PDRV8714SRHAQ1 [TI]

DRV871x-Q1 Automotive Multi-Channel Smart Half-Bridge Gate Drivers With Wide Common Mode Inline Current Sense Amplifiers;
PDRV8714SRHAQ1
型号: PDRV8714SRHAQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DRV871x-Q1 Automotive Multi-Channel Smart Half-Bridge Gate Drivers With Wide Common Mode Inline Current Sense Amplifiers

文件: 总167页 (文件大小:4358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
DRV871x-Q1 Automotive Multi-Channel Smart Half-Bridge Gate Drivers  
With Wide Common Mode Inline Current Sense Amplifiers  
1 Features  
3 Description  
AEC-Q100 qualified for automotive applications:  
Temperature grade 1: –40°C to +125°C, TA  
Multi-channel half-bridge gate drivers  
– Pin to pin 4 and 8 half-bridge driver variants  
– 4.9-V to 37-V (40-V abs. max) operating range  
– 4 PWM inputs with output mapping  
– Tripler charge pump for 100% PWM  
– Half-bridge, H-bridge, and SPI control modes  
Smart multi-stage gate drive architecture  
– Adjustable slew rate control  
The DRV871x-Q1 family of devices are highly  
integrated, multi-channel gate drivers intended for  
driving multiple motors or loads. The devices integrate  
either 4 (DRV8714-Q1) or 8 (DRV8718-Q1) half-  
bridge gate drivers, driver power supplies, current  
shunt amplifiers, and protection monitors reducing  
total system complexity, size, and cost.  
A smart gate drive architecture manages dead time to  
prevent shoot-through, controls slew rate to decrease  
electromagnetic interference (EMI), and optimizes  
propagation delay for optimal performance.  
– Adaptive propagation delay control  
Input modes are provided for independent half-bridge  
or H-bridge control. Four PWM inputs can be  
multiplexed between the different drivers in  
combination with SPI control.  
– 50-µA to 62-mA peak source current output  
– 50-µA to 62-mA peak sink current output  
– Integrated dead-time handshaking  
2x wide common mode current shunt amplifiers  
– Supports inline, high-side, or low-side  
– Adjustable gain settings (10, 20, 40, 80 V/V)  
Multiple interface options available  
– SPI: Detailed configuration and diagnostics  
– H/W: Simplified control and less MCU pins  
Compact VQFN packages with wettable flanks  
Integrated protection features  
– Dedicated driver disable pin (DRVOFF)  
– Low IQ, sleep mode motor braking (BRAKE)  
– Supply and regulator voltage monitors  
– MOSFET VDS overcurrent monitors  
– MOSFET VGS gate fault monitors  
Wide common mode shunt amplifiers provide inline  
current sensing to continuously measure motor  
current even during recirculating windows. The  
amplifier can be used in low-side or high-side sense  
configurations if inline sensing is not required.  
The devices provide an array of protection features to  
ensure robust system operation. These include under  
and overvoltage monitors, VDS overcurrent and VGS  
gate fault monitors for the external MOSFETs, offline  
open load and short circuit diagnostics, and internal  
thermal warning and shutdown protection.  
Device Information(1)  
PART NUMBER  
DRV8714-Q1(2)  
DRV8718-Q1  
PACKAGE  
BODY SIZE (NOM)  
6.00 mm x 6.00 mm  
8.00 mm x 8.00 mm  
8.00 mm x 8.00 mm  
– Charge pump for reverse polarity MOSFET  
– Offline open load and short circuit diagnostics  
– Device thermal warning and shutdown  
– Window watchdog timer.  
VQFN (40)  
VQFN (56)  
VQFN (56)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
– Fault condition interrupt pin (nFAULT)  
(2) Advanced Information  
2 Applications  
VBAT  
Automotive brushed DC motors  
Power seat modules  
Power trunk and lift gate  
Door module  
Body control modules  
Power sunroof  
DRV871x-Q1  
PWM  
4-Channel  
8-Channel  
SPI  
DRVOFF/nFLT  
Current Sense  
Multi-Channel  
Smart Gate Driver  
Inline Amps  
Protection  
Transmission and engine control modules  
Simple Block Diagram  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications ....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
6.1 VQFN (RVJ) 56-Pin Package and Pin Functions........4  
6.2 VQFN (RHA) 40-Pin Package and Pin Functions.......7  
7 Specifications ............................................................... 10  
7.1 Absolute Maximum Ratings ..................................... 10  
7.2 ESD Ratings .............................................................11  
7.3 Recommended Operating Conditions ......................11  
7.4 Thermal Information .................................................11  
7.5 Electrical Characteristics ..........................................11  
7.6 Timing Requirements ...............................................19  
7.7 Timing Diagrams.......................................................19  
7.8 Typical Characteristics..............................................20  
8 Detailed Description......................................................22  
8.1 Overview...................................................................22  
8.2 Functional Block Diagram.........................................23  
8.3 Feature Description...................................................27  
8.4 Device Functional Modes..........................................55  
8.5 Programming............................................................ 55  
8.6 Register Maps...........................................................60  
9 Application Implementation....................................... 148  
9.1 Application Information........................................... 148  
9.2 Typical Application.................................................. 148  
9.3 Initialization............................................................. 155  
10 Power Supply Recommendations............................156  
10.1 Bulk Capacitance Sizing....................................... 156  
11 Layout.........................................................................157  
11.1 Layout Guidelines ................................................ 157  
11.2 Layout Example.................................................... 158  
12 Device Documentation and Support........................159  
12.1 Documentation Support........................................ 159  
12.2 Receiving Notification of Documentation Updates159  
12.3 Support Resources............................................... 159  
12.4 Trademarks...........................................................159  
12.5 Electrostatic Discharge Caution............................159  
12.6 Glossary................................................................159  
13 Mechanical, Packaging, and Orderable  
Information.................................................................. 159  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (August 2020) to Revision A (December 2020)  
Page  
Changed the data sheet status from Advanced Information to Production Mixed..............................................1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
5 Device Comparison Table  
DEVICE  
HALF-BRIDGES  
AMPLIFIERS  
INTERFACE  
PACKAGE  
PINS  
40  
DRV8714H-Q1  
4
2
Hardware (H/W)  
6x6 mm VQFN  
6x6 mm VQFN  
8x8 mm VQFN  
8x8 mm VQFN  
40  
DRV8714S-Q1  
DRV8718S-Q1  
4
8
2
2
Serial (SPI)  
Serial (SPI)  
56  
56  
Table 5-1. DRV8714-Q1 SPI vs. H/W Feature Comparison  
Feature  
DRV8714S-Q1 SPI Interface  
DRV8714H-Q1 H/W Interface  
PWM Input Mode  
Gate Drive Output Current (IDRIVE  
Dead Time  
4 Modes  
4 Modes  
)
16 Settings  
6 Settings  
Handshake + 3 Fixed Settings  
16 Settings  
Handshake Only  
6 Settings  
VDS Comparator Threshold  
VDS and VGS Blanking Time (tDRIVE  
VDS Deglitch Time  
)
8 Settings  
Fixed, 8 µs  
Fixed, 4 µs  
Fixed, 2 µs  
Fixed, Cycle-By-Cycle  
Fixed, Cycle-By-Cycle  
4 Settings  
4 Settings  
VGS Deglitch Time  
Fixed, 2 µs  
VDS Fault Response  
VGS Fault Response  
Amplifier Gain  
4 Modes  
4 Modes  
4 Settings  
Amplifier Blanking Time  
Amplifier Reference Voltage  
8 Settings  
N/A  
2 Settings  
Fixed, VAREF / 2  
Auto Retry  
VPVDD Undervoltage Fault Response  
VPVDD Overvoltage Fault Response  
VVCP Undervoltage Fault Response  
VVCP Undervoltage Threshold  
Offline Open Load Diagnostic  
Offline Short Circuit Diagnostic  
Watchdog Timer  
2 Modes  
4 Modes  
N/A  
2 Modes  
Auto Retry  
2 Settings  
Fixed, 2.5 V  
N/A  
Available  
Available  
N/A  
Available  
N/A  
Multi-Function DRVOFF/nFLT Pin  
Configurable DRVOFF or nFLT  
nFLT Fault Report Only  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
6 Pin Configuration and Functions  
6.1 VQFN (RVJ) 56-Pin Package and Pin Functions  
SCLK  
SDI  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
SH5  
2
GL5  
SDO  
3
NC  
IN1  
4
DRAIN  
PVDD  
VCP  
IN2  
5
IN3  
6
IN4  
7
CP1H  
CP1L  
CP2H  
CP2L  
GND  
GL4  
Thermal  
Pad  
nSLEEP  
DRVOFF/nFLT  
AREF  
AGND  
SO1  
8
9
10  
11  
12  
13  
14  
SO2  
SH4  
BRAKE  
GH4  
Figure 6-1. DRV8718S-Q1 VQFN (RVJ) 56-Pin Package Top View  
SCLK  
SDI  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
NC  
2
NC  
SDO  
3
NC  
IN1/EN1  
IN2/PH1  
IN3/EN2  
IN4/PH2  
nSLEEP  
DRVOFF/nFLT  
AREF  
4
DRAIN  
PVDD  
VCP  
CP1H  
CP1L  
CP2H  
CP2L  
GND  
NC  
5
6
7
Thermal  
Pad  
8
9
10  
11  
12  
13  
14  
AGND  
SO1  
SO2  
NC  
BRAKE  
NC  
Figure 6-2. DRV8714S-Q1 VQFN (RVJ) 56-Pin Package Top View  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 6-1. VQFN (RVJ) 56-Pin Package Pin Functions  
PIN  
NAME  
I/O  
TYPE  
DESCRIPTION  
NO.  
DRV8718S-Q1 DRV8714S-Q1  
Serial clock input. Serial data is shifted out and captured on the corresponding  
rising and falling edge on this pin. Internal pulldown resistor.  
1
2
3
SCLK  
I
I
Digital  
Digital  
Digital  
Serial data input. Data is captured on the falling edge of the SCLK pin. Internal  
pulldown resistor.  
SDI  
Serial data output. Data is shifted out on the rising edge of the SCLK pin.  
Push-pull output.  
SDO  
O
4
5
6
7
IN1  
IN2  
IN3  
IN4  
IN1/EN1  
IN2/PH1  
IN3/EN2  
IN4/PH2  
I
I
I
I
Digital  
Digital  
Digital  
Digital  
Half-bridge and H-bridge control input. See Section 8.3.3. Internal pulldown.  
Device enable pin. Logic low to shutdown the device and enter sleep mode.  
Internal pulldown resistor.  
8
9
nSLEEP  
I
Digital  
Digital  
Multi-function pin for either driver shutdown input or fault indicator output. See  
Section 8.3.8. Internal pulldown resistor.  
DRVOFF/nFLT  
AREF  
I/O  
External voltage reference and power supply for current sense amplifiers.  
Recommended to connect a 0.1-µF, 6.3-V ceramic capacitor between the  
AREF and AGND pins.  
10  
I
Power  
11  
12  
13  
AGND  
SO1  
I/O  
O
Power  
Analog  
Analog  
Device ground. Connect to system ground.  
Shunt amplifier output.  
SO2  
O
Shunt amplifier output.  
Powered off braking pin. Logic high to enable low-side gate drivers while in  
low-power sleep mode. See Section 8.3.8.2. Internal pulldown resistor.  
14  
BRAKE  
I
Digital  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SP1  
SN1  
SP2  
SN2  
I
I
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Amplifier positive input. Connect to positive terminal of the shunt resistor.  
Amplifier negative input. Connect to negative terminal of the shunt resistor.  
Amplifier positive input. Connect to positive terminal of the shunt resistor.  
Amplifier negative input. Connect to negative terminal of the shunt resistor.  
Low-side gate driver output. Connect to the gate of the low-side MOSFET.  
High-side source sense input. Connect to the high-side MOSFET source.  
High-side gate driver output. Connect to the gate of the high-side MOSFET.  
High-side gate driver output. Connect to the gate of the high-side MOSFET.  
High-side source sense input. Connect to the high-side MOSFET source.  
Low-side gate driver output. Connect to the gate of the low-side MOSFET.  
I
I
GL1  
NC  
NC  
O
I
SH1  
GH1  
GH2  
SH2  
GL2  
NC  
O
O
I
GH1  
SH1  
GL1  
O
Low-side MOSFET gate drive 1-4 sense and power return. Connect to system  
ground close to the device and half-bridge 1-4.  
25  
PGND1  
I
Analog  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
GL3  
SH3  
GH3  
GH4  
SH4  
GL4  
GL2  
SH2  
GH2  
NC  
O
I
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Ground  
Power  
Power  
Power  
Power  
Low-side gate driver output. Connect to the gate of the low-side MOSFET.  
High-side source sense input. Connect to the high-side MOSFET source.  
High-side gate driver output. Connect to the gate of the high-side MOSFET.  
High-side gate driver output. Connect to the gate of the high-side MOSFET.  
High-side source sense input. Connect to the high-side MOSFET source.  
Low-side gate driver output. Connect to the gate of the low-side MOSFET.  
Device ground. Connect to system ground.  
O
O
NC  
I
NC  
O
GND  
CP2L  
CP2H  
CP1L  
CP1H  
I/O  
I/O  
I/O  
I/O  
I/O  
Charge pump switching node. Connect a 100-nF, PVDD-rated ceramic  
capacitor between the CP2H and CP2L pins.  
Charge pump switching node. Connect a 100-nF, PVDD-rated ceramic  
capacitor between the CP1H and CP1L pins.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 6-1. VQFN (RVJ) 56-Pin Package Pin Functions (continued)  
PIN  
NAME  
I/O  
TYPE  
DESCRIPTION  
NO.  
DRV8718S-Q1 DRV8714S-Q1  
Charge pump output. Connect a 1-µF, 16-V ceramic capacitor between the  
VCP and PVDD pins.  
37  
VCP  
I/O  
Power  
Power  
Analog  
Device driver power supply input. Connect to the bridge power supply. Connect  
a 0.1-µF, PVDD-rated ceramic capacitor and local bulk capacitance greater  
than or equal to 10-µF between PVDD and GND pins.  
38  
39  
PVDD  
I
I
Bridge MOSFET drain voltage sense pin. Connect to common point of the  
high-side MOSFET drains.  
DRAIN  
NC  
40  
41  
42  
43  
44  
45  
46  
O
I
No connection.  
GL5  
SH5  
GH5  
GH6  
SH6  
GL6  
NC  
NC  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Low-side gate driver output. Connect to the gate of the low-side MOSFET.  
High-side source sense input. Connect to the high-side MOSFET source.  
High-side gate driver output. Connect to the gate of the high-side MOSFET.  
High-side gate driver output. Connect to the gate of the high-side MOSFET.  
High-side source sense input. Connect to the high-side MOSFET source.  
Low-side gate driver output. Connect to the gate of the low-side MOSFET.  
NC  
O
O
I
GH3  
SH3  
GL3  
O
Low-side MOSFET gate drive 5-8 sense and power return. Connect to system  
ground close to the device and half-bridge 5-8.  
47  
PGND2  
I
Analog  
48  
49  
50  
51  
52  
53  
54  
GL7  
SH7  
GH7  
GH8  
SH8  
GL8  
GL4  
SH4  
GH4  
NC  
O
I
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Ground  
Low-side gate driver output. Connect to the gate of the low-side MOSFET.  
High-side source sense input. Connect to the high-side MOSFET source.  
High-side gate driver output. Connect to the gate of the high-side MOSFET.  
High-side gate driver output. Connect to the gate of the high-side MOSFET.  
High-side source sense input. Connect to the high-side MOSFET source.  
Low-side gate driver output. Connect to the gate of the low-side MOSFET.  
Device ground. Connect to system ground.  
O
O
I
NC  
NC  
O
I/O  
DGND  
DVDD  
Device logic and digital output power supply input. Recommended to connect a  
1.0-µF, 6.3-V ceramic capacitor between the DVDD and GND pins.  
55  
56  
I
I
Power  
Digital  
Serial chip select. A logic low on this pin enables serial interface  
communication. Internal pullup resistor.  
nSCS  
Note  
The DRV8718-Q1 56-Pin VQFN (RVJ) and DRV8714-Q1 56-Pin VQFN (RVJ) packages are drop in  
pin-to-pin compatible. Please note that the locations of half-bridges 1,2,3 and 4 will be shifted for the  
DRV8714-Q1 to help with PCB routing.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
6.2 VQFN (RHA) 40-Pin Package and Pin Functions  
SDI  
SDO  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GH3  
2
DRAIN  
PVDD  
VCP  
IN1/EN1  
IN2/PH1  
IN3/EN2  
IN4/PH2  
nSLEEP  
DRVOFF/nFLT  
SO1  
3
4
5
CP1H  
CP1L  
CP2H  
CP2L  
GH2  
Thermal  
Pad  
6
7
8
9
SO2  
10  
SH2  
Figure 6-3. DRV8714S-Q1 VQFN (RHA) 40-Pin Package Top View  
IDRIVE  
MODE  
IN1/EN1  
IN2/PH1  
IN3/EN2  
IN4/PH2  
nSLEEP  
nFLT  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GH3  
DRAIN  
PVDD  
VCP  
CP1H  
CP1L  
CP2H  
CP2L  
GH2  
Thermal  
Pad  
SO1  
SO2  
SH2  
Figure 6-4. DRV8714H-Q1 VQFN (RHA) 40-Pin Package Top View  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 6-2. VQFN (RHA) 40-Pin Package Pin Functions  
PIN  
NAME  
DRV8714S-Q1 DRV8714H-Q1  
I/O  
TYPE  
DESCRIPTION  
NO.  
Serial data input. Data is captured on the falling edge of the SCLK pin. Internal  
pulldown resistor.  
SDI  
IDRIVE  
I
I
Digital  
Analog  
Digital  
1
Gate driver output current setting. 6 level input pin set by an external resistor.  
Serial data output. Data is shifted out on the rising edge of the SCLK pin.  
Push-pull output.  
SDO  
O
2
MODE  
I
I
I
I
I
Analog  
Digital  
Digital  
Digital  
Digital  
Analog PWM input mode setting. 4 level input pin set by an external resistor.  
3
4
5
6
IN1/EN1  
IN2/PH1  
IN3/EN2  
IN4/PH2  
Half-bridge and H-bridge control input. See Section 8.3.3. Internal pulldown.  
Device enable pin. Logic low to shutdown the device and enter sleep mode.  
Internal pulldown resistor.  
7
nSLEEP  
I
Digital  
Digital  
Digital  
Multi-function pin for either driver shutdown input or fault indicator output. See  
Section 8.3.8. Internal pulldown resistor.  
DRVOFF/nFLT  
I/O  
O
8
Fault indicator output. This pin is pulled logic low to indicate a fault condition.  
Open-drain output. Requires external pullup resistor.  
nFLT  
9
SO1  
O
O
Analog  
Analog  
Shunt amplifier output.  
Shunt amplifier output.  
10  
SO2  
Powered off braking pin. Logic high to enable low-side gate drivers while in  
low-power sleep mode. See Section 8.3.8.2. Internal pulldown resistor.  
11  
BRAKE  
I
Digital  
12  
13  
14  
15  
16  
17  
18  
SP1  
SN1  
SP2  
SN2  
GH1  
SH1  
GL1  
I
I
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Amplifier positive input. Connect to positive terminal of the shunt resistor.  
Amplifier negative input. Connect to negative terminal of the shunt resistor.  
Amplifier positive input. Connect to positive terminal of the shunt resistor.  
Amplifier negative input. Connect to negative terminal of the shunt resistor.  
High-side gate driver output. Connect to the gate of the high-side MOSFET.  
High-side source sense input. Connect to the high-side MOSFET source.  
Low-side gate driver output. Connect to the gate of the low-side MOSFET.  
I
I
O
I
O
Low-side MOSFET gate drive 1-2 sense and power return. Connect to system  
ground close to the device and half-bridge 1-2.  
19  
PGND1  
I
Analog  
20  
21  
22  
23  
24  
25  
26  
GL2  
SH2  
O
I
Analog  
Analog  
Analog  
Power  
Power  
Power  
Power  
Low-side gate driver output. Connect to the gate of the low-side MOSFET.  
High-side source sense input. Connect to the high-side MOSFET source.  
High-side gate driver output. Connect to the gate of the high-side MOSFET.  
GH2  
O
CP2L  
CP2H  
CP1L  
CP1H  
I/O  
I/O  
I/O  
I/O  
Charge pump switching node. Connect a 100-nF, PVDD-rated ceramic  
capacitor between the CP2H and CP2L pins.  
Charge pump switching node. Connect a 100-nF, PVDD-rated ceramic  
capacitor between the CP1H and CP1L pins.  
Charge pump output. Connect a 1-µF, 16-V ceramic capacitor between the  
VCP and PVDD pins.  
27  
28  
29  
VCP  
PVDD  
DRAIN  
I/O  
Power  
Power  
Analog  
Device driver power supply input. Connect to the bridge power supply. Connect  
a 0.1-µF, PVDD-rated ceramic capacitor and local bulk capacitance greater  
than or equal to 10-µF between PVDD and GND pins.  
I
I
Bridge MOSFET drain voltage sense pin. Connect to common point of the  
high-side MOSFET drains.  
30  
31  
32  
GH3  
SH3  
GL3  
O
I
Analog  
Analog  
Analog  
High-side gate driver output. Connect to the gate of the high-side MOSFET.  
High-side source sense input. Connect to the high-side MOSFET source.  
Low-side gate driver output. Connect to the gate of the low-side MOSFET.  
O
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 6-2. VQFN (RHA) 40-Pin Package Pin Functions (continued)  
PIN  
NAME  
I/O  
TYPE  
DESCRIPTION  
NO.  
DRV8714S-Q1 DRV8714H-Q1  
Low-side MOSFET gate drive 3-4 sense and power return. Connect to system  
ground close to the device and half-bridge 3-4.  
33  
PGND2  
I
Analog  
34  
35  
36  
37  
GL4  
SH4  
GH4  
GND  
O
I
Analog  
Analog  
Analog  
Ground  
Low-side gate driver output. Connect to the gate of the low-side MOSFET.  
High-side source sense input. Connect to the high-side MOSFET source.  
High-side gate driver output. Connect to the gate of the high-side MOSFET.  
Device ground. Connect to system ground.  
O
I/O  
Device logic and digital output power supply input. External voltage reference  
and power supply for current sense amplifiers. Recommended to connect a  
1.0-µF, 6.3-V ceramic capacitor between the DVDD and GND pins.  
38  
39  
DVDD  
I
Power  
Serial chip select. A logic low on this pin enables serial interface  
communication. Internal pullup resistor.  
nSCS  
GAIN  
I
I
I
I
Digital  
Analog  
Digital  
Analog  
Amplifier gain setting. 4 level input pin set by an external resistor.  
Serial clock input. Serial data is shifted out and captured on the corresponding  
rising and falling edge on this pin. Internal pulldown resistor.  
SCLK  
40  
VDS  
VDS monitor threshold setting. 6 level input pin set by an external resistor.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX UNIT  
Driver power supply pin voltage  
MOSFET drain sense pin voltage  
Voltage difference between ground pins  
Charge pump pin voltage  
PVDD  
40  
40  
V
V
V
V
V
V
V
V
DRAIN  
–0.3  
AGND, DGND, GND  
VCP  
–0.3  
0.3  
–0.3  
55  
CP1H  
VPVDD – 0.3  
VPVDD – 0.6  
–0.3  
VVCP + 0.3  
VVCP + 0.3  
VPVDD + 0.3  
5.75  
Charge pump high-side pin voltage  
CP2H  
Charge pump low-side pin voltage  
Digital power supply pin voltage  
CP1L, CP2L  
DVDD  
–0.3  
DRVOFF/nFLT, GAIN, IDRIVE, INx/ENx,  
INx/PHx, MODE, nSLEEP, nSCS,  
SCLK, SDI, VDS  
Logic pin voltage  
–0.3  
5.75  
V
Output logic pin voltage  
DRVOFF/nFLT, SDO  
BRAKE  
–0.3  
–0.3  
–2  
VDVDD + 0.3  
V
V
Brake pin voltage  
VPVDD + 0.3  
High-side gate drive pin voltage  
VVCP + 0.3  
Transient 1-µs high-side gate drive pin voltage  
High-side gate drive pin voltage with respect to SHx  
High-side sense pin voltage  
GHx(2)  
SHx(2)  
–5  
VVCP + 0.3  
V
V
V
V
–0.3  
–2  
13.5  
40  
Transient 1-µs high-side sense pin voltage  
Low-side gate drive pin voltage  
–5  
40  
–2  
13.5  
13.5  
13.5  
2
Transient 1-µs low-side gate drive pin voltage  
Low-side gate drive pin voltage with respect to PGNDx  
Low-side sense pin voltage  
GLx(2)  
–3  
–0.3  
–2  
PGNDx(2)  
Transient 1-µs low-side sense pin voltage  
–3  
3
Internally  
Limited  
Internally  
Limited  
Peak gate drive current  
GHx, GLx  
AREF  
mA  
V
Amplfier power supply and reference pin voltage  
Amplifier input pin voltage  
–0.3  
–2  
5.75  
VVCP + 0.3  
VVCP + 0.3  
5.75  
SNx, SPx  
V
Transient 1-µs amplifier input pin voltage  
Amplifier input differential voltage  
Amplifier output pin voltage  
–5  
SNx, SPx  
SOx  
–5.75  
–0.3  
–40  
–40  
–65  
V
VAREF + 0.3  
125  
V
Ambient temperature, TA  
°C  
°C  
°C  
Junction temperature, TJ  
150  
Storage temperature, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) PVDD and DRAIN with respect to GHx, SHx, GLx, or PGNDx should not exceed 40-V. When PVDD or DRAIN are greater than 35-V,  
negative voltage on GHx, SHx, GLx, and PGNDx should be limited to ensure this rating is not exceeded. When PVDD and DRAIN are  
less than 35-V, the full negative voltage rating of GHx, SHx, GLx, and PGNDx is available.  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
Electrostatic  
V(ESD)  
V
discharge  
Corner pins  
Other pins  
±750  
±500  
Charged device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4B  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating temperature range (unless otherwise noted)  
MIN  
4.9  
0
NOM  
MAX UNIT  
VPVDD  
Driver power supply voltage  
PVDD  
GHx  
37  
15  
V
mA  
mA  
V
(1)  
IHS  
High-side average gate-drive current  
Low-side average gate-drive current  
Digital power supply voltage  
(1)  
ILS  
GLx  
0
15  
VDVDD  
VDIN  
DVDD  
3
5.5  
BRAKE, DRVOFF/nFLT, INx/ENx, INx/  
PHx, nSLEEP, nSCS, SCLK, SDI  
Digital input voltage  
0
5.5  
V
IDOUT  
VOD  
IOD  
Digital output current  
SDO  
0
0
5
5.5  
mA  
V
Open drain pullup voltage  
Open drain output current  
Brake input voltage  
DRVOFF/nFLT  
DRVOFF/nFLT  
BRAKE  
0
5
mA  
V
VBRAKE  
VAREF  
ISO  
0
PVDD  
5.5  
Amplfier reference supply voltage  
Shunt amplifier output current  
Operating ambient temperature  
Operating junction temperature  
AREF  
3
V
SOx  
0
5
mA  
°C  
°C  
TA  
–40  
–40  
125  
150  
TJ  
(1) Power dissipation and thermal limits must be observed  
7.4 Thermal Information  
DRV8718-Q1  
RVJ (VQFN)  
56 PINS  
25.6  
DRV8714-Q1  
RVJ (VQFN)  
56 PINS  
24.7  
DRV8714-Q1  
RHA (VQFN)  
40 PINS  
31  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
15.2  
14.1  
20.9  
10.0  
9.0  
12.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
0.2  
0.2  
ΨJB  
9.9  
9.0  
12.4  
RθJC(bot)  
3.0  
2.3  
2.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
4.9 V ≤ VPVDD ≤ 37 V, 40°C ≤ TJ ≤ 150°C (unless otherwise noted). Typical limits apply for VPVDD = 13.5 V and TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLIES (DRAIN, DVDD, PVDD, VCP)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
4.9 V ≤ VPVDD ≤ 37 V, 40°C ≤ TJ ≤ 150°C (unless otherwise noted). Typical limits apply for VPVDD = 13.5 V and TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VPVDD, VDRAIN = 13.5 V, nSLEEP = 0 V  
BRAKE = 0 V, 40 ≤ TJ ≤ 85°C  
2.25  
3.5  
15  
2
µA  
µA  
µA  
IPVDDQ  
PVDD sleep mode current  
VPVDD, VDRAIN = 13.5 V, nSLEEP = 0 V  
BRAKE = 5 V, –40 ≤ TJ ≤ 85°C  
10  
VPVDD, VDRAIN = 13.5 V, nSLEEP = 0 V  
–40 ≤ TJ ≤ 85°C  
IDRAINQ  
IDVDDQ  
IPVDD  
DRAIN sleep mode current  
1.25  
VPVDD, VDRAIN = 13.5 V, nSLEEP = 0 V  
–40 ≤ TJ ≤ 85°C  
DVDD sleep mode current  
PVDD active mode current  
DRAIN active mode current  
1.25  
13.5  
1
3
15.5  
1.65  
µA  
mA  
mA  
VPVDD, VDRAIN = 13.5 V, nSLEEP = 5 V  
VPVDD, VDRAIN = 13.5 V, nSLEEP = 5 V,  
VDS_LVL ≤ 500 mV  
IDRAIN  
VDVDD = 5 V, SDO = 0 V  
DRV8718-Q1 RVJ, DRV8714-Q1 RVJ  
8
10  
13  
mA  
mA  
IDVDD  
DVDD active mode current  
VDVDD = 5 V, SDO = 0 V  
DRV8714-Q1 RHA  
10  
fDVDD  
tWAKE  
tSLEEP  
Digital oscillator switching frequency  
Turnon time  
Primary frequency of spread spectrum.  
nSLEEP = 5 V to active mode  
nSLEEP = 0 V to sleep mode  
VPVDD ≥ 9 V, IVCP ≤ 30 mA  
14.25  
MHz  
ms  
1
1
Turnoff time  
ms  
9.5  
8.5  
7
10.5  
9
11  
11  
11  
11  
11  
11  
Charge pump regulator voltage with  
respect to PVDD  
Triple mode  
VPVDD = 7 V, IVCP ≤ 25 mA  
V
VPVDD = 4.9 V, IVCP ≤ 12 mA  
VPVDD ≥ 13 V, IVCP ≤ 25 mA  
VPVDD = 9 V, IVCP ≤ 13.5 mA  
VPVDD = 7 V, IVCP ≤ 10 mA  
7.5  
10.5  
8
VVCP  
9.5  
7
Charge pump regulator voltage with  
respect to PVDD  
Double mode  
V
5.4  
6
fVCP  
Charge pump switching frequency  
Primary frequency of spread spectrum.  
400  
kHz  
LOGIC-LEVEL INPUTS (BRAKE, DRVOFF/nFLT, INx/EN, INx/PHx, nSLEEP, nSCS, SCLK, SDI)  
DRVOFF/nFLT, INx/ENx, INx/PHx,  
nSLEEP, SCLK, SDI  
VDVDD  
x
0
0
0.3  
VIL  
Input logic low voltage  
Input logic high voltage  
Input hysteresis  
V
V
BRAKE  
0.6  
5.5  
5.5  
DRVOFF/nFLT, INx/ENx, INx/PHx,  
nSLEEP, SCLK, SDI  
VDVDD  
x
0.7  
VIH  
VHYS  
IIL  
BRAKE  
1.8  
–5  
–5  
DRVOFF/nFLT, INx/ENx, INx/PHx,  
nSLEEP, SCLK, SDI  
VDVDD  
x
0.1  
V
BRAKE  
0.5  
VDIN = 0 V, BRAKE, DRVOFF/nFLT, INx/  
ENx, INx/PHx, nSLEEP, SCLK, SDI  
5
100  
100  
Input logic low current  
µA  
µA  
VDIN = 0 V, nSCS  
50  
50  
VDIN = 5 V, DRVOFF/nFLT, INx/ENx, INx/  
PHx, nSLEEP, SCLK, SDI  
VDIN = 5 V, VDVDD = 5 V, nSCS  
VDIN = 5 V, nSLEEP = 0V, BRAKE  
VDIN = 5 V, nSLEEP = 5V, BRAKE  
5
10  
IIH  
Input logic high current  
5
µA  
µA  
35  
100  
To GND, DRVOFF/nFLT, INx/ENx, INx/  
PHx, nSLEEP, SCLK, SDI  
50  
100  
150  
kΩ  
kΩ  
BRAKE to GND, nSLEEP = 0 V  
BRAKE ≤ 2 V, 4.9 V ≤ VPVDD ≤ VPOB_OV  
RPD  
Input pulldown resistance  
500  
1000  
1500  
BRAKE to GND, nSLEEP = 5 V  
BRAKE ≤ 2 V, 4.9 V ≤ VPVDD ≤ VPOB_OV  
50  
50  
136  
100  
200  
150  
kΩ  
kΩ  
RPU  
Input pullup resistance  
To DVDD, nSCS  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
4.9 V ≤ VPVDD ≤ 37 V, 40°C ≤ TJ ≤ 150°C (unless otherwise noted). Typical limits apply for VPVDD = 13.5 V and TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
MULTI-LEVEL INPUTS (GAIN, IDRIVE, MODE, VDS)  
GAIN, MODE  
Voltage to set level 1  
VDVDD  
x
VQI1  
RQI2  
RQI3  
VQI4  
Quad-level input 1  
Quad-level input 2  
Quad-level input 3  
Quad-level input 4  
0
44.65  
500  
V
kΩ  
kΩ  
V
0.1  
GAIN, MODE  
Resistance to GND to set level 2  
47  
49.35  
GAIN, MODE  
Resistance to GND to set level 3  
Hi-Z  
GAIN, MODE  
Voltage to set level 4  
VDVDD  
x
5.5  
0.9  
RQPD  
RQPU  
Quad-level pulldown resistane  
Quad-level pullup resistance  
To GND, GAIN, MODE  
To DVDD, GAIN, MODE  
98  
98  
kΩ  
kΩ  
IDRIVE, VDS  
Voltage to set level 1  
VDVDD  
x
VSI1  
RSI2  
RSI3  
RSI4  
RSI5  
RSI6  
Six-level input 1  
Six-level input 2  
Six-level input 3  
Six-level input 4  
Six-level input 5  
Six-level input 6  
0
28.5  
95  
V
0.1  
IDRIVE, VDS  
Resistance to GND to set level 2  
30  
100  
Hi-Z  
62  
31.5  
105  
kΩ  
kΩ  
kΩ  
kΩ  
V
IDRIVE, VDS  
Resistance to GND to set level 3  
IDRIVE, VDS  
Resistance to GND to set level 4  
500  
58.9  
IDRIVE, VDS  
Resistance to DVDD to set level 5  
65.1  
5.5  
IDRIVE, VDS  
Voltage to set level 6  
VDVDD  
x
0.9  
RSPD  
RSPU  
Six-level pulldown resistance  
Six-level pullup resistance  
To GND, IDRIVE, VDS  
To DVDD, IDRIVE, VDS  
98  
69  
kΩ  
kΩ  
LOGIC-LEVEL OUTPUTS (DRVOFF/nFLT, SDO)  
VOL  
VOH  
IODZ  
Output logic low voltage  
Output logic high voltage  
Open-drain logic high current  
IDOUT = 5 mA  
0.5  
10  
V
V
VDVDD  
x
IDOUT = –5 mA, SDO  
VOD = 5 V, DRVOFF/nFLT  
0.8  
–10  
µA  
GATE DRIVERS (GHx, GLx)  
IDRVN_HS = ISTRONG, IGHx = 1mA,  
GHx to SHx  
VGHx_L  
VGLx_L  
VGHx_H  
VGLx_H  
GHx low level output voltage  
0
0
0
0.25  
0.25  
0.25  
12.5  
V
V
V
V
IDRVN_LS = ISTRONG, IGLx = 1mA,  
GLx to PGNDx  
GLx low level output voltage  
GHx high level output voltage  
GLx high level output voltage  
IDRVP_HS = IHOLD, IGHx = 1mA,  
VCP to GHx  
IDRVP_LS = IHOLD, IGLx = 1mA,  
GLx to PGNDx  
10.5  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
4.9 V ≤ VPVDD ≤ 37 V, 40°C ≤ TJ ≤ 150°C (unless otherwise noted). Typical limits apply for VPVDD = 13.5 V and TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
IDRVP_x = 0000b, VGSx = 3 V  
IDRVP_x = 0001b, VGSx = 3 V  
IDRVP_x = 0010b, VGSx = 3 V  
IDRVP_x = 0011b, VGSx = 3 V  
IDRVP_x = 0100b, VGSx = 3 V  
IDRVP_x = 0101b, VGSx = 3 V  
IDRVP_x = 0110b, VGSx = 3 V  
IDRVP_x = 0111b, VGSx = 3 V  
IDRVP_x = 1000b, VGSx = 3 V  
IDRVP_x = 1001b, VGSx = 3 V  
IDRVP_x = 1010b, VGSx = 3 V  
IDRVP_x = 1011b, VGSx = 3 V  
IDRVP_x = 1100b, VGSx = 3 V  
IDRVP_x = 1101b, VGSx = 3 V  
IDRVP_x = 1110b, VGSx = 3 V  
IDRVP_x = 1111b, VGSx = 3 V  
IDRIVE six-level 1, VGSx = 3 V  
IDRIVE six-level 2, VGSx = 3 V  
IDRIVE six-level 3, VGSx = 3 V  
IDRIVE six-level 4, VGSx = 3 V  
IDRIVE six-level 5, VGSx = 3 V  
IDRIVE six-level 6, VGSx = 3 V  
IDRVN_x = 0000b, VGSx = 3 V  
IDRVN_x = 0001b, VGSx = 3 V  
IDRVN_x = 0010b, VGSx = 3 V  
IDRVN_x = 0011b, VGSx = 3 V  
IDRVN_x = 0100b, VGSx = 3 V  
IDRVN_x = 0101b, VGSx = 3 V  
IDRVN_x = 0110b, VGSx = 3 V  
IDRVN_x = 0111b, VGSx = 3 V  
IDRVN_x = 1000b, VGSx = 3 V  
IDRVN_x = 1001b, VGSx = 3 V  
IDRVN_x = 1010b, VGSx = 3 V  
IDRVN_x = 1011b, VGSx = 3 V  
IDRVN_x = 1100b, VGSx = 3 V  
IDRVN_x = 1101b, VGSx = 3 V  
IDRVN_x = 1110b, VGSx = 3 V  
IDRVN_x = 1111b, VGSx = 3 V  
IDRIVE six-level 1, VGSx = 3 V  
IDRIVE six-level 2, VGSx = 3 V  
IDRIVE six-level 3, VGSx = 3 V  
IDRIVE six-level 4, VGSx = 3 V  
IDRIVE six-level 5, VGSx = 3 V  
IDRIVE six-level 6, VGSx = 3 V  
Gate hold source current, VGSx = 3 V  
MIN  
0.2  
0.5  
1.3  
2.1  
2.9  
3.75  
4.5  
5.5  
6
TYP  
0.5  
1
MAX UNIT  
0.83  
1.6  
2.8  
4
2
3
4
5.3  
6.4  
7.6  
5
6
7
9
Peak gate current (source)  
SPI Device  
IDRVP, SPI  
IDRVP, H/W  
IDRVN, SPI  
mA  
10  
8
9
12  
16  
20  
24  
31  
48  
62  
1
15  
20  
25  
30  
40  
62  
78  
1.6  
5.3  
12  
15  
18  
24  
28  
46  
0.2  
2.9  
6
4
8
10  
Peak gate current (source)  
H/W Device  
mA  
20  
12  
16  
31  
62  
0.5  
1
24  
40  
78  
46  
0.07  
0.23  
0.7  
1.2  
1.75  
2.4  
3
0.85  
1.7  
3.2  
4.6  
5.9  
7.2  
8.5  
2
3
4
5
6
3.6  
4.3  
7.3  
11  
7
9.8  
mA  
11  
Peak gate current (sink)  
SPI Device  
8
12  
16  
20  
24  
31  
48  
62  
1
16  
20  
25  
30  
40  
62  
78  
1.7  
5.9  
14.3  
18  
24  
28  
46  
0.23  
1.75  
4.3  
11  
4
8
11  
Peak gate current (sink)  
H/W Device  
IDRVN, H/W  
mA  
20  
16  
31  
62  
16  
24  
40  
78  
46  
IHOLD  
Gate pullup hold current  
5
30  
mA  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
4.9 V ≤ VPVDD ≤ 37 V, 40°C ≤ TJ ≤ 150°C (unless otherwise noted). Typical limits apply for VPVDD = 13.5 V and TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Gate strong pulldown current, VGSx = 3 V  
IDRV = 0.5 to 12mA  
30  
62  
100  
mA  
205  
ISTRONG  
Gate pulldown strong current  
Gate strong pulldown current, VGSx = 3 V  
IDRV = 16 to 62mA  
45  
128  
GLx to PGNDx, VGSx = 3 V  
GLx to PGNDx, VGSx = 1 V  
1.8  
5
kΩ  
kΩ  
kΩ  
kΩ  
RPDSA_LS  
Low-side semi-active gate pulldown  
RPD_HS  
RPD_LS  
High-side passive gate pulldown resistor GHx to SHx  
150  
150  
Low-side passive gate pulldown resistor GL1, GL2, GL3, and GL4 to PGND1  
Into SHx, SHx = DRAIN ≤ 28 V  
GHx – SHx = 0 V, nSLEEP = 0 V  
–5  
–5  
0
0
20  
80  
0
µA  
µA  
µA  
Into SHx, SHx = DRAIN ≤ 37 V  
Switch-node sense leakage current  
ISHx  
GHx – SHx = 0 V, nSLEEP = 0 V  
Into SHx, SHx = DRAIN ≤ 37 V  
GHx – SHx = 0 V, nSLEEP = 5 V  
–150  
–100  
GATE DRIVER TIMINGS (GHx, GLx)  
tPDR_LS  
tPDF_LS  
tPDR_HS  
tPDF_HS  
Low-side rising propagation delay  
Input to GLx rising  
Input to GLx falling  
Input to GHx rising  
Input to GHx falling  
300  
300  
300  
300  
850  
600  
600  
600  
ns  
ns  
ns  
ns  
Low-side falling propagation delay  
High-side rising propagation delay  
High-side falling propagation delay  
GLx/GHx falling 10% to GHx/GLx rising  
10%  
tDEAD  
Internal handshake dead-time  
350  
ns  
VGS_TDEAD = 00b, Handshake only  
VGS_TDEAD = 01b  
0
2
4
8
1.6  
3.4  
7.2  
2.4  
4.6  
8.8  
Insertable digital dead-time  
SPI Device  
tDEAD_D, SPI  
µs  
VGS_TDEAD = 10b  
VGS_TDEAD = 11b  
Insertable digital dead-time  
H/W Device  
tDEAD_D, H/W  
Handshake only  
0
µs  
V
CURRENT SHUNT AMPLIFIERS (AREF, SNx, SOx, SPx)  
VPVDD  
+
2
VCOM  
Common mode input range  
–2  
CSA_GAIN = 00b  
CSA_GAIN = 01b  
CSA_GAIN = 10b  
CSA_GAIN = 11b  
GAIN quad-level 1  
GAIN quad-level 2  
GAIN quad-level 3  
GAIN quad-level 4  
9.75  
19.5  
39  
10  
20  
40  
80  
10  
20  
40  
80  
10.25  
20.5  
41  
Sense amplifier gain  
SPI device  
GCSA, SPI  
V/V  
V/V  
78  
82  
9.75  
19.5  
39  
10.25  
20.5  
41  
Sense amplifier gain  
H/W device  
GCSA, H/W  
78  
82  
VSO_ STEP = 1.5 V, GCSA = 10 V/V  
CSO = 60 pF  
2.2  
2.2  
2.2  
3
VSO_ STEP = 1.5 V, GCSA = 20 V/V  
CSO = 60 pF  
tSET  
Sense amplifier settling time to ±1%  
µs  
VSO_ STEP = 1.5 V, GCSA = 40 V/V  
CSO = 60 pF  
VSO_ STEP = 1.5 V, GCSA = 80 V/V  
CSO = 60 pF  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
4.9 V ≤ VPVDD ≤ 37 V, 40°C ≤ TJ ≤ 150°C (unless otherwise noted). Typical limits apply for VPVDD = 13.5 V and TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CSA_BLK = 000b, % of tDRIVE period  
CSA_BLK = 001b, % of tDRIVE period  
CSA_BLK = 010b, % of tDRIVE period  
CSA_BLK = 011b, % of tDRIVE period  
CSA_BLK = 100b, % of tDRIVE period  
CSA_BLK = 101b, % of tDRIVE period  
CSA_BLK = 110b, % of tDRIVE period  
CSA_BLK = 111b, % of tDRIVE period  
0
25  
37.5  
50  
Sense amplifier output blanking time  
SPI Device  
tBLK, SPI  
%
62.5  
75  
87.5  
100  
Sense amplifier output blanking time  
H/W Device  
tBLK, H/W  
tSLEW  
0
ns  
Output slew rate  
CSO = 60 pF  
2.5  
VAREF / 2  
VAREF / 8  
V/µs  
VSPx = VSNx = 0 V, CSA_DIV = 0b  
VSPx = VSNx = 0 V, CSA_DIV = 1b  
Output voltage bias  
SPI Device  
VBIAS, SPI  
V
V
Output voltage bias  
H/W Device  
VBIAS, H/W  
VLINEAR  
VAREF / 2  
VAREF  
Linear output voltage range  
VAREF = 3.3 V = 5 V  
0.25  
–2.5  
V
0.25  
VOFF  
Input offset voltage  
Input offset voltage drift  
Input bias current  
VSPx = VSNx = 0 V, TJ = 25  
VSPx = VSNx = 0 V  
VSPx = VSNx = 0 V  
ISPx – ISNx  
1.5  
mV  
VOFF_D  
IBIAS  
±10  
2
±25 µV/℃  
100  
1
µA  
µA  
IBIAS_OFF  
Input bias current offset  
–1  
VVREF = 3.3 V = 5 V  
DRV8718-Q1 RVJ, DRV8714-Q1 RVJ  
IAREF  
AREF input current  
3
mA  
DC, –40 ≤ TJ ≤ 125°C  
DC, –40 ≤ TJ ≤ 150°C  
20kHz  
90  
90  
CMRR  
Common mode rejection ratio  
dB  
80  
PVDD to SOx, DC  
PVDD to SOx, 20kHz  
PVDD to SOx, 400kHz  
100  
90  
PSRR  
Power supply rejection ratio  
dB  
V
70  
PROTECTION CIRCUITS  
VPVDD rising  
VPVDD falling  
4.325  
4.25  
4.625  
4.525  
4.9  
4.8  
VPVDD_UV  
PVDD undervoltage threshold  
VPVDD_UV_H  
PVDD undervoltage hysteresis  
Rising to falling threshold  
100  
mV  
µs  
YS  
tPVDD_UV_DG PVDD undervoltage deglitch time  
8
21  
20  
27  
26  
10  
22.5  
21.5  
28.5  
27.5  
12.75  
24  
VPVDD rising, PVDD_OV_LVL = 0b  
VPVDD falling, PVDD_OV_LVL = 0b  
VPVDD rising, PVDD_OV_LVL = 1b  
VPVDD falling, PVDD_OV_LVL = 1b  
23  
VPVDD_OV  
PVDD overvoltage threshold  
PVDD overvoltage hysteresis  
V
V
30  
29  
VPVDD_OV_H  
Rising to falling threshold  
1
YS  
PVDD_OV_DG = 00b  
PVDD_OV_DG = 01b  
PVDD_OV_DG = 10b  
PVDD_OV_DG = 11b  
DVDD falling  
0.75  
1.5  
3.25  
7
1
2
1.5  
2.5  
4.75  
9
tPVDD_OV_DG PVDD overvoltage deglitch time  
VDVDD_POR DVDD supply POR threshold  
µs  
4
8
2.5  
2.6  
2.7  
2.8  
2.9  
3
V
DVDD rising  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
4.9 V ≤ VPVDD ≤ 37 V, 40°C ≤ TJ ≤ 150°C (unless otherwise noted). Typical limits apply for VPVDD = 13.5 V and TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDVDD_POR_  
DVDD POR hysteresis  
Rising to falling threshold  
100  
mV  
HYS  
tDVDD_POR_D  
DVDD POR deglitch time  
5
4
8
4.75  
6.25  
12.75  
5.5  
7
µs  
V
G
VVCP - VPVDD, VVCP falling  
VCP_UV = 0b  
Charge pump undervoltage threshold  
SPI Device  
VCP_UV, SPI  
VVCP - VPVDD, VVCP falling  
VCP_UV = 1b  
5.5  
Charge pump undervoltage threshold  
H/W Device  
VCP_UV, H/W  
tCP_UV_DG  
VCP_SO  
4
8
4.75  
10  
5.5  
12.75  
19.5  
V
µs  
V
Charge pump undervoltage deglitch time  
Charge pump tripler to doubler switch  
over threshold  
VPVDD rising  
VPVDD falling  
18  
18.75  
Charge pump tripler to doubler switch  
over threshold  
VCP_SO  
17  
17.75  
1
18.5  
V
V
Charge pump tripler to doubler switch  
over hysteresis  
tCP_SO_HYS  
Charge pump tripler to doubler switch  
over threshold deglitch  
tCP_SO_DG  
VGS_CLP  
8
12.5  
1.1  
10  
15  
12.75  
17  
µs  
V
High-side driver VGS protection clamp  
VGHx – VSHx, VGLx – VPGNDx  
VGS_LVL = 0b  
1.4  
1.75  
V
Gate voltage monitor threshold  
SPI Device  
VGHx – VSHx, VGLx – VPGNDx  
VGS_LVL = 1b  
VGS_LVL  
0.75  
1
1.2  
V
V
Gate voltage monitor threshold  
H/W Device  
VGHx – VSHx, VGLx – VPGNDx  
1.1  
1.5  
1.4  
1.75  
2.75  
tGS_FLT_DG VGS fault monitor deglitch time  
2
210  
2
µs  
ns  
tGS_HS_DG  
VGS handshake monitor deglitch time  
VGS_TDRV = 000b  
VGS_TDRV = 001b  
VGS_TDRV = 010b  
VGS_TDRV = 011b  
VGS_TDRV = 100b  
VGS_TDRV = 101b  
VGS_TDRV = 110b  
VGS_TDRV = 111b  
1.5  
3.25  
7.5  
10  
2.5  
4.75  
9
4
8
12  
16  
24  
32  
96  
14  
VGS and VDS monitor blanking time  
SPI Device  
tDRIVE, SPI  
µs  
µs  
14  
18  
20  
28  
28  
36  
80  
120  
VGS and VDS monitor blanking time  
H/W Device  
tDRIVE, H/W  
7.5  
8
9
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
4.9 V ≤ VPVDD ≤ 37 V, 40°C ≤ TJ ≤ 150°C (unless otherwise noted). Typical limits apply for VPVDD = 13.5 V and TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
0.04  
0.06  
0.075  
0.095  
0.11  
0.13  
0.15  
0.17  
0.255  
0.35  
0.44  
0.52  
0.61  
0.88  
1.2  
TYP  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.2  
MAX UNIT  
VDS_LVL = 0000b  
0.08  
VDS_LVL = 0001b  
VDS_LVL = 0010b  
VDS_LVL = 0011b  
VDS_LVL = 0100b  
VDS_LVL = 0101b  
VDS_LVL = 0110b  
VDS_LVL = 0111b  
VDS_LVL = 1000b  
VDS_LVL = 1001b  
VDS_LVL = 1010b  
VDS_LVL = 1011b  
VDS_LVL = 1100b  
VDS_LVL = 1101b  
VDS_LVL = 1110b  
VDS_LVL = 1111b  
VDS six-level input 1  
VDS six-level input 2  
VDS six-level input 3  
VDS six-level input 4  
VDS six-level input 5  
VDS six-level input 6  
VDS_DG = 00b(1)  
VDS_DG = 01b  
0.10  
0.125  
0.145  
0.17  
0.19  
0.21  
0.23  
V
0.345  
VDS overcurrent protection threshold  
SPI Device  
VDS_LVL, SPI  
0.3  
0.4  
0.45  
0.56  
0.68  
0.79  
1.12  
1.6  
0.5  
0.6  
0.7  
1
1.4  
1.75  
0.04  
0.075  
0.17  
0.44  
0.88  
2
2.25  
0.08  
0.125  
0.06  
0.10  
0.2  
0.23  
V
0.56  
VDS overcurrent protection threshold  
H/W Device  
VDS_LVL, H/W  
0.5  
1
1.12  
Disabled  
1
0.75  
1.5  
1.5  
2
2.5  
µs  
4.75  
VDS overcurrent protection deglitch time  
SPI Device  
tDS_DG, SPI  
VDS_DG = 10b  
3.25  
7.5  
4
VDS_DG = 11b  
8
9
VDS overcurrent protection deglitch time  
H/W Device  
tDS_DG, H/W  
3.25  
4
4.75  
µs  
Pull up current  
3
3
IOLD  
Offline diagnostic current source  
mA  
Pull down current  
VDS_LVL = 1.4 V,  
4.9 V ≤ VDRAIN ≤ 18 V  
22  
22  
10  
10  
50  
105  
25  
kΩ  
kΩ  
kΩ  
kΩ  
VDS_LVL = 1.4 V,  
4.9 V ≤ VDRAIN ≤ 37 V  
Offline open load resistance detection  
threshold  
ROLD  
VDS_LVL = 2 V,  
4.9 V ≤ VDRAIN ≤ 18 V  
VDS_LVL = 2 V,  
4.9 V ≤ VDRAIN ≤ 37 V  
50  
WD_WIN = 0b  
WD_WIN = 1b  
Rising  
36  
90  
28  
25  
40  
100  
30.5  
27  
44  
110  
33  
tWD  
Watchdog timer period  
ms  
V
V
VPOB_OV  
Power off braking overvoltage threshold  
Power off braking overvoltage hysteresis  
Falling  
29.5  
VPOB_OV_HY  
3
V
S
IPOB_P  
IPOB_N  
VPOB  
Power off braking gate source current  
Power off braking gate sink current  
Power off braking gate pull up voltage  
15  
27  
mA  
mA  
V
VPVDD ≥ 8V  
5.5  
12.5  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
4.9 V ≤ VPVDD ≤ 37 V, 40°C ≤ TJ ≤ 150°C (unless otherwise noted). Typical limits apply for VPVDD = 13.5 V and TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tPOB_ON  
Power off braking turn-on time  
Power off braking turn-off time  
13  
µs  
µs  
tPOB_OFF  
2.5  
Power off braking VDS comparator  
threshold  
VPOB_VDS  
tPOB_VDS  
Rising  
250  
350  
4
450  
mV  
µs  
Power off braking VDS comparator  
deglitch  
2.5  
5.75  
170  
TOTW  
THYS  
TOTSD  
THYS  
Thermal warning temperature  
Thermal warning hysteresis  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
TJ rising  
TJ rising  
130  
150  
20  
°C  
°C  
°C  
°C  
150  
170  
20  
190  
(1) tDS_DG 1µs (VDS_DG = 00b) should not be utilized for VDS_LVL 0.06, 0.08, and 0.10 V (VDS_LVL = 0000b, 0001b, 0010b)  
7.6 Timing Requirements  
MIN  
100  
50  
NOM  
MAX UNIT  
tSCLK  
SCLK minimum period  
ns  
ns  
ns  
ns  
ns  
tSCLKH  
SCLK minimum high time  
tSCLKL  
SCLK minimum low time  
50  
tSU_SDI  
tH_SDI  
SDI input data setup time  
25  
SDI input data hold time  
25  
tD_SDO  
tSU_nSCS  
tH_nSCS  
tHI_nSCS  
tEN_nSCS  
tDIS_nSCS  
SDO output data delay time, CL = 20 pF  
nSCS input setup time  
30  
ns  
ns  
ns  
ns  
ns  
ns  
25  
25  
nSCS input hold time  
nSCS minimum high time  
450  
Enable delay time, nSCS low to SDO active  
Disable delay time, nSCS high to SDO hi-Z  
50  
50  
7.7 Timing Diagrams  
tHI_nSCS tSU_nSCS  
tH_nSCS  
nSCS  
SCLK  
tCLK  
tCLKH  
tCLKL  
X
MSB  
LSB  
X
SDI  
tSU_SDI  
tH_SDI  
Z
MSB  
LSB  
Z
SDO  
tD_SDO  
tDIS_nSCS  
Figure 7-1. SPI Timing Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
7.8 Typical Characteristics  
60  
55  
50  
45  
40  
35  
2.8  
2.6  
2.4  
2.2  
2
VDRAIN = 5 V  
VDRAIN = 13.5 V  
VDRAIN = 24 V  
VDRAIN = 37 V  
VPVDD = 5 V  
1.8  
1.6  
1.4  
1.2  
1
30  
25  
20  
15  
10  
5
VPVDD = 13.5 V  
VPVDD = 24 V  
VPVDD = 37 V  
0.8  
0.6  
0
-40 -20  
0
20  
40  
Junction Temperature (°C)  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
Junction Temperature (°C)  
60  
80 100 120 140 160  
D001  
D002  
VPVDD = 37 V, additional leakage to VPOB_OV comparator.  
Figure 7-3. DRAIN Sleep Current  
Figure 7-2. PVDD Sleep Current  
3
2.8  
2.6  
2.4  
2.2  
2
13  
12.5  
12  
11.5  
11  
VPVDD = 5 V  
VPVDD = 13.5 V  
VPVDD = 24 V  
VPVDD = 37 V  
10.5  
10  
1.8  
1.6  
1.4  
1.2  
1
9.5  
9
8.5  
-40 -20  
0
20  
40  
Junction Temperature (°C)  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
Junction Temperature (°C)  
60  
80 100 120 140 160  
D004  
D003  
Figure 7-5. PVDD Active Current  
Figure 7-4. DVDD Sleep Current  
750  
745  
740  
735  
730  
725  
720  
715  
710  
705  
700  
695  
690  
685  
680  
675  
670  
7.72  
7.7  
7.68  
7.66  
7.64  
7.62  
7.6  
VDRAIN = 5 V  
VDRAIN = 13.5 V  
VDRAIN = 24 V  
VDRAIN = 37 V  
7.58  
7.56  
7.54  
7.52  
7.5  
7.48  
-40 -20  
0
20  
40  
Junction Temperature (°C)  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
Junction Temperature (°C)  
60  
80 100 120 140 160  
D006  
D005  
Figure 7-7. DVDD Active Current  
Figure 7-6. DRAIN Active Current  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1 mA  
4 mA  
8 mA  
16 mA  
31 mA  
62 mA  
1 mA  
4 mA  
8 mA  
16 mA  
31 mA  
62 mA  
0
0
-40 -20  
0
20  
Junction Temperature (°C)  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
Junction Temperature (°C)  
40  
60  
80 100 120 140 160  
D007  
D008  
VPVDD = 13.5 V  
VPVDD = 13.5 V  
Figure 7-8. High-Side Gate Driver Source Current  
Figure 7-9. High-Side Gate Driver Sink Current  
70  
65  
60  
55  
70  
65  
60  
55  
1 mA  
4 mA  
8 mA  
16 mA  
31 mA  
62 mA  
1 mA  
4 mA  
8 mA  
16 mA  
31 mA  
62 mA  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
-40 -20  
0
20  
Junction Temperature (°C)  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
Junction Temperature (°C)  
40  
60  
80 100 120 140 160  
D009  
D010  
VPVDD = 13.5 V  
VPVDD = 13.5 V  
Figure 7-10. Low-Side Gate Driver Source Current  
Figure 7-11. Low-Side Gate Driver Sink Current  
31  
30.5  
30  
VPOB_OV Rising  
VPOB_OV Falling  
29.5  
29  
28.5  
28  
27.5  
27  
26.5  
-40 -20  
0
20  
40  
Junction Temperature (°C)  
60  
80 100 120 140 160  
D011  
Figure 7-12. Power Off Braking Threshold  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The DRV871x-Q1 family of devices are highly integrated, multi-channel gate drivers intended for driving multiple  
motors or loads in automotive applications. The devices are tailored for automotive applications by providing a  
wide array of configuration and control options, MOSFET slew control, MOSFET propagation delay control, and  
advanced diagnostic and protection functions. The devices provide either 4 (DRV8714-Q1) or 8 (DRV8718-Q1)  
half-bridge gate drivers, each capable of driving high-side and low-side N-channel power MOSFETs. The  
DRV871x-Q1 family of devices reduce total system cost by integrating a high number of gate drivers, driver  
power supples, current shunt amplifiers, and protection monitors.  
The DRV871x-Q1 family of devices support a wide array of input PWM control modes. These range from half-  
bridge control, H-bridge control, and grouped H-bridge control through PWM multiplexing. Recirculation and  
muxing schemes can be configured through the device SPI interface and input pins. This allows for the device to  
support different configurations of the outputs such as individual or grouped multiple motor control schemes.  
The DRV871x-Q1 devices are based on a smart gate drive architecture (SGD) to reduce system cost and  
improve reliability. The SGD architecture optimizes dead time to avoid shoot-through conditions, provides  
flexibility in decreasing electromagnetic interference (EMI) with MOSFET slew rate control through adjustable  
gate drive current, improves MOSFET propagation delay and matching with an adaptive controller, and protects  
against drain to source and gate short circuits conditions with VDS and VGS monitors. A strong pulldown circuit  
helps prevent dV/dt parasitic gate coupling. The external MOSFET slew control is supported through adjustable  
output gate drivers. The gate driver peak source and sink current can be configured between 0.5-mA and 62-mA  
with an additional low current mode to achieve gate drive source and sink currents less than 0.5-mA.  
The devices can operate with either 3.3-V or 5-V external controllers (MCUs). A dedicated DVDD pins allows for  
external power to the device digital core and the digital outputs to be referenced to the controller I/O voltage. It  
communicates with the external controller through an SPI bus to manage configuration settings and diagnostic  
feedback. The device also has an AREF pin which allows for the shunt amplifier reference voltage to be  
connected to the reference voltage of the external controller ADC. The shunt amplifier outputs are also clamped  
to the AREF pin voltage to protect the inputs of the controller from excessive voltage spikes.  
The devices provides an array of diagnostic and protection features to monitor system status before operation  
and protect against faults during system operation. These include under and overvoltage monitors for the power  
supply and charge pump, VDS overcurrent and VGS gate fault monitors for the external MOSFETs, offline open  
load and short circuit detection, windowed watchdog timer for SPI and MCI diagnostics, and internal thermal  
warning and shutdown protection. The current shunt amplifier can be utilized to monitor load current of the  
system. The high common mode range of the amplifier allows for either inline, high-side, or low-side based shunt  
resistor current sensing.  
Lastly, the device has a unique power off braking function that gives the ability to enables the low-side drivers  
during the device's low-power sleep mode in case of detecting a system overvoltage condition. This can be  
utilized to prevent motor back-emf from overcharging the system voltage rail.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.2 Functional Block Diagram  
Power Supplies  
PVDD  
VCP  
DRAIN  
VDRAIN  
VCP  
CP1H  
CP1L  
CP2H  
CP2L  
Tripler  
Charge  
Pump  
HS  
GHx  
VDS  
VGS  
SHx  
VCP  
VDS  
VCP  
LS  
GLx  
DVDD  
DGND  
VDVDD  
VGS  
PGNDx  
Gate Driver  
GND  
BRAKE  
Digital Core  
VDVDD  
VAREF  
PWM  
Mapping  
SPx  
SNx  
nSCS  
SDI  
+
-
VAREF  
Ref/k  
16-Bit  
SPI  
Driver  
Control  
SCLK  
SDO  
SOx  
Blank  
Watchdog  
Diagnostic  
Protection  
AREF  
VAREF  
Shunt Amplifier  
nSLEEP  
IN1  
AGND  
Control  
Inputs  
IN2  
Drivers  
Disable  
IN3  
DRVOFF/nFLT  
IN4  
Amplifier  
Config.  
Device  
Fault  
Figure 8-1. Block Diagram for DRV8718S-Q1 RVJ Package  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Power Supplies  
PVDD  
DRAIN  
VCP  
VDRAIN  
VCP  
CP1H  
Tripler  
Charge  
Pump  
HS  
GHx  
CP1L  
CP2H  
CP2L  
VDS  
VGS  
SHx  
VCP  
VDS  
VCP  
LS  
GLx  
DVDD  
DGND  
VDVDD  
VGS  
PGNDx  
Gate Driver  
GND  
BRAKE  
Digital Core  
VDVDD  
VAREF  
PWM  
Mapping  
SPx  
SNx  
nSCS  
SDI  
+
-
VAREF  
Ref/k  
16-Bit  
SPI  
Driver  
Control  
SCLK  
SDO  
SOx  
Blank  
Watchdog  
Diagnostic  
Protection  
AREF  
VAREF  
Shunt Amplifier  
nSLEEP  
IN1/EN1  
IN2/PH1  
IN3/EN2  
IN4/PH2  
AGND  
Control  
Inputs  
Drivers  
Disable  
DRVOFF/nFLT  
Amplifier  
Config.  
Device  
Fault  
Figure 8-2. Block Diagram for DRV8714S-Q1 RVJ Package  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Power Supplies  
PVDD  
VCP  
DRAIN  
VDRAIN  
VCP  
CP1H  
CP1L  
CP2H  
CP2L  
Tripler  
Charge  
Pump  
HS  
GHx  
VDS  
VGS  
SHx  
VGVDD  
VDS  
VCP  
LS  
GLx  
DVDD  
VDVDD  
VGS  
VAREF  
PGNDx  
Gate Driver  
GND  
BRAKE  
Digital Core  
VDVDD  
VAREF  
PWM  
Mapping  
SPx  
SNx  
nSCS  
SDI  
+
-
VAREF  
Ref/k  
16-Bit  
SPI  
Driver  
Control  
SCLK  
SDO  
SOx  
Blank  
Watchdog  
Diagnostic  
Protection  
nSLEEP  
IN1/EN1  
IN2/PH1  
IN3/EN2  
IN4/PH2  
Shunt Amplifier  
Control  
Inputs  
Drivers  
Disable  
DRVOFF/nFLT  
Device  
Fault  
Amplifier  
Config.  
Figure 8-3. Block Diagram for DRV8714S-Q1 RHA Package  
Note  
On the DRV8714-Q1 RHA package, the AREF pin is not present. The AREF power supply is derived  
from the DVDD pin.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Power Supplies  
PVDD  
DRAIN  
VCP  
VDRAIN  
VCP  
CP1H  
Tripler  
Charge  
Pump  
HS  
GHx  
CP1L  
CP2H  
CP2L  
VDS  
VGS  
SHx  
VCP  
VDS  
VCP  
LS  
GLx  
DVDD  
VDVDD  
VAREF  
VGS  
PGNDx  
Gate Driver  
GND  
BRAKE  
Digital Core  
VAREF  
SPx  
SNx  
GAIN  
VDS  
4-Level  
6-Level  
6-Level  
4-Level  
+
-
Driver  
Control  
VAREF  
Ref/2  
IDRIVE  
MODE  
SOx  
Protection  
nSLEEP  
IN1/EN1  
IN2/PH1  
IN3/EN2  
IN4/PH2  
Shunt Amplifier  
Control  
Inputs  
Amplifier  
Config.  
nFLT  
Device  
Fault  
Figure 8-4. Block Diagram for DRV8714H-Q1 RHA Package  
Note  
On the DRV8714-Q1 RHA package, the AREF pin is not present. The AREF power supply is derived  
from the DVDD pin.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.3 Feature Description  
8.3.1 External Components  
Table 8-1 lists the recommended external components for the device.  
Table 8-1. Recommended External Components  
COMPONENT  
PIN 1  
PIN 2  
RECOMMENDED  
CPVDD1  
PVDD  
GND  
0.1-µF, low ESR ceramic capacitor, PVDD-rated.  
Local bulk capacitance greater than or equal to 10-  
µF, PVDD-rated.  
CPVDD2  
PVDD  
GND  
(1)  
CDVDD  
DVDD  
AREF(3)  
VCP  
GND  
GND  
1.0-μF, 6.3-V, low ESR ceramic capacitor  
0.1-μF, 6.3-V, low ESR ceramic capacitor  
1-μF 16-V, low ESR ceramic capacitor  
0.1-µF, PVDD-rated, low ESR ceramic capacitor  
0.1-µF, PVDD + 16-V, low ESR ceramic capacitor  
Pullup resistor, IOD ≤ 5-mA  
(1)  
CAREF  
CVCP  
CFLY1  
CFLY2  
RnFLT  
PVDD  
CP1L  
CP2L  
nFLT  
CP1H  
CP2H  
VCC(2)  
(1) A local bypass capacitor is recommended to reduce noise on the external low voltage power  
supply. If another bypass capacitor is within close proximity of the device for the external low  
voltage power supply and noise on the power supply is minimal, it is optional to remove this  
component.  
(2) VCC is not a pin on the device, but the external low voltage power supply.  
(3) On the DRV8714-Q1 RHA package, the AREF pin is not present and the AREF power supply is  
derived from the DVDD pin.  
8.3.2 Device Interface Variants  
The DRV8714-Q1 devices support two different interface modes (SPI and hardware) to allow the end application  
to design for either flexibility or simplicity. The two interface modes share the same four pins, allowing the  
different versions to be pin to pin compatible. This allows for application designers to evaluate with one interface  
version and potentially switch to another with minimal modifications to their design. The DRV8718-Q1 device is  
only available with the SPI interface.  
8.3.2.1 Serial Peripheral Interface (SPI)  
The DRV8718-Q1 and DRV8714S-Q1 SPI device variants support a serial communication bus that allows for an  
external controller to send and receive serial data with the driver. This allows for the external controller to  
configure device settings and read detailed fault information. The interface is a four wire serial interface utilizing  
the SCLK, SDI, SDO, and nSCS pins.  
The nSCS pin is the chip select input. A logic low signal on this pin enables SPI communication.  
The SCLK pin is an input which accepts a clock signal to determine when data is captured and propagated  
on SDI and SDO.  
The SDI pin is the data input  
The SDO pin is the data output. The SDO pin uses a push-pull output structure referenced to the DVDD  
input.  
For more information on the SPI, see the SPI Interface section  
8.3.2.2 Hardware (H/W)  
The DRV8714H-Q1 hardware interface device variant converts the four SPI pins into four resistor configurable  
inputs, GAIN, VDS, IDRIVE, and MODE. This allows for the application designer to configure the most  
commonly used device settings by tying the pin logic high or logic low, or with a simple pullup or pulldown  
resistor. This removes the requirement for an SPI bus from the external controller. General fault information can  
still be obtained through the nFAULT pin.  
The hardware interface settings are latched on power up of the device. They can reconfigured by putting the  
device in sleep mode with the nSLEEP pin, changing the setting, and reenabling the device through nSLEEP.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
The GAIN pin configures the current shunt amplifier gain  
The VDS pin configures the voltage threshold of the VDS overcurrent monitors.  
The IDRIVE pin configures the gate drive current strength.  
The MODE pin configures the PWM input control mode.  
For more information on the hardware interface, see the Pin Diagrams section.  
8.3.3 Input PWM Control Modes  
The DRV8718-Q1 and DRV8714-Q1 support a highly configurable Half-Bridge Control Scheme in order to be  
adapted for a wide variety of output load configurations and control regulations. This control scheme helps to  
reduce the number of required PWM channels and pins from the external controller. 4 independent PWM control  
inputs can be provided to the INx input pins and assigned to any of the output half-bridge drivers. The device  
internally handles the dead-time generation between high-side and low-side switching so that a single PWM  
input can be used to control a half-bridge.  
Additionally the DRV8714-Q1 supports several other standard control schemes for either H-bridge or solenoid  
control. These control schemes can be selected through the BRG_MODE register setting on SPI interface  
devices or MODE pin on H/W interface devices as shown in Table 8-2  
Table 8-2. DRV8714-Q1 Input PWM Modes  
PWM Mode  
SPI Interface (BRG_MODE)  
H/W Interface (MODE Pin)  
Half-Bridge Control  
00b  
01b (PH/EN)  
10b (PWM)  
11b  
Level 1 - GND  
Level 2 (PH/EN) - 47k kΩ  
Level 3 (PWM) - Hi-Z  
Level 4 - DVDD  
H-Bridge Control  
Split HS and LS Control  
8.3.3.1 Half-Bridge Control Scheme With Input PWM Mapping  
8.3.3.1.1 DRV8718-Q1 Half-Bridge Control  
The DRV8718-Q1 controls the eight half-bridge gate drivers through a combination of direct PWM, PWM  
multiplexers, and SPI control registers. The HBx_CTRL (half-bridge control) SPI register is used to control the  
half-bridge gate driver output state. The different control states for the gate drivers are shown in Table 8-3. Any  
unused half-bridge drivers should be left disconnected and in the high-impedance (Hi-Z) output state.  
The DRV8718-Q1 PWM inputs pins (IN1, IN2. IN3, IN4) can be used to set the PWM frequency and duty cycle  
for the assigned outputs. If higher frequency or precise duty cycle PWM control is not required, the eight half-  
bridge gate drivers can also be controlled directly through the HBx_CTRL SPI control register.  
The DRV8718-Q1 can also be used to control individual high-side or low-side external MOSFETs instead of a  
half-bridge. In this setup, simply leave the unused GHx/GLx driver of the half-bridge disconnected. Only passive  
freewheeling should be utilized if PWM control is needed in this setup.  
Table 8-3. Half-Bridge SPI Register Control (HBx_CTRL)  
HBx_CTRL (1-8)  
Gate Driver State  
High Impedance (Hi-Z)  
Drive Low-Side (L)  
Drive High-Side (H)  
Drive PWM (PWM)  
GHx (1-8)  
GLx (1-8)  
SHx (1-8)  
00b  
01b  
10b  
11b  
L
L
Hi-Z  
L
H
H
L
L
H
Table 8-5  
Table 8-5  
Table 8-5  
In PWM control mode, the half-bridge gate drivers can be controlled directly by any of 4 independent PWM  
control inputs (IN1, IN2, IN3, IN4) as shown in Table 8-4.  
PWM mapping helps reduce the number of required PWM resources and pins from the external controller when  
utilizing motor groups or zone control schemes while still allowing for fine PWM frequency and duty cycle control.  
Each PWM input pin can be mapped to as many half-bridge drivers as desired. The input PWM signal can  
actively drive the high-side or low-side MOSFET of the half-bridge (based on PWMx_HL control register), with  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
the opposite MOSFET in the half-bridge being controlled accordingly based on the freewheeling setting. Either  
active or passive freewheeling can be configured by the PWMx_FW control register.  
The following steps should be taken to modify the PWM mapping scheme during driver operation.  
Set active half-bridge to Hi-Z mode through HBx_CTRL.  
Set new target half-bridge to Hi-Z mode through HBx_CTRL.  
HBx_PWM mapping should be updated from the old target to the new target half-bridge.  
Set new target half-bridge drive MOSFET (PWMx_HL) and freewheeling settings (PWMx_FW).  
Set new target half-bridge to PWM mode through HBx_CTRL.  
Table 8-4. Half-Bridge PWM Mapping (HBx_PWM)  
PWM Mapping  
HBx_PWM (1-8)  
Input PWM Source  
00b  
01b  
10b  
11b  
IN1  
IN2  
IN3  
IN4  
Table 8-5. Half-Bridge PWM Control (PWMx_HL and PWMx_FW)  
HBx_PWM (1-8)  
HBx_HL (1-8)  
HBx_FW (1-8)  
Gate Driver State  
GHx (1-8)  
GLx (1-8)  
SHx (1-8)  
PWM High-Side  
Active FW  
0
PWMx  
!PWMx  
PWMx  
0
PWM Low-Side  
Active FW  
1
0
1
!PWMx  
PWMx  
L
PWMx  
L
!PWMx  
PWMx  
!PWMx  
PWMx  
PWM High-Side  
Passive FW  
1
PWM Low-Side  
Passive FW  
PWMx  
DRV8718-Q1 Half-Bridge Control  
HB1_CTRL = PWM  
HB1_PWM = IN1  
DRV8718-Q1 Half-Bridge Control  
HB1_CTRL = L  
HB1_PWM = n/a  
x8  
x8  
x8  
x8  
x8  
x8  
x8  
x8  
IN1/EN1  
IN2/EN2  
IN3/EN3  
IN4/EN4  
IN1/EN1  
IN2/EN2  
M1  
M2  
M1  
HB2_CTRL = L  
HB2_PWM = n/a  
HB2_CTRL = HI-Z  
HB2_PWM = n/a  
M2  
HB3_CTRL = L  
HB3_PWM = n/a  
HB3_CTRL = PWM  
HB3_PWM = IN1  
M3  
HB4_CTRL = HI-Z  
HB4_PWM = n/a  
HB4_CTRL = HI-Z  
HB4_PWM = n/a  
M3  
HB5_CTRL = PWM  
HB5_PWM = IN2  
HB5_CTRL = PWM  
HB5_PWM = IN2  
X IN3/EN3  
M4  
M4  
HB6_CTRL = HI-Z  
HB6_PWM = n/a  
HB6_CTRL = HI-Z  
HB6_PWM = n/a  
M5  
HB7_CTRL = PWM  
HB7_PWM = IN3  
HS  
Load  
HB7_CTRL = HI-Z  
HB7_PWM = n/a  
X IN4/EN4  
M6  
HB8_CTRL = PWM  
HB8_PWM = IN4  
LS  
Load  
HB8_CTRL = L  
HB8_PWM = n/a  
Figure 8-5. PWM Mapping Example 1  
Figure 8-6. PWM Mapping Example 2  
8.3.3.1.2 DRV8714-Q1 Half-Bridge Control  
The DRV8714-Q1 controls the four half-bridge gate drivers through a combination of direct PWM, PWM  
multiplexers, and SPI control registers. The half-bridge control mode can be enabled by setting BRG_MODE =  
00b on SPI interface variants or the MODE pin to level 1 on H/W interface variants. On SPI interface variants,  
the HBx_CTRL (half-bridge control) SPI register is used to control the half-bridge gate driver output state. The  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
different control states for the gate drivers are shown in Table 8-6. Any unused half-bridge drivers should be left  
disconnected and in the high-impedance (Hi-Z) output state. On H/W interface variants, the device defaults to  
direct PWM control from the associated INx/ENx input pins.  
The DRV8714-Q1 PWM inputs pins (IN1/EN1, IN2/PH1. IN3/EN2, IN4/PH2) can be used to set the PWM  
frequency and duty cycle for the assigned output. If high frequency or precise duty cycle PWM control is not  
required, the four half-bridge gate drivers can be controlled directly through the HBx_CTRL SPI control register  
on SPI interface variants.  
The DRV8714-Q1 can also be used to control individual high-side or low-side external MOSFETs instead of a  
half-bridge. In this setup, simply leave the unused GHx/GLx driver of the half-bridge disconnected. Only passive  
freewheeling should be utilized if PWM control is needed in this setup.  
Table 8-6. Half-Bridge SPI Register Control (HBx_CTRL)  
HBx_CTRL (1-4)  
Gate Driver State  
High Impedance (Hi-Z)  
Drive Low-Side (L)  
Drive High-Side (H)  
Drive PWM (PWM)  
GHx (1-4)  
GLx (1-4)  
SHx (1-4)  
00b  
01b  
10b  
11b  
L
L
Hi-Z  
L
H
H
L
L
H
Table 8-8  
Table 8-8  
Table 8-8  
In PWM control mode, the half-bridge gate drivers can be controlled directly by any of 4 independent PWM  
control inputs (IN1, IN2, IN3, IN4) as shown in Table 8-4.  
PWM mapping helps reduce the number of required PWM resources and pins from the external controller when  
utilizing motor groups or zone control schemes while still allowing for fine PWM frequency and duty cycle control.  
Each PWM input pin can be mapped to as many half-bridge drivers as desired. The input PWM signal can  
actively drive the high-side or low-side MOSFET of the half-bridge (based on PWMx_HL control register), with  
the opposite MOSFET in the half-bridge being controlled accordingly based on the freewheeling setting. Either  
active or passive freewheeling can be configured by the PWMx_FW control register.  
The following steps should be taken to modify the PWM mapping scheme during driver operation.  
Set active half-bridge to Hi-Z mode through HBx_CTRL.  
Set new target half-bridge to Hi-Z mode through HBx_CTRL.  
HBx_PWM mapping should be updated from the old target to the new target half-bridge.  
Set new target half-bridge drive MOSFET (PWMx_HL) and freewheeling settings (PWMx_FW).  
Set new target half-bridge to PWM mode through HBx_CTRL.  
Table 8-7. Half-Bridge PWM Mapping (PWMx_MAP)  
PWM Mapping  
HBx_PWM (1-4)  
Input PWM Source  
00b  
01b  
10b  
11b  
IN1  
IN2  
IN3  
IN4  
Table 8-8. Half-Bridge PWM Control (PWMx_HL and PWMx_FW)  
HBx_PWM (1-4)  
HBx_HL (1-4)  
HBx_FW (1-4)  
Gate Driver State  
GHx (1-4)  
GLx (1-4)  
SHx (1-4)  
PWM High-Side  
Active FW  
0
PWMx  
!PWMx  
PWMx  
0
PWM Low-Side  
Active FW  
1
0
1
!PWMx  
PWMx  
L
PWMx  
L
!PWMx  
PWMx  
!PWMx  
PWMx  
PWM High-Side  
Passive FW  
1
PWM Low-Side  
Passive FW  
PWMx  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
DRV8714-Q1 Half-Bridge Control  
DRV8714-Q1 Half-Bridge Control  
x4  
x4  
IN1/EN1  
IN2/PH1  
IN3/EN2  
IN4/PH2  
HB1_CTRL = PWM  
HB1_PWM = IN1  
IN1/EN1  
IN2/PH1  
HB1_CTRL = L  
HB1_PWM = n/a  
M1  
M2  
M1  
x4  
x4  
HB2_CTRL = PWM  
HB2_PWM = IN2  
HB2_CTRL = HI-Z  
M2  
HB2_PWM = n/a  
x4  
x4  
HB3_CTRL = PWM  
HB3_PWM = IN3  
HS  
Load  
XIN3/EN2  
HB3_CTRL = PWM  
HB3_PWM = IN2  
x4  
x4  
HB4_CTRL = PWM  
HB4_PWM = IN4  
LS  
Load  
XIN4/PH2  
HB4_CTRL = PWM  
HB4_PWM = IN2  
LS  
Load  
Figure 8-7. PWM Mapping Example 1  
Figure 8-8. PWM Mapping Example 2  
8.3.3.2 H-Bridge Control  
8.3.3.2.1 DRV8714-Q1 H-Bridge Control  
In the H-bridge control mode, each two pairs of half-bridge gate drivers can be controlled as an H-bridge gate  
driver for a total of two H-bridge gate drivers for the DRV8714-Q1. The H-bridge pairs are half-bridges 1 / 2 and  
3 / 4 for the DRV8714-Q1. The DRV8714-Q1 can control the 2 H-bridge gate driver pairs through direct inputs  
pins or SPI control registers. The H-bridge gate drivers have two input control modes that can be configured  
through the BRG_MODE register setting (01b = PH/EN and 10b = PWM) on SPI interface variants or the MODE  
pin (Level 2 = PH/EN and Level 3 = PWM) on H/W interface variants. The PH/EN mode allows for the H-bridge  
to be controlled with a speed/direction type of interface commanded by one PWM signal and one GPIO signal.  
The PWM mode allows for the H-bridge to be controlled with a more advanced scheme typically requiring two  
PWM signals. This allows the H-bridge driver to enter four different output states for additional control flexibility if  
required.  
The DRV8714-Q1 PWM inputs pins (IN1/EN1, IN2/PH1, IN3/EN2, IN4/PH2) are used to set the PWM frequency  
and duty cycle for the assigned output. If PWM control is not required, the two h-bridge gate drivers can be  
controlled directly through the SPI control registers. The INx/ENx and INx/PHx SPI control can be enabled  
through the INx/ENx_MODE and INx/PHx_MODE register settings. Each H-bridge can be individually set to Hi-Z  
through the HIZ register setting.  
The default active freewheeling mode is active low-side. The DRV8714-Q1 SPI interface variants provide the  
ability to configure the freewheeling state through the FW register setting. This setting can be utilized to modify  
the bridge between low-side or high-side active freewheeling. The H/W interface variants default to low-side  
freewheeling.  
The PH/EN control logic and output states for the gate drivers are shown in Table 8-9 and Table 8-10.  
Table 8-9. PH/EN H-Bridge (1 / 2) Control  
INPUT  
IN1/EN1 IN2/PH1 FW1  
OUTPUT  
HIZ1  
GH1  
L
GL1  
GH2  
L
GL2  
H
SH1  
L
SH2  
L
DESCRIPTION  
0
0
1
1
X
X
X
0
0b  
1b  
X
0
0
0
0
1
H
L
Low-Side Active Freewheel  
High-Side Active Freewheel  
Drive SH2 → SH1 (Reverse)  
Drive SH1 → SH2 (Forward)  
High-Impedance  
H
H
L
H
H
L
H
L
H
L
L
H
1
X
H
L
H
H
L
X
X
L
L
L
L
HI-Z  
HI-Z  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-10. PH/EN H-Bridge (3 / 4) Control  
INPUT  
IN3/EN2 IN4/PH2 FW2  
OUTPUT  
HIZ2  
GH3  
L
GL3  
GH4  
L
GL4  
H
SH3  
L
SH4  
L
DESCRIPTION  
0
0
1
1
X
X
X
0
0b  
1b  
X
0
0
0
0
1
H
L
Low-Side Active Freewheel  
High-Side Active Freewheel  
Drive SH4 → SH3 (Reverse)  
Drive SH3 → SH4 (Forward)  
High-Impedance  
H
H
L
H
H
L
H
L
H
L
L
H
1
X
H
L
H
H
L
X
X
L
L
L
L
HI-Z  
HI-Z  
The PWM control logic and output states for the gate drivers are shown in Table 8-11 and Table 8-12  
Table 8-11. PWM H-Bridge (1 / 2) Control  
INPUT  
IN1/EN1 IN2/PH1 FW1  
OUTPUT  
HIZ1  
GH1  
L
GL1  
GH2  
L
GL2  
L
SH1  
HI-Z  
L
SH2  
HI-Z  
H
DESCRIPTION  
0
0
1
1
1
X
0
1
0
1
1
X
X
X
0
0
0
0
0
1
L
H
L
Diode Freewheel (Coast)  
Drive SH2 → SH1 (Reverse)  
Drive SH1 → SH2 (Forward)  
Low-Side Active Freewheel  
High-Side Active Freewheel  
High-Impedance  
L
H
L
X
H
L
H
H
L
0b  
1b  
X
L
H
L
L
H
L
L
H
H
L
H
H
L
L
L
L
HI-Z  
HI-Z  
Table 8-12. PWM H-Bridge (3 / 4) Control  
INPUT  
IN3/EN2 IN3/PH2  
OUTPUT  
FW2  
X
HIZ2  
GH3  
L
GL3  
L
GH4  
L
GL4  
L
SH3  
HI-Z  
L
SH4  
HI-Z  
H
DESCRIPTION  
0
0
1
1
1
X
0
1
0
1
1
X
0
0
0
0
0
1
Diode Freewheel (Coast)  
Drive SH4 → SH3 (Reverse)  
Drive SH3 → SH4 (Forward)  
Low-Side Active Freewheel  
High-Side Active Freewheel  
High-Impedance  
X
L
H
H
L
X
H
L
L
H
H
L
0b  
1b  
X
L
H
L
H
L
L
H
L
H
L
H
H
L
L
L
L
HI-Z  
HI-Z  
DRV8714-Q1 H-Bridge Control  
IN1/EN1  
H-Bridge 1  
Control  
M1  
IN2/PH1  
FW1 = 0b  
HIZ1 = 0b  
IN3/EN2  
IN4/PH2  
H-Bridge 2  
Control  
M2  
Hi-Z  
FW2 = 0b  
HIZ2 = 1b  
Figure 8-9. H-Bridge Control Example  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.3.3.3 Split HS and LS Solenoid Control  
8.3.3.3.1 DRV8714-Q1 Split HS and LS Solenoid Control  
In split HS and LS solenoid control mode, the H-bridge pairs (1 / 2 and 3 / 4) are configured to simplify solenoid  
control schemes as shown in Figure 8-10. This mode allows for the H-bridge to be configured to drive a floating  
solenoid load between the opposite high-side and low-side external MOSFETs. The solenoid control mode can  
be enabled by setting the BRG_MODE control register to 11b on SPI interface variants and MODE pin to Level 4  
on H/W interface variants..  
The high-side MOSFET of the primary half-bridge acts as a HS disconnect switch (controlled through the  
INx/PHx pin or S_PHx control registers) and the low-side MOSFET of the secondary half-bridge acts as the  
PWM control for the solenoid (controlled through the INx/ENx pin or S_ENx control register. The INx/ENx and  
INx/PHx SPI control can be enabled through the INx/ENx_MODE and INx/PHx_MODE register settings. The  
primary half-bridge low-side MOSFET control is disabled and the secondary half-bridge high-side MOSFET  
control is disabled. The control truth table is shown in Table 8-13 and Table 8-14.  
Table 8-13. Split HS and LS (1 / 2) Control  
IN1/EN1  
IN2/PH1  
GH1  
GL1  
GH2  
GL2  
DESCRIPTION  
Solenoid PWM Off  
Solenoid PWM On  
Solenoid Disabled  
Solenoid Enabled  
0
1
X
X
0
1
X
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
L
X
H
X
X
L
X
H
X
Table 8-14. Split HS and LS (3 / 4) Control  
IN3/EN2  
IN4/PH2  
GH3  
GL3  
GH4  
GL4  
DESCRIPTION  
Solenoid PWM Off  
Solenoid PWM On  
Solenoid Disabled  
Solenoid Enabled  
0
1
X
X
0
1
X
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
L
X
H
X
X
L
X
H
X
GH1  
SH1  
SH2  
GL2  
IN2/PH  
IN1/EN  
MCU GPIO  
MCU PWM  
Split HS/LS  
Control  
GL1 and GH2  
Disabled  
Figure 8-10. Solenoid Control Example  
8.3.4 Smart Gate Driver  
The DRV871x-Q1 provides an advanced, adjustable floating smart gate driver architecture to provide fine  
MOSFET control and robust switching performance. The DRV871x-Q1 provides driver functions for slew rate  
control and a driver state machine for dead-time handshaking, parasitic dV/dt gate coupling prevention, and  
MOSFET gate fault detection.  
Advanced adaptive drive functions are provided for reducing propagation delay, reducing duty cycle distortion,  
and closed loop programmable slew time. The advanced smart gate driver functions are only available in the  
Half-Bridge Control PWM mode and on SPI device variants. The advanced functions do not interfere with  
standard operation of the gate drivers and can be utilized as needed by system requirements.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
The different functions of the smart gate drive architecture are summarized below with additional details in the  
following sections.  
Smart Gate Driver Core Functions:  
Gate Driver Functional Block Diagram  
Slew Rate Control (IDRIVE)  
Gate Driver State Machine (TDRIVE)  
Advanced: Propagation Delay Reduction (PDR)  
Advanced: Duty Cycle Compensation (DCC)  
Advanced: Slew Time Control (STC)  
Note  
The advanced, adaptive drive functions and registers are not required for normal operation of the  
device and intended for specific system requirements.  
Table 8-15. Smart Gate Driver Terminology Descriptions  
Core Function  
Terminology  
Description  
Programmable gate drive source current for adjustable MOSFET slew rate control. Configured with  
the IDRVP_x control register or IDRIVE pin.  
IDRVP  
Programmable gate drive sink current for adjustable MOSFET slew rate control. Configured with  
the IDRVN_x control register or IDRIVE pin.  
IDRVN  
IHOLD  
Fixed gate driver hold pull up current during non-switching period.  
Fixed gate driver strong pull down current during non-switching period.  
IDRIVE / TDRIVE  
ISTRONG  
IDRVP/N drive current duration before IHOLD or ISTRONG. Also provides VGS and VDS fault monitor  
blanking period. Configured with the VGS_TDRV_x control register.  
tDRIVE  
tPD  
Propagation delay from logic control signal to gate driver output change.  
Body diode conduction period between high-side and low-side switch transition. Configured with  
the VGS_TDEAD_x control register.  
tDEAD  
Gate drive source current initial value for charge control loop. Configured with the  
PRE_CHR_INIT_xx control register  
ICHR_INIT  
Gate drive source current for pre-charge period after control loop lock. Adjustment rate configured  
with the KP_PDR_x control register. Max current clamp configured with the PRE_MAX_x control  
register.  
IPRE_CHR  
Gate drive source current pre-charge period duration. Configured with the T_PRE_CHR_x control  
register.  
tPRE_CHR  
tDON  
Delay time from start of pre-charge period to rising VSH crossing VSH_L threshold. Configure with  
T_DON_DOFF_x control register.  
Gate drive sink current initial value for discharge period control loop. Configured with the  
PRE_DCHR_INIT_x control register.  
PDR  
(Pre-charge)  
IDCHR_INIT  
Gate drive sink current for pre-discharge period after control loop lock. Adjustment rate configured  
with the KP_PDR_x control register. Max current clamp configured with the PRE_MAX_x control  
register.  
IPRE_DCHR  
Gate drive sink current pre-discharge period duration. Configured with the T_PRE_DCHR_x control  
register.  
tPRE_DCHR  
tDOFF  
Delay time from start of pre-discharge period to falling VSH crossing VSH_H threshold. Configure  
with T_DON_DOFF_x control register.  
VSH_L  
VSH_H  
Low voltage threshold for VSH switch-node. Configured with the AGD_THR control register.  
High voltage threshold for VSH switch-node. Configured with the AGD_THR control register.  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-15. Smart Gate Driver Terminology Descriptions (continued)  
Core Function  
Terminology  
Description  
Gate drive source current for post-charge period. Adjustment rate configured with the KP_PST_x  
control register.  
IPST_CHR  
tPST_CHR  
Gate drive source current post-charge period duration.  
Gate drive sink current for post-discharge period. Adjustment rate configured with the KP_PST_x  
control register.  
PDR  
(Post-charge)  
IPST_DCHR  
tPST_DCHR  
IFW_CHR  
Gate drive source current post-charge period duration.  
Freewheeling charge current. Configured with the FW_MAX_x control register.  
Freewheeling discharge current. Configured with the FW_MAX_x control register.  
IFW_DCHR  
Time duration for VSHx to cross from VSHx_L to VSHx_H threshold. Configured with the  
T_RISE_FALL_x control register.  
tRISE  
tFALL  
STC  
Time duration for VSHx to cross from VSHx_H to VSHx_L threshold. Configured with the  
T_RISE_FALL_x control register.  
8.3.4.1 Functional Block Diagram  
Figure 8-11 shows a high level function block diagram for the half-bridge gate driver architecture. The gate driver  
blocks provide a variety of functions for MOSFET control, feedback, and protection. This includes  
complimentary, push-pull high-side and low-side gate drivers with adjustable drive currents, control logic level  
shifters, VDS, VGS, and VSH (switch-node) feedback comparators, a high-side Zener clamp, plus passive and  
active pulldown resistors.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
VBAT  
DRAIN  
Handshaking  
+
GS œ  
V
High-Side Gate Driver  
VVCP VVCP  
IDRVP  
IHOLD  
GHx  
SHx  
Level  
Shifter  
ISTRONG  
IDRVN  
VDRAIN  
+
DS œ  
V
Overcurrent Detector  
Threshold Detectors  
Handshaking  
œ
+
VDRAIN  
VSH  
Digital Core  
+
SH œ  
V
VPGNDx  
+
GS œ  
V
Low-Side Gate Driver  
VVCP VVCP  
IDRVP  
IHOLD  
GLx  
Level  
Shifter  
ISTRONG  
IDRVN  
PGNDx  
VSHx  
+
DS œ  
V
GND  
Overcurrent Detector  
Figure 8-11. Gate Driver Functional Block Diagram  
8.3.4.2 Slew Rate Control (IDRIVE)  
The IDRIVE component of the smart gate drive architecture implements adjustable gate drive current control to  
adjust the external MOSFET VDS slew rate. This is achieved by implementing adjustable pull up (IDRVP) and pull  
down (IDRVN) current sources for the internal gate driver architecture.  
The external MOSFET VDS slew rates are a critical factor for optimizing radiated and conducted emissions,  
diode reverse recovery, dV/dt parasitic gate coupling, and overvoltage or undervoltage transients on the switch-  
node of the half-bridge. IDRIVE operates on the principle that the VDS slew rates are predominantly determined  
by the rate of the gate charge (or gate current) delivered during the MOSFET QGD or Miller charging region. By  
allowing the gate driver to adjust the gate current, it can effectively control the slew rate of the external power  
MOSFETs.  
IDRIVE allows the DRV871x-Q1 to dynamically change the gate driver current setting through the IDRVP_x and  
IDRVN_x SPI registers or IDRIVE pin on H/W interface devices. The device provides 16 settings between the  
0.5-mA and 62-mA range for the source and sink currents as shown in Table 8-16. The peak gate drive current is  
available for the tDRIVE duration. After the MOSFET is switched and the tDRIVE duration expires, the gate driver  
switches to a hold current (IHOLD) for the pull up source current to limit the output current in case of a short circuit  
condition and to improve the efficiency of the driver.  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
On SPI interface devices, the IDRV_LOx control register allows for 16 settings <0.5mA if extremely low slew rate  
control is required.  
Table 8-16. IDRIVE Source (IDRVP) and Sink (IDRVN  
)
Current  
Gate Source / Sink Current  
IDRVP_x / IDRVN_x  
IDRV_LOx = 0b  
0.5 mA  
1 mA  
IDRV_LOx = 1b  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
50 µA  
110 µA  
170 µA  
230 µA  
290 µA  
350 µA  
410 µA  
600 µA  
725 µA  
850 µA  
1 mA  
2 mA  
3 mA  
4 mA  
5 mA  
6 mA  
7 mA  
8 mA  
12 mA  
16 mA  
20 mA  
24 mA  
31 mA  
48 mA  
62 mA  
1.2 mA  
1.4 mA  
1.6 mA  
1.8 mA  
2.3 mA  
8.3.4.3 Gate Drive State Machine (TDRIVE)  
The TDRIVE component of the smart gate drive architecture is an integrated gate drive state machine that  
provides automatic dead time insertion, parasitic dV/dt gate coupling prevention, and MOSFET gate fault  
detection.  
The first component of the TDRIVE state machine is an automatic dead time handshake. Dead time is the period  
of body diode conduction time between the switching of the external high-side and low-side MOSFET to prevent  
any cross conduction or shoot through. The DRV871x-Q1 uses VGS monitors to implement a break and then  
make dead time scheme by measuring the external MOSFET VGS voltage to determine when to properly enable  
the external MOSFETs. This scheme allows the gate driver to adjust the dead time for variations in the system  
such as temperature drift, aging, voltage fluctuations, and variation in the external MOSFET parameters. An  
additional fixed digital dead time (tDEAD_D) can be inserted if desired and is adjustable through the SPI registers.  
The second component focuses on preventing parasitic dV/dt gate charge coupling. This is implemented by  
enabling a strong gate current pulldown (ISTRONG) whenever the opposite MOSFET in the half-bridge is  
switching. This feature helps remove parasitic charge that couples into the external MOSFET gate when the half-  
bridge switch node is rapidly slewing.  
The third component implements a gate fault detection scheme to detect an issue with the gate voltage. This is  
used to detect pin-to-pin solder defects, a MOSFET gate failure, or a gate stuck high or stuck low voltage  
condition. This is done by using the VGS monitors to measure the gate voltage after the end of the tDRIVE time. If  
the gate voltage has not reached the proper threshold, the gate driver will report the corresponding fault  
condition. To ensure a false fault is not detected, a tDRIVE time should be selected that is longer than the time  
required to charge or discharge the MOSFET gate. The tDRIVE time does not impact the PWM minimum duration  
and will terminate early if another PWM command is received.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
VINx  
tPD  
tPD  
VGS_LVL  
VGSHx  
tGS_HS_DG + tDEAD  
tDEAD_D  
tDRIVE  
IHOLD  
IHOLD  
IDRIVEP  
IGHx  
IDRIVEN  
ISTRONG  
VGS_LVL  
tGS_HS_DG + tDEAD  
tDEAD_D  
VGSLx  
tDRIVE  
IHOLD  
IDRIVEP  
IGLx  
IDRIVEN  
ISTRONG  
ISTRONG  
VSHx  
Figure 8-12. TDRIVE Turn On / Off  
8.3.4.4 Propagation Delay Reduction (PDR)  
Propagation delay reduction (PDR) control has two primary functions, a pre-charge propagation delay reduction  
function and a post-charge acceleration function. The PDR control function is only available in the Half-Bridge  
Control PWM mode and on SPI device variants.  
The propagation delay reduction (PDR) primary goal is to reduce the turn on and turn off delay of the external  
MOSFET by using dynamic pre-charge and pre-discharge currents before the MOSFET QGD miller region. This  
can enable the driver to achieve higher and lower duty cycle resolution while still meeting difficult EMI  
requirements.  
The post-charge acceleration function allows for the MOSFET to more quickly reach its low resistive or off state  
to minimize power losses by increasing the post-charge and post-discharge gate current after the MOSFET QGD  
miller region.  
An example of the MOSFET pre-charge and post-charge current profiles are shown in Figure 8-13. The same  
control loop is repeated for the MOSFET pre-discharge and post-discharge as shown in Figure 8-14. Several  
examples of the full control loop in different PWM and motor cases are shown in Figure 8-15 and Figure 8-16.  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
QGD  
QGD  
VGSHx  
VGSHx  
tDRIVE  
tDOFF  
IPST_CHR  
IPRE_CHR  
tPRE_DCHR  
tPST_DCHR  
IHOLD  
IHOLD  
IDRVP  
IDRVN  
tPRE_CHR  
tDON  
tPST_CHR  
IGHx  
IGHx  
IPRE_DCHR  
IPST_DCHR  
tDRIVE  
ISTRONG  
ISTRONG  
VSHx_H  
VSHx_L  
VSHx_H  
VSHx_L  
VSHx  
VSHx  
Figure 8-13. PDR Charge Profile  
Figure 8-14. PDR Discharge Profile  
8.3.4.4.1 PDR Pre-Charge/Pre-Discharge Control Loop Operation Details  
The PDR pre-charge/pre-discharge control loop operates to achieve a user configured turn on and turn off  
propagation delay (T_DON_DOFF_x) by dynamically adjusting the driver pre-charge (IPRE_CHR) and pre-  
discharge (IPRE_DCHR) current levels through a proportional gain error controller (KP_PDR_x). The error  
controller measures the difference in the measured propagation delays (tON, tOFF) compared to the configured  
propagation delay (T_DON_DOFF_x) and updates the pre-charge current level for the next switching cycle. The  
control loop can be operated with the default configuration settings of the device, but full flexibility is provided to  
configure the timing parameters, initial current levels, error controller strength, and other settings.  
8.3.4.4.1.1 PDR Pre-Charge/Pre-Discharge Setup  
Enable the PDR control loop. EN_PDR_x register setting.  
Set the active PWM half-bridge (DRV8718-Q1 only). SET_AGD_x register setting. Note: The advance driver  
control settings are shared between each half-bridge pair (1/2, 3/4, 5/6, and 7/8) for DRV8718-Q1.  
Set the target tON and tOFF propagation delay. T_DON_DOFF_x register setting. It is recommended to  
maintain a value greater than 700 ns to accommodate driver and system delays.  
Optional Configuration Options:  
– Adjust initial current values. PRE_CHR_INIT_x, PRE_DCHR_INIT_x register settings.  
– Adjust pre-charge and pre-discharge time duration. T_PRE_CHR_x, T_PRE_DCHR_x register settings.  
– Adjust the proportional gain controller strength. KP_PDR_x register setting.  
– Adjust the maximum current level threshold. PRE_MAX_x, register settings.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.3.4.4.2 PDR Post-Charge/Post-Discharge Control Loop Operation Details  
The PDR post charge/post-discharge control loop operates by increasing the driver gate current after the  
MOSFET switching region. This is done by measuring the switch-node voltage (VSHx) and then increasing gate  
current after crossing the proper threshold. The control loop can be operated with the default configuration  
settings of the device, but full flexibility is provided to configure the timing parameters, controller strength, and  
other settings.  
8.3.4.4.2.1 PDR Post-Charge/Post-Discharge Setup  
Enable the post-charge/post-discharge control loop. KP_PST_x register setting.  
Set the active PWM half-bridge (DRV8718-Q1 only). SET_AGD_x register setting. Note: The advance driver  
control settings are shared between each half-bridge pair (1/2, 3/4, 5/6, and 7/8) for DRV8718-Q1.  
Optional Configuration Options:  
– Add additional delay before post-charge/post-discharge starts. EN_PST_DLY_xx register setting.  
– Adjust the proportional gain controller strength. KP_PST_x register setting.  
8.3.4.4.3 Detecting Drive and Freewheel MOSFET  
By default, the PDR loop automatically detects which MOSFET is the drive MOSFET and which MOSFET is the  
freewheel MOSFET by determining the polarity of the current out of the half-bridge. This is done by measuring  
the half-bridge VSHx voltage during the dead-time period to determine if the high-side or low-side body diode is  
conducting. If the current polarity cannot be determined it is assumed that the configured MOSFET through  
PWMx_HL is the drive MOSFET. The automatic freewheel detection can be disabled with the IDIR_MAN_x  
control register. In the manual freewheel modes, the PDR loop relies on the PWMx_HL control register to  
determine which MOSFET is the drive MOSFET and which MOSFET is the freewheel MOSFET. IF PWMx_HL =  
0b, the high-side MOSFET is the drive MOSFET and the low-side MOSFET is the freewheel MOSFET. If  
PWMx_HL = 1b, the low-side MOSFET is the drive MOSFET and high-side MOSFET is the freewheel MOSFET.  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-15 shows the high-side MOSFET (HS1) controlling the VSHx switch-node voltage transition and the low-  
side MOSFET (LS1) acting as the freewheeling MOSFET.  
VBAT  
Drive PWM  
HS1: PWM  
HS2: OFF  
Drive FET  
M
Freewheel PWM  
LS1: PWM  
LS2: ON  
FW FET  
Drive Current Path  
FW Current Path  
HS Drive PWM Turn  
On / Off Example  
VINx  
tPD  
VGSHx  
IPRE_CHR  
IPST_CHR  
tPST_DCHR  
tDOFF  
IHOLD  
IDRVP  
tPRE_CHR  
tPST_CHR  
IGHx  
IDRVN  
tPRE_DCHR  
ISTRONG  
ISTRONG  
IPRE_DCHR  
IPST_DCHR  
tDON  
VSHx_H  
VSHx_L  
VSHx_H  
VSHx_L  
VSHx  
tPD  
tDEAD  
tDEAD  
VGSLx  
ICHR_FW  
IHOLD  
IHOLD  
IGLx  
ISTRONG  
IDCHR_FW  
Figure 8-15. HS Drive PWM Turn On / Off Example  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-16 shows the low-side MOSFET (LS2) controlling the VSHx switch-node voltage transition and the high-  
side MOSFET (HS2) acting as the freewheeling MOSFET.  
VBAT  
Freewheel PWM  
HS2: PWM  
HS1: ON  
FW FET  
M
Drive PWM  
LS2: PWM  
LS1: OFF  
Drive FET  
Drive Current Path  
FW Current Path  
LS Drive PWM Turn  
On / Off Example  
VINx  
tPD  
VGSHx  
IFW_CHR  
IHOLD  
IHOLD  
IGHx  
ISTRONG  
IFW_DCHR  
VSHx_H  
VSHx_L  
VSHx_H  
VSHx_L  
VSHx  
tPD  
tDEAD  
tDEAD  
VGSLx  
IPRE_CHR  
IPST_CHR  
tPST_DCHR  
tDOFF  
IDRVN  
IHOLD  
IDRVP  
tPRE_CHR  
tPST_CHR  
IGLx  
tPRE_DCHR  
ISTRONG  
ISTRONG  
IPRE_DCHR  
IPST_DCHR  
tDON  
Figure 8-16. LS Drive PWM Turn On / Off Example  
8.3.4.5 Automatic Duty Cycle Compensation (DCC)  
The automatic duty cycle compensation (DCC) smart gate driver feature is a function to match the turn on and  
turn off signals in order to reduce duty cycle distortion that occurs due to different delays in the turn on and turn  
off sequences. The difference in turn on and turn off delay is introduced by a dependancy on whether the  
freewheeling MOSFET must be charged or discharged before the VSHx slew can occur. If the freewheeling  
MOSFET charges or discharges before the drive MOSFET this can introduce a mismatch causing duty cycle  
distortion. The DCC control loop adds an additional delay to match both the turn on and turn off delays. This  
function can be utilized in the standard drive modes or in combination with the PDR or STC control modes.  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
The DCC function is enabled through the EN_DCC_xx register setting. Set the active half-bridge that will receive  
PWM control through the SET_AGD_xx register setting (DRV8718-Q1 only).  
8.3.4.6 Closed Loop Slew Time Control (STC)  
The slew time control (STC) loop provides the device the ability to configure a specific slew rise and fall time for  
the output switch-node. The device will adjust the gate drive output current (IDRVP and IDRVN) to meet the desired  
target settings. This function can be utilized in the standard drive modes or in combination with the PDR or DCC  
control modes.  
8.3.4.6.1 STC Control Loop Setup  
Enable the STC control loop. EN_STC_x register setting  
Set the active PWM half-bridge (DRV8718-Q1 only). SET_AGD_x register setting. Note: The advance driver  
control settings are shared between each half-bridge pair (1/2, 3/4, 5/6, and 7/8) for DRV8718-Q1.  
Set the target tRISE and tFALL time. T_RISE_FALL_x register setting.  
Optional Configuration Options:  
Adjust the proportional gain controller strength. KP_STC_x register setting.  
8.3.5 Tripler (Dual-Stage) Charge Pump  
The high-side gate drive voltage for the external MOSFET is generated using a tripler (dual-stage) charge pump  
that operates from the PVDD voltage supply input. The charge pump allows the high-side and low-side gate  
drivers to properly bias the external N-channel MOSFETs with respect to its source voltage across a wide input  
supply voltage range. The charge pump output is regulated (VVCP) to maintain a fixed voltage respect to VPVDD  
.
The charge pump is continuously monitored for an undervoltage (VCP_UV) event to prevent under driven  
MOSFET conditions or in case of a short circuit condition.  
The charge pump provides several configuration options. By default the charge pump will automatically switch  
between tripler (dual-stage) mode and doubler (single-stage) mode after the PVDD pin voltage crosses the  
VCP_SO threshold in order to reduce power dissipation. On SPI device variants, the charge pump can also be  
configured to always remain in tripler or doubler mode through the SPI register setting CP_MODE.  
The charge pumps requires a low ESR, 1-µF, 16-V ceramic capacitor (X5R or X7R recommended) between the  
PVDD and VCP pins to act as the storage capacitor. Additionally, a low ESR, 100-nF, PVDD-rated ceramic  
capacitor (X5R or X7R recommended) is required between the CP1H to CP1L and CP2H to CP2L pins to act as  
the flying capacitors.  
Note  
Since the charge pump is regulated to the PVDD pin, it should be ensured that the voltage difference  
between the PVDD pin and MOSFET power supply is limited to a threshold that allows for proper VGS  
of the external MOSFET during switching operation.  
8.3.6 Wide Common-Mode Current Shunt Amplifiers  
The DRV871x-Q1 integrates two high-performance, wide common-mode, bidirectional, current-shunt amplifiers  
for current measurements using shunt resistors in the external half-bridges. Current measurements are  
commonly used to implement overcurrent protection, external torque control, or commutation with an external  
controller. Due to the high common-mode range of the shunt amplifier it can support low-side, high-side, or inline  
shunt configurations. The current shunt amplifiers include features such as programmable gain, unidirectional  
and bidirectional support, output blanking and sample and hold switch, and a dedicated voltage reference pin  
(AREF) to set a mid point bias voltage for the amplifier output. A simplified block diagram is shown in Figure  
8-17. SPx should connect to the positive terminal of the shunt resistor and SNx should connect to the negative  
terminal of the shunt resistor. If the amplifiers are not utilized, the AREF, SNx, SPx inputs can be tied to AGND,  
AGND to PCB GND and the SOx outputs left floating.  
Note  
It should be noted that in high-side sense configuration there exists a leakage path of approximately  
600kΩ to GND when nSLEEP = 0V.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
AREF  
-
RREF1  
+
RREF2  
RGAIN  
RIN  
AGND  
SPx  
SNx  
+
-
SOx  
Blank  
IL  
RSHUNT  
S&H  
RIN  
RGAIN  
Figure 8-17. Amplifier Simplified Block Diagram  
A detailed block diagram is shown in Figure 8-18. The wide common mode amplifier is implemented with a two  
stage differential architecture. The 1st differential stage supports a wide common mode input, differential output,  
and has a fixed gain, G = 2. The 2nd differential stage supports a variable gain adjustment, G = 5, 10, 20, or 40.  
The total gain of the two stages will be G = 10, 20, 40, or 80.  
The amplifier can also generate an output voltage bias through the AREF pin. The AREF pin goes to a divider  
network, a buffer, and then sets the output voltage bias for the differential amplifier. On SPI device variants, the  
gain is configured through the register setting CSA_GAIN and the reference division ratio through CSA_DIV. On  
H/W device variants, the reference division ratio is fixed to VAREF / 2. The gain is configured through the GAIN  
pin.  
Fully Differential, High Common Mode Amplifier  
Total Gain, G = 10, 20, 40, 80 V/V  
2nd Stage, Low CM  
Variable Gain  
G = 5, 10, 20, 40  
1st Stage, High CM  
Differential Output  
G = 2  
RGAIN  
400 k  
Output  
Blanking  
Switch  
SPx  
SNx  
10 kꢀ  
10 kꢀ  
200 kꢀ  
-
-
+
-
SOx  
IL  
RSHUNT  
+
+
200 kꢀ  
RGAIN = 50kΩ, 100kΩ,  
200kΩ, 400kΩ  
400 kꢀ  
RGAIN  
AREF  
AGND  
-
RREF1  
+
RREF2  
Output Reference Buffer  
VAREF / 2, VAREF / 8  
Figure 8-18. Amplifier Detailed Block Diagram  
Copyright © 2020 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
SN1  
SP1  
SO1  
High-Side  
RHS  
Option  
DRV8714-Q1  
RSHUNT1  
Active  
SN1  
RINLINE  
SO1  
M
M
M
M
SP1  
Inline  
Option  
Active  
Low-Side  
RLS  
Option  
SN2  
SP2  
SO2  
High-Side  
RHS  
Option  
RSHUNT2  
Active  
M
M
M
SN2  
RINLINE  
Active  
SO2  
M
SP2  
Inline  
Option  
Low-Side  
RLS  
Option  
DRV8718-Q1  
Figure 8-19. Shared Shunt Resistor  
Figure 8-20. Individual H-Bridge Shunt Resistor  
The DRV8718-Q1 inline shunt amplifier can be used to continuously sense motor current even in shared group  
or zone control configurations. The DRV8714-Q1 provides two shunt amplifiers for the four half-bridge gate  
drivers allowing for individual H-bridge current sensing if the system requires.  
Lastly, the amplifier has an output blanking switch. This option is only available on SPI device variants. The  
output switch can be used to disconnect the amplifier output during PWM switching to reduce output noise  
(blanking). The blanking circuit can be set trigger on the active half-bridge (half-bridge 1-8) through the  
CSA_BLK_SEL_x register setting. The blanking period can be configured through the CSA_BLK_x register  
setting. If the gate drivers are transitioning between high-side and low-side FET turn on and turn off or vice  
versa, the blanking time will extend through the dead-time window to avoid amplifier signal noise if the output  
swings or noise couples during the dead-time period. An output hold up capacitor is recommended to stabilize  
the amplifier output when it is disconnected during blanking. Typically this capacitor should be after a series  
resistor in a RC filter configuration to limit direct capacitance seen directly at the amplifier output. An example of  
the blanking function is shown in Figure 8-21.  
VINx  
tBLK  
tBLK  
VGSHx  
tBLK  
tBLK  
VGSLx  
IOUT  
tBLK  
VSO  
Figure 8-21. Amplifier Blanking Example  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.3.7 Pin Diagrams  
This section presents the I/O structure of all the digital input and output pins.  
8.3.7.1 Logic Level Input Pin (INx/ENx, INx/PHx, nSLEEP, nSCS, SCLK, SDI)  
DVDD  
DVDD  
DVDD  
RPU  
RPD  
Figure 8-22. Input Pin Structure  
Figure 8-23. Input Pin Structure (nSCS)  
8.3.7.2 Logic Level Push Pull Output (SDO)  
DVDD  
Figure 8-24. Push Pull Output Structure (SDO)  
8.3.7.3 Logic Level Multi-Function Pin (DRVOFF/nFLT)  
DVDD  
VCC  
DRVOFF  
RPU  
DRVOFF/nFLT  
RPD  
FAULT  
Figure 8-25. Multi-Function Pin Structure (DRVOFF/nFLT)  
Copyright © 2020 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.3.7.4 Quad-Level Input (GAIN, MODE)  
+
DVDD  
DVDD  
œ
RPU  
RQPU  
+
œ
RPD  
RQPD  
+
œ
Figure 8-26. Quad-Level Input Structure (GAIN, MODE)  
8.3.7.5 Six-Level Input (IDRIVE, VDS)  
+
œ
+
DVDD  
DVDD  
œ
RPU  
RSPU  
+
œ
RPD  
RSPD  
+
œ
+
œ
Figure 8-27. Six-Level Input Structure (IDRIVE, VDS)  
8.3.8 Protection and Diagnostics  
8.3.8.1 Gate Driver Disable (DRVOFF/nFLT and EN_DRV)  
The DRV871x-Q1 provides dedicated driver disable functions with the DRVOFF/nFLT pin and EN_DRV SPI  
register bit on SPI device variants. When DRVOFF/nFLT or EN_DRV are asserted, all half-bridges will be set Hi-  
Z by enabling the gate driver pull downs regardless of the other pin or SPI inputs.  
The EN_DRV SPI register bit is provided for a controlled power up sequence. After device power up all the half-  
bridges remain disabled (all pulldowns active, EN_DRV = 0b) until the EN_DRV register bit is asserted high. This  
allows for the system to power up and conduct configuration sequences before the gate drivers are enabled. On  
H/W devices, this functionality is not provided and the driver will automatically enable after power up.  
The DRVOFF/nFLT pin provides a direct hardware pin to shutdown the output drivers without relying on an SPI  
command or PWM input change.  
The DRVOFF/nFLT pin is a multi-function configurable pin. By default, the pin functions as a global driver  
disable. If this function is not required, the pin be changed to an open-drain fault interrupt for the MCU through  
the device DRVOFF_nFLT register setting.  
8.3.8.2 Low IQ Powered Off Braking (POB, BRAKE)  
The DRV871x-Q1 provide the ability to enable the low-side gate drivers while the device is in its low-power sleep  
mode (nSLEEP = logic low). This allows the external low-side power MOSFETs to be enabled while maintaining  
a low quiescent current draw from the power supply. Enabling the external low-side MOSFETs allows the device  
to actively brake a motor connected to the external half-bridges by shorting the back emf across the motor  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
terminals. This can help prevent reverse driving of the motor by an external force from overcharging the system  
power supply by dissipating the energy in the low-side MOSFETs. This function is only available while the device  
is in its low-power sleep mode. The function is enabled by taking the BRAKE pin to logic high.  
The powered off braking function is available on half-bridges 5, 6, 7, and 8 on the DRV8718-Q1 device. On the  
DRV8714-Q1, the power off braking function is available on all four half-bridges. The BRAKE pin will enable or  
disable the low-side gate drivers for all four of the half-bridges together. The powered off braking function  
requires the PVDD voltage supply to be present in order to enable the low-side gate drivers, but the function can  
operate without the DVDD logic power supply present.  
In case of a short circuit to power supply fault present on the power stage, a simple overcurrent detector circuit  
with analog RC deglitch filter is provided to disable the low-side MOSFET if a high current event is detected  
while braking. This is needed since the normal overcurrent protection circuits are disabled during the device low-  
power sleep mode. The overcurrent comparator and RC deglitch filter values are fixed and cannot be adjusted.  
The powered off braking function is enabled through the BRAKE pin and the BRAKE pin can be pulled high  
through several different methods. To reduce quiescent current draw, the pulldown resistance of the BRAKE pin  
is reduced to 1MOhm while in device low-power sleep mode. The BRAKE pin can be always left high while the  
device is in low-power sleep mode or can be set high in response to a rising voltage on the power supply. The  
BRAKE pin has an internal voltage clamp allowing it to be connected directly to the PVDD battery supply through  
a Zener diode (to set overvoltage threshold) with a series resistor to limit the current. The powered off function  
can be set to automatically enable in low-power sleep mode by leaving the BRAKE pin disconnected and relying  
on the internal overvoltage monitor.  
Some methods to pull up the BRAKE pin and enable the powered off braking function include:  
Option 1: Internal overvoltage monitor. BRAKE pin should be left not-connected (Hi-Z)  
Option 2: Voltage triggered pull up with passive Zener diode. An external Zener diode can be added to the  
BRAKE pin to create an overvoltage trigger that is lower than the internal overvoltage monitor.  
Option 3: MCU fixed digital output high or MCU digital output in response to motor movement detected by  
senor or rising voltage. A digital output to the BRAKE pin can directly control whether the power off braking  
function is enabled (LO = disabled, HI = enabled).  
Option 4: The power off braking function can be disabled by shorting/connecting the BRAKE pin directly to  
PCB ground.  
By default (BRAKE pin not connected), the powered off braking function is enabled by an internal overvoltage  
monitor that will detect the PVDD voltage and enable the low-side braking if voltage crosses the comparator  
threshold. The internal overvoltage monitor and power off braking function can be disabled by shorting the  
BRAKE pin directly to PCB ground.  
Copyright © 2020 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Option 1: Internal OV Detect  
Option 2: External OV Detect  
VBAT  
VBAT  
DRV871x-Q1  
Powered Off Braking  
Low IQ  
PVDD  
DRVOFF/nFLT  
DRAIN  
10k  
V5INT  
FAULT  
Low IQ  
Regulator  
VPOB  
GHx  
SHx  
1MΩ  
FAULT  
VOV  
5,6,7,8  
VPOB_OV  
VPOB  
V5INT  
GLx  
BRAKE  
HIGH  
Level  
Shifter  
Option 3: MCU Enabled  
LS  
ON  
100kΩ  
1MΩ  
MCU  
RC  
Deglitch  
VDS  
VPOB_VDS  
nSLEEP  
LOW  
Option 4: Disable, Tie BRAKE to GND  
Figure 8-28. Powered Off Braking  
Note  
If the powered off braking function is not utilized, the BRAKE pin should be connected directly to GND.  
8.3.8.3 Fault Reset (CLR_FLT)  
The DRV871x-Q1 provides a specific sequence to clear fault conditions from the driver and resume operation.  
This function is provided through the CLR_FLT register bit. To clear fault reporting the CLR_FLT register bit must  
be asserted after the fault condition is removed. After being asserted, the driver will clear the fault and reset the  
CLR_FLT register bit. The function is only available on SPI device variants. On H/W device variants, all faults will  
automatically recover once the condition is removed.  
8.3.8.4 DVDD Logic Supply Power on Reset (DVDD_POR)  
If at any time the input logic supply voltage on the DVDD pin falls below the VDVDD_POR threshold for longer than  
the tDVDD_POR_DG time or the nSLEEP pin is asserted low, the device enter its inactive state disabling the gate  
drivers, charge pump, and protection monitors. Normal operation resumes when the DVDD undervoltage  
condition is removed or the nSLEEP pin is asserted high. After a DVDD power on reset (POR), the POR register  
bit is asserted until CLR_FLT is issued.  
8.3.8.5 PVDD Supply Undervoltage Monitor (PVDD_UV)  
If at any time the power supply voltage on the PVDD pin falls below the VPVDD_UV threshold for longer than the  
tPVDD_UV_DG time, the DRV871x-Q1 detects a PVDD undervoltage condition. After detecting the undervoltage  
condition, the gate driver pull downs are enabled, charge pump disabled and nFAULT pin, FAULT register bit,  
and PVDD_UV register bit asserted.  
On SPI device variants, the PVDD undervoltage monitor can recover in two different modes set through the  
PVDD_UV_MODE register setting.  
Latched Fault Mode: After the undervoltage condition is removed, the fault state remains latched and  
charge pump disabled until CLR_FLT is issued.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Automatic Recovery Mode: After the undervoltage condition is removed, the nFAULT pin and FAULT  
register bit are automatically cleared and the charge pump automatically reenabled. The PVDD_UV register  
bit remains latched until CLR_FLT is issued.  
On H/W device variants, the PVDD undervoltage monitor is fixed to automatic recovery mode.  
8.3.8.6 PVDD Supply Overvoltage Monitor (PVDD_OV)  
If the power supply voltage on the PVDD pin exceeds the VPVDD_OV threshold for longer than the tPVDD_OV_DG  
time, the DRV871x-Q1 detects a PVDD overvoltage condition and action is taken according to the  
PVDD_OV_MODE register setting. The overvoltage threshold and deglitch time can be adjusted through the  
PVDD_OV_LVL and PVDD_OV_DG register settings.  
On SPI device variants, the PVDD overvoltage monitor can respond and recover in four different modes set  
through the PVDD_OV_MODE register setting.  
Latched Fault Mode: After detecting the overvoltage condition, the gate driver pull downs are enabled and  
nFAULT pin, FAULT register bit, and PVDD_OV register bit asserted. After the overvoltage condition is  
removed, the fault state remains latched until CLR_FLT is issued.  
Automatic Recovery Mode: After detecting the overvoltage condition, the gate driver pull downs are  
enabled and nFAULT pin, FAULT register bit, and PVDD_OV register bit asserted. After the overvoltage  
condition is removed, the nFAULT pin and FAULT register bit are automatically cleared and the driver  
automatically reenabled. The PVDD_OV register bit remains latched until CLR_FLT is issued.  
Warning Report Only Mode: The PVDD overvoltage condition is reported in the WARN and PVDD_OV  
register bits. The device will not take any action. The warning remains latched until CLR_FLT is issued.  
Disabled Mode: The PVDD overvoltage monitor is disabled and will not respond or report.  
On H/W device variants, the PVDD overvoltage monitor is disabled.  
8.3.8.7 VCP Charge Pump Undervoltage Lockout (VCP_UV)  
If at any time the voltage on the VCP pin falls below the VVCP_UV threshold for longer than the tVCP_UV_DG time,  
the DRV871x-Q1 detects a VCP undervoltage condition. After detecting the undervoltage condition, the gate  
driver pull downs are enabled and nFAULT pin, FAULT register bit, and VCP_UV register bit asserted. The  
undervoltage threshold can be adjusted through the VCP_UV_LVL register setting.  
On SPI device variants, the VCP undervoltage monitor can recover in two different modes set through the  
VCP_UV_MODE register setting.  
Latched Fault Mode: Additionally the charge pump is disabled in latched fault mode. After the undervoltage  
condition is removed, the fault state remains latched and charge pump disabled until CLR_FLT is issued.  
Automatic Recovery Mode: After the undervoltage condition is removed, the nFAULT pin and FAULT  
register bit are automatically cleared and the driver automatically reenabled. The VCP_UV register bit  
remains latched until CLR_FLT is issued.  
On H/W device variants, the VCP undervoltage monitor is fixed to automatic recovery mode and the threshold to  
2-V.  
8.3.8.8 MOSFET VDS Overcurrent Protection (VDS_OCP)  
If the voltage across the VDS overcurrent comparator exceeds the VDS_LVL for longer than the tDS_DG time, the  
DRV871x-Q1 detects a VDS overcurrent condition. The voltage threshold and deglitch time can be adjusted  
through the VDS_LVL and VDS_DG register settings. Additionally, in independent half-bridge and DRV8714-Q1  
split HS/LS PWM control (BRG_MODE = 00b, 11b) the device can be configured to disable all half-bridges or  
only the associated half-bridge in which the fault occurred through the VDS_IND register setting. In the  
DRV8714-Q1 PH/EN and PWM H-bridge control modes (BRG_MODE = 01b, 10b), the VDS_IND register setting  
can be used to disable all H-bridges or only the associated H-bridge in which the fault occurred.  
On SPI device variants, the VDS overcurrent monitor can respond and recover in four different modes set  
through the VDS_MODE register setting.  
Copyright © 2020 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Latched Fault Mode: After detecting the overcurrent event, the gate driver pull downs are enabled and  
nFAULT pin, FAULT register bit, and associated VDS register bit asserted. After the overcurrent event is  
removed, the fault state remains latched until CLR_FLT is issued.  
Cycle by Cycle Mode: After detecting the overcurrent event, the gate driver pull downs are enabled and  
nFAULT pin, FAULT register bit, and associated VDS register bit asserted. The next PWM input will clear the  
nFAULT pin and FAULT register bit and reenable the driver automatically. The associated VDS register bit will  
remain asserted until CLR_FLT is issued.  
Warning Report Only Mode: The overcurrent event is reported in the WARN and associated VDS register  
bits. The device will not take any action. The warning remains latched until CLR_FLT is issued.  
Disabled Mode: The VDS overcurrent monitors are disabled and will not respond or report.  
On H/W device variants, the VDS overcurrent mode is fixed to cycle by cycle and tVDS_DG is fixed to 4 µs.  
Independent half-bridge shutdown is automatically enabled for the independent half-bridge and split HS/LS  
PWM control modes. Independent H-bridge shutdown is automatically enabled for the H-bridge PWM control  
modes. Additionally, the VDS overcurrent protection can be disabled through level 6 of the VDS pin multi-level  
input.  
When a VDS overcurrent fault occurs, the gate pull down current can be configured in order to increase or  
decrease the time to disable the external MOSFET. This can help to avoid a slow-turn off during high-current  
short circuit conditions. This setting is configure through the VDS_IDRVN register setting on SPI devices. On  
hardware devices, this setting is automatically matched to the programmed IDRVN current.  
8.3.8.9 Gate Driver Fault (VGS_GDF)  
If the VGS voltage does not cross the the VGS_LVL comparator level for longer than the tDRIVE time, the DRV871x-  
Q1 detects a VGS gate fault condition. Additionally, in independent half-bridge and DRV8714-Q1 split HS/LS  
PWM control (BRG_MODE = 00b, 11b) the device can be configured to disable all half-bridges or only the  
associated half-bridge in which the gate fault occurred through the VGS_IND register setting. In the DRV8714-  
Q1 PH/EN and PWM H-bridge control modes (BRG_MODE = 01b, 10b), the VGS_IND register setting can be  
used to disable all H-bridges or only the associated H-bridge in which the fault occurred.  
On SPI device variants, the VGS gate fault monitor can respond and recover in four different modes set through  
the VGS_MODE register setting.  
Latched Fault Mode: After detecting the gate fault event, the gate driver pull downs are enabled and  
nFAULT pin, FAULT register bit, and associated VGS register bit asserted. After the gate fault event is  
removed, the fault state remains latched until CLR_FLT is issued.  
Cycle by Cycle Mode: After detecting the gate fault event, the gate driver pull downs are enabled and  
nFAULT pin, FAULT register bit, and associated VGS register bit asserted. The next PWM input will clear the  
nFAULT pin and FAULT register bit and reenable the driver automatically. The associated VGS register bit will  
remain asserted until CLR_FLT is issued.  
Warning Report Only Mode: The overcurrent event is reported in the WARN and associated VGS register  
bits. The device will not take any action. The warning remains latched until CLR_FLT is issued.  
Disabled Mode: The VGS gate fault monitors are disabled and will not respond or report.  
On H/W device variants, the VGS gate fault mode is fixed to cycle by cycle and tDRIVE is fixed to 4 µs.  
Independent half-bridge shutdown is automatically enabled for the independent half-bridge and split HS/LS  
PWM control modes. Independent H-bridge shutdown is automatically enabled for the H-bridge PWM control  
modes. Additionally, the VGS gate fault protection can be disabled through level 6 of the VDS pin multi-level  
input.  
8.3.8.10 Thermal Warning (OTW)  
If the die temperature exceeds the TOTW thermal warning threshold the DRV871x-Q1 detects an  
overtemperature warning and asserts the WARN and OTW register bits. After the overtemperature condition is  
removed the WARN and OTW register bits remain asserted until CLR_FLT is issued.  
On H/W device variants, the overtemperature warning is not detected or reported.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.3.8.11 Thermal Shutdown (OTSD)  
If the die temperature exceeds the TOTSD thermal shutdown threshold the DRV871x-Q1 detects an  
overtemperature fault. After detecting the overtemperature fault, the gate driver pull downs are enabled, the  
charge pump disabled and nFAULT pin, FAULT register bit, and OTSD register bit asserted. After the  
overtemperature condition is removed the fault state remains latched until CLR_FLT is issued.  
On H/W device variants, after the overtemperature condition is removed, the nFAULT pin is automatically  
cleared and the driver and charge pump automatically reenabled.  
8.3.8.12 Offline Short Circuit and Open Load Detection (OOL and OSC)  
The device provides the necessary hardware to conduct offline short circuit and open load diagnostics of the  
external power MOSFETs and load. This is accomplished by an integrated pull up and pull down current source  
on the SHx pin which connect to the external half-bridge switch-node. The offline diagnostics are controlled by  
the associated registers bits in the OLSC_CTRL register. First, the offline diagnostic mode needs to be enabled  
through the EN_OLSC register setting. Then the individual current sources can be enabled through the PD_SHx  
and PU_SHx register settings.  
The voltage on the SHx pin will be continuously monitored through the internal VDS comparators. During the  
diagnostic state the VDS comparators will report the real-time voltage feedback on the SHx pin node in the SPI  
registers in the associated VDS register status bit. When in the VDS comparators are in diagnostic mode, the  
global DS_GS SPI register bits will not report faults or warnings.  
Before enabling the offline diagnostics it is recommended to place the external MOSFET half-bridges in the  
disabled state through the EN_DRV register setting. Additionally, the VDS comparator threshold (VDS_LVL)  
should be adjusted to 1-V or greater to ensure enough headroom for the internal blocking diode forward voltage  
drop.  
On H/W device variants, this feature is not available.  
DRAIN  
DRAIN  
DRV  
DRV8  
PU_SHx  
PU_SHy  
GHx  
GHy  
VDS  
VDS  
SHx  
SHy  
BDC  
PD_SHx  
PD_SHy  
VDS  
VDS  
GLx  
GLy  
PGND/SLx  
PGND/SLy  
Figure 8-29. Offline Diagnostics  
Note  
The VDS comparators will start real-time voltage feedback immediately after OLSC_EN is set.  
Feedback should be ignored until the proper pull up and pull down configuration is set.  
Copyright © 2020 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.3.8.13 Watchdog Timer  
The device integrates a programmable window type SPI watchdog timer to verify that the external controller is  
operating and the SPI bus integrity is monitored. The SPI watchdog timer can be enabled by through the  
WD_EN SPI register bit. The watchdog timer is disabled by default. When the watchdog timer is enabled, an  
internal timer starts to count up. The watcher dog timer is reset by inverting the WD_RST SPI register.. This  
WD_RST must be issued between the lower window time and the upper window time. If a watchdog timer fault is  
detected, the device response can be configured to either report only a warning or report a fault and disabled the  
half-bridge drivers. If the watchdog is set to disable the half-bridges drivers, the drivers will be reenabled after a  
CLR_FLT command is sent to remove the watchdog fault condition.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.3.8.14 Fault Detection and Response Summary Table  
Table 8-17. Fault Detection and Response Summary  
DIGITAL  
CORE  
CHARGE  
PUMP  
GATE  
DRIVERS  
CURRENT  
SENSE  
NAME  
CONDITION  
SPI BIT  
MODE  
RESPONSE  
DRVOFF =  
High or  
Disable Driver  
n/a  
n/a  
Active  
Active  
Pull Down  
Active  
n/a  
EN_DRV = 0b  
SPI Address  
Fault  
Invalid SPI  
Address  
SPI, Reject  
Frame  
ADDR_FLT  
SCLK_FLT  
POR  
Latched  
Latched  
n/a  
Active  
Active  
Reset  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
SPI Clock  
Fault  
Invalid SPI  
Lock Frame  
SPI, Reject  
Frame  
DVDD Power-  
on-Reset  
DVDD <  
VDVDD_POR  
Semi-Active  
Pull Down  
Disabled  
Disabled  
Disabled  
Active  
Disabled  
Disabled  
Disabled  
Active  
SPI  
Semi-Active  
Pull Down  
Latched  
Automatic  
Latched  
Automatic  
nFAULT, SPI  
nFAULT, SPI  
nFAULT, SPI  
nFAULT, SPI  
PVDD  
Undervoltage  
PVDD <  
VPVDD_UV  
UV,  
PVDD_UV  
Semi-Active  
Pull Down  
OV,  
PVDD_OV  
Pull Down  
Pull Down  
OV,  
PVDD_OV  
Active  
Active  
PVDD  
Overvoltage  
PVDD >  
VPVDD_UV  
OV,  
PVDD_OV  
Warning  
Disabled  
Latched  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
WARN, SPI  
n/a  
n/a  
Semi-Active  
Pull Down  
Disabled  
Disabled  
nFAULT, SPI  
VCP  
Undervoltage  
VCP <  
VVCP_UV  
UV, VCP_UV  
Semi-Active  
Pull Down  
Automatic  
Latched  
Cycle  
Active  
Active  
Active  
Active  
Active  
Active  
Disabled  
Active  
nFAULT, SPI  
nFAULT, SPI  
nFAULT, SPI  
IVDS_IDRVN  
Pull Down  
IVDS_IDRVN  
Pull Down  
VDS  
Overcurrent  
VDS >  
VVDS_LVL  
DS_GS,  
VDS_X  
Active  
Warning  
Disabled  
Latched  
Cycle  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
WARN, SPI  
n/a  
Pull Down  
Pull Down  
Active  
nFAULT, SPI  
nFAULT, SPI  
WARN, SPI  
n/a  
VGS Gate  
Fault  
VGS >  
VVGS_LVL  
DS_GS,  
VGS_X  
Warning  
Disabled  
Active  
Thermal  
Warning  
TJ > TOTW  
TJ > TOTSD  
n/a  
OT, OTW  
OT, OTSD  
VDS_X  
Automatic  
Latched  
MCU  
Active  
Active  
Active  
Active  
Active  
Disabled  
Active  
Active  
Active  
Disabled  
Active  
WARN, SPI  
nFAULT, SPI  
SPI  
Thermal  
Shutdown  
Semi-Active  
Pull Down  
Offline Open  
Load  
Pull Down  
Pull Down  
Offline Short  
Circuit  
n/a  
VDS_X  
MCU  
Active  
Active  
SPI  
Invalid  
Access or  
Expiration  
Warning  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
WARN, SPI  
nFAULT, SPI  
Watchdog  
WD_FLT  
Latched Fault  
Pull Down  
Copyright © 2020 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.4 Device Functional Modes  
8.4.1 Inactive or Sleep State  
When the nSLEEP pin is logic low or the DVDD power supply is below the VDVDD_POR threshold, the device  
enters a low power sleep state to reduce device quiescent current draw by the device. In this state, all major  
functional blocks are disabled aside from a low power monitor on the nSLEEP pin and the powered off braking  
function if enabled. Passive gate pull downs are provided for the external MOSFET gates to maintain the  
MOSFETs in an off state. After exiting the inactive sleep state, all device registers will be reset to defaults.  
8.4.2 Standby State  
When the nSLEEP pin is logic high and DVDD input has crossed the VDVDD_POR threshold, the device enters a  
power on standby state after tWAKE delay. The digital core and SPI communication will be active but the charge  
pump and gate drivers will remain disabled until the PVDD input has crossed the VPVDD_UV threshold. In this  
state, the SPI registers can be programmed and faults reported, but no gate driver operation is possible.  
8.4.3 Operating State  
When the nSLEEP pin is logic high, the DVDD input has crossed the VDVDD_POR threshold, and the PVDD input  
has crossed the VPVDD_UV threshold, the devices enters its full operating state. In this state, all major functional  
blocks are active aside from the gate drivers. The gate drivers must be enabled through the EN_DRV register bit  
before full operation can begin.  
On H/W device variants, the device will automatically enable the drivers in the operating state.  
8.5 Programming  
8.5.1 SPI Interface  
An SPI bus is used to set device configurations, operating parameters, and read out diagnostic information on  
the DRV871x-Q1 devices. The SPI operates in slave mode and connects to a master controller. The SPI input  
data (SDI) word consists of a 16 bit word, with an 8 bit command and 8 bits of data. The SPI output data (SDO)  
word consists of the fault status indication bits and then the register data being accessed for read commands or  
null for write commands. The data sequence between the MCU and the SPI slave driver is shown in Figure 8-30.  
nSCS  
A1  
S1  
D1  
R1  
SDI  
SDO  
Figure 8-30. SPI Data Frame  
A valid frame must meet the following conditions:  
The SCLK pin should be low when the nSCS pin transitions from high to low and from low to high.  
The nSCS pin should be pulled high between words.  
When the nSCS pin is pulled high, any signals at the SCLK and SDI pins are ignored and the SDO pin is  
placed in the Hi-Z state.  
Data is captured on the falling edge of SCLK and data is propagated on the rising edge of SCLK.  
The most significant bit (MSB) is shifted in and out first.  
A full 16 SCLK cycles must occur for transaction to be valid.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
If the data word sent to the SDI pin is less than or more than 16 bits, a frame error (SCLK_FLT) occurs and  
the data word is ignored.  
If the data word sent to the SDI pin contains an invalid address, an address fault (ADDR_FLT) occurs and the  
data word is ignored.  
For a write command, the existing data in the register being written to is shifted out on the SDO pin follow the  
8 bit command data.  
nSCS  
SCLK  
SDI  
X
Z
MSB  
MSB  
LSB  
LSB  
X
Z
SDO  
Capture  
Point  
Propagate  
Point  
Figure 8-31. SPI Slave Timing Diagram  
8.5.2 SPI Format  
The SDI input data word is 16 bits long and consists of the following format:  
1 read or write bit, W (bit B14)  
6 address bits, A (bits B13 through B8)  
8 data bits, D (bits B7 through B0)  
The SDO output data word is 16 bits long and the first 8 bits makes up the IC status register. The report word is  
the content of the register being accessed.  
For a write command (W0 = 0), the response word consists of the fault status indication bits followed by the  
existing data in the register being written to.  
For a read command (W0 = 1), the response word consists of the fault status indications bits followed by the  
data currently in the register being read.  
Table 8-18. SDI Input Data Word Format  
R/W  
B14  
W0  
Address  
Data  
Bit  
B15  
0
B13  
A5  
B12  
A4  
B11  
A3  
B10  
A2  
B9  
A1  
B8  
A0  
B7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
Data  
D7  
Table 8-19. SDO Output Data Word Format  
IC Status  
Report  
Bit  
B15  
1
B14  
1
B13  
B12  
B11  
B10  
UV  
B9  
B8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
B3  
B2  
D2  
B1  
D1  
B0  
D0  
OT_W  
D_AG  
D
DS_G  
S
Data  
FAULT WARN  
OV  
D4  
D3  
Copyright © 2020 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.5.3 SPI Interface for Multiple Slaves  
Multiple DRV871x-Q1 devices can be connected to the master controller with and without the daisy chain. For  
connecting a 'n' number of DRV871x-Q1 to a master controller without using a daisy chain, 'n' number of I/O  
resources from master controller has to utilized for nSCS pins as shown Figure 8-32. Whereas, if the daisy chain  
configuration is used, then a single nSCS line can be used for connecting multiple DRV871x-Q1 devices. Figure  
8-33  
DRV8x  
DRV8x  
SCLK  
SDI  
SCLK  
SDI  
Master Controller  
Master Controller  
SPI  
Communication  
SPI  
Communication  
SDO  
nSCS  
SDO  
nSCS  
CS1  
MCLK  
MO  
CS  
MCLK  
MO  
SPI  
Communication  
SPI  
Communication  
DRV8x  
DRV8x  
MI  
MI  
SCLK  
SDI  
SCLK  
SDI  
CS2  
SPI  
SPI  
SDO  
nSCS  
SDO  
nSCS  
Communication  
Communication  
Figure 8-32. SPI Operation Without Daisy Chain  
Figure 8-33. SPI Operation With Daisy Chain  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.5.3.1 SPI Interface for Multiple Slaves in Daisy Chain  
The DRV871x-Q1 device can be connected in a daisy chain configuration to save GPIO ports when multiple  
devices are communicating to the same MCU. Figure 8-34 shows the topology when 3 devices are connected in  
series with waveforms.  
SDO2  
SDI3  
SDO3  
M-SDI  
M-SDO  
SDI1  
SDO1  
SDI2  
M-SDO  
SDI1  
SDI2  
SDI2  
SDO3  
SDO2  
SDO1  
M-nSCS  
M-SCLK  
M-SDI  
nSCS  
SDI1  
HDR1  
HDR2  
HDR1  
S1  
A3  
A2  
A1  
A2  
A3  
D3  
R1  
R2  
R3  
D2  
D3  
R1  
R2  
D1  
D2  
D3  
R1  
SDO1  
SDI2  
S1  
S2  
S3  
HDR2  
HDR1  
S1  
A3  
SDO2  
SDI3  
HDR2  
HDR1  
SDO3  
S2  
HDR2  
All Address  
Bytes Reach  
Destination  
All Address  
Bytes Reach  
Destination  
Status  
Response Here  
Reads  
Execute Here  
Writes  
Execute Here  
Figure 8-34. Daisy Chain SPI Operation  
The first device in the chain shown above receives data from the master controller in the following format. See  
SDI1 in Figure 8-34  
2 bytes of Header  
3 bytes of Address  
3 bytes of Data  
After the data has been transmitted through the chain, the master controller receives it in the following format.  
See SDO3 in Figure 8-34  
3 bytes of Status  
2 bytes of Header (should be identical to the information controller sent)  
Copyright © 2020 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
3 bytes of Report  
The Header bytes contain information of the number of devices connected in the chain, and a global clear fault  
command that will clear the fault registers of all the devices on the rising edge of the chip select (nSCS) signal.  
N5 through N0 are 6 bits dedicated to show the number of device in the chain as shown in Figure 8-35. Up to 63  
devices can be connected in series per daisy chain connection.  
The 5 LSBs of the HDR2 register are don’t care bits that can be used by the MCU to determine integrity of the  
daisy chain connection. Header bytes must start with 1 and 0 for the two MSBs.  
1
0
N5  
N4  
N3  
N2  
N1  
N0  
HDR1  
Number of Devices in the Chain  
(Up to 26 œ 1 = 63)  
1
0
CLR  
X
X
X
X
X
HDR2  
Don‘t Care  
1 = Global FAULT Clear  
0 = Don‘t Care  
Figure 8-35. Header Bits  
The Status byte provides information about the fault status register for each device in the daisy chain as shown  
in Figure 8-36. That way the master controller does not have to initiate a read command to read the fault status  
from any particular device. This saves the controller additional read commands and makes the system more  
efficient to determine fault conditions flagged in a device.  
Header Bytes (HDR)  
HDR1  
1
1
0
0
N5  
N4  
X
N3  
X
N2  
X
N1  
X
N0  
X
HDR2  
CLR  
OV  
A1  
D1  
OT  
A0  
D0  
Status Byte (SX)  
Address Byte (AX)  
Data Byte (AX)  
WARN  
A4  
DS_GS  
A3  
UV  
A2  
D2  
1
0
FAULT  
A5  
1
R/W  
D7  
D6  
D5  
D4  
D3  
Figure 8-36. Daisy Chain Read Registers  
When data passes through a device, it determines the position of itself in the chain by counting the number of  
Status bytes it receives following by the first Header byte. For example, in this 3 device configuration, device 2 in  
the chain will receive two Status bytes before receiving HDR1 byte, followed by HDR2 byte.  
From the two Status bytes it knows that its position is second in the chain, and from HDR2 byte it knows how  
many devices are connected in the chain. That way it only loads the relevant address and data byte in its buffer  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
and bypasses the other bits. This protocol allows for faster communication without adding latency to the system  
for up to 63 devices in the chain.  
The address and data bytes remain the same with respect to a single device connection. The Report bytes (R1  
through R3), as shown in the figure above, is the content of the register being accessed.  
8.6 Register Maps  
The DRV8718-Q1 and DRV8714-Q1 registers provide variety of feedback information and configuration options.  
These include specific fault diagnostics, general device configurations, driver configurations, fault and diagnostic  
configurations, and amplifier configurations. Additionally, the advanced register maps provide advanced driver  
functions to assist in certain system conditions, but not required for standard operation of the device.  
To assist with software development and reuse, the DRV8718-Q1 and DRV8714-Q1 register maps share an  
overlapping register structure with differences for specific device properties. The primary differences between  
the two device register maps are outlined below.  
Register Map Differences:  
DRV8714-Q1: VDS_STAT2 (02h) and VGS_STAT2 (04h) are reserved.  
DRV8714-Q1: BRG_CTRL2 (0Ah) and PWM_CTRL2 (0Ch) are repurposed for H-bridge control functions.  
DRV8714-Q1: PWM_CTRL3 [3:0] (0Dh) PWM_CTRL4 [3:0] (0Eh) are reserved.  
DRV8714-Q1: IDRV_CTRL5, 6, 7, and 8 (13h, 14h, 15h, and 16h) are reserved.  
DRV8714-Q1: IDRV_CTRL9 [3:0] (17h) are reserved.  
DRV8714-Q1: DRV_CTRL2, 3, 4, 5, and 6 (19h, 1Ah, 1Bh, 1Ch, and 1Dh) are now half-bridge specific  
instead of H-bridge specific (DRV8718-Q1).  
DRV8714-Q1: VDS_CTRL3 (21h) and VDS_CTRL4 (22h) are reserved.  
DRV8714-Q1: OLSC_CTRL2 (24h) is reserved.  
Advanced Register Map Differences:  
DRV8714-Q1: All register are now half-bridge specific instead of H-bridge specific (DRV8718-Q1).  
Note  
The DRV8718-Q1 56-Pin VQFN (RVJ) and DRV8714-Q1 56-Pin VQFN (RVJ) packages are drop in  
pin-to-pin compatible. Please note that the locations of half-bridges 1,2,3 and 4 will be shifted for the  
DRV8714-Q1 to help with PCB routing.  
Copyright © 2020 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.1 DRV8718-Q1 Register Map  
Table 8-20 lists the memory-mapped registers for the DRV8718-Q1. All register addresses not listed should be  
considered as reserved locations and the register contents should not be modified. Descriptions of reserved  
locations are provided for reference only.  
Table 8-20. DRV8718-Q1 Register Map  
Name  
7
6
5
4
3
2
1
0
Type Addr  
IC_STAT1  
SPI_OK  
VDS_H1  
VDS_H5  
VGS_H1  
VGS_H5  
PVDD_UV  
POR  
FAULT  
WARN  
VDS_L2  
VDS_L6  
VGS_L2  
VGS_L6  
OTW  
DS_GS  
VDS_H3  
VDS_H7  
VGS_H3  
VGS_H7  
OTSD  
UV  
OV  
OT_WD_AGD  
VDS_L4  
VDS_L8  
VGS_L4  
VGS_L8  
RSVD  
R
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
VDS_STAT1  
VDS_STAT2  
VGS_STAT1  
VGS_STAT2  
IC_STAT2  
VDS_L1  
VDS_L5  
VGS_L1  
VGS_L5  
PVDD_OV  
VDS_H2  
VDS_H6  
VGS_H2  
VGS_H6  
VCP_UV  
VDS_L3  
VDS_L7  
VGS_L3  
VGS_L7  
WD_FLT  
VDS_H4  
VDS_H8  
VGS_H4  
VGS_H8  
SCLK_FLT  
R
R
R
R
R
IC_STAT3  
RSVD  
IC_ID  
R
IC_CTRL1  
EN_DRV  
DIS_SSC  
EN_OLSC  
RSVD  
LOCK  
CLR_FLT  
WD_RST  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IC_CTRL2  
DRVOFF_nFLT  
HB1_CTRL  
CP_MODE  
WD_EN  
WD_FLT_M  
WD_WIN  
BRG_CTRL1  
BRG_CTRL2  
PWM_CTRL1  
PWM_CTRL2  
PWM_CTRL3  
PWM_CTRL4  
IDRV_CTRL1  
IDRV_CTRL2  
IDRV_CTRL3  
IDRV_CTRL4  
IDRV_CTRL5  
IDRV_CTRL6  
IDRV_CTRL7  
IDRV_CTRL8  
IDRV_CTRL9  
DRV_CTRL1  
DRV_CTRL2  
DRV_CTRL3  
DRV_CTRL4  
DRV_CTRL5  
DRV_CTRL6  
DRV_CTRL7  
VDS_CTRL1  
VDS_CTRL2  
VDS_CTRL3  
VDS_CTRL4  
OLSC_CTRL1  
OLSC_CTRL2  
HB2_CTRL  
HB6_CTRL  
HB2_PWM  
HB6_PWM  
HB3_CTRL  
HB4_CTRL  
HB5_CTRL  
HB1_PWM  
HB5_PWM  
HB7_CTRL  
HB3_PWM  
HB7_PWM  
HB8_CTRL  
HB4_PWM  
HB8_PWM  
HB1_HL  
HB2_HL  
HB2_FW  
HB3_HL  
HB3_FW  
HB4_HL  
HB5_HL  
HB6_HL  
HB6_FW  
HB7_HL  
HB8_HL  
HB8_FW  
HB1_FW  
HB4_FW  
HB5_FW  
HB7_FW  
IDRVP_1  
IDRVP_2  
IDRVP_3  
IDRVP_4  
IDRVP_5  
IDRVP_6  
IDRVP_7  
IDRVP_8  
IDRVN_1  
IDRVN_2  
IDRVN_3  
IDRVN_4  
IDRVN_5  
IDRVN_6  
IDRVN_7  
IDRVN_8  
IDRV_LO1  
IDRV_LO2  
IDRV_LO3  
VGS_IND  
IDRV_LO4  
VGS_LVL  
IDRV_LO5  
IDRV_LO6  
IDRV_LO7  
IDRV_LO8  
VDS_IND  
VGS_MODE  
VGS_HS_DIS  
VDS_MODE  
VGS_TDRV_34  
VGS_TDRV_78  
VGS_TDEAD_78  
RSVD  
VGS_TDRV_12  
VGS_TDRV_56  
RSVD  
VGS_TDEAD_12  
VDS_DG_12  
VDS_IDRVN_12  
VGS_TDEAD_34  
VGS_TDEAD_56  
VDS_DG_34  
VDS_DG_56  
VDS_DG_78  
VDS_IDRVN_34  
VDS_IDRVN_56  
VDS_IDRVN_78  
RSVD  
VDS_LVL_1  
VDS_LVL_3  
VDS_LVL_5  
VDS_LVL_7  
VDS_LVL_2  
VDS_LVL_4  
VDS_LVL_6  
VDS_LVL_8  
PU_SH_1  
PD_SH_1  
PD_SH_5  
PU_SH_2  
PU_SH_6  
PD_SH_2  
PD_SH_6  
PU_SH_3  
PU_SH_7  
PD_SH_3  
PD_SH_7  
PU_SH_4  
PU_SH_8  
PD_SH_4  
PD_SH_8  
PU_SH_5  
PVDD_UV_MOD  
E
UVOV_CTRL  
PVDD_OV_MODE  
CSA_DIV_1  
PVDD_OV_DG  
CSA_GAIN_1  
PVDD_OV_LVL VCP_UV_MODE  
CSA_DIV_2  
VCP_UV_LVL  
R/W  
25h  
CSA_CTRL1  
CSA_CTRL2  
CSA_CTRL3  
RSVD_CTRL  
RSVD  
CSA_GAIN_2  
R/W  
R/W  
R/W  
R/W  
26h  
27h  
28h  
29h  
RSVD  
RSVD  
CSA_BLK_SEL_1  
CSA_BLK_SEL_2  
RSVD  
CSA_BLK_1  
CSA_BLK_2  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-21 provides advanced control functions described in the Propagation Delay Reduction (PDR), Duty  
Cycle Compensation (DCC), and Slew Time Control (STC) sections. These are not necessary for typical use  
cases of the DRV871x-Q1 and may be utilized as needed to meet specific system requirements.  
Table 8-21. DRV8718-Q1 Advanced Function Register Map  
Name  
7
6
5
4
3
2
1
0
Type Addr  
AGD_CTRL1  
PDR_CTRL1  
PDR_CTRL2  
PDR_CTRL3  
PDR_CTRL4  
PDR_CTRL5  
PDR_CTRL6  
PDR_CTRL7  
PDR_CTRL8  
PDR_CTRL9  
PDR_CTRL10  
STC_CTRL1  
STC_CTRL2  
STC_CTRL3  
STC_CTRL4  
DCC_CTRL1  
AGD_THR  
AGD_ISTRONG  
SET_AGD_12  
SET_AGD_34  
SET_AGD_56  
SET_AGD_78  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
PRE_MAX_12  
PRE_MAX_34  
PRE_MAX_56  
PRE_MAX_78  
T_PRE_CHR_12  
T_PRE_CHR_34  
T_PRE_CHR_56  
T_PRE_CHR_78  
T_DON_DOFF_12  
T_DON_DOFF_34  
T_DON_DOFF_56  
T_DON_DOFF_78  
PRE_CHR_INIT_12  
PRE_CHR_INIT_34  
PRE_CHR_INIT_56  
PRE_CHR_INIT_78  
T_PRE_DCHR_12  
T_PRE_DCHR_34  
T_PRE_DCHR_56  
T_PRE_DCHR_78  
KP_PDR_12  
PRE_DCHR_INIT_12  
PRE_DCHR_INIT_34  
PRE_DCHR_INIT_56  
PRE_DCHR_INIT_78  
KP_PDR_34  
EN_PDR_12  
EN_PDR_56  
RSVD  
RSVD  
EN_PDR_34  
RSVD  
KP_PDR_56  
EN_PDR_78  
EN_STC_12  
EN_STC_34  
EN_STC_56  
EN_STC_78  
IDIR_MAN_12  
RSVD  
KP_PDR_78  
T_RISE_FALL_12  
STC_ERR_12  
STC_ERR_34  
STC_ERR_56  
STC_ERR_78  
IDIR_MAN_34  
KP_STC_12  
T_RISE_FALL_34  
T_RISE_FALL_56  
T_RISE_FALL_78  
KP_STC_34  
KP_STC_56  
KP_STC_78  
EN_DCC_12  
FW_MAX_12  
EN_DCC_34  
EN_DCC_56  
EN_DCC_78  
FW_MAX_78  
IDIR_MAN_56  
IDIR_MAN_78  
EN_PST_DLY_1 EN_PST_DLY_3 EN_PST_DLY_5 EN_PST_DLY_7  
PST_CTRL1  
FW_MAX_34  
FW_MAX_56  
R/W  
3Ah  
2
4
6
8
PST_CTRL2  
SGD_STAT1  
KP_PST_12  
KP_PST_34  
KP_PST_56  
KP_PST_78  
R/W  
R
3Bh  
3Ch  
IDIR_12  
IDIR_34  
IDIR_56  
IDIR_78  
IDIR_WARN_12 IDIR_WARN_34 IDIR_WARN_56 IDIR_WARN_78  
PCHR_WARN_1 PCHR_WARN_3 PCHR_WARN_5 PCHR_WARN_1 PDCHR_WARN_ PDCHR_WARN_ PDCHR_WARN_ PDCHR_WARN_  
12 12 12 12  
SGD_STAT2  
SGD_STAT3  
R
R
3Dh  
3Eh  
2
4
6
2
STC_WARN_F_1 STC_WARN_F_3 STC_WARN_F_5 STC_WARN_F_7 STC_WARN_R_ STC_WARN_R_ STC_WARN_R_ STC_WARN_R_  
12 34 56 78  
2
4
6
8
Copyright © 2020 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.2 DRV8714-Q1 Register Map  
DRV8714-Q1 Register Map lists the memory-mapped registers for the DRV8714-Q1. All register addresses not  
listed should be considered as reserved locations and the register contents should not be modified. Descriptions  
of reserved locations are provided for reference only.  
Table 8-22. DRV8714-Q1 Register Map  
Name  
7
6
5
4
3
2
1
0
Type Addr.  
IC_STAT1  
SPI_OK  
VDS_H1  
POR  
FAULT  
VDS_H2  
WARN  
VDS_L2  
DS_GS  
VDS_H3  
UV  
OV  
OT_WD_AGD  
VDS_L4  
R
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
VDS_STAT1  
VDS_STAT2  
VGS_STAT1  
VGS_STAT2  
IC_STAT2  
VDS_L1  
VDS_L3  
VDS_H4  
R
RSVD  
RSVD  
R
VGS_H1  
VGS_L1  
PVDD_OV  
EN_OLSC  
VGS_H2  
VCP_UV  
VGS_L2  
OTW  
VGS_H3  
OTSD  
VGS_L3  
WD_FLT  
VGS_H4  
VGS_L4  
RSVD  
R
R
PVDD_UV  
SCLK_FLT  
R
IC_STAT3  
RSVD  
IC_ID  
R
IC_CTRL1  
EN_DRV  
DIS_SSC  
BRG_MODE  
LOCK  
CLR_FLT  
WD_RST  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IC_CTRL2  
DRVOFF_nFLT  
S_IN2/PH1  
CP_MODE  
HB2_CTRL  
WD_EN  
WD_FLT_M  
WD_WIN  
BRG_CTRL1  
BRG_CTRL2  
PWM_CTRL1  
HB1_CTRL  
HB3_CTRL  
HB4_CTRL  
S_IN1/EN1  
HIZ1  
RSVD  
S_IN3/EN2  
S_IN4/PH2  
HIZ2  
FW2  
RSVD  
HB1_PWM  
HB2_PWM  
HB3_PWM  
IN3/EN2_MODE IN4/PH2_MODE  
RSVD  
HB4_PWM  
PWM_CTRL2 IN1/EN1_MODE IN2/PH1_MODE  
FW1  
RSVD  
HB4_HL  
HB4_FW  
RSVD  
PWM_CTRL3  
PWM_CTRL4  
IDRV_CTRL1  
IDRV_CTRL2  
IDRV_CTRL3  
IDRV_CTRL4  
IDRV_CTRL5  
IDRV_CTRL6  
IDRV_CTRL7  
IDRV_CTRL8  
IDRV_CTRL9  
DRV_CTRL1  
DRV_CTRL2  
DRV_CTRL3  
DRV_CTRL4  
DRV_CTRL5  
DRV_CTRL6  
DRV_CTRL7  
VDS_CTRL1  
VDS_CTRL2  
VDS_CTRL3  
VDS_CTRL4  
OLSC_CTRL1  
OLSC_CTRL2  
HB1_HL  
HB1_FW  
HB2_HL  
HB2_FW  
HB3_HL  
HB3_FW  
RSVD  
IDRVP_1  
IDRVP_2  
IDRVP_3  
IDRVP_4  
IDRVN_1  
IDRVN_2  
IDRVN_3  
IDRVN_4  
RSVD  
RSVD  
RSVD  
RSVD  
IDRV_LO1  
IDRV_LO2  
IDRV_LO3  
VGS_IND  
IDRV_LO4  
VGS_LVL  
RSVD  
VGS_MODE  
VGS_HS_DIS  
VDS_MODE  
VDS_IND  
RSVD  
RSVD  
VGS_TDRV_1  
VGS_TDRV_3  
VGS_TDRV_2  
VGS_TDRV_4  
VGS_TDEAD_1  
VDS_DG_1  
VDS_IDRVN_1  
VGS_TDEAD_2  
VGS_TDEAD_3  
VGS_TDEAD_4  
VDS_DG_2  
VDS_DG_3  
VDS_DG_4  
VDS_IDRVN_2  
VDS_IDRVN_3  
VDS_IDRVN_4  
RSVD  
VDS_LVL_1  
VDS_LVL_3  
VDS_LVL_2  
VDS_LVL_4  
RSVD  
RSVD  
PU_SH_1  
PD_SH_1  
PU_SH_2  
PD_SH_2  
PU_SH_3  
PD_SH_3  
PU_SH_4  
PD_SH_4  
RSVD  
PVDD_UV_MOD  
E
UVOV_CTRL  
PVDD_OV_MODE  
CSA_DIV_1  
PVDD_OV_DG  
CSA_GAIN_1  
PVDD_OV_LVL VCP_UV_MODE  
CSA_DIV_2  
VCP_UV_LVL  
R/W  
25h  
CSA_CTRL1  
CSA_CTRL2  
CSA_CTRL3  
RSVD_CTRL  
RSVD  
CSA_GAIN_2  
R/W  
R/W  
R/W  
R/W  
26h  
27h  
28h  
29h  
RSVD  
RSVD  
CSA_BLK_SEL_1  
CSA_BLK_SEL_2  
RSVD  
CSA_BLK_1  
CSA_BLK_2  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
DRV8714-Q1 Advanced Function Register Map provides advanced control functions described in the  
Propagation Delay Reduction (PDR), Duty Cycle Compensation (DCC), and Slew Time Control (STC) sections.  
These are not necessary for typical use cases of the DRV871x-Q1 and may be utilized as needed to meet  
specific system requirements.  
Table 8-23. DRV8714-Q1 Advanced Function Register Map  
Name  
7
6
5
4
3
2
1
0
Type Addr.  
AGD_CTRL1  
PDR_CTRL1  
PDR_CTRL2  
PDR_CTRL3  
PDR_CTRL4  
PDR_CTRL5  
PDR_CTRL6  
PDR_CTRL7  
PDR_CTRL8  
PDR_CTRL9  
PDR_CTRL10  
STC_CTRL1  
STC_CTRL2  
STC_CTRL3  
STC_CTRL4  
DCC_CTRL1  
PST_CTRL1  
PST_CTRL2  
SGD_STAT1  
AGD_THR  
PRE_MAX_1  
PRE_MAX_2  
PRE_MAX_3  
PRE_MAX_4  
T_PRE_CHR_1  
T_PRE_CHR_2  
T_PRE_CHR_3  
T_PRE_CHR_4  
AGD_ISTRONG  
RSVD  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
T_DON_DOFF_1  
T_DON_DOFF_2  
T_DON_DOFF_3  
T_DON_DOFF_4  
T_PRE_DCHR_1  
T_PRE_DCHR_2  
T_PRE_DCHR_3  
T_PRE_DCHR_4  
KP_PDR_1  
PRE_CHR_INIT_1  
PRE_CHR_INIT_2  
PRE_CHR_INIT_3  
PRE_CHR_INIT_4  
PRE_DCHR_INIT_1  
PRE_DCHR_INIT_2  
PRE_DCHR_INIT_3  
PRE_DCHR_INIT_4  
KP_PDR_2  
EN_PDR_1  
EN_PDR_3  
RSVD  
RSVD  
EN_PDR_2  
RSVD  
KP_PDR_3  
EN_PDR_4  
EN_STC_1  
EN_STC_2  
EN_STC_3  
EN_STC_4  
IDIR_MAN_1  
RSVD  
KP_PDR_4  
T_RISE_FALL_1  
STC_ERR_1  
STC_ERR_2  
STC_ERR_3  
STC_ERR_4  
IDIR_MAN_2  
KP_STC_1  
T_RISE_FALL_2  
T_RISE_FALL_3  
T_RISE_FALL_4  
KP_STC_2  
KP_STC_3  
KP_STC_4  
EN_DCC_1  
FW_MAX_1  
EN_DCC_2  
FW_MAX_2  
EN_DCC_3  
FW_MAX_3  
EN_DCC_4  
FW_MAX_4  
IDIR_MAN_3  
IDIR_MAN_4  
EN_PST_DLY_1 EN_PST_DLY_2 EN_PST_DLY_3 EN_PST_DLY_4 R/W  
KP_PST_1  
KP_PST_2  
KP_PST_3  
IDIR_WARN_1 IDIR_WARN_2  
PDCHR_WARN_ PDCHR_WARN_ PDCHR_WARN_ PDCHR_WARN_  
KP_PST_4  
R/W  
R
IDIR_1  
IDIR_2  
IDIR_3  
IDIR_4  
IDIR_WARN_3 IDIR_WARN_4  
SGD_STAT2 PCHR_WARN_1 PCHR_WARN_2 PCHR_WARN_3 PCHR_WARN_4  
SGD_STAT3 STC_WARN_F_1 STC_WARN_F_2 STC_WARN_F_3 STC_WARN_F_4  
R
R
3Dh  
3Eh  
1
2
3
4
STC_WARN_R_ STC_WARN_R_ STC_WARN_R_ STC_WARN_R_  
1
2
3
4
Copyright © 2020 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.3 DRV8718-Q1 Register Descriptions  
8.6.3.1 DRV8718-Q1_STATUS Registers  
Table 8-24 lists the DRV8718-Q1_STATUS registers. All register offset addresses not listed in Table 8-24 should  
be considered as reserved locations and the register contents should not be modified.  
Table 8-24. DRV8718-Q1_STATUS Registers  
Address  
0h  
Acronym  
Register Name  
Section  
Go  
IC_STAT1  
Global fault and warning status indicators  
Half-bridge 1-4 VDS overcurrent fault status indicators  
Half-bridge 5-8 VDS overcurrent fault status indicators  
Half-bridge 1-4 VGS gate fault status indicators  
Half-bridge 5-8 VGS gate fault status indicators  
Voltage, temperature and interface fault status indicators  
Device variant ID status register  
1h  
VDS_STAT1  
VDS_STAT2  
VGS_STAT1  
VGS_STAT2  
IC_STAT2  
Go  
2h  
Go  
3h  
Go  
4h  
Go  
5h  
Go  
6h  
IC_STAT3  
Go  
Complex bit access types are encoded to fit into small table cells. Table 8-25 shows the codes that are used for  
access types in this section.  
Table 8-25. DRV8718-Q1_STATUS Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Reset or Default Value  
- n  
Value after reset or the default value  
8.6.3.1.1 IC_STAT1 Register (Address = 0h) [Reset = C0h]  
IC_STAT1 is shown in Figure 8-37 and described in Table 8-26.  
Return to the Summary Table.  
Status register for global fault and warning indicators. Detailed fault information is available in remaining status  
registers.  
Figure 8-37. IC_STAT1 Register  
7
6
5
4
3
2
1
0
SPI_OK  
R-1b  
POR  
R-1b  
FAULT  
R-0b  
WARN  
R-0b  
DS_GS  
R-0b  
UV  
OV  
OT_WD_AGD  
R-0b  
R-0b  
R-0b  
Table 8-26. IC_STAT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SPI_OK  
R
1b  
Indicates if a SPI communications fault has been detected.  
0b = One or multiple of SCLK_FLT in the prior frames.  
1b = No SPI fault has been detected  
6
POR  
R
1b  
Indicates power-on-reset condition.  
0b = No power-on-reset condition detected.  
1b = Power-on reset condition detected.  
5
4
3
2
1
FAULT  
WARN  
DS_GS  
UV  
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
Fault indicator. Mirrors nFAULT pin.  
Warning indicator.  
Logic OR of VDS and VGS fault indicators.  
Undervoltage indicator.  
OV  
Overvoltage indicator.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-26. IC_STAT1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
OT_WD_AGD  
R
0b  
Logic OR of OTW, OTSD, WD_FLT, IDIR_WARN, PCHR_WARN,  
PDCHR_WARN, and STC_WARN indicators.  
8.6.3.1.2 VDS_STAT1 Register (Address = 1h) [Reset = 0h]  
VDS_STAT1 is shown in Figure 8-38 and described in Table 8-27.  
Return to the Summary Table.  
Status register for the specific MOSFET VDS overcurrent fault indication for half-bridges 1-4.  
Figure 8-38. VDS_STAT1 Register  
7
6
5
4
3
2
1
0
VDS_H1  
R-0b  
VDS_L1  
R-0b  
VDS_H2  
R-0b  
VDS_L2  
R-0b  
VDS_H3  
R-0b  
VDS_L3  
R-0b  
VDS_H4  
R-0b  
VDS_L4  
R-0b  
Table 8-27. VDS_STAT1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
VDS_H1  
VDS_L1  
VDS_H2  
VDS_L2  
VDS_H3  
VDS_L3  
VDS_H4  
VDS_L4  
R
0b  
Indicates VDS overcurrent fault on the high-side 1 MOSFET.  
Indicates VDS overcurrent fault on the low-side 1 MOSFET.  
Indicates VDS overcurrent fault on the high-side 2 MOSFET.  
Indicates VDS overcurrent fault on the low-side 2 MOSFET.  
Indicates VDS overcurrent fault on the high-side 3 MOSFET.  
Indicates VDS overcurrent fault on the low-side 3 MOSFET.  
Indicates VDS overcurrent fault on the high-side 4 MOSFET.  
Indicates VDS overcurrent fault on the low-side 4 MOSFET.  
6
R
0b  
5
R
0b  
4
R
0b  
3
R
0b  
2
R
0b  
1
R
0b  
0
R
0b  
8.6.3.1.3 VDS_STAT2 Register (Address = 2h) [Reset = 0h]  
VDS_STAT2 is shown in Figure 8-39 and described in Table 8-28.  
Return to the Summary Table.  
Status register for the specific MOSFET VDS overcurrent fault indication for half-bridges 5-8.  
Figure 8-39. VDS_STAT2 Register  
7
6
5
4
3
2
1
0
VDS_H5  
R-0b  
VDS_L5  
R-0b  
VDS_H6  
R-0b  
VDS_L6  
R-0b  
VDS_H7  
R-0b  
VDS_L7  
R-0b  
VDS_H8  
R-0b  
VDS_L8  
R-0b  
Table 8-28. VDS_STAT2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
VDS_H5  
VDS_L5  
VDS_H6  
VDS_L6  
VDS_H7  
VDS_L7  
VDS_H8  
VDS_L8  
R
0b  
Indicates VDS overcurrent fault on the high-side 5 MOSFET.  
Indicates VDS overcurrent fault on the low-side 5 MOSFET.  
Indicates VDS overcurrent fault on the high-side 6 MOSFET.  
Indicates VDS overcurrent fault on the low-side 6 MOSFET.  
Indicates VDS overcurrent fault on the high-side 7 MOSFET.  
Indicates VDS overcurrent fault on the low-side 7 MOSFET.  
Indicates VDS overcurrent fault on the high-side 8 MOSFET.  
Indicates VDS overcurrent fault on the low-side 8 MOSFET.  
6
R
0b  
5
R
0b  
4
R
0b  
3
R
0b  
2
R
0b  
1
R
0b  
0
R
0b  
Copyright © 2020 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.3.1.4 VGS_STAT1 Register (Address = 3h) [Reset = 0h]  
VGS_STAT1 is shown in Figure 8-40 and described in Table 8-29.  
Return to the Summary Table.  
Status register for the specific MOSFET VGS gate fault indication for half-bridges 1-4.  
Figure 8-40. VGS_STAT1 Register  
7
6
5
4
3
2
1
0
VGS_H1  
R-0b  
VGS_L1  
R-0b  
VGS_H2  
R-0b  
VGS_L2  
R-0b  
VGS_H3  
R-0b  
VGS_L3  
R-0b  
VGS_H4  
R-0b  
VGS_L4  
R-0b  
Table 8-29. VGS_STAT1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
VGS_H1  
VGS_L1  
VGS_H2  
VGS_L2  
VGS_H3  
VGS_L3  
VGS_H4  
VGS_L4  
R
0b  
Indicates VGS gate fault on the high-side 1 MOSFET.  
Indicates VGS gate fault on the low-side 1 MOSFET.  
Indicates VGS gate fault on the high-side 2 MOSFET.  
Indicates VGS gate fault on the low-side 2 MOSFET.  
Indicates VGS gate fault on the high-side 3 MOSFET.  
Indicates VGS gate fault on the low-side 3 MOSFET.  
Indicates VGS gate fault on the high-side 4 MOSFET.  
Indicates VGS gate fault on the low-side 4 MOSFET.  
6
R
0b  
5
R
0b  
4
R
0b  
3
R
0b  
2
R
0b  
1
R
0b  
0
R
0b  
8.6.3.1.5 VGS_STAT2 Register (Address = 4h) [Reset = 0h]  
VGS_STAT2 is shown in Figure 8-41 and described in Table 8-30.  
Return to the Summary Table.  
Status register for the specific MOSFET VGS gate fault indication for half-bridges 5-8.  
Figure 8-41. VGS_STAT2 Register  
7
6
5
4
3
2
1
0
VGS_H5  
R-0b  
VGS_L5  
R-0b  
VGS_H6  
R-0b  
VGS_L6  
R-0b  
VGS_H7  
R-0b  
VGS_L7  
R-0b  
VGS_H8  
R-0b  
VGS_L8  
R-0b  
Table 8-30. VGS_STAT2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
VGS_H5  
VGS_L5  
VGS_H6  
VGS_L6  
VGS_H7  
VGS_L7  
VGS_H8  
VGS_L8  
R
0b  
Indicates VGS gate fault on the high-side 5 MOSFET.  
Indicates VGS gate fault on the low-side 5 MOSFET.  
Indicates VGS gate fault on the high-side 6 MOSFET.  
Indicates VGS gate fault on the low-side 6 MOSFET.  
Indicates VGS gate fault on the high-side 7 MOSFET.  
Indicates VGS gate fault on the low-side 7 MOSFET.  
Indicates VGS gate fault on the high-side 8 MOSFET.  
Indicates VGS gate fault on the low-side 8 MOSFET.  
6
R
0b  
5
R
0b  
4
R
0b  
3
R
0b  
2
R
0b  
1
R
0b  
0
R
0b  
8.6.3.1.6 IC_STAT2 Register (Address = 5h) [Reset = 0h]  
IC_STAT2 is shown in Figure 8-42 and described in Table 8-31.  
Return to the Summary Table.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Status register for specific undervoltage, overvoltage, overtemperature, and interface fault indications.  
Figure 8-42. IC_STAT2 Register  
7
6
5
4
3
2
1
0
PVDD_UV  
R-0b  
PVDD_OV  
R-0b  
VCP_UV  
R-0b  
OTW  
R-0b  
OTSD  
R-0b  
WD_FLT  
R-0b  
SCLK_FLT  
R-0b  
RESERVED  
R-0b  
Table 8-31. IC_STAT2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
PVDD_UV  
PVDD_OV  
VCP_UV  
OTW  
R
0b  
Indicates undervoltage fault on PVDD pin.  
Indicates overvoltage fault on PVDD pin.  
Indicates undervoltage fault on VCP pin.  
Indicates overtemperature warning.  
Indicates overtemperature shutdown.  
Indicated watchdog timer fault.  
6
R
0b  
5
R
0b  
4
R
0b  
3
OTSD  
R
0b  
2
WD_FLT  
SCLK_FLT  
R
0b  
1
R
0b  
Indicates SPI clock (frame) fault when the number of SCLK pulses in  
a transaction frame are not equal to 16. Not reported on FAULT or  
nFAULT pin.  
0
RESERVED  
R
0b  
Reserved  
8.6.3.1.7 IC_STAT3 Register (Address = 6h) [Reset = 8h]  
IC_STAT3 is shown in Figure 8-43 and described in Table 8-32.  
Return to the Summary Table.  
Status register with device ID for either DRV8718-Q1 or DRV8714-Q1.  
Figure 8-43. IC_STAT3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000b  
IC_ID  
R-1000b  
Table 8-32. IC_STAT3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000b  
1000b  
Description  
7-4  
3-0  
RESERVED  
IC_ID  
R
Reserved  
R
Device identification field.  
0100b = DRV8714-Q1, 4 half-bridge gate driver.  
1000b = DRV8718-Q1, 8 half-bridge gate driver.  
Copyright © 2020 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.3.2 DRV8718-Q1_CONTROL Registers  
Table 8-33 lists the DRV8718-Q1_CONTROL registers. All register offset addresses not listed in Table 8-33  
should be considered as reserved locations and the register contents should not be modified.  
Table 8-33. DRV8718-Q1_CONTROL Registers  
Address  
7h  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
IC_CTRL1  
Device general function control register 1  
Device general function control register 2  
Half-bridge 1-4 output state control  
8h  
IC_CTRL2  
9h  
BRG_CTRL1  
BRG_CTRL2  
PWM_CTRL1  
PWM_CTRL2  
PWM_CTRL3  
PWM_CTRL4  
IDRV_CTRL1  
IDRV_CTRL2  
IDRV_CTRL3  
IDRV_CTRL4  
IDRV_CTRL5  
IDRV_CTRL6  
IDRV_CTRL7  
IDRV_CTRL8  
IDRV_CTRL9  
DRV_CTRL1  
DRV_CTRL2  
DRV_CTRL3  
DRV_CTRL4  
DRV_CTRL5  
DRV_CTRL6  
VDS_CTRL1  
VDS_CTRL2  
VDS_CTRL3  
VDS_CTRL4  
OLSC_CTRL1  
OLSC_CTRL2  
UVOV_CTRL  
CSA_CTRL1  
CSA_CTRL2  
CSA_CTRL3  
Ah  
Half-bridge 5-8 output state control  
Bh  
Half-bridge 1-4 PWM mapping control  
Ch  
Half-bridge 5-8 PWM mapping control  
Dh  
Half-bridge 1-8 high-side or low-side drive control  
Half-bridge 1-8 freewheeling configuration  
Half-bridge 1 gate drive source/sink current  
Half-bridge 2 gate drive source/sink current  
Half-bridge 3 gate drive source/sink current  
Half-bridge 4 gate drive source/sink current  
Half-bridge 5 gate drive source/sink current  
Half-bridge 6 gate drive source/sink current  
Half-bridge 7 gate drive source/sink current  
Half-bridge 8 gate drive source/sink current  
Half-bridge 1-8 gate drive low current control  
Gate driver VGS and VDS monitor configuration  
Half-bridge 1-4 VGS and VDS tDRV configuration  
Half-bridge 5-8 VGS and VDS tDRV configuration  
Half-bridge 1-8 VGS tDEAD_D configuration  
Half-bridge 1-8 VDS tDS_DG configuration  
Half-bridge 1-8 VDS fault pulldown current configuration  
Half-bridge 1 and 2 VDS overcurrent threshold  
Half-bridge 3 and 4 VDS overcurrent threshold  
Half-bridge 5 and 6 VDS overcurrent threshold  
Half-bridge 7 and 8 VDS overcurrent threshold  
Half-bridge 1-4 offline diagnostic control  
Half-bridge 5-8 offline diagnostic control  
Undervoltage and overvoltage monitor configuration.  
Shunt amplifier 1 and 2 configuration  
Eh  
Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
Shunt amplifier 1 blanking configuration  
Shunt amplifier 2 blanking configuration  
Complex bit access types are encoded to fit into small table cells. Table 8-34 shows the codes that are used for  
access types in this section.  
Table 8-34. DRV8718-Q1_CONTROL Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-34. DRV8718-Q1_CONTROL Access Type Codes (continued)  
Access Type  
Reset or Default Value  
- n  
Code  
Description  
Value after reset or the default value  
8.6.3.2.1 IC_CTRL1 Register (Address = 7h) [Reset = 6h]  
IC_CTRL1 is shown in Figure 8-44 and described in Table 8-35.  
Return to the Summary Table.  
Control register for driver and diagnostic enable, SPI lock, and clear fault command.  
Figure 8-44. IC_CTRL1 Register  
7
6
5
4
3
2
1
0
EN_DRV  
R/W-0b  
EN_OLSC  
R/W-0b  
RESERVED  
R-00b  
LOCK  
CLR_FLT  
R/W-0b  
R/W-011b  
Table 8-35. IC_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
EN_DRV  
R/W  
0b  
Enable gate drivers.  
0b = Gate driver output disabled and passive pulldowns enabled.  
1b = Gate driver outputs enabled.  
6
EN_OLSC  
R/W  
0b  
Enable offline open load and short circuit diagnostic.  
0b = Disabled.  
1b = VDS monitors set into real-time voltage monitor mode and  
offline diagnostics current sources enabled.  
5-4  
3-1  
RESERVED  
LOCK  
R
00b  
Reserved  
R/W  
011b  
Lock and unlock the control registers. Bit settings not listed have no  
effect.  
011b = Unlock all control registers.  
110b = Lock the control registers by ignoring further writes except to  
the LOCK register.  
0
CLR_FLT  
R/W  
0b  
Clear latched fault status information.  
0b = Default state.  
1b = Clear latched fault bits, resets to 0b after completion. Will also  
clear SPI fault and watchdog fault status.  
8.6.3.2.2 IC_CTRL2 Register (Address = 8h) [Reset = 2h]  
IC_CTRL2 is shown in Figure 8-45 and described in Table 8-36.  
Return to the Summary Table.  
Control register for pin mode, charge pump mode, and watchdog.  
Figure 8-45. IC_CTRL2 Register  
7
6
5
4
3
2
1
0
DIS_SSC  
R/W-0b  
DRVOFF_nFLT  
R/W-0b  
CP_MODE  
R/W-00b  
WD_EN  
R/W-0b  
WD_FLT_M  
R/W-0b  
WD_WIN  
R/W-1b  
WD_RST  
R/W-0b  
Table 8-36. IC_CTRL2 Register Field Descriptions  
Bit  
Field  
DIS_SSC  
Type  
Reset  
Description  
7
R/W  
0b  
Spread spectrum clocking  
0b = Enabled.  
1b = Disabled.  
Copyright © 2020 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-36. IC_CTRL2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
DRVOFF_nFLT  
R/W  
0b  
Sets DRVOFF/nFLT multi-function pin mode.  
0b = Pin functions as DRVOFF global driver disable.  
1b = Pin functions as nFLT open-drain fault interrupt output.  
5-4  
CP_MODE  
R/W  
00b  
Charge pump operating mode.  
00b = Automatic switch between tripler and doubler mode.  
01b = Always doubler mode.  
10b = Always tripler mode.  
11b = RSVD  
3
2
WD_EN  
R/W  
R/W  
0b  
0b  
Watchdog timer enable.  
0b = Watchdog timer disabled.  
1b = Watchdog dog timer enabled.  
WD_FLT_M  
Watchdog fault mode. Watchdog fault is cleared by CLR_FLT.  
0b = Watchdog fault is reported to WD_FLT and WARN register bits.  
Gate drivers remain enabled and nFAULT is not asserted.  
1b = Watchdog fault is reported to WD_FLT, FAULT register bits, and  
nFAULT pin. Gate drivers are disabled in response to watchdog fault.  
1
0
WD_WIN  
WD_RST  
R/W  
R/W  
1b  
0b  
Watchdog timer window.  
0b = 4 to 40 ms  
1b = 10 to 100 ms  
Watchdog restart. 0b by default after power up. Invert this bit to  
restart the watchdog timer. After written, the bit will reflect the new  
inverted value.  
8.6.3.2.3 BRG_CTRL1 Register (Address = 9h) [Reset = 0h]  
BRG_CTRL1 is shown in Figure 8-46 and described in Table 8-37.  
Return to the Summary Table.  
Control register to set the output state for half-bridges 1-4.  
Figure 8-46. BRG_CTRL1 Register  
7
6
5
4
3
2
1
0
HB1_CTRL  
R/W-00b  
HB2_CTRL  
R/W-00b  
HB3_CTRL  
R/W-00b  
HB4_CTRL  
R/W-00b  
Table 8-37. BRG_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
HB1_CTRL  
HB2_CTRL  
HB3_CTRL  
R/W  
00b  
Half-bridge 1 output state control.  
00b = High impedance (HI-Z). GH1 and GL1 pulldown.  
01b = Drive low-side (LO). GH1 pulldown and GL1 pullup.  
10b = Drive high-side (HI). GH1 pullup and GL1 pulldown.  
11b = Input PWM control. HB1_PWM, HB1_HL, and HB1_FW.  
R/W  
R/W  
00b  
00b  
Half-bridge 2 output state control.  
00b = High impedance (HI-Z). GH2 and GL2 pulldown.  
01b = Drive low-side (LO). GH2 pulldown and GL2 pullup.  
10b = Drive high-side (HI). GH2 pullup and GL2 pulldown.  
11b = Input PWM control. HB2_PWM, HB2_HL, and HB2_FW.  
Half-bridge 3 output state control.  
00b = High impedance (HI-Z). GH3 and GL3 pulldown.  
01b = Drive low-side (LO). GH3 pulldown and GL3 pullup.  
10b = Drive high-side (HI). GH3 pullup and GL3 pulldown.  
11b = Input PWM control. HB3_PWM, HB3_HL, and HB3_FW.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-37. BRG_CTRL1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
HB4_CTRL  
R/W  
00b  
Half-bridge 4 output state control.  
00b = High impedance (HI-Z). GH4 and GL4 pulldown.  
01b = Drive low-side (LO). GH4 pulldown and GL4 pullup.  
10b = Drive high-side (HI). GH4 pullup and GL4 pulldown.  
11b = Input PWM control. HB4_PWM, HB4_HL, and HB4_FW.  
8.6.3.2.4 BRG_CTRL2 Register (Address = Ah) [Reset = 0h]  
BRG_CTRL2 is shown in Figure 8-47 and described in Table 8-38.  
Return to the Summary Table.  
Control register to set the output state for half-bridges 5-8.  
Figure 8-47. BRG_CTRL2 Register  
7
6
5
4
3
2
1
0
HB5_CTRL  
R/W-00b  
HB6_CTRL  
R/W-00b  
HB7_CTRL  
R/W-00b  
HB8_CTRL  
R/W-00b  
Table 8-38. BRG_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
1-0  
HB5_CTRL  
HB6_CTRL  
HB7_CTRL  
HB8_CTRL  
R/W  
00b  
Half-bridge 5 output state control.  
00b = High impedance (HI-Z). GH5 and GL5 pulldown.  
01b = Drive low-side (LO). GH5 pulldown and GL5 pullup.  
10b = Drive high-side (HI). GH5 pullup and GL5 pulldown.  
11b = Input PWM control. HB5_PWM, HB5_HL, and HB5_FW.  
R/W  
R/W  
R/W  
00b  
00b  
00b  
Half-bridge 6 output state control.  
00b = High impedance (HI-Z). GH6 and GL6 pulldown.  
01b = Drive low-side (LO). GH6 pulldown and GL6 pullup.  
10b = Drive high-side (HI). GH6 pullup and GL6 pulldown.  
11b = Input PWM control. HB6_PWM, HB6_HL, and HB6_FW.  
Half-bridge 7 output state control.  
00b = High impedance (HI-Z). GH7 and GL7 pulldown.  
01b = Drive low-side (LO). GH7 pulldown and GL7 pullup.  
10b = Drive high-side (HI). GH7 pullup and GL7 pulldown.  
11b = Input PWM control. HB7_PWM, HB7_HL, and HB7_FW.  
Half-bridge 8 output state control.  
00b = High impedance (HI-Z). GH8 and GL8 pulldown.  
01b = Drive low-side (LO). GH8 pulldown and GL8 pullup.  
10b = Drive high-side (HI). GH8 pullup and GL8 pulldown.  
11b = Input PWM control. HB8_PWM, HB8_HL, and HB8_FW.  
8.6.3.2.5 PWM_CTRL1 Register (Address = Bh) [Reset = 5h]  
PWM_CTRL1 is shown in Figure 8-48 and described in Table 8-39.  
Return to the Summary Table.  
Control register to map the input PWM source for half-bridges 1-4.  
Figure 8-48. PWM_CTRL1 Register  
7
6
5
4
3
2
1
0
HB1_PWM  
R/W-00b  
HB2_PWM  
R/W-00b  
HB3_PWM  
R/W-01b  
HB4_PWM  
R/W-01b  
Copyright © 2020 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-39. PWM_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
HB1_PWM  
R/W  
00b  
Configure PWM input source for half-bridge 1.  
00b = IN1  
01b = IN2  
10b = IN3  
11b = IN4  
5-4  
3-2  
1-0  
HB2_PWM  
HB3_PWM  
HB4_PWM  
R/W  
R/W  
R/W  
00b  
01b  
01b  
Configure PWM input source for half-bridge 2.  
00b = IN1  
01b = IN2  
10b = IN3  
11b = IN4  
Configure PWM input source for half-bridge 3.  
00b = IN1  
01b = IN2  
10b = IN3  
11b = IN4  
Configure PWM input source for half-bridge 4.  
00b = IN1  
01b = IN2  
10b = IN3  
11b = IN4  
8.6.3.2.6 PWM_CTRL2 Register (Address = Ch) [Reset = AFh]  
PWM_CTRL2 is shown in Figure 8-49 and described in Table 8-40.  
Return to the Summary Table.  
Control register to map the input PWM source for half-bridges 5-8.  
Figure 8-49. PWM_CTRL2 Register  
7
6
5
4
3
2
1
0
HB5_PWM  
R/W-10b  
HB6_PWM  
R/W-10b  
HB7_PWM  
R/W-11b  
HB8_PWM  
R/W-11b  
Table 8-40. PWM_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
1-0  
HB5_PWM  
HB6_PWM  
HB7_PWM  
HB8_PWM  
R/W  
10b  
Configure PWM input source for half-bridge 5.  
00b = IN1  
01b = IN2  
10b = IN3  
11b = IN4  
R/W  
R/W  
R/W  
10b  
11b  
11b  
Configure PWM input source for half-bridge 6.  
00b = IN1  
01b = IN2  
10b = IN3  
11b = IN4  
Configure PWM input source for half-bridge 7.  
00b = IN1  
01b = IN2  
10b = IN3  
11b = IN4  
Configure PWM input source for half-bridge 8.  
00b = IN1  
01b = IN2  
10b = IN3  
11b = IN4  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.3.2.7 PWM_CTRL3 Register (Address = Dh) [Reset = 0h]  
PWM_CTRL3 is shown in Figure 8-50 and described in Table 8-41.  
Return to the Summary Table.  
Control register to set the PWM drive MOSFET (high or low) for half-bridges 1-8.  
Figure 8-50. PWM_CTRL3 Register  
7
6
5
4
3
2
1
0
HB1_HL  
R/W-0b  
HB2_HL  
R/W-0b  
HB3_HL  
R/W-0b  
HB4_HL  
R/W-0b  
HB5_HL  
R/W-0b  
HB6_HL  
R/W-0b  
HB7_HL  
R/W-0b  
HB8_HL  
R/W-0b  
Table 8-41. PWM_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
HB1_HL  
HB2_HL  
HB3_HL  
HB4_HL  
HB5_HL  
HB6_HL  
HB7_HL  
HB8_HL  
R/W  
0b  
Set half-bridge 1 PWM to high-side or low-side gate driver.  
0b = Set high-side as drive MOSFET.  
1b = Set low-side as drive MOSFET.  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Set half-bridge 2 PWM to high-side or low-side gate driver.  
0b = Set high-side as drive MOSFET.  
1b = Set low-side as drive MOSFET.  
Set half-bridge 3 PWM to high-side or low-side gate driver.  
0b = Set high-side as drive MOSFET.  
1b = Set low-side as drive MOSFET.  
Set half-bridge 4 PWM to high-side or low-side gate driver.  
0b = Set high-side as drive MOSFET.  
1b = Set low-side as drive MOSFET.  
Set half-bridge 5 PWM to high-side or low-side gate driver.  
0b = Set high-side as drive MOSFET.  
1b = Set low-side as drive MOSFET.  
Set half-bridge 6 PWM to high-side or low-side gate driver.  
0b = Set high-side as drive MOSFET.  
1b = Set low-side as drive MOSFET.  
Set half-bridge 7 PWM to high-side or low-side gate driver.  
0b = Set high-side as drive MOSFET.  
1b = Set low-side as drive MOSFET.  
Set half-bridge 8 PWM to high-side or low-side gate driver.  
0b = Set high-side as drive MOSFET.  
1b = Set low-side as drive MOSFET.  
8.6.3.2.8 PWM_CTRL4 Register (Address = Eh) [Reset = 0h]  
PWM_CTRL4 is shown in Figure 8-51 and described in Table 8-42.  
Return to the Summary Table.  
Control register to set the PWM freewheeling mode for half-bridges 1-8.  
Figure 8-51. PWM_CTRL4 Register  
7
6
5
4
3
2
1
0
HB1_FW  
R/W-0b  
HB2_FW  
R/W-0b  
HB3_FW  
R/W-0b  
HB4_FW  
R/W-0b  
HB5_FW  
R/W-0b  
HB6_FW  
R/W-0b  
HB7_FW  
R/W-0b  
HB8_FW  
R/W-0b  
Table 8-42. PWM_CTRL4 Register Field Descriptions  
Bit  
Field  
HB1_FW  
Type  
Reset  
Description  
7
R/W  
0b  
Configure freewheeling setting for half-bridge 1.  
0b = Active. Generate inverted PWM internally.  
1b = Passive. Rely on freewheeling diode.  
Copyright © 2020 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-42. PWM_CTRL4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
HB2_FW  
R/W  
0b  
Configure freewheeling setting for half-bridge 2.  
0b = Active. Generate inverted PWM internally.  
1b = Passive. Rely on freewheeling diode.  
5
4
3
2
1
0
HB3_FW  
HB4_FW  
HB5_FW  
HB6_FW  
HB7_FW  
HB8_FW  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
Configure freewheeling setting for half-bridge 3.  
0b = Active. Generate inverted PWM internally.  
1b = Passive. Rely on freewheeling diode.  
Configure freewheeling setting for half-bridge 4.  
0b = Active. Generate inverted PWM internally.  
1b = Passive. Rely on freewheeling diode.  
Configure freewheeling setting for half-bridge 5.  
0b = Active. Generate inverted PWM internally.  
1b = Passive. Rely on freewheeling diode.  
Configure freewheeling setting for half-bridge 6.  
0b = Active. Generate inverted PWM internally.  
1b = Passive. Rely on freewheeling diode.  
Configure freewheeling setting for half-bridge 7.  
0b = Active. Generate inverted PWM internally.  
1b = Passive. Rely on freewheeling diode.  
Configure freewheeling setting for half-bridge 8.  
0b = Active. Generate inverted PWM internally.  
1b = Passive. Rely on freewheeling diode.  
8.6.3.2.9 IDRV_CTRL1 Register (Address = Fh) [Reset = FFh]  
IDRV_CTRL1 is shown in Figure 8-52 and described in Table 8-43.  
Return to the Summary Table.  
Control register to configure the source and sink current for the half-bridge 1 high-side and low-side gate drivers.  
Figure 8-52. IDRV_CTRL1 Register  
7
6
5
4
3
2
1
0
IDRVP_1  
IDRVN_1  
R/W-1111b  
R/W-1111b  
Table 8-43. IDRV_CTRL1 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
IDRVP_1  
R/W  
1111b  
Half-bridge 1 peak source pull up current. Alternative low current  
value in parenthesis (IDRV_LO1).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-43. IDRV_CTRL1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
IDRVN_1  
R/W  
1111b  
Half-bridge 1 peak sink pull down current. Alternative low current  
value in parenthesis (IDRV_LO1).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
8.6.3.2.10 IDRV_CTRL2 Register (Address = 10h) [Reset = FFh]  
IDRV_CTRL2 is shown in Figure 8-53 and described in Table 8-44.  
Return to the Summary Table.  
Control register to configure the source and sink current for the half-bridge 2 high-side and low-side gate drivers.  
Figure 8-53. IDRV_CTRL2 Register  
7
6
5
4
3
2
1
0
IDRVP_2  
IDRVN_2  
R/W-1111b  
R/W-1111b  
Table 8-44. IDRV_CTRL2 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
IDRVP_2  
R/W  
1111b  
Half-bridge 2 peak source pull up current. Alternative low current  
value in parenthesis (IDRV_LO2).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
Copyright © 2020 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-44. IDRV_CTRL2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
IDRVN_2  
R/W  
1111b  
Half-bridge 2 peak sink pull down current. Alternative low current  
value in parenthesis (IDRV_LO2).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
8.6.3.2.11 IDRV_CTRL3 Register (Address = 11h) [Reset = FFh]  
IDRV_CTRL3 is shown in Figure 8-54 and described in Table 8-45.  
Return to the Summary Table.  
Control register to configure the source and sink current for the half-bridge 3 high-side and low-side gate drivers.  
Figure 8-54. IDRV_CTRL3 Register  
7
6
5
4
3
2
1
0
IDRVP_3  
IDRVN_3  
R/W-1111b  
R/W-1111b  
Table 8-45. IDRV_CTRL3 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
IDRVP_3  
R/W  
1111b  
Half-bridge 3 peak source pull up current. Alternative low current  
value in parenthesis (IDRV_LO3).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-45. IDRV_CTRL3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
IDRVN_3  
R/W  
1111b  
Half-bridge 3 peak sink pull down current. Alternative low current  
value in parenthesis (IDRV_LO3).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
8.6.3.2.12 IDRV_CTRL4 Register (Address = 12h) [Reset = FFh]  
IDRV_CTRL4 is shown in Figure 8-55 and described in Table 8-46.  
Return to the Summary Table.  
Control register to configure the source and sink current for the half-bridge 4 high-side and low-side gate drivers.  
Figure 8-55. IDRV_CTRL4 Register  
7
6
5
4
3
2
1
0
IDRVP_4  
IDRVN_4  
R/W-1111b  
R/W-1111b  
Table 8-46. IDRV_CTRL4 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
IDRVP_4  
R/W  
1111b  
Half-bridge 4 peak source pull up current. Alternative low current  
value in parenthesis (IDRV_LO4).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
Copyright © 2020 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-46. IDRV_CTRL4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
IDRVN_4  
R/W  
1111b  
Half-bridge 4 peak sink pull down current. Alternative low current  
value in parenthesis (IDRV_LO4).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
8.6.3.2.13 IDRV_CTRL5 Register (Address = 13h) [Reset = FFh]  
IDRV_CTRL5 is shown in Figure 8-56 and described in Table 8-47.  
Return to the Summary Table.  
Control register to configure the source and sink current for the half-bridge 5 high-side and low-side gate drivers.  
Figure 8-56. IDRV_CTRL5 Register  
7
6
5
4
3
2
1
0
IDRVP_5  
IDRVN_5  
R/W-1111b  
R/W-1111b  
Table 8-47. IDRV_CTRL5 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
IDRVP_5  
R/W  
1111b  
Half-bridge 5 peak source pull up current. Alternative low current  
value in parenthesis (IDRV_LO5).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-47. IDRV_CTRL5 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
IDRVN_5  
R/W  
1111b  
Half-bridge 5 peak sink pull down current. Alternative low current  
value in parenthesis (IDRV_LO5).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
8.6.3.2.14 IDRV_CTRL6 Register (Address = 14h) [Reset = FFh]  
IDRV_CTRL6 is shown in Figure 8-57 and described in Table 8-48.  
Return to the Summary Table.  
Control register to configure the source and sink current for the half-bridge 6 high-side and low-side gate drivers.  
Figure 8-57. IDRV_CTRL6 Register  
7
6
5
4
3
2
1
0
IDRVP_6  
IDRVN_6  
R/W-1111b  
R/W-1111b  
Table 8-48. IDRV_CTRL6 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
IDRVP_6  
R/W  
1111b  
Half-bridge 6 peak source pull up current. Alternative low current  
value in parenthesis (IDRV_LO6).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
Copyright © 2020 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-48. IDRV_CTRL6 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
IDRVN_6  
R/W  
1111b  
Half-bridge 6 peak sink pull down current. Alternative low current  
value in parenthesis (IDRV_LO6).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
8.6.3.2.15 IDRV_CTRL7 Register (Address = 15h) [Reset = FFh]  
IDRV_CTRL7 is shown in Figure 8-58 and described in Table 8-49.  
Return to the Summary Table.  
Control register to configure the source and sink current for the half-bridge 7 high-side and low-side gate drivers.  
Figure 8-58. IDRV_CTRL7 Register  
7
6
5
4
3
2
1
0
IDRVP_7  
IDRVN_7  
R/W-1111b  
R/W-1111b  
Table 8-49. IDRV_CTRL7 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
IDRVP_7  
R/W  
1111b  
Half-bridge 7 peak source pull up current. Alternative low current  
value in parenthesis (IDRV_LO7).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-49. IDRV_CTRL7 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
IDRVN_7  
R/W  
1111b  
Half-bridge 7 peak sink pull down current. Alternative low current  
value in parenthesis (IDRV_LO7).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
8.6.3.2.16 IDRV_CTRL8 Register (Address = 16h) [Reset = FFh]  
IDRV_CTRL8 is shown in Figure 8-59 and described in Table 8-50.  
Return to the Summary Table.  
Control register to configure the source and sink current for the half-bridge 8 high-side and low-side gate drivers.  
Figure 8-59. IDRV_CTRL8 Register  
7
6
5
4
3
2
1
0
IDRVP_8  
IDRVN_8  
R/W-1111b  
R/W-1111b  
Table 8-50. IDRV_CTRL8 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
IDRVP_8  
R/W  
1111b  
Half-bridge 8 peak source pull up current. Alternative low current  
value in parenthesis (IDRV_LO8).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
Copyright © 2020 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-50. IDRV_CTRL8 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
IDRVN_8  
R/W  
1111b  
Half-bridge 8 peak sink pull down current. Alternative low current  
value in parenthesis (IDRV_LO8).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
8.6.3.2.17 IDRV_CTRL9 Register (Address = 17h) [Reset = 0h]  
IDRV_CTRL9 is shown in Figure 8-60 and described in Table 8-51.  
Return to the Summary Table.  
Control register to enable ultra-low source and sink current settings for half-bridges 1-8.  
Figure 8-60. IDRV_CTRL9 Register  
7
6
5
4
3
2
1
0
IDRV_LO1  
R/W-0b  
IDRV_LO2  
R/W-0b  
IDRV_LO3  
R/W-0b  
IDRV_LO4  
R/W-0b  
IDRV_LO5  
R/W-0b  
IDRV_LO6  
R/W-0b  
IDRV_LO7  
R/W-0b  
IDRV_LO8  
R/W-0b  
Table 8-51. IDRV_CTRL9 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
IDRV_LO1  
IDRV_LO2  
IDRV_LO3  
IDRV_LO4  
IDRV_LO5  
IDRV_LO6  
IDRV_LO7  
R/W  
0b  
Enable low current IDRVN and IDRVP mode for half-bridge 1.  
0b = IDRVP_1 and IDRVN_1 utilize standard values.  
1b = IDRVP_1 and IDRVN_1 utilize low current values.  
6
5
4
3
2
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
Enable low current IDRVN and IDRVP mode for half-bridge 2.  
0b = IDRVP_2 and IDRVN_2 utilize standard values.  
1b = IDRVP_2 and IDRVN_2 utilize low current values.  
Enable low current IDRVN and IDRVP mode for half-bridge 3.  
0b = IDRVP_3 and IDRVN_3 utilize standard values.  
1b = IDRVP_3 and IDRVN_3 utilize low current values.  
Enable low current IDRVN and IDRVP mode for half-bridge 4.  
0b = IDRVP_4 and IDRVN_4 utilize standard values.  
1b = IDRVP_4 and IDRVN_4 utilize low current values.  
Enable low current IDRVN and IDRVP mode for half-bridge 5.  
0b = IDRVP_5 and IDRVN_5 utilize standard values.  
1b = IDRVP_5 and IDRVN_5 utilize low current values.  
Enable low current IDRVN and IDRVP mode for half-bridge 6.  
0b = IDRVP_6 and IDRVN_6 utilize standard values.  
1b = IDRVP_6 and IDRVN_6 utilize low current values.  
Enable low current IDRVN and IDRVP mode for half-bridge 7.  
0b = IDRVP_7 and IDRVN_7 utilize standard values.  
1b = IDRVP_7 and IDRVN_7 utilize low current values.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-51. IDRV_CTRL9 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
IDRV_LO8  
R/W  
0b  
Enable low current IDRVN and IDRVP mode for half-bridge 8.  
0b = IDRVP_8 and IDRVN_8 utilize standard values.  
1b = IDRVP_8 and IDRVN_8 utilize low current values.  
8.6.3.2.18 DRV_CTRL1 Register (Address = 18h) [Reset = 0h]  
DRV_CTRL1 is shown in Figure 8-61 and described in Table 8-52.  
Return to the Summary Table.  
Control register to set the VGS and VDS monitor operating modes and configurations.  
Figure 8-61. DRV_CTRL1 Register  
7
6
5
4
3
2
1
0
VGS_MODE  
R/W-00b  
VGS_IND  
R/W-0b  
VGS_LVL  
R/W-0b  
VGS_HS_DIS  
R/W-0b  
VDS_MODE  
R/W-00b  
VDS_IND  
R/W-0b  
Table 8-52. DRV_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
VGS_MODE  
R/W  
00b  
VGS gate fault monitor mode for half-bridges 1-8.  
00b = Latched fault.  
01b = Cycle by cycle.  
10b = Warning report only.  
11b = Disabled.  
5
4
VGS_IND  
R/W  
R/W  
R/W  
R/W  
0b  
VGS fault independent shutdown mode configuration.  
0b = Disabled. VGS fault will shut down all half-bridge drivers.  
1b = Enabled. VGS gate fault will only shutdown the associated half-  
bridge driver.  
VGS_LVL  
0b  
VGS threshold comparator level for dead-time handshake and VGS  
fault monitor for half-bridge drivers.  
0b = 1.4 V  
1b = 1 V  
3
VGS_HS_DIS  
VDS_MODE  
0b  
VGS dead-time handshake monitor disable.  
0b = 0x0  
1b = Disabled. Half-bridge transition is based only on TDRIVE and  
programmable digital dead-time delays.  
2-1  
00b  
VDS overcurrent monitor mode for half-bridges 1-8.  
00b = Latched fault.  
01b = Cycle by cycle.  
10b = Warning report only.  
11b = Disabled.  
0
VDS_IND  
R/W  
0b  
VDS fault independent shutdown mode configuration.  
0b = Disabled. VDS fault will shut down all half-bridge drivers.  
1b = Enabled. VDS gate fault will only shutdown the associated half-  
bridge driver.  
8.6.3.2.19 DRV_CTRL2 Register (Address = 19h) [Reset = 12h]  
DRV_CTRL2 is shown in Figure 8-62 and described in Table 8-53.  
Return to the Summary Table.  
Control register to set tDRV, the VGS drive and VDS monitor blanking time for half-bridges 1-4.  
Figure 8-62. DRV_CTRL2 Register  
7
6
5
4
3
2
1
0
RESERVED  
VGS_TDRV_12  
VGS_TDRV_34  
Copyright © 2020 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-62. DRV_CTRL2 Register (continued)  
R-00b  
R/W-010b  
R/W-010b  
Table 8-53. DRV_CTRL2 Register Field Descriptions  
Bit  
7-6  
5-3  
Field  
Type  
Reset  
Description  
RESERVED  
VGS_TDRV_12  
R
00b  
Reserved  
R/W  
010b  
VGS drive and VDS monitor blanking time for half-bridge 1 and 2.  
000b = 2 µs  
001b = 4 µs  
010b = 8 µs  
011b = 12 µs  
100b = 16 µs  
101b = 24 µs  
110b = 32 µs  
111b = 96 µs  
2-0  
VGS_TDRV_34  
R/W  
010b  
VGS drive and VDS monitor blanking time for half-bridge 3 and 4.  
000b = 2 µs  
001b = 4 µs  
010b = 8 µs  
011b = 12 µs  
100b = 16 µs  
101b = 24 µs  
110b = 32 µs  
111b = 96 µs  
8.6.3.2.20 DRV_CTRL3 Register (Address = 1Ah) [Reset = 12h]  
DRV_CTRL3 is shown in Figure 8-63 and described in Table 8-54.  
Return to the Summary Table.  
Control register to set tDRV, the VGS drive and VDS monitor blanking time for half-bridges 5-8.  
Figure 8-63. DRV_CTRL3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
VGS_TDRV_56  
R/W-010b  
VGS_TDRV_78  
R/W-010b  
Table 8-54. DRV_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-3  
RESERVED  
R
00b  
Reserved  
VGS_TDRV_56  
R/W  
010b  
VGS drive and VDS monitor blanking time for half-bridge 5 and 6.  
000b = 2 µs  
001b = 4 µs  
010b = 8 µs  
011b = 12 µs  
100b = 16 µs  
101b = 24 µs  
110b = 32 µs  
111b = 96 µs  
2-0  
VGS_TDRV_78  
R/W  
010b  
VGS drive and VDS monitor blanking time for half-bridge 7 and 8.  
000b = 2 µs  
001b = 4 µs  
010b = 8 µs  
011b = 12 µs  
100b = 16 µs  
101b = 24 µs  
110b = 32 µs  
111b = 96 µs  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.3.2.21 DRV_CTRL4 Register (Address = 1Bh) [Reset = 0h]  
DRV_CTRL4 is shown in Figure 8-64 and described in Table 8-55.  
Return to the Summary Table.  
Control register to set VGS tDEAD_D, additional digital dead-time insertion for half-bridges 1-8.  
Figure 8-64. DRV_CTRL4 Register  
7
6
5
4
3
2
1
0
VGS_TDEAD_12  
VGS_TDEAD_34  
R/W-00b  
VGS_TDEAD_56  
R/W-00b  
VGS_TDEAD_78  
R/W-00b  
R/W-00b  
Table 8-55. DRV_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
VGS_TDEAD_12  
R/W  
00b  
Insertable digital dead-time for half-bridge 1 and 2.  
00b = 0 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
5-4  
3-2  
1-0  
VGS_TDEAD_34  
VGS_TDEAD_56  
VGS_TDEAD_78  
R/W  
R/W  
R/W  
00b  
00b  
00b  
Insertable digital dead-time for half-bridge 3 and 4.  
00b = 0 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
Insertable digital dead-time for half-bridge 5 and 6.  
00b = 0 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
Insertable digital dead-time for half-bridge 7 and 8.  
00b = 0 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
8.6.3.2.22 DRV_CTRL5 Register (Address = 1Ch) [Reset = AAh]  
DRV_CTRL5 is shown in Figure 8-65 and described in Table 8-56.  
Return to the Summary Table.  
Control register to set VDS tDS_DG, overcurrent monitor deglitch time for half-bridges 1-8.  
Figure 8-65. DRV_CTRL5 Register  
7
6
5
4
3
2
1
0
VDS_DG_12  
R/W-10b  
VDS_DG_34  
R/W-10b  
VDS_DG_56  
R/W-10b  
VDS_DG_78  
R/W-10b  
Table 8-56. DRV_CTRL5 Register Field Descriptions  
Bit  
7-6  
Field  
Type  
Reset  
Description  
VDS_DG_12  
R/W  
10b  
VDS overcurrent monitor deglitch time for half-bridge 1 and 2.  
00b = 1 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
Copyright © 2020 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-56. DRV_CTRL5 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-4  
VDS_DG_34  
R/W  
10b  
VDS overcurrent monitor deglitch time for half-bridge 3 and 4.  
00b = 1 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
3-2  
1-0  
VDS_DG_56  
VDS_DG_78  
R/W  
R/W  
10b  
10b  
VDS overcurrent monitor deglitch time for half-bridge 5 and 6.  
00b = 1 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
VDS overcurrent monitor deglitch time for half-bridge 7 and 8.  
00b = 1 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
8.6.3.2.23 DRV_CTRL6 Register (Address = 1Dh) [Reset = 0h]  
DRV_CTRL6 is shown in Figure 8-66 and described in Table 8-57.  
Return to the Summary Table.  
Control register to set the gate pulldown current (IDRVN) in response to VDS overcurrent fault for half-bridges  
1-8.  
Figure 8-66. DRV_CTRL6 Register  
7
6
5
4
3
2
1
0
VDS_IDRVN_12  
VDS_IDRVN_34  
R/W-00b  
VDS_IDRVN_56  
R/W-00b  
VDS_IDRVN_78  
R/W-00b  
R/W-00b  
Table 8-57. DRV_CTRL6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
VDS_IDRVN_12  
R/W  
00b  
IDRVN gate pulldown current after VDS_OCP fault for half-bridge 1  
and 2.  
00b = Programmed IDRVN  
01b = 8 mA  
10b = 31 mA  
11b = 62 mA  
5-4  
3-2  
1-0  
VDS_IDRVN_34  
VDS_IDRVN_56  
VDS_IDRVN_78  
R/W  
R/W  
R/W  
00b  
00b  
00b  
IDRVN gate pulldown current after VDS_OCP fault for half-bridge 3  
and 4.  
00b = Programmed IDRVN  
01b = 8 mA  
10b = 31 mA  
11b = 62 mA  
IDRVN gate pulldown current after VDS_OCP fault for half-bridge 5  
and 6.  
00b = Programmed IDRVN  
01b = 8 mA  
10b = 31 mA  
11b = 62 mA  
IDRVN gate pulldown current after VDS_OCP fault for half-bridge 7  
and 8.  
00b = Programmed IDRVN  
01b = 8 mA  
10b = 31 mA  
11b = 62 mA  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.3.2.24 VDS_CTRL1 Register (Address = 1Fh) [Reset = DDh]  
VDS_CTRL1 is shown in Figure 8-67 and described in Table 8-58.  
Return to the Summary Table.  
Control register to set the VDS overcurrent monitor voltage threshold for half-bridges 1 and 2.  
Figure 8-67. VDS_CTRL1 Register  
7
6
5
4
3
2
1
0
VDS_LVL_1  
R/W-1101b  
VDS_LVL_2  
R/W-1101b  
Table 8-58. VDS_CTRL1 Register Field Descriptions  
Bit  
7-4  
Field  
VDS_LVL_1  
Type  
Reset  
Description  
R/W  
1101b  
Half-bridge 1 VDS overcurrent monitor threshold.  
0000b = 0.06 V  
0001b = 0.08 V  
0010b = 0.10 V  
0011b = 0.12 V  
0100b = 0.14 V  
0101b = 0.16 V  
0110b = 0.18 V  
0111b = 0.2 V  
1000b = 0.3 V  
1001b = 0.4 V  
1010b = 0.5 V  
1011b = 0.6 V  
1100b = 0.7 V  
1101b = 1 V  
1110b = 1.4 V  
1111b = 2 V  
3-0  
VDS_LVL_2  
R/W  
1101b  
Half-bridge 2 VDS overcurrent monitor threshold.  
0000b = 0.06 V  
0001b = 0.08 V  
0010b = 0.10 V  
0011b = 0.12 V  
0100b = 0.14 V  
0101b = 0.16 V  
0110b = 0.18 V  
0111b = 0.2 V  
1000b = 0.3 V  
1001b = 0.4 V  
1010b = 0.5 V  
1011b = 0.6 V  
1100b = 0.7 V  
1101b = 1 V  
1110b = 1.4 V  
1111b = 2 V  
8.6.3.2.25 VDS_CTRL2 Register (Address = 20h) [Reset = DDh]  
VDS_CTRL2 is shown in Figure 8-68 and described in Table 8-59.  
Return to the Summary Table.  
Control register to set the VDS overcurrent monitor voltage threshold for half-bridges 3 and 4.  
Figure 8-68. VDS_CTRL2 Register  
7
6
5
4
3
2
1
0
VDS_LVL_3  
R/W-1101b  
VDS_LVL_4  
R/W-1101b  
Copyright © 2020 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-59. VDS_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
VDS_LVL_3  
R/W  
1101b  
Half-bridge 3 VDS overcurrent monitor threshold.  
0000b = 0.06 V  
0001b = 0.08 V  
0010b = 0.10 V  
0011b = 0.12 V  
0100b = 0.14 V  
0101b = 0.16 V  
0110b = 0.18 V  
0111b = 0.2 V  
1000b = 0.3 V  
1001b = 0.4 V  
1010b = 0.5 V  
1011b = 0.6 V  
1100b = 0.7 V  
1101b = 1 V  
1110b = 1.4 V  
1111b = 2 V  
3-0  
VDS_LVL_4  
R/W  
1101b  
Half-bridge 4 VDS overcurrent monitor threshold.  
0000b = 0.06 V  
0001b = 0.08 V  
0010b = 0.10 V  
0011b = 0.12 V  
0100b = 0.14 V  
0101b = 0.16 V  
0110b = 0.18 V  
0111b = 0.2 V  
1000b = 0.3 V  
1001b = 0.4 V  
1010b = 0.5 V  
1011b = 0.6 V  
1100b = 0.7 V  
1101b = 1 V  
1110b = 1.4 V  
1111b = 2 V  
8.6.3.2.26 VDS_CTRL3 Register (Address = 21h) [Reset = DDh]  
VDS_CTRL3 is shown in Figure 8-69 and described in Table 8-60.  
Return to the Summary Table.  
Control register to set the VDS overcurrent monitor voltage threshold for half-bridges 5 and 6.  
Figure 8-69. VDS_CTRL3 Register  
7
6
5
4
3
2
1
0
VDS_LVL_5  
R/W-1101b  
VDS_LVL_6  
R/W-1101b  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-60. VDS_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
VDS_LVL_5  
R/W  
1101b  
Half-bridge 5 VDS overcurrent monitor threshold.  
0000b = 0.06 V  
0001b = 0.08 V  
0010b = 0.10 V  
0011b = 0.12 V  
0100b = 0.14 V  
0101b = 0.16 V  
0110b = 0.18 V  
0111b = 0.2 V  
1000b = 0.3 V  
1001b = 0.4 V  
1010b = 0.5 V  
1011b = 0.6 V  
1100b = 0.7 V  
1101b = 1 V  
1110b = 1.4 V  
1111b = 2 V  
3-0  
VDS_LVL_6  
R/W  
1101b  
Half-bridge 6 VDS overcurrent monitor threshold.  
0000b = 0.06 V  
0001b = 0.08 V  
0010b = 0.10 V  
0011b = 0.12 V  
0100b = 0.14 V  
0101b = 0.16 V  
0110b = 0.18 V  
0111b = 0.2 V  
1000b = 0.3 V  
1001b = 0.4 V  
1010b = 0.5 V  
1011b = 0.6 V  
1100b = 0.7 V  
1101b = 1 V  
1110b = 1.4 V  
1111b = 2 V  
8.6.3.2.27 VDS_CTRL4 Register (Address = 22h) [Reset = DDh]  
VDS_CTRL4 is shown in Figure 8-70 and described in Table 8-61.  
Return to the Summary Table.  
Control register to set the VDS overcurrent monitor voltage threshold for half-bridges 7 and 8.  
Figure 8-70. VDS_CTRL4 Register  
7
6
5
4
3
2
1
0
VDS_LVL_7  
R/W-1101b  
VDS_LVL_8  
R/W-1101b  
Copyright © 2020 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-61. VDS_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
VDS_LVL_7  
R/W  
1101b  
Half-bridge 7 VDS overcurrent monitor threshold.  
0000b = 0.06 V  
0001b = 0.08 V  
0010b = 0.10 V  
0011b = 0.12 V  
0100b = 0.14 V  
0101b = 0.16 V  
0110b = 0.18 V  
0111b = 0.2 V  
1000b = 0.3 V  
1001b = 0.4 V  
1010b = 0.5 V  
1011b = 0.6 V  
1100b = 0.7 V  
1101b = 1 V  
1110b = 1.4 V  
1111b = 2 V  
3-0  
VDS_LVL_8  
R/W  
1101b  
Half-bridge 8 VDS overcurrent monitor threshold.  
0000b = 0.06 V  
0001b = 0.08 V  
0010b = 0.10 V  
0011b = 0.12 V  
0100b = 0.14 V  
0101b = 0.16 V  
0110b = 0.18 V  
0111b = 0.2 V  
1000b = 0.3 V  
1001b = 0.4 V  
1010b = 0.5 V  
1011b = 0.6 V  
1100b = 0.7 V  
1101b = 1 V  
1110b = 1.4 V  
1111b = 2 V  
8.6.3.2.28 OLSC_CTRL1 Register (Address = 23h) [Reset = 0h]  
OLSC_CTRL1 is shown in Figure 8-71 and described in Table 8-62.  
Return to the Summary Table.  
Control register to enable and disable the offline diagnostic current sources for half-bridges 1-4.  
Figure 8-71. OLSC_CTRL1 Register  
7
6
5
4
3
2
1
0
PU_SH1  
R/W-0b  
PD_SH1  
R/W-0b  
PU_SH2  
R/W-0b  
PD_SH2  
R/W-0b  
PU_SH3  
R/W-0b  
PD_SH3  
R/W-0b  
PU_SH4  
R/W-0b  
PD_SH4  
R/W-0b  
Table 8-62. OLSC_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PU_SH1  
R/W  
0b  
Half-bridge 1 pull up diagnostic current source. Set EN_OLSC = 1b  
to use.  
0b = Disabled.  
1b = Enabled.  
6
PD_SH1  
R/W  
0b  
Half-bridge 1 pull down diagnostic current source. Set EN_OLSC =  
1b to use.  
0b = Disabled.  
1b = Enabled.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-62. OLSC_CTRL1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
PU_SH2  
R/W  
0b  
Half-bridge 2 pull up diagnostic current source. Set EN_OLSC = 1b  
to use.  
0b = Disabled.  
1b = Enabled.  
4
3
2
1
0
PD_SH2  
PU_SH3  
PD_SH3  
PU_SH4  
PD_SH4  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
Half-bridge 2 pull down diagnostic current source. Set EN_OLSC =  
1b to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 3 pull up diagnostic current source. Set EN_OLSC = 1b  
to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 3 pull down diagnostic current source. Set EN_OLSC =  
1b to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 4 pull up diagnostic current source. Set EN_OLSC = 1b  
to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 4 pull down diagnostic current source. Set EN_OLSC =  
1b to use.  
0b = Disabled.  
1b = Enabled.  
8.6.3.2.29 OLSC_CTRL2 Register (Address = 24h) [Reset = 0h]  
OLSC_CTRL2 is shown in Figure 8-72 and described in Table 8-63.  
Return to the Summary Table.  
Control register to enable and disable the offline diagnostic current sources for half-bridges 5-8.  
Figure 8-72. OLSC_CTRL2 Register  
7
6
5
4
3
2
1
0
PU_SH5  
R/W-0b  
PD_SH5  
R/W-0b  
PU_SH6  
R/W-0b  
PD_SH6  
R/W-0b  
PU_SH7  
R/W-0b  
PD_SH7  
R/W-0b  
PU_SH8  
R/W-0b  
PD_SH8  
R/W-0b  
Table 8-63. OLSC_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PU_SH5  
PD_SH5  
PU_SH6  
PD_SH6  
R/W  
0b  
Half-bridge 5 pull up diagnostic current source. Set EN_OLSC = 1b  
to use.  
0b = Disabled.  
1b = Enabled.  
6
5
4
R/W  
R/W  
R/W  
0b  
0b  
0b  
Half-bridge 5 pull down diagnostic current source. Set EN_OLSC =  
1b to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 6 pull up diagnostic current source. Set EN_OLSC = 1b  
to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 6 pull down diagnostic current source. Set EN_OLSC =  
1b to use.  
0b = Disabled.  
1b = Enabled.  
Copyright © 2020 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-63. OLSC_CTRL2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
PU_SH7  
R/W  
0b  
Half-bridge 7 pull up diagnostic current source. Set EN_OLSC = 1b  
to use.  
0b = Disabled.  
1b = Enabled.  
2
1
0
PD_SH7  
PU_SH8  
PD_SH8  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Half-bridge 7 pull down diagnostic current source. Set EN_OLSC =  
1b to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 8 pull up diagnostic current source. Set EN_OLSC = 1b  
to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 8 pull down diagnostic current source. Set EN_OLSC =  
1b to use.  
0b = Disabled.  
1b = Enabled.  
8.6.3.2.30 UVOV_CTRL Register (Address = 25h) [Reset = 14h]  
UVOV_CTRL is shown in Figure 8-73 and described in Table 8-64.  
Return to the Summary Table.  
Control register to set the undervoltage and overvoltage monitor configurations.  
Figure 8-73. UVOV_CTRL Register  
7
6
5
4
3
2
1
0
PVDD_UV_MO  
DE  
PVDD_OV_MODE  
PVDD_OV_DG  
R/W-10b  
PVDD_OV_LVL VCP_UV_MOD VCP_UV_LVL  
E
R/W-0b  
R/W-00b  
R/W-1b  
R/W-0b  
R/W-0b  
Table 8-64. UVOV_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PVDD_UV_MODE  
R/W  
0b  
PVDD supply undervoltage monitor mode.  
0b = Latched fault.  
1b = Automatic recovery.  
6-5  
4-3  
PVDD_OV_MODE  
R/W  
R/W  
00b  
10b  
PVDD supply overvoltage monitor mode.  
00b = Latched fault.  
01b = Automatic recovery.  
10b = Warning report only.  
11b = Disabled.  
PVDD_OV_DG  
PVDD supply overvoltage monitor deglitch time.  
00b = 1 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
2
1
0
PVDD_OV_LVL  
VCP_UV_MODE  
VCP_UV_LVL  
R/W  
R/W  
R/W  
1b  
0b  
0b  
PVDD supply overvoltage monitor threshold.  
0b = 21.5 V  
1b = 28.5 V  
VCP charge pump undervoltage monitor mode.  
0b = Latched fault.  
1b = Automatic recovery.  
VCP charge pump undervoltage monitor threshold.  
0b = 4.75 V  
1b = 6.25 V  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.3.2.31 CSA_CTRL1 Register (Address = 26h) [Reset = 9h]  
CSA_CTRL1 is shown in Figure 8-74 and described in Table 8-65.  
Return to the Summary Table.  
Control register for gain and reference voltage for shunt amplifier 1 and 2.  
Figure 8-74. CSA_CTRL1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
CSA_DIV_1  
R/W-0b  
CSA_GAIN_1  
R/W-01b  
CSA_DIV_2  
R/W-0b  
CSA_GAIN_2  
R/W-01b  
Table 8-65. CSA_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00b  
0b  
Description  
7-6  
5
RESERVED  
CSA_DIV_1  
R
Reserved  
R/W  
Current shunt amplifier 1 reference voltage divider.  
0b = AREF / 2  
1b = AREF / 8  
4-3  
CSA_GAIN_1  
R/W  
01b  
Current shunt amplifier 1 gain setting.  
00b = 10 V/V  
01b = 20 V/V  
10b = 40 V/V  
11b = 80 V/V  
2
CSA_DIV_2  
R/W  
R/W  
0b  
Current shunt amplifier 2 reference voltage divider.  
0b = AREF / 2  
1b = AREF / 8  
1-0  
CSA_GAIN_2  
01b  
Current shunt amplifier 2 gain setting.  
00b = 10 V/V  
01b = 20 V/V  
10b = 40 V/V  
11b = 80 V/V  
8.6.3.2.32 CSA_CTRL2 Register (Address = 27h) [Reset = 0h]  
CSA_CTRL2 is shown in Figure 8-75 and described in Table 8-66.  
Return to the Summary Table.  
Control register for shunt amplifier 1 blanking configuration.  
Figure 8-75. CSA_CTRL2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
CSA_BLK_SEL_1  
R/W-000b  
CSA_BLK_LVL_1  
R/W-000b  
Table 8-66. CSA_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-3  
RESERVED  
R
00b  
Reserved  
CSA_BLK_SEL_1  
R/W  
000b  
Current shunt amplifier 1 blanking trigger source.  
000b = Half-bridge 1  
001b = Half-bridge 2  
010b = Half-bridge 3  
011b = Half-bridge 4  
100b = Half-bridge 5  
101b = Half-bridge 6  
110b = Half-bridge 7  
111b = Half-bridge 8  
Copyright © 2020 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-66. CSA_CTRL2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
CSA_BLK_LVL_1  
R/W  
000b  
Current shunt amplifier 1 blanking time. % of tDRV.  
000b = 0 %, Disabled  
001b = 25 %  
010b = 37.5 %  
011b = 50 %  
100b = 62.5 %  
101b = 75 %  
110b = 87.5 %  
111b = 100 %  
8.6.3.2.33 CSA_CTRL3 Register (Address = 28h) [Reset = 20h]  
CSA_CTRL3 is shown in Figure 8-76 and described in Table 8-67.  
Return to the Summary Table.  
Control register for shunt amplifier 2 blanking configuration.  
Figure 8-76. CSA_CTRL3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
CSA_BLK_SEL_2  
R/W-100b  
CSA_BLK_LVL_2  
R/W-000b  
Table 8-67. CSA_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-3  
RESERVED  
R
00b  
Reserved  
CSA_BLK_SEL_2  
R/W  
100b  
Current shunt amplifier 2 blanking trigger source.  
000b = Half-bridge 1  
001b = Half-bridge 2  
010b = Half-bridge 3  
011b = Half-bridge 4  
100b = Half-bridge 5  
101b = Half-bridge 6  
110b = Half-bridge 7  
111b = Half-bridge 8  
2-0  
CSA_BLK_LVL_2  
R/W  
000b  
Current shunt amplifier 2 blanking time. % of tDRV.  
000b = 0 %, Disabled  
001b = 25 %  
010b = 37.5 %  
011b = 50 %  
100b = 62.5 %  
101b = 75 %  
110b = 87.5 %  
111b = 100 %  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.3.3 DRV8718-Q1_CONTROL_ADV Registers  
Table 8-68 lists the DRV8718-Q1_CONTROL_ADV registers. All register offset addresses not listed in Table  
8-68 should be considered as reserved locations and the register contents should not be modified.  
Table 8-68. DRV8718-Q1_CONTROL_ADV Registers  
Address  
2Ah  
Acronym  
Register Name  
Section  
Go  
AGD_CTRL1  
PDR_CTRL1  
PDR_CTRL2  
PDR_CTRL3  
PDR_CTRL4  
PDR_CTRL5  
Adaptive gate drive general control functions  
Half-bridge 1 and 2 PDR delay and max current settings  
Half-bridge 3 and 4 PDR delay and max current settings  
Half-bridge 5 and 6 PDR delay and max current settings  
Half-bridge 7 and 8 PDR delay and max current settings  
2Bh  
Go  
2Ch  
Go  
2Dh  
Go  
2Eh  
Go  
2Fh  
Half-bridge 1 and 2 PDR charge and discharge initial  
settings.  
Go  
30h  
31h  
32h  
PDR_CTRL6  
PDR_CTRL7  
PDR_CTRL8  
Half-bridge 3 and 4 PDR charge and discharge initial  
settings.  
Go  
Go  
Go  
Half-bridge 5 and 6 PDR charge and discharge initial  
settings.  
Half-bridge 7 and 8 PDR charge and discharge initial  
settings.  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
PDR_CTRL9  
PDR_CTRL10  
STC_CTRL1  
STC_CTRL2  
STC_CTRL3  
STC_CTRL4  
DCC_CTRL1  
PST_CTRL1  
PST_CTRL2  
Half-bridge 1-4 PDR loop controller gain  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Half-bridge 5-8 PDR loop controller gain  
Half-bridge 1 and 2 STC rise/fall time and controller gain  
Half-bridge 3 and 4 STC rise/fall time and controller gain  
Half-bridge 5 and 6 STC rise/fall time and controller gain  
Half-bridge 7 and 8 STC rise/fall time and controller gain  
Half-bridge 1-8 DCC enable and manual control  
Half-bridge 1-8 freewheel and post charge delay control  
Half-bridge 1-8 post charge controller gain  
Complex bit access types are encoded to fit into small table cells. Table 8-69 shows the codes that are used for  
access types in this section.  
Table 8-69. DRV8718-Q1_CONTROL_ADV Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
- n  
Value after reset or the default value  
8.6.3.3.1 AGD_CTRL1 Register (Address = 2Ah) [Reset = 40h]  
AGD_CTRL1 is shown in Figure 8-77 and described in Table 8-70.  
Return to the Summary Table.  
Control register for adaptive gate drive voltage thresholds, pull down setting, and active half-bridge configuration.  
Figure 8-77. AGD_CTRL1 Register  
7
6
5
4
3
2
1
0
AGD_THR  
AGD_ISTRONG  
SET_AGD_12 SET_AGD_34 SET_AGD_56 SET_AGD_78  
Copyright © 2020 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-77. AGD_CTRL1 Register (continued)  
R/W-01b  
R/W-00b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 8-70. AGD_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
AGD_THR  
R/W  
01b  
Adaptive gate driver VSH threshold configuration.  
00b = 1V, VDRAIN - 0.5V  
01b = 1V, VDRAIN - 1V  
10b = 2V, VDRAIN - 1.5V  
11b = 2V, VDRAIN - 2V  
5-4  
AGD_ISTRONG  
R/W  
00b  
Adaptive gate driver ISTRONG configuration.  
00b = ISTRONG pulldown decoded from initial IDRVP_x register  
setting.  
01b = 62 mA  
10b = 124 mA  
11b = RSVD  
3
2
1
0
SET_AGD_12  
SET_AGD_34  
SET_AGD_56  
SET_AGD_78  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
Set active half-bridge for adaptive gate drive control loops.  
0b = Half-bridge 1  
1b = Half-bridge 2  
Set active half-bridge for adaptive gate drive control loops.  
0b = Half-bridge 3  
1b = Half-bridge 4  
Set active half-bridge for adaptive gate drive control loops.  
0b = Half-bridge 5  
1b = Half-bridge 6  
Set active half-bridge for adaptive gate drive control loops.  
0b = Half-bridge 7  
1b = Half-bridge 8  
8.6.3.3.2 PDR_CTRL1 Register (Address = 2Bh) [Reset = Ah]  
PDR_CTRL1 is shown in Figure 8-78 and described in Table 8-71.  
Return to the Summary Table.  
Control register for tON_OFF propagation delay and pre-charge/discharge max current for half-bridges 1 and 2.  
Figure 8-78. PDR_CTRL1 Register  
7
6
5
4
3
2
1
0
PRE_MAX_12  
R/W-00b  
T_DON_DOFF_12  
R/W-001010b  
Table 8-71. PDR_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PRE_MAX_12  
R/W  
00b  
Maximum gate drive current limit for pre-charge and pre-discharge  
for half-bridge 1 and 2.  
00b = 64 mA  
01b = 32 mA  
10b = 16 mA  
11b = 8 mA  
5-0  
T_DON_DOFF_12  
R/W  
001010b  
On and off time delay for half-bridge 1 and 2. 140 ns x  
T_DON_DOFF_12 [3:0] Default time: 001010b (1.4 us)  
8.6.3.3.3 PDR_CTRL2 Register (Address = 2Ch) [Reset = Ah]  
PDR_CTRL2 is shown in Figure 8-79 and described in Table 8-72.  
Return to the Summary Table.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Control register for tON_OFF propagation delay and pre-charge/discharge max current for half-bridges 3 and 4.  
Figure 8-79. PDR_CTRL2 Register  
7
6
5
4
3
2
1
0
PRE_MAX_34  
R/W-00b  
T_DON_DOFF_34  
R/W-001010b  
Table 8-72. PDR_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PRE_MAX_34  
R/W  
00b  
Maximum gate drive current limit for pre-charge and pre-discharge  
for half-bridge 3 and 4.  
00b = 64 mA  
01b = 32 mA  
10b = 16 mA  
11b = 8 mA  
5-0  
T_DON_DOFF_34  
R/W  
001010b  
On and off time delay for half-bridge 3 and 4. 140 ns x  
T_DON_DOFF_34 [3:0] Default time: 001010b (1.4 us)  
8.6.3.3.4 PDR_CTRL3 Register (Address = 2Dh) [Reset = Ah]  
PDR_CTRL3 is shown in Figure 8-80 and described in Table 8-73.  
Return to the Summary Table.  
Control register for tON_OFF propagation delay and pre-charge/discharge max current for half-bridges 5 and 6.  
Figure 8-80. PDR_CTRL3 Register  
7
6
5
4
3
2
1
0
PRE_MAX_56  
R/W-00b  
T_DON_DOFF_56  
R/W-001010b  
Table 8-73. PDR_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PRE_MAX_56  
R/W  
00b  
Maximum gate drive current limit for pre-charge and pre-discharge  
for half-bridge 5 and 6.  
00b = 64 mA  
01b = 32 mA  
10b = 16 mA  
11b = 8 mA  
5-0  
T_DON_DOFF_56  
R/W  
001010b  
On and off time delay for half-bridge 5 and 6. 140 ns x  
T_DON_DOFF_56 [3:0] Default time: 001010b (1.4 us)  
8.6.3.3.5 PDR_CTRL4 Register (Address = 2Eh) [Reset = Ah]  
PDR_CTRL4 is shown in Figure 8-81 and described in Table 8-74.  
Return to the Summary Table.  
Control register for tON_OFF propagation delay and pre-charge/discharge max current for half-bridges 7 and 8.  
Figure 8-81. PDR_CTRL4 Register  
7
6
5
4
3
2
1
0
PRE_MAX_78  
R/W-00b  
T_DON_DOFF_78  
R/W-001010b  
Copyright © 2020 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-74. PDR_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PRE_MAX_78  
R/W  
00b  
Maximum gate drive current limit for pre-charge and pre-discharge  
for half-bridge 7 and 8.  
00b = 64 mA  
01b = 32 mA  
10b = 16 mA  
11b = 8 mA  
5-0  
T_DON_DOFF_78  
R/W  
001010b  
On and off time delay for half-bridge 7 and 8. 140 ns x  
T_DON_DOFF_78 [3:0] Default time: 001010b (1.4 us)  
8.6.3.3.6 PDR_CTRL5 Register (Address = 2Fh) [Reset = F6h]  
PDR_CTRL5 is shown in Figure 8-82 and described in Table 8-75.  
Return to the Summary Table.  
Control register for charge and pre-charge initial settings for half-bridges 1 and 2.  
Figure 8-82. PDR_CTRL5 Register  
7
6
5
4
3
2
1
0
T_PRE_CHR_12  
T_PRE_DCHR_12  
R/W-11b  
PRE_CHR_INIT_12  
R/W-01b  
PRE_DCHR_INIT_12  
R/W-10b  
R/W-11b  
Table 8-75. PDR_CTRL5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
T_PRE_CHR_12  
R/W  
11b  
PDR control loop pre-charge time for half-bridge 1 and 2. Set as ratio  
of T_DON_DOFF_12 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
5-4  
3-2  
1-0  
T_PRE_DCHR_12  
PRE_CHR_INIT_12  
PRE_DCHR_INIT_12  
R/W  
R/W  
R/W  
11b  
01b  
10b  
PDR control loop pre-discharge time for half-bridge 1 and 2. Set as  
ratio of T_DON_DOFF_12 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
PDR control loop initial pre-charge current setting for half-bridge 1  
and 2.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
PDR control loop initial pre-discharge current setting for half-bridge 1  
and 2..  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
8.6.3.3.7 PDR_CTRL6 Register (Address = 30h) [Reset = F6h]  
PDR_CTRL6 is shown in Figure 8-83 and described in Table 8-76.  
Return to the Summary Table.  
Control register for charge and pre-charge initial settings for half-bridges 3 and 4.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-83. PDR_CTRL6 Register  
7
6
5
4
3
2
1
0
T_PRE_CHR_34  
T_PRE_DCHR_34  
R/W-11b  
PRE_CHR_INIT_34  
R/W-01b  
PRE_DCHR_INIT_34  
R/W-10b  
R/W-11b  
Table 8-76. PDR_CTRL6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
T_PRE_CHR_34  
R/W  
11b  
PDR control loop pre-charge time for half-bridge 3 and 4. Set as ratio  
of T_DON_DOFF_34 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
5-4  
3-2  
1-0  
T_PRE_DCHR_34  
PRE_CHR_INIT_34  
PRE_DCHR_INIT_34  
R/W  
R/W  
R/W  
11b  
01b  
10b  
PDR control loop pre-discharge time for half-bridge 3 and 4. Set as  
ratio of T_DON_DOFF_34 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
PDR control loop initial pre-charge current setting for half-bridge 3  
and 4.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
PDR control loop initial pre-discharge current setting for half-bridge 3  
and 4.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
8.6.3.3.8 PDR_CTRL7 Register (Address = 31h) [Reset = F6h]  
PDR_CTRL7 is shown in Figure 8-84 and described in Table 8-77.  
Return to the Summary Table.  
Control register for charge and pre-charge initial settings for half-bridges 5 and 6.  
Figure 8-84. PDR_CTRL7 Register  
7
6
5
4
3
2
1
0
T_PRE_CHR_56  
T_PRE_DCHR_56  
R/W-11b  
PRE_CHR_INIT_56  
R/W-01b  
PRE_DCHR_INIT_56  
R/W-10b  
R/W-11b  
Table 8-77. PDR_CTRL7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
T_PRE_CHR_56  
R/W  
11b  
PDR control loop pre-charge time for half-bridge 5 and 6. Set as ratio  
of T_DON_DOFF_56 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
5-4  
T_PRE_DCHR_56  
R/W  
11b  
PDR control loop pre-discharge time for half-bridge 5 and 6. Set as  
ratio of T_DON_DOFF_56 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
Copyright © 2020 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-77. PDR_CTRL7 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-2  
PRE_CHR_INIT_56  
R/W  
01b  
PDR control loop initial pre-charge current setting for half-bridge 5  
and 6.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
1-0  
PRE_DCHR_INIT_56  
R/W  
10b  
PDR control loop initial pre-discharge current setting for half-bridge 5  
and 6.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
8.6.3.3.9 PDR_CTRL8 Register (Address = 32h) [Reset = F6h]  
PDR_CTRL8 is shown in Figure 8-85 and described in Table 8-78.  
Return to the Summary Table.  
Control register for charge and pre-charge initial settings for half-bridges 7 and 8.  
Figure 8-85. PDR_CTRL8 Register  
7
6
5
4
3
2
1
0
T_PRE_CHR_78  
T_PRE_DCHR_78  
R/W-11b  
PRE_CHR_INIT_78  
R/W-01b  
PRE_DCHR_INIT_78  
R/W-10b  
R/W-11b  
Table 8-78. PDR_CTRL8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
T_PRE_CHR_78  
R/W  
11b  
PDR control loop pre-charge time for half-bridge 7 and 8. Set as ratio  
of T_DON_DOFF_78 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
5-4  
3-2  
1-0  
T_PRE_DCHR_78  
PRE_CHR_INIT_78  
PRE_DCHR_INIT_78  
R/W  
R/W  
R/W  
11b  
01b  
10b  
PDR control loop pre-discharge time for half-bridge 7 and 8. Set as  
ratio of T_DON_DOFF_78 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
PDR control loop initial pre-charge current setting for half-bridge 7  
and 8.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
PDR control loop initial pre-discharge current setting for half-bridge 7  
and 8.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
8.6.3.3.10 PDR_CTRL9 Register (Address = 33h) [Reset = 11h]  
PDR_CTRL9 is shown in Figure 8-86 and described in Table 8-79.  
Return to the Summary Table.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Control register to configure PDR Kp loop controller gain setting for half-bridges 1-4.  
Figure 8-86. PDR_CTRL9 Register  
7
6
5
4
3
2
1
0
EN_PDR_12  
R/W-0b  
PDR_ERR_12  
R/W-0b  
KP_PDR_12  
R/W-01b  
EN_PDR_34  
R/W-0b  
PDR_ERR_34  
R/W-0b  
KP_PDR_34  
R/W-01b  
Table 8-79. PDR_CTRL9 Register Field Descriptions  
Bit  
7
Field  
EN_PDR_12  
Type  
R/W  
R/W  
Reset  
Description  
0b  
Enable PDR loop control for half-bridge 1 and 2.  
6
PDR_ERR_12  
0b  
PDR loop error limit for half-bridge 1 and 2.  
0b = 1-bit error  
1b = Actual error  
5-4  
KP_PDR_12  
R/W  
01b  
PDR proportional controller gain setting for half-bridge 1 and 2.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
3
2
EN_PDR_34  
R/W  
R/W  
0b  
0b  
Enable PDR loop control for half-bridge 3 and 4.  
PDR_ERR_34  
PDR loop error limit for half-bridge 3 and 4.  
0b = 1-bit error  
1b = Actual error  
1-0  
KP_PDR_34  
R/W  
01b  
PDR proportional controller gain setting for half-bridge 3 and 4.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
8.6.3.3.11 PDR_CTRL10 Register (Address = 34h) [Reset = 11h]  
PDR_CTRL10 is shown in Figure 8-87 and described in Table 8-80.  
Return to the Summary Table.  
Control register to configure PDR Kp loop controller gain setting for half-bridges 5-8.  
Figure 8-87. PDR_CTRL10 Register  
7
6
5
4
3
2
1
0
EN_PDR_56  
R/W-0b  
PDR_ERR_56  
R/W-0b  
KP_PDR_56  
R/W-01b  
EN_PDR_78  
R/W-0b  
PDR_ERR_78  
R/W-0b  
KP_PDR_78  
R/W-01b  
Table 8-80. PDR_CTRL10 Register Field Descriptions  
Bit  
7
Field  
EN_PDR_56  
Type  
R/W  
R/W  
Reset  
Description  
0b  
Enable PDR loop control for half-bridge 5 and 6.  
6
PDR_ERR_56  
0b  
PDR loop error limit for half-bridge 5 and 6.  
0b = 1-bit error  
1b = Actual error  
5-4  
KP_PDR_56  
R/W  
01b  
PDR proportional controller gain setting for half-bridge 5 and 6.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
3
2
EN_PDR_78  
R/W  
R/W  
0b  
0b  
Enable PDR loop control for half-bridge 7 and 8.  
PDR_ERR_78  
PDR loop error limit for half-bridge 7 and 8.  
0b = 1-bit error  
1b = Actual error  
Copyright © 2020 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-80. PDR_CTRL10 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
KP_PDR_78  
R/W  
01b  
PDR proportional controller gain setting for half-bridge 7 and 8.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
8.6.3.3.12 STC_CTRL1 Register (Address = 35h) [Reset = 23h]  
STC_CTRL1 is shown in Figure 8-88 and described in Table 8-81.  
Return to the Summary Table.  
Control register to configure STC rise/fall time and Kp loop controller gain setting for half-bridges 1 and 2.  
Figure 8-88. STC_CTRL1 Register  
7
6
5
4
3
2
1
0
T_RISE_FALL_12  
R/W-0010b  
EN_STC_12  
R/W-0b  
STC_ERR_12  
R/W-0b  
KP_STC_12  
R/W-11b  
Table 8-81. STC_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
T_RISE_FALL_12  
R/W  
0010b  
Set switch-node VSH rise and fall time for half-bridge 1 and 2.  
0000b = 0.35 us  
0001b = 0.56 us  
0010b = 0.77 us  
0011b = 0.98 us  
0100b = 1.33 us  
0101b = 1.68 us  
0110b = 2.03 us  
0111b = 2.45 us  
1000b = 2.94 us  
1001b = 3.99 us  
1010b = 4.97 us  
1011b = 5.95 us  
1100b = 7.98 us  
1101b = 9.94 us  
1110b = 11.97 us  
1111b = 15.96 us  
3
2
EN_STC_12  
R/W  
R/W  
0b  
0b  
Enable STC loop control for half-bridge 1 and 2.  
STC_ERR_12  
STC loop error limit for half-bridge 1 and 2  
0b = 1-bit error  
1b = Actual error  
1-0  
KP_STC_12  
R/W  
11b  
STC proportional controller gain setting for half-bridge 1 and 2.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
8.6.3.3.13 STC_CTRL2 Register (Address = 36h) [Reset = 23h]  
STC_CTRL2 is shown in Figure 8-89 and described in Table 8-82.  
Return to the Summary Table.  
Control register to configure STC rise/fall time and Kp loop controller gain setting for half-bridges 3 and 4.  
Figure 8-89. STC_CTRL2 Register  
7
6
5
4
3
2
1
0
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-89. STC_CTRL2 Register (continued)  
T_RISE_FALL_34  
EN_STC_34  
STC_ERR_34  
KP_STC_34  
R/W-11b  
R/W-0010b  
R/W-0b  
R/W-0b  
Table 8-82. STC_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
T_RISE_FALL_34  
R/W  
0010b  
Set switch-node VSH rise and fall time for half-bridge 3 and 4.  
0000b = 0.35 us  
0001b = 0.56 us  
0010b = 0.77 us  
0011b = 0.98 us  
0100b = 1.33 us  
0101b = 1.68 us  
0110b = 2.03 us  
0111b = 2.45 us  
1000b = 2.94 us  
1001b = 3.99 us  
1010b = 4.97 us  
1011b = 5.95 us  
1100b = 7.98 us  
1101b = 9.94 us  
1110b = 11.97 us  
1111b = 15.96 us  
3
2
EN_STC_34  
R/W  
R/W  
0b  
0b  
Enable STC loop control for half-bridge 3 and 4.  
STC_ERR_34  
STC loop error limit for half-bridge 3 and 4.  
0b = 1-bit error  
1b = Actual error  
1-0  
KP_STC_34  
R/W  
11b  
STC proportional controller gain setting for half-bridge 3 and 4.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
8.6.3.3.14 STC_CTRL3 Register (Address = 37h) [Reset = 23h]  
STC_CTRL3 is shown in Figure 8-90 and described in Table 8-83.  
Return to the Summary Table.  
Control register to configure STC rise/fall time and Kp loop controller gain setting for half-bridges 5 and 6.  
Figure 8-90. STC_CTRL3 Register  
7
6
5
4
3
2
1
0
T_RISE_FALL_56  
R/W-0010b  
EN_STC_56  
R/W-0b  
STC_ERR_56  
R/W-0b  
KP_STC_56  
R/W-11b  
Copyright © 2020 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-83. STC_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
T_RISE_FALL_56  
R/W  
0010b  
Set switch-node VSH rise and fall time for half-bridge 5 and 6.  
0000b = 0.35 us  
0001b = 0.56 us  
0010b = 0.77 us  
0011b = 0.98 us  
0100b = 1.33 us  
0101b = 1.68 us  
0110b = 2.03 us  
0111b = 2.45 us  
1000b = 2.94 us  
1001b = 3.99 us  
1010b = 4.97 us  
1011b = 5.95 us  
1100b = 7.98 us  
1101b = 9.94 us  
1110b = 11.97 us  
1111b = 15.96 us  
3
2
EN_STC_56  
R/W  
R/W  
0b  
0b  
Enable STC loop control for half-bridge 5 and 6.  
STC_ERR_56  
STC loop error limit for half-bridge 5 and 6.  
0b = 1-bit error  
1b = Actual error  
1-0  
KP_STC_56  
R/W  
11b  
STC proportional controller gain setting for half-bridge 5 and 6.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
8.6.3.3.15 STC_CTRL4 Register (Address = 38h) [Reset = 23h]  
STC_CTRL4 is shown in Figure 8-91 and described in Table 8-84.  
Return to the Summary Table.  
Control register to configure STC rise/fall time and Kp loop controller gain setting for half-bridges 7 and 8.  
Figure 8-91. STC_CTRL4 Register  
7
6
5
4
3
2
1
0
T_RISE_FALL_78  
R/W-0010b  
EN_STC_78  
R/W-0b  
STC_ERR_78  
R/W-0b  
KP_STC_78  
R/W-11b  
Table 8-84. STC_CTRL4 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
T_RISE_FALL_78  
R/W  
0010b  
Set switch-node VSH rise and fall time for half-bridge 7 and 8.  
0000b = 0.35 us  
0001b = 0.56 us  
0010b = 0.77 us  
0011b = 0.98 us  
0100b = 1.33 us  
0101b = 1.68 us  
0110b = 2.03 us  
0111b = 2.45 us  
1000b = 2.94 us  
1001b = 3.99 us  
1010b = 4.97 us  
1011b = 5.95 us  
1100b = 7.98 us  
1101b = 9.94 us  
1110b = 11.97 us  
1111b = 15.96 us  
3
EN_STC_78  
R/W  
0b  
Enable STC loop control for half-bridge 7 and 8.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-84. STC_CTRL4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
STC_ERR_78  
R/W  
0b  
STC loop error limit for half-bridge 7 and 8.  
0b = 1-bit error  
1b = Actual error  
1-0  
KP_STC_78  
R/W  
11b  
STC proportional controller gain setting for half-bridge 7 and 8.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
8.6.3.3.16 DCC_CTRL1 Register (Address = 39h) [Reset = 0h]  
DCC_CTRL1 is shown in Figure 8-92 and described in Table 8-85.  
Return to the Summary Table.  
Control register to enable DCC loop and manual configuration for half-bridges 1-8.  
Figure 8-92. DCC_CTRL1 Register  
7
6
5
4
3
2
1
0
EN_DCC_12  
R/W-0b  
EN_DCC_34  
R/W-0b  
EN_DCC_56  
R/W-0b  
EN_DCC_78  
R/W-0b  
IDIR_MAN_12 IDIR_MAN_34 IDIR_MAN_56 IDIR_MAN_78  
R/W-0b R/W-0b R/W-0b R/W-0b  
Table 8-85. DCC_CTRL1 Register Field Descriptions  
Bit  
7
Field  
EN_DCC_12  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0b  
Enable duty cycle compensation for half-bridge 1 and 2.  
Enable duty cycle compensation for half-bridge 3 and 4.  
Enable duty cycle compensation for half-bridge 5 and 6.  
Enable duty cycle compensation for half-bridge 7 and 8.  
6
EN_DCC_34  
EN_DCC_56  
EN_DCC_78  
IDIR_MAN_12  
0b  
5
0b  
4
0b  
3
0b  
Current polarity detection mode for half-bridge 1 and 2.  
0b = Automatic  
1b = Manual (Set by HBx_HL)  
2
1
0
IDIR_MAN_34  
IDIR_MAN_56  
IDIR_MAN_78  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Current polarity detection mode for half-bridge 3 and 4.  
0b = Automatic  
1b = Manual (Set by HBx_HL)  
Current polarity detection mode for half-bridge 5 and 6.  
0b = Automatic  
1b = Manual (Set by HBx_HL)  
Current polarity detection mode for half-bridge 7 and 8.  
0b = Automatic  
1b = Manual (Set by HBx_HL)  
8.6.3.3.17 PST_CTRL1 Register (Address = 3Ah) [Reset = Fh]  
PST_CTRL1 is shown in Figure 8-93 and described in Table 8-86.  
Return to the Summary Table.  
Control register to configure max freewheeling current and post charge delay for half-bridges 1-8.  
Figure 8-93. PST_CTRL1 Register  
7
6
5
4
3
2
1
0
FW_MAX_12  
FW_MAX_34  
FW_MAX_56  
FW_MAX_78 EN_PST_DLY_ EN_PST_DLY_ EN_PST_DLY_ EN_PST_DLY_  
12  
34  
56  
78  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
Copyright © 2020 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-86. PST_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FW_MAX_12  
R/W  
0b  
Gate drive current used for freewheeling MOSFET for half-bridge 1  
and 2.  
0b = PRE_CHR_MAX_12 [1:0] 1b = 64 mA  
6
5
4
FW_MAX_34  
FW_MAX_56  
FW_MAX_78  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Gate drive current used for freewheeling MOSFET for half-bridge 3  
and 4.  
0b = PRE_CHR_MAX_34 [1:0] 1b = 64 mA  
Gate drive current used for freewheeling MOSFET for half-bridge 5  
and 6.  
0b = PRE_CHR_MAX_56 [1:0] 1b = 64 mA  
Gate drive current used for freewheeling MOSFET for half-bridge 7  
and 8.  
0b = PRE_CHR_MAX_78 [1:0] 1b = 64 mA  
3
2
1
0
EN_PST_DLY_12  
EN_PST_DLY_34  
EN_PST_DLY_56  
EN_PST_DLY_78  
R/W  
R/W  
R/W  
R/W  
1b  
1b  
1b  
1b  
Enable post-charge time delay. Time delay is equal to  
T_DON_DOFF_12 - T_PRE_CHR_12.  
Enable post-charge time delay. Time delay is equal to  
T_DON_DOFF_34 - T_PRE_CHR_34.  
Enable post-charge time delay. Time delay is equal to  
T_DON_DOFF_56 - T_PRE_CHR_56.  
Enable post-charge time delay. Time delay is equal to  
T_DON_DOFF_78 - T_PRE_CHR_78.  
8.6.3.3.18 PST_CTRL2 Register (Address = 3Bh) [Reset = 55h]  
PST_CTRL2 is shown in Figure 8-94 and described in Table 8-87.  
Return to the Summary Table.  
Control register to configure post charge Kp loop controller gain setting for half-bridges 1-8.  
Figure 8-94. PST_CTRL2 Register  
7
6
5
4
3
2
1
0
KP_PST_12  
R/W-01b  
KP_PST_34  
R/W-01b  
KP_PST_56  
R/W-01b  
KP_PST_78  
R/W-01b  
Table 8-87. PST_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
1-0  
KP_PST_12  
KP_PST_34  
KP_PST_56  
KP_PST_78  
R/W  
01b  
Post charge proportional control gain setting for half-bridges 1 and 2.  
00b = Disabled  
01b = 2  
10b = 4  
11b = 15  
R/W  
R/W  
R/W  
01b  
01b  
01b  
Post charge proportional control gain setting for half-bridges 3 and 4.  
00b = Disabled  
01b = 2  
10b = 4  
11b = 15  
Post charge proportional control gain setting for half-bridges 5 and 6.  
00b = Disabled  
01b = 2  
10b = 4  
11b = 15  
Post charge proportional control gain setting for half-bridges 7 and 8.  
00b = Disabled  
01b = 2  
10b = 4  
11b = 15  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.3.4 DRV8718-Q1_STATUS_ADV Registers  
Table 8-88 lists the DRV8718-Q1_STATUS_ADV registers. All register offset addresses not listed in Table 8-88  
should be considered as reserved locations and the register contents should not be modified.  
Table 8-88. DRV8718-Q1_STATUS_ADV Registers  
Address  
3Ch  
Acronym  
Register Name  
Section  
Go  
SGD_STAT1  
SGD_STAT2  
SGD_STAT3  
Half-bridge 1-8 current polarity indicators  
Half-bridge 1-8 PDR underflow and overflow indicators  
Half-bridge 1-8 STC fault indicator  
3Dh  
Go  
3Eh  
Go  
Complex bit access types are encoded to fit into small table cells. Table 8-89 shows the codes that are used for  
access types in this section.  
Table 8-89. DRV8718-Q1_STATUS_ADV Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Reset or Default Value  
- n  
Value after reset or the default value  
8.6.3.4.1 SGD_STAT1 Register (Address = 3Ch) [Reset = 0h]  
SGD_STAT1 is shown in Figure 8-95 and described in Table 8-90.  
Return to the Summary Table.  
Status registers indicating current polarity for half-bridges 1-8.  
Figure 8-95. SGD_STAT1 Register  
7
6
5
4
3
2
1
0
IDIR_12  
R-0b  
IDIR_34  
R-0b  
IDIR_56  
R-0b  
IDIR_78  
R-0b  
IDIR_WARN_12 IDIR_WARN_34 IDIR_WARN_56 IDIR_WARN_78  
R-0b R-0b R-0b R-0b  
Table 8-90. SGD_STAT1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
IDIR_12  
R
0b  
Indicated current direction for half-bridge 1 and 2.  
Indicated current direction for half-bridge 3 and 4.  
Indicated current direction for half-bridge 5 and 6.  
Indicated current direction for half-bridge 7 and 8.  
6
IDIR_34  
R
0b  
5
IDIR_56  
R
0b  
4
IDIR_78  
R
0b  
3
IDIR_WARN_12  
IDIR_WARN_34  
IDIR_WARN_56  
IDIR_WARN_78  
R
0b  
Indicates unknown current direction for half-bridge 1 and 2.  
Indicates unknown current direction for half-bridge 3 and 4.  
Indicates unknown current direction for half-bridge 5 and 6.  
Indicates unknown current direction for half-bridge 7 and 8.  
2
R
0b  
1
R
0b  
0
R
0b  
8.6.3.4.2 SGD_STAT2 Register (Address = 3Dh) [Reset = 0h]  
SGD_STAT2 is shown in Figure 8-96 and described in Table 8-91.  
Return to the Summary Table.  
Status registers indicating underflow and overflow in PDR loop control for half-bridges 1-8.  
Copyright © 2020 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-96. SGD_STAT2 Register  
7
6
5
4
3
2
1
0
PCHR_WARN_ PCHR_WARN_ PCHR_WARN_ PCHR_WARN_ PDCHR_WARN PDCHR_WARN PDCHR_WARN PDCHR_WARN  
12  
34  
56  
78  
_12  
_34  
_56  
_78  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
Table 8-91. SGD_STAT2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
PCHR_WARN_12  
PCHR_WARN_34  
PCHR_WARN_56  
PCHR_WARN_78  
PDCHR_WARN_12  
PDCHR_WARN_34  
PDCHR_WARN_56  
PDCHR_WARN_78  
R
0b  
Indicates pre-charge underflow or overflow fault for half-bridge 1 and  
2.  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Indicates pre-charge underflow or overflow fault for half-bridge 3 and  
4.  
Indicates pre-charge underflow or overflow fault for half-bridge 5 and  
6.  
Indicates pre-charge underflow or overflow fault for half-bridge 7 and  
8.  
Indicates pre-discharge underflow or overflow fault for half-bridge 1  
and 2.  
Indicates pre-discharge underflow or overflow fault for half-bridge 3  
and 4.  
Indicates pre-discharge underflow or overflow fault for half-bridge 5  
and 6.  
Indicates pre-discharge underflow or overflow fault for half-bridge 7  
and 8.  
8.6.3.4.3 SGD_STAT3 Register (Address = 3Eh) [Reset = 0h]  
SGD_STAT3 is shown in Figure 8-97 and described in Table 8-92.  
Return to the Summary Table.  
Status register indicator STC rise and fall time overflow for half-bridges 1-8.  
Figure 8-97. SGD_STAT3 Register  
7
6
5
4
3
2
1
0
STC_WARN_F STC_WARN_F STC_WARN_F STC_WARN_F STC_WARN_R STC_WARN_R STC_WARN_R STC_WARN_R  
_12  
_34  
_56  
_78  
_12  
_34  
_56  
_78  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
Table 8-92. SGD_STAT3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
STC_WARN_F_12  
STC_WARN_F_34  
STC_WARN_F_56  
STC_WARN_F_78  
STC_WARN_R_12  
STC_WARN_R_34  
STC_WARN_R_56  
STC_WARN_R_78  
R
0b  
Indicates falling slew time TDRV overflow for half-bridge 1 and 2.  
Indicates falling slew time TDRV overflow for half-bridge 3 and 4.  
Indicates falling slew time TDRV overflow for half-bridge 5 and 6.  
Indicates falling slew time TDRV overflow for half-bridge 7 and 8.  
Indicates rising slew time TDRV overflow for half-bridge 1 and 2.  
Indicates rising slew time TDRV overflow for half-bridge 3 and 4.  
Indicates rising slew time TDRV overflow for half-bridge 5 and 6.  
Indicates rising slew time TDRV overflow for half-bridge 7 and 8.  
R
0b  
R
0b  
R
0b  
R
0b  
R
0b  
R
0b  
R
0b  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.4 DRV8714-Q1 Register Descriptions  
Copyright © 2020 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.4.1 DRV8714-Q1_STATUS Registers  
Table 8-93 lists the DRV8714-Q1_STATUS registers. All register offset addresses not listed in Table 8-93 should  
be considered as reserved locations and the register contents should not be modified.  
Table 8-93. DRV8714-Q1_STATUS Registers  
Address  
Acronym  
Register Name  
Section  
Go  
0h  
1h  
3h  
5h  
6h  
IC_STAT1  
VDS_STAT1  
VGS_STAT1  
IC_STAT2  
IC_STAT3  
Global fault and warning status indicators  
Half-bridge 1-4 VDS overcurrent fault status indicators  
Half-bridge 1-4 VGS gate fault status indicators  
Voltage, temperature and interface fault status indicators  
Device variant ID status register  
Go  
Go  
Go  
Go  
Complex bit access types are encoded to fit into small table cells. Table 8-94 shows the codes that are used for  
access types in this section.  
Table 8-94. DRV8714-Q1_STATUS Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Reset or Default Value  
- n  
Value after reset or the default value  
8.6.4.1.1 IC_STAT1 Register (Address = 0h) [Reset = C0h]  
IC_STAT1 is shown in Figure 8-98 and described in Table 8-95.  
Return to the Summary Table.  
Status register for global fault and warning indicators. Detailed fault information is available in remaining status  
registers.  
Figure 8-98. IC_STAT1 Register  
7
6
5
4
3
2
1
0
SPI_OK  
R-1b  
POR  
R-1b  
FAULT  
R-0b  
WARN  
R-0b  
DS_GS  
R-0b  
UV  
OV  
OT_WD_AGD  
R-0b  
R-0b  
R-0b  
Table 8-95. IC_STAT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SPI_OK  
R
1b  
Indicates if a SPI communications fault has been detected.  
0b = One or multiple of SCLK_FLT in the prior frames.  
1b = No SPI fault has been detected  
6
POR  
R
1b  
Indicates power-on-reset condition.  
0b = No power-on-reset condition detected.  
1b = Power-on reset condition detected.  
5
4
3
2
1
0
FAULT  
WARN  
DS_GS  
UV  
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
Fault indicator. Mirrors nFAULT pin.  
Warning indicator.  
Logic OR of VDS and VGS fault indicators.  
Undervoltage indicator.  
OV  
Overvoltage indicator.  
OT_WD_AGD  
Logic OR of OTW, OTSD, WD_FLT, IDIR_WARN, PCHR_WARN,  
PDCHR_WARN, and STC_WARN indicators.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.4.1.2 VDS_STAT1 Register (Address = 1h) [Reset = 0h]  
VDS_STAT1 is shown in Figure 8-99 and described in Table 8-96.  
Return to the Summary Table.  
Status register for the specific MOSFET VDS overcurrent fault indication for half-bridges 1-4.  
Figure 8-99. VDS_STAT1 Register  
7
6
5
4
3
2
1
0
VDS_H1  
R-0b  
VDS_L1  
R-0b  
VDS_H2  
R-0b  
VDS_L2  
R-0b  
VDS_H3  
R-0b  
VDS_L3  
R-0b  
VDS_H4  
R-0b  
VDS_L4  
R-0b  
Table 8-96. VDS_STAT1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
VDS_H1  
VDS_L1  
VDS_H2  
VDS_L2  
VDS_H3  
VDS_L3  
VDS_H4  
VDS_L4  
R
0b  
Indicates VDS overcurrent fault on the high-side 1 MOSFET.  
Indicates VDS overcurrent fault on the low-side 1 MOSFET.  
Indicates VDS overcurrent fault on the high-side 2 MOSFET.  
Indicates VDS overcurrent fault on the low-side 2 MOSFET.  
Indicates VDS overcurrent fault on the high-side 3 MOSFET.  
Indicates VDS overcurrent fault on the low-side 3 MOSFET.  
Indicates VDS overcurrent fault on the high-side 4 MOSFET.  
Indicates VDS overcurrent fault on the low-side 4 MOSFET.  
6
R
0b  
5
R
0b  
4
R
0b  
3
R
0b  
2
R
0b  
1
R
0b  
0
R
0b  
8.6.4.1.3 VGS_STAT1 Register (Address = 3h) [Reset = 0h]  
VGS_STAT1 is shown in Figure 8-100 and described in Table 8-97.  
Return to the Summary Table.  
Status register for the specific MOSFET VGS gate fault indication for half-bridges 1-4.  
Figure 8-100. VGS_STAT1 Register  
7
6
5
4
3
2
1
0
VGS_H1  
R-0b  
VGS_L1  
R-0b  
VGS_H2  
R-0b  
VGS_L2  
R-0b  
VGS_H3  
R-0b  
VGS_L3  
R-0b  
VGS_H4  
R-0b  
VGS_L4  
R-0b  
Table 8-97. VGS_STAT1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
VGS_H1  
VGS_L1  
VGS_H2  
VGS_L2  
VGS_H3  
VGS_L3  
VGS_H4  
VGS_L4  
R
0b  
Indicates VGS gate fault on the high-side 1 MOSFET.  
Indicates VGS gate fault on the low-side 1 MOSFET.  
Indicates VGS gate fault on the high-side 2 MOSFET.  
Indicates VGS gate fault on the low-side 2 MOSFET.  
Indicates VGS gate fault on the high-side 3 MOSFET.  
Indicates VGS gate fault on the low-side 3 MOSFET.  
Indicates VGS gate fault on the high-side 4 MOSFET.  
Indicates VGS gate fault on the low-side 4 MOSFET.  
6
R
0b  
5
R
0b  
4
R
0b  
3
R
0b  
2
R
0b  
1
R
0b  
0
R
0b  
8.6.4.1.4 IC_STAT2 Register (Address = 5h) [Reset = 0h]  
IC_STAT2 is shown in Figure 8-101 and described in Table 8-98.  
Return to the Summary Table.  
Copyright © 2020 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Status register for specific undervoltage, overvoltage, overtemperature, and interface fault indications.  
Figure 8-101. IC_STAT2 Register  
7
6
5
4
3
2
1
0
PVDD_UV  
R-0b  
PVDD_OV  
R-0b  
VCP_UV  
R-0b  
OTW  
R-0b  
OTSD  
R-0b  
WD_FLT  
R-0b  
SCLK_FLT  
R-0b  
RESERVED  
R-0b  
Table 8-98. IC_STAT2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
PVDD_UV  
PVDD_OV  
VCP_UV  
OTW  
R
0b  
Indicates undervoltage fault on PVDD pin.  
Indicates overvoltage fault on PVDD pin.  
Indicates undervoltage fault on VCP pin.  
Indicates overtemperature warning.  
Indicates overtemperature shutdown.  
Indicated watchdog timer fault.  
6
R
0b  
5
R
0b  
4
R
0b  
3
OTSD  
R
0b  
2
WD_FLT  
SCLK_FLT  
R
0b  
1
R
0b  
Indicates SPI clock (frame) fault when the number of SCLK pulses in  
a transaction frame are not equal to 16. Not reported on FAULT or  
nFAULT pin.  
0
RESERVED  
R
0b  
Reserved  
8.6.4.1.5 IC_STAT3 Register (Address = 6h) [Reset = 4h]  
IC_STAT3 is shown in Figure 8-102 and described in Table 8-99.  
Return to the Summary Table.  
Status register with device ID for either DRV8718-Q1 or DRV8714-Q1.  
Figure 8-102. IC_STAT3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000b  
IC_ID  
R-0100b  
Table 8-99. IC_STAT3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000b  
0100b  
Description  
7-4  
3-0  
RESERVED  
IC_ID  
R
Reserved  
R
Device identification field.  
0100b = DRV8714-Q1, 4 half-bridge gate driver.  
1000b = DRV8718-Q1, 8 half-bridge gate driver.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.4.2 DRV8714-Q1_CONTROL Registers  
Table 8-100 lists the DRV8714-Q1_CONTROL registers. All register offset addresses not listed in Table 8-100  
should be considered as reserved locations and the register contents should not be modified.  
Table 8-100. DRV8714-Q1_CONTROL Registers  
Address  
7h  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
IC_CTRL1  
Device general function control register 1  
Device general function control register 2  
Half-bridge 1-4 output state control  
8h  
IC_CTRL2  
9h  
BRG_CTRL1  
BRG_CTRL2  
PWM_CTRL1  
PWM_CTRL2  
PWM_CTRL3  
PWM_CTRL4  
IDRV_CTRL1  
IDRV_CTRL2  
IDRV_CTRL3  
IDRV_CTRL4  
IDRV_CTRL9  
DRV_CTRL1  
DRV_CTRL2  
DRV_CTRL3  
DRV_CTRL4  
DRV_CTRL5  
DRV_CTRL6  
VDS_CTRL1  
VDS_CTRL2  
OLSC_CTRL1  
UVOV_CTRL  
CSA_CTRL1  
CSA_CTRL2  
CSA_CTRL3  
Ah  
H-bridge 1/2 and 3/4 control  
Bh  
Half-bridge 1-4 PWM mapping control  
Ch  
H-bridge 1/2 and 3/4 configuration  
Dh  
Half-bridge 1-4 high-side or low-side drive control  
Half-bridge 1-4 freewheeling configuration  
Half-bridge 1 gate drive source/sink current  
Half-bridge 2 gate drive source/sink current  
Half-bridge 3 gate drive source/sink current  
Half-bridge 4 gate drive source/sink current  
Half-bridge 1-4 gate drive low current control  
Gate driver VGS and VDS monitor configuration  
Half-bridge 1 and 2 VGS and VDS tDRV configuration  
Half-bridge 3 and 4 VGS and VDS tDRV configuration  
Half-bridge 1-4 VGS tDEAD_D configuration  
Half-bridge 1-4 VDS tDS_DG configuration  
Half-bridge 1-4 VDS fault pulldown current configuration  
Half-bridge 1 and 2 VDS overcurrent threshold  
Half-bridge 3 and 4 VDS overcurrent threshold  
Half-bridge 1-4 offline diagnostic control  
Undervoltage and overvoltage monitor configuration.  
Shunt amplifier 1 and 2 configuration  
Eh  
Fh  
10h  
11h  
12h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Fh  
20h  
23h  
25h  
26h  
27h  
28h  
Shunt amplifier 1 blanking configuration  
Shunt amplifier 2 blanking configuration  
Complex bit access types are encoded to fit into small table cells. Table 8-101 shows the codes that are used for  
access types in this section.  
Table 8-101. DRV8714-Q1_CONTROL Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
- n  
Value after reset or the default value  
8.6.4.2.1 IC_CTRL1 Register (Address = 7h) [Reset = 6h]  
IC_CTRL1 is shown in Figure 8-103 and described in Table 8-102.  
Copyright © 2020 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Return to the Summary Table.  
Control register for driver and diagnostic enable, PWM control mode, SPI lock, and clear fault command.  
Figure 8-103. IC_CTRL1 Register  
7
6
5
4
3
2
1
0
EN_DRV  
R/W-0b  
EN_OLSC  
R/W-0b  
BRG_MODE  
R/W-00b  
LOCK  
CLR_FLT  
R/W-0b  
R/W-011b  
Table 8-102. IC_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
EN_DRV  
R/W  
0b  
Enable gate drivers.  
0b = Gate driver output disabled and passive pulldowns enabled.  
1b = Gate driver outputs enabled.  
6
EN_OLSC  
R/W  
R/W  
0b  
Enable offline open load and short circuit diagnostic.  
0b = Disabled.  
1b = VDS monitors set into real-time voltage monitor mode and  
offline diagnostics current sources enabled.  
5-4  
BRG_MODE  
LOCK  
00b  
Bridge PWM control mode.  
00b = Independent Half-Bridge  
01b = H-Bridge PH/EN  
10b = H-Bridge PWM  
11b = Solenoid Control  
3-1  
0
R/W  
R/W  
011b  
0b  
Lock and unlock the control registers. Bit settings not listed have no  
effect.  
011b = Unlock all control registers.  
110b = Lock the control registers by ignoring further writes except to  
the LOCK register.  
CLR_FLT  
Clear latched fault status information.  
0b = Default state.  
1b = Clear latched fault bits, resets to 0b after completion. Will also  
clear SPI fault and watchdog fault status.  
8.6.4.2.2 IC_CTRL2 Register (Address = 8h) [Reset = 2h]  
IC_CTRL2 is shown in Figure 8-104 and described in Table 8-103.  
Return to the Summary Table.  
Control register for pin mode, charge pump mode, and watchdog.  
Figure 8-104. IC_CTRL2 Register  
7
6
5
4
3
2
1
0
DIS_SSC  
R/W-0b  
DRVOFF_nFLT  
R/W-0b  
CP_MODE  
R/W-00b  
WD_EN  
R/W-0b  
WD_FLT_M  
R/W-0b  
WD_WIN  
R/W-1b  
WD_RST  
R/W-0b  
Table 8-103. IC_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DIS_SSC  
R/W  
0b  
Spread spectrum clocking  
0b = Enabled.  
1b = Disabled.  
6
DRVOFF_nFLT  
CP_MODE  
R/W  
R/W  
0b  
Sets DRVOFF/nFLT multi-function pin mode.  
0b = Pin functions as DRVOFF global driver disable.  
1b = Pin functions as nFLT open-drain fault interrupt output.  
5-4  
00b  
Charge pump operating mode.  
00b = Automatic switch between tripler and doubler mode.  
01b = Always doubler mode.  
10b = Always tripler mode.  
11b = RSVD  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-103. IC_CTRL2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
WD_EN  
R/W  
0b  
Watchdog timer enable.  
0b = Watchdog timer disabled.  
1b = Watchdog dog timer enabled.  
2
WD_FLT_M  
R/W  
0b  
Watchdog fault mode. Watchdog fault is cleared by CLR_FLT.  
0b = Watchdog fault is reported to WD_FLT and WARN register bits.  
Gate drivers remain enabled and nFAULT is not asserted.  
1b = Watchdog fault is reported to WD_FLT, FAULT register bits, and  
nFAULT pin. Gate drivers are disabled in response to watchdog fault.  
1
0
WD_WIN  
WD_RST  
R/W  
R/W  
1b  
0b  
Watchdog timer window.  
0b = 4 to 40 ms  
1b = 10 to 100 ms  
Watchdog restart. 0b by default after power up. Invert this bit to  
restart the watchdog timer. After written, the bit will reflect the new  
inverted value.  
8.6.4.2.3 BRG_CTRL1 Register (Address = 9h) [Reset = 0h]  
BRG_CTRL1 is shown in Figure 8-105 and described in Table 8-104.  
Return to the Summary Table.  
Control register to set the output state for half-bridges 1-4 in independent half-bridge mode (BRG_MODE = 00b).  
Figure 8-105. BRG_CTRL1 Register  
7
6
5
4
3
2
1
0
HB1_CTRL  
R/W-00b  
HB2_CTRL  
R/W-00b  
HB3_CTRL  
R/W-00b  
HB4_CTRL  
R/W-00b  
Table 8-104. BRG_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
1-0  
HB1_CTRL  
HB2_CTRL  
HB3_CTRL  
HB4_CTRL  
R/W  
00b  
Half-bridge 1 output state control.  
00b = High impedance (HI-Z). GH1 and GL1 pulldown.  
01b = Drive low-side (LO). GH1 pulldown and GL1 pullup.  
10b = Drive high-side (HI). GH1 pullup and GL1 pulldown.  
11b = Input PWM control. HB1_PWM, HB1_HL, and HB1_FW.  
R/W  
R/W  
R/W  
00b  
00b  
00b  
Half-bridge 2 output state control.  
00b = High impedance (HI-Z). GH2 and GL2 pulldown.  
01b = Drive low-side (LO). GH2 pulldown and GL2 pullup.  
10b = Drive high-side (HI). GH2 pullup and GL2 pulldown.  
11b = Input PWM control. HB2_PWM, HB2_HL, and HB2_FW.  
Half-bridge 3 output state control.  
00b = High impedance (HI-Z). GH3 and GL3 pulldown.  
01b = Drive low-side (LO). GH3 pulldown and GL3 pullup.  
10b = Drive high-side (HI). GH3 pullup and GL3 pulldown.  
11b = Input PWM control. HB3_PWM, HB3_HL, and HB3_FW.  
Half-bridge 4 output state control.  
00b = High impedance (HI-Z). GH4 and GL4 pulldown.  
01b = Drive low-side (LO). GH4 pulldown and GL4 pullup.  
10b = Drive high-side (HI). GH4 pullup and GL4 pulldown.  
11b = Input PWM control. HB4_PWM, HB4_HL, and HB4_FW.  
8.6.4.2.4 BRG_CTRL2 Register (Address = Ah) [Reset = 0h]  
BRG_CTRL2 is shown in Figure 8-106 and described in Table 8-105.  
Return to the Summary Table.  
Copyright © 2020 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Control register to set the output state for H-bridges 1/2 and 3/4 in H-bridge control modes (BRG_MODE = 01b,  
10b, or 11b)  
Figure 8-106. BRG_CTRL2 Register  
7
6
5
4
3
2
1
0
S_IN1/EN1  
R/W-0b  
S_IN2/PH1  
R/W-0b  
HIZ1  
RESERVED  
R-0b  
S_IN3/EN2  
R/W-0b  
S_IN4/PH2  
R/W-0b  
HIZ2  
RESERVED  
R-0b  
R/W-0b  
R/W-0b  
Table 8-105. BRG_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
S_IN1/EN1  
S_IN2/PH1  
HIZ1  
R/W  
0b  
Control bit for IN1/EN1 input signal. Enabled through IN1/  
EN1_MODE bit.  
6
5
R/W  
R/W  
0b  
0b  
Control bit for IN2/PH1 input signal. Enabled through IN2/  
PH1_MODE bit.  
Control bit for HIZ1 input signal.  
0b = Outputs follow IN1/EN1 and IN2/PH1 signals.  
1b = Gate drivers pulldowns are enabled. Half-bridges 1 and 2 Hi-Z  
4
3
RESERVED  
S_IN3/EN2  
R
0b  
0b  
Reserved  
R/W  
Control bit for IN3/EN2 input signal. Enabled through IN3/  
EN2_MODE bit.  
2
1
S_IN4/PH2  
HIZ2  
R/W  
R/W  
0b  
0b  
Control bit for IN4/PH2 input signal. Enabled through IN4/  
PH2_MODE bit.  
Control bit for HIZ2 input signal.  
0b = Outputs follow IN3/EN2 and IN4/PH2 signals.  
1b = Gate drivers pulldowns are enabled. Half-bridges 3 and 4 Hi-Z  
0
RESERVED  
R
0b  
Reserved  
8.6.4.2.5 PWM_CTRL1 Register (Address = Bh) [Reset = 5h]  
PWM_CTRL1 is shown in Figure 8-107 and described in Table 8-106.  
Return to the Summary Table.  
Control register to map the input PWM source for half-bridges 1-4 in independent half-bridge mode  
(BRG_MODE = 00b).  
Figure 8-107. PWM_CTRL1 Register  
7
6
5
4
3
2
1
0
HB1_PWM  
R/W-00b  
HB2_PWM  
R/W-00b  
HB3_PWM  
R/W-01b  
HB4_PWM  
R/W-01b  
Table 8-106. PWM_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
HB1_PWM  
R/W  
00b  
Configure PWM input source for half-bridge 1.  
00b = IN1  
01b = IN2  
10b = IN3  
11b = IN4  
5-4  
HB2_PWM  
R/W  
00b  
Configure PWM input source for half-bridge 2.  
00b = IN1  
01b = IN2  
10b = IN3  
11b = IN4  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-106. PWM_CTRL1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-2  
HB3_PWM  
R/W  
01b  
Configure PWM input source for half-bridge 3.  
00b = IN1  
01b = IN2  
10b = IN3  
11b = IN4  
1-0  
HB4_PWM  
R/W  
01b  
Configure PWM input source for half-bridge 4.  
00b = IN1  
01b = IN2  
10b = IN3  
11b = IN4  
8.6.4.2.6 PWM_CTRL2 Register (Address = Ch) [Reset = 0h]  
PWM_CTRL2 is shown in Figure 8-108 and described in Table 8-107.  
Return to the Summary Table.  
Control register to configure the PWM method for H-bridges 1/2 and 3/4 in H-bridge control modes (BRG_MODE  
= 01b, 10b, or 11b)  
Figure 8-108. PWM_CTRL2 Register  
7
6
5
4
3
2
1
0
IN1/  
IN2/  
FW1  
RESERVED  
IN3/  
IN4/  
FW2  
RESERVED  
EN1_MODE  
PH1_MODE  
EN2_MODE  
PH2_MODE  
R/W-0b  
R/W-0b  
R/W-0b  
R-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R-0b  
Table 8-107. PWM_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
IN1/EN1_MODE  
IN2/PH1_MODE  
FW1  
R/W  
0b  
IN1/EN1 control mode.  
0b = IN1/EN1 signal is sourced from the IN1/EN1 pin.  
1b = IN1/EN1 signal is sourced from the S_IN1/EN1 bit.  
6
5
R/W  
R/W  
0b  
0b  
IN2/PH1 control mode.  
0b = IN2/PH1 signal is sourced from the IN2/PH1 pin.  
1b = IN2/PH1 signal is sourced from the S_IN2/PH1 bit.  
H-bridge 1 control freewheeling setting.  
0b = Low-side freewheeling.  
1b = High-side freewheeling.  
4
3
RESERVED  
R
0b  
0b  
Reserved  
IN3/EN2_MODE  
R/W  
IN3/EN2 control mode.  
0b = IN3/EN2 signal is sourced from the IN3/EN2 pin.  
1b = IN3/EN2 signal is sourced from the S_IN3/EN2 bit.  
2
1
0
IN4/PH2_MODE  
FW2  
R/W  
R/W  
R
0b  
0b  
0b  
IN4/PH2 control mode.  
0b = IN4/PH2 signal is sourced from the IN4/PH2 pin.  
1b = IN4/PH2 signal is sourced from the S_IN4/PH2 bit.  
H-bridge 2 control freewheeling setting.  
0b = Low-side freewheeling.  
1b = High-side freewheeling.  
RESERVED  
Reserved  
8.6.4.2.7 PWM_CTRL3 Register (Address = Dh) [Reset = 0h]  
PWM_CTRL3 is shown in Figure 8-109 and described in Table 8-108.  
Return to the Summary Table.  
Control register to set the PWM drive MOSFET (high or low) for half-bridges 1-4.  
Copyright © 2020 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-109. PWM_CTRL3 Register  
7
6
5
4
3
2
1
0
HB1_HL  
R/W-0b  
HB2_HL  
R/W-0b  
HB3_HL  
R/W-0b  
HB4_HL  
R/W-0b  
RESERVED  
R-0000b  
Table 8-108. PWM_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
HB1_HL  
HB2_HL  
HB3_HL  
HB4_HL  
RESERVED  
R/W  
0b  
Map half-bridge 1 PWM to high-side or low-side gate driver.  
0b = Set high-side as drive MOSFET.  
1b = Set low-side as drive MOSFET.  
6
5
R/W  
R/W  
R/W  
R
0b  
Map half-bridge 2 PWM to high-side or low-side gate driver.  
0b = Set high-side as drive MOSFET.  
1b = Set low-side as drive MOSFET.  
0b  
Map half-bridge 3 PWM to high-side or low-side gate driver.  
0b = Set high-side as drive MOSFET.  
1b = Set low-side as drive MOSFET.  
4
0b  
Map half-bridge 4 PWM to high-side or low-side gate driver.  
0b = Set high-side as drive MOSFET.  
1b = Set low-side as drive MOSFET.  
3-0  
0000b  
Reserved  
8.6.4.2.8 PWM_CTRL4 Register (Address = Eh) [Reset = 0h]  
PWM_CTRL4 is shown in Figure 8-110 and described in Table 8-109.  
Return to the Summary Table.  
Control register to set the PWM freewheeling mode for half-bridges 1-4.  
Figure 8-110. PWM_CTRL4 Register  
7
6
5
4
3
2
1
0
HB1_FW  
R/W-0b  
HB2_FW  
R/W-0b  
HB3_FW  
R/W-0b  
HB4_FW  
R/W-0b  
RESERVED  
R-0000b  
Table 8-109. PWM_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
HB1_FW  
HB2_FW  
HB3_FW  
HB4_FW  
RESERVED  
R/W  
0b  
Configure freewheeling setting for half-bridge 1.  
0b = Active. Generate inverted PWM internally.  
1b = Passive. Rely on freewheeling diode.  
6
5
R/W  
R/W  
R/W  
R
0b  
Configure freewheeling setting for half-bridge 2.  
0b = Active. Generate inverted PWM internally.  
1b = Passive. Rely on freewheeling diode.  
0b  
Configure freewheeling setting for half-bridge 3.  
0b = Active. Generate inverted PWM internally.  
1b = Passive. Rely on freewheeling diode.  
4
0b  
Configure freewheeling setting for half-bridge 4.  
0b = Active. Generate inverted PWM internally.  
1b = Passive. Rely on freewheeling diode.  
3-0  
0000b  
Reserved  
8.6.4.2.9 IDRV_CTRL1 Register (Address = Fh) [Reset = FFh]  
IDRV_CTRL1 is shown in Figure 8-111 and described in Table 8-110.  
Return to the Summary Table.  
Control register to configure the source and sink current for the half-bridge 1 high-side and low-side gate drivers.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-111. IDRV_CTRL1 Register  
7
6
5
4
3
2
1
0
IDRVP_1  
IDRVN_1  
R/W-1111b  
R/W-1111b  
Table 8-110. IDRV_CTRL1 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
IDRVP_1  
R/W  
1111b  
Half-bridge 1 peak source pull up current. Alternative low current  
value in parenthesis (IDRV_LO1).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
3-0  
IDRVN_1  
R/W  
1111b  
Half-bridge 1 peak sink pull down current. Alternative low current  
value in parenthesis (IDRV_LO1).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
8.6.4.2.10 IDRV_CTRL2 Register (Address = 10h) [Reset = FFh]  
IDRV_CTRL2 is shown in Figure 8-112 and described in Table 8-111.  
Return to the Summary Table.  
Control register to configure the source and sink current for the half-bridge 2 high-side and low-side gate drivers.  
Figure 8-112. IDRV_CTRL2 Register  
7
6
5
4
3
2
1
0
IDRVP_2  
IDRVN_2  
R/W-1111b  
R/W-1111b  
Copyright © 2020 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-111. IDRV_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
IDRVP_2  
R/W  
1111b  
Half-bridge 2 peak source pull up current. Alternative low current  
value in parenthesis (IDRV_LO2).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
3-0  
IDRVN_2  
R/W  
1111b  
Half-bridge 2 peak sink pull down current. Alternative low current  
value in parenthesis (IDRV_LO2).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
8.6.4.2.11 IDRV_CTRL3 Register (Address = 11h) [Reset = FFh]  
IDRV_CTRL3 is shown in Figure 8-113 and described in Table 8-112.  
Return to the Summary Table.  
Control register to configure the source and sink current for the half-bridge 3 high-side and low-side gate drivers.  
Figure 8-113. IDRV_CTRL3 Register  
7
6
5
4
3
2
1
0
IDRVP_3  
IDRVN_3  
R/W-1111b  
R/W-1111b  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-112. IDRV_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
IDRVP_3  
R/W  
1111b  
Half-bridge 3 peak source pull up current. Alternative low current  
value in parenthesis (IDRV_LO3).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
3-0  
IDRVN_3  
R/W  
1111b  
Half-bridge 3 peak sink pull down current. Alternative low current  
value in parenthesis (IDRV_LO3).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
8.6.4.2.12 IDRV_CTRL4 Register (Address = 12h) [Reset = FFh]  
IDRV_CTRL4 is shown in Figure 8-114 and described in Table 8-113.  
Return to the Summary Table.  
Control register to configure the source and sink current for the half-bridge 4 high-side and low-side gate drivers.  
Figure 8-114. IDRV_CTRL4 Register  
7
6
5
4
3
2
1
0
IDRVP_4  
IDRVN_4  
R/W-1111b  
R/W-1111b  
Copyright © 2020 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-113. IDRV_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
IDRVP_4  
R/W  
1111b  
Half-bridge 4 peak source pull up current. Alternative low current  
value in parenthesis (IDRV_LO4).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
3-0  
IDRVN_4  
R/W  
1111b  
Half-bridge 4 peak sink pull down current. Alternative low current  
value in parenthesis (IDRV_LO4).  
0000b = 0.5 mA (50 µA)  
0001b = 1 mA (110 µA)  
0010b = 2 mA (170 µA)  
0011b = 3 mA (230 µA)  
0100b = 4 mA (290 µA)  
0101b = 5 mA (350 µA)  
0110b = 6 mA (410 µA)  
0111b = 7 mA (600 µA)  
1000b = 8 mA (725 µA)  
1001b = 12 mA (850 µA)  
1010b = 16 mA (1 mA)  
1011b = 20 mA (1.2 mA)  
1100b = 24 mA (1.4 mA)  
1101b = 31 mA (1.6 mA)  
1110b = 48 mA (1.8 mA)  
1111b = 62 mA (2.3 mA)  
8.6.4.2.13 IDRV_CTRL9 Register (Address = 17h) [Reset = 0h]  
IDRV_CTRL9 is shown in Figure 8-115 and described in Table 8-114.  
Return to the Summary Table.  
Control register to enable ultra-low source and sink current settings for half-bridges 1-4.  
Figure 8-115. IDRV_CTRL9 Register  
7
6
5
4
3
2
1
0
IDRV_LO1  
R/W-0b  
IDRV_LO2  
R/W-0b  
IDRV_LO3  
R/W-0b  
IDRV_LO4  
R/W-0b  
RESERVED  
R-0000b  
Table 8-114. IDRV_CTRL9 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
IDRV_LO1  
R/W  
0b  
Enable low current IDRVN and IDRVP mode for half-bridge 1.  
0b = IDRVP_1 and IDRVN_1 utilize standard values.  
1b = IDRVP_1 and IDRVN_1 utilize low current values.  
6
IDRV_LO2  
R/W  
0b  
Enable low current IDRVN and IDRVP mode for half-bridge 2.  
0b = IDRVP_2 and IDRVN_2 utilize standard values.  
1b = IDRVP_2 and IDRVN_2 utilize low current values.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-114. IDRV_CTRL9 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
IDRV_LO3  
R/W  
0b  
Enable low current IDRVN and IDRVP mode for half-bridge 3.  
0b = IDRVP_3 and IDRVN_3 utilize standard values.  
1b = IDRVP_3 and IDRVN_3 utilize low current values.  
4
IDRV_LO4  
R/W  
R
0b  
Enable low current IDRVN and IDRVP mode for half-bridge 4.  
0b = IDRVP_4 and IDRVN_4 utilize standard values.  
1b = IDRVP_4 and IDRVN_4 utilize low current values.  
3-0  
RESERVED  
0000b  
Reserved  
8.6.4.2.14 DRV_CTRL1 Register (Address = 18h) [Reset = 0h]  
DRV_CTRL1 is shown in Figure 8-116 and described in Table 8-115.  
Return to the Summary Table.  
Control register to set the VGS and VDS monitor operating modes and configurations.  
Figure 8-116. DRV_CTRL1 Register  
7
6
5
4
3
2
1
0
VGS_MODE  
R/W-00b  
VGS_IND  
R/W-0b  
VGS_LVL  
R/W-0b  
VGS_HS_DIS  
R/W-0b  
VDS_MODE  
R/W-00b  
VDS_IND  
R/W-0b  
Table 8-115. DRV_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
VGS_MODE  
R/W  
00b  
VGS gate fault monitor mode for half-bridges 1-4.  
00b = Latched fault.  
01b = Cycle by cycle.  
10b = Warning report only.  
11b = Disabled.  
5
4
VGS_IND  
R/W  
R/W  
R/W  
R/W  
0b  
VGS fault independent shutdown mode configuration.  
0b = Disabled. VGS fault will shut down all half-bridge drivers.  
1b = Enabled. VGS gate fault will only shutdown the associated half-  
bridge or H-bridge driver depending on BRG_MODE.  
VGS_LVL  
0b  
VGS threshold comparator level for dead-time handshake and VGS  
fault monitor for half-bridge drivers.  
0b = 1.4 V  
1b = 1 V  
3
VGS_HS_DIS  
VDS_MODE  
0b  
VGS dead-time handshake monitor disable.  
0b = 0x0  
1b = Disabled. Half-bridge transition is based only on TDRIVE and  
programmable digital dead-time delays.  
2-1  
00b  
VDS overcurrent monitor mode for half-bridges 1-4.  
00b = Latched fault.  
01b = Cycle by cycle.  
10b = Warning report only.  
11b = Disabled.  
0
VDS_IND  
R/W  
0b  
VDS fault independent shutdown mode configuration.  
0b = Disabled. VDS fault will shut down all half-bridge drivers.  
1b = Enabled. VDS gate fault will only shutdown the associated half-  
bridge or H-bridge drivers depending on BRG_MODE.  
8.6.4.2.15 DRV_CTRL2 Register (Address = 19h) [Reset = 12h]  
DRV_CTRL2 is shown in Figure 8-117 and described in Table 8-116.  
Return to the Summary Table.  
Control register to set tDRV, the VGS drive and VDS monitor blanking time for half-bridges 1 and 2.  
Copyright © 2020 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-117. DRV_CTRL2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
VGS_TDRV_1  
R/W-010b  
VGS_TDRV_2  
R/W-010b  
Table 8-116. DRV_CTRL2 Register Field Descriptions  
Bit  
7-6  
5-3  
Field  
Type  
Reset  
Description  
RESERVED  
R
00b  
Reserved  
VGS_TDRV_1  
R/W  
010b  
VGS drive and VDS monitor blanking time for half-bridge 1.  
000b = 2 µs  
001b = 4 µs  
010b = 8 µs  
011b = 12 µs  
100b = 16 µs  
101b = 24 µs  
110b = 32 µs  
111b = 96 µs  
2-0  
VGS_TDRV_2  
R/W  
010b  
VGS drive and VDS monitor blanking time for half-bridge 2.  
000b = 2 µs  
001b = 4 µs  
010b = 8 µs  
011b = 12 µs  
100b = 16 µs  
101b = 24 µs  
110b = 32 µs  
111b = 96 µs  
8.6.4.2.16 DRV_CTRL3 Register (Address = 1Ah) [Reset = 12h]  
DRV_CTRL3 is shown in Figure 8-118 and described in Table 8-117.  
Return to the Summary Table.  
Control register to set tDRV, the VGS drive and VDS monitor blanking time for half-bridges 3 and 4.  
Figure 8-118. DRV_CTRL3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
VGS_TDRV_3  
R/W-010b  
VGS_TDRV_4  
R/W-010b  
Table 8-117. DRV_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-3  
RESERVED  
R
00b  
Reserved  
VGS_TDRV_3  
R/W  
010b  
VGS drive and VDS monitor blanking time for half-bridge 3.  
000b = 2 µs  
001b = 4 µs  
010b = 8 µs  
011b = 12 µs  
100b = 16 µs  
101b = 24 µs  
110b = 32 µs  
111b = 96 µs  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-117. DRV_CTRL3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
VGS_TDRV_4  
R/W  
010b  
VGS drive and VDS monitor blanking time for half-bridge 4.  
000b = 2 µs  
001b = 4 µs  
010b = 8 µs  
011b = 12 µs  
100b = 16 µs  
101b = 24 µs  
110b = 32 µs  
111b = 96 µs  
8.6.4.2.17 DRV_CTRL4 Register (Address = 1Bh) [Reset = 0h]  
DRV_CTRL4 is shown in Figure 8-119 and described in Table 8-118.  
Return to the Summary Table.  
Control register to set VGS tDEAD_D, additional digital dead-time insertion for half-bridges 1-4.  
Figure 8-119. DRV_CTRL4 Register  
7
6
5
4
3
2
1
0
VGS_TDEAD_1  
R/W-00b  
VGS_TDEAD_2  
R/W-00b  
VGS_TDEAD_3  
R/W-00b  
VGS_TDEAD_4  
R/W-00b  
Table 8-118. DRV_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
1-0  
VGS_TDEAD_1  
VGS_TDEAD_2  
VGS_TDEAD_3  
VGS_TDEAD_4  
R/W  
00b  
Insertable digital dead-time for half-bridge 1.  
00b = 0 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
R/W  
R/W  
R/W  
00b  
00b  
00b  
Insertable digital dead-time for half-bridge 3 and 4.  
00b = 0 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
Insertable digital dead-time for half-bridge 3.  
00b = 0 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
Insertable digital dead-time for half-bridge 4.  
00b = 0 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
8.6.4.2.18 DRV_CTRL5 Register (Address = 1Ch) [Reset = AAh]  
DRV_CTRL5 is shown in Figure 8-120 and described in Table 8-119.  
Return to the Summary Table.  
Control register to set VDS tDS_DG, overcurrent monitor deglitch time for half-bridges 1-4.  
Figure 8-120. DRV_CTRL5 Register  
7
6
5
4
3
2
1
0
VDS_DG_1  
R/W-10b  
VDS_DG_2  
R/W-10b  
VDS_DG_3  
R/W-10b  
VDS_DG_4  
R/W-10b  
Copyright © 2020 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-120. DRV_CTRL5 Register (continued)  
Table 8-119. DRV_CTRL5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
VDS_DG_1  
R/W  
10b  
VDS overcurrent monitor deglitch time for half-bridge 1.  
00b = 1 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
5-4  
3-2  
1-0  
VDS_DG_2  
VDS_DG_3  
VDS_DG_4  
R/W  
R/W  
R/W  
10b  
10b  
10b  
VDS overcurrent monitor deglitch time for half-bridge 2.  
00b = 1 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
VDS overcurrent monitor deglitch time for half-bridge 3.  
00b = 1 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
VDS overcurrent monitor deglitch time for half-bridge 4.  
00b = 1 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
8.6.4.2.19 DRV_CTRL6 Register (Address = 1Dh) [Reset = 0h]  
DRV_CTRL6 is shown in Figure 8-121 and described in Table 8-120.  
Return to the Summary Table.  
Control register to set the gate pulldown current (IDRVN) in response to VDS overcurrent fault for half-bridges  
1-4.  
Figure 8-121. DRV_CTRL6 Register  
7
6
5
4
3
2
1
0
VDS_IDRVN_1  
R/W-00b  
VDS_IDRVN_2  
R/W-00b  
VDS_IDRVN_3  
R/W-00b  
VDS_IDRVN_4  
R/W-00b  
Table 8-120. DRV_CTRL6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
VDS_IDRVN_1  
VDS_IDRVN_2  
VDS_IDRVN_3  
R/W  
00b  
IDRVN gate pulldown current after VDS_OCP fault for half-bridge 1.  
00b = Programmed IDRVN  
01b = 8 mA  
10b = 31 mA  
11b = 62 mA  
R/W  
R/W  
00b  
00b  
IDRVN gate pulldown current after VDS_OCP fault for half-bridge 2.  
00b = Programmed IDRVN  
01b = 8 mA  
10b = 31 mA  
11b = 62 mA  
IDRVN gate pulldown current after VDS_OCP fault for half-bridge 3.  
00b = Programmed IDRVN  
01b = 8 mA  
10b = 31 mA  
11b = 62 mA  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-120. DRV_CTRL6 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
VDS_IDRVN_4  
R/W  
00b  
IDRVN gate pulldown current after VDS_OCP fault for half-bridge 4.  
00b = Programmed IDRVN  
01b = 8 mA  
10b = 31 mA  
11b = 62 mA  
8.6.4.2.20 VDS_CTRL1 Register (Address = 1Fh) [Reset = DDh]  
VDS_CTRL1 is shown in Figure 8-122 and described in Table 8-121.  
Return to the Summary Table.  
Control register to set the VDS overcurrent monitor voltage threshold for half-bridges 1 and 2.  
Figure 8-122. VDS_CTRL1 Register  
7
6
5
4
3
2
1
0
VDS_LVL_1  
R/W-1101b  
VDS_LVL_2  
R/W-1101b  
Table 8-121. VDS_CTRL1 Register Field Descriptions  
Bit  
7-4  
Field  
VDS_LVL_1  
Type  
Reset  
Description  
R/W  
1101b  
Half-bridge 1 VDS overcurrent monitor threshold.  
0000b = 0.06 V  
0001b = 0.08 V  
0010b = 0.10 V  
0011b = 0.12 V  
0100b = 0.14 V  
0101b = 0.16 V  
0110b = 0.18 V  
0111b = 0.2 V  
1000b = 0.3 V  
1001b = 0.4 V  
1010b = 0.5 V  
1011b = 0.6 V  
1100b = 0.7 V  
1101b = 1 V  
1110b = 1.4 V  
1111b = 2 V  
3-0  
VDS_LVL_2  
R/W  
1101b  
Half-bridge 2 VDS overcurrent monitor threshold.  
0000b = 0.06 V  
0001b = 0.08 V  
0010b = 0.10 V  
0011b = 0.12 V  
0100b = 0.14 V  
0101b = 0.16 V  
0110b = 0.18 V  
0111b = 0.2 V  
1000b = 0.3 V  
1001b = 0.4 V  
1010b = 0.5 V  
1011b = 0.6 V  
1100b = 0.7 V  
1101b = 1 V  
1110b = 1.4 V  
1111b = 2 V  
8.6.4.2.21 VDS_CTRL2 Register (Address = 20h) [Reset = DDh]  
VDS_CTRL2 is shown in Figure 8-123 and described in Table 8-122.  
Copyright © 2020 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Return to the Summary Table.  
Control register to set the VDS overcurrent monitor voltage threshold for half-bridges 3 and 4.  
Figure 8-123. VDS_CTRL2 Register  
7
6
5
4
3
2
1
0
VDS_LVL_3  
R/W-1101b  
VDS_LVL_4  
R/W-1101b  
Table 8-122. VDS_CTRL2 Register Field Descriptions  
Bit  
7-4  
Field  
VDS_LVL_3  
Type  
Reset  
Description  
R/W  
1101b  
Half-bridge 3 VDS overcurrent monitor threshold.  
0000b = 0.06 V  
0001b = 0.08 V  
0010b = 0.10 V  
0011b = 0.12 V  
0100b = 0.14 V  
0101b = 0.16 V  
0110b = 0.18 V  
0111b = 0.2 V  
1000b = 0.3 V  
1001b = 0.4 V  
1010b = 0.5 V  
1011b = 0.6 V  
1100b = 0.7 V  
1101b = 1 V  
1110b = 1.4 V  
1111b = 2 V  
3-0  
VDS_LVL_4  
R/W  
1101b  
Half-bridge 4 VDS overcurrent monitor threshold.  
0000b = 0.06 V  
0001b = 0.08 V  
0010b = 0.10 V  
0011b = 0.12 V  
0100b = 0.14 V  
0101b = 0.16 V  
0110b = 0.18 V  
0111b = 0.2 V  
1000b = 0.3 V  
1001b = 0.4 V  
1010b = 0.5 V  
1011b = 0.6 V  
1100b = 0.7 V  
1101b = 1 V  
1110b = 1.4 V  
1111b = 2 V  
8.6.4.2.22 OLSC_CTRL1 Register (Address = 23h) [Reset = 0h]  
OLSC_CTRL1 is shown in Figure 8-124 and described in Table 8-123.  
Return to the Summary Table.  
Control register to enable and disable the offline diagnostic current sources for half-bridges 1-4.  
Figure 8-124. OLSC_CTRL1 Register  
7
6
5
4
3
2
1
0
PU_SH1  
R/W-0b  
PD_SH1  
R/W-0b  
PU_SH2  
R/W-0b  
PD_SH2  
R/W-0b  
PU_SH3  
R/W-0b  
PD_SH3  
R/W-0b  
PU_SH4  
R/W-0b  
PD_SH4  
R/W-0b  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-123. OLSC_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PU_SH1  
R/W  
0b  
Half-bridge 1 pull up diagnostic current source. Set EN_OLSC = 1b  
to use.  
0b = Disabled.  
1b = Enabled.  
6
5
4
3
2
1
0
PD_SH1  
PU_SH2  
PD_SH2  
PU_SH3  
PD_SH3  
PU_SH4  
PD_SH4  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Half-bridge 1 pull down diagnostic current source. Set EN_OLSC =  
1b to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 2 pull up diagnostic current source. Set EN_OLSC = 1b  
to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 2 pull down diagnostic current source. Set EN_OLSC =  
1b to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 3 pull up diagnostic current source. Set EN_OLSC = 1b  
to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 3 pull down diagnostic current source. Set EN_OLSC =  
1b to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 4 pull up diagnostic current source. Set EN_OLSC = 1b  
to use.  
0b = Disabled.  
1b = Enabled.  
Half-bridge 4 pull down diagnostic current source. Set EN_OLSC =  
1b to use.  
0b = Disabled.  
1b = Enabled.  
8.6.4.2.23 UVOV_CTRL Register (Address = 25h) [Reset = 14h]  
UVOV_CTRL is shown in Figure 8-125 and described in Table 8-124.  
Return to the Summary Table.  
Control register to set the undervoltage and overvoltage monitor configurations.  
Figure 8-125. UVOV_CTRL Register  
7
6
5
4
3
2
1
0
PVDD_UV_MO  
DE  
PVDD_OV_MODE  
PVDD_OV_DG  
R/W-10b  
PVDD_OV_LVL VCP_UV_MOD VCP_UV_LVL  
E
R/W-0b  
R/W-00b  
R/W-1b  
R/W-0b  
R/W-0b  
Table 8-124. UVOV_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PVDD_UV_MODE  
R/W  
0b  
PVDD supply undervoltage monitor mode.  
0b = Latched fault.  
1b = Automatic recovery.  
6-5  
PVDD_OV_MODE  
R/W  
00b  
PVDD supply overvoltage monitor mode.  
00b = Latched fault.  
01b = Automatic recovery.  
10b = Warning report only.  
11b = Disabled.  
Copyright © 2020 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-124. UVOV_CTRL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4-3  
PVDD_OV_DG  
R/W  
10b  
PVDD supply overvoltage monitor deglitch time.  
00b = 1 µs  
01b = 2 µs  
10b = 4 µs  
11b = 8 µs  
2
1
0
PVDD_OV_LVL  
VCP_UV_MODE  
VCP_UV_LVL  
R/W  
R/W  
R/W  
1b  
0b  
0b  
PVDD supply overvoltage monitor threshold.  
0b = 21.5 V  
1b = 28.5 V  
VCP charge pump undervoltage monitor mode.  
0b = Latched fault.  
1b = Automatic recovery.  
VCP charge pump undervoltage monitor threshold.  
0b = 4.75 V  
1b = 6.25 V  
8.6.4.2.24 CSA_CTRL1 Register (Address = 26h) [Reset = 9h]  
CSA_CTRL1 is shown in Figure 8-126 and described in Table 8-125.  
Return to the Summary Table.  
Control register for gain and reference voltage for shunt amplifier 1 and 2.  
Figure 8-126. CSA_CTRL1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
CSA_DIV_1  
R/W-0b  
CSA_GAIN_1  
R/W-01b  
CSA_DIV_2  
R/W-0b  
CSA_GAIN_2  
R/W-01b  
Table 8-125. CSA_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00b  
0b  
Description  
7-6  
5
RESERVED  
CSA_DIV_1  
R
Reserved  
R/W  
Current shunt amplifier 1 reference voltage divider.  
0b = AREF / 2  
1b = AREF / 8  
4-3  
CSA_GAIN_1  
R/W  
01b  
Current shunt amplifier 1 gain setting.  
00b = 10 V/V  
01b = 20 V/V  
10b = 40 V/V  
11b = 80 V/V  
2
CSA_DIV_2  
R/W  
R/W  
0b  
Current shunt amplifier 2 reference voltage divider.  
0b = AREF / 2  
1b = AREF / 8  
1-0  
CSA_GAIN_2  
01b  
Current shunt amplifier 2 gain setting.  
00b = 10 V/V  
01b = 20 V/V  
10b = 40 V/V  
11b = 80 V/V  
8.6.4.2.25 CSA_CTRL2 Register (Address = 27h) [Reset = 0h]  
CSA_CTRL2 is shown in Figure 8-127 and described in Table 8-126.  
Return to the Summary Table.  
Control register for shunt amplifier 1 blanking configuration.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-127. CSA_CTRL2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
CSA_BLK_SEL_1  
R/W-000b  
CSA_BLK_LVL_1  
R/W-000b  
Table 8-126. CSA_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-3  
RESERVED  
R
00b  
Reserved  
CSA_BLK_SEL_1  
R/W  
000b  
Current shunt amplifier 1 blanking trigger source.  
000b = Half-bridge 1  
001b = Half-bridge 2  
010b = Half-bridge 3  
011b = Half-bridge 4  
100b = Half-bridge 5  
101b = Half-bridge 6  
110b = Half-bridge 7  
111b = Half-bridge 8  
2-0  
CSA_BLK_LVL_1  
R/W  
000b  
Current shunt amplifier 1 blanking time. % of tDRV.  
000b = 0 %, Disabled  
001b = 25 %  
010b = 37.5 %  
011b = 50 %  
100b = 62.5 %  
101b = 75 %  
110b = 87.5 %  
111b = 100 %  
8.6.4.2.26 CSA_CTRL3 Register (Address = 28h) [Reset = 20h]  
CSA_CTRL3 is shown in Figure 8-128 and described in Table 8-127.  
Return to the Summary Table.  
Control register for shunt amplifier 2 blanking configuration.  
Figure 8-128. CSA_CTRL3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00b  
CSA_BLK_SEL_2  
R/W-100b  
CSA_BLK_LVL_2  
R/W-000b  
Table 8-127. CSA_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-3  
RESERVED  
R
00b  
Reserved  
CSA_BLK_SEL_2  
R/W  
100b  
Current shunt amplifier 2 blanking trigger source.  
000b = Half-bridge 1  
001b = Half-bridge 2  
010b = Half-bridge 3  
011b = Half-bridge 4  
100b = Half-bridge 5  
101b = Half-bridge 6  
110b = Half-bridge 7  
111b = Half-bridge 8  
Copyright © 2020 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-127. CSA_CTRL3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
CSA_BLK_LVL_2  
R/W  
000b  
Current shunt amplifier 2 blanking time. % of tDRV.  
000b = 0 %, Disabled  
001b = 25 %  
010b = 37.5 %  
011b = 50 %  
100b = 62.5 %  
101b = 75 %  
110b = 87.5 %  
111b = 100 %  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.4.3 DRV8714-Q1_CONTROL_ADV Registers  
Table 8-128 lists the DRV8714-Q1_CONTROL_ADV registers. All register offset addresses not listed in Table  
8-128 should be considered as reserved locations and the register contents should not be modified.  
Table 8-128. DRV8714-Q1_CONTROL_ADV Registers  
Address  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
AGD_CTRL1  
PDR_CTRL1  
PDR_CTRL2  
PDR_CTRL3  
PDR_CTRL4  
PDR_CTRL5  
PDR_CTRL6  
PDR_CTRL7  
PDR_CTRL8  
PDR_CTRL9  
PDR_CTRL10  
STC_CTRL1  
STC_CTRL2  
STC_CTRL3  
STC_CTRL4  
DCC_CTRL1  
PST_CTRL1  
PST_CTRL2  
Adaptive gate drive general control functions  
Half-bridge 1 and 2 PDR delay and max current settings  
Half-bridge 3 and 4 PDR delay and max current settings  
Half-bridge 5 and 6 PDR delay and max current settings  
Half-bridge 7 and 8 PDR delay and max current settings  
Half-bridge 1 PDR charge and discharge initial settings.  
Half-bridge PDR charge and discharge initial settings.  
Half-bridge 3 PDR charge and discharge initial settings.  
Half-bridge 4 PDR charge and discharge initial settings.  
Half-bridge 1 and 2 PDR loop controller gain  
31h  
32h  
33h  
34h  
Half-bridge 3 and 4 PDR loop controller gain  
35h  
Half-bridge 1 STC rise/fall time and controller gain  
Half-bridge 2 STC rise/fall time and controller gain  
Half-bridge 3 STC rise/fall time and controller gain  
Half-bridge 4 STC rise/fall time and controller gain  
Half-bridge 1-4 DCC enable and manual control  
Half-bridge 1-4 freewheel and post charge delay control  
Half-bridge 1-4 post charge controller gain  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
Complex bit access types are encoded to fit into small table cells. Table 8-129 shows the codes that are used for  
access types in this section.  
Table 8-129. DRV8714-Q1_CONTROL_ADV Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
- n  
Value after reset or the default value  
8.6.4.3.1 AGD_CTRL1 Register (Address = 2Ah) [Reset = 40h]  
AGD_CTRL1 is shown in Figure 8-129 and described in Table 8-130.  
Return to the Summary Table.  
Control register for adaptive gate drive voltage thresholds, pull down setting, and active half-bridge configuration.  
Figure 8-129. AGD_CTRL1 Register  
7
6
5
4
3
2
1
0
AGD_THR  
R/W-01b  
AGD_ISTRONG  
R/W-00b  
RESERVED  
R-0000b  
Copyright © 2020 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-130. AGD_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
AGD_THR  
R/W  
01b  
Adaptive gate driver VSH threshold configuration.  
00b = 1V, VDRAIN - 0.5V  
01b = 1V, VDRAIN - 1V  
10b = 2V, VDRAIN - 1.5V  
11b = 2V, VDRAIN - 2V  
5-4  
AGD_ISTRONG  
R/W  
00b  
Adaptive gate driver ISTRONG configuration.  
00b = ISTRONG pulldown decoded from initial IDRVP_x register  
setting.  
01b = 62 mA  
10b = 124 mA  
11b = RSVD  
3-0  
RESERVED  
R
0000b  
Reserved  
8.6.4.3.2 PDR_CTRL1 Register (Address = 2Bh) [Reset = Ah]  
PDR_CTRL1 is shown in Figure 8-130 and described in Table 8-131.  
Return to the Summary Table.  
Control register for tON_OFF propagation delay and pre-charge/discharge max current for half-bridge 1.  
Figure 8-130. PDR_CTRL1 Register  
7
6
5
4
3
2
1
0
PRE_MAX_1  
R/W-00b  
T_DON_DOFF_1  
R/W-001010b  
Table 8-131. PDR_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PRE_MAX_1  
R/W  
00b  
Maximum gate drive current limit for pre-charge and pre-discharge  
for half-bridge 1.  
00b = 64 mA  
01b = 32 mA  
10b = 16 mA  
11b = 8 mA  
5-0  
T_DON_DOFF_1  
R/W  
001010b  
On and off time delay for half-bridge 1. 140 ns x T_DON_DOFF_1  
[3:0] Default time: 001010b (1.4 us)  
8.6.4.3.3 PDR_CTRL2 Register (Address = 2Ch) [Reset = Ah]  
PDR_CTRL2 is shown in Figure 8-131 and described in Table 8-132.  
Return to the Summary Table.  
Control register for tON_OFF propagation delay and pre-charge/discharge max current for half-bridge 2.  
Figure 8-131. PDR_CTRL2 Register  
7
6
5
4
3
2
1
0
PRE_MAX_2  
R/W-00b  
T_DON_DOFF_2  
R/W-001010b  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-132. PDR_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PRE_MAX_2  
R/W  
00b  
Maximum gate drive current limit for pre-charge and pre-discharge  
for half-bridge 2.  
00b = 64 mA  
01b = 32 mA  
10b = 16 mA  
11b = 8 mA  
5-0  
T_DON_DOFF_2  
R/W  
001010b  
On and off time delay for half-bridge 2. 140 ns x T_DON_DOFF_2  
[3:0] Default time: 001010b (1.4 us)  
8.6.4.3.4 PDR_CTRL3 Register (Address = 2Dh) [Reset = Ah]  
PDR_CTRL3 is shown in Figure 8-132 and described in Table 8-133.  
Return to the Summary Table.  
Control register for tON_OFF propagation delay and pre-charge/discharge max current for half-bridge 3.  
Figure 8-132. PDR_CTRL3 Register  
7
6
5
4
3
2
1
0
PRE_MAX_3  
R/W-00b  
T_DON_DOFF_3  
R/W-001010b  
Table 8-133. PDR_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PRE_MAX_3  
R/W  
00b  
Maximum gate drive current limit for pre-charge and pre-discharge  
for half-bridge 3.  
00b = 64 mA  
01b = 32 mA  
10b = 16 mA  
11b = 8 mA  
5-0  
T_DON_DOFF_3  
R/W  
001010b  
On and off time delay for half-bridge 3. 140 ns x T_DON_DOFF_3  
[3:0] Default time: 001010b (1.4 us)  
8.6.4.3.5 PDR_CTRL4 Register (Address = 2Eh) [Reset = Ah]  
PDR_CTRL4 is shown in Figure 8-133 and described in Table 8-134.  
Return to the Summary Table.  
Control register for tON_OFF propagation delay and pre-charge/discharge max current for half-bridge 4.  
Figure 8-133. PDR_CTRL4 Register  
7
6
5
4
3
2
1
0
PRE_MAX_4  
R/W-00b  
T_DON_DOFF_4  
R/W-001010b  
Table 8-134. PDR_CTRL4 Register Field Descriptions  
Bit  
7-6  
Field  
Type  
Reset  
Description  
PRE_MAX_4  
R/W  
00b  
Maximum gate drive current limit for pre-charge and pre-discharge  
for half-bridge 4.  
00b = 64 mA  
01b = 32 mA  
10b = 16 mA  
11b = 8 mA  
Copyright © 2020 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-134. PDR_CTRL4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-0  
T_DON_DOFF_4  
R/W  
001010b  
On and off time delay for half-bridge 4. 140 ns x T_DON_DOFF_4  
[3:0] Default time: 001010b (1.4 us)  
8.6.4.3.6 PDR_CTRL5 Register (Address = 2Fh) [Reset = F6h]  
PDR_CTRL5 is shown in Figure 8-134 and described in Table 8-135.  
Return to the Summary Table.  
Control register for charge and pre-charge initial settings for half-bridge 1.  
Figure 8-134. PDR_CTRL5 Register  
7
6
5
4
3
2
1
0
T_PRE_CHR_1  
R/W-11b  
T_PRE_DCHR_1  
R/W-11b  
PRE_CHR_INIT_1  
R/W-01b  
PRE_DCHR_INIT_1  
R/W-10b  
Table 8-135. PDR_CTRL5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
T_PRE_CHR_1  
R/W  
11b  
PDR control loop pre-charge time for half-bridge 1. Set as ratio of  
T_DON_DOFF_1 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
5-4  
T_PRE_DCHR_1  
R/W  
11b  
PDR control loop pre-discharge time for half-bridge 1. Set as ratio of  
T_DON_DOFF_1 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
3-2  
1-0  
PRE_CHR_INIT_1  
PRE_DCHR_INIT_1  
R/W  
R/W  
01b  
10b  
PDR control loop initial pre-charge current setting for half-bridge 1.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
PDR control loop initial pre-discharge current setting for half-bridge  
1.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
8.6.4.3.7 PDR_CTRL6 Register (Address = 30h) [Reset = F6h]  
PDR_CTRL6 is shown in Figure 8-135 and described in Table 8-136.  
Return to the Summary Table.  
Control register for charge and pre-charge initial settings for half-bridge 2.  
Figure 8-135. PDR_CTRL6 Register  
7
6
5
4
3
2
1
0
T_PRE_CHR_2  
R/W-11b  
T_PRE_DCHR_2  
R/W-11b  
PRE_CHR_INIT_2  
R/W-01b  
PRE_DCHR_INIT_2  
R/W-10b  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-136. PDR_CTRL6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
T_PRE_CHR_2  
R/W  
11b  
PDR control loop pre-charge time for half-bridge 2. Set as ratio of  
T_DON_DOFF_2 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
5-4  
T_PRE_DCHR_2  
R/W  
11b  
PDR control loop pre-discharge time for half-bridge 2. Set as ratio of  
T_DON_DOFF_2 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
3-2  
1-0  
PRE_CHR_INIT_2  
PRE_DCHR_INIT_2  
R/W  
R/W  
01b  
10b  
PDR control loop initial pre-charge current setting for half-bridge 2.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
PDR control loop initial pre-discharge current setting for half-bridge  
2.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
8.6.4.3.8 PDR_CTRL7 Register (Address = 31h) [Reset = F6h]  
PDR_CTRL7 is shown in Figure 8-136 and described in Table 8-137.  
Return to the Summary Table.  
Control register for charge and pre-charge initial settings for half-bridge 3.  
Figure 8-136. PDR_CTRL7 Register  
7
6
5
4
3
2
1
0
T_PRE_CHR_3  
R/W-11b  
T_PRE_DCHR_3  
R/W-11b  
PRE_CHR_INIT_3  
R/W-01b  
PRE_DCHR_INIT_3  
R/W-10b  
Table 8-137. PDR_CTRL7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
T_PRE_CHR_3  
T_PRE_DCHR_3  
PRE_CHR_INIT_3  
R/W  
11b  
PDR control loop pre-charge time for half-bridge 3. Set as ratio of  
T_DON_DOFF_3 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
R/W  
R/W  
11b  
01b  
PDR control loop pre-discharge time for half-bridge 3. Set as ratio of  
T_DON_DOFF_3 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
PDR control loop initial pre-charge current setting for half-bridge 3.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
Copyright © 2020 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-137. PDR_CTRL7 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
PRE_DCHR_INIT_3  
R/W  
10b  
PDR control loop initial pre-discharge current setting for half-bridge  
3.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
8.6.4.3.9 PDR_CTRL8 Register (Address = 32h) [Reset = F6h]  
PDR_CTRL8 is shown in Figure 8-137 and described in Table 8-138.  
Return to the Summary Table.  
Control register for charge and pre-charge initial settings for half-bridge 4.  
Figure 8-137. PDR_CTRL8 Register  
7
6
5
4
3
2
1
0
T_PRE_CHR_4  
R/W-11b  
T_PRE_DCHR_4  
R/W-11b  
PRE_CHR_INIT_4  
R/W-01b  
PRE_DCHR_INIT_4  
R/W-10b  
Table 8-138. PDR_CTRL8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
T_PRE_CHR_4  
R/W  
11b  
PDR control loop pre-charge time for half-bridge 4. Set as ratio of  
T_DON_DOFF_4 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
5-4  
T_PRE_DCHR_4  
R/W  
11b  
PDR control loop pre-discharge time for half-bridge 4. Set as ratio of  
T_DON_DOFF_4 [5:0]  
00b = 1/8  
01b = 1/4  
10b = 3/8  
11b = 1/2  
3-2  
1-0  
PRE_CHR_INIT_4  
PRE_DCHR_INIT_4  
R/W  
R/W  
01b  
10b  
PDR control loop initial pre-charge current setting for half-bridge 4.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
PDR control loop initial pre-discharge current setting for half-bridge  
4.  
00b = 4 mA  
01b = 8 mA  
10b = 16 mA  
11b = 32 mA  
8.6.4.3.10 PDR_CTRL9 Register (Address = 33h) [Reset = 11h]  
PDR_CTRL9 is shown in Figure 8-138 and described in Table 8-139.  
Return to the Summary Table.  
Control register to configure PDR Kp loop controller gain setting for half-bridges 1 and 2.  
Figure 8-138. PDR_CTRL9 Register  
7
6
5
4
3
2
1
0
EN_PDR_1  
R/W-0b  
PDR_ERR_1  
R/W-0b  
KP_PDR_1  
R/W-01b  
EN_PDR_2  
R/W-0b  
PDR_ERR_2  
R/W-0b  
KP_PDR_2  
R/W-01b  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-138. PDR_CTRL9 Register (continued)  
Table 8-139. PDR_CTRL9 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0b  
Description  
EN_PDR_1  
PDR_ERR_1  
Enable PDR loop control for half-bridge 1.  
6
0b  
PDR loop error limit for half-bridge 1.  
0b = 1-bit error  
1b = Actual error  
5-4  
KP_PDR_1  
R/W  
01b  
PDR proportional controller gain setting for half-bridge 1.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
3
2
EN_PDR_2  
R/W  
R/W  
0b  
0b  
Enable PDR loop control for half-bridge 2.  
PDR_ERR_2  
PDR loop error limit for half-bridge 2.  
0b = 1-bit error  
1b = Actual error  
1-0  
KP_PDR_2  
R/W  
01b  
PDR proportional controller gain setting for half-bridge 2.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
8.6.4.3.11 PDR_CTRL10 Register (Address = 34h) [Reset = 11h]  
PDR_CTRL10 is shown in Figure 8-139 and described in Table 8-140.  
Return to the Summary Table.  
Control register to configure PDR Kp loop controller gain setting for half-bridges 3 and 4.  
Figure 8-139. PDR_CTRL10 Register  
7
6
5
4
3
2
1
0
EN_PDR_3  
R/W-0b  
PDR_ERR_3  
R/W-0b  
KP_PDR_3  
R/W-01b  
EN_PDR_4  
R/W-0b  
PDR_ERR_4  
R/W-0b  
KP_PDR_4  
R/W-01b  
Table 8-140. PDR_CTRL10 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
EN_PDR_3  
0b  
Enable PDR loop control for half-bridge 3.  
6
PDR_ERR_3  
0b  
PDR loop error limit for half-bridge 3.  
0b = 1-bit error  
1b = Actual error  
5-4  
KP_PDR_3  
R/W  
01b  
PDR proportional controller gain setting for half-bridge 3.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
3
2
EN_PDR_4  
R/W  
R/W  
0b  
0b  
Enable PDR loop control for half-bridge 4.  
PDR_ERR_4  
PDR loop error limit for half-bridge 4.  
0b = 1-bit error  
1b = Actual error  
1-0  
KP_PDR_4  
R/W  
01b  
PDR proportional controller gain setting for half-bridge 4.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
Copyright © 2020 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.4.3.12 STC_CTRL1 Register (Address = 35h) [Reset = 23h]  
STC_CTRL1 is shown in Figure 8-140 and described in Table 8-141.  
Return to the Summary Table.  
Control register to configure STC rise/fall time and Kp loop controller gain setting for half-bridge 1.  
Figure 8-140. STC_CTRL1 Register  
7
6
5
4
3
2
1
0
T_RISE_FALL_1  
R/W-0010b  
EN_STC_1  
R/W-0b  
STC_ERR_1  
R/W-0b  
KP_STC_1  
R/W-11b  
Table 8-141. STC_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
T_RISE_FALL_1  
R/W  
0010b  
Set switch-node VSH rise and fall time for half-bridge 1.  
0000b = 0.35 us  
0001b = 0.56 us  
0010b = 0.77 us  
0011b = 0.98 us  
0100b = 1.33 us  
0101b = 1.68 us  
0110b = 2.03 us  
0111b = 2.45 us  
1000b = 2.94 us  
1001b = 3.99 us  
1010b = 4.97 us  
1011b = 5.95 us  
1100b = 7.98 us  
1101b = 9.94 us  
1110b = 11.97 us  
1111b = 15.96 us  
3
2
EN_STC_1  
R/W  
R/W  
0b  
0b  
Enable STC loop control for half-bridge 1.  
STC_ERR_1  
STC loop error limit for half-bridge 1.  
0b = 1-bit error  
1b = Actual error  
1-0  
KP_STC_1  
R/W  
11b  
STC proportional controller gain setting for half-bridge 1.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
8.6.4.3.13 STC_CTRL2 Register (Address = 36h) [Reset = 23h]  
STC_CTRL2 is shown in Figure 8-141 and described in Table 8-142.  
Return to the Summary Table.  
Control register to configure STC rise/fall time and Kp loop controller gain setting for half-bridge 2.  
Figure 8-141. STC_CTRL2 Register  
7
6
5
4
3
2
1
0
T_RISE_FALL_2  
R/W-0010b  
EN_STC_2  
R/W-0b  
STC_ERR_2  
R/W-0b  
KP_STC_2  
R/W-11b  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-142. STC_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
T_RISE_FALL_2  
R/W  
0010b  
Set switch-node VSH rise and fall time for half-bridge 2.  
0000b = 0.35 us  
0001b = 0.56 us  
0010b = 0.77 us  
0011b = 0.98 us  
0100b = 1.33 us  
0101b = 1.68 us  
0110b = 2.03 us  
0111b = 2.45 us  
1000b = 2.94 us  
1001b = 3.99 us  
1010b = 4.97 us  
1011b = 5.95 us  
1100b = 7.98 us  
1101b = 9.94 us  
1110b = 11.97 us  
1111b = 15.96 us  
3
2
EN_STC_2  
R/W  
R/W  
0b  
0b  
Enable STC loop control for half-bridge 2.  
STC_ERR_2  
STC loop error limit for half-bridge 2.  
0b = 1-bit error  
1b = Actual error  
1-0  
KP_STC_2  
R/W  
11b  
STC proportional controller gain setting for half-bridge 2.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
8.6.4.3.14 STC_CTRL3 Register (Address = 37h) [Reset = 23h]  
STC_CTRL3 is shown in Figure 8-142 and described in Table 8-143.  
Return to the Summary Table.  
Control register to configure STC rise/fall time and Kp loop controller gain setting for half-bridge 3.  
Figure 8-142. STC_CTRL3 Register  
7
6
5
4
3
2
1
0
T_RISE_FALL_3  
R/W-0010b  
EN_STC_3  
R/W-0b  
STC_ERR_3  
R/W-0b  
KP_STC_3  
R/W-11b  
Table 8-143. STC_CTRL3 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
T_RISE_FALL_3  
R/W  
0010b  
Set switch-node VSH rise and fall time for half-bridge 3.  
0000b = 0.35 us  
0001b = 0.56 us  
0010b = 0.77 us  
0011b = 0.98 us  
0100b = 1.33 us  
0101b = 1.68 us  
0110b = 2.03 us  
0111b = 2.45 us  
1000b = 2.94 us  
1001b = 3.99 us  
1010b = 4.97 us  
1011b = 5.95 us  
1100b = 7.98 us  
1101b = 9.94 us  
1110b = 11.97 us  
1111b = 15.96 us  
3
EN_STC_3  
R/W  
0b  
Enable STC loop control for half-bridge 3.  
Copyright © 2020 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-143. STC_CTRL3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
STC_ERR_3  
R/W  
0b  
STC loop error limit for half-bridge 3.  
0b = 1-bit error  
1b = Actual error  
1-0  
KP_STC_3  
R/W  
11b  
STC proportional controller gain setting for half-bridge 3.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
8.6.4.3.15 STC_CTRL4 Register (Address = 38h) [Reset = 23h]  
STC_CTRL4 is shown in Figure 8-143 and described in Table 8-144.  
Return to the Summary Table.  
Control register to configure STC rise/fall time and Kp loop controller gain setting for half-bridge 4.  
Figure 8-143. STC_CTRL4 Register  
7
6
5
4
3
2
1
0
T_RISE_FALL_4  
R/W-0010b  
EN_STC_4  
R/W-0b  
STC_ERR_4  
R/W-0b  
KP_STC_4  
R/W-11b  
Table 8-144. STC_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
T_RISE_FALL_4  
R/W  
0010b  
Set switch-node VSH rise and fall time for half-bridge 4.  
0000b = 0.35 us  
0001b = 0.56 us  
0010b = 0.77 us  
0011b = 0.98 us  
0100b = 1.33 us  
0101b = 1.68 us  
0110b = 2.03 us  
0111b = 2.45 us  
1000b = 2.94 us  
1001b = 3.99 us  
1010b = 4.97 us  
1011b = 5.95 us  
1100b = 7.98 us  
1101b = 9.94 us  
1110b = 11.97 us  
1111b = 15.96 us  
3
2
EN_STC_4  
R/W  
R/W  
0b  
0b  
Enable STC loop control for half-bridge 4.  
STC_ERR_4  
STC loop error limit for half-bridge 4.  
0b = 1-bit error  
1b = Actual error  
1-0  
KP_STC_4  
R/W  
11b  
STC proportional controller gain setting for half-bridge 4.  
00b = 1  
01b = 2  
10b = 3  
11b = 4  
8.6.4.3.16 DCC_CTRL1 Register (Address = 39h) [Reset = 0h]  
DCC_CTRL1 is shown in Figure 8-144 and described in Table 8-145.  
Return to the Summary Table.  
Control register to enable DCC loop and manual configuration for half-bridges 1-4.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-144. DCC_CTRL1 Register  
7
6
5
4
3
2
1
0
EN_DCC_1  
R/W-0b  
EN_DCC_2  
R/W-0b  
EN_DCC_3  
R/W-0b  
EN_DCC_4  
R/W-0b  
IDIR_MAN_1  
R/W-0b  
IDIR_MAN_2  
R/W-0b  
IDIR_MAN_3  
R/W-0b  
IDIR_MAN_4  
R/W-0b  
Table 8-145. DCC_CTRL1 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
EN_DCC_1  
EN_DCC_2  
EN_DCC_3  
EN_DCC_4  
IDIR_MAN_1  
0b  
Enable duty cycle compensation for half-bridge 1.  
Enable duty cycle compensation for half-bridge 2.  
Enable duty cycle compensation for half-bridge 3.  
Enable duty cycle compensation for half-bridge 4.  
6
0b  
5
0b  
4
0b  
3
0b  
Current polarity detection mode for half-bridge 1.  
0b = Automatic  
1b = Manual (Set by HBx_HL)  
2
1
0
IDIR_MAN_2  
IDIR_MAN_3  
IDIR_MAN_4  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Current polarity detection mode for half-bridge 2.  
0b = Automatic  
1b = Manual (Set by HBx_HL)  
Current polarity detection mode for half-bridge 3.  
0b = Automatic  
1b = Manual (Set by HBx_HL)  
Current polarity detection mode for half-bridge 4.  
0b = Automatic  
1b = Manual (Set by HBx_HL)  
8.6.4.3.17 PST_CTRL1 Register (Address = 3Ah) [Reset = Fh]  
PST_CTRL1 is shown in Figure 8-145 and described in Table 8-146.  
Return to the Summary Table.  
Control register to configure max freewheeling current and post charge delay for half-bridges 1-4.  
Figure 8-145. PST_CTRL1 Register  
7
6
5
4
3
2
1
0
FW_MAX_1  
FW_MAX_2  
FW_MAX_3  
FW_MAX_4  
EN_PST_DLY_ EN_PST_DLY_ EN_PST_DLY_ EN_PST_DLY_  
1
2
3
4
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
Table 8-146. PST_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FW_MAX_1  
R/W  
0b  
Gate drive current used for freewheeling MOSFET for half-bridge 1.  
0b = PRE_CHR_MAX_1 [1:0] 1b = 64 mA  
6
5
4
3
2
1
FW_MAX_2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
1b  
1b  
1b  
Gate drive current used for freewheeling MOSFET for half-bridge 2.  
0b = PRE_CHR_MAX_2 [1:0] 1b = 64 mA  
FW_MAX_3  
Gate drive current used for freewheeling MOSFET for half-bridge 3.  
0b = PRE_CHR_MAX_3 [1:0] 1b = 64 mA  
FW_MAX_4  
Gate drive current used for freewheeling MOSFET for half-bridge 4.  
0b = PRE_CHR_MAX_4 [1:0] 1b = 64 mA  
EN_PST_DLY_1  
EN_PST_DLY_2  
EN_PST_DLY_3  
Enable post-charge time delay. Time delay is equal to  
T_DON_DOFF_1 - T_PRE_CHR_1.  
Enable post-charge time delay. Time delay is equal to  
T_DON_DOFF_2 - T_PRE_CHR_2.  
Enable post-charge time delay. Time delay is equal to  
T_DON_DOFF_3 - T_PRE_CHR_3.  
Copyright © 2020 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Table 8-146. PST_CTRL1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
EN_PST_DLY_4  
R/W  
1b  
Enable post-charge time delay. Time delay is equal to  
T_DON_DOFF_4 - T_PRE_CHR_4.  
8.6.4.3.18 PST_CTRL2 Register (Address = 3Bh) [Reset = 55h]  
PST_CTRL2 is shown in Figure 8-146 and described in Table 8-147.  
Return to the Summary Table.  
Control register to configure post charge Kp loop controller gain setting for half-bridges 1-4.  
Figure 8-146. PST_CTRL2 Register  
7
6
5
4
3
2
1
0
KP_PST_1  
R/W-01b  
KP_PST_2  
R/W-01b  
KP_PST_3  
R/W-01b  
KP_PST_4  
R/W-01b  
Table 8-147. PST_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
1-0  
KP_PST_1  
KP_PST_2  
KP_PST_3  
KP_PST_4  
R/W  
01b  
Post charge proportional control gain setting for half-bridge 1.  
00b = Disabled  
01b = 2  
10b = 4  
11b = 15  
R/W  
R/W  
R/W  
01b  
01b  
01b  
Post charge proportional control gain setting for half-bridge 2.  
00b = Disabled  
01b = 2  
10b = 4  
11b = 15  
Post charge proportional control gain setting for half-bridge 3.  
00b = Disabled  
01b = 2  
10b = 4  
11b = 15  
Post charge proportional control gain setting for half-bridge 4.  
00b = Disabled  
01b = 2  
10b = 4  
11b = 15  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
8.6.4.4 DRV8714-Q1_STATUS_ADV Registers  
Table 8-148 lists the DRV8714-Q1_STATUS_ADV registers. All register offset addresses not listed in Table  
8-148 should be considered as reserved locations and the register contents should not be modified.  
Table 8-148. DRV8714-Q1_STATUS_ADV Registers  
Address  
3Ch  
Acronym  
Register Name  
Section  
Go  
SGD_STAT1  
SGD_STAT2  
SGD_STAT3  
Half-bridge 1-4 current polarity indicators  
Half-bridge 1-4 PDR underflow and overflow indictors  
Half-bridge 1-4 STC fault indicator  
3Dh  
Go  
3Eh  
Go  
Complex bit access types are encoded to fit into small table cells. Table 8-149 shows the codes that are used for  
access types in this section.  
Table 8-149. DRV8714-Q1_STATUS_ADV Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Reset or Default Value  
- n  
Value after reset or the default value  
8.6.4.4.1 SGD_STAT1 Register (Address = 3Ch) [Reset = 0h]  
SGD_STAT1 is shown in Figure 8-147 and described in Table 8-150.  
Return to the Summary Table.  
Status registers indicating current polarity for half-bridges 1-4.  
Figure 8-147. SGD_STAT1 Register  
7
6
5
4
3
2
1
0
IDIR_1  
R-0b  
IDIR_2  
R-0b  
IDIR_3  
R-0b  
IDIR_4  
R-0b  
IDIR_WARN_1 IDIR_WARN_2 IDIR_WARN_3 IDIR_WARN_4  
R-0b R-0b R-0b R-0b  
Table 8-150. SGD_STAT1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
IDIR_1  
IDIR_2  
IDIR_3  
IDIR_4  
R
0b  
Indicated current direction for half-bridge 1.  
6
R
0b  
Indicated current direction for half-bridge 2.  
5
R
0b  
Indicated current direction for half-bridge 3.  
4
R
0b  
Indicated current direction for half-bridge 4.  
3
IDIR_WARN_1  
IDIR_WARN_2  
IDIR_WARN_3  
IDIR_WARN_4  
R
0b  
Indicates unknown current direction for half-bridge 1.  
Indicates unknown current direction for half-bridge 2.  
Indicates unknown current direction for half-bridge 3.  
Indicates unknown current direction for half-bridge 4.  
2
R
0b  
1
R
0b  
0
R
0b  
8.6.4.4.2 SGD_STAT2 Register (Address = 3Dh) [Reset = 0h]  
SGD_STAT2 is shown in Figure 8-148 and described in Table 8-151.  
Return to the Summary Table.  
Status registers indicating underflow and overflow in PDR loop control for half-bridges 1-4.  
Copyright © 2020 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 8-148. SGD_STAT2 Register  
7
6
5
4
3
2
1
0
PCHR_WARN_ PCHR_WARN_ PCHR_WARN_ PCHR_WARN_ PDCHR_WARN PDCHR_WARN PDCHR_WARN PDCHR_WARN  
1
2
3
4
_1  
_2  
_3  
_4  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
Table 8-151. SGD_STAT2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
PCHR_WARN_1  
PCHR_WARN_2  
PCHR_WARN_3  
PCHR_WARN_4  
PDCHR_WARN_1  
PDCHR_WARN_2  
PDCHR_WARN_3  
PDCHR_WARN_4  
R
0b  
Indicates pre-charge underflow or overflow fault for half-bridge 1.  
Indicates pre-charge underflow or overflow fault for half-bridge 2.  
Indicates pre-charge underflow or overflow fault for half-bridge 3.  
Indicates pre-charge underflow or overflow fault for half-bridge 4.  
Indicates pre-discharge underflow or overflow fault for half-bridge 1.  
Indicates pre-discharge underflow or overflow fault for half-bridge 2.  
Indicates pre-discharge underflow or overflow fault for half-bridge 3.  
Indicates pre-discharge underflow or overflow fault for half-bridge 4.  
R
0b  
R
0b  
R
0b  
R
0b  
R
0b  
R
0b  
R
0b  
8.6.4.4.3 SGD_STAT3 Register (Address = 3Eh) [Reset = 0h]  
SGD_STAT3 is shown in Figure 8-149 and described in Table 8-152.  
Return to the Summary Table.  
Status register indicator STC rise and fall time overflow for half-bridges 1-4.  
Figure 8-149. SGD_STAT3 Register  
7
6
5
4
3
2
1
0
STC_WARN_F STC_WARN_F STC_WARN_F STC_WARN_F STC_WARN_R STC_WARN_R STC_WARN_R STC_WARN_R  
_1  
_2  
_3  
_4  
_1  
_2  
_3  
_4  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
Table 8-152. SGD_STAT3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
STC_WARN_F_1  
STC_WARN_F_2  
STC_WARN_F_3  
STC_WARN_F_4  
STC_WARN_R_1  
STC_WARN_R_2  
STC_WARN_R_3  
STC_WARN_R_4  
R
0b  
Indicates falling slew time TDRV overflow for half-bridge 1.  
Indicates falling slew time TDRV overflow for half-bridge 2.  
Indicates falling slew time TDRV overflow for half-bridge 3.  
Indicates falling slew time TDRV overflow for half-bridge 4.  
Indicates rising slew time TDRV overflow for half-bridge 1.  
Indicates rising slew time TDRV overflow for half-bridge 2.  
Indicates rising slew time TDRV overflow for half-bridge 3.  
Indicates rising slew time TDRV overflow for half-bridge 4.  
R
0b  
R
0b  
R
0b  
R
0b  
R
0b  
R
0b  
R
0b  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
9 Application Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The DRV871x-Q1 is a highly configurable mult-channel half-bridge MOSFET gate driver than can be used to  
drive a variety of different output loads. The design examples below highlight how to use and configure the  
device for different application use cases.  
9.2 Typical Application  
The typical application for the DRV8718-Q1 is to control an multiple external MOSFET half-bridges for driving  
multiple uni-directional or bi-directional brushed DC motors. A high-level schematic example is shown below.  
DRV8718-Q1  
Power and Charge Pump  
VPVDD  
VBATT  
VCC  
DVDD  
DGND  
PVDD  
1 F  
1 F  
Reverse Polarity  
Protection  
VCP  
Microcontroller  
VCC  
CP1H  
0.1 F  
0.1 F  
CP1L  
CP2H  
VPVDD  
CBULK CBULK  
GP-O  
nSLEEP  
CP2L  
0.1 F  
Interface (SPI)  
nSCS  
SCLK  
MDO  
MDI  
nSCS  
SCLK  
SDI  
SDO  
Gate Driver  
BRAKE  
DRAIN  
GHx (1-8)  
RSHUNT  
PWM  
PWM  
PWM  
PWM  
IN1  
IN2  
IN3  
IN4  
BDC  
SHx (1-8)  
GLx (1-8)  
VCC  
PGNDx (1,2)  
RPU  
GP-IO  
ADC  
DRVOFF/nFLT  
Shunt Amplifier  
SOx (1,2)  
AREF  
VCC  
SPx (1,2)  
SNx (1,2)  
0.1 F  
AGND  
Figure 9-1. DRV8718-Q1 Typical Application  
Copyright © 2020 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
9.2.1 Design Requirements  
Table 9-1 lists a set of example input parameters for the system design.  
Table 9-1. Example Design Parameters  
Design Parameter  
Reference  
Value  
PVDD Nominal Supply Voltage  
PVDD Supply Voltage Range  
DVDD / AREF Logic Supply Voltage  
MOSFET Total Gate Charge  
MOSFET Gate to Drain Charge  
MOSFET On Resistance  
12 V  
9 to 18 V  
VPVDD  
VCC  
QG  
3.3V  
30 nC (typical) at VGS = 10 V  
5 nC (typical)  
4 mΩ  
QGD  
RDS(on)  
trise  
Target Output Rise Time  
750 - 1000 ns  
250 - 500 ns  
20 kHz  
Target Output Fall Time  
tfall  
PWM Frequency  
fPWM  
IMAX  
Maximum Motor Current  
25 A  
Shunt Resistor Power Capability  
PSHUNT  
3 W  
9.2.2 Detailed Design Procedure  
9.2.2.1 Gate Driver Configuration  
9.2.2.1.1 VCP Load Calculation Example  
It should be ensured that the charge pump load capability is sufficient for the type of external MOSFET, number  
of PWM half-bridges, and desired PWM frequency. This can be confirmed with a simple calculation as shown in  
Equation 1. Since the charge pump supplies both the high-side and low-side gate drivers, the number of both  
switching high-side and low-side MOSFETs should be taken into consideration. This will depend on both the  
number of PWM half-bridges and the freewheeling mode (if the opposite MOSFET is being switched).  
IVCP (A) = QG (C) x fPWM (Hz) x # of switching FETs  
(1)  
Using the input design parameters as an example, we can show that in this scenario that output load capability  
of the charge pump is sufficient in Equation 2. For this example, four active half-bridges were assumed with  
active freewheeling totaling 8 switching MOSFETs.  
IVCP = 30 nC x 20 kHz x 8 = 4.8 mA  
(2)  
9.2.2.1.2 IDRIVE Calculation Example  
The gate drive current strength, IDRIVE, is selected based on the gate-to-drain charge of the external MOSFETs  
and the target rise and fall times at the switch-node. If IDRIVE is selected to be too low for a given MOSFET, then  
the MOSFET may not turn on or off completely within the configured tDRIVE time and a gate fault may be  
asserted. Additionally, slow rise and fall times will lead to higher switching power losses in the external power  
MOSFETs. It is recommended to verify these values in system with the required external MOSFETs and load to  
determine the optimal settings.  
The IDRIVEP and IDRIVEN for both the high-side and low-side external MOSFETs are adjustable on SPI device  
variants. On hardware interface device variants, both source and sink settings are selected simultaneously on  
the IDRIVE pin.  
For MOSFETs with a known gate-to-drain charge (QGD), desired rise time (trise), and a desired fall time (tfall), use  
Equation 3 and Equation 4 to calculate the approximate values of IDRIVEP and IDRIVEN (respectively).  
IDRIVEP = QGD / trise  
IDRIVEN = QGD / tfall  
(3)  
(4)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Using the input design parameters as an example, we can calculate the approximate values for IDRIVEP and  
IDRIVEN  
.
IDRIVEP_HI = 5 nC / 750 ns = 6.67 mA  
IDRIVEP_LO = 5 nC / 1000 ns = 5 mA  
(5)  
(6)  
Based on these calculations a value of 6 mA was chosen for IDRIVEP  
IDRIVEN_HI = 5 nC / 250 ns = 20 mA  
.
(7)  
(8)  
IDRIVEN_LO = 5 nC / 500 ns = 10 mA  
Based on these calculations, a value of 16 mA was chosen for IDRIVEN  
.
9.2.2.1.3 tDRIVE Calculation Example  
The driver gate to source monitor timeout (tDRIVE) should be configured to allow sufficient time for the external  
MOSFETs to charge and discharge for the selected IDRIVE gate current. By default, the setting is 8us which is  
sufficient for many systems. The determine an appropriate tDRIVE value, Equation 9 can be utilized.  
tDRIVE > QG_TOT / IDRIVE  
(9)  
Using the input design parameters as an example, we can calculate the approximate values for tDRIVE  
tDRIVE > 30 nC / 6 mA = 5 us  
.
(10)  
Based on these calculations a value of 8 us was chosen for tDRIVE  
.
9.2.2.1.4 Maximum PWM Switching Frequency  
The maximum PWM frequency of the driver is typically determined by multiple factors in the system. While the  
DRV871x-Q1 device can support up to 100kHz, system parameters may limit this to a lower value.  
These system parameters include:  
The rise and fall times of the external MOSFETs.  
The MOSFET QG and load on the charge pump.  
The minimum and maximum duty cycle requirements (Ex. 10% to 90%)  
9.2.2.2 Current Shunt Amplifier Configuration  
The DRV871x-Q1 differential shunt amplifier gain and shunt resistor value are selected based on the dynamic  
current range, reference voltage supply, shunt resistor power rating, and operating temperature range. In  
bidirectional operation of the shunt amplifier, the dynamic range at the output is approximately calculated as  
shown in Equation 11. The output of the amplifier can swing from the midpoint reference (VAREF / 2) to either  
0.25 V or VAREF - 0.25V depending on the polarity of the input voltage to the amplifier.  
VSO_BI = (VAREF - 0.25 V) - (VAREF / 2)  
(11)  
If only unidirectional current sensing is required, the amplifier reference can be modified to expand the dynamic  
range at the output. The is modified through the CSA_DIV SPI register setting. In this mode, the dynamic range  
at the output is approximately calculated as shown in Equation 12.  
VSO_UNI = (VAREF - 0.25 V) - (VAREF / 8)  
(12)  
Based on VAREF = 3.3 V, the dynamic out range in both bidirectional or unidirectional sensing can be calculated  
as shown below:  
VSO_BI = (3.3 V - 0.25 V) - (3.3 V / 2) = 1.4 V  
(13)  
Copyright © 2020 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
VSO_UNI = (3.3 V - 0.25 V) - (3.3 V / 8) = 2.6375 V  
(14)  
The external shunt resistor value and shunt amplifier gain setting are selected based on the available dynamic  
output range, the shunt resistor power rating, and maximum motor current that needs to be measured. This  
exact values for the shunt resistance and amplifier gain are determine by both Equation 15 and Equation 16.  
2
RSHUNT < PSHUNT / IMAX  
(15)  
(16)  
AV < VSO / (IMAX x RSHUNT  
)
Based on VSO = 1.4 V, IMAX = 25 A and PSHUNT = 3 W, the values for shunt resistance and amplifier gain can be  
calculated as shown below:  
RSHUNT < 3 W / 252 A = 4.8 mΩ  
(17)  
(18)  
AV < 1.4 V / (25 A x 4.8 mΩ) = 11.67 V/V  
Based on the results, a shunt resistance of 4 mΩ and an amplifier gain of 10 V/V can be selected.  
9.2.2.3 Power Dissipation  
In high ambient operating environments, it may be important to estimate the internal self heating of the driver. To  
determine the temperature of the device, first the internal power dissipation must be calculate. After this an  
estimate can be made with the device package thermal properties.  
The internal power dissipation has four primary components.  
High-Side Driver Power Dissipation (PHS  
Low-Side Driver Power Dissipation (PLS)  
PVDD Battery Supply Power Dissipation (PPVDD  
)
)
DVDD/AREF Logic/Reference Supply Power Dissipation (PVCC  
)
The values for PHS and PLS can be approximated by referencing the earlier equation for charge pump load  
current as shown below. In a typical switch scenario, 4 high-side and 4 low-side MOSFET are switching.  
IHS/LS (A) = QG (C) x fPWM (Hz) x # of switching FETs  
(19)  
Using the input design parameters as an example, we can calculate the current load from the high-side and low-  
side drivers.  
IHS = 30 nC x 20 kHz x 4 = 2.4 mA  
ILS = 30 nC x 20 kHz x 4 = 2.4 mA  
(20)  
(21)  
From this, the power dissipation can be calculated from the equations below for the driver power dissipation. The  
high-side and low-side includes a doubling factor to account for the losses in the charge pump supplying the  
drivers.  
PHS (W) = IHS (A) x VPVDD x 2  
PLS (W) = ILS (A) x VPVDD x 2  
(22)  
(23)  
Using the input design parameters as an example, we can calculate the power dissipation from the high-side  
and low-side drivers.  
PHS (W) = 0.0576 W = 2.4 mA x 12 V x 2  
PLS (W) = 0.0576 W = 2.4 mA x 12 V x 2  
(24)  
(25)  
The values for PPVDD and PVCC can be approximated by referencing Equation 26 and Equation 27:  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
PPVDD (W) = IPVDD (A) x VPVDD  
(26)  
(27)  
PVCC (W) = (IDVDD (A) x VDVDD) + (IAREF (A) x VAREF  
)
Using the input design parameters as an example, we can calculate the power dissipation for the power  
supplies.  
PPVDD (W) = 0.162 W = 13.5 mA x 12 V  
(28)  
(29)  
PVCC (W) = 0.033 W = (8 mA x 3.3 V) + (2 mA x 3.3 V)  
Finally, use Equation 30 to estimate device junction temperature.  
TJUNCTION (°C) = TAMBIENT (°C) + (RθJA (°C/W) x PTOT(W))  
(30)  
Using the previously calculated power dissipation values and the device thermal parameter from the Thermal  
Information table can estimate the device internal temperature:  
TJUNCTION (°C) = 112.9 °C = 105 °C + (25.6 °C/W x 0.3102 W)  
(31)  
9.2.3 Application Curves  
Figure 9-2. Driver Nominal PWM Operation  
Copyright © 2020 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 9-3. Driver Operation During Motor Startup  
Figure 9-4. Driver PWM Operation During Warm Crank Pulse  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 9-5. Driver PWM Operation During Cold Crank Pulse  
Figure 9-6. Power Off Braking Low-Side Driver Response  
Copyright © 2020 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
Figure 9-7. Power Off Braking Disabled  
9.3 Initialization  
This section provides some guidance for getting started with the DRV871x-Q1 for typical system operation.  
By default, the device is in a low-powered sleep mode with the nSLEEP pin low. In this mode, all drivers are  
disabled and no device communication is possible. The nSLEEP pin should be driven high, to enter its  
standby state.  
In the standby state, H/W interface device variants will immediately enter the active state allowing for driver  
operation (device settings will be derived from the pin configurations), but SPI interface device variants will  
power up with the drivers still disabled.  
On SPI variants, the drivers are enabled through the EN_DRV register bit. But before enabling drivers, it is  
recommended to configure the output drivers, sense amplifiers, setup protection circuits, and run offline  
diagnostics.  
The half-bridge driver PWM configurations are set through the BRG_CTRL1,2 and PWM_CTRL1,2 register  
and will be dependent on the output load configuration. Additionally the driver gate current level and gate  
driver configurations can be set through the IDRV_CTRLx and DRV_CTRLx registers.  
The sense amplifiers are configured through the CSA_CTRL1, 2, and 3 registers.  
The various protection functions can be configured through the VDS_CTRLx and UVOV_CTRL registers.  
Lastly, before enabling the drivers, offline diagnostics can be performed for open load and short circuit  
through the EN_OLSC and the OLSC_CTRL1,2 registers.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
10 Power Supply Recommendations  
10.1 Bulk Capacitance Sizing  
Having appropriate local bulk capacitance is an important factor in motor drive system design. Having more bulk  
capacitance is generally beneficial, while the disadvantages are increased cost and physical size. The amount of  
local capacitance depends on a variety of factors including:  
The highest current required by the motor system  
The power supply's type, capacitance, and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable supply voltage ripple  
Type of motor (brushed DC, brushless DC, stepper)  
The motor startup and braking methods  
The inductance between the power supply and motor drive system will limit the rate current can change from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
remains stable and high current can be quickly supplied.  
The data sheet provides a recommended minimum value, but system level testing is required to determine the  
appropriate sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
+
Motor Driver  
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
Figure 10-1. Motor Drive Supply Parasitics Example  
Copyright © 2020 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
Bypass the PVDD pin to the GND pin using a low-ESR ceramic bypass capacitor with a recommended value of  
0.1 µF. Place this capacitor as close to the PVDD pin as possible with a thick trace or ground plane connected to  
the GND pin. Additionally, bypass the PVDD pin using a bulk capacitor rated for PVDD. This component can be  
electrolytic. This capacitance must be at least 10 µF. It is acceptable if this capacitance is shared with the bulk  
capacitance for the external power MOSFETs.  
Additional bulk capacitance is required to bypass the high current path on the external MOSFETs. This bulk  
capacitance should be placed such that it minimizes the length of any high current paths through the external  
MOSFETs. The connecting metal traces should be as wide as possible, with numerous vias connecting PCB  
layers. These practices minimize inductance and allow the bulk capacitor to deliver high current.  
Place a low-ESR ceramic capacitor between the CPL1 / CPH1 and CPL2 / CP2H pins. The CP1 capacitor  
should be 0.1 µF, rated for PVDD, and be of type X5R or X7R. The CP2 capacitor should be 0.1 µF, rated for  
PVDD + 16 V, and be of type X5R or X7R. Additionally, place a low-ESR ceramic capacitor between the VCP  
and PVDD pins. This capacitor should be 1 µF, rated for 16 V, and be of type X5R or X7R.  
Bypass the DVDD pin to the DGND pin with a 1.0 µF low-ESR ceramic capacitor rated for 6.3 V and of type X5R  
or X7R. Place this capacitor as close to the pin as possible and minimize the path from the capacitor to the  
DGND pin. Bypass the AREF pin to the AGND pin with a 0.1 µF low-ESR ceramic capacitor rated for 6.3 V and  
of type X5R or X7R. Place this capacitor as close to the pin as possible and minimize the path from the capacitor  
to the AGND pin. If local bypass capacitors are already present on these power supplies in close proximity of the  
device to minimize noise, these additional components for DVDD and/or AREF are not required.  
The DRAIN pin can be shorted directly to the PVDD pin. However, if a significant distance is between the device  
and the external MOSFETs, use a dedicated trace to connect to the common point of the drains of the high-side  
external MOSFETs. Ensure the PGNDx pins have a low impedance path to the sources of the low-side external  
MOSFETs and to the PCB GND plane.. pins directly to the GND plane. These recommendations allow for more  
accurate VDS sensing of the external MOSFETs for overcurrent detection.  
Minimize the loop length for the high-side and low-side gate drivers. The high-side loop is from the GHx pin of  
the device to the high-side power MOSFET gate, then follows the high-side MOSFET source back to the SHx  
pin. The low-side loop is from the GLx pin of the device to the low-side power MOSFET gate, then follows the  
low-side MOSFET source back to the PGNDx pin.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
11.2 Layout Example  
VPVDD  
CBULK  
VCC  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
SLCK  
SDI  
SH5  
GL5  
3
SDO  
NC  
4
IN1  
DRAIN  
PVDD  
VCP  
5
IN2  
VPVDD  
VRVP  
6
IN3  
7
IN4  
CP1H  
CP1L  
CP2H  
CP2L  
GND  
GL4  
Thermal Pad  
GND  
Power MOSFET  
Half-Bridges &  
Shunt Resistors  
8
nSLEEP  
DRVOFF/nFLT  
AREF  
AGND  
SO1  
9
10  
11  
12  
13  
14  
VCC  
SO2  
SH4  
BRAKE  
GH4  
CBULK  
GND  
Figure 11-1. Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
DRV8714-Q1, DRV8718-Q1  
SLVSEA2A – AUGUST 2020 – REVISED DECEMBER 2020  
www.ti.com  
12 Device Documentation and Support  
12.1 Documentation Support  
12.1.1 Related Documents  
For related documentation see the following:  
Texas Instruments, Understanding Smart Gate Drive application report  
Texas Instruments, Calculating Motor Driver Power Dissipation application report  
Texas Instruments, PowerPAD™ Made Easy application report  
Texas Instruments, PowerPAD™ Thermally Enhanced Package application report  
Texas Instruments, Best Practices for Board Layout of Motor Drivers application report  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: DRV8714-Q1 DRV8718-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8718SQRVJRQ1  
PDRV8714HRHAQ1  
ACTIVE  
VQFN  
VQFN  
RVJ  
56  
40  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Call TI  
-40 to 125  
-40 to 125  
DRV8718S  
PREVIEW  
RHA  
1
1
1
1
RoHS (In  
work) & Green  
(In work)  
Call TI  
Call TI  
Call TI  
Call TI  
PDRV8714SRHAQ1  
PDRV8714SRVJQ1  
PDRV8718SRVJQ1  
PREVIEW  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
RHA  
RVJ  
RVJ  
40  
56  
56  
RoHS (In  
work) & Green  
(In work)  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
RoHS (In  
work) & Green  
(In work)  
RoHS (In  
work) & Green  
(In work)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jan-2021  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Dec-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8718SQRVJRQ1  
VQFN  
RVJ  
56  
2000  
330.0  
16.4  
8.3  
8.3  
1.1  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-Dec-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RVJ 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
DRV8718SQRVJRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RVJ0056A  
PLASTIC QUAD FLATPACK- NO LEAD  
8.1  
7.9  
A
B
0.1 MIN  
8.1  
7.9  
(0.13)  
SECTION A-A  
PIN 1 INDEX AREA  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
5.2±0.1  
(0.2) TYP  
15  
28  
52X 0.5  
(0.16)  
14  
29  
SYMM  
A
A
57  
4X  
6.5  
5.2±0.1  
1
42  
0.30  
56X  
0.20  
PIN 1 ID  
(OPTIONAL)  
43  
56  
0.1  
C A B  
C
0.55  
0.35  
56X  
SYMM  
0.05  
4225251/A 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RVJ0056A  
PLASTIC QUAD FLATPACK- NO LEAD  
(7.75)  
(5.2)  
SYMM  
56X (0.65)  
56  
43  
1
42  
56X (0.25)  
52X (0.5)  
SYMM  
(7.75)  
57  
(5.2)  
8X (1.27)  
6X (1.08)  
(Ø0.2) VIA  
TYP  
14  
29  
(R0.05)  
TYP  
15  
28  
8X (1.27)  
6X (1.08)  
LAND PATTERN EXAMPLE  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225251/A 09/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RVJ0056A  
PLASTIC QUAD FLATPACK- NO LEAD  
(7.75)  
SYMM  
56X (0.65)  
56  
43  
1
42  
57  
16X  
SQ (1.07)  
56X (0.25)  
52X (0.5)  
SYMM  
(7.75)  
8X (0.635)  
6X (1.27)  
METAL TYP  
14  
29  
(R0.05)  
TYP  
15  
28  
8X (0.635)  
6X (1.27)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 10X  
4225251/A 09/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY