PGA302EPWR [TI]

具有 0V 至 5V 比例输出的传感器信号调理器 | PW | 16 | -40 to 150;
PGA302EPWR
型号: PGA302EPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 0V 至 5V 比例输出的传感器信号调理器 | PW | 16 | -40 to 150

传感器
文件: 总78页 (文件大小:1610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
PGA302  
ZHCSH81 DECEMBER 2017  
PGA302具有 0-5V 比例输出的传感器信号调节器  
1 特性  
3 说明  
1
模拟 特性  
PGA302 是一款低漂移、低噪声、可编程的信号调节  
器器件,专为各种电阻式电桥传感 应用 而设计,如压  
力、温度和液位传感 应用。PGA302 还可支持使用应  
变仪负荷传感器的流量计量 应用、体重秤和力传感 应  
用 以及其他通用电阻式电桥信号调节 应用。  
双通道模拟前端  
片上温度传感器  
高达 200V/V 的可编程增益  
16 Σ-Δ 模数转换器  
数字 特性  
PGA302 提供 2.5V 的电桥激励电压以及具有高达  
1mA 可编程电流输出的电流输出源。在输入端,此器  
件具有两个相同的模拟前端 (AFE) 通道,后面接一个  
16 Σ-Δ ADC。每个 AFE 通道都有一个专用的可编  
程增益放大器,其增益高达 200V/V。  
3 阶线性补偿算法  
用于存放器件配置、校准数据和用户数据的  
EEPROM 存储器  
I2C 接口  
通过电源线进行通信和配置的单线接口  
此外,其中一个通道集成了一个传感器失调补偿功能,  
另一个通道集成了一个内部温度传感器。  
通用 特性  
AFE 传感器输入、电源和输出缓冲器诊断  
存储器内置自检 (MBIST)  
看门狗  
在器件的输出端,一个 1.25V 14 DAC 之后连接  
了一个比例电压电源输出缓冲器,增益为 4V/V,支持  
0-5V 比例电压系统输出。PGA302 器件采用三阶温度  
系数 (TC) 和非线性 (NL) 数字补偿算法来校准模拟输  
出信号。线性化算法所需的所有参数以及其他用户数据  
都存储在集成的 EEPROM 存储器中。  
电源管理控制  
2 应用  
动力总成压力传感器  
动力总成排气传感器  
HVAC 传感器  
器件信息(1)  
器件型号  
PGA302  
封装  
封装尺寸(标称值)  
座椅占用传感器  
制动系统  
TSSOP (16)  
5.00mm x 4.40mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
电池管理系统 (BMS)  
PGA302 简化框图  
PGA302  
VBRGP  
VINPP  
Ratiometric  
Bridge Excitation  
Power Management  
OWI  
Reference  
EEPROM  
VDD  
PGA  
PGA  
Bridge  
Sensor  
SCL  
SDA  
I2C  
16-Bit  
ADC  
VBRGN  
Control  
and Status  
Registers  
14-Bit  
DAC  
GAIN  
VOUT  
LPF  
VINTP  
VINTN  
DACCAP  
Third-Order TC and  
Third-Order NL  
Sensor  
Optional  
External  
Temperature  
Sensor  
Internal  
Temperature  
Sensor  
Internal  
Oscillator  
Diagnostics  
Compensation  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLDS216  
 
 
 
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
目录  
7.18 DAC Gain for DAC Output .................................... 11  
7.19 Non-Volatile Memory............................................. 13  
7.20 Diagnostics - PGA30x........................................... 13  
7.21 Typical Characteristics.......................................... 14  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 17  
8.4 Device Functional Modes........................................ 38  
8.5 Register Maps......................................................... 39  
Application and Implementation ........................ 65  
9.1 Application Information............................................ 65  
9.2 Typical Application ................................................. 66  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Overvoltage and Reverse Voltage Protection........... 5  
7.6 Linear Regulators...................................................... 5  
7.7 Internal Reference..................................................... 5  
7.8 Internal Oscillator ..................................................... 5  
7.9 Bridge Sensor Supply ............................................... 6  
7.10 Temperature Sensor Supply ................................... 6  
7.11 Bridge Offset Cancel............................................... 7  
8
9
10 Power Supply Recommendations ..................... 68  
11 Layout................................................................... 69  
11.1 Layout Guidelines ................................................. 69  
11.2 Layout Example .................................................... 69  
12 器件和文档支持 ..................................................... 70  
12.1 接收文档更新通知 ................................................. 70  
12.2 社区资源................................................................ 70  
12.3 ....................................................................... 70  
12.4 静电放电警告......................................................... 70  
12.5 Glossary................................................................ 70  
13 机械、封装和可订购信息....................................... 70  
7.12 P Gain and T Gain Input Amplifiers (Chopper  
Stabilized) .................................................................. 7  
7.13 Analog-to-Digital Converter..................................... 8  
7.14 Internal Temperature Sensor .................................. 9  
7.15 Bridge Current Measurement................................ 10  
7.16 One Wire Interface................................................ 10  
7.17 DAC Output........................................................... 10  
4 修订历史记录  
日期  
修订版本  
说明  
2017 12 月  
*
初始发行版  
2
版权 © 2017, Texas Instruments Incorporated  
 
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
5 说明 (续)  
在系统连接方面,PGA302 器件集成了一个 I2C 接口以及一个单线接口 (OWI),支持在最终系统校准过程中通过电  
源线进行通信和配置。此器件在激励输出源、AFE 输入端和电源位置实施了诊断功能。此外还支持系统诊断,如传  
感器开路/短路。  
PGA302 适应各种传感元件类型,如压阻、陶瓷膜、应变仪和钢膜。该器件也可用于加速计、湿度传感器信号调节  
应用以及一些基于电流感应分流器的 应用。  
6 Pin Configuration and Functions  
PGA302-Q1 PW Package  
16-Pin TSSOP  
(Top View)  
VINTN  
VINTP  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DVDD  
GND  
SCL  
VINPP  
VBRGN  
VINPN  
SDA  
TEST2  
NC  
VBRGP  
DACCAP  
TEST1  
VDD  
VOUT  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
VINTN  
VINTP  
VINPP  
VBRGN  
VINPN  
VBRGP  
DACCAP  
TEST1  
VOUT  
VDD  
I
I
External temperature sensor - negative input  
External temperature sensor - positive input  
Resistive sensor - positive input  
Bridge drive negative  
2
3
I
4
O
I
5
Resistive sensor - negative input  
Bridge drive positive  
6
O
I/O  
O
O
P
-
7
DAC LPF capacitor  
8
Test pin 1  
9
Analog voltage output (from DAC gain amplifier)  
Power supply voltage  
10  
11  
12  
13  
14  
15  
16  
NC  
No connect  
TEST2  
SDA  
O
I/O  
I
Test pin 2  
I2C interface serial data pin  
I2C interface serial clock pin  
Ground  
SCL  
GND  
P
P
DVDD  
Digital logic regulator capacitor  
Copyright © 2017, Texas Instruments Incorporated  
3
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
–20  
MAX  
20  
20  
8
UNIT  
VDD  
VDD voltage  
V
V
V
V
V
VOUT  
VOUT voltage  
–20  
Voltage at VP_OTP  
Voltage at sensor input and drive pins  
Voltage at any IO pin  
–0.3  
–0.3  
–0.3  
5
2
IDD, Short  
on VOUT  
Supply current  
25  
mA  
TJmax  
Tlead  
Tstg  
Maximum junction temperature  
Lead temperature (soldering, 10 s)  
Storage temperature  
155  
260  
150  
°C  
°C  
°C  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions are not implied. Exposure to Absolute-Maximum-Rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±4000  
UNIT  
All pins except 9 and 10  
Pins 9 and 10  
Human-body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
All pins except 1, 8, 9,  
and 16  
±500  
±750  
Charged-device model (CDM), per JEDEC  
specification JESD22-C101(2)  
Pins 1, 8, 9, and 16  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VDD  
Power supply voltage  
Slew Rate  
4.5  
5
5.5(1)  
V
VDD = 0 to 5 V; decoupling capacitor  
on VDD = 10 nF  
5
V/ns  
mA  
Power supply current - Normal  
Operation  
IDD  
TA  
No load on VBRG, No load on DAC  
6.5  
10  
Operating ambient temperature  
Programming temperature  
–40  
–40  
150  
140  
°C  
°C  
EEPROM  
Start-up time (including analog and  
digital)  
VDD ramp rate 1 V/µs  
Not including series resistance  
250  
µs  
nF  
Capacitor on VDD Pin  
100  
(1) The analog circuits in the device will be shut off for VDD>OVP. However, digital logic inside the device will continue to operate. The  
device will withstand VDD<VDD_ABSMAX without damage  
4
Copyright © 2017, Texas Instruments Incorporated  
 
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
7.4 Thermal Information  
PGA302  
THERMAL METRIC(1)  
PW (TSSOP)  
16 PINS  
96.8  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
27.3  
43.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.2  
ψJB  
42.7  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
7.5 Overvoltage and Reverse Voltage Protection  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
–20  
TYP  
MAX  
UNIT  
Reverse voltage  
V
V
Overvoltage analog shutdown  
–40°C to 150°C  
5.65  
7.6 Linear Regulators  
PARAMETER  
TEST CONDITIONS  
MIN  
1.76  
1.4  
TYP  
1.8  
MAX  
1.86  
1.75  
UNIT  
V
VDVDD  
DVDD voltage - operating  
DVDD voltage - digital POR  
Capacitor on DVDD pin = 100 nF  
VDVDD_POR  
1.6  
V
DVDD voltage - digital POR  
Hysteresis  
0.1  
0.1  
V
V
V
VVDD_POR  
VDD voltage - digital POR  
4
VDD voltage - digital POR  
Hysteresis  
7.7 Internal Reference  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Reference voltage (including reference buffer)  
Reference initial error  
2.5  
V
–0.5%  
–250  
0.5%  
250  
Reference voltage TC  
ppm/°C  
dB  
VDD Ripple Conditions:  
VDD DC Level = 5 V  
VDD Ripple Amplitude = 100 mV  
VDD Ripple Frequency Range: 30 Hz to  
50 KHz  
PSRR  
–35  
Calculate PSRR using the formula:  
20log10(Amplitude of Reference  
Voltage/Amplitude of VDD ripple)  
7.8 Internal Oscillator  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INTERNAL OSCILLATOR  
Internal oscillator frequency  
TA = 25°C  
8
MHz  
Internal oscillator frequency variation Across operating temperature  
–3%  
3%  
Copyright © 2017, Texas Instruments Incorporated  
5
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
7.9 Bridge Sensor Supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VBRG SUPPLY FOR RESISTIVE BRIDGE SENSORS  
VBRGP-VBRGN Bridge supply voltage  
ILOAD = 0 to 8.5mA  
2.4  
2.5  
2.6  
V
Procedure to calculate drift mismatch:  
1. VDD = 5 V  
2. Connect 5-KΩ, Zero TC bridge  
with 5mV output to device  
3. Set P GAIN = 200V/V  
4. Set Temperature = 25°C,  
Measure ADC Code by  
averaging 512 samples  
Mismatch between bridge supply  
voltage, temperature variation,  
and ADC reference temperature  
variation  
5. Set Temperature = –40°C,  
PMISMATCH  
–250  
+250  
ppm/°C  
Measure ADC Code by  
averaging 512 samples  
6. Set Temperature = 125°C,  
Measure ADC Code by  
averaging 512 samples  
7. Calculate Drift using the formula:  
(ADC Code at Temperature  
ADC Code at 25°C)/((ADC Code  
at 25°C)×(Temperature – 25))  
IBRG  
Current Supply to the Bridge  
Bridge short-circuit current limit  
Capacitive Load  
8.5  
25  
2
mA  
mA  
nF  
TA = 25°C;  
VVDD= 5 V  
9
CBRG  
RBRG = 5 kΩ  
7.10 Temperature Sensor Supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ITEMP SUPPLY FOR TEMPERATURE SENSOR(1)  
Control bit = 0b000  
45  
90  
50  
100  
55  
110  
Control bit = 0b001  
Control bit = 0b010  
Control bit = 0b011  
Control bit = 0b1xx  
µA  
Current supply to  
temperature sensor  
ITEMP  
180  
850  
200  
220  
1000  
OFF  
1150  
Procedure to calculate drift mismatch:  
1. VDD = 5 V  
2. Connect 1-KΩ, Zero TC resistor to the  
temperature input pins of device  
3. Set T GAIN = 1.33 V/V  
4. Set ITEMP = 100 µA  
Mismatch between ITEMP  
temperature variation and  
ADC reference temperature  
variation  
5. Set Temperature  
= 25°C, Measure  
ADC Code by averaging 512 samples  
TMISMATCH  
–250  
+250  
ppm/°C  
6. Set Temperature = -40°C, Measure  
ADC Code by averaging 512 samples  
7. Set Temperature = 125°C, Measure  
ADC Code by averaging 512 samples  
8. Calculate Drift using the formula:  
(ADC Code at Temperature – ADC  
Code at 25°C)/((ADC Code at  
25°C)×(Temperature – 25))  
ZOUT  
Output Impedance  
Capacitive load  
Ensured by design  
15  
MΩ  
CTEMP  
100  
nF  
(1) Not applicable for 8-pin package options  
6
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
100 nF  
DVDD  
VINTP  
ITEMP  
ITEMP  
Buf  
DVDD  
Regulators  
1.8 V  
2.5 V  
1.2 V  
VDDP  
VDD  
Ref  
Buf  
1.2 V  
Reference  
RVP/OVP  
VBRG  
2.5 V  
VBRGP  
VBRG  
Buf  
R1  
R1  
Channel  
Select  
R
R
VDDP  
VINPP  
ADC  
1.25 V  
M
X
P GAIN  
VBRGN  
VINPN  
40 K  
VOUT  
DAC  
GAIN  
U
ADC  
Copyright © 2017, Texas Instruments Incorporated  
Figure 1. Bridge Supply and ADC Reference are Ratiometric  
7.11 Bridge Offset Cancel  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
–54.75  
–10%  
TYP  
MAX  
+54.75  
+10%  
UNIT  
Offset cancel range  
mV  
Offset cancel tolerance  
Offset cancel resolution (4 bits)  
10  
mV  
7.12 P Gain and T Gain Input Amplifiers (Chopper Stabilized)  
PARAMETER  
TEST CONDITIONS  
000, at DC  
MIN  
1.31  
1.97  
3.92  
9.6  
TYP  
MAX  
1.35  
2.03  
4.08  
10.4  
21  
UNIT  
1.33  
2
001  
010  
011  
100  
101  
110  
111  
4
10  
20  
40  
100  
200  
Gain steps (3 bits)  
V/V  
19  
38  
42  
96  
104  
215  
185  
Copyright © 2017, Texas Instruments Incorporated  
7
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
UNIT  
P Gain and T Gain Input Amplifiers (Chopper Stabilized) (continued)  
PARAMETER  
TEST CONDITIONS  
PGAIN = 1.33  
MIN  
TYP  
680  
470  
250  
104  
80  
MAX  
PGAIN = 2  
PGAIN = 4  
PGAIN = 10  
PGAIN = 20  
PGAIN = 40  
PGAIN = 100  
PGAIN = 200  
Bandwidth  
kHz  
72  
30  
15  
Input offset voltage  
Gain temperature drift  
Input bias current  
14  
µV  
ppm/°C  
nA  
Gain = 200 V/V  
–250  
+250  
5
Depends  
on  
Selected  
Gain,  
Common-mode voltage range  
Bridge  
Supply  
and  
V
Sensor  
(1)  
Span  
Common-mode rejection ratio  
Input impedance  
FCM = 50 Hz; ensured by design  
Ensured by design  
110  
10  
dB  
MΩ  
(1) Common Mode at P Gain Input and Output:  
(a) The single-ended voltage of positive/negative pin at the Gain input should be between +0.02 V and +4.38 V  
7.13 Analog-to-Digital Converter  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Sigma delta modulator  
frequency  
4
MHz  
ADC voltage input range  
Number of bits  
–2.5  
2.5  
V
16  
bits  
ADC 2's complement code for  
–2.5-V differential input  
2's Complement  
8000hex  
LSB  
LSB  
LSB  
µs  
ADC 2's complement code for  
0-V differential input  
0000hex  
7FFFhex  
96  
ADC 2's complement code for  
2.5-V differential input  
Output sample period (no  
latency)  
Sample period control bit = 0b00  
ADC multiplexer switching  
time  
1
µs  
8
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
Analog-to-Digital Converter (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Procedure to calculate ENOB:  
1. VDD = 5 V  
2. Temperature = –40°C, 25°C, 125°C,  
150°C  
3. Connect 5-KΩ, Zero TC bridge to the  
pressure input pins device with near  
zero differential voltage  
Effective number of bits  
(ENOB)  
11.4  
bits  
4. Set P GAIN = 200 V/V  
5. Set ADC sample period to 96 µS  
6. Set input MUX to pressure channel  
7. Measure ADC  
8. Calculate ENOB using the formula:  
20log10((32768/2/2)/(ADC code  
rms))/6.02  
Procedure to calculate ENOB in the  
presence of crosstalk:  
1. VDD = 5 V  
2. Temperature = –40°C, 25°C, 125°C,  
150°C  
3. Connect 5-KΩ, Zero TC bridge to the  
pressure input pins device  
4. Set P GAIN = 200 V/V  
5. Set ADC sample period to 96 µS  
ENOB in the presence of  
crosstalk between P and T  
channels  
11.4  
bits  
6. Connect 1-KHz, 1.25-V common  
mode, 1-Vpp sine wave through 100-  
Ω source impedance to temperature  
input pins device  
7. Set T GAIN = 1.33 V/V  
8. Set input MUX to pressure channel  
9. Measure ADC  
10. Calculate ENOB using the formula:  
20log10((32768/2/2)/(ADC code  
rms))/6.02  
Procedure to calculate Linearity:  
1. VDD = 5 V  
2. Temperature = 25°C  
3. Connect 5-KΩ, Zero TC bridge to the  
pressure input pins of the device  
with 30%FS to 70%FS input  
voltages  
Linearity  
±0.8  
%FS  
4. Set GAIN = 200 V/V  
5. Set ADC sample period to 96 µS  
6. Set input MUX to pressure channel  
7. Measure P ADC  
8. Calculate linearity as maximum  
deviation obtaining using end-point  
fit  
7.14 Internal Temperature Sensor  
PARAMETER  
TEST CONDITIONS  
MIN  
–40  
TYP  
MAX  
150  
UNIT  
Internal temperature sensor range  
°C  
(1)  
Gain  
16-bit ADC  
20  
LSB/°C  
LSB  
Offset  
5700  
(1) ADC = Gain × Temperature + offset  
Copyright © 2017, Texas Instruments Incorporated  
9
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
Internal Temperature Sensor (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Total error after calibration using  
typical gain and offset values(2)  
±6  
°C  
(2) TI does not calibrate the sensor. User has to the calibrate the internal temperature sensor on their production line.  
7.15 Bridge Current Measurement  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Bridge current range  
0
8500  
µA  
Gain if T GAIN is configured  
for 1.33 Gain  
2250  
2075  
LSB/mA  
LSB  
Offset T GAIN is configured  
for 1.33 Gain  
Procedure to calculate Total Temperature  
Drift:  
1. VDD = 5 V  
2. Temperature = –40°C, 25°C, 125°C,  
150°C  
3. Connect 5-KΩ, Zero TC bridge to the  
pressure input pins device with near zero  
differential voltage  
4. Set T GAIN = 1.33 V/V  
5. Set input MUX to bridge current  
6. Measure T ADC  
Total temperature drift  
600  
ppm/°C  
7. Filter ADC code using 10-Hz 1st order  
filter  
8. Calculate Total Temperature Drift using  
the formula: (ADC code at  
Temperature – ADC code at  
25°C)/(Temperature – 25°C)/(ADC code  
at 25°C) × 1e6  
7.16 One Wire Interface  
PARAMETER  
TEST CONDITIONS  
MIN  
2400  
TYP  
MAX  
UNIT  
bits per  
second  
Communication baud rate  
9600  
OWI_ENH  
OWI_ENL  
OWI activation high  
OWI activation low  
OWI_ENL  
V
V
6.8  
OWI_DGL_CNT_SEL = 0  
1
10  
1
OWI_LOW  
OWI_HIGH  
Activation signal pulse low time  
Activation signal pulse high time  
ms  
ms  
OWI_DGL_CNT_SEL = 1  
OWI_DGL_CNT_SEL = 0  
OWI_DGL_CNT_SEL = 1  
10  
5.3  
OWI_VIH  
OWI_VIL  
OWI_IOH  
OWI_IOL  
OWI transceiver Rx threshold for high  
OWI transceiver Rx threshold for low  
OWI transceiver Tx threshold for hIgh  
OWI transceiver Tx threshold for low  
V
V
4.7  
1300  
5
900  
2
µA  
µA  
7.17 DAC Output  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
0.25 ×  
Vddp  
DAC Reference Voltage  
DAC Resolution  
Ratiometric Reference  
14  
Bits  
10  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
7.18 DAC Gain for DAC Output  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
4
MAX  
UNIT  
V/V  
Buffer gain (see Figure 2)  
3.9  
4.3  
Gain bandwidth product  
No Load, No DACCAP, Nominal Gain  
1
MHz  
Calculate Gain Nonlinearity at VDD = 5 V and  
25°C as follows:  
1. Apply DAC Code = 819d at 25°C and  
0-mA load and measure voltage at VOUT  
2. Apply DAC Code = 8192d at 25°C and  
0-mA load and measure voltage at VOUT  
3. Apply DAC Code = 15564d at 25°C and  
0-mA load and measure voltage at VOUT  
Offset error (includes DAC  
errors)  
±20  
mV  
4. Linear Curve-fit the three measurements  
using end-point method and determine  
offset  
Calculate Gain Nonlinearity at VDD = 5 V and  
25°C as follows:  
1. Apply DAC Code = 819d at 25°C and  
0-mA load and measure voltage at VOUT  
2. Apply DAC Code = 8192d at 25°C and  
0-mA load and measure voltage at VOUT  
3. Apply DAC Code = 15564d at 25°C and  
0-mA load and measure voltage at VOUT  
Gain nonliearity (includes  
DAC errors)  
±600  
µV  
4. Linear Curve-fit the three measurements  
using end-point method and determine  
nonlinearity  
Calculate Gain Nonlinearity at VDD = 5 V and  
25°C as follows:  
1. Apply DAC Code = 819d at 25°C and  
0-mA load and measure voltage at VOUT  
2. Apply DAC Code = 8192d at 25°C and  
0-mA load and measure voltage at VOUT  
3. Apply DAC Code = 15564d at 25°C and  
0-mA load and measure voltage at VOUT  
Total unadjusted error  
–2  
2
%FSO  
4. Linear Curve-fit the three measurements  
using end-point method and determine  
total unadjusted error by comparing values  
against ideal line. Error is w.r.t. 4V FS.  
Calculate ratiometric error at VDD = 5 V and at  
DAC codes as follows:  
1. Apply DAC Code at 25°C and 0-mA load,  
and measure voltage at VOUT  
Ratiometric error due to  
change in temperature and  
load current for DAC code =  
819d to 15564d.  
2. Change temperature between –40°C to  
150°C, and measure voltage at VOUT  
–10  
10  
mV  
3. Change load current between 0 mA to  
2.5 mA, and measure voltage at VOUT  
4. Ratiometric Error = ((VOUT at  
TEMPERATURE at LOAD) – (VOUT at  
25°C at 0 mA))  
Copyright © 2017, Texas Instruments Incorporated  
11  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
DAC Gain for DAC Output (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Calculate ratiometric error at DAC codes as  
follows:  
1. Apply DAC Code at 25°C and 0-mA load,  
and measure voltage at VOUT  
Ratiometric error due to  
change in VDD for DAC  
code = 819d to 15564d.  
2. Change VDD between 4.5 V and 5.5 V,  
and measure voltage at VOUT  
–12  
12  
mV  
3. Change temperature between –40°C to  
150°C, and measure voltage at VOUT  
4. Ratiometric Error = ((VOUT at VDD, T) –  
(VOUT at 5 V, 25°C) × VDD/5 V)  
Settling time (first order  
response)  
DAC Code 819d to 15564d step and CLOAD  
100 nF. Output is 99% of Final Value  
=
100  
100(1)  
250  
µs  
mV  
mV  
V
DAC code = 0000h,  
IDAC = 1 mA  
Zero code voltage  
Full code voltage  
DAC code = 0000h,  
IDAC = 2.5 mA  
Output when DAC code is 3FFFh,  
IDAC = –1 mA  
Vddp –  
0.15(1)  
Output when DAC code is 3FFFh,  
IDAC = –2.5 mA  
Vddp –  
0.28  
V
Output current  
DAC Code = 3FFFh , DAC Code = 0000h  
DAC code = 3FFFh  
±2.5  
40  
mA  
mA  
mA  
Short circuit source current  
Short circuit sink current  
10  
10  
DAC code = 0000h  
40  
ƒ = 10 Hz to 1 KHz, VDD = 4.5 V, DAC code =  
1FFFh, no capacitor on DACCAP pin,  
temperature = 25°C  
Output voltage noise (GAIN  
= 4X)  
80  
µVpp  
Pullup resistance  
Pulldown resistance  
Capacitance  
2
2
47  
47  
KΩ  
KΩ  
nF  
0.1  
1000  
(1) See Figure for voltage output bands.  
VDDP  
40  
+
VOUT  
VDAC  
-
S4  
RF  
4 V/V  
RG  
DACCAP  
Copyright © 2017, Texas Instruments Incorporated  
Figure 2. PGA302 Output Buffer  
12  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
7.19 Non-Volatile Memory  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Bytes  
Cycles  
ms  
Size  
128  
Erase/write cycles  
EEPROM  
1000  
8
Programming time  
1 2-byte page  
Data retention  
10  
Years  
7.20 Diagnostics - PGA30x  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resistive bridge sensor supply  
VBRG_OV  
7.5%  
VBRG  
overvoltage threshold  
Resistive bridge sensor supply  
VBRG_UV  
–4%  
VBRG  
undervoltage threshold  
VDD_OV  
DVDD_OV  
REF_OV  
REF_UV  
VDD OV threshold  
5.51  
1.85  
2.69  
V
V
V
V
DVDD OV threshold  
Reference overvoltage threshold  
Reference undervoltage threshold  
2.42  
1
2
3
4
Gain input diagnostics pulldown  
resistor value  
VINPP and VINPN each has  
pulldown resistor  
P_DIAG_PD  
T_DIAG_PD  
VINP_OV  
MΩ  
MΩ  
T gain input diagnostics pulldown  
resistor value  
VINTP and VINTN each has  
pulldown resistor  
1
90%  
84%  
78%  
70%  
10%  
16%  
24%  
30%  
90%  
10%  
2.5  
P gain input overvotlage threshold  
value  
VINPP and VINPN each has  
threshold comparator  
VBRDG  
P gain input undervotlage threshold  
value  
VINPP and VINPN each has  
threshold comparator  
VINP_UV  
VBRDG  
VINT_OV  
T gain input overvoltage  
T gain input undervotlage  
P gain output overvoltage  
P gain output undervoltage  
T gain output overvoltage  
T gain output undervoltage  
VINTP and VINTN  
VBRG  
VINT_UV  
VBRG  
PGAIN_OV  
PGAIN_UV  
TGAIN_OV  
TGAIN_UV  
V
V
V
V
0.95  
2.5  
0.67  
HARNESS  
FAULT1  
Open wire VOUT voltage - open VDD Pullup resistor is 2 KΩ to 47 KΩ  
with pullup on VOUT ±5%. across temperature  
5%  
VDD  
VDD  
HARNESS_  
FAULT2  
Open wire VOUT voltage - open GND Pulldown resistor is 2 KΩ to 47  
with pulldown on VOUT KΩ ±5%, across temperature  
95%  
Copyright © 2017, Texas Instruments Incorporated  
13  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
7.21 Typical Characteristics  
9000  
8500  
8000  
7500  
7000  
6500  
6000  
5500  
5000  
4500  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
25 èC  
-40 èC  
150 èC  
-40  
-10  
20  
50  
80  
110  
140  
-1 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8  
1
Temperature (èC)  
Input Differential Voltage (V)  
D001  
D002  
Figure 3. Internal Temperature Sensor  
Figure 4. ADE and ADC Linearity Error  
0.0006  
0.0005  
0.0004  
0.0003  
0.0002  
0.0001  
0
0.15  
IDAC = 0 mA  
IDAC = 1.25 mA  
IDAC = 2.5 mA  
25 èC  
-40 èC  
150 èC  
0.1  
0.05  
0
-0.0001  
-0.0002  
-0.0003  
-0.05  
-0.1  
0
2000 4000 6000 8000 10000 12000 14000 16000  
-0.01  
-0.006  
-0.002  
0.002  
0.006  
0.01  
DAC Code (dec)  
Input Differential Voltage (V)  
D004  
D003  
Figure 6. DAC Linearity Error  
Figure 5. AFE and ADC Linearity Error  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
0.0012  
0.001  
Saturation Region  
0.0008  
0.0006  
0.0004  
0.0002  
0
-0.0002  
-0.0004  
-0.0006  
VDD = 4.5 V  
VDD = 5.5 V  
99  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Common Mode Input Voltage (V)  
4
4.5  
5
0
2000 4000 6000 8000 10000 12000 14000 16000  
DAC Code (dec)  
D006  
D005  
Figure 8. AFE Gain vs Common-Mode Input  
Figure 7. Ratiometric Error vs VDD Supply  
14  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
 
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8 Detailed Description  
8.1 Overview  
The PGA302 is a high accuracy, low drift, low noise, low power, and versatile signal conditioner automotive  
grade qualified device for resistive bridge pressure and temperature-sensing applications. The PGA302  
accommodates various sensing element types, such as piezoresistive, ceramic film, and steel membrane. The  
typical applications supported are pressure sensor transmitter, transducer, liquid level meter, flow meter, strain  
gauge, weight scale, thermocouple, thermistor, 2-wire resistance thermometer (RTD), and resistive field  
transmitters. It can also be used in accelerometer and humidity sensor signal conditioning applications. The  
PGA302 provides bridge excitation voltages of 2.5 V. The PGA302 conditions sensing and temperature signals  
by amplification and digitization through the analog front end chain, and performs linearization and temperature  
compensation. The conditioned signals can be output in analog form. The signal data can also be accessed by  
an I2C digital interface and a GPIO port. The I2C interface can also be used to configure other function blocks  
inside the device. The PGA302 has the unique One-Wire Interface (OWI) that supports the communication and  
configuration through the power supply line. This feature allows to minimize the number of wires needed.  
The PGA302 contains two separated analog-front end (AFE) chains for resistive bridge inputs and temperature-  
sensing inputs. Each AFE chain has its own gain amplifier. The resistive bridge input AFE chain consists of a  
programmable gain with 8 steps from 1.33 V/V to 200 V/V. For the temperature-sensing input AFE chain, the  
PGA302 provides a current source that can source up to 1000 µA for the optional external temperature sensing.  
This current source can also be used as a constant current bridge excitation. In addition, the PGA302 integrates  
an internal temperature sensor which can be configured as the input of the temperature-sensing AFE chain.  
The digitalized signals after the ADC decimation filters are sent to the linearization and compensation calculation  
digital signal logic. A 128-byte EEPROM is integrated in the PGA302 to store sensor calibration coefficients and  
configuration settings as needed.  
The PGA302 has a 14-bit DAC followed by a 4-V/V buffer gain stage. It supports industry standard ratiometric  
voltage output.  
The diagnostic function monitors the operating conditions including power supplies overvoltage, undervoltage, or  
open AFE faults, DAC faults, and a DAC loopback option to check the integrity of the signal chains. The PGA302  
also integrates an oscillator and power management. The PGA302 has a wide ambient temperature operating  
range from –40°C to +150°C. With a small package size, PGA302 has integrated all the functions needed for  
resistive bridge-sensing applications to minimize PCB area and simplify the overall application design.  
Copyright © 2017, Texas Instruments Incorporated  
15  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.2 Functional Block Diagram  
A_REF  
OVERVOLTAGE  
SHUTDOWN &  
REVERSE  
VOLTAGE  
PROTECTION  
SENSOR SUPPLY  
INTERNAL OSC  
(8MHz)  
VDDP  
VDD  
GND  
System Clock  
A_REF  
V
VBRG  
REFERENCE  
(2.5V, 100ppm/°C)  
Bridge  
Current  
LINEAR REGULATORS  
DVDD REGULATOR  
VBRGP  
VBRGN  
DVDD  
DVDD  
D_REF  
I
Channel  
Select  
VBRG/2  
VBRG/2  
A_REF  
VINPP  
VINPN  
PGAIN  
(3 Bits)  
ADC  
Channel  
Select  
P
ITEMP  
P DECIMATION  
FILTER  
(Fixed Ratio)  
uP  
SIGMA DELTA  
MODULATOR  
VINTP  
VINTN  
Bridge Current  
TGAIN  
(3 Bits)  
TEST1  
Internal  
Temperature  
VDD  
vtint  
OWI DRIVER  
TEST2  
tx  
EEPROM  
OWI  
(Calibration Coeffs, Serial No.)  
rx  
Digital Compensation  
req  
vP  
3rd Order TC  
&
+
3rd Order NL  
VOUT  
DACGAIN  
(4x)  
IIR 2nd  
Order  
Sensor  
Compensation  
vT  
DAC  
Filter  
-
DIAGNOSTICS  
DACCAP  
16  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.3 Feature Description  
In this section, individual functional blocks are described.  
8.3.1 Overvoltage and Reverse Voltage Protection  
The PGA302 includes overvoltage protection. This block protects the device from overvoltage conditions on the  
external power supply and shuts off device operation.  
The PGA302 includes reverse voltage protection block. This block protects the device from reverse-battery  
conditions on the external power supply.  
8.3.2 Linear Regulators  
The PGA302 has DVDD regulator that provides the 1.8-V regulated voltage for the digital circuitry.  
The Power-On Reset signal to the digital core is deasserted when DVDD are in regulation. Figure 9 shows the  
block diagram representation of the digital power-on-reset (POR) signal generation and Figure 10 shows the  
digital POR signal assertion and deassertion timing during VDD ramp up and ramp down. This timing shows that  
during power up, the digital core and the processor remains in reset state until DVDD is at stable levels.  
VVDD_POR  
Shutdown  
DVDD  
VDDP  
DVDD Regulator  
Digital_Power_Good  
VDVDD_POR  
Reset DVDD  
Digital Core  
(Including Compensation  
Processor)  
DVSS  
Copyright © 2017, Texas Instruments Incorporated  
Figure 9. Digital Power-On-Reset Signal Generation  
Voltage  
VDD  
VVDD_POR  
DVDD  
VDVDD_POR  
Digital POR  
Time  
Processor Starts  
Running  
Processor Stops  
Running  
Figure 10. Digital Power-On-Reset Signal Generation  
Copyright © 2017, Texas Instruments Incorporated  
17  
 
 
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 Internal Reference  
PGA302 has internal bandgap reference.  
The Reference is used to generate ADC reference voltage and Bridge drive voltage.  
NOTE  
The accurate reference is valid 50 µs after digital core starts running at power up.  
8.3.4 Internal Oscillator  
The device includes an internal 8-MHz oscillator. This oscillator provides the internal clock required for the  
various circuits in PGA302.  
8.3.5 VBRGP and VBRGN Supply for Resistive Bridge  
The Sensor Voltage Supply block of the PGA302 supplies power to the resistive bridge sensor. The sensor  
supply in the PGA302 is 2.5-V nominal output supply. This nominal supply is ratiometric to the precise internal  
Accurate Reference.  
8.3.6 ITEMP Supply for Temperature Sensor  
The ITEMP block in PGA302 supplies programmable current to an external temperature sensor such as PTC.  
The temperature sensor current source is ratiometric to the Reference.  
The value of the current can be programmed using the ITEMP_CTRL bits in TEMP_CTRL register.  
8.3.7 P Gain  
The P Gain is designed with precision, low drift, low flicker noise, chopper-stabilized amplifiers. The P Gain is  
implemented as an Instrument Amplifier as shown in Figure 11.  
The gain of this stage is adjustable using 3 bits in P_GAIN_SELECT register to accommodate sense elements  
with wide-range of signal spans.  
The P Gain amplifier can be configured to measure half-bridge output. In this case, the half bridge can be  
connected to either VINPP or VINPN pins, while the other pin is internally connected to VBRG/2.  
VINPP + VINPN  
VINPP - VINPN  
VOPP  
=
+ PGAIN ì  
2
2
+
-
VOPP  
VINPP  
VINPP + VINPM  
To ADC  
VOCM  
=
2
-
VINPN  
VOPN  
+
VINPP + VINPN  
VINPP - VINPN  
VOPN  
=
- PGAIN ì  
2
2
Copyright © 2017, Texas Instruments Incorporated  
Figure 11. P Gain  
18  
Copyright © 2017, Texas Instruments Incorporated  
 
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
Feature Description (continued)  
8.3.8 T Gain  
The T Gain is designed with precision, low drift, low flicker noise, chopper-stabilized amplifiers. The T Gain is  
identical in architecture to P Gain.  
The gain of this stage is adjustable using 3 bits in T_GAIN_SELECT register to accommodate sense elements  
with wide-range of signal spans.  
The T Gain amplifier can be configured to measure the following samples:  
VINTP-VINTN in Differential mode  
VINTP-GND in Single-ended mode  
Internal Temperature sensor voltage in Single-ended mode  
Bridge current in Single-ended mode  
8.3.9 Bridge Offset Cancel  
The PGA302 device implements a bridge offset cancel circuit at the input of the P GAIN in order to cancel large  
sensor bridge offsets. PGA302 achieves this by introducing a small current into one of the nodes of the bridge  
prior to the AFE gain. The selection of the offset is determined by the OFFSET_CANCEL register and the offset  
values are listed in Table 1.  
Table 1. PGA302 Offset Cancel Implementation  
OFFSET_CANCEL Value  
0x00  
Applied Offset Voltage [mV]  
0 [OFF]  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
3.65  
7.3  
10.95  
14.6  
18.28  
21.9  
25.55  
29.2  
32.85  
36.5  
40.15  
43.8  
47.45  
51.1  
54.75  
Further the polarity of the applied offset can be changed by setting the OFFSET_CANCEL_SEL bit for positive  
offset or clearing the same bit for negative offset.  
8.3.10 Analog-to-Digital Converter  
The Analog-to-Digital Converter is for digitizing the P and T GAIN amplifier output. The digitized values are  
available in the respective channel ADC registers.  
8.3.10.1 Sigma Delta Modulator for ADC  
The sigma-delta modulator for ADC is a 4-MHz, second order, 3-bit quantizer sigma-delta modulator. The sigma-  
delta modulator can be halted using the ADC_CFG_1 register.  
8.3.10.2 Decimation Filter for ADC  
The decimation filter output rate can be configured for 96 µs, 128 µs, 192 µs or 256 µs.  
Copyright © 2017, Texas Instruments Incorporated  
19  
 
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
The output of the decimation filter is 16-bit signed 2's complement value. Some example decimation output  
codes for given differential voltages at the input of the sigma delta modulator as shown in Table 2.  
Table 2. Input Voltage to Output Counts for ADC  
SIGMA DELTA MODULATOR  
16-BIT NOISE-FREE  
DIFFERENTIAL INPUT VOLTAGE  
DECIMATOR OUTPUT  
–2.5 V  
–-1.25 V  
0 V  
–32768 (0x8000)  
–16384 (0xC000)  
0 (0x0000)  
1.25 V  
2.5 V  
16383 (0x3FFF)  
32767 (0x7FFF)  
8.3.10.3 Internal Temperature Sensor ADC Conversion  
The nominal relationship between the device junction temperature and 16-bit TGAIN ADC Code for T GAIN = 4  
V/V is shown in Equation 1  
T ADC Code = 20 × TEMP + 5700  
where  
TEMP is temperature in °C.  
(1)  
Table 3 shows ADC output for some example junction temperature values.  
Table 3. Internal Temperature Sensor to ADC Value  
INTERNAL TEMPERATURE  
–40°C  
16-BIT ADC NOMINAL VALUE  
4900 (0x1324)  
0°C  
5700 (0x1644)  
150°C  
8700 (0x21FC)  
8.3.10.4 ADC Scan Mode  
The ADC is configured in auto scan mode, in which the ADC converts the pressure and temperature signals  
periodically.  
8.3.10.4.1 P-T Multiplexer Timing in Auto Scan Mode  
PGA302 has a multiplexer that multiplexes P and T channels into a single ADC. Figure 12 shows the  
multiplexing scheme.  
P ADC Interrupt Every 96s  
P-T MUX switched to T every P ADC Sample  
ADC Enabled at Power up  
MUX switched to T  
T
T
T
96s  
32s  
P
P
P
P
MUX switched to P  
96s  
Figure 12. P-T multiplexing  
8.3.11 Internal Temperature Sensor  
PGA302 includes an internal temperature sensor whose voltage output is digitized by the ADC and made  
available to the processor. This digitized value is used to implement temperature compensation algorithms. Note  
that the voltage generated by the internal temperature sensor is proportional to the junction temperature.  
20  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
 
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
Figure 13 shows the internal temperature sensor AFE.  
INTERNAL TEMPERATURE SENSOR  
GAIN  
VPTAT  
To ADC  
Copyright © 2017, Texas Instruments Incorporated  
Figure 13. Temperature Sensor AFE  
8.3.12 Bridge Current Measurement  
PGA302 includes a bridge current measurement scheme. This digitized value can be used to implement  
temperature compensation algorithms. Note that the voltage generated is proportional to the bridge current.  
Figure 14 shows the bridge current AFE.  
BRIDGE CURRENT MEASUREMENT  
V
VBRGP  
GAIN  
To ADC  
VBRGN  
Copyright © 2017, Texas Instruments Incorporated  
Figure 14. Bridge Current Measurement  
8.3.13 Digital Interface  
The digital interfaces are used to access (read and write) the internal memory spaces. The device has following  
modes of communication:  
1. One-wire interface (OWI)  
The communication modes supported by PGA302 are referred to as digital interface in this document. For  
communication modes, PGA302 device operates as a slave device.  
8.3.14 OWI  
The device includes a OWI digital communication interface. The function of OWI is to enable writes to and reads  
from all memory locations inside PGA302 available for OWI access.  
8.3.14.1 Overview of OWI Interface  
The OWI digital communication is a master-slave communication link in which the PGA302 operates as a slave  
device only. The master device controls when data transmission begins and ends. The slave device does not  
transmit data back to the master until it is commanded to do so by the master.  
Copyright © 2017, Texas Instruments Incorporated  
21  
 
 
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
The VDD pin of PGA302 is used as OWI interface, so that when PGA302 is embedded inside of a system  
module, only two pins are needed (VDD and GND) for communication. The OWI master communicates with  
PGA302 by modulating the voltage on VDD pin while PGA302 communicates with the master by modulating  
current on VDD pin. The PGA302 processor has the ability to control the activation and deactivation of the OWI  
interface based upon the OWI Activation pulse driven on VDD pin.  
Figure 15 shows a functional equivalent circuit for the structure of the OWI circuitry.  
C&S  
Registers  
VDD  
Address/Data  
Enable  
Lines  
OWI  
Controller  
OWI  
OWI_ACT  
Transceiver  
XCVR SW  
TX  
DIGITAL  
CONTROLLER  
Interrupt  
(OWI_REQ)  
RX  
OWI_REQ_INT  
OWI_REQ  
ESFR  
XCVR SW  
Address/Data  
Lines  
C&S  
Registers  
4 V  
OWI_REQ  
OWI_REQ deglitch  
Filter  
OWI  
Activation  
Comparator  
Copyright © 2017, Texas Instruments Incorporated  
Figure 15. OWI System Components  
8.3.14.2 Activating and Deactivating the OWI Interface  
8.3.14.2.1 Activating OWI Communication  
The OWI master initiates OWI communication by generating OWI Activation Pulse on VDD pin. When PGA302  
receives a valid OWI Activation pulse, it prepares itself for OWI communication.  
To activate OWI communication, the OWI master must Generate an OWI Activation pulse on VDD pin. Figure 16  
illustrates the OWI Activation Pulse that is generated by the Master.  
22  
Copyright © 2017, Texas Instruments Incorporated  
 
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
VDD  
Voltage  
VDD=OWI_ENH  
VDD=OWI_ENL  
>1 ms  
VDD=VIH  
VDD=VIL  
OWI  
<100 ms  
>100 ms  
100 ms<time<200 ms  
COMMUNICATION  
ñ
ñ
Enable OWI transceiver  
Check EEPROM lock status  
OFF = Disable DAC and start OWI communication  
ON = Receive unlock sequence (0x5555) within 100 ms  
Figure 16. OWI Activation Using Overvoltage Drive  
8.3.14.2.2 Deactivating OWI Communication  
To deactivate OWI communication and restart the processor inside PGA302 (if it was in reset), the following step  
must be performed by the OWI Master  
The processor reset should be deasserted by writing 0 to MICRO_RESET bit in  
MICRO_INTERFCE_CONTROL register and access to Digital Interface should be disabled by writing 0 to  
IF_SEL bit in the MICRO_INTERFACE_CONTROL register.  
8.3.14.3 OWI Protocol  
8.3.14.3.1 OWI Frame Structure  
8.3.14.3.1.1 Standard field structure:  
Data is transmitted on the one-wire interface in byte sized packets. The first bit of the OWI field is the start bit.  
The next 8 bits of the field are data bits to be processed by the OWI control logic. The final bit in the OWI field is  
the stop bit. A group of fields make up a transmission frame. A transmission frame is composed of the fields  
necessary to complete one transmission operation on the one-wire interface. The standard field structure for a  
one-wire field is shown in Figure 17  
Standard field  
Figure 17. Standard OWI Field  
Copyright © 2017, Texas Instruments Incorporated  
23  
 
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.3.14.3.1.2 Frame Structure  
A complete one-wire data transmission operation is done in a frame with the structure is shown in Figure 18.  
Command  
Field  
1st Data  
Field  
Nth Data  
Field  
Sync field  
cmd[0:7]  
data-1[0:7]  
data-N[0:7]  
Inter-Field  
Wait Time  
(one bit time)  
Figure 18. OWI Transmission Frame, N = 1 to 8  
Each transmission frame must have a Synchronization field and command field followed by zero to a maximum  
of 8 data fields. The sync field and command fields are always transmitted by the master device. The data  
field(s) may be transmitted either by the master or the slave depending on the command given in the command  
field. It is the command field which determines direction of travel of the data fields (master-to-slave or slave-to-  
master). The number of data fields transmitted is also determined by the command in the command field. The  
inter-field wait time is optional and may be necessary for the slave or the master to process data that has been  
received.  
If OWI remains idle in either logic 0 or logic 1 state, for more than 15 ms, then the PGA302 communication will  
reset and will expect to receive a sync field as the next data transmission from the master.  
8.3.14.3.1.3 Sync Field  
The Sync field is the first field in every frame that is transmitted by the master. The Sync field is used by the  
slave device to compute the bit width transmitted by the master. This bit width will be used to accurately receive  
all subsequent fields transmitted by the master. The format of the Sync field is shown in Figure 19.  
Sync Field  
measured time  
Figure 19. The OWI Sync Field.  
NOTE  
Consecutive SYNC field bits are measured and compared to determine if a valid SYNC  
field is being transmitted to the PGA302 is valid. If the difference in bit widths of any two  
consecutive SYNC field bits is greater than +/- 25%, then PGA302 will ignore the rest of  
the OWI frame (that is, the PGA302 will not respond to the OWI message).  
8.3.14.3.1.4 Command Field  
The command field is the second field in every frame sent by the master. The command field contains  
instructions about what to do with and where to send the data that is transmitted to the slave. The command field  
can also instruct the slave to send data back to the master during a Read operation. The number of data fields to  
be transmitted is also determined by the command in the command field. The format of the command field is  
shown in Figure 20.  
24  
Copyright © 2017, Texas Instruments Incorporated  
 
 
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
Command Field  
cmd[0:7]  
Figure 20. The OWI Command Field.  
8.3.14.3.1.5 Data Field(s)  
After the Master has transmitted the command field in the transmission frame, Zero or more Data Fields are  
transmitted to the slave (Write operation) or to the master (Read operation). The Data fields can be raw  
EEPROM data or address locations in which to store data. The format of the data is determined by the command  
in the command field. The typical format of a data field is shown in Figure 21.  
Data Field  
data[0:7]  
Figure 21. The OWI Data Field.  
8.3.14.3.2 OWI Commands  
The following is the list of five OWI commands supported by PGA302:  
1. OWI Write  
2. OWI Read Initialization  
3. OWI Read Response  
4. OWI Burst Write of EEPROM Cache  
5. OWI Burst Read from EEPROM Cache  
8.3.14.3.2.1 OWI Write Command  
Field Location  
Description  
Bit 7  
0
Bit 6  
P2  
Bit 5  
P1  
Bit 4  
P0  
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
1
Command Field Basic Write Command  
Data Field 1  
Data Field 2  
Destination Address  
A7  
D7  
A6  
A5  
A4  
A3  
D3  
A2  
D2  
A1  
D1  
A0  
D0  
Data byte to be written  
D6  
D5  
D4  
The P2, P1, P0 bits in the command field determine the memory page that is being accessed by the OWI. The  
memory page decode is shown in Table 4.  
Table 4. OWI Memory Page Decode  
P2  
P1  
P0  
Memory Page  
Control and Status Registers,  
DI_PAGE_ADDRESS = 0x00  
0
0
0
Control and Status Registers,  
DI_PAGE_ADDRESS = 0x02  
0
1
0
1
1
0
1
1
0
EEPROM Cache/Cells  
Reserved  
Copyright © 2017, Texas Instruments Incorporated  
25  
 
 
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
Table 4. OWI Memory Page Decode (continued)  
P2  
P1  
P0  
Memory Page  
Control and Status Registers,  
DI_PAGE_ADDRESS = 0x07  
1
1
1
8.3.14.3.2.2 OWI Read Initialization Command  
Field Location  
Command Field Read Init Command  
Data Field 1 Fetch Address  
Description  
Bit 7  
0
Bit 6  
Bit 5  
P1  
Bit 4  
P0  
Bit 3  
0
Bit 2  
0
Bit 1  
1
Bit 0  
0
P2  
A6  
A7  
A5  
A4  
A3  
A2  
A1  
A0  
The P2, P1, P0 bits in the command field determine the memory page that is being accessed by the OWI. The  
memory page decode is shown in Table 4.  
8.3.14.3.2.3 OWI Read Response Command  
Field Location  
Description  
Bit 7  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Command Field Read Response Command  
1
1
1
0
0
1
1
Data Retrieved (OWI  
Data Field 1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
drives data out)  
The P2, P1, P0 bits in the command field determine the memory page that is being accessed by the OWI. The  
memory page decode is shown in Table 4.  
8.3.14.3.2.4 OWI Burst Write Command (EEPROM Cache Access)  
Field Location  
Description  
Bit 7  
1
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EE_CACHE Write Command  
Cache Bytes (0–7)  
Command Field  
1
0
1
0
0
0
0
Data Field 1  
Data Field 2  
1st Data Byte to be written  
2nd Data Byte to be written  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
8.3.14.3.2.5 OWI Burst Read Command (EEPROM Cache Access)  
Field Location  
Description  
Bit 7  
1
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Burst read Response (8-  
bytes)  
Command Field  
1
0
1
0
0
1
1
1st Data Byte Retrieved  
EE Cache Byte 0  
Data Field 1  
Data Field 2  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
2nd Data Byte Retrieved  
EE Cache Byte 1  
8.3.14.3.3 OWI Operations  
8.3.14.3.3.1 Write Operation  
The write operation on the one-wire interface is fairly straightforward. The command field specifies the write  
operation, where the subsequent data bytes are to be stored in the slave, and how many data fields are going to  
be sent. Additional command instructions can be sent in the first few data fields if necessary. The write operation  
is illustrated in Figure 22.  
26  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
Command  
Field  
1st Data  
Field  
Nth Data  
Field  
Sync field  
(To Slave)  
Write Cmd  
(To Slave)  
Write Data  
(To Slave)  
Write Data  
(To Slave)  
Inter-Field  
Wait Time  
Figure 22. Write Operation, N = 1 to 8.  
8.3.14.3.3.2 Read Operation  
The read operation requires two consecutive transmission frames to move data from the slave to the master. The  
first frame is the Read Initialization Frame. It tells the slave to retrieve data from a particular location within the  
slave device and prepare to send it over the OWI. The data location may be specified in the command field or  
may require additional data fields for complete data location specification. The data will not be sent until the  
master commands it to be sent in the subsequent frame called the Read Response Frame. During the read  
response frame the data direction changes from master slave to slave master right after the read response  
command field is sent. Enough time exist between the command field and data field in order to allow the signal  
drivers time to change direction. This wait time is 20 µs and the timer for this wait time is located on the slave  
device. After this wait time is complete the slave will transmit the requested data. The master device is expected  
to have switched its signal drivers and is ready to receive data. The Read frames are shown in Figure 23.  
Command  
Field  
1st Data  
Field  
Nth Data  
Field  
Sync field  
READ_INIT  
(To Slave)  
Opt Data  
Opt Data  
(To Slave)  
(To Slave)  
(To Slave)  
Inter-Field  
Wait Time  
Figure 23. Read Initialization Frame, N = 1 to 8.  
Command  
Field  
1st Data  
Field  
Nth Data  
Field  
Sync field  
(To Slave)  
RD_RESP  
(To Slave)  
Read Data  
(To Master)  
Read Data  
(To Master)  
Data changes direction between  
command field and first Data  
field.  
Inter-Field  
Wait Time  
Figure 24. Read Response Frame, N = 1 to 8  
8.3.14.3.3.3 EEPROM Burst Write  
The EEPORM burst write is used to write 2 bytes of data to the EEPROM Cache using one OWI frame. This  
allows fast programming of EEPROM in the manufacturing line. Note that the EEPROM page has to be selected  
before transferring the contents of the EEPROM memory cells to the EEPROM cache.  
8.3.14.3.3.4 EEPROM Burst Read  
The EEPORM burst read is used to read 2 bytes of data from the EEPROM Cache using one OWI frame. The  
Burst Read command is used for fast read the EEPROM cache contents in the manufacturing line. The read  
process is used to verify the writes to the EEPROM cache.  
Copyright © 2017, Texas Instruments Incorporated  
27  
 
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.3.14.4 OWI Communication Error Status  
PGA302 detects errors in OWI communication. OWI_ERROR_STATUS_LO and OWI_ERROR_STATUS_HI  
registers contain OWI communication error bits. The communication errors detected include:  
Out of range communication baud rate  
Invalid SYNC field  
Invalid STOP bits in command and data  
Invalid OWI command  
8.3.15 I2C Interface  
The device includes an Inter-Integrated Circuit (I2C) digital communication interface. The main function of the I2C  
is to enable writes to, and reads from, all addresses available for I2C access.  
8.3.15.1 Overview of I2C Interface  
I2C is a synchronous serial communication standard that requires the following two pins for communication:  
SDA: I2C Serial Data Line (SDA)  
SCL: I2C Serial Clock Line (SCL)  
I2C communicates in a master/slave style communication bus where one device, the master, can initiate data  
transmission. The device always acts as the slave device in I2C communication, where the external device that is  
communicating to it acts as the master node. The master device is responsible for initiating communication over  
the SDA line and supplying the clock signal on the SCL line. When the I2C SDA line is pulled low it is considered  
a logical zero, and when the I2C SDA line is floating high it is considered a logical one. For the I2C interface to  
have access to memory locations other than test register space, the IF_SEL bit in the Micro/Interface Control  
Test register (MICRO_IF_SEL_T) has to be set to logic one.  
8.3.15.2 I2C Interface Protocol  
The basic Protocol of the I2C frame for a Write operation is shown in Figure 25:  
SLAVE  
ADDRESS  
[6:0]  
Register  
Address  
[7:0]  
DATA  
[7:0]  
S
0
A
A
A/A  
P
Data Transferred  
(n bytes + acknowledge)  
From Master To Slave  
From Slave To Master  
A = acknowledge (SDA LOW)  
A = not acknowledge (SDA HIGH)  
S = START condition  
P = STOP Condition  
Figure 25. I2C Write Operation: A Master-Transmitter Addressing a PGA302 Slave With a 7-Bit Slave  
Address  
The diagram represents the data fed into or out from the I2C SDA port.  
The basic data transfer is to send 2 bytes of data to the specified Slave Address. The first data field is the  
register address and the second data field is the data sent or received.  
The I2C Slave Address is used to determine which memory page is being referenced. Table 5 shows the  
mapping of the slave address to the memory page.  
28  
Copyright © 2017, Texas Instruments Incorporated  
 
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
Table 5. Slave Addresses  
Slave Address  
PGA302 Memory Page  
Test Registers  
0x40  
0x42  
Control and Status Registers, DI_PAGE_ADDRESS  
= 0x02  
0x45  
0x46  
EEPROM Cache/Cells  
Reserved  
Control and Status Registers, DI_PAGE_ADDRESS  
= 0x07  
0x47  
The basic PGA302 I2C Protocol for a read operation is shown in Figure 26.  
SLAVE  
ADDRESS  
[6:0]  
SLAVE  
ADDRESS  
[6:0]  
Register Address  
[7:0]  
Slave Data  
[7:0]  
S
0
A
A
RS  
1
A
P
From Master To Slave  
From Slave To Master  
A = acknowledge (SDA LOW)  
S = START condition  
RS = Repeat Start Condition (same as Start condition)  
P = STOP Condition  
Figure 26. I2C Read Operation: A Master-Transmitter Addressing a PGA302 Slave With a 7-Bit Slave  
Address  
The Slave Address determines the memory page. The R/W bit is set to 0.  
The Register Address specifies the 8-bit address of the requested data.  
The Repeat Start Condition replaces the write data from the above write operation description. This informs the  
PGA302 devices that Read operation will take place instead of a write operation.  
The second Slave Address contains the memory page from which the data will be retrieved. The R/W bit is set to  
1.  
Slave data is transmitted after the acknowledge is received by the master.  
Table 6 lists a few examples of I2C Transfers.  
Table 6. I2C Transfers Examples  
Command  
Master to Slave Data on I2C SDA  
Slave Address: 100 0000  
Read COM_MCU_TO_DIF_B0  
Register Address: 0000 0100  
Slave Address: 100 0010  
Register Address: 0011 0000  
Data: 1000 0000  
Write 0x80 to Control and Status Registers  
0x30 (DAC_REG0_1)  
Slave Address: 100 0101  
Read from EEPROM Byte 7  
Register Address: 0000 0111  
8.3.15.3 Clocking Details of I2C Interface  
The device samples the data on the SDA line when the rising edge of the SCL line is high, and is changed when  
the SCL line is low. The only exceptions to this indication are start, stop, or repeated start conditions as shown in  
Figure 27.  
Copyright © 2017, Texas Instruments Incorporated  
29  
 
 
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
P
SDA  
acknowledgement  
signal from slave  
acknowledgement  
signal from receiver  
Sr  
MSB  
byte complete,  
interrupt within slave  
clock line held low while  
interrupts are serviced  
S
Or  
P
S
Or  
Sr  
SCL  
1
2
1
2
9
8
7
9
3 - 8  
SCK  
SCK  
STOP or  
repeated START  
condition  
START or  
repeat START  
condition  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
SDA  
SCL  
1-7  
8
9
1-7  
8
9
1-7  
8
9
S
P
ADDRESS R/W  
ACK  
DATA  
ACK  
ACK  
START  
condition  
DATA  
STOP  
condition  
Figure 27. I2C Clocking Details  
8.3.16 DAC Output  
The device includes a 14-bit digital to analog converter that produces ratiometric output voltage with respect to  
the VDD supply. The DAC can be disabled by writing 0 to DAC_ENABLE bit in DAC_CTRL_STATUS register.  
When the processor undergoes a reset, the DAC registers are driven to 0x000 code.  
8.3.17 DAC Gain for DAC Output  
The DAC Gain buffer is a buffer stage for the DAC Output. The final stage of DAC Gain is connected to Vddp  
and Ground. This gives the ability to drive VOUT voltage close to VDD voltage.  
8.3.17.1 Connecting DAC Output to DAC GAIN Input  
The DAC output can either be connected to TEST1 test pin or can connected to DAC GAIN input as shown in  
Figure 28. Note that DAC output can be connected to DAC GAIN input by setting TEMP_MUX_DAC_EN bit in  
AMUX_CTRL register to 1.  
30  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
TEST_MUX_DAC_EN bit in  
AMUX_CTRL register  
DAC_ENABLE  
To TEST1 Pin Mux  
Digital  
Logic  
0
1
1
DAC  
40 K  
0
+
VOUT  
DACGAIN  
Copyright © 2017, Texas Instruments Incorporated  
Figure 28. Connecting DAC to DAC GAIN  
8.3.18 Memory  
8.3.18.1 EEPROM Memory  
Figure 29 shows the EEPROM structure. The contents of each EEPROM must be transferred to the EEPROM  
Cache before writes (that is, the EEPROM can be programmed 2 bytes at a time). The EEPROM reads occur  
without the EEPROM cache.  
EEPROM  
Read  
DATA_IN[15:0]  
DIGITAL  
LOGIC  
I
n
t
e
r
Cache  
Address[3:0]  
f
EEPROM  
Cache  
EEPROM  
MEMORY  
CELLS  
a
c
e
Digital Interface  
EEPROM  
PROGRAM  
DATA_Out[15:0]  
(2 Bytes  
1 X 16 Bits)  
M
u
x
Cache Write  
Data_In[7:0]  
Read  
Data_out[7:0]  
Copyright © 2017, Texas Instruments Incorporated  
Figure 29. Structure of EEPROM Interface  
8.3.18.1.1 EEPROM Cache  
The EEPROM Cache serves as temporary storage of data being transferred to selected EEPROM locations  
during the programming process.  
Copyright © 2017, Texas Instruments Incorporated  
31  
 
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.3.18.1.2 EEPROM Programming Procedure  
For programming the EEPROM, the EEPROM is organized in 64 pages of 2 bytes each. The EEPROM memory  
cells are programmed by writing to the 2-byte EEPROM Cache. The contents of the cache are transferred to  
EEPROM memory cells by selecting the EEPROM memory page.  
1. Select the EEPROM page by writing the upper  
EEPROM_PAGE_ADDRESS register  
6 bits of the 7-bit EEPROM address to  
2. Load the 2-byte EEPROM Cache by writing to the EEPROM_CACHE registers.  
3. User can erase by writing 1 to the ERASE bit in EEPROM_CTRL register and 1 to the PROGAM bit in the  
EEPROM_CTRL register simultaneously.  
8.3.18.1.3 EEPROM Programming Current  
The EEPROM programming process will result in an additional 1.5-mA current on the VDD pin for the duration of  
programming.  
8.3.18.1.4 CRC  
The last byte of the EEPROM memory is reserved for the CRC. This CRC value covers all data in the EEPROM  
memory. Every time the last byte is programmed, the CRC value is automatically calculated and validated. The  
validation process checks the calculated CRC value with the last byte programmed in the EEPROM memory cell.  
If the calculated CRC matches the value programmed in the last byte, the CRC_GOOD bit is set in  
EEPROM_CRC_STATUS register.  
The CRC check can also be initiated at any time by setting the CALCULATE_CRC bit in the EEPROM_CRC  
register. The status of the CRC calculation is available in CRC_CHECK_IN_PROG bit in  
EEPROM_CRC_STATUS register, while the result of the CRC validation is available in CRC_GOOD bit in  
EEPROM_CRC_STATUS register.  
The CRC calculation pseudo code is as follows:  
currentCRC8 = 0xFF; // Current value of CRC8  
for NextData  
D = NextData;  
C = currentCRC8;  
begin  
nextCRC8_BIT0 = D_BIT7 ^ D_BIT6 ^ D_BIT0 ^ C_BIT0 ^ C_BIT6 ^ C_BIT7;  
nextCRC8_BIT1 = D_BIT6 ^ D_BIT1 ^ D_BIT0 ^ C_BIT0 ^ C_BIT1 ^ C_BIT6;  
nextCRC8_BIT2 = D_BIT6 ^ D_BIT2 ^ D_BIT1 ^ D_BIT0 ^ C_BIT0 ^ C_BIT1 ^ C_BIT2 ^ C_BIT6;  
nextCRC8_BIT3 = D_BIT7 ^ D_BIT3 ^ D_BIT2 ^ D_BIT1 ^ C_BIT1 ^ C_BIT2 ^ C_BIT3 ^ C_BIT7;  
nextCRC8_BIT4 = D_BIT4 ^ D_BIT3 ^ D_BIT2 ^ C_BIT2 ^ C_BIT3 ^ C_BIT4;  
nextCRC8_BIT5 = D_BIT5 ^ D_BIT4 ^ D_BIT3 ^ C_BIT3 ^ C_BIT4 ^ C_BIT5;  
nextCRC8_BIT6 = D_BIT6 ^ D_BIT5 ^ D_BIT4 ^ C_BIT4 ^ C_BIT5 ^ C_BIT6;  
nextCRC8_BIT7 = D_BIT7 ^ D_BIT6 ^ D_BIT5 ^ C_BIT5 ^ C_BIT6 ^ C_BIT7;  
end  
currentCRC8 = nextCRC8_D8;  
endfor  
NOTE  
The EEPROM CRC calculation is complete 340 µs after digital core starts running at  
power up.  
32  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.3.19 Diagnostics  
This section describes the diagnostics.  
8.3.19.1 Power Supply Diagnostics  
The device includes modules to monitor the power supply for faults. The internal power rails that are monitored  
are:  
1. VDD Voltage, thresholds are generated using High Voltage Reference  
2. DVDD Voltage, thresholds are generated using High Voltage Reference  
3. Bridge Supply Voltage, thresholds are generated using High Voltage Reference  
4. Internal Oscillator Supply Voltage, thresholds are generated using High Voltage Reference  
5. Reference Output Voltage, thresholds are generated using High Voltage Reference  
The electrical specifications lists the voltage thresholds for each of power rails.  
8.3.19.2 Sensor Connectivity/Gain Input Faults  
The device includes circuits to monitor bridge connectivity and temperature sensor connectivity fault. Note that  
temperature sensor connectivity fault is monitored only in 16-pin package option. Specifically, the device  
monitors the bridge pins for opens (including loss of connection from the sensor), short-to-ground, and short-to-  
sensor supply.  
Table 7. Sensor Connectivity/Gain Input Faults (Diagnostic Resistors Active)  
Fault No.  
Fault Mode  
Chip Behavior  
VINP_UV and PGAIN_UV flags set  
N/A  
1
VBRGP Open  
VBRGN Open  
VINPP Open  
VINPN Open  
2
3
VINP_UV and PGAIN_UV flags set  
VINP_UV and PGAIN_UV flags set  
VBRG_UV, VINP_UV and PGAIN_UV flags set  
VINP_OV and PGAIN_OV flags set  
VINP_OV and PGAIN_OV flags set  
N/A  
4
5
VBRGP Shorted to VBRGN  
6
VBRGP Shorted to VINPP  
7
VBRGP Shorted to VINPN  
8
VINPP shorted to VINPN  
9
VINNPP shorted to VBRGN  
VINP_UV and PGAIN_UV flags set  
TGAIN_UV flag set  
10  
11  
Temperature path is differential, VINTP Open  
Temperature path is differential, VINTN Open  
VINT_OV and TGAIN_OV flags set  
Temperature path is differential, VINTP shorted to  
VINTN  
12  
13  
14  
N/A  
Temperature path is single-ended, VINTP Open  
TGAIN_UV flag set  
TGAIN_UV flag set  
Temperature path is single-ended, VINTN Shorted to  
ground  
Copyright © 2017, Texas Instruments Incorporated  
33  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
The thresholds for connectivity fault are derived off of VBRDG voltage.  
OV  
OV  
OV  
UV  
UV  
VINP_OV  
VINT_OV  
OV  
UV  
VINP_UV  
VINT_UV  
UV  
VINPP  
VINPN  
VINTP  
VINTN  
P GAIN  
(3-Bits)  
T GAIN  
(3-Bits)  
To ADC  
To ADC  
Copyright © 2017, Texas Instruments Incorporated  
Figure 30. Block Diagram of Bridge Connectivity Diagnostics  
8.3.19.3 Gain Output Diagnostics  
The device includes modules that verify that the output signal of each gain is within a certain range. This ensures  
that gain stages in the signal chain are working correctly. AVDD voltage is used to generate the thresholds  
voltages for comparison.  
When a fault is detected, the corresponding bit in AFEDIAG register is set. Even after the faulty condition is  
removed, the fault bits will remain latched. To remove the fault, M0 software should read the fault bit and write a  
logic zero back to the bit. A system reset will clear the fault.  
OV  
OV  
UV  
UV  
OV  
OV  
UV  
UV  
PGAIN_OV  
TGAIN_OV  
PGAIN_UV  
TGAIN_UV  
P GAIN  
(3-Bits)  
T GAIN  
(3-Bits)  
To ADC  
To ADC  
Copyright © 2017, Texas Instruments Incorporated  
Figure 31. Block Diagram of Gain Output Diagnostics  
34  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.3.19.4 PGA302 Harness Open Wire Diagnostics  
PGA302 allows for Open Wire Diagnostics to be performed in the ECU. Specifically, the ECU can detect open  
VDD or Open GND wire by installing a pullup or pulldown on VOUT line.  
Table 8. PGA302 Harness Faults  
Device status after  
removal of failure  
Fault No.  
Device VDD  
5 V  
Device GND  
0 V  
Device VOUT  
Remark  
Normal Connection with VOUT to  
Pulled to VDD  
Resumes normal  
operation  
1
Pullup to VDD  
Normal Connection with VOUT to  
Pulled to GND  
2
3
4
5 V  
0 V  
0 V  
0 V  
Pulldown to GND  
GND to VDD  
Device Reset  
Device Reset  
Device Reset  
20 V  
Open  
Overvoltage  
Pullup to VDD = Open VDD with VOUT Pulled to  
5 V  
VDD  
Open VDD with VOUT Pulled to  
GND  
5
Open  
5 V  
0 V  
Pulldown to GND  
Device Reset  
Device Reset  
Device Reset  
Device Reset  
Pullup to VDD = Open GND with VOUT Pulled to  
6
Open  
Open  
20 V  
20 V  
0 V  
5 V  
VDD  
Open GND with VOUT Pulled to  
GND  
7
5 V  
Pulldown to GND  
Reverse Voltage with VOUT Pulled  
to VDD  
8
0 V  
Pullup to VDD  
Pulldown to GND  
Pullup to VDD  
Pulldown to GND  
Pullup to VDD  
Pulldown to GND  
20 V  
Reverse Voltage with VOUT Puledl Physical Damage  
to GND  
9
0 V  
possible.  
VDD Shorted to GND with VOUT  
Pulled to VDD  
10  
11  
12  
13  
14  
15  
0 V  
Device Reset  
VDD Shorted to GND with VOUT  
Pulled to GND  
0 V  
0 V  
Device Reset  
GND Shorted to VDD with VOUT  
Pulled to VDD  
Device Reset. Physical  
Damage possible.  
20 V  
20 V  
20 V  
20 V  
20 V  
20 V  
0 V  
GND Shorted to VDD with VOUT  
Pulled to GND  
Device Reset  
Device Reset. Physical  
Damage possible.  
VOUT Shorted to VDD  
VOUT Shorted to GND  
Resumes normal  
operation  
0 V  
0 V  
Copyright © 2017, Texas Instruments Incorporated  
35  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
Figure 32 shows the possible harness open wire faults on VDD and GND pins.  
Open Wire Diagnostic 1: VDD Open, VOUT has pull up  
SENSOR ECU  
Open Wire Diagnostic 3: VDD Open, VOUT has pull down  
SENSOR ECU  
VDD  
VDD  
VOUT1  
GND  
VOUT1  
GND  
Open Wire Diagnostic 4: GND Open, VOUT has pull down  
SENSOR ECU  
Open Wire Diagnostic 2: GND Open, VOUT has pull up  
SENSOR ECU  
VDD  
VDD  
VOUT1  
GND  
VOUT1  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 32. Harness Open Wire Diagnostics  
Table 9 summarizes the open wire diagnostics and the corresponding resistor pull values that allows the ECU to  
detect open harness faults.  
Table 9. Typical Internal Pulldown Settings  
Max Pull Value State of PGA302 during fault  
ECU Voltage Level (VOUT/OWI  
pin)  
Open Harness  
VDD  
ECU Pull Direction  
Pullup  
(KΩ)  
condition  
PGA302 is off. Leakage currents  
present (especially at high temp)  
50  
VDD – (Ileak1 × Rpullup)  
PGA302 is off, all power rails  
pulled up to VDD  
GND  
Pullup  
N/A  
N/A  
VDD  
GND  
PGA302 is off, all power rails  
pulled down to ground  
VDD  
Pulldown  
PGA302 is off, leakage current  
pushed into VOUT pin (thru the  
chip's ground).  
GND  
Pulldown  
50  
GND + (Ileak2 × Rpulldown)  
8.3.19.5 EEPROM CRC and TRIM Error  
The last Byte in the EEPROM stores the CRC for all the data in EEPROM.  
The user can verify the EEPROM CRC at any time. When the last byte is programmed into the EEPROM, the  
device automatically calculates the CRC and updates the CRC_GOOD bit in EEPROM CRC Status Register.  
The validity of the CRC can also be verified by initiating the CRC check by setting the control bit  
CACULATE_CRC bit in EEPROM_CRC register.  
The device also has analog trim values. The validity of the analog trim values is checked on power up. The  
validity of the trim values can be inferred using the CRC_GOOD bit in the TRIM_CRC_STATUS register.  
36  
Copyright © 2017, Texas Instruments Incorporated  
 
 
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.3.20 Digital Compensation and Filter  
PGA300 implements a second order TC and NL correction of the pressure input. The corrected output is then  
filtered using a second order IIR filter and then written to the output register.  
Digital Compensation  
Digital Offset  
16 Bits  
16 Bits  
PADC  
Digital  
Gain  
+
DAC  
(14 Bits)  
DAC  
(14 Bits)  
DACF  
(14 Bits)  
3rd Order TC  
& NL Sensor  
Compensation  
IIR 2nd Order  
Filter  
DAC/  
VOUT  
Clamping  
DACGAIN  
TADC 16 Bits  
Digital  
Gain  
16 Bits  
+
Digital Offset  
Copyright © 2017, Texas Instruments Incorporated  
Figure 33. Digital Compensation Equation  
8.3.20.1 Digital Gain and Offset  
The digital compensation implements digital gain and offset shown in Equation 2 and Equation 3:  
P = a0(PADC + b0)  
where  
a0 is the digital gain  
and b0 is the digital offset for PADC  
(2)  
(3)  
T = a1(TADC + b1)  
where  
a1 is the digital gain  
and b1 is the digital offset for TADC.  
8.3.20.2 TC and NL Correction  
The compensation is shown in Equation 4:  
OUTPUT = (h0 + h1 × T + h2 × T2 + h3 × T3) + (g0 + g1 × T + g2 × T2 + g3 × T3) × P + (n0 + n1 × T + n2 × T2 + n3 × T3) ×  
P2 + (m0 + m1 × T + m2 × T2 + m3 × T3) × P3  
(4)  
Copyright © 2017, Texas Instruments Incorporated  
37  
 
 
 
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.3.20.3 Clamping  
The output of the compensation is clamped. The low and high clamp values are programmable.  
5 V  
Diagnostics  
HIGH_CLAMP  
High Clamp  
NORMAL_HIGH  
Normal Pressure  
NORMAL_LOW  
Low Clamp  
LOW_CLAMP  
Diagnostics  
0
Figure 34. PGA302 Clamping of Output  
8.3.20.4 Filter  
The IIR filter is shown in Equation 5 and Equation 6:  
w(n) = (a0 × OUTPUT(n) + a1 × w(n – 1) + a2w(n – 2))  
OUTPUT_FF(n) = (b0 × w(n) + b1 × w(n – 1) + b2w(n – 2)  
(5)  
(6)  
8.3.21 Revision ID  
PGA302 includes Revision ID registers. These registers are read-only and represent the device revision and is  
not unique for every device in a certain revision.  
8.4 Device Functional Modes  
There are two functional modes in the PGA302: A Running mode of operation where the digital processing logic  
is enabled and the Reset mode where the digital processing logic is in reset.  
In the Running mode, the I2C and OWI digital interfaces are not allowed to access the PGA302 device memory  
space. The only communication with the device can be established by accessing the COMBUF communication  
buffer registers.  
The Reset mode is generally used for PGA302 device configuration. In this mode, the I2C or OWI interfaces are  
allowed to read and write to the device memory. In this mode, the digital processing logic is in reset which means  
that no device internal signal processing is performed therefore no output data is being generated from the  
device itself.  
38  
Copyright © 2017, Texas Instruments Incorporated  
 
 
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.5 Register Maps  
8.5.1 Programmer's Model  
8.5.1.1 Memory Map  
Memory Page Address for  
Digital Interface Access  
CONTROL & STATUS REGISTERS  
0x02  
0x07  
EEPROM CACHE  
0x05  
0x05  
EEPROM CELLS  
Organized as 2 Pages for Write  
Figure 35. Memory Map  
Copyright © 2017, Texas Instruments Incorporated  
39  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.5.1.2 Control and Status Registers  
Table 10. PGA302 Control and Status Registers  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
Register Name  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
H0_LSB  
H0_MSB  
H1_LSB  
H1_MSB  
H2_LSB  
H2_MSB  
H3_LSB  
H3_MSB  
G0_LSB  
G0_MSB  
G1_LSB  
G1_MSB  
G2_LSB  
G2_MSB  
G3_LSB  
G3_MSB  
N0_LSB  
N0_MSB  
N1_LSB  
N1_MSB  
N2_LSB  
N2_MSB  
N3_LSB  
N3_MSB  
M0_LSB  
M0_MSB  
M1_MSB  
M1_LSB  
M2_LSB  
M2_MSB  
M3_LSB  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x40000000  
0x40000001  
0x40000002  
0x40000003  
0x40000004  
0x40000005  
0x40000006  
0x40000007  
0x40000008  
0x40000009  
0x4000000A  
0x4000000B  
0x4000000C  
0x4000000D  
0x4000003E  
0x4000003F  
0x40000010  
0x40000011  
0x40000012  
0x40000013  
0x40000014  
0x40000015  
0x40000016  
0x40000017  
0x40000018  
0x40000019  
0x4000001A  
0x4000001B  
0x4000001C  
0x4000001D  
0x4000001E  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
H0 [7:0]  
H0 [15:8]  
H1 [7:0]  
H1 [15:8]  
H2 [7:0]  
H2 [15:8]  
H3 [7:0]  
H3 [15:8]  
G0 [7:0]  
G0 [15:8]  
G1 [7:0]  
G1 [15:8]  
G2 [7:0]  
G2 [15:8]  
G3 [7:0]  
G3 [15:8]  
N0 [7:0]  
N0 [15:8]  
N1 [7:0]  
N1 [15:8]  
N2 [7:0]  
N2 [15:8]  
N3 [7:0]  
N3 [15:8]  
M0 [7:0]  
M0 [15:8]  
M1 [7:0]  
M1 [15:8]  
M2 [7:0]  
M2 [15:8]  
M3 [7:0]  
40  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
Register Name  
ZHCSH81 DECEMBER 2017  
Table 10. PGA302 Control and Status Registers (continued)  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
M3_MSB  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x4000001F  
0x40000020  
0x40000021  
RW  
RW  
RW  
M3 [15:8]  
PADC_GAIN  
TADC_GAIN  
PADC_GAIN [7:0]  
TADC_GAIN [7:0]  
PADC_OFFSET_  
BYTE0  
N/A  
N/A  
N/A  
N/A  
0x2  
0x2  
0x2  
N/A  
0x40000022  
0x40000023  
0x40000024  
0x40000025  
0x40000026  
0x40000027  
N/A  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PADC_OFFSET [7:0]  
PADC_OFFSET [15:8]  
TADC_OFFSET [7:0]  
TADC_OFFSET [15:8]  
P_INV  
PADC_OFFSET_  
BYTE1  
N/A  
TADC_OFFSET_  
BYTE0  
N/A  
TADC_OFFSET_  
BYTE1  
N/A  
P_GAIN_  
SELECT  
P_MUX_  
CTRL[1]  
P_MUX_  
CTRL[0]  
0x47  
0x48  
0x4C  
N/A  
PSEM  
TSEM  
P_GAIN[2]  
T_GAIN[2]  
P_GAIN[1]  
T_GAIN[1]  
P_GAIN[0]  
T_GAIN[0]  
T_GAIN_  
SELECT  
T_MUX_  
CTRL[1]  
T_MUX_  
CTRL[0]  
T_INV  
Write 0  
Write 0  
Write 0  
ITEMP_  
CTRL[2]  
ITEMP_  
CTRL[1]  
ITEMP_  
CTRL[0]  
TEMP_CTRL  
ITEMP_  
CTRL[2]  
ITEMP_  
CTRL[1]  
ITEMP_  
CTRL[0]  
DIAG_ENAB DACCAP_E EEPROM_L  
TEMP_SW_CTRL N/A  
0x40000028  
OFFSET_EN  
OFFSET  
LE  
N
OCK  
OFFSET_  
OFFSET  
OFFSET  
OFFSET  
OFFSET_CANCE  
L
0x2  
0x4E  
N/A  
0x40000029  
0x4000002A  
RW  
RW  
Write 0  
CANCEL_V CANCEL_V CANCEL_V CANCEL_V CANCEL_V  
AL[4] AL[3] AL[2] AL[1] AL[0]  
DAC_FAULT_MS  
B
N/A  
DAC_FAULT[15:8]  
LPF_A0_MSB  
LPF_A1_LSB  
LPF_A1_MSB  
LPF_A2_LSB  
LPF_A2_MSB  
LPF_B1_LSB  
LPF_B1_MSB  
PADC_DATA1  
PADC_DATA2  
TADC_DATA1  
TADC_DATA2  
DAC_REG0_1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x2  
0x2  
0x2  
0x2  
0x2  
N/A  
0x4000002B  
0x4000002C  
0x4000002D  
0x4000002E  
0x4000002F  
0x40000030  
0x40000031  
N/A  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
A0 [15:8]  
N/A  
A1 [7:0]  
N/A  
A1 [15:8]  
N/A  
A2 [7:0]  
N/A  
A2 [15:8]  
N/A  
B1 [7:0]  
N/A  
B1 [15:8]  
0x20  
0x21  
0x24  
0x25  
0x30  
PADC_DATA [7:0]  
PADC_DATA [15:8]  
TADC_DATA [7:0]  
TADC_DATA [15:8]  
DAC_VALUE [7:0]  
N/A  
R
N/A  
R
N/A  
R
N/A  
RW  
Copyright © 2017, Texas Instruments Incorporated  
41  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
Table 10. PGA302 Control and Status Registers (continued)  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
Register Name  
R/W  
RW  
RW  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DAC_REG0_2  
0x2  
0x31  
N/A  
DAC_VALUE [11:8]  
OP_STAGE_CTR  
L
DACCAP_E  
N
0x2  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x3B  
N/A  
NORMAL_LOW_L  
SB  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x40000032  
0x40000033  
0x40000034  
0x40000035  
0x40000036  
0x40000037  
0x40000038  
0x40000039  
0x4000003A  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
NORMAL_DAC_LOW [7:0]  
NORMAL_DAC_HIGH [7:0]  
CLAMP_DAC_LOW [7:0]  
CLAMP_DAC_HIGH [7:0]  
NORMAL_LOW_  
MSB  
NORMAL_DAC_LOW [11:8]  
NORMAL_DAC_HIGH [11:8]  
CLAMP_DAC_LOW [11:8]  
CLAMP_DAC_HIGH [11:8]  
NORMAL_HIGH_  
LSB  
NORMAL_HIGH_  
MSB  
LOW_CLAMP_LS  
B
LOW_CLAMP_MS  
B
HIGH_CLAMP_LS  
B
HIGH_CLAMP_M  
SB  
TGAIN_UV_ TGAIN_OV_ PGAIN_UV_ PGAIN_OV_  
EN  
VINT_OV_E VINP_UV_E VINP_OV_E  
N
DIAG_BIT_EN  
EN  
EN  
EN  
N
N
PSMON1  
AFEDIAG  
0x2  
0x2  
0x58  
0x5A  
N/A  
N/A  
RW  
RW  
DVDD_OV  
PGAIN_OV  
REF_UV  
REF_OV  
VINT_OV  
VBRG_UV  
VINP_UV  
VBRG_OV  
VINP_OV  
TGAIN_UV  
TGAIN_OV  
PGAIN_UV  
SERIAL_NUMBE  
R_BYTE0  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x4000003B  
0x4000003C  
0x4000003D  
0x4000003E  
RW  
RW  
RW  
RW  
SERIAL_NUMBER [7:0]  
SERIAL_NUMBER [15:8]  
SERIAL_NUMBER [23:16]  
SERIAL_NUMBER [31:24]  
SERIAL_NUMBE  
R_BYTE1  
SERIAL_NUMBE  
R_BYTE2  
SERIAL_NUMBE  
R_BYTE3  
USER_FREE_SP  
ACE  
0x4000003F-  
0x4000007E  
N/A  
N/A  
N/A  
N/A  
RW  
RW  
EEPROM_CRC  
0x4000007F  
EEPROM_CRC [7:0]  
MICRO_  
INTERFACE_  
CONTROL  
MICRO_RE  
SET  
0x0  
0x0C  
N/A  
RW  
R
IF_SEL  
EEPROM ARRAY 0x5  
0x00-0x7F N/A  
42  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
Register Name  
ZHCSH81 DECEMBER 2017  
Table 10. PGA302 Control and Status Registers (continued)  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EEPROM_CACH  
E
0x5  
0x80-0x81 N/A  
RW  
EEPROM_PAGE_  
ADDRESS  
0x5  
0x5  
0x5  
0x82  
0x83  
0x84  
N/A  
N/A  
N/A  
RW  
RW  
RW  
ADDR[5]  
ADDR[4]  
ADDR[3]  
ADDR[2]  
Write 0  
ADDR[1]  
ERASE  
ADDR[0]  
EEPROM_CTRL  
PROGRAM  
CALCULATE  
_CRC  
EEPROM_CRC  
PROGRAM_  
IN  
_PROGRES  
S
ERASE_IN  
_PROGRES _PROGRES  
S
READ_IN  
EEPROM_STATU  
S
0x5  
0x85  
N/A  
R
S
CRC_CHEC  
K
_IN_PROG  
EEPROM_CRC  
_STATUS  
0x5  
0x5  
0x86  
0x87  
N/A  
N/A  
R
R
CRC_GOOD  
EEPROM_CRC  
_VALUE  
EEPROM_CRC_VALUE [7:0]  
Copyright © 2017, Texas Instruments Incorporated  
43  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.5.1.2.1 MICRO_INTERFACE_CONTROL (DI Page Address = 0x0) (DI Page Offset = 0x0C)  
Figure 36. MICRO_INTERFACE_CONTROL Register  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MICRO_RESE  
T
IF_SEL  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
R/W-0  
R/W-0  
Table 11. MICRO_INTERFACE_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
IF_SEL  
R/W  
0x00  
1: Digital Interface accesses the memory  
0: Ccontroller accesses the memory  
1
MICRO_RESET  
Reserved  
R/W  
N/A  
0x00  
0x00  
1: Controller Reset  
0: Controller Running  
2:7  
Reserved  
44  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.5.1.2.2 PSMON1 (M0 Address= 0x40000558) (DI Page Address = 0x2) (DI Page Offset = 0x58)  
Figure 37. PSMON1 Register  
7
6
5
4
3
2
1
0
Reserved  
N/A  
Reserved  
R/W-0  
Reserved  
N/A  
DVDD_OV  
R/W-0  
REF_UV  
R/W-0  
REF_OV  
R/W-0  
VBRG_UV  
R/W-0  
VBRG_OV  
R/W-0  
Table 12. PSMON1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
R/W  
0x00  
Read:  
1: VBRG is overvoltage  
0: VBRG is not overvoltage  
Write:  
1: Clears VBRG_OV bit  
0: No Action  
VBRG_OV  
VBRG_UV  
REF_OV  
1
2
3
4
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
Read:  
1: VBRG is undervoltage  
0: VBRG is not undervoltage  
Write:  
1: Clears VBRG_UV bit  
0: No Action  
Read:  
1: Reference is overvoltage  
0: Reference is not overvoltage  
Write:  
1: Clears REF_OV bit  
0: No Action  
Read:  
1: Reference is undervoltage  
0: Reference is not undervoltage  
Write:  
1: Clears REF_UV bit  
0: No Action  
REF_UV  
Read:  
1: DVDD is overvoltage  
0: DVDD is not overvoltage  
Write:  
DVDD_OV  
1: Clears DVDD_OV bit  
0: No Action  
5
6
7
Reserved  
Reserved  
Reserved  
N/A  
N/A  
N/A  
0x00  
0x00  
0x00  
Reserved  
Reserved  
Reserved  
Copyright © 2017, Texas Instruments Incorporated  
45  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.5.1.2.3 AFEDIAG (M0 Address= 0x4000055A) (DI Page Address = 0x2) (DI Page Offset = 0x5A)  
Figure 38. AFEDIAG Register  
7
6
5
4
3
2
1
0
TGAIN_UV  
R/W-0  
TGAIN_OV  
R/W-0  
PGAIN_UV  
R/W-0  
PGAIN_OV  
R/W-0  
Reserved  
R/W-0  
VINT_OV  
R/W-0  
VINP_UV  
R/W-0  
VINP_OV  
R/W-0  
Table 13. AFEDIAG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
R/W  
0x00  
Read:  
1: Indicates overvoltage at input pins of P Gain  
0: Indicates no overvoltage at input pins of P Gain  
Write:  
VINP_OV  
1: Clears VINP_OV bit  
0: No Action  
1
2
R/W  
R/W  
0x00  
0x00  
Read:  
1: Indicates undervoltage at input pins of P Gain  
0: Indicates no undervoltage at input pins of P Gain  
Write:  
1: Clears VINP_UV bit  
0: No Action  
VINP_UV  
Read:  
1: Indicates overvoltage at input pins of T Gain  
0: Indicates no overvoltage at input pins of T Gain  
Write:  
1: Clears VINT_OV bit  
0: No Action  
VINT_OV  
Reserved  
PGAIN_OV  
3
4
R/W  
R/W  
0x00  
0x00  
Read:  
1: Indicates overvoltage at output of P Gain  
0: Indicates no overvoltage at output of P Gain  
Write:  
1: Clears PGAIN_OV bit  
0: No Action  
5
6
7
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
Read:  
1: Indicates undervoltage at output of P Gain  
0: Indicates no undervoltage at output of P Gain  
Write:  
1: Clears PGAIN_UV bit  
0: No Action  
PGAIN_UV  
TGAIN_OV  
TGAIN_UV  
Read:  
1: Indicates overvoltage at output of T Gain  
0: Indicates no overvoltage at output of T Gain  
Write:  
1: Clears TGAIN_OV bit  
0: No Action  
Read:  
1: Indicates ubdervoltage at output of T Gain  
0: Indicates no undervoltage at output of T Gain  
Write:  
1: Clears TGAIN_UV bit  
0: No Action  
46  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.5.1.2.4 P_GAIN_SELECT (DI Page Address = 0x2) (DI Page Offset = 0x47)  
Figure 39. P_GAIN_SELECT Register  
7
6
5
4
3
2
1
0
P_INV  
Reserved  
P_MUX_  
CTRL[1]  
P_MUX_  
CTRL[0]  
PSEM  
P_GAIN[2]  
P_GAIN[1]  
P_GAIN[0]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 14. P_GAIN_SELECT Register Field Descriptions  
Bit  
0
Field  
Type  
R/W  
R/W  
R/W  
Reset  
0x00  
0x00  
0x00  
Description  
P_GAIN[0]  
P_GAIN[1]  
P_GAIN[2]  
1
See Electrical Parameters for Gain Selections  
2
3
1: Differential mode  
0: Single-ended mode  
PSEM  
R/W  
R/W  
0x00  
0x00  
4
5
P_MUX_CTRL[0]  
P Channel Input MUX:  
00: VINPP - VINPN  
01: VINPP - 1.25V  
P_MUX_CTRL[1]  
R/W  
0x00  
10: 1.25V - VINPN  
When P_INV =1 the order is reversed  
6
7
Reserved  
P_INV  
R/W  
R/W  
0x00  
0x00  
Reserved  
1: Inverts the output of the GAIN Output for pressure channel  
0: No Inversion  
8.5.1.2.5 T_GAIN_SELECT (DI Page Address = 0x2) (DI Page Offset = 0x48)  
Figure 40. T_GAIN_SELECT Register  
7
6
5
4
3
2
1
0
T_INV  
T_MUX_  
CTRL[2]  
T_MUX_  
CTRL[1]  
T_MUX_  
CTRL[0]  
TSEM  
T_GAIN[2]  
T_GAIN[1]  
T_GAIN[0]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 15. T_GAIN_SELECT Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
0x00  
0x00  
0x00  
Description  
0
1
2
3
T_GAIN[0]  
T_GAIN[1]  
T_GAIN[2]  
See Electrical Parameters for Gain Selections  
1: Differential mode  
0: Single-ended mode  
TSEM  
R/W  
0x00  
4
5
6
T_MUX_CTRL[0]  
T_MUX_CTRL[1]  
R/W  
R/W  
0x00  
0x00  
0b000: External Temperature Sensor  
0b001: TEST1  
0b010: Internal Temperature Sensor  
0b011: Bridge Current  
T_MUX_CTRL[2]  
T_INV  
R/W  
R/W  
0x00  
0x00  
0b100: ITEMP Pin Voltage  
7
1: Inverts the output of the GAIN Output for pressure channel  
0: No Inversion  
Copyright © 2017, Texas Instruments Incorporated  
47  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.5.1.2.6 TEMP_CTRL (DI Page Address = 0x2) (DI Page Offset = 0x4C)  
Figure 41. TEMP_CTRL Register  
7
6
5
4
3
2
1
0
ITEMP_DST_S  
EL  
ITEMP_  
CTRL[2]  
ITEMP_  
CTRL[1]  
ITEMP_  
CTRL[0]  
Reserved  
Reserved  
Reserved  
Reserved  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
N/A  
N/A  
N/A  
N/A  
Table 16. TEMP_CTRL Register Field Descriptions  
Bit  
0:3  
4:6  
Field  
Reserved  
Type  
N/A  
Reset  
0x00  
0x00  
Description  
Reserved  
R/W  
0x00: 50 µA  
0x01: 100 µA  
0x02: 200 µA  
0x03: 1000 µA  
0x04 - 0x07: OFF  
ITEMP_CTRL[3:0]  
ITEMP_DST_SEL  
0: ITEMP is driven to VINTP pin  
1: ITEMP is driven to ITEMP pin  
7
R/W  
0x00  
8.5.1.2.7 OFFSET_CANCEL (DI Page Address = 0x2) (DI Page Offset = 0x4E)  
Figure 42. OFFSET_CANCEL Register  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
OFFSET_  
OFFSET  
OFFSET  
OFFSET  
OFFSET  
CANCEL_SEL CANCEL_VAL[ CANCEL_VAL[ CANCEL_VAL[ CANCEL_VAL[  
3]  
2]  
1]  
0]  
N/A  
N/A  
N/A  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 17. OFFSET_CANCEL Register Field Descriptions  
Bit  
0
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
0x00  
0x00  
0x00  
0x00  
Description  
OFFSET_CANCEL_VAL[0]  
OFFSET_CANCEL_VAL[1]  
OFFSET_CANCEL_VAL[2]  
0x00: 0 mV  
0x01: 3.65 mV  
0x02: 7.3 mV  
1
2
0x03: 10.95 mV  
0x04: 14.6 mV  
0x05: 18.28 mV  
0x06: 21.9 mV  
0x07: 25.55 mV  
0x08: 29.2mV  
0x09: 32.85 mV  
0x0A: 36.5 mV  
0x0B: 40.15mV  
0x0C: 43.8 mV  
0x0D: 47.45mV  
0x0E: 51.1 mV  
0x0F: 54.75 mV  
3
OFFSET_CANCEL_VAL[3]  
4
R/W  
N/A  
0x00  
0x00  
1: Offset current is connected to VINPP pin (Positive Offset)  
0: Offset current is connected to VINPN pin (Negative Offset)  
OFFSET_CANCEL_SEL  
Reserved  
5:7  
Reserved  
48  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.5.1.2.8 PADC_DATA1 (DI Page Address = 0x0) (DI Page Offset = 0x10)  
To read PADC_DATA from Digital Interface, the least significant byte/word should be read first. This returns  
the least significant byte/word. The most significant bytes are latched into a shadow register. Reads to the  
Digital Interface addresses 0x11 return data from this shadow register.  
In 16-bit mode, PADC_DATA1 will be the least significant byte and PADC_DATA2 is the most significant  
byte.  
Figure 43. PADC_DATA1 Register  
7
6
5
4
3
2
1
0
PADC_DATA [7:0]  
R-0 R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Table 18. PADC_DATA1 Register Field Descriptions  
Bit  
0:7  
Field  
PADC_DATA [7:0]  
Type  
Reset  
Description  
R
0x00  
Pressure ADC Output LS Byte  
8.5.1.2.9 PADC_DATA2 (DI Page Address = 0x0) (DI Page Offset = 0x11)  
To read PADC_DATA from Digital Interface, the least significant byte/word should be read first. This returns  
the least significant byte/word. The most significant bytes are latched into a shadow register. Reads to the  
Digital Interface addresses 0x11 return data from this shadow register.  
In 16-bit mode, PADC_DATA1 will be the least significant byte and PADC_DATA2 is the most significant  
byte.  
Figure 44. PADC_DATA2 Register  
7
6
5
4
3
2
1
0
PADC_DATA [15:8]  
R-0 R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Table 19. PADC_DATA2 Register Field Descriptions  
Bit  
0:7  
Field  
PADC_DATA  
Type  
Reset  
Description  
R
0x00  
Pressure ADC Output MS Byte  
Copyright © 2017, Texas Instruments Incorporated  
49  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.5.1.2.10 TADC_DATA1 (DI Page Address = 0x0) (DI Page Offset = 0x14)  
To read TADC_DATA from Digital Interface, the least significant byte/word should be read first. This returns  
the least significant byte/word. The most significant bytes are latched into a shadow register. Reads to the  
Digital Interface addresses 0x15 return data from this shadow register.  
In 16-bit mode, TADC_DATA1 will be the least significant byte and TADC_DATA2 is the most significant byte.  
Figure 45. TADC_DATA1 Register  
7
6
5
4
3
2
1
0
TADC_DATA [7:0]  
R-0 R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Table 20. TADC_DATA1 Register Field Descriptions  
Bit  
0:7  
Field  
TADC_DATA  
Type  
Reset  
Description  
R
0x00  
Temperature ADC Output LS Byte  
8.5.1.2.11 TADC_DATA2 (DI Page Address = 0x0) (DI Page Offset = 0x15)  
To read TADC_DATA from Digital Interface, the least significant byte/word should be read first. This returns  
the least significant byte/word. The most significant bytes are latched into a shadow register. Reads to the  
Digital Interface addresses 0x15 return data from this shadow register.  
In 16-bit mode, TADC_DATA1 will be the least significant byte and TADC_DATA2 is the most significant byte.  
Figure 46. TADC_DATA2 Register  
7
6
5
4
3
2
1
0
TADC_DATA [15:8]  
R-0 R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Table 21. TADC_DATA2 Register Field Descriptions  
Bit  
0:7  
Field  
TADC_DATA  
Type  
Reset  
Description  
R
0x00  
Temperature ADC Output MS Byte  
50  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.5.1.2.12 DAC_REG0_1 (DI Page Address = 0x2) (DI Page Offset = 0x30)  
DAC Register Usage:  
Figure 47. DAC_REG0_1 Register  
7
6
5
4
3
2
1
0
DAC_VAL [7:0]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 22. DAC_REG0_1 Register Field Descriptions  
Bit  
0:7  
Field  
DAC_VAL  
Type  
Reset  
Description  
R/W  
0x00  
DAC Output value LS Byte  
8.5.1.2.13 DAC_REG0_2 (DI Page Address = 0x2) (DI Page Offset = 0x31)  
DAC Register Usage:  
Figure 48. DAC_REG0_2 Register  
7
6
5
4
3
2
1
0
Reserved  
R/W-0  
Reserved  
R/W-0  
Reserved  
R/W-0  
Reserved  
R/W-0  
DAC_VAL [11:8]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 23. DAC_REG0_2 Register Field Descriptions  
Bit  
0:3  
4:7  
Field  
Type  
R/W  
N/A  
Reset  
0x00  
0x00  
Description  
DAC_VAL  
Reserved  
DAC Output value MS Nibble  
Reserved  
Copyright © 2017, Texas Instruments Incorporated  
51  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.5.1.2.14 OP_STAGE_CTRL (DI Page Address = 0x2) (DI Page Offset = 0x3B)  
Figure 49. OP_STAGE_CTRL Register  
7
6
5
4
3
2
1
0
Reserved  
N/A  
Reserved  
N/A  
Reserved  
N/A  
DACCAP_EN  
R/W-0  
Reserved  
N/A  
Reserved  
N/A  
Reserved  
N/A  
Reserved  
N/A  
Table 24. OP_STAGE_CTRL Register Field Descriptions  
Bit  
0:3  
4
Field  
Type  
N/A  
Reset  
0x00  
0x00  
Description  
Reserved  
Reserved  
DACCAP_EN  
R/W  
1: Enable DACCAP capacitor (Close switch S4 in DAC Gain)  
0: Disable DACCAP capacitor (Open switch S4 in DAC Gain)  
5:7  
Reserved  
N/A  
0x00  
Reserved  
8.5.1.2.15 EEPROM_ARRAY (DI Page Address = 0x5) (DI Page Offset = 0x00 - 0x7F)  
Figure 50. EEPROM_ARRAY Register Range  
7
6
5
4
3
2
1
0
DATA[7]  
RW-0  
DATA[6]  
RW-0  
DATA[5]  
RW-0  
DATA[4]  
RW-0  
DATA[3]  
RW-0  
DATA[2]  
RW-0  
DATA[1]  
RW-0  
DATA[0]  
RW-0  
Table 25. EEPROM_ARRAY Register Range Descriptions  
Bit  
Field  
DATA[0] : DATA[7]  
Type  
Reset  
Description  
0:7  
R/W  
0x00  
EEPROM Read Memory. The EEPROM data can be directly  
read from these register locations.  
For EEPROM programming use EEPROM_CACHE_BYTE0,  
EEPROM_CACHE_BYTE1, EEPROM_PAGE_ADDRESS and  
EEPROM_CTRL Registers.  
8.5.1.2.16 EEPROM_CACHE_BYTE0 (DI Page Address = 0x5) (DI Page Offset = 0x80)  
Figure 51. EEPROM_CACHE_BYTE0 Register  
7
6
5
4
3
2
1
0
DATA[7]  
RW-0  
DATA[6]  
RW-0  
DATA[5]  
RW-0  
DATA[4]  
RW-0  
DATA[3]  
RW-0  
DATA[2]  
RW-0  
DATA[1]  
RW-0  
DATA[0]  
RW-0  
Table 26. EEPROM_CACHE_BYTE0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0:7  
DATA[0] : DATA[7]  
R/W  
0x00  
EEPROM Programming Cache Byte0  
8.5.1.2.17 EEPROM_CACHE_BYTE1 (DI Page Address = 0x5) (DI Page Offset = 0x81)  
Figure 52. EEPROM_CACHE_BYTE1 Register  
7
6
5
4
3
2
1
0
DATA[7]  
RW-0  
DATA[6]  
RW-0  
DATA[5]  
RW-0  
DATA[4]  
RW-0  
DATA[3]  
RW-0  
DATA[2]  
RW-0  
DATA[1]  
RW-0  
DATA[0]  
RW-0  
Table 27. EEPROM_CACHE_BYTE1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0:7  
DATA[0] : DATA[7]  
R/W  
0x00  
EEPROM Programming Cache Byte1  
52  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.5.1.2.18 EEPROM_PAGE_ADDRESS (DI Page Address = 0x5) (DI Page Offset = 0x82)  
Figure 53. EEPROM_PAGE_ADDRESS Register  
7
6
5
4
3
2
1
0
Reserved  
N/A  
Reserved  
N/A  
ADDR[5]  
RW-0  
ADDR[4]  
RW-0  
ADDR[3]  
RW-0  
ADDR[2]  
RW-0  
ADDR[1]  
RW-0  
ADDR[0]  
RW-0  
Table 28. EEPROM_PAGE_ADDRESS Register Field Descriptions  
Bit  
0
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
N/A  
Reset  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Description  
ADDR[0]  
ADDR[1]  
ADDR[2]  
ADDR[3]  
ADDR[4]  
ADDR[5]  
Reserved  
1
2
3
4
5
6:7  
Reserved  
8.5.1.2.19 EEPROM_CTRL (DI Page Address = 0x5) (DI Page Offset = 0x83)  
Figure 54. EEPROM_CTRL Register  
7
6
5
4
3
2
1
0
Reserved  
N/A  
Reserved  
N/A  
Reserved  
N/A  
Reserved  
N/A  
Reserved  
N/A  
Write 0  
RW-0  
ERASE  
RW-0  
PROGRAM  
RW-0  
Table 29. EEPROM_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
0x00  
1: Program contents of EEPROM cache into EEPROM memory  
pointed to by EEPROM_PAGE_ADDRESS  
0: No action  
PROGRAM  
ERASE  
R/W  
1
0x00  
1: Erase contents of EEPROM memory pointed to by  
EEPROM_PAGE_ADDRESS  
0: No action  
R/W  
2
Reserved  
Reserved  
R/W  
N/A  
0x00  
0x00  
Reserved  
Reserved  
3:7  
8.5.1.2.20 EEPROM_CRC (DI Page Address = 0x5) (DI Page Offset = 0x84)  
Figure 55. EEPROM_CRC Register  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CALCULATE  
_CRC  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
RW-0  
Table 30. EEPROM_CRC Register Field Descriptions  
Bit  
Field  
Type  
R/W  
N/A  
Reset  
Description  
0
0x00  
1: Calculate EEPROM CRC  
0: No action  
CALCULATE_CRC  
Reserved  
1:7  
0x00  
Reserved  
Copyright © 2017, Texas Instruments Incorporated  
53  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.5.1.2.21 EEPROM_STATUS (DI Page Address = 0x5) (DI Page Offset = 0x85)  
Figure 56. EEPROM_STATUS Register  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PROGRAM_IN  
_PROGRESS  
ERASE_IN  
_PROGRESS  
READ_IN  
_PROGRESS  
N/A  
N/A  
N/A  
N/A  
N/A  
R-0  
R-0  
R-0  
Table 31. EEPROM_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
0x00  
1: EEPROM Read in progress  
0: EEPROM Read not in progress  
READ_IN_PROGRESS  
ERASE_IN_PROGRESS  
R
1
2
0x00  
0x00  
0x00  
1: EEPROM Erase in progress  
0: EEPROM Erase not in progress  
R
1: EEPROM Program in progress  
0: EEPROM Program not in progress  
PROGRAM_IN_PROGRESS  
Reserved  
R
3:7  
N/A  
Reserved  
8.5.1.2.22 EEPROM_CRC_STATUS (DI Page Address = 0x5) (DI Page Offset = 0x86)  
Figure 57. EEPROM_CRC_STATUS Register  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CRC_GOOD  
CRC_CHECK  
_IN_PROG  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
R-0  
R-0  
Table 32. EEPROM_CRC_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
0x00  
1: EEPROM CRC check in progress  
0: EEPROM CRC check not in progress  
CRC_CHECK_IN_PROGRESS  
R
1
0x00  
1: EEPROM Programmed CRC matches calculated CRC  
0: EEPROM Programmed CRC does not match calculated CRC  
CRC_GOOD  
R
2:7  
8.5.1.2.23 EEPROM_CRC_VALUE (DI Page Address = 0x5) (DI Page Offset = 0x87)  
EEPROM CRC value should be located in the last byte of the EEPROM.  
Figure 58. EEPROM_CRC_VALUE Register  
7
6
5
4
3
2
1
0
EEPROM_CRC_VALUE [7:0]  
R-1 R-1  
R-1  
R-1  
R-1  
R-1  
R-1  
R-1  
Table 33. EEPROM_CRC_VALUE Register Field Descriptions  
Bit  
0:7  
Field  
EEPROM_CRC_VALUE  
Type  
Reset  
Description  
Device Calculated EEPROM CRC value  
R
0x01  
54  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.5.1.2.24 H0 (EEPROM Address= 0x40000000)  
Figure 59. H0_LSB Register  
7
6
5
4
3
2
1
0
H0 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 60. H0_MSB Register  
7
6
5
4
3
2
1
0
H0 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 34. H0 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
H0 Linearization Coefficient (2's complement value)  
H0  
R/W  
0x00  
8.5.1.2.25 H1 (EEPROM Address= 0x40000002)  
Figure 61. H1_LSB Register  
7
6
5
4
3
2
1
0
H1 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 62. H1_MSB Register  
7
6
5
4
3
2
1
0
H1 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 35. H1 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
H1 Linearization Coefficient (2's complement value)  
H1  
R/W  
0x00  
8.5.1.2.26 H2 (EEPROM Address= 0x40000004)  
Figure 63. H2_LSB Register  
7
6
5
4
3
2
1
0
H2 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 64. H2_MSB Register  
7
6
5
4
3
2
1
0
H2 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 36. H2 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
H2 Linearization Coefficient (2's complement value)  
H2  
R/W  
0x00  
Copyright © 2017, Texas Instruments Incorporated  
55  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.5.1.2.27 H3 (EEPROM Address= 0x40000006)  
Figure 65. H3_LSB Register  
7
6
5
4
3
2
1
0
H3 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 66. H3_MSB Register  
7
6
5
4
3
2
1
0
H3 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 37. H3 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
H3 Linearization Coefficient (2's complement value)  
H3  
R/W  
0x00  
8.5.1.2.28 G0 (EEPROM Address= 0x40000008)  
Figure 67. G0_LSB Register  
7
6
5
4
3
2
1
0
G0 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 68. G0_MSB Register  
7
6
5
4
3
2
1
0
G0 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 38. G0 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
G0 Linearization Coefficient (2's complement value)  
G0  
R/W  
0x00  
8.5.1.2.29 G1 (EEPROM Address= 0x4000000A)  
Figure 69. G1_LSB Register  
7
6
5
4
3
2
1
0
G1 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 70. G1_MSB Register  
7
6
5
4
3
2
1
0
G1 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 39. G1 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
G1 Linearization Coefficient (2's complement value)  
G1  
R/W  
0x00  
56  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.5.1.2.30 G2 (EEPROM Address= 0x4000000C)  
Figure 71. G2_LSB Register  
7
6
5
4
3
2
1
0
G2 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 72. G2_MSB Register  
7
6
5
4
3
2
1
0
G2 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 40. G2 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
G2 Linearization Coefficient (2's complement value)  
G2  
R/W  
0x00  
8.5.1.2.31 G3 (EEPROM Address= 0x4000000E)  
Figure 73. G3_LSB Register  
7
6
5
4
3
2
1
0
G3 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 74. G3_MSB Register  
7
6
5
4
3
2
1
0
G3 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 41. G3 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
G3 Linearization Coefficient (2's complement value)  
G3  
R/W  
0x00  
8.5.1.2.32 N0 (EEPROM Address= 0x40000010)  
Figure 75. N0_LSB Register  
7
6
5
4
3
2
1
0
N0 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 76. N0_MSB Register  
7
6
5
4
3
2
1
0
N0 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 42. N0 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
N0 Linearization Coefficient (2's complement value)  
N0  
R/W  
0x00  
Copyright © 2017, Texas Instruments Incorporated  
57  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.5.1.2.33 N1 (EEPROM Address= 0x40000012)  
Figure 77. N1_LSB Register  
7
6
5
4
3
2
1
0
N1 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 78. N1_MSB Register  
7
6
5
4
3
2
1
0
N1 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 43. N1 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
N1 Linearization Coefficient (2's complement value)  
N1  
R/W  
0x00  
8.5.1.2.34 N2 (EEPROM Address= 0x40000014)  
Figure 79. N2_LSB Register  
7
6
5
4
3
2
1
0
N2 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 80. N2_MSB Register  
7
6
5
4
3
2
1
0
N2 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 44. N2 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
N2 Linearization Coefficient (2's complement value)  
N2  
R/W  
0x00  
8.5.1.2.35 N3 (EEPROM Address= 0x40000016)  
Figure 81. N3_LSB Register  
7
6
5
4
3
2
1
0
N3 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 82. N3_MSB Register  
7
6
5
4
3
2
1
0
N3 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 45. N3 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
N3 Linearization Coefficient (2's complement value)  
N3  
R/W  
0x00  
58  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.5.1.2.36 M0 (EEPROM Address= 0x40000018)  
Figure 83. M0_LSB Register  
7
6
5
4
3
2
1
0
M0 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 84. M0_MSB Register  
7
6
5
4
3
2
1
0
M0 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 46. M0 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
M0 Linearization Coefficient (2's complement value)  
M0  
R/W  
0x00  
8.5.1.2.37 M1 (EEPROM Address= 0x4000001A)  
Figure 85. M1_LSB Register  
7
6
5
4
3
2
1
0
M1 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 86. M1_MSB Register  
7
6
5
4
3
2
1
0
M1 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 47. M1 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
M1 Linearization Coefficient (2's complement value)  
M1  
R/W  
0x00  
8.5.1.2.38 M2 (EEPROM Address= 0x4000001C)  
Figure 87. M2_LSB Register  
7
6
5
4
3
2
1
0
M2 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 88. M2_MSB Register  
7
6
5
4
3
2
1
0
M2 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 48. M2 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
M2 Linearization Coefficient (2's complement value)  
M2  
R/W  
0x00  
Copyright © 2017, Texas Instruments Incorporated  
59  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.5.1.2.39 M3 (EEPROM Address= 0x4000001E)  
Figure 89. M3_LSB Register  
7
6
5
4
3
2
1
0
M3 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 90. M3_MSB Register  
7
6
5
4
3
2
1
0
M3 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 49. M3 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
M3 Linearization Coefficient (2's complement value)  
M3  
R/W  
0x00  
8.5.1.2.40 PADC_GAIN (EEPROM Address= 0x40000020)  
Figure 91. PADC_GAIN Register  
7
6
5
4
3
2
1
0
PADC_GAIN [7:0]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 50. PADC_GAIN Register Field Descriptions  
Bit  
0:7  
Field  
PADC_GAIN  
Type  
Reset  
Description  
PADC digital Gain (Positive Value only)  
R/W  
0x00  
8.5.1.2.41 TADC_GAIN (EEPROM Address= 0x40000021)  
Figure 92. TADC_GAIN Register  
7
6
5
4
3
2
1
0
TADC_GAIN [7:0]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 51. TADC_GAIN Register Field Descriptions  
Bit  
0:7  
Field  
TADC_GAIN  
Type  
Reset  
Description  
TADC digital Gain (Positive Value only)  
R/W  
0x00  
8.5.1.2.42 PADC_OFFSET (EEPROM Address= 0x40000022)  
Figure 93. PADC_OFFSET_BYTE0 Register  
7
6
5
4
3
2
1
0
PADC_OFFSET [7:0]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 94. PADC_OFFSET_BYTE1 Register  
7
6
5
4
3
2
1
0
PADC_OFFSET [15:8]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
60  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
Table 52. PADC_OFFSET Register Field Descriptions  
Bit  
Field  
PADC_OFFSET  
Type  
Reset  
Description  
PADC digital offset (2's complement value)  
0:15  
R/W  
0x00  
8.5.1.2.43 TADC_OFFSET (EEPROM Address= 0x40000024)  
Figure 95. TADC_OFFSET_BYTE0 Register  
7
6
5
4
3
2
1
0
TADC_OFFSET [7:0]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 96. TADC_OFFSET_BYTE1 Register  
7
6
5
4
3
2
1
0
TADC_OFFSET [15:8]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 53. TADC_OFFSET Register Field Descriptions  
Bit  
0:15  
Field  
TADC_OFFSET  
Type  
Reset  
Description  
TADC digital offset (2's complement value)  
R/W  
0x00  
8.5.1.2.44 TEMP_SW_CTRL (EEPROM Address= 0x40000028)  
Figure 97. TEMP_SW_CTRL Register  
7
6
5
4
3
2
1
0
Reserved  
ITEMP_CTRL [2:0]  
OFFSET_EN DIAG_ENABLE DACCAP_EN EEPROM_LOC  
K
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 54. TEMP_SW_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
EEPROM_LOCK  
R/W  
0x00  
0: Writing to EEPROM memory is enabled.  
1: Writing to EEPROM memory is disabled.  
1
2
DACCAP_EN  
R/W  
R/W  
0x00  
0x00  
0: DACCAP pin is disconnected.  
1: DACCAP pin is connected.  
DIAG_ENABLE  
AFE Global Diagnostics Enable.  
0: Analog Diagnostics Disabled  
1: Analog Diagnostics Enabled  
3
OFFSET_EN  
R/W  
0x00  
0x00  
0: Normal mode Linearization algorithm is used.  
1: High Sensor Offset Linearization Algorithm is used.  
4:6  
7
ITEMP_CTRL  
Reserved  
R/W  
N/A  
See ITEMP_CTRL Register Description  
Reserved  
8.5.1.2.45 DAC_FAULT_MSB (EEPROM Address= 0x4000002A)  
Figure 98. DAC_FAULT_MSB Register  
7
6
5
4
3
2
1
0
DAC_FAULT [15:8]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Copyright © 2017, Texas Instruments Incorporated  
61  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
Table 55. DAC_FAULT_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
8:15  
DAC_FAULT  
R/W  
0x00  
DAC Fault Value. When a fault is detected while diagnostics are  
enabled, the DAC will output the DAC_FAULT programmed  
value.  
DAC_FAULT [7:0] bits are fixed to 0x00 value.  
8.5.1.2.46 LPF_A0_MSB (EEPROM Address= 0x4000002B)  
Figure 99. LPF_A0_MSB Register  
7
6
5
4
3
2
1
0
A0 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 56. LPF_A0_MSB Register Field Descriptions  
Bit  
8:15  
Field  
Type  
Reset  
Description  
A0  
R/W  
0x00  
Low Pass filter A0 coefficient.  
A0 [7:0] bits are fixed to 0x00 value.  
8.5.1.2.47 LPF_A1 (EEPROM Address= 0x4000002C)  
Figure 100. LPF_A1_LSB Register  
7
6
5
4
3
2
1
0
A1 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 101. LPF_A1_MSB Register  
7
6
5
4
3
2
1
0
A1 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 57. A1 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
A1  
R/W  
0x00  
Low Pass filter A1 coefficient.  
8.5.1.2.48 LPF_A2 (EEPROM Address= 0x4000002E)  
Figure 102. LPF_A2_LSB Register  
7
6
5
4
3
2
1
0
A2 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 103. LPF_A2_MSB Register  
7
6
5
4
3
2
1
0
A2 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 58. A2 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
A2  
R/W  
0x00  
Low Pass filter A2 coefficient.  
62  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
8.5.1.2.49 .LPF_B1 (EEPROM Address= 0x40000030)  
Figure 104. LPF_B1_LSB Register  
7
6
5
4
3
2
1
0
B1 [7:0]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 105. LPF_B1_MSB Register  
7
6
5
4
3
2
1
0
B1 [15:8]  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 59. B1 Register Field Descriptions  
Bit  
0:15  
Field  
Type  
Reset  
Description  
B1  
R/W  
0x00  
Low Pass filter B1 coefficient.  
8.5.1.2.50 NORMAL_LOW (EEPROM Address= 0x40000032)  
Figure 106. NORMAL_LOW_LSB Register  
7
6
5
4
3
2
1
0
NORMAL_DAC_LOW [7:0]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 107. NORMAL_LOW_MSB Register  
7
6
5
4
3
2
1
0
NORMAL_DAC_LOW [11:8]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 60. NORMAL_LOW Register Field Descriptions  
Bit  
0:11  
Field  
NORMAL_DAC_LOW  
Type  
Reset  
Description  
R/W  
0x00  
Normal DAC Output Low Threshold Range.  
If the DAC value goes below NORMAL_DAC_LOW value, then  
the DAC value will be clamped to CLAMP_DAC_LOW  
8.5.1.2.51 NORMAL_HIGH (EEPROM Address= 0x40000034)  
Figure 108. NORMAL_HIGH_LSB Register  
7
6
5
4
3
2
1
0
NORMAL_DAC_HIGH [7:0]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 109. NORMAL_HIGH_MSB Register  
7
6
5
4
3
2
1
0
NORMAL_DAC_HIGH [11:8]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 61. NORMAL_HIGH Register Field Descriptions  
Bit  
0:11  
Field  
NORMAL_DAC_HIGH  
Type  
Reset  
Description  
R/W  
0x00  
Normal DAC Output High Threshold Range.  
If the DAC value goes above NORMAL_DAC_HIGH value, then  
the DAC value will be clamped to CLAMP_DAC_HIGH  
Copyright © 2017, Texas Instruments Incorporated  
63  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
8.5.1.2.52 LOW_CLAMP (EEPROM Address= 0x40000036)  
Figure 110. LOW_CLAMP_LSB Register  
7
6
5
4
3
2
1
0
CLAMP_DAC_LOW [7:0]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 111. LOW_CLAMP_MSB Register  
7
6
5
4
3
2
1
0
CLAMP_DAC_LOW [11:8]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 62. LOW_CLAMP Register Field Descriptions  
Bit  
0:11  
Field  
CLAMP_DAC_LOW  
Type  
Reset  
Description  
DAC Out of Range lower clamp value  
R/W  
0x00  
8.5.1.2.53 HIGH_CLAMP (EEPROM Address= 0x40000038)  
Figure 112. HIGH_CLAMP_LSB Register  
7
6
5
4
3
2
1
0
CLAMP_DAC_HIGH [7:0]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Figure 113. HIGH_CLAMP_MSB Register  
7
6
5
4
3
2
1
0
CLAMP_DAC_HIGH [11:8]  
RW-0 RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
Table 63. HIGH_CLAMP Register Field Descriptions  
Bit  
0:11  
Field  
CLAMP_DAC_HIGH  
Type  
Reset  
Description  
DAC Out of Range higher clamp value  
R/W  
0x00  
8.5.1.2.54 DIAG_BIT_EN (EEPROM Address= 0x4000003A)  
Figure 114. DIAG_BIT_EN Register  
7
6
5
4
3
2
1
0
TGAIN_UV_EN TGAIN_OV_EN PGAIN_UV_EN PGAIN_OV_EN  
R/W-0 R/W-0 R/W-0 R/W-0  
Reserved  
R/W-0  
VINT_OV_EN  
R/W-0  
VINP_UV_EN  
R/W-0  
VINP_OV_EN  
R/W-0  
Table 64. DIAG_BIT_EN Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Description  
0
1
2
3
4
5
6
7
VINP_OV_EN  
VINP_UV_EN  
VINT_OV_EN  
1: VINP Overvoltage Diagnostic Enable  
1: VINP Undervoltage Diagnostic Enable  
1: VINT Overvoltage Diagnostic Enable  
PGAIN_OV_EN  
PGAIN_UV_EN  
TGAIN_OV_EN  
TGAIN_UV_EN  
1: Pressure Gain-path Overvoltage Diagnostic Enable  
1: Pressure Gain-path Undervoltage Diagnostic Enable  
1: Temperature Gain-path Overvoltage Diagnostic Enable  
1: Temperature Gain-path Undervoltage Diagnostic Enable  
64  
Copyright © 2017, Texas Instruments Incorporated  
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The PGA302 device must be paired with an external sensor, and can be used in a variety of applications  
depending on the chosen sensor. When choosing a sensor, the most important consideration is to ensure that  
the voltages applied to the analog input pins on the PGA302 stay within the recommended operating range of 0.2  
V minimum and 4.2 V maximum. A programmable gain stage allows a wide selection of sensors to be used while  
still maximizing the input range of the 16-Bit ADC. The PGA302’s internally regulated bridge voltage supply and  
independent current source for temperature sensors eliminates the need for externally excited sensors. The  
interface options include I2C and OWI.  
9.1.1 0-5V Voltage Output  
The 0-5V Analog Output application presents the default PGA302 device in a typical application scenario used as  
a part of a Sensor Transmitter system.  
ECU  
SENSOR (TRANSMITTER)  
PGA302  
VDD  
GND  
VSUPPLY  
VBRGP  
+
-
MicroController  
VINPP  
VINPN  
Bridge  
ADC  
Ref  
VOUT  
DVDD  
Ch  
VBRGN  
Copyright © 2017, Texas Instruments Incorporated  
Figure 115. 0-5V Voltage Output  
Copyright © 2017, Texas Instruments Incorporated  
65  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
9.2 Typical Application  
Figure 116 shows the schematic for a resistive bridge pressure-sensing application.  
VDD  
VBRGP  
VINPP  
VDD  
5 k  
5 kꢀ  
5 kꢀ  
5 kꢀ  
DVDD  
R1  
C3  
C4  
C1  
VOUT  
R3  
VOUT  
R2  
C2  
VINPN  
C5  
C6  
VBRGN  
Ferrite Bead  
GND  
PGA302  
Figure 116. Application Schematic  
9.2.1 Design Requirements  
For this design example, use the parameters listed in Table 65 as the input parameters.  
Table 65. Design Parameters  
DESIGN PARAMETER  
Input voltage range (VDD)  
Input voltage recommended  
Bridge excitation voltage  
Input mode  
EXAMPLE VALUE  
4.5 V to 5.5 V  
5 V  
2.5 V  
Differential  
0.2 V to 4.2 V  
5 kΩ  
VINPP and VINPN voltage range  
VINPP and VINPN voltage range  
66  
Copyright © 2017, Texas Instruments Incorporated  
 
 
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
9.2.2 Detailed Design Procedure  
Table 66 shows the recommended component values for the design shown in Figure 116.  
Table 66. Recommended Component Values for Typical Applications  
DESIGNATOR  
VALUE  
COMMENT  
These resistors are in place to determine the cutoff frequency of the lowpass filter  
created by R1/R2 and C1/C2. When using a resistive bridge these resistors should be 0  
Ω (not used) and C1/C2 are calculated based on the bridge resistance.  
VINPP resistor (R1) VINPN  
resistor (R2)  
0 Ω  
1
fc (-3dB) =  
Hz  
[
]
VINPP capacitor (C1)  
VINPN capacitor (C2)  
0.15 μF  
0.15 μF  
2ìp ìC1 ìR1  
Place as close to the VINPP pin as possible.  
1
fc (-3dB) =  
Hz  
[
]
2ìp ìC2 ìR2  
Place as close to the VINPN pin as possible.  
Place as close to the VDD pin as possible.  
Place as close to the DVDD pin as possible.  
VDD capacitor (C4)  
DVDD capacitor (C3)  
0.1 μF  
0.1 μF  
To make use of the full range of the internal ADC it is important to carefully select the sensor to be paired with  
the PGA302. While the input pins can handle between 0.2 V and 4.2 V, it is good practice to make sure that the  
common-mode voltage of the sensor remains in middle of this range for differential signals. Note that the P Gain  
amplifier can be configured to measure half-bridge output, where the half bridge is connected to either VINPP or  
VINPN, and the remaining pin is internally connected to a voltage of VBRG/2.  
To achieve the best performance, take the differential voltage range of the sensor into account. Using proper  
calibration with a digital compensation algorithm, any voltage range can be mapped to the full range of ADC  
output values, but the final measurement accuracy will be the highest if the analog voltage input matches the  
ADC’s input range. The gain of the P Gain amplifier can be selected from 1.33 V/V to 200 V/V to aid in matching  
the input range of the ADC from –2.5 V to 2.5 V.  
9.2.2.1 Application Data  
Following is application data measured from a PGA302EVM-037 board. The PGA302 device has been used and  
was calibrated with three pressure points at one temperature (3P1T) using a resistive bridge emulator board with  
a schematic as pictured in Figure 117.  
VBRGP  
Max  
Mid  
Min  
VINPP  
VINPN  
VBRGN  
Figure 117. Resistive Bridge Emulator Schematic  
For setup, the only parameter changed was to increase the PGAIN of the PGA302 device to 40 V/V. After the  
calibration was performed, the resulting VOUT output voltages were measured at each of the three pressure  
points and error was calculated based on the expected values as shown in Table 67. Error was calculated using  
the formula ((VOUT measured – VOUT Expected)/VOUT range) × 100 to account for the expected output range.  
Copyright © 2017, Texas Instruments Incorporated  
67  
 
 
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
Table 67. 3P1T Calibration Accuracy  
CALIBRATION  
POINT  
VOUT MEASURED  
(V)  
VOUT EXPECTED  
VDD (V)  
VINPP - VINPN (mV)  
ERROR (%FSR)  
(V)  
0.5  
2.5  
4.5  
P1  
P2  
P3  
4.8642  
4.8602  
4.8589  
34.651  
13.844  
1.608  
0.503  
2.501  
4.498  
0.075  
0.025  
–0.05%  
Additional testing was also done with varying calibration points of 3P3T and 4P4T to show accuracy data across  
temperature. Table 68 includes 3P3T and 4P4T data at the P2 (2.5-V VOUT) pressure point only. The  
experimental setup is identical to that used to produce the 3P1T data shown in Table 67 with the exception of the  
resistive bridge emulator which includes an extra pressure point for four possible calibration points.  
Table 68. 3P3T and 4P4T Calibration Accuracy  
VOUT VOLTAGE  
50°C  
ERROR, %FSR  
50°C  
CALIBRATION METHOD  
–40°C  
2.494  
2.495  
150°C  
2.502  
2.502  
–40°C  
0.0125  
0.0375  
150°C  
0.2875  
0.3125  
3P3T  
4P4T  
2.503  
0.2625  
2.501  
0.2375  
9.2.3 Application Curves  
Table 69 lists the application curves also found in the Typical Characteristics section.  
Table 69. Table of Graphs  
GRAPH TITLE  
FIGURE  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Internal Temperature Sensor  
ADE and ADC Linearity Error  
AFE and ADC Linearity Error  
DAC Linearity Error  
Ratiometric Error vs VDD Supply  
AFE Gain vs Common-Mode Input  
10 Power Supply Recommendations  
The PGA302 device has a single pin, VDD, for the input power supply, and has a voltage supply range of 4.5 V  
to 5.5 V. The maximum slew rate for the VDD pin is 5 V/ns as specified in the Recommended Operating  
Conditions. Faster slew rates may generate a POR. A decoupling capacitor must be placed as close as possible  
to the VDD pin. For OWI communication, the VDD voltage can be >5.5 V during the OWI Activation period.  
68  
Copyright © 2017, Texas Instruments Incorporated  
 
 
 
PGA302  
www.ti.com.cn  
ZHCSH81 DECEMBER 2017  
11 Layout  
11.1 Layout Guidelines  
At minimum, a two layer board is required for a typical pressure-sensing application. PCB layers must be  
separated by analog and digital signals. The pin map of the device is such that the power and digital signals are  
on the opposite side of the analog signal pins. Best practices for PGA302 device layout are as follows:  
The analog input signal pins, VINPP, VINPN, VINTP, and VINTN are the most susceptible to noise, and must  
be routed as directly to the sensor as possible. Additionally, each pair of positive and negative inputs must be  
routed in differential pairs with matching trace length, and both traces as close together as possible  
throughout their length. This routing is critical in reducing EMI and offset to provide the most accurate  
measurements.  
TI recommended separating the grounds to reduce noise at the analog input of the device. Capacitors to  
ground for ESD protection on the analog input signal pins must go first to this separate ground and be as  
close to the pins as possible to reduce the length of the ground wire. The analog input ground can be  
connected to the main ground with a ferrite bead, but acopper trace, a 0-Ω resistor can be used instead.  
The decoupling capacitors for DVDD and VDD must be placed as close to the pins as possible.  
All digital communication must be routed as far away from the analog input signal pins as possible. This  
includes the SCL and SDA pins, as well as the VDD pin when using OWI communication.  
11.2 Layout Example  
Legend  
Copper Trace- Top  
Copper Trace- Bottom  
Via  
1
2
3
4
5
6
7
8
VINTN  
DVDD  
GND  
16  
15  
14  
13  
12  
11  
10  
9
VINTP  
VINPP  
SCL  
To Master  
To Master  
To Sensor  
To Sensor  
VBRGN  
VINPN  
SDA  
TEST2  
VP_OTP  
VDD  
To Sensor  
VBRGP  
ITEMP_DACCAP  
TEST1  
To Power Source  
VOUT  
To Master  
To Sensor  
Figure 118. Layout Example  
版权 © 2017, Texas Instruments Incorporated  
69  
PGA302  
ZHCSH81 DECEMBER 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
如需接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
70  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PGA302EPWR  
PGA302EPWT  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 150  
-40 to 150  
PGA302  
PGA302  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PGA302EPWR  
TSSOP  
PW  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
PGA302EPWR  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

PGA302EPWT

具有 0V 至 5V 比例输出的传感器信号调理器 | PW | 16 | -40 to 150
TI

PGA305

具有数字和模拟输出的电阻式传感信号调理器
TI

PGA305ARHHR

具有数字和模拟输出的电阻式传感信号调理器 | RHH | 36 | -40 to 150
TI

PGA305ARHHT

具有数字和模拟输出的电阻式传感信号调理器 | RHH | 36 | -40 to 150
TI

PGA308

Single-Supply, Auto-Zero Sensor Amplifier
TI

PGA308-DIE

SINGLE-SUPPLY, AUTO-ZERO SENSOR AMPLIFIER WITH PROGRAMMABLE GAIN AND OFFSET
TI

PGA308-Q1

Single-Supply, Auto-Zero Sensor Amplifier with Programmable Gain and Offset
TI

PGA308AIDGSR

Single-Supply, Auto-Zero Sensor Amplifier
TI

PGA308AIDGSRG4

具有可编程增益和偏移的单电源自动置零传感器放大器 | DGS | 10 | -40 to 125
TI

PGA308AIDGST

Single-Supply, Auto-Zero Sensor Amplifier
TI

PGA308AIDGSTG4

Single Supply, Auto-Zero Sensor Amplifier w/Programmable Gain &amp; Offset 10-VSSOP -40 to 125
TI

PGA308AIDRKR

Single-Supply, Auto-Zero Sensor Amplifier
TI