dB in steps of 0.5 dB  
with the option to mute the channel recording. The digital volume control value can be changed dynamically while  
the channel is powered-up and recording. During volume control changes, the soft ramp-up or ramp-down  
volume feature is used internally to avoid any audible artifacts. Soft-stepping can be entirely disabled using the  
DISABLE_SOFT_STEP (P0_R108_D4) register bit.  
The digital volume control setting is independently available for each output channel, including the digital  
microphone record channel. However, the device also supports an option to gang-up the volume control setting  
for all channels together using the channel 1 digital volume control setting, regardless if channel 1 is powered up  
or powered down. This gang-up can be enabled using the DVOL_GANG (P0_R108_D7) register bit.  
Table 10 shows the programmable options available for the digital volume control.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: PCMD3180  
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 10. Digital Volume Control (DVC) Programmable Settings  
P0_R62_D[7:0] : CH1_DVOL[7:0]  
0000 0000 = 0d  
DVC SETTING FOR OUTPUT CHANNEL 1  
Output channel 1 DVC is set to mute  
0000 0001 = 1d  
0000 0010 = 2d  
0000 0011 = 3d  
Output channel 1 DVC is set to –100 dB  
Output channel 1 DVC is set to –99.5 dB  
Output channel 1 DVC is set to –99 dB  
1100 1000 = 200d  
1100 1001 = 201d (default)  
1100 1010 = 202d  
Output channel 1 DVC is set to –0.5 dB  
Output channel 1 DVC is set to 0 dB  
Output channel 1 DVC is set to 0.5 dB  
1111 1101 = 253d  
1111 1110 = 254d  
1111 1111 = 255d  
Output channel 1 DVC is set to 26 dB  
Output channel 1 DVC is set to 26.5 dB  
Output channel 1 DVC is set to 27 dB  
Similarly, the digital volume control setting for output channel 2 to channel 8 can be configured using the  
CH2_DVOL (P0_R67) to CH8_DVOL (P0_R97) register bits, respectively.  
The internal digital processing engine soft ramps up the volume from a muted level to the programmed volume  
level when the channel is powered up, and the internal digital processing engine soft ramps down the volume  
from a programmed volume to mute when the channel is powered down. This soft-stepping of volume is done to  
prevent abruptly powering up and powering down the record channel. This feature can also be entirely disabled  
using the DISABLE_SOFT_STEP (P0_R108_D4) register bit.  
7.3.6.2 Programmable Channel Gain Calibration  
Along with the programmable channel gain and digital volume, this device also provides programmable channel  
gain calibration. The gain of each channel can be finely calibrated or adjusted in steps of 0.1 dB for a range of  
–0.8-dB to 0.7-dB gain error. This adjustment is useful when trying to match the gain across channels resulting  
from external components and microphone sensitivity. This feature, in combination with the regular digital volume  
control, allows the gains across all channels to be matched for a wide gain error range with a resolution of  
0.1 dB. Table 11 shows the programmable options available for the channel gain calibration.  
Table 11. Channel Gain Calibration Programmable Settings  
P0_R63_D[7:4] : CH1_GCAL[3:0]  
CHANNEL GAIN CALIBRATION SETTING FOR INPUT CHANNEL 1  
Input channel 1 gain calibration is set to –0.8 dB  
Input channel 1 gain calibration is set to –0.7 dB  
0000 = 0d  
0001 = 1d  
1000 = 8d (default)  
Input channel 1 gain calibration is set to 0 dB  
1110 = 14d  
1111 = 15d  
Input channel 1 gain calibration is set to 0.6 dB  
Input channel 1 gain calibration is set to 0.7 dB  
Similarly, the channel gain calibration setting for input channel 2 to channel 8 can be configured using the  
CH2_GCAL (P0_R68) to CH8_GCAL (P0_R98) register bits, respectively.  
7.3.6.3 Programmable Channel Phase Calibration  
In addition to the gain calibration, the phase delay in each channel can be finely calibrated or adjusted in steps of  
one modulator clock cycle for a cycle range of 0 to 255 for the phase error. The modulator clock is 6.144 MHz  
(the output data sample rate is multiples or submultiples of 48 kHz) or 5.6448 MHz (the output data sample rate  
is multiples or submultiples of 44.1 kHz) irrespective of the PDMCLK frequency used for digital microphone. This  
feature is very useful for many applications that must match the phase with fine resolution between each  
channel, including any phase mismatch across channels resulting from external components or microphones.  
Table 12 shows the available programmable options for channel phase calibration.  
28  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 12. Channel Phase Calibration Programmable Settings  
P0_R64_D[7:0] : CH1_PCAL[7:0]  
CHANNEL PHASE CALIBRATION SETTING FOR INPUT CHANNEL 1  
Input channel 1 phase calibration with no delay  
0000 0000 = 0d (default)  
0000 0001 = 1d  
0000 0010 = 2d  
Input channel 1 phase calibration delay is set to one cycle of the modulator clock  
Input channel 1 phase calibration delay is set to two cycles of the modulator clock  
1111 1110 = 254d  
1111 1111 = 255d  
Input channel 1 phase calibration delay is set to 254 cycles of the modulator clock  
Input channel 1 phase calibration delay is set to 255 cycles of the modulator clock  
Similarly, the channel phase calibration setting for input channel 2 to channel 8 can be configured using the  
CH2_PCAL (P0_R69) to CH8_PCAL (P0_R99) register bits, respectively.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.3.6.4 Programmable Digital High-Pass Filter  
To remove the DC offset component and attenuate the undesired low-frequency noise content in the record data,  
the device supports a programmable high-pass filter (HPF). The HPF is not a channel-independent filter setting  
but is globally applicable for all the channels. This HPF is constructed using the first-order infinite impulse  
response (IIR) filter, and is efficient enough to filter out possible DC components of the signal. Table 13 shows  
the predefined –3-dB cutoff frequencies available that can be set by using the HPF_SEL[1:0] register bits of  
P0_R107. Additionally, to achieve a custom –3-dB cutoff frequency for a specific application, the device also  
allows the first-order IIR filter coefficients to be programmed when the HPF_SEL[1:0] register bits are set to  
2'b00. Figure 33 illustrates a frequency response plot for the HPF filter.  
Table 13. HPF Programmable Settings  
P0_R107_D[1:0] :  
HPF_SEL[1:0]  
-3-dB CUTOFF FREQUENCY  
SETTING  
-3-dB CUTOFF FREQUENCY AT  
16-kHz SAMPLE RATE  
-3-dB CUTOFF FREQUENCY AT  
48-kHz SAMPLE RATE  
00  
01 (default)  
10  
Programmable 1st-order IIR filter  
0.00025 × fS  
Programmable 1st-order IIR filter  
Programmable 1st-order IIR filter  
4 Hz  
32 Hz  
128 Hz  
12 Hz  
96 Hz  
0.002 × fS  
11  
0.008 × fS  
384 Hz  
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
-33  
-36  
-39  
-42  
-45  
5E-5  
HPF -3 dB Cutoff = 0.00025 ì fS  
HPF -3 dB Cutoff = 0.002 ì fS  
HPF -3 dB Cutoff = 0.008 ì fS  
0.0001  
0.0005  
0.001  
Normalized Frequency (1/fS)  
0.005  
0.01  
0.05  
D003  
Figure 33. HPF Filter Frequency Response Plot  
Equation 1 gives the transfer function for the first-order programable IIR filter:  
00 + 01VF1  
231 F &1VF1  
: ;  
* V =  
(1)  
The frequency response for this first-order programmable IIR filter with default coefficients is flat at a gain of 0 dB  
(all-pass filter). The host device can override the frequency response by programming the IIR coefficients in  
Table 14 to achieve the desired frequency response for high-pass filtering or any other desired filtering. If  
HPF_SEL[1:0] are set to 2'b00, the host device must write these coefficients values for the desired frequency  
response before powering-up any PDM channel for recording. These programmable coefficients are 32-bit, two’s  
complement numbers. Table 14 shows the filter coefficients for the first-order IIR filter.  
Table 14. 1st-Order IIR Filter Coefficients  
FILTER  
COEFFICIENT  
DEFAULT COEFFICIENT  
VALUE  
COEFFICIENT REGISTER  
MAPPING  
FILTER  
N0  
N1  
D1  
0x7FFFFFFF  
0x00000000  
0x00000000  
P4_R72-R75  
P4_R76-R79  
P4_R80-R83  
Programmable 1st-order IIR filter (can be  
allocated to HPF or any other desired filter)  
30  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.3.6.5 Programmable Digital Biquad Filters  
The device supports up to 12 programmable digital biquad filters. These highly efficient filters achieve the desired  
frequence response. In digital signal processing, a digital biquad filter is a second-order, recursive linear filter  
with two poles and two zeros. Equation 2 gives the transfer function of each biquad filter:  
00 + 201VF1 + 02VF2  
231 F 2&1VF1 F &2VF2  
: ;  
* V =  
(2)  
The frequency response for the biquad filter section with default coefficients is flat at a gain of 0dB (all-pass  
filter). The host device can override the frequency response by programming the biquad coefficients to achieve  
the desired frequency response for a low-pass, high-pass, or any other desired frequency shaping. The  
programmable coefficients for the mixer operation are located in the Programmable Coefficient Registers: Page =  
0x02 and Programmable Coefficient Registers: Page = 0x03 sections. If biquad filtering is required, then the host  
device must write these coefficients values before powering up any PDM channels for recording. These  
programmable coefficients are 32-bit, two’s complement numbers. As described in Table 15, these biquad filters  
can be allocated for each output channel based on the BIQUAD_CFG[1:0] register setting of P0_R108. By  
setting BIQUAD_CFG[1:0] to 2'b00, the biquad filtering for all record channels is disabled and the host device  
can choose this setting if no additional filtering is required for the system application. See the TLV320ADCx140  
Programmable Biquad Filter Configuration and Applications application report for further details.  
Table 15. Biquad Filter Allocation to the Record Output Channel  
RECORD OUTPUT CHANNEL ALLOCATION USING P0_R108_D[6:5] REGISTER SETTING  
BIQUAD_CFG[1:0] = 2'b01  
(1 Biquad per Channel)  
BIQUAD_CFG[1:0] = 2'b10 (Default)  
(2 Biquads per Channel)  
BIQUAD_CFG[1:0] = 2'b11  
(3 Biquads per Channel)  
PROGRAMMABLE  
BIQUAD FILTER  
SUPPORTS ALL 8 CHANNELS  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Not used  
SUPPORTS UP TO 6 CHANNELS  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 5  
Allocated to output channel 6  
Allocated to output channel 5  
Allocated to output channel 6  
SUPPORTS UP TO 4 CHANNELS  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Biquad filter 1  
Biquad filter 2  
Biquad filter 3  
Biquad filter 4  
Biquad filter 5  
Biquad filter 6  
Biquad filter 7  
Biquad filter 8  
Biquad filter 9  
Biquad filter 10  
Biquad filter 11  
Biquad filter 12  
Not used  
Not used  
Not used  
Allocated to output channel 5  
Allocated to output channel 6  
Allocated to output channel 7  
Allocated to output channel 8  
Table 16 shows the biquad filter coefficients mapping to the register space.  
Table 16. Biquad Filter Coefficients Register Mapping  
PROGRAMMABLE BIQUAD  
FILTER  
BIQUAD FILTER COEFFICIENTS  
REGISTER MAPPING  
PROGRAMMABLE BIQUAD  
FILTER  
BIQUAD FILTER COEFFICIENTS  
REGISTER MAPPING  
Biquad filter 1  
Biquad filter 2  
Biquad filter 3  
Biquad filter 4  
Biquad filter 5  
Biquad filter 6  
P2_R8-R27  
P2_R28-R47  
P2_R48-R67  
P2_R68-R87  
P2_R88-R107  
P2_R108-R127  
Biquad filter 7  
Biquad filter 8  
Biquad filter 9  
Biquad filter 10  
Biquad filter 11  
Biquad filter 12  
P3_R8-R27  
P3_R28-R47  
P3_R48-R67  
P3_R68-R87  
P3_R88-R107  
P3_R108-R127  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: PCMD3180  
 
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.3.6.6 Programmable Channel Summer and Digital Mixer  
For applications that require an even higher SNR than that supported for each channel, the device digital  
summing mode can be used. In this mode, the digital record data are summed up across the channel with an  
equal weightage factor, which helps in reducing the effective record noise. Table 17 lists the configuration  
settings available for channel summing mode.  
Table 17. Channel Summing Mode Programmable Settings  
SNR AND DYNAMIC RANGE  
P0_R107_D[3:2] : CH_SUM[2:0]  
CHANNEL SUMMING MODE FOR INPUT CHANNELS  
Channel summing mode is disabled  
BOOST  
00 (Default)  
Not applicable  
Output channel 1 = (input channel 1 + input channel 2) / 2  
Output channel 2 = (input channel 1 + input channel 2) / 2  
Output channel 3 = (input channel 3 + input channel 4) / 2  
Output channel 4 = (input channel 3 + input channel 4) / 2  
3-dB boost in SNR and dynamic  
range  
01  
3-dB boost in SNR and dynamic  
range  
Output channel 1 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Output channel 2 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
6-dB boost in SNR and dynamic  
range  
10  
11  
Output channel 3 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Output channel 4 = (input channel 1 + input channel 2 + input  
channel 3 + input channel 4) / 4  
Reserved (do not use this setting)  
Not applicable  
The device additionally supports a fully programmable mixer feature that can mix the various input channels with  
their custom programmable scale factor to generate the final output channels. The programmable mixer feature  
is available only if CH_SUM[2:0] is set to 2'b00. The mixer function is only supported for input channel 1 to  
channel 4. Figure 34 shows a block diagram that describes the mixer 1 operation to generate output channel 1.  
The programmable coefficients for the mixer operation are located in the Programmable Coefficient Registers:  
Page = 0x04 section. All mixer coefficients are 32-bit, two’s complement numbers using a 1.31 number format.  
The value of 0x7FFFFFFF is equivalent to +1 (0-dB gain), the value 0x00000000 is equivalent to mute (zero  
data), and any values in between set the mixer attenuation computed using Equation 3. If the MSB is set to '1'  
then the attenuation remains the same but the signal phase is inverted.  
hex2dec (value) / 231  
(3)  
Attenuated by  
MIX1_CH1  
factor  
Input Channel-1  
Processed Data  
Attenuated by  
MIX1_CH2  
factor  
Input Channel-2  
Processed Data  
Output Channel-1  
Routed to Bi-Quad  
Filter  
+
Attenuated by  
MIX1_CH3  
factor  
Input Channel-3  
Processed Data  
Attenuated by  
MIX1_CH4  
factor  
Input Channel-4  
Processed Data  
Figure 34. Programmable Digital Mixer Block Diagram  
A similar mixer operation is performed by mixer 2, mixer 3, and mixer 4 to generate output channel 2, channel 3,  
and channel 4, respectively.  
32  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.3.6.7 Configurable Digital Decimation Filters  
The device record channel includes a high dynamic range, built-in digital decimation filter to process the  
oversampled PDM data stream from the digital microphone to generate digital data at the same Nyquist sampling  
rate as the FSYNC rate. The decimation filter can be chosen from three different types, depending on the  
required frequency response, group delay, and phase linearity requirements for the target application. The  
selection of the decimation filter option can be done by configuring the DECI_FILT, P0_R107_D[5:4] register bits.  
Table 18 shows the configuration register setting for the decimation filter mode selection for the record channel.  
Table 18. Decimation Filter Mode Selection for the Record Channel  
P0_R107_D[5:4] : DECI_FILT[1:0]  
DECIMATION FILTER MODE SELECTION  
Linear phase filters are used for the decimation  
00 (default)  
01  
10  
11  
Low latency filters are used for the decimation  
Ultra-low latency filters are used for the decimation  
Reserved (do not use this setting)  
7.3.6.7.1 Linear Phase Filters  
The linear phase decimation filters are the default filters set by the device and can be used for all applications  
that require a perfect linear phase with zero-phase deviation within the pass-band specification of the filter. The  
filter performance specifications and various plots for all supported output sampling rates are listed in this  
section.  
7.3.6.7.1.1 Sampling Rate: 8 kHz or 7.35 kHz  
Figure 35 and Figure 36 respectively show the magnitude response and the pass-band ripple for a decimation  
filter with a sampling rate of 8 kHz or 7.35 kHz. Table 19 lists the specifications for a decimation filter with an  
8-kHz or 7.35-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
Figure 35. Linear Phase Decimation Filter Magnitude  
Response  
Figure 36. Linear Phase Decimation Filter Pass-Band  
Ripple  
Table 19. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
MIN  
–0.05  
72.7  
TYP  
MAX  
UNIT  
Pass-band ripple  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
81.2  
17.1  
1/fS  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: PCMD3180  
 
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.3.6.7.1.2 Sampling Rate: 16 kHz or 14.7 kHz  
Figure 37 and Figure 38 respectively show the magnitude response and the pass-band ripple for a decimation  
filter with a sampling rate of 16 kHz or 14.7 kHz. Table 20 lists the specifications for a decimation filter with an  
16-kHz or 14.7-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
Figure 37. Linear Phase Decimation Filter Magnitude  
Response  
Figure 38. Linear Phase Decimation Filter Pass-Band  
Ripple  
Table 20. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
MIN  
–0.05  
73.3  
TYP  
MAX  
UNIT  
Pass-band ripple  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
95.0  
15.7  
1/fS  
7.3.6.7.1.3 Sampling Rate: 24 kHz or 22.05 kHz  
Figure 39 and Figure 40 respectively show the magnitude response and the pass-band ripple for a decimation  
filter with a sampling rate of 24 kHz or 22.05 kHz. Table 21 lists the specifications for a decimation filter with an  
24-kHz or 22.05-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
Figure 39. Linear Phase Decimation Filter Magnitude  
Response  
Figure 40. Linear Phase Decimation Filter Pass-Band  
Ripple  
Table 21. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
MIN  
–0.05  
73.0  
TYP  
MAX  
UNIT  
Pass-band ripple  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
96.4  
16.6  
1/fS  
34  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.3.6.7.1.4 Sampling Rate: 32 kHz or 29.4 kHz  
Figure 41 and Figure 42 respectively show the magnitude response and the pass-band ripple for a decimation  
filter with a sampling rate of 32 kHz or 29.4 kHz. Table 22 lists the specifications for a decimation filter with an  
32-kHz or 29.4-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
Figure 41. Linear Phase Decimation Filter Magnitude  
Response  
Figure 42. Linear Phase Decimation Filter Pass-Band  
Ripple  
Table 22. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
MIN  
–0.05  
73.7  
TYP  
MAX  
UNIT  
Pass-band ripple  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
107.2  
16.9  
1/fS  
7.3.6.7.1.5 Sampling Rate: 48 kHz or 44.1 kHz  
Figure 43 and Figure 44 respectively show the magnitude response and the pass-band ripple for a decimation  
filter with a sampling rate of 48 kHz or 44.1 kHz. Table 23 lists the specifications for a decimation filter with an  
48-kHz or 44.1-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
Figure 43. Linear Phase Decimation Filter Magnitude  
Response  
Figure 44. Linear Phase Decimation Filter Pass-Band  
Ripple  
Table 23. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.05  
73.8  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
98.1  
17.1  
1/fS  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: PCMD3180  
 
 
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.3.6.7.1.6 Sampling Rate: 96 kHz or 88.2 kHz  
Figure 45 and Figure 46 respectively show the magnitude response and the pass-band ripple for a decimation  
filter with a sampling rate of 96 kHz or 88.2 kHz. Table 24 lists the specifications for a decimation filter with an  
96-kHz or 88.2-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
Figure 45. Linear Phase Decimation Filter Magnitude  
Response  
Figure 46. Linear Phase Decimation Filter Pass-Band  
Ripple  
Table 24. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
MIN  
–0.05  
73.6  
TYP  
MAX  
UNIT  
Pass-band ripple  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
97.9  
17.1  
1/fS  
7.3.6.7.1.7 Sampling Rate: 192 kHz or 176.4 kHz  
Figure 47 and Figure 48 respectively show the magnitude response and the pass-band ripple for a decimation  
filter with a sampling rate of 192 kHz or 176.4 kHz. Table 25 lists the specifications for a decimation filter with an  
192-kHz or 176.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
0.2  
Normalized Frequency (1/fS)  
0.25  
0.3  
0.35  
0.4  
D001  
D001  
Figure 47. Linear Phase Decimation Filter Magnitude  
Response  
Figure 48. Linear Phase Decimation Filter Pass-Band  
Ripple  
Table 25. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.3 × fS  
Frequency range is 0.473 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.3 × fS  
MIN  
–0.05  
70.0  
TYP  
MAX  
UNIT  
Pass-band ripple  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
111.0  
11.9  
1/fS  
36  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.3.6.7.1.8 Sampling Rate: 384 kHz or 352.8 kHz  
Figure 49 and Figure 50 respectively show the magnitude response and the pass-band ripple for a decimation  
filter with a sampling rate of 384 kHz or 352.8 kHz. Table 26 lists the specifications for a decimation filter with an  
384-kHz or 352.8-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
Normalized Frequency (1/fS)  
0.2  
0.25  
0.3  
D001  
D001  
Figure 49. Linear Phase Decimation Filter Magnitude  
Response  
Figure 50. Linear Phase Decimation Filter Pass-Band  
Ripple  
Table 26. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.212 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.212 × fS  
MIN  
–0.05  
70.0  
TYP  
MAX  
UNIT  
Pass-band ripple  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
108.8  
7.2  
1/fS  
7.3.6.7.1.9 Sampling Rate 768 kHz or 705.6 kHz  
Figure 51 and Figure 52 respectively show the magnitude response and the pass-band ripple for a decimation  
filter with a sampling rate of 768 kHz or 705.6 kHz. Table 27 lists the specifications for a decimation filter with an  
768-kHz or 705.6-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
Normalized Frequency (1/fS)  
0.15  
0.2  
D001  
D001  
Figure 51. Linear Phase Decimation Filter Magnitude  
Response  
Figure 52. Linear Phase Decimation Filter Pass-Band  
Ripple  
Table 27. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.113 × fS  
Frequency range is 0.58 × fS to 2 × fS  
Frequency range is 2 × fS onwards  
MIN  
–0.05  
75.0  
TYP  
MAX  
UNIT  
Pass-band ripple  
0.05  
dB  
Stop-band attenuation  
dB  
88.0  
Group Delay or Latency Frequency range is 0 to 0.113 × fS  
5.9  
1/fS  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: PCMD3180  
 
 
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.3.6.7.2 Low-Latency Filters  
For applications where low latency with minimal phase deviation (within the audio band) is critical, the low-  
latency decimation filters on the PCMD3180 can be used. The device supports these filters with a group delay of  
approximately seven samples with an almost linear phase response within the 0.365 × fS frequency band. This  
section provides the filter performance specifications and various plots for all supported output sampling rates for  
the low-latency filters.  
7.3.6.7.2.1 Sampling Rate: 16 kHz or 14.7 kHz  
Figure 53 shows the magnitude response and Figure 54 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 16 kHz or 14.7 kHz. Table 28 lists the specifications for a decimation  
filter with a 16-kHz or 14.7-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
Figure 54. Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
D002  
Figure 53. Low-Latency Decimation Filter Magnitude  
Response  
Table 28. Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.451 × fS  
Frequency range is 0.61 × fS onwards  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
MIN  
–0.05  
87.3  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.6  
1/fS  
–0.022  
–0.21  
0.022  
0.25  
1/fS  
Degrees  
38  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.3.6.7.2.2 Sampling Rate: 24 kHz or 22.05 kHz  
Figure 55 shows the magnitude response and Figure 56 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 24 kHz or 22.05 kHz. Table 29 lists the specifications for a decimation  
filter with a 24-kHz or 22.05-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
Figure 56. Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
D002  
Figure 55. Low-Latency Decimation Filter Magnitude  
Response  
Table 29. Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.01  
87.2  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
Frequency range is 0 to 0.459 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.5  
1/fS  
–0.026  
–0.26  
0.026  
0.30  
1/fS  
Degrees  
7.3.6.7.2.3 Sampling Rate: 32 kHz or 29.4 kHz  
Figure 57 shows the magnitude response and Figure 58 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 32 kHz or 29.4 kHz. Table 30 lists the specifications for a decimation  
filter with a 32-kHz or 29.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
Figure 58. Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
D002  
Figure 57. Low-Latency Decimation Filter Magnitude  
Response  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: PCMD3180  
 
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 30. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
–0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
8.7  
1/fS  
–0.026  
–0.26  
0.026  
0.31  
1/fS  
Degrees  
7.3.6.7.2.4 Sampling Rate: 48 kHz or 44.1 kHz  
Figure 59 shows the magnitude response and Figure 60 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 48 kHz or 44.1 kHz. Table 31 lists the specifications for a decimation  
filter with a 48-kHz or 44.1-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
Figure 60. Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
D002  
Figure 59. Low-Latency Decimation Filter Magnitude  
Response  
Table 31. Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.452 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
–0.015  
86.4  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
–0.027  
–0.25  
0.027  
0.30  
1/fS  
Degrees  
40  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.3.6.7.2.5 Sampling Rate: 96 kHz or 88.2 kHz  
Figure 61 shows the magnitude response and Figure 62 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 96 kHz or 88.2 kHz. Table 32 lists the specifications for a decimation  
filter with a 96-kHz or 88.2-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
Figure 62. Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
D002  
Figure 61. Low-Latency Decimation Filter Magnitude  
Response  
Table 32. Low-Latency Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
Frequency range is 0 to 0.466 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
–0.04  
86.3  
TYP  
MAX  
UNIT  
dB  
Pass-band ripple  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
–0.027  
–0.26  
0.027  
0.30  
1/fS  
Degrees  
7.3.6.7.2.6 Sampling Rate 192 kHz or 176.4 kHz  
Figure 63 shows the magnitude response and Figure 64 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 192 kHz or 176.4 kHz. Table 33 lists the specifications for a decimation  
filter with a 192-kHz or 176.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
Figure 64. Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
D002  
Figure 63. Low-Latency Decimation Filter Magnitude  
Response  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: PCMD3180  
 
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 33. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 463 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
–0.03  
85.6  
TYP  
MAX  
UNIT  
dB  
0.03  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
–0.027  
–0.26  
0.027  
0.30  
1/fS  
Degrees  
7.3.6.7.3 Ultra-Low-Latency Filters  
For applications where ultra-low latency (within the audio band) is critical, the ultra-low-latency decimation filters  
on the PCMD3180 can be used. The device supports these filters with a group delay of approximately four  
samples with an almost linear phase response within the 0.325 × fS frequency band. This section provides the  
filter performance specifications and various plots for all supported output sampling rates for the ultra-low-latency  
filters.  
7.3.6.7.3.1 Sampling Rate: 16 kHz or 14.7 kHz  
Figure 65 shows the magnitude response and Figure 66 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 16 kHz or 14.7 kHz. Table 34 lists the specifications for a decimation  
filter with a 16-kHz or 14.7-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
Figure 66. Ultra-Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
Figure 65. Ultra-Low-Latency Decimation Filter Magnitude  
Response  
Table 34. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.45 × fS  
MIN  
–0.05  
TYP  
MAX  
UNIT  
dB  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
87.2  
dB  
4.3  
1/fS  
–0.512  
–10.0  
0.512  
14.2  
1/fS  
Degrees  
42  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.3.6.7.3.2 Sampling Rate: 24 kHz or 22.05 kHz  
Figure 67 shows the magnitude response and Figure 68 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 24 kHz or 22.05 kHz. Table 35 lists the specifications for a decimation  
filter with a 24-kHz or 22.05-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
Figure 68. Ultra-Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
Figure 67. Ultra-Low-Latency Decimation Filter Magnitude  
Response  
Table 35. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.46 × fS  
MIN  
–0.01  
TYP  
MAX  
UNIT  
dB  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
87.1  
dB  
4.1  
1/fS  
–0.514  
–10.0  
0.514  
14.3  
1/fS  
Degrees  
7.3.6.7.3.3 Sampling Rate: 32 kHz or 29.4 kHz  
Figure 69 shows the magnitude response and Figure 70 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 32 kHz or 29.4 kHz. Table 36 lists the specifications for a decimation  
filter with an 32-kHz or 29.4-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
Figure 70. Ultra-Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
Figure 69. Ultra-Low-Latency Decimation Filter Magnitude  
Response  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: PCMD3180  
 
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 36. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
–0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
5.2  
1/fS  
–0.492  
–9.5  
0.492  
13.5  
1/fS  
Degrees  
7.3.6.7.3.4 Sampling Rate: 48 kHz or 44.1 kHz  
Figure 71 shows the magnitude response and Figure 72 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 48 kHz or 44.1 kHz. Table 37 lists the specifications for a decimation  
filter with a 48-kHz or 44.1-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
Figure 72. Ultra-Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
Figure 71. Ultra-Low-Latency Decimation Filter Magnitude  
Response  
Table 37. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.452 × fS  
MIN  
–0.015  
TYP  
MAX  
UNIT  
dB  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
86.4  
dB  
4.1  
1/fS  
–0.525  
–10.3  
0.525  
14.5  
1/fS  
Degrees  
44  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.3.6.7.3.5 Sampling Rate: 96 kHz or 88.2 kHz  
Figure 73 shows the magnitude response and Figure 74 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 96 kHz or 88.2 kHz. Table 38 lists the specifications for a decimation  
filter with a 96-kHz or 88.2-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
10  
0
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
3
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
-5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
Figure 74. Ultra-Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
Figure 73. Ultra-Low-Latency Decimation Filter Magnitude  
Response  
Table 38. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.466 × fS  
MIN  
–0.04  
TYP  
MAX  
UNIT  
dB  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.1625 × fS  
Frequency range is 0 to 0.1625 × fS  
Frequency range is 0 to 0.1625 × fS  
86.3  
dB  
3.7  
1/fS  
–0.091  
–0.86  
0.091  
1.30  
1/fS  
Degrees  
7.3.6.7.3.6 Sampling Rate 192 kHz or 176.4 kHz  
Figure 75 shows the magnitude response and Figure 76 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 192 kHz or 176.4 kHz. Table 39 lists the specifications for a decimation  
filter with a 192-kHz or 176.4-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
10  
0
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
3
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
-5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
Figure 76. Ultra-Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
Figure 75. Ultra-Low-Latency Decimation Filter Magnitude  
Response  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: PCMD3180  
 
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 39. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.463 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.085 × fS  
Frequency range is 0 to 0.085 × fS  
Frequency range is 0 to 0.085 × fS  
MIN  
–0.03  
85.6  
TYP  
MAX  
UNIT  
dB  
0.03  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
3.7  
1/fS  
–0.024  
–0.12  
0.024  
0.18  
1/fS  
Degrees  
7.3.6.7.3.7 Sampling Rate 384 kHz or 352.8 kHz  
Figure 77 shows the magnitude response and Figure 78 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 384 kHz or 352.8 kHz. Table 40 lists the specifications for a decimation  
filter with a 384-kHz or 352.8-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2
10  
0
1.6  
1.2  
0.8  
0.4  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.4  
-0.8  
-1.2  
-1.6  
-2  
Pass-Band Ripple  
Phase Deviation  
0
0.05  
0.1 0.15  
Normalized Frequency (1/fS)  
0.2  
0.25  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
Figure 78. Ultra-Low-Latency Decimation Filter Pass-Band  
Ripple and Phase Deviation  
D002  
Figure 77. Ultra-Low-Latency Decimation Filter Magnitude  
Response  
Table 40. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.1 × fS  
MIN  
–0.04  
TYP  
MAX  
UNIT  
dB  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
Frequency range is 0.56 × fS onwards  
Frequency range is 0 to 0.157 × fS  
Frequency range is 0 to 0.157 × fS  
Frequency range is 0 to 0.157 × fS  
70.1  
dB  
4.1  
1/fS  
–0.18  
–0.85  
0.18  
2.07  
1/fS  
Degrees  
46  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.3.7 Interrupts, Status, and Digital I/O Pin Multiplexing  
Certain events in the device may require host processor intervention and can be used to trigger interrupts to the  
host processor. One such event is an audio serial interface (ASI) bus error. The device powers down the record  
channels if any faults are detected with the ASI bus error clocks, such as:  
Invalid FSYNC frequency  
Invalid SBCLK to FSYNC ratio  
Long pauses of the SBCLK or FSYNC clocks  
When an ASI bus clock error is detected, the device shuts down the record channel as quickly as possible. After  
all ASI bus clock errors are resolved, the device volume ramps back to its previous state to recover the record  
channel. During an ASI bus clock error, the internal interrupt request (IRQ) interrupt signal asserts low if the  
clock error interrupt mask register bit INT_MASK0[7], P0_R51_D7 is set low. The clock fault is also available for  
readback in the latched fault status register bit INT_LTCH0, P0_R54, which is a read-only register. Reading the  
latched fault status register, INT_LTCH0, clears all latched fault status. The device can be additionally configured  
to route the internal IRQ interrupt signal on the GPIO1 or GPOx pins and also can be configured as open-drain  
outputs so that these pins can be wire-ANDed to the open-drain interrupt outputs of other devices.  
The IRQ interrupt signal can either be configured as active low or active high polarity by setting the INT_POL,  
P0_R50_D7 register bit. This signal can also be configured as a single pulse or a series of pulses by  
programming the INT_EVENT[1:0], P0_R50_D[6:5] register bits. If the interrupts are configured as a series of  
pulses, the events trigger the start of pulses that stop when the latched fault status register is read to determine  
the cause of the interrupt.  
The device also supports read-only live-status registers to determine if the channels are powered up or down and  
if the device is in sleep mode or not. These status registers are located in P0_R118, DEV_STS0 and P0_R119,  
DEV_STS1.  
The device has a multifunctional GPIO1 pin that can be configured for a desired specific function. Additionally,  
PDMINx_GPIx and PDMCLKx_GPOx can be repurposed as multifunction pins GPIx and GPOx respectively, as  
required for system application. The maximum number of GPO pins supported by the device is four and the  
maximum number of GPI pins are four. Table 41 shows all possible allocations of these multifunctional pins for  
the various features.  
Table 41. Multifunction Pin Assignments  
ROW  
Pin Function(1)  
GPIO1  
GPO1  
GPO2  
GPO3  
GPO4  
GPI1  
GPI2  
GPI3  
GPI4  
GPIO1_CFG GPO1_CFG GPO2_CFG GPO3_CFG GPO4_CFG  
GPI1_CFG  
GPI2_CFG  
GPI3_CFG  
GPI4_CFG  
P0_R33[7:4] P0_R34[7:4] P0_R35[7:4] P0_R36[7:4] P0_R37[7:4] P0_R43[6:4] P0_R43[2:0] P0_R44[6:4] P0_R44[2:0]  
A
Pin disabled  
S(2)  
S (default)  
S (default)  
S (default)  
S (default)  
S (default)  
NS(3)  
NS  
S (default)  
NS  
S (default)  
NS  
S (default)  
NS  
General-purpose output  
(GPO)  
B
C
D
E
F
S
S
S
S
S
S
S
S
S
Interrupt output (IRQ)  
S (default)  
NS  
NS  
NS  
Secondary ASI output  
(SDOUT2)(4)  
S
S
S
S
S
S
S
NS  
NS  
NS  
NS  
PDM clock output (PDMCLK)  
S
S
S
S
NS  
NS  
NS  
NS  
MiCBIAS on/off input  
(BIASEN)  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
G
H
I
General-purpose input (GPI)  
Master clock input (MCLK)  
ASI daisy-chain input (SDIN)  
PDM data input 1 (PDMDIN1)  
PDM data input 2 (PDMDIN2)  
PDM data input 3 (PDMDIN3)  
PDM data input 4 (PDMDIN4)  
S
S
S
S
S
S
S
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
NS  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
J
K
L
M
(1) Only the GPIO1 pin is with reference to the IOVDD supply, the other GPOx and GPIx pins are with reference to the AVDD supply and  
their primary pin functions are for the PDMCLK or PDMDIN function.  
(2) S means the feature mentioned in this row is supported for the respective GPIO1, GPOx, or GPIx pin mentioned in this column.  
(3) NS means the feature mentioned in this row is not supported for the respective GPIO1, GPOx, or GPIx pin mentioned in this column.  
(4) For the high-speed ASI output, GPIO1 must be used instead of GPOx for the secondary ASI output. GPOx can be used only if the bus  
speed requirement is less than 6.144 MHz.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: PCMD3180  
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Each GPOx or GPIOx pin can be independently set for the desired drive configurations setting using the  
GPOx_DRV[3:0] or GPIO1_DRV[3:0] register bits. Table 42 lists the drive configuration settings.  
Table 42. GPIO or GPOx Pins Drive Configuration Settings  
P0_R33_D[3:0] : GPIO1_DRV[3:0]  
GPIO OUTPUT DRIVE CONFIGURATION SETTINGS FOR GPIO1  
The GPIO1 pin is set to high impedance (floated)  
000  
001  
The GPIO1 pin is set to be driven active low or active high  
The GPIO1 pin is set to be driven active low or weak high (on-chip pullup)  
The GPIO1 pin is set to be driven active low or Hi-Z (floated)  
The GPIO1 pin is set to be driven weak low (on-chip pulldown) or active high  
The GPIO1 pin is set to be driven Hi-Z (floated) or active high  
Reserved (do not use these settings)  
010 (default)  
011  
100  
101  
110 and 111  
Similarly, the GPO1 to GPO4 pins can be configured using the GPO1_DRV(P0_R34) to GPO4_DRV(P0_R37)  
register bits, respectively.  
When configured as a general-purpose output (GPO), the GPIO1 or GPOx pin values can be driven by writing  
the GPIO_VAL or GPOx_VAL, P0_R41 registers. The GPIO_MON, P0_R42 register can be used to readback  
the status of the GPIO1 pin when configured as a general-purpose input (GPI). Similarly, the GPI_MON, P0_R47  
register can be used to readback the status of the GPIx pins when configured as a general-purpose input (GPI).  
48  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.4 Device Functional Modes  
7.4.1 Hardware Shutdown  
The device enters hardware shutdown mode when the SHDNZ pin is asserted low or the AVDD supply voltage is  
not applied to the device. In hardware shutdown mode, the device consumes the minimum quiescent current  
from the AVDD supply. All configuration registers and programmable coefficients lose their value in this mode,  
and I2C or SPI communication to the device is not supported.  
If the SHDNZ pin is asserted low when the device is in active mode, the device ramps down volume on the  
record data, powers down the analog and digital blocks, and puts the device into hardware shutdown mode in 25  
ms (typical). The device can also be immediately put into hardware shutdown mode from active mode if the  
SHDNZ_CFG[1:0], P0_R5_D[3:2], register bits are set to 2'b00. After the SHDNZ pin is asserted low, and after  
the device enters hardware shutdown mode, keep the SHDNZ pin low for at least 1 ms before releasing SHDNZ  
for further device operation.  
Assert the SHDNZ pin high only when the IOVDD supply settles to a steady voltage level. When the SHDNZ pin  
goes high, the device sets all configuration registers and programmable coefficients to their default values, and  
then enters sleep mode.  
7.4.2 Sleep Mode or Software Shutdown  
In sleep mode or software shutdown mode, the device consumes very low quiescent current from the AVDD  
supply and, at the same time, allows the I2C or SPI communication to wake the device for active operation.  
The device can also enter sleep mode when the host device sets the SLEEP_ENZ, P0_R2_D0 bit to 1'b0. If the  
SLEEP_ENZ bit is asserted low when the device is in active mode, the device ramps down the volume on the  
record data, powers down the analog and digital blocks, and enters sleep mode. However, the device still  
continues to retain the last programmed value of the device configuration registers and programmable  
coefficients.  
In sleep mode, do not perform any I2C or SPI transactions, except for exiting sleep mode in order to enter active  
mode. After entering sleep mode, wait at least 10 ms before starting I2C or SPI transactions to exit sleep mode.  
While exiting sleep mode, the host device must configure the PCMD3180 to use either an external 1.8-V AREG  
supply (default setting) or an on-chip-regulator-generated AREG supply. To configure the AREG supply, write to  
AREG_SELECT, bit D7 in the same P0_R2 register.  
7.4.3 Active Mode  
If the host device exits sleep mode by setting the SLEEP_ENZ bit to 1'b1, the device enters active mode. In  
active mode, I2C or SPI transactions can be done to configure and power-up the device for active operation.  
After entering active mode, wait at least 1 ms before starting any I2C or SPI transactions in order to allow the  
device to complete the internal wake-up sequence.  
After configuring all other registers for the target application and system settings, configure the input and output  
channel enable registers, P0_R115 (IN_CH_EN) and P0_R116 (ASI_OUT_CH_EN), respectively. Lastly,  
configure the device power-up register, P0_R117 (PWR_CFG). All the programmable coefficient values must be  
written before powering up the respective channel.  
In active mode, the power-up and power-down status of various blocks is monitored by reading the read-only  
device status bits located in the P0_R117 (DEV_STS0) and P0_R118 (DEV_STS1) registers.  
7.4.4 Software Reset  
A software reset can be done any time by asserting the SW_RESET bit, P0_R1_D0, which is a self-clearing bit.  
This software reset immediately shuts down the device, and restores all device configuration registers and  
programmable coefficients to their default values.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: PCMD3180  
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.5 Programming  
The device contains configuration registers and programmable coefficients that can be set to the desired values  
for a specific system and application use. These registers are called device control registers and are each eight  
bits in width, mapped using a page scheme.  
Each page contains 128 configuration registers. All device configuration registers are stored in page 0, which is  
the default page setting at power up and after a software reset. All programmable coefficient registers are located  
in page 2, page 3, and page 4. The current page of the device can be switched to a new desired page by using  
the PAGE[7:0] bits located in register 0 of every page.  
7.5.1 Control Serial Interfaces  
The device control registers can be accessed using either I2C or SPI communication to the device.  
By monitoring the SDA_SSZ, SCL_MOSI, ADDR0_SCLK, and ADDR1_MISO device pins, which are the  
multiplexed pins for the I2C or SPI Interface, the device automatically detects whether the host device is using  
I2C or SPI communication to configure the device. For a given end application, the host device must always use  
either the I2C or SPI interface, but not both, to configure the device.  
7.5.1.1 I2C Control Interface  
The device supports the I2C control protocol as a slave device, and is capable of operating in standard mode,  
fast mode, and fast mode plus. The I2C control protocol requires a 7-bit slave address. The five most significant  
bits (MSBs) of the slave address are fixed at 10011 and cannot be changed. The two least significant bits (LSBs)  
are programmable and are controlled by the ADDR0_SCLK and ADDR1_MISO pins. These two pins must  
always be either pulled to VSS or IOVDD. If the I2C_BRDCAST_EN (P0_R2_D2) bit is set to 1'b1, then the I2C  
slave address is fixed to 1001100 in order to allow simultaneous I2C broadcast communication to all PCMD3180  
devices in the system. Table 43 lists the four possible device addresses resulting from this configuration.  
Table 43. I2C Slave Address Settings  
ADDR1_MISO  
ADDR0_SCLK  
I2C_BRDCAST_EN (P0_R2_D2)  
I2C SLAVE ADDRESS  
1001 100  
0
0
1
1
X
0
1
0
1
X
0 (default)  
0 (default)  
0 (default)  
0 (default)  
1
1001 101  
1001 110  
1001 111  
1001 100  
7.5.1.1.1 General I2C Operation  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system using serial data transmission. The address and data 8-bit bytes are transferred MSB first. In addition,  
each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer  
operation begins with the master device driving a start condition on the bus and ends with the master device  
driving a stop condition on the bus. The bus uses transitions on the data pin (SDA) while the clock is at logic high  
to indicate start and stop conditions. A high-to-low transition on SDA indicates a start, and a low-to-high transition  
indicates a stop. Normal data-bit transitions must occur within the low time of the clock period.  
The master device drives a start condition followed by the 7-bit slave address and the read/write (R/W) bit to  
open communication with another device and then waits for an acknowledgment condition. The slave device  
holds SDA low during the acknowledge clock period to indicate acknowledgment. When this occurs, the master  
device transmits the next byte of the sequence. Each slave device is addressed by a unique 7-bit slave address  
plus the R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-  
AND connection.  
50  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last  
word transfers, the master device generates a stop condition to release the bus. Figure 79 shows a generic data  
transfer sequence.  
8- Bit Data for  
Register (N)  
8- Bit Data for  
Register (N+1)  
Figure 79. Typical I2C Sequence  
In the system, use external pullup resistors for the SDA and SCL signals to set the logic high level for the bus.  
The SDA and SCL voltages must not exceed the device supply voltage, IOVDD.  
7.5.1.1.2 I2C Single-Byte and Multiple-Byte Transfers  
The device I2C interface supports both single-byte and multiple-byte read/write operations for all registers. During  
multiple-byte read operations, the device responds with data, a byte at a time, starting at the register assigned,  
as long as the master device continues to respond with acknowledges.  
The device supports sequential I2C addressing. For write transactions, if a register is issued followed by data for  
that register and all the remaining registers that follow, a sequential I2C write transaction takes place. For I2C  
sequential write transactions, the register issued then serves as the starting point, and the amount of data  
subsequently transmitted, before a stop or start is transmitted, determines how many registers are written.  
7.5.1.1.2.1 I2C Single-Byte Write  
As shown in Figure 80, a single-byte data write transfer begins with the master device transmitting a start  
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of  
the data transfer. For a write-data transfer, the read/write bit must be set to 0. After receiving the correct I2C  
slave address and the read/write bit, the device responds with an acknowledge bit (ACK). Next, the master  
device transmits the register byte corresponding to the device internal register address being accessed. After  
receiving the register byte, the device again responds with an acknowledge bit (ACK). Then, the master transmits  
the byte of data to be written to the specified register. When finished, the slave device responds with an  
acknowledge bit (ACK). Finally, the master device transmits a stop condition to complete the single-byte data  
write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
A6 A5 A4  
A3 A2 A1 A0  
Stop  
2
I C Device Address and  
Read/Write Bit  
Register  
Data Byte  
Condition  
Figure 80. I2C Single-Byte Write Transfer  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: PCMD3180  
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.5.1.1.2.2 I2C Multiple-Byte Write  
As shown in Figure 81, a multiple-byte data write transfer is identical to a single-byte data write transfer except  
that multiple data bytes are transmitted by the master device to the slave device. After receiving each data byte,  
the device responds with an acknowledge bit (ACK). Finally, the master device transmits a stop condition after  
the last data-byte write transfer.  
Register  
Figure 81. I2C Multiple-Byte Write Transfer  
7.5.1.1.2.3 I2C Single-Byte Read  
As shown in Figure 82, a single-byte data read transfer begins with the master device transmitting a start  
condition followed by the I2C slave address and the read/write bit. For the data read transfer, both a write  
followed by a read are done. Initially, a write is done to transfer the address byte of the internal register address  
to be read. As a result, the read/write bit is set to 0.  
After receiving the slave address and the read/write bit, the device responds with an acknowledge bit (ACK). The  
master device then sends the internal register address byte, after which the device issues an acknowledge bit  
(ACK). The master device transmits another start condition followed by the slave address and the read/write bit  
again. This time, the read/write bit is set to 1, indicating a read transfer. Next, the device transmits the data byte  
from the register address being read. After receiving the data byte, the master device transmits a not-  
acknowledge (NACK) followed by a stop condition to complete the single-byte data read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
2
2
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
Register  
I C Device Address and  
Read/Write Bit  
Data Byte  
Figure 82. I2C Single-Byte Read Transfer  
7.5.1.1.2.4 I2C Multiple-Byte Read  
As shown in Figure 83, a multiple-byte data read transfer is identical to a single-byte data read transfer except  
that multiple data bytes are transmitted by the device to the master device. With the exception of the last data  
byte, the master device responds with an acknowledge bit after receiving each data byte. After receiving the last  
data byte, the master device transmits a not-acknowledge (NACK) followed by a stop condition to complete the  
data read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
2
2
Register  
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
I C Device Address and  
Read/Write Bit  
First Data Byte  
Other Data Bytes  
Last Data Byte  
Figure 83. I2C Multiple-Byte Read Transfer  
52  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.5.1.2 SPI Control Interface  
The general SPI protocol allows full-duplex, synchronous, serial communication between a host processor (the  
master) and peripheral devices (slaves). The SPI master (in this case, the host processor) generates the  
synchronizing clock (driven onto SCLK) and initiates transmissions by taking the slave-select pin SSZ from high  
to low. The SPI slave devices (such as the PCMD3180) depend on a master to start and synchronize  
transmissions. A transmission begins when initiated by an SPI master. The byte from the SPI master begins  
shifting in on the slave MOSI pin under the control of the master serial clock (driven onto SCLK). When the byte  
shifts in on the MOSI pin, a byte shifts out on the MISO pin to the master shift register.  
The PCMD3180 supports a standard SPI control protocol with a clock polarity setting of 0 (typical microprocessor  
SPI control bit CPOL = 0) and a clock phase setting of 1 (typical microprocessor SPI control bit CPHA = 1). The  
SSZ pin can remain low between transmissions; however, the device only interprets the first eight bits  
transmitted after the falling edge of SSZ as a command byte, and the next eight bits as a data byte only if writing  
to a register. The device is entirely controlled by registers. Reading and writing these registers is accomplished  
by an 8-bit command sent to the MOSI pin prior to the data for that register. Table 44 shows the command  
structure. The first seven bits specify the address of the register that is being written or read, from 0 to 127  
(decimal). The command word ends with an R/W bit, which specifies the direction of data flow on the serial bus.  
In the case of a register write, set the R/W bit to 0. A second byte of data is sent to the MOSI pin and contains  
the data to be written to the register. A register read is accomplished in a similar fashion. The 8-bit command  
word sends the 7-bit register address, followed by the R/W bit equal to 1 to signify a register read. The 8-bit  
register data is then clocked out of the device on the MISO pin during the second eight SCLK clocks in the  
frame. The device supports sequential SPI addressing for a multiple-byte data write/read transfer until the SSZ  
pin is pulled high. A multiple-byte data write or read transfer is identical to a single-byte data write or read  
transfer, respectively, until all data byte transfers complete. The host device must keep the SSZ pin low during all  
data byte transfers. Figure 84 shows the single-byte write transfer and Figure 85 illustrates the single-byte read  
transfer.  
Table 44. SPI Command Word  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ADDR(6)  
ADDR(5)  
ADDR(4)  
ADDR(3)  
ADDR(2)  
ADDR(1)  
ADDR(0)  
R/WZ  
SS  
SCLK  
MOSI  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
D(7)  
D(6)  
D(0)  
7-bit Register Address  
Write  
8-bit Register Data  
Hi-Z  
Hi-Z  
MISO  
Figure 84. SPI Single-Byte Write Transfer  
SS  
SCLK  
MOSI  
Hi-Z  
Hi-Z  
Hi-Z  
RA(6)  
RA(5)  
RA(0)  
Don’t Care  
7-bit Register Address  
Read  
8-bit Register Data  
Hi-Z  
MISO  
D(7)  
D(6)  
D(0)  
Figure 85. SPI Single-Byte Read Transfer  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: PCMD3180  
 
 
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.6 Register Maps  
This section describes the control registers for the device in detail. All these registers are eight bits in width and  
allocated to device configuration and programmable coefficients settings. These registers are mapped internally  
using a page scheme that can be controlled using either I2C or SPI communication to the device. Each page  
contains 128 bytes of registers. All device configuration registers are stored in page 0, which is the default page  
setting at power up (and after a software reset). All programmable coefficient registers are located in page 2,  
page 3, and page 4. The device current page can be switch to a new desired page by using the PAGE[7:0] bits  
located in register 0 of every page.  
Do not read from or write to reserved pages or reserved registers. Write only default values for the reserved bits  
in the valid registers.  
The procedure for register access across pages is:  
Select page N (write data N to register 0 regardless of the current page number)  
Read or write data from or to valid registers in page N  
Select the new page M (write data M to register 0 regardless of the current page number)  
Read or write data from or to valid registers in page M  
Repeat as needed  
7.6.1 Device Configuration Registers  
This section describes the device configuration registers for page 0.  
7.6.1.1 Register Summary Table Page=0x00  
ADDRESS  
0x00  
0x01  
0x02  
0x05  
0x07  
0x08  
0x09  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x29  
0x2A  
0x2B  
0x2C  
REGISTER  
PAGE_CFG  
DESCRIPTION  
SECTION  
Device page register  
Software reset register  
Sleep mode register  
PAGE_CFG Register (P0_R0)  
SW_RESET Register (P0_R1)  
SLEEP_CFG Register (P0_R2)  
SHDN_CFG Register (P0_R5)  
ASI_CFG0 Register (P0_R7)  
ASI_CFG1 Register (P0_R8)  
ASI_CFG2 Register (P0_R9)  
ASI_CH1 Register (P0_R11)  
ASI_CH2 Register (P0_R12)  
ASI_CH3 Register (P0_R13)  
ASI_CH4 Register (P0_R14)  
ASI_CH5 Register (P0_R15)  
ASI_CH6 Register (P0_R16)  
ASI_CH7 Register (P0_R17)  
ASI_CH8 Register (P0_R18)  
MST_CFG0 Register (P0_R19)  
MST_CFG1 Register (P0_R20)  
ASI_STS Register (P0_R21)  
CLK_SRC Register (P0_R22)  
PDMCLK_CFG Register (P0_R31)  
PDMIN_CFG Register (P0_R32)  
GPIO_CFG0 Register (P0_R33)  
GPO_CFG0 Register (P0_R34)  
GPO_CFG1 Register (P0_R35)  
GPO_CFG2 Register (P0_R36)  
GPO_CFG3 Register (P0_R37)  
GPO_VAL Register (P0_R41)  
GPIO_MON Register (P0_R42)  
GPI_CFG0 Register (P0_R43)  
GPI_CFG1 Register (P0_R44)  
SW_RESET  
SLEEP_CFG  
SHDN_CFG  
ASI_CFG0  
ASI_CFG1  
ASI_CFG2  
ASI_CH1  
Shutdown configuration register  
ASI configuration register 0  
ASI configuration register 1  
ASI configuration register 2  
Channel 1 ASI slot configuration register  
Channel 2 ASI slot configuration register  
Channel 3 ASI slot configuration register  
Channel 4 ASI slot configuration register  
Channel 5 ASI slot configuration register  
Channel 6 ASI slot configuration register  
Channel 7 ASI slot configuration register  
Channel 8 ASI slot configuration register  
ASI master mode configuration register 0  
ASI master mode configuration register 1  
ASI bus clock monitor status register  
Clock source configuration register 0  
PDM clock generation configuration register  
PDM DINx sampling edge register  
GPIO configuration register 0  
ASI_CH2  
ASI_CH3  
ASI_CH4  
ASI_CH5  
ASI_CH6  
ASI_CH7  
ASI_CH8  
MST_CFG0  
MST_CFG1  
ASI_STS  
CLK_SRC  
PDMCLK_CFG  
PDMIN_CFG  
GPIO_CFG0  
GPO_CFG0  
GPO_CFG1  
GPO_CFG2  
GPO_CFG3  
GPO_VAL  
GPIO_MON  
GPI_CFG0  
GPI_CFG1  
GPO configuration register 0  
GPO configuration register 1  
GPO configuration register 2  
GPO configuration register 3  
GPIO, GPO output value register  
GPIO monitor value register  
GPI configuration register 0  
GPI configuration register 1  
54  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Register Maps (continued)  
0x2F  
0x32  
0x33  
0x36  
0x3B  
0x3C  
0x3E  
0x3F  
0x40  
0x41  
0x43  
0x44  
0x45  
0x46  
0x48  
0x49  
0x4A  
0x4B  
0x4D  
0x4E  
0x4F  
0x50  
0x52  
0x53  
0x54  
0x55  
0x57  
0x58  
0x59  
0x5A  
0x5C  
0x5D  
0x5E  
0x5F  
0x61  
0x62  
0x63  
0x6B  
0x6C  
0x73  
0x74  
0x75  
0x76  
0x77  
0x7E  
GPI_MON  
GPI monitor value register  
GPI_MON Register (P0_R47)  
INT_CFG  
Interrupt configuration register  
INT_CFG Register (P0_R50)  
INT_MASK0 Register (P0_R51)  
INT_LTCH0 Register (P0_R54)  
BIAS_CFG Register (P0_R59)  
CH1_CFG0 Register (P0_R60)  
CH1_CFG2 Register (P0_R62)  
CH1_CFG3 Register (P0_R63)  
CH1_CFG4 Register (P0_R64)  
CH2_CFG0 Register (P0_R65)  
CH2_CFG2 Register (P0_R67)  
CH2_CFG3 Register (P0_R68)  
CH2_CFG4 Register (P0_R69)  
CH3_CFG0 Register (P0_R70)  
CH3_CFG2 Register (P0_R72)  
CH3_CFG3 Register (P0_R73)  
CH3_CFG4 Register (P0_R74)  
CH4_CFG0 Register (P0_R75)  
CH4_CFG2 Register (P0_R77)  
CH4_CFG3 Register (P0_R78)  
CH4_CFG4 Register (P0_R79)  
CH5_CFG0 Register (P0_R80)  
CH5_CFG2 Register (P0_R82)  
CH5_CFG3 Register (P0_R83)  
CH5_CFG4 Register (P0_R84)  
CH6_CFG0 Register (P0_R85)  
CH6_CFG2 Register (P0_R87)  
CH6_CFG3 Register (P0_R88)  
CH6_CFG4 Register (P0_R89)  
CH7_CFG0 Register (P0_R90)  
CH7_CFG2 Register (P0_R92)  
CH7_CFG3 Register (P0_R93)  
CH7_CFG4 Register (P0_R94)  
CH8_CFG0 Register (P0_R95)  
CH8_CFG2 Register (P0_R97)  
CH8_CFG3 Register (P0_R98)  
CH8_CFG4 Register (P0_R99)  
DSP_CFG0 Register (P0_R107)  
DSP_CFG1 Register (P0_R108)  
IN_CH_EN Register (P0_R115)  
ASI_OUT_CH_EN Register (P0_R116)  
PWR_CFG Register (P0_R117)  
DEV_STS0 Register (P0_R118)  
DEV_STS1 Register (P0_R119)  
I2C_CKSUM Register (P0_R126)  
INT_MASK0  
INT_LTCH0  
BIAS_CFG  
CH1_CFG0  
CH1_CFG2  
CH1_CFG3  
CH1_CFG4  
CH2_CFG0  
CH2_CFG2  
CH2_CFG3  
CH2_CFG4  
CH3_CFG0  
CH3_CFG2  
CH3_CFG3  
CH3_CFG4  
CH4_CFG0  
CH4_CFG2  
CH4_CFG3  
CH4_CFG4  
CH5_CFG0  
CH5_CFG2  
CH5_CFG3  
CH5_CFG4  
CH6_CFG0  
CH6_CFG2  
CH6_CFG3  
CH6_CFG4  
CH7_CFG0  
CH7_CFG2  
CH7_CFG3  
CH7_CFG4  
CH8_CFG0  
CH8_CFG2  
CH8_CFG3  
CH8_CFG4  
DSP_CFG0  
DSP_CFG1  
IN_CH_EN  
ASI_OUT_CH_EN  
PWR_CFG  
DEV_STS0  
DEV_STS1  
I2C_CKSUM  
Interrupt mask register 0  
Latched interrupt readback register 0  
MICBIAS and VREF configuration register  
Channel 1 configuration register 0  
Channel 1 configuration register 2  
Channel 1 configuration register 3  
Channel 1 configuration register 4  
Channel 2 configuration register 0  
Channel 2 configuration register 2  
Channel 2 configuration register 3  
Channel 2 configuration register 4  
Channel 3 configuration register 0  
Channel 3 configuration register 2  
Channel 3 configuration register 3  
Channel 3 configuration register 4  
Channel 4 configuration register 0  
Channel 4 configuration register 2  
Channel 4 configuration register 3  
Channel 4 configuration register 4  
Channel 5 configuration register 0  
Channel 5 configuration register 2  
Channel 5 configuration register 3  
Channel 5 configuration register 4  
Channel 6 configuration register 0  
Channel 6 configuration register 2  
Channel 6 configuration register 3  
Channel 6 configuration register 4  
Channel 7 configuration register 0  
Channel 7 configuration register 2  
Channel 7 configuration register 3  
Channel 7 configuration register 4  
Channel 8 configuration register 0  
Channel 8 configuration register 2  
Channel 8 configuration register 3  
Channel 8 configuration register 4  
DSP configuration register 0  
DSP configuration register 1  
Input channel enable configuration register  
ASI output channel enable configuration register  
Power up configuration register  
Device status value register 0  
Device status value register 1  
I2C checksum register  
Table 45 lists the access codes used for the PCMD3180 registers.  
Table 45. PCMD3180 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: PCMD3180  
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 45. PCMD3180 Access Type Codes (continued)  
Access Type  
Code  
Description  
R-W  
R/W  
Read or write  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
7.6.1.2 Register Descriptions  
7.6.1.2.1 PAGE_CFG Register (page = 0x00, address = 0x00) [reset = 0h]  
The device memory map is divided into pages. This register sets the page.  
Figure 86. PAGE_CFG Register  
7
6
5
4
3
2
1
0
PAGE[7:0]  
R/W-0h  
Table 46. PAGE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PAGE[7:0]  
R/W  
0h  
These bits set the device page.  
0d = Page 0  
1d = Page 1  
...  
255d = Page 255  
7.6.1.2.2 SW_RESET Register (page = 0x00, address = 0x01) [reset = 0h]  
This register is the software reset register. Asserting a software reset places all register values in their default  
power-on-reset (POR) state.  
Figure 87. SW_RESET Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
SW_RESET  
R/W-0h  
Table 47. SW_RESET Register Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
SW_RESET  
Reserved  
R/W  
0h  
Software reset. This bit is self clearing.  
0d = Do not reset  
1d = Reset  
7.6.1.2.3 SLEEP_CFG Register (page = 0x00, address = 0x02) [reset = 0h]  
This register configures the regulator, VREF quick charge, I2C broadcast and sleep mode.  
Figure 88. SLEEP_CFG Register  
7
6
5
4
3
2
1
0
AREG_SELEC  
T
I2C_BRDCAST  
_EN  
Reserved  
R/W-0h  
VREF_QCHG[1:0]  
R/W-0h  
Reserved  
R-0h  
SLEEP_ENZ  
R/W-0h  
R/W-0h  
R/W-0h  
56  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 48. SLEEP_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AREG_SELECT  
R/W  
0h  
The analog supply selection from either the internal regulator supply or the  
external AREG supply.  
0d = External 1.8-V AREG supply (use this setting when AVDD is 1.8 V and  
short AREG with AVDD)  
1d = Internally generated 1.8-V AREG supply using an on-chip regulator  
(use this setting when AVDD is 3.3 V)  
6-5  
4-3  
Reserved  
R/W  
R/W  
0h  
0h  
Reserved  
VREF_QCHG[1:0]  
The duration of the quick-charge for the VREF external capacitor is set using  
an internal series impedance of 200 ohm.  
0d = VREF quick-charge duration of 3.5 ms (typical)  
1d = VREF quick-charge duration of 10 ms (typical)  
2d = VREF quick-charge duration of 50 ms (typical)  
3d = VREF quick-charge duration of 100 ms (typical)  
2
I2C_BRDCAST_EN  
R/W  
0h  
I2C broadcast addressing setting.  
0d = I2C broadcast mode disabled; the I2C slave address is determined  
based on the ADDR pins  
1d = I2C broadcast mode enabled; the I2C slave address is fixed at 1001  
100  
1
0
Reserved  
R
0h  
0h  
Reserved  
SLEEP_ENZ  
R/W  
Sleep mode setting.  
0d = Device is in sleep mode  
1d = Device is not in sleep mode  
7.6.1.2.4 SHDN_CFG Register (page = 0x00, address = 0x05) [reset = 5h]  
This register configures the device shutdown  
Figure 89. SHDN_CFG Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
Reserved  
R/W-0h  
SHDNZ_CFG[1:0]  
R/W-1h  
DREG_KA_TIME[1:0]  
R/W-1h  
Table 49. SHDN_CFG Register Field Descriptions  
Bit  
7-6  
5-4  
3-2  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
R/W  
R/W  
0h  
Reserved  
SHDNZ_CFG[1:0]  
1h  
Shutdown configuration.  
0d = DREG is powered down immediately after SHDNZ asserts  
1d = DREG remains active to enable a clean shut down until a time-out is  
reached; after the time-out period, DREG is forced to power off  
2d = DREG remains active until the device cleanly shuts down  
3d = Reserved  
1-0  
DREG_KA_TIME[1:0]  
R/W  
1h  
These bits set how long DREG remains active after SHDNZ asserts.  
0d = DREG remains active for 30 ms (typical)  
1d = DREG remains active for 25 ms (typical)  
2d = DREG remains active for 10 ms (typical)  
3d = DREG remains active for 5 ms (typical)  
7.6.1.2.5 ASI_CFG0 Register (page = 0x00, address = 0x07) [reset = 30h]  
This register is the ASI configuration register 0.  
Figure 90. ASI_CFG0 Register  
7
6
5
4
3
2
1
0
ASI_FORMAT[1:0]  
R/W-0h  
ASI_WLEN[1:0]  
R/W-3h  
FSYNC_POL  
R/W-0h  
BCLK_POL  
R/W-0h  
TX_EDGE  
R/W-0h  
TX_FILL  
R/W-0h  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 50. ASI_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
ASI_FORMAT[1:0]  
R/W  
0h  
ASI protocol format.  
0d = TDM mode  
1d = I2S mode  
2d = LJ (left-justified) mode  
3d = Reserved  
5-4  
ASI_WLEN[1:0]  
R/W  
3h  
ASI word or slot length.  
0d = 16 bits  
1d = 20 bits  
2d = 24 bits  
3d = 32 bits  
3
2
1
FSYNC_POL  
BCLK_POL  
TX_EDGE  
R/W  
R/W  
R/W  
0h  
0h  
0h  
ASI FSYNC polarity.  
0d = Default polarity as per standard protocol  
1d = Inverted polarity with respect to standard protocol  
ASI BCLK polarity.  
0d = Default polarity as per standard protocol  
1d = Inverted polarity with respect to standard protocol  
ASI data output (on the primary and secondary data pin) transmit edge.  
0d = Default edge as per the protocol configuration setting in bit 2  
(BCLK_POL)  
1d = Inverted following edge (half cycle delay) with respect to the default  
edge setting  
0
TX_FILL  
R/W  
0h  
ASI data output (on the primary and secondary data pin) for any unused  
cycles  
0d = Always transmit 0 for unused cycles  
1d = Always use Hi-Z for unused cycles  
7.6.1.2.6 ASI_CFG1 Register (page = 0x00, address = 0x08) [reset = 0h]  
This register is the ASI configuration register 1.  
Figure 91. ASI_CFG1 Register  
7
6
5
4
3
2
1
0
TX_LSB  
R/W-0h  
TX_KEEPER[1:0]  
R/W-0h  
TX_OFFSET[4:0]  
R/W-0h  
Table 51. ASI_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TX_LSB  
R/W  
0h  
ASI data output (on the primary and secondary data pin) for LSB  
transmissions.  
0d = Transmit the LSB for a full cycle  
1d = Transmit the LSB for the first half cycle and Hi-Z for the second half  
cycle  
6-5  
4-0  
TX_KEEPER[1:0]  
R/W  
R/W  
0h  
0h  
ASI data output (on the primary and secondary data pin) bus keeper.  
0d = Bus keeper is always disabled  
1d = Bus keeper is always enabled  
2d = Bus keeper is enabled during LSB transmissions only for one cycle  
3d = Bus keeper is enabled during LSB transmissions only for one and half  
cycles  
TX_OFFSET[4:0]  
ASI data MSB slot 0 offset (on the primary and secondary data pin).  
0d = ASI data MSB location has no offset and is as per standard protocol  
1d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is the left  
and right slot 0) offset of one BCLK cycle with respect to standard protocol  
2d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is the left  
and right slot 0) offset of two BCLK cycles with respect to standard protocol  
3d to 30d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is  
the left and right slot 0) offset assigned as per configuration  
31d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is the left  
and right slot 0) offset of 31 BCLK cycles with respect to standard protocol  
58  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.6.1.2.7 ASI_CFG2 Register (page = 0x00, address = 0x09) [reset = 0h]  
This register is the ASI configuration register 2.  
Figure 92. ASI_CFG2 Register  
7
6
5
4
3
2
1
0
ASI_ERR_RCO  
V
ASI_DAISY  
R/W-0h  
Reserved  
R-0h  
ASI_ERR  
R/W-0h  
Reserved  
R-0h  
R/W-0h  
Table 52. ASI_CFG2 Register Field Descriptions  
Bit  
Field  
ASI_DAISY  
Type  
Reset  
Description  
7
R/W  
0h  
ASI daisy chain connection.  
0d = All devices are connected in the common ASI bus  
1d = All devices are daisy-chained for the ASI bus  
6
5
Reserved  
ASI_ERR  
R
0h  
0h  
Reserved  
R/W  
ASI bus error detection.  
0d = Enable bus error detection  
1d = Disable bus error detection  
4
ASI_ERR_RCOV  
Reserved  
R/W  
R
0h  
0h  
ASI bus error auto resume.  
0d = Enable auto resume after bus error recovery  
1d = Disable auto resume after bus error recovery and remain powered  
down until the host configures the device  
3-0  
Reserved  
7.6.1.2.8 ASI_CH1 Register (page = 0x00, address = 0x0B) [reset = 0h]  
This register is the ASI slot configuration register for channel 1.  
Figure 93. ASI_CH1 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH1_OUTPUT  
R/W-0h  
CH1_SLOT[5:0]  
R/W-0h  
Table 53. ASI_CH1 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH1_OUTPUT  
R/W  
0h  
Channel 1 output line.  
0d = Channel 1 output is on the ASI primary output pin (SDOUT)  
0d = Channel 1 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH1_SLOT[5:0]  
R/W  
0h  
Channel 1 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
7.6.1.2.9 ASI_CH2 Register (page = 0x00, address = 0x0C) [reset = 1h]  
This register is the ASI slot configuration register for channel 2.  
Figure 94. ASI_CH2 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH2_OUTPUT  
R/W-0h  
CH2_SLOT[5:0]  
R/W-1h  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 54. ASI_CH2 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
CH2_OUTPUT  
Reserved  
6
R/W  
0h  
Channel 2 output line.  
0d = Channel 2 output is on the ASI primary output pin (SDOUT)  
0d = Channel 2 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH2_SLOT[5:0]  
R/W  
1h  
Channel 2 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
7.6.1.2.10 ASI_CH3 Register (page = 0x00, address = 0x0D) [reset = 2h]  
This register is the ASI slot configuration register for channel 3.  
Figure 95. ASI_CH3 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH3_OUTPUT  
R/W-0h  
CH3_SLOT[5:0]  
R/W-2h  
Table 55. ASI_CH3 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH3_OUTPUT  
R/W  
0h  
Channel 3 output line.  
0d = Channel 3 output is on the ASI primary output pin (SDOUT)  
0d = Channel 3 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH3_SLOT[5:0]  
R/W  
2h  
Channel 3 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
7.6.1.2.11 ASI_CH4 Register (page = 0x00, address = 0x0E) [reset = 3h]  
This register is the ASI slot configuration register for channel 4.  
Figure 96. ASI_CH4 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH4_OUTPUT  
R/W-0h  
CH4_SLOT[5:0]  
R/W-3h  
Table 56. ASI_CH4 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH4_OUTPUT  
R/W  
0h  
Channel 4 output line.  
0d = Channel 4 output is on the ASI primary output pin (SDOUT)  
0d = Channel 4 output is on the ASI secondary output pin (GPIO1 or GPOx)  
60  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 56. ASI_CH4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-0  
CH4_SLOT[5:0]  
R/W  
3h  
Channel 4 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
7.6.1.2.12 ASI_CH5 Register (page = 0x00, address = 0x0F) [reset = 4h]  
This register is the ASI slot configuration register for channel 5.  
Figure 97. ASI_CH5 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH5_OUTPUT  
R/W-0h  
CH5_SLOT[5:0]  
R/W-4h  
Table 57. ASI_CH5 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH5_OUTPUT  
R/W  
0h  
Channel 5 output line.  
0d = Channel 5 output is on the ASI primary output pin (SDOUT)  
0d = Channel 5 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH5_SLOT[5:0]  
R/W  
4h  
Channel 5 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
7.6.1.2.13 ASI_CH6 Register (page = 0x00, address = 0x10) [reset = 5h]  
This register is the ASI slot configuration register for channel 6.  
Figure 98. ASI_CH6 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH6_OUTPUT  
R/W-0h  
CH6_SLOT[5:0]  
R/W-5h  
Table 58. ASI_CH6 Register Field Descriptions  
Bit  
7
Field  
Reserved  
CH6_OUTPUT  
Type  
R
Reset  
0h  
Description  
Reserved  
6
R/W  
0h  
Channel 6 output line.  
0d = Channel 6 output is on the ASI primary output pin (SDOUT)  
0d = Channel 6 output is on the ASI secondary output pin (GPIO1 or GPOx)  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 58. ASI_CH6 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-0  
CH6_SLOT[5:0]  
R/W  
5h  
Channel 6 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
7.6.1.2.14 ASI_CH7 Register (page = 0x00, address = 0x11) [reset = 6h]  
This register is the ASI slot configuration register for channel 7.  
Figure 99. ASI_CH7 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH7_OUTPUT  
R/W-0h  
CH7_SLOT[5:0]  
R/W-6h  
Table 59. ASI_CH7 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH7_OUTPUT  
R/W  
0h  
Channel 7 output line.  
0d = Channel 7 output is on the ASI primary output pin (SDOUT)  
0d = Channel 7 output is on the ASI secondary output pin (GPIO1 or GPOx)  
5-0  
CH7_SLOT[5:0]  
R/W  
6h  
Channel 7 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
7.6.1.2.15 ASI_CH8 Register (page = 0x00, address = 0x12) [reset = 7h]  
This register is the ASI slot configuration register for channel 8.  
Figure 100. ASI_CH8 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH8_OUTPUT  
R/W-0h  
CH8_SLOT[5:0]  
R/W-7h  
Table 60. ASI_CH8 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6
CH8_OUTPUT  
R/W  
0h  
Channel 8 output line.  
0d = Channel 8 output is on the ASI primary output pin (SDOUT)  
0d = Channel 8 output is on the ASI secondary output pin (GPIO1 or GPOx)  
62  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 60. ASI_CH8 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-0  
CH8_SLOT[5:0]  
R/W  
7h  
Channel 8 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
7.6.1.2.16 MST_CFG0 Register (page = 0x00, address = 0x13) [reset = 2h]  
This register is the ASI master mode configuration register 0.  
Figure 101. MST_CFG0 Register  
7
6
5
4
3
2
1
0
MST_SLV_CF AUTO_CLK_C AUTO_MODE_ BCLK_FSYNC_  
FS_MODE  
R/W-0h  
MCLK_FREQ_SEL[2:0]  
R/W-2h  
G
FG  
PLL_DIS  
GATE  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 61. MST_CFG0 Register Field Descriptions  
Bit  
Field  
MST_SLV_CFG  
Type  
Reset  
Description  
7
R/W  
0h  
ASI master or slave configuration register setting.  
0d = Device is in slave mode (both BCLK and FSYNC are inputs to the  
device)  
1d = Device is in master mode (both BCLK and FSYNC are generated from  
the device)  
6
AUTO_CLK_CFG  
R/W  
0h  
Automatic clock configuration setting.  
0d = Auto clock configuration is enabled (all internal clock divider and PLL  
configurations are auto derived)  
1d = Auto clock configuration is disabled (custom mode and device GUI  
must be used for the device configuration settings)  
5
4
AUTO_MODE_PLL_DIS  
BCLK_FSYNC_GATE  
R/W  
R/W  
0h  
0h  
Automatic mode PLL setting.  
0d = PLL is enabled in auto clock configuration  
1d = PLL is disabled in auto clock configuration  
BCLK and FSYNC clock gate (valid when the device is in master mode).  
0d = Do not gate BCLK and FSYNC  
1d = Force gate BCLK and FSYNC when being transmitted from the device  
in master mode  
3
FS_MODE  
R/W  
R/W  
0h  
2h  
Sample rate setting (valid when the device is in master mode).  
0d = fS is a multiple (or submultiple) of 48 kHz  
1d = fS is a multiple (or submultiple) of 44.1 kHz  
2-0  
MCLK_FREQ_SEL[2:0]  
These bits select the MCLK (GPIO or GPIx) frequency for the PLL source  
clock input (valid when the device is in master mode and  
MCLK_FREQ_SEL_MODE = 0).  
0d = 12 MHz  
1d = 12.288 MHz  
2d = 13 MHz  
3d = 16 MHz  
4d = 19.2 MHz  
5d = 19.68 MHz  
6d = 24 MHz  
7d = 24.576 MHz  
7.6.1.2.17 MST_CFG1 Register (page = 0x00, address = 0x14) [reset = 48h]  
This register is the ASI master mode configuration register 1.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Figure 102. MST_CFG1 Register  
7
6
5
4
3
2
1
0
FS_RATE[3:0]  
R/W-4h  
FS_BCLK_RATIO[3:0]  
R/W-8h  
Table 62. MST_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
FS_RATE[3:0]  
R/W  
4h  
Programmed sample rate of the ASI bus (not used when the device is  
configured in slave mode auto clock configuration).  
0d = 7.35 kHz or 8 kHz  
1d = 14.7 kHz or 16 kHz  
2d = 22.05 kHz or 24 kHz  
3d = 29.4 kHz or 32 kHz  
4d = 44.1 kHz or 48 kHz  
5d = 88.2 kHz or 96 kHz  
6d = 176.4 kHz or 192 kHz  
7d = 352.8 kHz or 384 kHz  
8d = 705.6 kHz or 768 kHz  
9d to 15d = Reserved  
3-0  
FS_BCLK_RATIO[3:0]  
R/W  
8h  
Programmed BCLK to FSYNC frequency ratio of the ASI bus (not used  
when the device is configured in slave mode auto clock configuration).  
0d = Ratio of 16  
1d = Ratio of 24  
2d = Ratio of 32  
3d = Ratio of 48  
4d = Ratio of 64  
5d = Ratio of 96  
6d = Ratio of 128  
7d = Ratio of 192  
8d = Ratio of 256  
9d = Ratio of 384  
10d = Ratio of 512  
11d = Ratio of 1024  
12d = Ratio of 2048  
13d to 15d = Reserved  
7.6.1.2.18 ASI_STS Register (page = 0x00, address = 0x15) [reset = FFh]  
This register s the ASI bus clock monitor status register  
Figure 103. ASI_STS Register  
7
6
5
4
3
2
1
0
FS_RATE_STS[3:0]  
R-Fh  
FS_RATIO_STS[3:0]  
R-Fh  
Table 63. ASI_STS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
FS_RATE_STS[3:0]  
R
Fh  
Detected sample rate of the ASI bus.  
0d = 7.35 kHz or 8 kHz  
1d = 14.7 kHz or 16 kHz  
2d = 22.05 kHz or 24 kHz  
3d = 29.4 kHz or 32 kHz  
4d = 44.1 kHz or 48 kHz  
5d = 88.2 kHz or 96 kHz  
6d = 176.4 kHz or 192 kHz  
7d = 352.8 kHz or 384 kHz  
8d = 705.6 kHz or 768 kHz  
9d to 14d = Reserved  
15d = Invalid sample rate  
64  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 63. ASI_STS Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
FS_RATIO_STS[3:0]  
R
Fh  
Detected BCLK to FSYNC frequency ratio of the ASI bus.  
0d = Ratio of 16  
1d = Ratio of 24  
2d = Ratio of 32  
3d = Ratio of 48  
4d = Ratio of 64  
5d = Ratio of 96  
6d = Ratio of 128  
7d = Ratio of 192  
8d = Ratio of 256  
9d = Ratio of 384  
10d = Ratio of 512  
11d = Ratio of 1024  
12d = Ratio of 2048  
13d to 14d = Reserved  
15d = Invalid ratio  
7.6.1.2.19 CLK_SRC Register (page = 0x00, address = 0x16) [reset = 10h]  
This register is the clock source configuration register.  
Figure 104. CLK_SRC Register  
7
6
5
4
3
2
1
0
DIS_PLL_SLV_ MCLK_FREQ_  
MCLK_RATIO_SEL[2:0]  
R/W-2h  
Reserved  
R-0h  
CLK_SRC  
SEL_MODE  
R/W-0h  
R/W-0h  
Table 64. CLK_SRC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DIS_PLL_SLV_CLK_SRC R/W  
0h  
Audio root clock source setting when the device is configured with the PLL  
disabled in the auto clock configuration for slave mode  
(AUTO_MODE_PLL_DIS = 1).  
0d = BCLK is used as the audio root clock source  
1d = MCLK (GPIO or GPIx) is used as the audio root clock source (the  
MCLK to FSYNC ratio is as per MCLK_RATIO_SEL setting)  
6
MCLK_FREQ_SEL_MODE R/W  
0h  
2h  
Master mode MCLK (GPIO or GPIx) frequency selection mode (valid when  
the device is in auto clock configuration).  
0d = MCLK frequency is based on the MCLK_FREQ_SEL (P0_R19)  
configuration  
1d = MCLK frequency is specified as a multiple of FSYNC in the  
MCLK_RATIO_SEL (P0_R22) configuration  
5-3  
MCLK_RATIO_SEL[2:0]  
R/W  
These bits select the MCLK (GPIO or GPIx) to FSYNC ratio for master  
mode or when MCLK is used as the audio root clock source in slave mode.  
0d = Ratio of 64  
1d = Ratio of 256  
2d = Ratio of 384  
3d = Ratio of 512  
4d = Ratio of 768  
5d = Ratio of 1024  
6d = Ratio of 1536  
7d = Ratio of 2304  
2-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.20 PDMCLK_CFG Register (page = 0x00, address = 0x1F) [reset = 40h]  
This register is the PDM clock generation configuration register.  
Figure 105. PDMCLK_CFG Register  
7
6
5
4
3
2
1
0
Reserved  
R/W-0h  
Reserved  
R/W-10h  
PDMCLK_DIV[1:0]  
R/W-0h  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 65. PDMCLK_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
6-2  
1-0  
Reserved  
10h  
0h  
PDMCLK_DIV[1:0]  
PDMCLK divider value.  
0d = PDMCLK is 2.8224 MHz or 3.072 MHz  
1d = PDMCLK is 1.4112 MHz or 1.536 MHz  
2d = PDMCLK is 705.6 kHz or 768 kHz  
3d = PDMCLK is 5.6448 MHz or 6.144 MHz  
7.6.1.2.21 PDMIN_CFG Register (page = 0x00, address = 0x20) [reset = 0h]  
This register is the PDM DINx sampling edge configuration register.  
Figure 106. PDMIN_CFG Register  
7
6
5
4
3
2
1
0
PDMDIN1_ED PDMDIN2_ED PDMDIN3_ED PDMDIN4_ED  
Reserved  
R-0h  
GE  
GE  
GE  
GE  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 66. PDMIN_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PDMDIN1_EDGE  
PDMDIN2_EDGE  
PDMDIN3_EDGE  
PDMDIN4_EDGE  
Reserved  
R/W  
0h  
PDMCLK latching edge used for channel 1 and channel 2 data.  
0d = Channel 1 data are latched on the negative edge, channel 2 data are  
latched on the positive edge  
1d = Channel 1 data are latched on the positive edge, channel 2 data are  
latched on the negative edge  
6
R/W  
R/W  
R/W  
R
0h  
0h  
0h  
0h  
PDMCLK latching edge used for channel 3 and channel 4 data.  
0d = Channel 3 data are latched on the negative edge, channel 4 data are  
latched on the positive edge  
1d = Channel 3 data are latched on the positive edge, channel 4 data are  
latched on the negative edge  
5
PDMCLK latching edge used for channel 5 and channel 6 data.  
0d = Channel 5 data are latched on the negative edge, channel 6 data are  
latched on the positive edge  
1d = Channel 5 data are latched on the positive edge, channel 6 data are  
latched on the negative edge  
4
PDMCLK latching edge used for channel 7 and channel 8 data.  
0d = Channel 7 data are latched on the negative edge, channel 8 data are  
latched on the positive edge  
1d = Channel 7 data are latched on the positive edge, channel 8 data are  
latched on the negative edge  
3-0  
Reserved  
7.6.1.2.22 GPIO_CFG0 Register (page = 0x00, address = 0x21) [reset = 22h]  
This register is the GPIO configuration register 0.  
Figure 107. GPIO_CFG0 Register  
7
6
5
4
3
2
1
0
GPIO1_CFG[3:0]  
R/W-2h  
Reserved  
R-0h  
GPIO1_DRV[2:0]  
R/W-2h  
66  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 67. GPIO_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPIO1_CFG[3:0]  
R/W  
2h  
GPIO1 configuration.  
0d = GPIO1 is disabled  
1d = GPIO1 is configured as a general-purpose output (GPO)  
2d = GPIO1 is configured as a device interrupt output (IRQ)  
3d = GPIO1 is configured as a secondary ASI output (SDOUT2)  
4d = GPIO1 is configured as a PDM clock output (PDMCLK)  
5d to 7d = Reserved  
8d = GPIO1 is configured as an input to control when MICBIAS turns on or  
off (MICBIAS_EN)  
9d = GPIO1 is configured as a general-purpose input (GPI)  
10d = GPIO1 is configured as a master clock input (MCLK)  
11d = GPIO1 is configured as an ASI input for daisy-chain (SDIN)  
12d = GPIO1 is configured as a PDM data input for channel 1 and channel 2  
(PDMDIN1)  
13d = GPIO1 is configured as a PDM data input for channel 3 and channel 4  
(PDMDIN2)  
14d = GPIO1 is configured as a PDM data input for channel 5 and channel 6  
(PDMDIN3)  
15d = GPIO1 is configured as a PDM data input for channel 7 and channel 8  
(PDMDIN4)  
3
Reserved  
R
0h  
2h  
Reserved  
2-0  
GPIO1_DRV[2:0]  
R/W  
GPIO1 output drive configuration (not used when GPIO1 is configured as  
SDOUT2).  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved  
7.6.1.2.23 GPO_CFG0 Register (page = 0x00, address = 0x22) [reset = 0h]  
This registeris the GPO configuration register 0.  
Figure 108. GPO_CFG0 Register  
7
6
5
4
3
2
1
0
GPO1_CFG[3:0]  
R/W-0h  
Reserved  
R-0h  
Table 68. GPO_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPO1_CFG[3:0]  
R/W  
0h  
PDMCLK1_GPO1 (GPO1) configuration.  
0d = GPO1 is disabled  
1d = GPO1 is configured as a general-purpose output (GPO)  
2d = GPO1 is configured as a device interrupt output (IRQ)  
3d = GPO1 is configured as a secondary ASI output (SDOUT2)  
4d = GPO1 is configured as a PDM clock output (PDMCLK)  
5d to 15d = Reserved  
3-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.24 GPO_CFG1 Register (page = 0x00, address = 0x23) [reset = 0h]  
This registeris the GPO configuration register 1.  
Figure 109. GPO_CFG1 Register  
7
6
5
4
3
2
1
0
GPO2_CFG[3:0]  
R/W-0h  
Reserved  
R-0h  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 69. GPO_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPO2_CFG[3:0]  
R/W  
0h  
PDMCLK2_GPO2 (GPO2) configuration.  
0d = GPO2 is disabled  
1d = GPO2 is configured as a general-purpose output (GPO)  
2d = GPO2 is configured as a device interrupt output (IRQ)  
3d = GPO2 is configured as a secondary ASI output (SDOUT2)  
4d = GPO2 is configured as a PDM clock output (PDMCLK)  
5d to 15d = Reserved  
3-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.25 GPO_CFG2 Register (page = 0x00, address = 0x24) [reset = 0h]  
This registeris the GPO configuration register 2.  
Figure 110. GPO_CFG2 Register  
7
6
5
4
3
2
1
0
GPO3_CFG[3:0]  
R/W-0h  
Reserved  
R-0h  
Table 70. GPO_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPO3_CFG[3:0]  
R/W  
0h  
PDMCLK3_GPO3 (GPO3) configuration.  
0d = GPO3 is disabled  
1d = GPO3 is configured as a general-purpose output (GPO)  
2d = GPO3 is configured as a device interrupt output (IRQ)  
3d = GPO3 is configured as a secondary ASI output (SDOUT2)  
4d = GPO3 is configured as a PDM clock output (PDMCLK)  
5d to 15d = Reserved  
3-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.26 GPO_CFG3 Register (page = 0x00, address = 0x25) [reset = 0h]  
This registeris the GPO configuration register 3.  
Figure 111. GPO_CFG3 Register  
7
6
5
4
3
2
1
0
GPO4_CFG[3:0]  
R/W-0h  
Reserved  
R-0h  
Table 71. GPO_CFG3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPO4_CFG[3:0]  
R/W  
0h  
PDMCLK4_GPO4 (GPO4) configuration.  
0d = GPO4 is disabled  
1d = GPO4 is configured as a general-purpose output (GPO)  
2d = GPO4 is configured as a device interrupt output (IRQ)  
3d = GPO4 is configured as a secondary ASI output (SDOUT2)  
4d = GPO4 is configured as a PDM clock output (PDMCLK)  
5d to 15d = Reserved  
3-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.27 GPO_VAL Register (page = 0x00, address = 0x29) [reset = 0h]  
This register is the GPIO and GPO output value register.  
68  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Figure 112. GPO_VAL Register  
7
6
5
4
3
2
1
0
GPIO1_VAL  
R/W-0h  
GPO1_VAL  
R/W-0h  
GPO2_VAL  
R/W-0h  
GPO3_VAL  
R/W-0h  
GPO4_VAL  
R/W-0h  
Reserved  
R-0h  
Table 72. GPO_VAL Register Field Descriptions  
Bit  
Field  
GPIO1_VAL  
Type  
Reset  
Description  
7
R/W  
0h  
GPIO1 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
6
5
GPO1_VAL  
GPO2_VAL  
GPO3_VAL  
GPO4_VAL  
Reserved  
R/W  
R/W  
R/W  
R/W  
R
0h  
0h  
0h  
0h  
0h  
GPO1 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
GPO2 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
4
GPO3 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
3
GPO4 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
2-0  
Reserved  
7.6.1.2.28 GPIO_MON Register (page = 0x00, address = 0x2A) [reset = 0h]  
This register is the GPIO monitor value register.  
Figure 113. GPIO_MON Register  
7
6
5
4
3
2
1
0
GPIO1_MON  
R-0h  
Reserved  
R-0h  
Table 73. GPIO_MON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO1_MON  
R
0h  
GPIO1 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
6-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.29 GPI_CFG0 Register (page = 0x00, address = 0x2B) [reset = 0h]  
This register is the GPI configuration register 0.  
Figure 114. GPI_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
GPI1_CFG[2:0]  
R/W-0h  
Reserved  
R-0h  
GPI2_CFG[2:0]  
R/W-0h  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 74. GPI_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
GPI1_CFG[2:0]  
Reserved  
6-4  
R/W  
0h  
PDMDIN1_GPI1 (GPI1) configuration.  
0d = GPI1 is disabled  
1d = GPI1 is configured as a general-purpose input (GPI)  
2d = GPI1 is configured as a master clock input (MCLK)  
3d = GPI1 is configured as an ASI input for daisy-chain (SDIN)  
4d = GPI1 is configured as a PDM data input for channel 1 and channel 2  
(PDMDIN1)  
5d = GPI1 is configured as a PDM data input for channel 3 and channel 4  
(PDMDIN2)  
6d = GPI1 is configured as a PDM data input for channel 5 and channel 6  
(PDMDIN3)  
7d = GPI1 is configured as a PDM data input for channel 7 and channel 8  
(PDMDIN4)  
3
Reserved  
R
0h  
0h  
Reserved  
2-0  
GPI2_CFG[2:0]  
R/W  
PDMDIN2_GPI2 (GPI2) configuration.  
0d = GPI2 is disabled  
1d = GPI2 is configured as a general-purpose input (GPI)  
2d = GPI2 is configured as a master clock input (MCLK)  
3d = GPI2 is configured as an ASI input for daisy-chain (SDIN)  
4d = GPI2 is configured as a PDM data input for channel 1 and channel 2  
(PDMDIN1)  
5d = GPI2 is configured as a PDM data input for channel 3 and channel 4  
(PDMDIN2)  
6d = GPI2 is configured as a PDM data input for channel 5 and channel 6  
(PDMDIN3)  
7d = GPI2 is configured as a PDM data input for channel 7 and channel 8  
(PDMDIN4)  
7.6.1.2.30 GPI_CFG1 Register (page = 0x00, address = 0x2C) [reset = 0h]  
This register is the GPI configuration register 1.  
Figure 115. GPI_CFG1 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
GPI3_CFG[2:0]  
R/W-0h  
Reserved  
R-0h  
GPI4_CFG[2:0]  
R/W-0h  
Table 75. GPI_CFG1 Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6-4  
GPI3_CFG[2:0]  
R/W  
0h  
PDMDIN3_GPI3 (GPI3) configuration.  
0d = GPI3 is disabled  
1d = GPI3 is configured as a general-purpose input (GPI)  
2d = GPI3 is configured as a master clock input (MCLK)  
3d = GPI3 is configured as an ASI input for daisy-chain (SDIN)  
4d = GPI3 is configured as a PDM data input for channel 1 and channel 2  
(PDMDIN1)  
5d = GPI3 is configured as a PDM data input for channel 3 and channel 4  
(PDMDIN2)  
6d = GPI3 is configured as a PDM data input for channel 5 and channel 6  
(PDMDIN3)  
7d = GPI3 is configured as a PDM data input for channel 7 and channel 8  
(PDMDIN4)  
3
Reserved  
R
0h  
Reserved  
70  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 75. GPI_CFG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
GPI4_CFG[2:0]  
R/W  
0h  
PDMDIN4_GPI4 (GPI4) configuration.  
0d = GPI4 is disabled  
1d = GPI4 is configured as a general-purpose input (GPI)  
2d = GPI4 is configured as a master clock input (MCLK)  
3d = GPI4 is configured as an ASI input for daisy-chain (SDIN)  
4d = GPI4 is configured as a PDM data input for channel 1 and channel 2  
(PDMDIN1)  
5d = GPI4 is configured as a PDM data input for channel 3 and channel 4  
(PDMDIN2)  
6d = GPI4 is configured as a PDM data input for channel 5 and channel 6  
(PDMDIN3)  
7d = GPI4 is configured as a PDM data input for channel 7 and channel 8  
(PDMDIN4)  
7.6.1.2.31 GPI_MON Register (page = 0x00, address = 0x2F) [reset = 0h]  
This regiser is the GPI monitor value register.  
Figure 116. GPI_MON Register  
7
6
5
4
3
2
1
0
GPI1_MON  
R-0h  
GPI2_MON  
R-0h  
GPI3_MON  
R-0h  
GPI4_MON  
R-0h  
Reserved  
R-0h  
Table 76. GPI_MON Register Field Descriptions  
Bit  
Field  
GPI1_MON  
Type  
Reset  
Description  
7
R
0h  
GPI1 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
6
5
GPI2_MON  
GPI3_MON  
GPI4_MON  
Reserved  
R
R
R
R
0h  
0h  
0h  
0h  
GPI2 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
GPI3 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
4
GPI4 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
3-0  
Reserved  
7.6.1.2.32 INT_CFG Register (page = 0x00, address = 0x32) [reset = 0h]  
This regiser is the interrupt configuration register.  
Figure 117. INT_CFG Register  
7
6
5
4
3
2
1
0
LTCH_READ_  
Reserved  
CFG  
INT_POL  
R/W-0h  
INT_EVENT[1:0]  
R/W-0h  
Reserved  
R-0h  
RR/W-0-h0h  
Table 77. INT_CFG Register Field Descriptions  
Bit  
Field  
INT_POL  
Type  
Reset  
Description  
7
R/W  
0h  
Interrupt polarity.  
0d = Active low (IRQZ)  
1d = Active high (IRQ)  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 77. INT_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-5  
INT_EVENT[1:0]  
R/W  
0h  
Interrupt event configuration.  
0d = INT asserts on any unmasked latched interrupts event  
1d = Reserved  
2d = INT asserts for 2 ms (typical) for every 4-ms (typical) duration on any  
unmasked latched interrupts event  
3d = INT asserts for 2 ms (typical) one time on each pulse for any  
unmasked interrupts event  
4-3  
2
Reserved  
R
0h  
0h  
Reserved  
LTCH_READ_CFG  
R/W  
Interrupt latch registers readback configuration.  
0d = All interrupts can be read through the LTCH registers  
1d = Only unmasked interrupts can be read through the LTCH registers  
1-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.33 INT_MASK0 Register (page = 0x00, address = 0x33) [reset = FFh]  
This register is the interrupt masks register 0.  
Figure 118. INT_MASK0 Register  
7
6
5
4
3
2
1
0
INT_MASK0[7] INT_MASK0[6]  
R/W-1h R/W-1h  
Reserved  
R/W-1h  
Reserved  
R/W-1h  
Reserved  
R/W-1h  
Reserved  
R/W-1h  
Reserved  
R/W-1h  
Reserved  
R/W-1h  
Table 78. INT_MASK0 Register Field Descriptions  
Bit  
Field  
INT_MASK0[7]  
Type  
Reset  
Description  
7
R/W  
1h  
ASI clock error mask.  
0d = Do not mask  
1d = Mask  
6
INT_MASK0[6]  
Reserved  
R/W  
R/W  
1h  
PLL Lock interrupt mask.  
0d = Do not mask  
1d = Mask  
5-0  
3Fh  
Reserved  
7.6.1.2.34 INT_LTCH0 Register (page = 0x00, address = 0x36) [reset = 0h]  
This register is the latched Interrupt readback register 0.  
Figure 119. INT_LTCH0 Register  
7
6
5
4
3
2
1
0
INT_LTCH0[7] INT_LTCH0[6]  
R-0h R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Reserved  
R-0h  
Table 79. INT_LTCH0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LTCH0[7]  
INT_LTCH0[6]  
Reserved  
R
0h  
Interrupt caused by an ASI bus clock error (self-clearing bit).  
0d = No interrupt  
1d = Interrupt  
6
R
R
0h  
0h  
Interrupt caused by PLL LOCK (self-clearing bit).  
0d = No interrupt  
1d = Interrupt  
5-0  
Reserved  
7.6.1.2.35 BIAS_CFG Register (page = 0x00, address = 0x3B) [reset = 0h]  
This register is the MICBIAS and VREF configuration register  
72  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Figure 120. BIAS_CFG Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
MBIAS_VAL[2:0]  
R/W-0h  
Reserved  
R-0h  
VREF_SEL[1:0]  
R/W-0h  
Table 80. BIAS_CFG Register Field Descriptions  
Bit  
7
Field  
Reserved  
Type  
R
Reset  
0h  
Description  
Reserved  
6-4  
MBIAS_VAL[2:0]  
R/W  
0h  
MICBIAS value.  
0d = Microphone bias is set to VREF (2.750 V, 2.500 V, or 1.375 V)  
1d to 5d = Reserved 2d = Reserved  
6d = Microphone bias is set to AVDD  
7d = Reserved  
3-2  
1-0  
Reserved  
R
0h  
0h  
Reserved  
VREF_SEL[1:0]  
R/W  
VREF voltage setting (configure this setting based on the AVDD supply  
minimum voltage used).  
0d = VREF is set to 2.75 V  
1d = VREF is set to 2.5 V  
2d = VREF is set to 1.375 V (this option must be used for 1.8 V AVDD)  
3d = Reserved  
7.6.1.2.36 CH1_CFG0 Register (page = 0x00, address = 0x3C) [reset = 0h]  
This register is configuration register 0 for channel 1.  
Figure 121. CH1_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R/W-0h  
CH1_INSRC[1:0]  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R-0h  
Reserved  
R/W-0h  
Table 81. CH1_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
Reserved  
6-5  
CH1_INSRC[1:0]  
0h  
Channel 1 input configuration.  
0d = Input source is not enabled  
1d = Reserved  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN1 and PDMCLK)  
3d = Reserved  
4-0  
Reserved  
R/W  
0h  
Reserved  
7.6.1.2.37 CH1_CFG2 Register (page = 0x00, address = 0x3E) [reset = C9h]  
This register is configuration register 2 for channel 1.  
Figure 122. CH1_CFG2 Register  
7
6
5
4
3
2
1
0
CH1_DVOL[7:0]  
R/W-C9h  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 82. CH1_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH1_DVOL[7:0]  
R/W  
C9h  
Channel 1 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
7.6.1.2.38 CH1_CFG3 Register (page = 0x00, address = 0x3F) [reset = 80h]  
This register is configuration register 3 for channel 1.  
Figure 123. CH1_CFG3 Register  
7
6
5
4
3
2
1
0
CH1_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 83. CH1_CFG3 Register Field Descriptions  
Bit  
Field  
CH1_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 1 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.39 CH1_CFG4 Register (page = 0x00, address = 0x40) [reset = 0h]  
This register is configuration register 4 for channel 1.  
Figure 124. CH1_CFG4 Register  
7
6
5
4
3
2
1
0
CH1_PCAL[7:0]  
R/W-0h  
Table 84. CH1_CFG4 Register Field Descriptions  
Bit  
Field  
CH1_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 1 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
7.6.1.2.40 CH2_CFG0 Register (page = 0x00, address = 0x41) [reset = 0h]  
This register is configuration register 0 for channel 2.  
74  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Figure 125. CH2_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R/W-0h  
CH2_INSRC[1:0]  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R-0h  
Reserved  
R/W-0h  
Table 85. CH2_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
Reserved  
6-5  
CH2_INSRC[1:0]  
0h  
Channel 2 input configuration.  
0d = Input source is not enabled  
1d = Reserved  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN1 and PDMCLK)  
3d = Reserved  
4-0  
Reserved  
R/W  
0h  
Reserved  
7.6.1.2.41 CH2_CFG2 Register (page = 0x00, address = 0x43) [reset = C9h]  
This register is configuration register 2 for channel 2.  
Figure 126. CH2_CFG2 Register  
7
6
5
4
3
2
1
0
CH2_DVOL[7:0]  
R/W-C9h  
Table 86. CH2_CFG2 Register Field Descriptions  
Bit  
Field  
CH2_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
C9h  
Channel 2 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
7.6.1.2.42 CH2_CFG3 Register (page = 0x00, address = 0x44) [reset = 80h]  
This register is configuration register 3 for channel 2.  
Figure 127. CH2_CFG3 Register  
7
6
5
4
3
2
1
0
CH2_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 87. CH2_CFG3 Register Field Descriptions  
Bit  
Field  
CH2_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 2 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 87. CH2_CFG3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.43 CH2_CFG4 Register (page = 0x00, address = 0x45) [reset = 0h]  
This register is configuration register 4 for channel 2.  
Figure 128. CH2_CFG4 Register  
7
6
5
4
3
2
1
0
CH2_PCAL[7:0]  
R/W-0h  
Table 88. CH2_CFG4 Register Field Descriptions  
Bit  
Field  
CH2_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 2 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
7.6.1.2.44 CH3_CFG0 Register (page = 0x00, address = 0x46) [reset = 0h]  
This register is configuration register 0 for channel 3.  
Figure 129. CH3_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R/W-0h  
CH3_INSRC[1:0]  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R-0h  
Reserved  
R/W-0h  
Table 89. CH3_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
Reserved  
6-5  
CH3_INSRC[1:0]  
0h  
Channel 3 input configuration.  
0d = Input source is not enabled  
1d = Reserved  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN2 and PDMCLK)  
3d = Reserved  
4-0  
Reserved  
R/W  
0h  
Reserved  
7.6.1.2.45 CH3_CFG2 Register (page = 0x00, address = 0x48) [reset = C9h]  
This register is configuration register 2 for channel 3.  
Figure 130. CH3_CFG2 Register  
7
6
5
4
3
2
1
0
CH3_DVOL[7:0]  
R/W-C9h  
76  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 90. CH3_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH3_DVOL[7:0]  
R/W  
C9h  
Channel 3 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
7.6.1.2.46 CH3_CFG3 Register (page = 0x00, address = 0x49) [reset = 80h]  
This register is configuration register 3 for channel 3.  
Figure 131. CH3_CFG3 Register  
7
6
5
4
3
2
1
0
CH3_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 91. CH3_CFG3 Register Field Descriptions  
Bit  
Field  
CH3_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 3 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.47 CH3_CFG4 Register (page = 0x00, address = 0x4A) [reset = 0h]  
This register is configuration register 4 for channel 3.  
Figure 132. CH3_CFG4 Register  
7
6
5
4
3
2
1
0
CH3_PCAL[7:0]  
R/W-0h  
Table 92. CH3_CFG4 Register Field Descriptions  
Bit  
Field  
CH3_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 3 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
7.6.1.2.48 CH4_CFG0 Register (page = 0x00, address = 0x4B) [reset = 0h]  
This register is configuration register 0 for channel 4.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Figure 133. CH4_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R/W-0h  
CH4_INSRC[1:0]  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R-0h  
Reserved  
R/W-0h  
Table 93. CH4_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
Reserved  
6-5  
CH4_INSRC[1:0]  
0h  
Channel 4 input configuration.  
0d = Input source is not enabled  
1d = Reserved  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN2 and PDMCLK)  
3d = Reserved  
4-0  
Reserved  
R/W  
0h  
Reserved  
7.6.1.2.49 CH4_CFG2 Register (page = 0x00, address = 0x4D) [reset = C9h]  
This register is configuration register 2 for channel 4.  
Figure 134. CH4_CFG2 Register  
7
6
5
4
3
2
1
0
CH4_DVOL[7:0]  
R/W-C9h  
Table 94. CH4_CFG2 Register Field Descriptions  
Bit  
Field  
CH4_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
C9h  
Channel 4 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
7.6.1.2.50 CH4_CFG3 Register (page = 0x00, address = 0x4E) [reset = 80h]  
This register is configuration register 3 for channel 4.  
Figure 135. CH4_CFG3 Register  
7
6
5
4
3
2
1
0
CH4_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 95. CH4_CFG3 Register Field Descriptions  
Bit  
Field  
CH4_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 4 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
78  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 95. CH4_CFG3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.51 CH4_CFG4 Register (page = 0x00, address = 0x4F) [reset = 0h]  
This register is configuration register 4 for channel 4.  
Figure 136. CH4_CFG4 Register  
7
6
5
4
3
2
1
0
CH4_PCAL[7:0]  
R/W-0h  
Table 96. CH4_CFG4 Register Field Descriptions  
Bit  
Field  
CH4_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 4 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
7.6.1.2.52 CH5_CFG0 Register (page = 0x00, address = 0x50) [reset = 0h]  
This register is configuration register 0 for Channel 5.  
Figure 137. CH5_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH5_INSRC[1:0]  
R/W-0h  
Reserved  
R-0h  
Table 97. CH5_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
6-5  
CH5_INSRC[1:0]  
R/W  
0h  
Channel 5 Input Configuration  
0d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN3 and PDMCLK)  
1d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN3 and PDMCLK)  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN3 and PDMCLK)  
3d = Reserved  
4-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.53 CH5_CFG2 Register (page = 0x00, address = 0x52) [reset = C9h]  
This register is configuration register 2 for Channel 5.  
Figure 138. CH5_CFG2 Register  
7
6
5
4
3
2
1
0
CH5_DVOL[7:0]  
R/W-C9h  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 98. CH5_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH5_DVOL[7:0]  
R/W  
C9h  
Channel 5 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
7.6.1.2.54 CH5_CFG3 Register (page = 0x00, address = 0x53) [reset = 80h]  
This register is configuration register 3 for Channel 5.  
Figure 139. CH5_CFG3 Register  
7
6
5
4
3
2
1
0
CH5_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 99. CH5_CFG3 Register Field Descriptions  
Bit  
Field  
CH5_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 5 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.55 CH5_CFG4 Register (page = 0x00, address = 0x54) [reset = 0h]  
This register is configuration register 4 for Channel 5.  
Figure 140. CH5_CFG4 Register  
7
6
5
4
3
2
1
0
CH5_PCAL[7:0]  
R/W-0h  
Table 100. CH5_CFG4 Register Field Descriptions  
Bit  
Field  
CH5_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 5 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
7.6.1.2.56 CH6_CFG0 Register (page = 0x00, address = 0x55) [reset = 0h]  
This register is configuration register 0 for Channel 6.  
80  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Figure 141. CH6_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH6_INSRC[1:0]  
R/W-0h  
Reserved  
R-0h  
Table 101. CH6_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
6-5  
CH6_INSRC[1:0]  
R/W  
0h  
Channel 6 Input Configuration  
0d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN3 and PDMCLK)  
1d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN3 and PDMCLK)  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN3 and PDMCLK)  
3d = Reserved  
4-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.57 CH6_CFG2 Register (page = 0x00, address = 0x57) [reset = C9h]  
This register is configuration register 2 for Channel 6.  
Figure 142. CH6_CFG2 Register  
7
6
5
4
3
2
1
0
CH6_DVOL[7:0]  
R/W-C9h  
Table 102. CH6_CFG2 Register Field Descriptions  
Bit  
Field  
CH6_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
C9h  
Channel 6 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
7.6.1.2.58 CH6_CFG3 Register (page = 0x00, address = 0x58) [reset = 80h]  
This register is configuration register 3 for Channel 6.  
Figure 143. CH6_CFG3 Register  
7
6
5
4
3
2
1
0
CH6_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 103. CH6_CFG3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CH6_GCAL[3:0]  
R/W  
8h  
Channel 6 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.59 CH6_CFG4 Register (page = 0x00, address = 0x59) [reset = 0h]  
This register is configuration register 4 for Channel 6.  
Figure 144. CH6_CFG4 Register  
7
6
5
4
3
2
1
0
CH6_PCAL[7:0]  
R/W-0h  
Table 104. CH6_CFG4 Register Field Descriptions  
Bit  
Field  
CH6_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 6 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
7.6.1.2.60 CH7_CFG0 Register (page = 0x00, address = 0x5A) [reset = 0h]  
This register is configuration register 0 for Channel 7.  
Figure 145. CH7_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH7_INSRC[1:0]  
R/W-0h  
Reserved  
R-0h  
Table 105. CH7_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
6-5  
CH7_INSRC[1:0]  
R/W  
0h  
Channel 7 Input Configuration  
0d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN4 and PDMCLK)  
1d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN4 and PDMCLK)  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN4 and PDMCLK)  
3d = Reserved  
4-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.61 CH7_CFG2 Register (page = 0x00, address = 0x5C) [reset = C9h]  
This register is configuration register 2 for Channel 7.  
82  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Figure 146. CH7_CFG2 Register  
7
6
5
4
3
2
1
0
CH7_DVOL[7:0]  
R/W-C9h  
Table 106. CH7_CFG2 Register Field Descriptions  
Bit  
Field  
CH7_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
C9h  
Channel 7 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
7.6.1.2.62 CH7_CFG3 Register (page = 0x00, address = 0x5D) [reset = 80h]  
This register is configuration register 3 for Channel 7.  
Figure 147. CH7_CFG3 Register  
7
6
5
4
3
2
1
0
CH7_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
Table 107. CH7_CFG3 Register Field Descriptions  
Bit  
Field  
CH7_GCAL[3:0]  
Type  
Reset  
Description  
7-4  
R/W  
8h  
Channel 7 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.63 CH7_CFG4 Register (page = 0x00, address = 0x5E) [reset = 0h]  
This register is configuration register 4 for Channel 7.  
Figure 148. CH7_CFG4 Register  
7
6
5
4
3
2
1
0
CH7_PCAL[7:0]  
R/W-0h  
Table 108. CH7_CFG4 Register Field Descriptions  
Bit  
Field  
CH7_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 7 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.6.1.2.64 CH8_CFG0 Register (page = 0x00, address = 0x5F) [reset = 0h]  
This register is configuration register 0 for Channel 8.  
Figure 149. CH8_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
CH8_INSRC[1:0]  
R/W-0h  
Reserved  
R-0h  
Table 109. CH8_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
6-5  
CH8_INSRC[1:0]  
R/W  
0h  
Channel 8 Input Configuration  
0d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN4 and PDMCLK)  
1d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN4 and PDMCLK)  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN4 and PDMCLK)  
3d = Reserved  
4-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.65 CH8_CFG2 Register (page = 0x00, address = 0x61) [reset = C9h]  
This register is configuration register 2 for Channel 8.  
Figure 150. CH8_CFG2 Register  
7
6
5
4
3
2
1
0
CH8_DVOL[7:0]  
R/W-C9h  
Table 110. CH8_CFG2 Register Field Descriptions  
Bit  
Field  
CH8_DVOL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
C9h  
Channel 8 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
7.6.1.2.66 CH8_CFG3 Register (page = 0x00, address = 0x62) [reset = 80h]  
This register is configuration register 3 for Channel 8.  
Figure 151. CH8_CFG3 Register  
7
6
5
4
3
2
1
0
CH8_GCAL[3:0]  
R/W-8h  
Reserved  
R-0h  
84  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 111. CH8_CFG3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CH8_GCAL[3:0]  
R/W  
8h  
Channel 8 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.67 CH8_CFG4 Register (page = 0x00, address = 0x63) [reset = 0h]  
This register is configuration register 4 for Channel 8.  
Figure 152. CH8_CFG4 Register  
7
6
5
4
3
2
1
0
CH8_PCAL[7:0]  
R/W-0h  
Table 112. CH8_CFG4 Register Field Descriptions  
Bit  
Field  
CH8_PCAL[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Channel 8 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator clock  
2d = Phase calibration delay is set to two cycles of the modulator clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator clock  
7.6.1.2.68 DSP_CFG0 Register (page = 0x00, address = 0x6B) [reset = 1h]  
This register is the digital signal processor (DSP) configuration register 0.  
Figure 153. DSP_CFG0 Register  
7
6
5
4
3
2
1
0
Reserved  
R-0h  
DECI_FILT[1:0]  
R/W-0h  
CH_SUM[1:0]  
R/W-0h  
HPF_SEL[1:0]  
R/W-1h  
Table 113. DSP_CFG0 Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
DECI_FILT[1:0]  
R/W  
0h  
Decimation filter response.  
0d = Linear phase  
1d = Low latency  
2d = Ultra-low latency  
3d = Reserved  
3-2  
CH_SUM[1:0]  
R/W  
0h  
Channel summation mode for higher SNR  
0d = Channel summation mode is disabled  
1d = 2-channel summation mode is enabled to generate a (CH1 + CH2) / 2  
and a (CH3 + CH4) / 2 output  
2d = 4-channel summation mode is enabled to generate a (CH1 + CH2 +  
CH3 + CH4) / 4 output  
3d = Reserved  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 113. DSP_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
HPF_SEL[1:0]  
R/W  
1h  
High-pass filter (HPF) selection.  
0d = Programmable first-order IIR filter for a custom HPF with default  
coefficient values in P4_R72 to P4_R83 set as the all-pass filter  
1d = HPF with a cutoff of 0.00025 x fS (12 Hz at fS = 48 kHz) is selected  
2d = HPF with a cutoff of 0.002 x fS (96 Hz at fS = 48 kHz) is selected  
3d = HPF with a cutoff of 0.008 x fS (384 Hz at fS = 48 kHz) is selected  
7.6.1.2.69 DSP_CFG1 Register (page = 0x00, address = 0x6C) [reset = 40h]  
This register is the digital signal processor (DSP) configuration register 1.  
Figure 154. DSP_CFG1 Register  
7
6
5
4
3
2
1
0
DISABLE_SOF  
T_STEP  
DVOL_GANG  
R/W-0h  
BIQUAD_CFG[1:0]  
R/W-2h  
Reserved  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R-0h  
R/W-0h  
Table 114. DSP_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DVOL_GANG  
R/W  
0h  
DVOL control ganged across channels.  
0d = Each channel has its own DVOL CTRL settings as programmed in the  
CHx_DVOL bits  
1d = All active channels must use the channel 1 DVOL setting (CH1_DVOL)  
irrespective of whether channel 1 is turned on or not  
6-5  
BIQUAD_CFG[1:0]  
R/W  
2h  
Number of biquads per channel configuration.  
0d = No biquads per channel; biquads are all disabled  
1d = 1 biquad per channel  
2d = 2 biquads per channel  
3d = 3 biquads per channel  
4
DISABLE_SOFT_STEP  
Reserved  
R/W  
R/W  
0h  
0h  
Soft-stepping disable during DVOL change, mute, and unmute.  
0d = Soft-stepping enabled  
1d = Soft-stepping disabled  
3-0  
Reserved  
7.6.1.2.70 IN_CH_EN Register (page = 0x00, address = 0x73) [reset = F0h]  
This register is the input channel enable configuration register.  
Figure 155. IN_CH_EN Register  
7
6
5
4
3
2
1
0
IN_CH1_EN  
R/W-1h  
IN_CH2_EN  
R/W-1h  
IN_CH3_EN  
R/W-1h  
IN_CH4_EN  
R/W-1h  
IN_CH5_EN  
R/W-0h  
IN_CH6_EN  
R/W-0h  
IN_CH7_EN  
R/W-0h  
IN_CH8_EN  
R/W-0h  
Table 115. IN_CH_EN Register Field Descriptions  
Bit  
Field  
IN_CH1_EN  
Type  
Reset  
Description  
7
R/W  
1h  
Input channel 1 enable setting.  
0d = Channel 1 is disabled  
1d = Channel 1 is enabled  
6
5
4
IN_CH2_EN  
IN_CH3_EN  
IN_CH4_EN  
R/W  
R/W  
R/W  
1h  
1h  
1h  
Input channel 2 enable setting.  
0d = Channel 2 is disabled  
1d = Channel 2 is enabled  
Input channel 3 enable setting.  
0d = Channel 3 is disabled  
1d = Channel 3 is enabled  
Input channel 4 enable setting.  
0d = Channel 4 is disabled  
1d = Channel 4 is enabled  
86  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 115. IN_CH_EN Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
IN_CH5_EN  
R/W  
0h  
Input channel 5 enable setting.  
0d = Channel 5 is disabled  
1d = Channel 5 is enabled  
2
1
0
IN_CH6_EN  
IN_CH7_EN  
IN_CH8_EN  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Input channel 6 enable setting.  
0d = Channel 6 is disabled  
1d = Channel 6 is enabled  
Input channel 7 enable setting.  
0d = Channel 7 is disabled  
1d = Channel 7 is enabled  
Input channel 8 enable setting.  
0d = Channel 8 is disabled  
1d = Channel 8 is enabled  
7.6.1.2.71 ASI_OUT_CH_EN Register (page = 0x00, address = 0x74) [reset = 0h]  
This register is the ASI output channel enable configuration register.  
Figure 156. ASI_OUT_CH_EN Register  
7
6
5
4
3
2
1
0
ASI_OUT_CH1 ASI_OUT_CH2 ASI_OUT_CH3 ASI_OUT_CH4 ASI_OUT_CH5 ASI_OUT_CH6 ASI_OUT_CH7 ASI_OUT_CH8  
_EN  
_EN  
_EN  
_EN  
_EN  
_EN  
_EN  
_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 116. ASI_OUT_CH_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
ASI_OUT_CH1_EN  
ASI_OUT_CH2_EN  
ASI_OUT_CH3_EN  
ASI_OUT_CH4_EN  
ASI_OUT_CH5_EN  
ASI_OUT_CH6_EN  
ASI_OUT_CH7_EN  
ASI_OUT_CH8_EN  
R/W  
0h  
ASI output channel 1 enable setting.  
0d = Channel 1 output slot is in a tri-state condition  
1d = Channel 1 output slot is enabled  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
ASI output channel 2 enable setting.  
0d = Channel 2 output slot is in a tri-state condition  
1d = Channel 2 output slot is enabled  
ASI output channel 3 enable setting.  
0d = Channel 3 output slot is in a tri-state condition  
1d = Channel 3 output slot is enabled  
ASI output channel 4 enable setting.  
0d = Channel 4 output slot is in a tri-state condition  
1d = Channel 4 output slot is enabled  
ASI output channel 5 enable setting.  
0d = Channel 5 output slot is in a tri-state condition  
1d = Channel 5 output slot is enabled  
ASI output channel 6 enable setting.  
0d = Channel 6 output slot is in a tri-state condition  
1d = Channel 6 output slot is enabled  
ASI output channel 7 enable setting.  
0d = Channel 7 output slot is in a tri-state condition  
1d = Channel 7 output slot is enabled  
ASI output channel 8 enable setting.  
0d = Channel 8 output slot is in a tri-state condition  
1d = Channel 8 output slot is enabled  
7.6.1.2.72 PWR_CFG Register (page = 0x00, address = 0x75) [reset = 0h]  
This register is the power-up configuration register.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Figure 157. PWR_CFG Register  
7
6
5
4
3
2
1
0
DYN_CH_PUP  
D_EN  
MICBIAS_PDZ  
R/W-0h  
PDM_PDZ  
R/W-0h  
PLL_PDZ  
R/W-0h  
DYN_MAXCH_SEL[1:0]  
R/W-0h  
Reserved  
R/W-0h  
Reserved  
R-0h  
R/W-0h  
Table 117. PWR_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MICBIAS_PDZ  
R/W  
0h  
Power control for MICBIAS.  
0d = Power down MICBIAS  
1d = Power up MICBIAS  
6
5
4
PDM_PDZ  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Power control for PDM channels.  
0d = Power down all PDM channels  
1d = Power up all enabled PDM channels  
PLL_PDZ  
Power control for the PLL.  
0d = Power down the PLL  
1d = Power up the PLL  
DYN_CH_PUPD_EN  
Dynamic channel power-up, power-down enable.  
0d = Channel power-up, power-down is not supported if any channel  
recording is on  
1d = Channel can be powered up or down individually, even if channel  
recording is on  
3-2  
DYN_MAXCH_SEL[1:0]  
R/W  
0h  
Dynamic mode maximum channel select configuration.  
0d = Channel 1 and channel 2 are used with dynamic channel power-up,  
power-down feature enabled  
1d = Channel 1 to channel 4 are used with dynamic channel power-up,  
power-down feature enabled  
2d = Channel 1 to channel 6 are used with dynamic channel power-up,  
power-down feature enabled  
3d = Channel 1 to channel 8 are used with dynamic channel power-up,  
power-down feature enabled  
1
0
Reserved  
Reserved  
R/W  
R
0h  
0h  
Reserved  
Reserved  
7.6.1.2.73 DEV_STS0 Register (page = 0x00, address = 0x76) [reset = 0h]  
This register is the device status value register 0.  
Figure 158. DEV_STS0 Register  
7
6
5
4
3
2
1
0
CH1_STATUS CH2_STATUS CH3_STATUS CH4_STATUS CH5_STATUS CH6_STATUS CH7_STATUS CH8_STATUS  
R-0h R-0h R-0h R-0h R-0h R-0h R-0h R-0h  
Table 118. DEV_STS0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
CH1_STATUS  
CH2_STATUS  
CH3_STATUS  
CH4_STATUS  
CH5_STATUS  
R
0h  
PDM channel 1 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
R
R
R
R
0h  
0h  
0h  
0h  
PDM channel 2 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
PDM channel 3 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
PDM channel 4 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
PDM channel 5 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
88  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 118. DEV_STS0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
CH6_STATUS  
R
0h  
PDM channel 6 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
1
0
CH7_STATUS  
CH8_STATUS  
R
R
0h  
0h  
PDM channel 7 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
PDM channel 8 power status.  
0d = PDM channel is powered down  
1d = PDM channel is powered up  
7.6.1.2.74 DEV_STS1 Register (page = 0x00, address = 0x77) [reset = 80h]  
This register is the device status value register 1.  
Figure 159. DEV_STS1 Register  
7
6
5
4
3
2
1
0
MODE_STS[2:0]  
R-4h  
Reserved  
R-0h  
Table 119. DEV_STS1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
MODE_STS[2:0]  
R
4h  
Device mode status.  
4d = Device is in sleep mode or software shutdown mode  
6d = Device is in active mode with all PDM channels turned off  
7d = Device is in active mode with at least one PDM channel turned on  
4-0  
Reserved  
R
0h  
Reserved  
7.6.1.2.75 I2C_CKSUM Register (page = 0x00, address = 0x7E) [reset = 0h]  
This register returns the I2C transactions checksum value.  
Figure 160. I2C_CKSUM Register  
7
6
5
4
3
2
1
0
I2C_CKSUM[7:0]  
R/W-0h  
Table 120. I2C_CKSUM Register Field Descriptions  
Bit  
Field  
I2C_CKSUM[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
These bits return the I2C transactions checksum value. Writing to this  
register resets the checksum to the written value. This register is updated on  
writes to other registers on all pages.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
89  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.6.2 Programmable Coefficient Registers  
7.6.2.1 Programmable Coefficient Registers: Page = 0x02  
This register page (shown in Table 121) consists of the programmable coefficients for the biquad 1 to biquad 6  
filters. To optimize the coefficients register transaction time for page 2, page 3, and page 4, the device also  
supports (by default) auto-incremented pages for the I2C and SPI burst writes and reads. After a transaction of  
register address 0x7F, the device auto increments to the next page at register 0x08 to transact the next  
coefficient value. These programmable coefficients are 32-bit, two’s complement numbers. For a successful  
coefficient register transaction, the host device must write and read all the four bytes starting with the most  
significant byte (BYT1) for a target coefficient register transaction. While using SPI for a coefficient register read  
transaction, the device gives out first byte as dummy read byte therefore the host must read five bytes which  
includes first byte as dummy read byte and the last four bytes corresponds to the coefficient register value  
starting with the most significant byte (BYT1).  
Table 121. Page 0x02 Programmable Coefficient Registers  
ADDRESS  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
REGISTER  
RESET  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
DESCRIPTION  
PAGE[7:0]  
Device page register  
BQ1_N0_BYT1[7:0]  
BQ1_N0_BYT2[7:0]  
BQ1_N0_BYT3[7:0]  
BQ1_N0_BYT4[7:0]  
BQ1_N1_BYT1[7:0]  
BQ1_N1_BYT2[7:0]  
BQ1_N1_BYT3[7:0]  
BQ1_N1_BYT4[7:0]  
BQ1_N2_BYT1[7:0]  
BQ1_N2_BYT2[7:0]  
BQ1_N2_BYT3[7:0]  
BQ1_N2_BYT4[7:0]  
BQ1_D1_BYT1[7:0]  
BQ1_D1_BYT2[7:0]  
BQ1_D1_BYT3[7:0]  
BQ1_D1_BYT4[7:0]  
BQ1_D2_BYT1[7:0]  
BQ1_D2_BYT2[7:0]  
BQ1_D2_BYT3[7:0]  
BQ1_D2_BYT4[7:0]  
BQ2_N0_BYT1[7:0]  
BQ2_N0_BYT2[7:0]  
BQ2_N0_BYT3[7:0]  
BQ2_N0_BYT4[7:0]  
BQ2_N1_BYT1[7:0]  
BQ2_N1_BYT2[7:0]  
BQ2_N1_BYT3[7:0]  
BQ2_N1_BYT4[7:0]  
BQ2_N2_BYT1[7:0]  
BQ2_N2_BYT2[7:0]  
BQ2_N2_BYT3[7:0]  
BQ2_N2_BYT4[7:0]  
BQ2_D1_BYT1[7:0]  
BQ2_D1_BYT2[7:0]  
BQ2_D1_BYT3[7:0]  
BQ2_D1_BYT4[7:0]  
BQ2_D2_BYT1[7:0]  
Programmable biquad 1, N0 coefficient byte[31:24]  
Programmable biquad 1, N0 coefficient byte[23:16]  
Programmable biquad 1, N0 coefficient byte[15:8]  
Programmable biquad 1, N0 coefficient byte[7:0]  
Programmable biquad 1, N1 coefficient byte[31:24]  
Programmable biquad 1, N1 coefficient byte[23:16]  
Programmable biquad 1, N1 coefficient byte[15:8]  
Programmable biquad 1, N1 coefficient byte[7:0]  
Programmable biquad 1, N2 coefficient byte[31:24]  
Programmable biquad 1, N2 coefficient byte[23:16]  
Programmable biquad 1, N2 coefficient byte[15:8]  
Programmable biquad 1, N2 coefficient byte[7:0]  
Programmable biquad 1, D1 coefficient byte[31:24]  
Programmable biquad 1, D1 coefficient byte[23:16]  
Programmable biquad 1, D1 coefficient byte[15:8]  
Programmable biquad 1, D1 coefficient byte[7:0]  
Programmable biquad 1, D2 coefficient byte[31:24]  
Programmable biquad 1, D2 coefficient byte[23:16]  
Programmable biquad 1, D2 coefficient byte[15:8]  
Programmable biquad 1, D2 coefficient byte[7:0]  
Programmable biquad 2, N0 coefficient byte[31:24]  
Programmable biquad 2, N0 coefficient byte[23:16]  
Programmable biquad 2, N0 coefficient byte[15:8]  
Programmable biquad 2, N0 coefficient byte[7:0]  
Programmable biquad 2, N1 coefficient byte[31:24]  
Programmable biquad 2, N1 coefficient byte[23:16]  
Programmable biquad 2, N1 coefficient byte[15:8]  
Programmable biquad 2, N1 coefficient byte[7:0]  
Programmable biquad 2, N2 coefficient byte[31:24]  
Programmable biquad 2, N2 coefficient byte[23:16]  
Programmable biquad 2, N2 coefficient byte[15:8]  
Programmable biquad 2, N2 coefficient byte[7:0]  
Programmable biquad 2, D1 coefficient byte[31:24]  
Programmable biquad 2, D1 coefficient byte[23:16]  
Programmable biquad 2, D1 coefficient byte[15:8]  
Programmable biquad 2, D1 coefficient byte[7:0]  
Programmable biquad 2, D2 coefficient byte[31:24]  
90  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 121. Page 0x02 Programmable Coefficient Registers (continued)  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
BQ2_D2_BYT2[7:0]  
BQ2_D2_BYT3[7:0]  
BQ2_D2_BYT4[7:0]  
BQ3_N0_BYT1[7:0]  
BQ3_N0_BYT2[7:0]  
BQ3_N0_BYT3[7:0]  
BQ3_N0_BYT4[7:0]  
BQ3_N1_BYT1[7:0]  
BQ3_N1_BYT2[7:0]  
BQ3_N1_BYT3[7:0]  
BQ3_N1_BYT4[7:0]  
BQ3_N2_BYT1[7:0]  
BQ3_N2_BYT2[7:0]  
BQ3_N2_BYT3[7:0]  
BQ3_N2_BYT4[7:0]  
BQ3_D1_BYT1[7:0]  
BQ3_D1_BYT2[7:0]  
BQ3_D1_BYT3[7:0]  
BQ3_D1_BYT4[7:0]  
BQ3_D2_BYT1[7:0]  
BQ3_D2_BYT2[7:0]  
BQ3_D2_BYT3[7:0]  
BQ3_D2_BYT4[7:0]  
BQ4_N0_BYT1[7:0]  
BQ4_N0_BYT2[7:0]  
BQ4_N0_BYT3[7:0]  
BQ4_N0_BYT4[7:0]  
BQ4_N1_BYT1[7:0]  
BQ4_N1_BYT2[7:0]  
BQ4_N1_BYT3[7:0]  
BQ4_N1_BYT4[7:0]  
BQ4_N2_BYT1[7:0]  
BQ4_N2_BYT2[7:0]  
BQ4_N2_BYT3[7:0]  
BQ4_N2_BYT4[7:0]  
BQ4_D1_BYT1[7:0]  
BQ4_D1_BYT2[7:0]  
BQ4_D1_BYT3[7:0]  
BQ4_D1_BYT4[7:0]  
BQ4_D2_BYT1[7:0]  
BQ4_D2_BYT2[7:0]  
BQ4_D2_BYT3[7:0]  
BQ4_D2_BYT4[7:0]  
BQ5_N0_BYT1[7:0]  
BQ5_N0_BYT2[7:0]  
BQ5_N0_BYT3[7:0]  
BQ5_N0_BYT4[7:0]  
BQ5_N1_BYT1[7:0]  
BQ5_N1_BYT2[7:0]  
BQ5_N1_BYT3[7:0]  
BQ5_N1_BYT4[7:0]  
BQ5_N2_BYT1[7:0]  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
Programmable biquad 2, D2 coefficient byte[23:16]  
Programmable biquad 2, D2 coefficient byte[15:8]  
Programmable biquad 2, D2 coefficient byte[7:0]  
Programmable biquad 3, N0 coefficient byte[31:24]  
Programmable biquad 3, N0 coefficient byte[23:16]  
Programmable biquad 3, N0 coefficient byte[15:8]  
Programmable biquad 3, N0 coefficient byte[7:0]  
Programmable biquad 3, N1 coefficient byte[31:24]  
Programmable biquad 3, N1 coefficient byte[23:16]  
Programmable biquad 3, N1 coefficient byte[15:8]  
Programmable biquad 3, N1 coefficient byte[7:0]  
Programmable biquad 3, N2 coefficient byte[31:24]  
Programmable biquad 3, N2 coefficient byte[23:16]  
Programmable biquad 3, N2 coefficient byte[15:8]  
Programmable biquad 3, N2 coefficient byte[7:0]  
Programmable biquad 3, D1 coefficient byte[31:24]  
Programmable biquad 3, D1 coefficient byte[23:16]  
Programmable biquad 3, D1 coefficient byte[15:8]  
Programmable biquad 3, D1 coefficient byte[7:0]  
Programmable biquad 3, D2 coefficient byte[31:24]  
Programmable biquad 3, D2 coefficient byte[23:16]  
Programmable biquad 3, D2 coefficient byte[15:8]  
Programmable biquad 3, D2 coefficient byte[7:0]  
Programmable biquad 4, N0 coefficient byte[31:24]  
Programmable biquad 4, N0 coefficient byte[23:16]  
Programmable biquad 4, N0 coefficient byte[15:8]  
Programmable biquad 4, N0 coefficient byte[7:0]  
Programmable biquad 4, N1 coefficient byte[31:24]  
Programmable biquad 4, N1 coefficient byte[23:16]  
Programmable biquad 4, N1 coefficient byte[15:8]  
Programmable biquad 4, N1 coefficient byte[7:0]  
Programmable biquad 4, N2 coefficient byte[31:24]  
Programmable biquad 4, N2 coefficient byte[23:16]  
Programmable biquad 4, N2 coefficient byte[15:8]  
Programmable biquad 4, N2 coefficient byte[7:0]  
Programmable biquad 4, D1 coefficient byte[31:24]  
Programmable biquad 4, D1 coefficient byte[23:16]  
Programmable biquad 4, D1 coefficient byte[15:8]  
Programmable biquad 4, D1 coefficient byte[7:0]  
Programmable biquad 4, D2 coefficient byte[31:24]  
Programmable biquad 4, D2 coefficient byte[23:16]  
Programmable biquad 4, D2 coefficient byte[15:8]  
Programmable biquad 4, D2 coefficient byte[7:0]  
Programmable biquad 5, N0 coefficient byte[31:24]  
Programmable biquad 5, N0 coefficient byte[23:16]  
Programmable biquad 5, N0 coefficient byte[15:8]  
Programmable biquad 5, N0 coefficient byte[7:0]  
Programmable biquad 5, N1 coefficient byte[31:24]  
Programmable biquad 5, N1 coefficient byte[23:16]  
Programmable biquad 5, N1 coefficient byte[15:8]  
Programmable biquad 5, N1 coefficient byte[7:0]  
Programmable biquad 5, N2 coefficient byte[31:24]  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
91  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 121. Page 0x02 Programmable Coefficient Registers (continued)  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
BQ5_N2_BYT2[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Programmable biquad 5, N2 coefficient byte[23:16]  
Programmable biquad 5, N2 coefficient byte[15:8]  
Programmable biquad 5, N2 coefficient byte[7:0]  
Programmable biquad 5, D1 coefficient byte[31:24]  
Programmable biquad 5, D1 coefficient byte[23:16]  
Programmable biquad 5, D1 coefficient byte[15:8]  
Programmable biquad 5, D1 coefficient byte[7:0]  
Programmable biquad 5, D2 coefficient byte[31:24]  
Programmable biquad 5, D2 coefficient byte[23:16]  
Programmable biquad 5, D2 coefficient byte[15:8]  
Programmable biquad 5, D2 coefficient byte[7:0]  
Programmable biquad 6, N0 coefficient byte[31:24]  
Programmable biquad 6, N0 coefficient byte[23:16]  
Programmable biquad 6, N0 coefficient byte[15:8]  
Programmable biquad 6, N0 coefficient byte[7:0]  
Programmable biquad 6, N1 coefficient byte[31:24]  
Programmable biquad 6, N1 coefficient byte[23:16]  
Programmable biquad 6, N1 coefficient byte[15:8]  
Programmable biquad 6, N1 coefficient byte[7:0]  
Programmable biquad 6, N2 coefficient byte[31:24]  
Programmable biquad 6, N2 coefficient byte[23:16]  
Programmable biquad 6, N2 coefficient byte[15:8]  
Programmable biquad 6, N2 coefficient byte[7:0]  
Programmable biquad 6, D1 coefficient byte[31:24]  
Programmable biquad 6, D1 coefficient byte[23:16]  
Programmable biquad 6, D1 coefficient byte[15:8]  
Programmable biquad 6, D1 coefficient byte[7:0]  
Programmable biquad 6, D2 coefficient byte[31:24]  
Programmable biquad 6, D2 coefficient byte[23:16]  
Programmable biquad 6, D2 coefficient byte[15:8]  
Programmable biquad 6, D2 coefficient byte[7:0]  
BQ5_N2_BYT3[7:0]  
BQ5_N2_BYT4[7:0]  
BQ5_D1_BYT1[7:0]  
BQ5_D1_BYT2[7:0]  
BQ5_D1_BYT3[7:0]  
BQ5_D1_BYT4[7:0]  
BQ5_D2_BYT1[7:0]  
BQ5_D2_BYT2[7:0]  
BQ5_D2_BYT3[7:0]  
BQ5_D2_BYT4[7:0]  
BQ6_N0_BYT1[7:0]  
BQ6_N0_BYT2[7:0]  
BQ6_N0_BYT3[7:0]  
BQ6_N0_BYT4[7:0]  
BQ6_N1_BYT1[7:0]  
BQ6_N1_BYT2[7:0]  
BQ6_N1_BYT3[7:0]  
BQ6_N1_BYT4[7:0]  
BQ6_N2_BYT1[7:0]  
BQ6_N2_BYT2[7:0]  
BQ6_N2_BYT3[7:0]  
BQ6_N2_BYT4[7:0]  
BQ6_D1_BYT1[7:0]  
BQ6_D1_BYT2[7:0]  
BQ6_D1_BYT3[7:0]  
BQ6_D1_BYT4[7:0]  
BQ6_D2_BYT1[7:0]  
BQ6_D2_BYT2[7:0]  
BQ6_D2_BYT3[7:0]  
BQ6_D2_BYT4[7:0]  
92  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
7.6.2.2 Programmable Coefficient Registers: Page = 0x03  
This register page (shown in Table 122) consists of the programmable coefficients for the biquad 7 to biquad 12  
filters. To optimize the coefficients register transaction time for page 2, page 3, and page 4, the device also  
supports (by default) auto-incremented pages for the I2C and SPI burst writes and reads. After a transaction of  
register address 0x7F, the device auto increments to the next page at register 0x08 to transact the next  
coefficient value. These programmable coefficients are 32-bit, two’s complement numbers. For a successful  
coefficient register transaction, the host device must write and read all the four bytes starting with the most  
significant byte (BYT1) for a target coefficient register transaction. While using SPI for a coefficient register read  
transaction, the device gives out first byte as dummy read byte therefore the host must read five bytes which  
includes first byte as dummy read byte and the last four bytes corresponds to the coefficient register value  
starting with the most significant byte (BYT1).  
Table 122. Page 0x03 Programmable Coefficient Registers  
ADDR  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
REGISTER  
RESET  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
DESCRIPTION  
PAGE[7:0]  
Device page register  
BQ7_N0_BYT1[7:0]  
BQ7_N0_BYT2[7:0]  
BQ7_N0_BYT3[7:0]  
BQ7_N0_BYT4[7:0]  
BQ7_N1_BYT1[7:0]  
BQ7_N1_BYT2[7:0]  
BQ7_N1_BYT3[7:0]  
BQ7_N1_BYT4[7:0]  
BQ7_N2_BYT1[7:0]  
BQ7_N2_BYT2[7:0]  
BQ7_N2_BYT3[7:0]  
BQ7_N2_BYT4[7:0]  
BQ7_D1_BYT1[7:0]  
BQ7_D1_BYT2[7:0]  
BQ7_D1_BYT3[7:0]  
BQ7_D1_BYT4[7:0]  
BQ7_D2_BYT1[7:0]  
BQ7_D2_BYT2[7:0]  
BQ7_D2_BYT3[7:0]  
BQ7_D2_BYT4[7:0]  
BQ8_N0_BYT1[7:0]  
BQ8_N0_BYT2[7:0]  
BQ8_N0_BYT3[7:0]  
BQ8_N0_BYT4[7:0]  
BQ8_N1_BYT1[7:0]  
BQ8_N1_BYT2[7:0]  
BQ8_N1_BYT3[7:0]  
BQ8_N1_BYT4[7:0]  
BQ8_N2_BYT1[7:0]  
BQ8_N2_BYT2[7:0]  
BQ8_N2_BYT3[7:0]  
BQ8_N2_BYT4[7:0]  
BQ8_D1_BYT1[7:0]  
BQ8_D1_BYT2[7:0]  
BQ8_D1_BYT3[7:0]  
BQ8_D1_BYT4[7:0]  
BQ8_D2_BYT1[7:0]  
BQ8_D2_BYT2[7:0]  
BQ8_D2_BYT3[7:0]  
Programmable biquad 7, N0 coefficient byte[31:24]  
Programmable biquad 7, N0 coefficient byte[23:16]  
Programmable biquad 7, N0 coefficient byte[15:8]  
Programmable biquad 7, N0 coefficient byte[7:0]  
Programmable biquad 7, N1 coefficient byte[31:24]  
Programmable biquad 7, N1 coefficient byte[23:16]  
Programmable biquad 7, N1 coefficient byte[15:8]  
Programmable biquad 7, N1 coefficient byte[7:0]  
Programmable biquad 7, N2 coefficient byte[31:24]  
Programmable biquad 7, N2 coefficient byte[23:16]  
Programmable biquad 7, N2 coefficient byte[15:8]  
Programmable biquad 7, N2 coefficient byte[7:0]  
Programmable biquad 7, D1 coefficient byte[31:24]  
Programmable biquad 7, D1 coefficient byte[23:16]  
Programmable biquad 7, D1 coefficient byte[15:8]  
Programmable biquad 7, D1 coefficient byte[7:0]  
Programmable biquad 7, D2 coefficient byte[31:24]  
Programmable biquad 7, D2 coefficient byte[23:16]  
Programmable biquad 7, D2 coefficient byte[15:8]  
Programmable biquad 7, D2 coefficient byte[7:0]  
Programmable biquad 8, N0 coefficient byte[31:24]  
Programmable biquad 8, N0 coefficient byte[23:16]  
Programmable biquad 8, N0 coefficient byte[15:8]  
Programmable biquad 8, N0 coefficient byte[7:0]  
Programmable biquad 8, N1 coefficient byte[31:24]  
Programmable biquad 8, N1 coefficient byte[23:16]  
Programmable biquad 8, N1 coefficient byte[15:8]  
Programmable biquad 8, N1 coefficient byte[7:0]  
Programmable biquad 8, N2 coefficient byte[31:24]  
Programmable biquad 8, N2 coefficient byte[23:16]  
Programmable biquad 8, N2 coefficient byte[15:8]  
Programmable biquad 8, N2 coefficient byte[7:0]  
Programmable biquad 8, D1 coefficient byte[31:24]  
Programmable biquad 8, D1 coefficient byte[23:16]  
Programmable biquad 8, D1 coefficient byte[15:8]  
Programmable biquad 8, D1 coefficient byte[7:0]  
Programmable biquad 8, D2 coefficient byte[31:24]  
Programmable biquad 8, D2 coefficient byte[23:16]  
Programmable biquad 8, D2 coefficient byte[15:8]  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
93  
Product Folder Links: PCMD3180  
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
Table 122. Page 0x03 Programmable Coefficient Registers (continued)  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
BQ8_D2_BYT4[7:0]  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Programmable biquad 8, D2 coefficient byte[7:0]  
Programmable biquad 9, N0 coefficient byte[31:24]  
Programmable biquad 9, N0 coefficient byte[23:16]  
Programmable biquad 9, N0 coefficient byte[15:8]  
Programmable biquad 9, N0 coefficient byte[7:0]  
Programmable biquad 9, N1 coefficient byte[31:24]  
Programmable biquad 9, N1 coefficient byte[23:16]  
Programmable biquad 9, N1 coefficient byte[15:8]  
Programmable biquad 9, N1 coefficient byte[7:0]  
Programmable biquad 9, N2 coefficient byte[31:24]  
Programmable biquad 9, N2 coefficient byte[23:16]  
Programmable biquad 9, N2 coefficient byte[15:8]  
Programmable biquad 9, N2 coefficient byte[7:0]  
Programmable biquad 9, D1 coefficient byte[31:24]  
Programmable biquad 9, D1 coefficient byte[23:16]  
Programmable biquad 9, D1 coefficient byte[15:8]  
Programmable biquad 9, D1 coefficient byte[7:0]  
Programmable biquad 9, D2 coefficient byte[31:24]  
Programmable biquad 9, D2 coefficient byte[23:16]  
Programmable biquad 9, D2 coefficient byte[15:8]  
Programmable biquad 9, D2 coefficient byte[7:0]  
Programmable biquad 10, N0 coefficient byte[31:24]  
Programmable biquad 10, N0 coefficient byte[23:16]  
Programmable biquad 10, N0 coefficient byte[15:8]  
Programmable biquad 10, N0 coefficient byte[7:0]  
Programmable biquad 10, N1 coefficient byte[31:24]  
Programmable biquad 10, N1 coefficient byte[23:16]  
Programmable biquad 10, N1 coefficient byte[15:8]  
Programmable biquad 10, N1 coefficient byte[7:0]  
Programmable biquad 10, N2 coefficient byte[31:24]  
Programmable biquad 10, N2 coefficient byte[23:16]  
Programmable biquad 10, N2 coefficient byte[15:8]  
Programmable biquad 10, N2 coefficient byte[7:0]  
Programmable biquad 10, D1 coefficient byte[31:24]  
Programmable biquad 10, D1 coefficient byte[23:16]  
Programmable biquad 10, D1 coefficient byte[15:8]  
Programmable biquad 10, D1 coefficient byte[7:0]  
Programmable biquad 10, D2 coefficient byte[31:24]  
Programmable biquad 10, D2 coefficient byte[23:16]  
Programmable biquad 10, D2 coefficient byte[15:8]  
Programmable biquad 10, D2 coefficient byte[7:0]  
Programmable biquad 11, N0 coefficient byte[31:24]  
Programmable biquad 11, N0 coefficient byte[23:16]  
Programmable biquad 11, N0 coefficient byte[15:8]  
Programmable biquad 11, N0 coefficient byte[7:0]  
Programmable biquad 11, N1 coefficient byte[31:24]  
Programmable biquad 11, N1 coefficient byte[23:16]  
Programmable biquad 11, N1 coefficient byte[15:8]  
Programmable biquad 11, N1 coefficient byte[7:0]  
Programmable biquad 11, N2 coefficient byte[31:24]  
Programmable biquad 11, N2 coefficient byte[23:16]  
Programmable biquad 11, N2 coefficient byte[15:8]  
BQ9_N0_BYT1[7:0]  
BQ9_N0_BYT2[7:0]  
BQ9_N0_BYT3[7:0]  
BQ9_N0_BYT4[7:0]  
BQ9_N1_BYT1[7:0]  
BQ9_N1_BYT2[7:0]  
BQ9_N1_BYT3[7:0]  
BQ9_N1_BYT4[7:0]  
BQ9_N2_BYT1[7:0]  
BQ9_N2_BYT2[7:0]  
BQ9_N2_BYT3[7:0]  
BQ9_N2_BYT4[7:0]  
BQ9_D1_BYT1[7:0]  
BQ9_D1_BYT2[7:0]  
BQ9_D1_BYT3[7:0]  
BQ9_D1_BYT4[7:0]  
BQ9_D2_BYT1[7:0]  
BQ9_D2_BYT2[7:0]  
BQ9_D2_BYT3[7:0]  
BQ9_D2_BYT4[7:0]  
BQ10_N0_BYT1[7:0]  
BQ10_N0_BYT2[7:0]  
BQ10_N0_BYT3[7:0]  
BQ10_N0_BYT4[7:0]  
BQ10_N1_BYT1[7:0]  
BQ10_N1_BYT2[7:0]  
BQ10_N1_BYT3[7:0]  
BQ10_N1_BYT4[7:0]  
BQ10_N2_BYT1[7:0]  
BQ10_N2_BYT2[7:0]  
BQ10_N2_BYT3[7:0]  
BQ10_N2_BYT4[7:0]  
BQ10_D1_BYT1[7:0]  
BQ10_D1_BYT2[7:0]  
BQ10_D1_BYT3[7:0]  
BQ10_D1_BYT4[7:0]  
BQ10_D2_BYT1[7:0]  
BQ10_D2_BYT2[7:0]  
BQ10_D2_BYT3[7:0]  
BQ10_D2_BYT4[7:0]  
BQ11_N0_BYT1[7:0]  
BQ11_N0_BYT2[7:0]  
BQ11_N0_BYT3[7:0]  
BQ11_N0_BYT4[7:0]  
BQ11_N1_BYT1[7:0]  
BQ11_N1_BYT2[7:0]  
BQ11_N1_BYT3[7:0]  
BQ11_N1_BYT4[7:0]  
BQ11_N2_BYT1[7:0]  
BQ11_N2_BYT2[7:0]  
BQ11_N2_BYT3[7:0]  
94  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 122. Page 0x03 Programmable Coefficient Registers (continued)  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
BQ11_N2_BYT4[7:0]  
BQ11_D1_BYT1[7:0]  
BQ11_D1_BYT2[7:0]  
BQ11_D1_BYT3[7:0]  
BQ11_D1_BYT4[7:0]  
BQ11_D2_BYT1[7:0]  
BQ11_D2_BYT2[7:0]  
BQ11_D2_BYT3[7:0]  
BQ11_D2_BYT4[7:0]  
BQ12_N0_BYT1[7:0]  
BQ12_N0_BYT2[7:0]  
BQ12_N0_BYT3[7:0]  
BQ12_N0_BYT4[7:0]  
BQ12_N1_BYT1[7:0]  
BQ12_N1_BYT2[7:0]  
BQ12_N1_BYT3[7:0]  
BQ12_N1_BYT4[7:0]  
BQ12_N2_BYT1[7:0]  
BQ12_N2_BYT2[7:0]  
BQ12_N2_BYT3[7:0]  
BQ12_N2_BYT4[7:0]  
BQ12_D1_BYT1[7:0]  
BQ12_D1_BYT2[7:0]  
BQ12_D1_BYT3[7:0]  
BQ12_D1_BYT4[7:0]  
BQ12_D2_BYT1[7:0]  
BQ12_D2_BYT2[7:0]  
BQ12_D2_BYT3[7:0]  
BQ12_D2_BYT4[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Programmable biquad 11, N2 coefficient byte[7:0]  
Programmable biquad 11, D1 coefficient byte[31:24]  
Programmable biquad 11, D1 coefficient byte[23:16]  
Programmable biquad 11, D1 coefficient byte[15:8]  
Programmable biquad 11, D1 coefficient byte[7:0]  
Programmable biquad 11, D2 coefficient byte[31:24]  
Programmable biquad 11, D2 coefficient byte[23:16]  
Programmable biquad 11, D2 coefficient byte[15:8]  
Programmable biquad 11, D2 coefficient byte[7:0]  
Programmable biquad 12, N0 coefficient byte[31:24]  
Programmable biquad 12, N0 coefficient byte[23:16]  
Programmable biquad 12, N0 coefficient byte[15:8]  
Programmable biquad 12, N0 coefficient byte[7:0]  
Programmable biquad 12, N1 coefficient byte[31:24]  
Programmable biquad 12, N1 coefficient byte[23:16]  
Programmable biquad 12, N1 coefficient byte[15:8]  
Programmable biquad 12, N1 coefficient byte[7:0]  
Programmable biquad 12, N2 coefficient byte[31:24]  
Programmable biquad 12, N2 coefficient byte[23:16]  
Programmable biquad 12, N2 coefficient byte[15:8]  
Programmable biquad 12, N2 coefficient byte[7:0]  
Programmable biquad 12, D1 coefficient byte[31:24]  
Programmable biquad 12, D1 coefficient byte[23:16]  
Programmable biquad 12, D1 coefficient byte[15:8]  
Programmable biquad 12, D1 coefficient byte[7:0]  
Programmable biquad 12, D2 coefficient byte[31:24]  
Programmable biquad 12, D2 coefficient byte[23:16]  
Programmable biquad 12, D2 coefficient byte[15:8]  
Programmable biquad 12, D2 coefficient byte[7:0]  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
95  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
7.6.2.3 Programmable Coefficient Registers: Page = 0x04  
This register page (shown in Table 123) consists of the programmable coefficients for mixer 1 to mixer 4 and the  
first-order IIR filter.All mixer coefficients are 32-bit, two’s complement numbers using a 1.31 number format. The  
value of 0x7FFFFFFF is equivalent to +1 (0-dB gain), the value 0x00000000 is equivalent to mute (zero data)  
and all values in between set the mixer attenuation computed using Equation 4. If the MSB is set to '1' then the  
attenuation remains the same but the signal phase is inverted. All IIR filter programmable coefficients are 32-bit,  
two’s complement numbers. For a successful coefficient register transaction, the host device must write and read  
all the four bytes starting with the most significant byte (BYT1) for a target coefficient register transaction. While  
using SPI for a coefficient register read transaction, the device gives out first byte as dummy read byte therefore  
the host must read five bytes which includes first byte as dummy read byte and the last four bytes corresponds  
to the coefficient register value starting with the most significant byte (BYT1).  
hex2dec (value) / 231  
(4)  
Table 123. Page 0x04 Programmable Coefficient Registers  
ADDR  
REGISTER  
RESET  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
DESCRIPTION  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
PAGE[7:0]  
Device page register  
MIX1_CH1_BYT1[7:0]  
MIX1_CH1_BYT2[7:0]  
MIX1_CH1_BYT3[7:0]  
MIX1_CH1_BYT4[7:0]  
MIX1_CH2_BYT1[7:0]  
MIX1_CH2_BYT2[7:0]  
MIX1_CH2_BYT3[7:0]  
MIX1_CH2_BYT4[7:0]  
MIX1_CH3_BYT1[7:0]  
MIX1_CH3_BYT2[7:0]  
MIX1_CH3_BYT3[7:0]  
MIX1_CH3_BYT4[7:0]  
MIX1_CH4_BYT1[7:0]  
MIX1_CH4_BYT2[7:0]  
MIX1_CH4_BYT3[7:0]  
MIX1_CH4_BYT4[7:0]  
MIX2_CH1_BYT1[7:0]  
MIX2_CH1_BYT2[7:0]  
MIX2_CH1_BYT3[7:0]  
MIX2_CH1_BYT4[7:0]  
MIX2_CH2_BYT1[7:0]  
MIX2_CH2_BYT2[7:0]  
MIX2_CH2_BYT3[7:0]  
MIX2_CH2_BYT4[7:0]  
MIX2_CH3_BYT1[7:0]  
MIX2_CH3_BYT2[7:0]  
MIX2_CH3_BYT3[7:0]  
MIX2_CH3_BYT4[7:0]  
MIX2_CH4_BYT1[7:0]  
MIX2_CH4_BYT2[7:0]  
MIX2_CH4_BYT3[7:0]  
MIX2_CH4_BYT4[7:0]  
MIX3_CH1_BYT1[7:0]  
MIX3_CH1_BYT2[7:0]  
MIX3_CH1_BYT3[7:0]  
MIX3_CH1_BYT4[7:0]  
MIX3_CH2_BYT1[7:0]  
MIX3_CH2_BYT2[7:0]  
Digital mixer 1, channel 1 coefficient byte[31:24]  
Digital mixer 1, channel 1 coefficient byte[23:16]  
Digital mixer 1, channel 1 coefficient byte[15:8]  
Digital mixer 1, channel 1 coefficient byte[7:0]  
Digital mixer 1, channel 2 coefficient byte[31:24]  
Digital mixer 1, channel 2 coefficient byte[23:16]  
Digital mixer 1, channel 2 coefficient byte[15:8]  
Digital mixer 1, channel 2 coefficient byte[7:0]  
Digital mixer 1, channel 3 coefficient byte[31:24]  
Digital mixer 1, channel 3 coefficient byte[23:16]  
Digital mixer 1, channel 3 coefficient byte[15:8]  
Digital mixer 1, channel 3 coefficient byte[7:0]  
Digital mixer 1, channel 4 coefficient byte[31:24]  
Digital mixer 1, channel 4 coefficient byte[23:16]  
Digital mixer 1, channel 4 coefficient byte[15:8]  
Digital mixer 1, channel 4 coefficient byte[7:0]  
Digital mixer 2, channel 1 coefficient byte[31:24]  
Digital mixer 2, channel 1 coefficient byte[23:16]  
Digital mixer 2, channel 1 coefficient byte[15:8]  
Digital mixer 2, channel 1 coefficient byte[7:0]  
Digital mixer 2, channel 2 coefficient byte[31:24]  
Digital mixer 2, channel 2 coefficient byte[23:16]  
Digital mixer 2, channel 2 coefficient byte[15:8]  
Digital mixer 2, channel 2 coefficient byte[7:0]  
Digital mixer 2, channel 3 coefficient byte[31:24]  
Digital mixer 2, channel 3 coefficient byte[23:16]  
Digital mixer 2, channel 3 coefficient byte[15:8]  
Digital mixer 2, channel 3 coefficient byte[7:0]  
Digital mixer 2, channel 4 coefficient byte[31:24]  
Digital mixer 2, channel 4 coefficient byte[23:16]  
Digital mixer 2, channel 4 coefficient byte[15:8]  
Digital mixer 2, channel 4 coefficient byte[7:0]  
Digital mixer 3, channel 1 coefficient byte[31:24]  
Digital mixer 3, channel 1 coefficient byte[23:16]  
Digital mixer 3, channel 1 coefficient byte[15:8]  
Digital mixer 3, channel 1 coefficient byte[7:0]  
Digital mixer 3, channel 2 coefficient byte[31:24]  
Digital mixer 3, channel 2 coefficient byte[23:16]  
96  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Table 123. Page 0x04 Programmable Coefficient Registers (continued)  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
MIX3_CH2_BYT3[7:0]  
MIX3_CH2_BYT4[7:0]  
MIX3_CH3_BYT1[7:0]  
MIX3_CH3_BYT2[7:0]  
MIX3_CH3_BYT3[7:0]  
MIX3_CH3_BYT4[7:0]  
MIX3_CH4_BYT1[7:0]  
MIX3_CH4_BYT2[7:0]  
MIX3_CH4_BYT3[7:0]  
MIX3_CH4_BYT4[7:0]  
MIX4_CH1_BYT1[7:0]  
MIX4_CH1_BYT2[7:0]  
MIX4_CH1_BYT3[7:0]  
MIX4_CH1_BYT4[7:0]  
MIX4_CH2_BYT1[7:0]  
MIX4_CH2_BYT2[7:0]  
MIX4_CH2_BYT3[7:0]  
MIX4_CH2_BYT4[7:0]  
MIX4_CH3_BYT1[7:0]  
MIX4_CH3_BYT2[7:0]  
MIX4_CH3_BYT3[7:0]  
MIX4_CH3_BYT4[7:0]  
MIX4_CH4_BYT1[7:0]  
MIX4_CH4_BYT2[7:0]  
MIX4_CH4_BYT3[7:0]  
MIX4_CH4_BYT4[7:0]  
IIR_N0_BYT1[7:0]  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Digital mixer 3, channel 2 coefficient byte[15:8]  
Digital mixer 3, channel 2 coefficient byte[7:0]  
Digital mixer 3, channel 3 coefficient byte[31:24]  
Digital mixer 3, channel 3 coefficient byte[23:16]  
Digital mixer 3, channel 3 coefficient byte[15:8]  
Digital mixer 3, channel 3 coefficient byte[7:0]  
Digital mixer 3, channel 4 coefficient byte[31:24]  
Digital mixer 3, channel 4 coefficient byte[23:16]  
Digital mixer 3, channel 4 coefficient byte[15:8]  
Digital mixer 3, channel 4 coefficient byte[7:0]  
Digital mixer 4, channel 1 coefficient byte[31:24]  
Digital mixer 4, channel 1 coefficient byte[23:16]  
Digital mixer 4, channel 1 coefficient byte[15:8]  
Digital mixer 4, channel 1 coefficient byte[7:0]  
Digital mixer 4, channel 2 coefficient byte[31:24]  
Digital mixer 4, channel 2 coefficient byte[23:16]  
Digital mixer 4, channel 2 coefficient byte[15:8]  
Digital mixer 4, channel 2 coefficient byte[7:0]  
Digital mixer 4, channel 3 coefficient byte[31:24]  
Digital mixer 4, channel 3 coefficient byte[23:16]  
Digital mixer 4, channel 3 coefficient byte[15:8]  
Digital mixer 4, channel 3 coefficient byte[7:0]  
Digital mixer 4, channel 4 coefficient byte[31:24]  
Digital mixer 4, channel 4 coefficient byte[23:16]  
Digital mixer 4, channel 4 coefficient byte[15:8]  
Digital mixer 4, channel 4 coefficient byte[7:0]  
Programmable first-order IIR, N0 coefficient byte[31:24]  
Programmable first-order IIR, N0 coefficient byte[23:16]  
Programmable first-order IIR, N0 coefficient byte[15:8]  
Programmable first-order IIR, N0 coefficient byte[7:0]  
Programmable first-order IIR, N1 coefficient byte[31:24]  
Programmable first-order IIR, N1 coefficient byte[23:16]  
Programmable first-order IIR, N1 coefficient byte[15:8]  
Programmable first-order IIR, N1 coefficient byte[7:0]  
Programmable first-order IIR, D1 coefficient byte[31:24]  
Programmable first-order IIR, D1 coefficient byte[23:16]  
Programmable first-order IIR, D1 coefficient byte[15:8]  
Programmable first-order IIR, D1 coefficient byte[7:0]  
IIR_N0_BYT2[7:0]  
IIR_N0_BYT3[7:0]  
IIR_N0_BYT4[7:0]  
IIR_N1_BYT1[7:0]  
IIR_N1_BYT2[7:0]  
IIR_N1_BYT3[7:0]  
IIR_N1_BYT4[7:0]  
IIR_D1_BYT1[7:0]  
IIR_D1_BYT2[7:0]  
IIR_D1_BYT3[7:0]  
IIR_D1_BYT4[7:0]  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
97  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The PCMD3180 is a multichannel, pulse-density-modulation (PDM) input to time-division multiplexing (TDM) or  
I2S audio output converter that supports output sample rates of up to 768 kHz. The device supports up to eight  
digital pulse density modulation (PDM) microphones for simultaneous recording applications.  
Communication to the PCMD3180 for configuration of the control registers is supported using an I2C or SPI  
interface. The device supports a highly flexible, audio serial interface (TDM, I2S, and LJ) to transmit audio data  
seamlessly in the system across devices.  
8.2 Typical Applications  
8.2.1 Eight-Channel Digital PDM Microphone Recording  
Figure 161 shows a typical configuration of the PCMD3180 for an application using eight digital PDM MEMS  
microphones with simultaneous recording operation using an I2C control interface and the TDM audio data slave  
interface. If the MICBIAS output is not used in the system then the 1 µF capacitor for the MICBIAS pin is not  
must.  
98  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
Typical Applications (continued)  
10 F  
1 F  
VDD  
(3.0 V to 3.6 V)  
0.1 F  
0.1 F  
1 F  
1 F  
GND  
GND  
GND  
GND  
10 F  
VDD  
SEL  
CLK  
VDD  
0.1 F  
GND  
DREG  
DMIC1  
Rterm  
0.1 F  
PDMDIN1_GPI1  
VSS  
DOUT  
GND  
VDD  
CLK  
PDMCLK1_GPO1  
VDD  
0.1 F  
GND  
3.3 V  
(3.0 V to 3.6 V)  
OR  
SEL  
VSS  
Rterm  
DMIC2  
DOUT  
Rterm  
Rterm  
10 F  
VDD  
SEL  
CLK  
1.8 V  
(1.65 V to 1.95 V)  
VDD  
0.1 F  
GND  
DMIC3  
PDMDIN2_GPI2  
PDMCLK2_GPO2  
DOUT  
IOVDD  
VSS  
0.1 F  
VDD  
SEL  
VSS  
CLK  
VDD  
0.1 F  
GND  
GND  
Rterm  
DMIC4  
PCMD3180  
Thermal Pad  
(VSS)  
DOUT  
Rterm  
Rterm  
GND  
VDD  
SEL  
VSS  
CLK  
VDD  
0.1 F  
GND  
DMIC5  
ADDR1_MISO  
(ADDR1)  
PDMDIN3_GPI3  
PDMCLK3_GPO3  
DOUT  
GND  
GND  
VDD  
SEL  
CLK  
VDD  
0.1 F  
GND  
Rterm  
DMIC6  
ADDR0_SCLK  
(ADDR0)  
VSS  
DOUT  
Rterm  
Rterm  
VDD  
SEL  
CLK  
VDD  
0.1 F  
GND  
DMIC7  
PDMDIN4_GPI4  
PDMCLK4_GPO4  
VSS  
DOUT  
VDD  
CLK  
VDD  
0.1 F  
GND  
SEL  
VSS  
Rterm  
DMIC8  
DOUT  
R ꢁ  
R ꢁ  
Rterm  
Host  
Processor  
Figure 161. Eight-Channel Digital PDM Microphone Recording Diagram  
8.2.1.1 Design Requirements  
The supply decoupling capacitors must be used ceramic type with low ESR. Table 124 lists the design  
parameters for this application.  
Table 124. Design Parameters  
KEY PARAMETER  
SPECIFICATION  
AVDD  
3.3 V  
11.7 mA (PLL on, eight-channel recording, fS = 48 kHz, PDMCLKx =  
= 64 × fS)  
AVDD supply current consumption  
IOVDD  
1.8 V or 3.3 V  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
99  
Product Folder Links: PCMD3180  
 
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
8.2.1.2 Detailed Design Procedure  
This section describes the necessary steps to configure the PCMD3180 for this specific application. The  
following steps provide a sequence of items that must be executed in the time between powering the device up  
and reading data from the device or transitioning from one mode to another mode of operation.  
1. Apply power to the device:  
a. Power up the IOVDD and AVDD power supplies, keeping the SHDNZ pin voltage low  
b. The device now goes into hardware shutdown mode (ultra-low-power mode < 1 µA)  
2. Transition from hardware shutdown mode to sleep mode (or software shutdown mode):  
a. Release SHDNZ only when the IOVDD and AVDD power supplies settle to the steady-state operating  
voltage  
b. Wait for at least 1 ms to allow the device to initialize the internal registers initialization  
c. The device now goes into sleep mode (low-power mode < 10 µA)  
3. Transition from sleep mode to active mode whenever required for the recording operation:  
a. Wake up the device by writing to P0_R2 to disable sleep mode  
b. Wait for at least 1 ms to allow the device to complete the internal wake-up sequence  
c. Override the default configuration registers or programmable coefficients value as required (this step is  
optional)  
d. Configure channel 1 to channel 4 (CHx_INSRC) for the digital microphone as the input source for  
recording  
e. Configure GPO1 to GPO4 (GPOx_CFG) as the PDMCLK output  
f. Configure GPI1 to GPI4 (GPI1x_CFG) as PDMDIN1 to PDMDIN4, respectively  
g. Enable all desired input channels by writing to P0_R115  
h. Enable all desired audio serial interface output channels by writing to P0_R116  
i. Power-up the PDM converter and PLL by writing to P0_R117  
j. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
This specific step can be done at any point in the sequence after step a.  
See the Phase-Locked Loop (PLL) and Clock Generation section for supported sample rates and the  
BCLK to FSYNC ratio.  
k. The device recording data is now sent to the host processor using the TDM audio serial data bus  
4. Transition from active mode to sleep mode (again) as required in the system for low-power operation:  
a. Enter sleep mode by writing to P0_R2 to enable sleep mode  
b. Wait at least 6 ms (when FSYNC = 48 kHz) for the volume to ramp down and for all blocks to power  
down  
c. Read P0_R119 to check the device shutdown and sleep mode status  
d. If the device P0_R119_D7 status bit is 1'b1 then stop FSYNC and BCLK in the system  
e. The device now goes into sleep mode (low-power mode < 10 µA) and retains all register values  
5. Transition from sleep mode to active mode (again) as required for the recording operation:  
a. Wake up the device by writing to P0_R2 to disable sleep mode  
b. Wait at least 1 ms to allow the device to complete the internal wake-up sequence  
c. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
d. The device recording data are now sent to the host processor using the TDM audio serial data bus  
6. Repeat step 4 and step 5 as required for mode transitions  
7. Assert the SHDNZ pin low to enter hardware shutdown mode (again) at any time  
8. Follow step 2 onwards to exit hardware shutdown mode (again)  
100  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
8.2.1.2.1 Example Device Register Configuration Script for EVM Setup  
This section provides a typical EVM I2C register control script that shows how to set up the PCMD3180 in an  
eight-channel digital PDM microphone recording mode.  
# Key: w 98 XX YY ==> write to I2C address 0x98, to register 0xXX, data 0xYY  
#
#
# ==> comment delimiter  
# The following list gives an example sequence of items that must be executed in the time  
# between powering the device up and reading data from the device. Note that there are  
# other valid sequences depending on which features are used.  
#
# See the PCMD3180EVM user guide for jumper settings and audio connections.  
#
# PDM 8-channel : PDMDIN1 - Ch1 and Ch2, PDMDIN2 - Ch3 and Ch4,  
#
PDMDIN3 - Ch5 and Ch6, PDMDIN4 - Ch7 and Ch8  
# PDMCLKx = 2.8224 MHz (PDMCLKx/FSYNC = 64)  
# FSYNC = 44.1 kHz (Output Data Sample Rate), BCLK = 11.2896 MHz (BCLK/FSYNC = 256)  
################################################################  
#
#
# Power up IOVDD and AVDD power supplies keeping SHDNZ pin voltage LOW  
# Wait for IOVDD and AVDD power supplies to settle to steady state operating voltage range.  
# Release SHDNZ to HIGH.  
# Wait for 1ms.  
#
# Wake-up device by I2C write into P0_R2 using internal AREG  
w 98 02 81  
#
# Configure CH1_INSRC as Digital PDM Input by I2C write into P0_R60  
w 98 3C 40  
#
# Configure CH2_INSRC as Digital PDM Input by I2C write into P0_R65  
w 98 41 40  
#
# Configure CH3_INSRC as Digital PDM Input by I2C write into P0_R70  
w 98 46 40  
#
# Configure CH4_INSRC as Digital PDM Input by I2C write into P0_R75  
w 98 4B 40  
#
# Configure PDMCLK1_GPO1 as PDMCLK by I2C write into P0_R34  
w 98 22 41  
#
# Configure PDMCLK1_GPO2 as PDMCLK by I2C write into P0_R35  
w 98 23 41  
#
# Configure PDMCLK1_GPO3 as PDMCLK by I2C write into P0_R36  
w 98 24 41  
#
# Configure PDMCLK1_GPO4 as PDMCLK by I2C write into P0_R37  
w 98 25 41  
#
# Configure PDMDIN1_GPI1 and PDMDIN2_GPI2 as PDMDIN1 and PDMDIN2 by I2C write into P0_R43  
w 98 2B 45  
#
# Configure PDMDIN3_GPI3 and PDMDIN4_GPI4 as PDMDIN3 and PDMDIN4 by I2C write into P0_R44  
w 98 2C 67  
#
# Enable Input Ch-1 to Ch-8 by I2C write into P0_R115  
w 98 73 FF  
#
# Enable ASI Output Ch-1 to Ch-8 slots by I2C write into P0_R116  
w 98 74 FF  
#
# Power-up PDM converter and PLL by I2C write into P0_R117  
w 98 75 60  
#
# Apply FSYNC = 44.1 kHz and BCLK = 11.2896 MHz and  
# Start recording data by host on ASI bus with TDM protocol 32-bits channel wordlength  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
101  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
8.2.1.3 Application Curves  
Measurements are done on the EVM by feeding the device PDM digital input signal using audio precision. In the  
system application, the device performance is expected to be limited by single-bit PDM modulator digital  
microphone output performance.  
-60  
0
Channel-1  
Channel-1  
Channel-2  
Channel-2  
-20  
Channel-3  
Channel-3  
Channel-4  
Channel-5  
Channel-6  
Channel-7  
Channel-8  
-70  
-80  
Channel-4  
Channel-5  
Channel-6  
Channel-7  
Channel-8  
-40  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
-120  
-105  
-90  
-75  
-60  
-45  
-30  
-15  
-1  
20  
50  
100  
500  
1000  
5000 10000 20000  
Input Amplitude (dB)  
PTCHMDD+  
Frequency (Hz)  
Freq  
PCMD  
Fourth order PDM modulator with PDMCLKx = 2.8224 MHz  
Fourth order PDM modulator with PDMCLKx = 2.8224 MHz  
Figure 163. THD+N vs Input Amplitude  
Figure 162. FFT With a –60-dBr Input  
102  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
8.3 What to Do and What Not to Do  
In master mode operation with I2S or LJ format, the device generates FSYNC half a cycle earlier than the normal  
protocol timing behavior expected. This timing behavior can still function for most of the system, however for  
further details and a suggested workaround for this weakness, see the Configuring and Operating the  
TLV320ADCx140 as Audio Bus Master application report.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
103  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
9 Power Supply Recommendations  
The power-supply sequence between the IOVDD and AVDD rails can be applied in any order. However, keep  
the SHDNZ pin low until the IOVDD supply voltage settles to a stable and supported operating voltage range.  
After all supplies are stable, set the SHDNZ pin high to initialize the device.  
For the supply power-up requirement, t1 and t2 must be at least 100 µs. For the supply power-down requirement,  
t3 and t4 must be at least 10 ms. This timing (as shown in Figure 164) allows the device to ramp down the  
volume on the record data, power down the analog and digital blocks, and put the device into hardware  
shutdown mode. The device can also be immediately put into hardware shutdown mode from active mode if  
SHDNZ_CFG[1:0] is set to 2'b00 using the P0_R5_D[3:2] bits. In that case, t3 and t4 are required to be at least  
100 µs.  
AVDD  
t1  
t3  
IOVDD  
SHDNZ  
t4  
t2  
Figure 164. Power-Supply Sequencing Requirement Timing Diagram  
Make sure that the supply ramp rate is slower than 1 V/µs and that the wait time between a power-down and a  
power-up event is at least 100 ms. For supply ramp rate slower than 0.1 V/ms, host device must apply a  
software reset as first transaction before doing any device configuration.  
After releasing SHDNZ, or after a software reset, delay any additional I2C or SPI transactions to the device for at  
least 2 ms to allow the device to initialize the internal registers. See the Device Functional Modes section for  
details on how the device operates in various modes after the device power supplies are settled to the  
recommended operating voltage levels.  
The PCMD3180 supports a single AVDD supply operation by integrating an on-chip digital regulator, DREG, and  
an analog regulator, AREG. However, if the AVDD voltage is less than 1.98 V in the system, then short the  
AREG and AVDD pins onboard and do not enable the internal AREG by keeping the AREG_SELECT bit to 1b'0  
(default value) of P0_R2. If the AVDD supply used in the system is higher than 2.7 V, then the host device can  
set AREG_SELECT to 1'b1 while exiting sleep mode to allow the device internal regulator to generate the AREG  
supply.  
104  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
 
PCMD3180  
www.ti.com  
SBASA14 MAY 2020  
10 Layout  
10.1 Layout Guidelines  
Each system design and printed circuit board (PCB) layout is unique. The layout must be carefully reviewed in  
the context of a specific PCB design. However, the following guidelines can optimize the device performance:  
Connect the thermal pad to ground. Use a via pattern to connect the device thermal pad, which is the area  
directly under the device, to the ground planes. This connection helps dissipate heat from the device.  
The decoupling capacitors for the power supplies must be placed close to the device pins.  
The supply decoupling capacitors must be used ceramic type with low ESR.  
Route the analog differential audio signals differentially on the PCB for better noise immunity. Avoid crossing  
digital and analog signals to prevent undesirable crosstalk.  
The device internal voltage references must be filtered using external capacitors. Place the filter capacitors  
near the VREF pin for optimal performance.  
Directly tap the MICBIAS pin to avoid common impedance when routing the biasing or supply traces for  
multiple microphones to avoid coupling across microphones.  
Directly short the VREF and MICBIAS external capacitors ground terminal to the AVSS pin without using any  
vias for this connection trace.  
Place the MICBIAS capacitor (with low equivalent series resistance) close to the device with minimal trace  
impedance.  
Use ground planes to provide the lowest impedance for power and signal current between the device and the  
decoupling capacitors. Treat the area directly under the device as a central ground area for the device, and  
all device grounds must be connected directly to that area.  
10.2 Layout Example  
Audio output interface connections  
24  
1
SDA_SSZ  
AVDD  
AREG  
VREF  
AVSS  
VSS  
SCL_MOSI  
ADD0_SCLK  
ADD1_MISO  
MICBIAS  
SHDNZ  
Audio input signal connections  
Figure 165. Layout Example  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
105  
Product Folder Links: PCMD3180  
PCMD3180  
SBASA14 MAY 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Multiple TLV320ADCx140 Devices With Shared TDM and I2C Bus application report  
Texas Instruments, Configuring and Operating the TLV320ADCx140 as Audio Bus Master application report  
Texas Instruments, TLV320ADCx140 Sampling Rates and Programmable Processing Blocks Supported  
application report  
Texas Instruments, TLV320ADCx140 Programmable Bi-Quad Filter Configuration and Application application  
report  
Texas Instruments, Analog Microphone and ADC System in Far-field Application application report  
Texas Instruments, TLV320ADCx140 Power Consumption Matrix Across Various Usage Scenarios  
application report  
Texas Instruments, ADCx140EVM-PDK user's guide  
Texas Instruments, PurePath™ Console Graphical Development Suite for Audio System Design and  
Development  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
PurePath, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
106  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: PCMD3180  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCMD3180IRTWR  
PCMD3180IRTWT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
PDM3180  
PDM3180  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Aug-2021  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTW 24  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224801/A  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY