PGA305 [TI]

具有数字和模拟输出的电阻式传感信号调理器;
PGA305
型号: PGA305
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有数字和模拟输出的电阻式传感信号调理器

文件: 总79页 (文件大小:1887K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
PGA305  
ZHCSIP5 AUGUST 2018  
适用于压力传感器的 PGA305 信号调节器和发送器  
1 特性  
电源:  
片上电源管理,支持 3.3V 30V 的宽电源  
电压范围  
1
模拟 特性  
适用于阻性桥式传感器的模拟前端  
传感器灵敏度可调节范围:1mV/V 135mV/V  
片上温度传感器  
集成反向保护电路  
2 应用  
可编程增益  
压力传感发送器和变送器  
液位计、流量计  
电阻场发射器  
适用于信号通道的 24 Σ-Δ 模数转换器  
适用于温度通道的 24 Σ-Δ 模数转换器  
14 位输出数模转换器 (DAC)  
数字 特性  
3 说明  
整个温度范围内的 FSO 精度 < 0.1%  
PGA305 器件提供了一个适用于压阻式和应力计式压  
感元件的接口。该器件是一套完整的片上系统 (SoC)  
解决方案,具有可编程模拟前端 (AFE)ADC 和数字  
信号处理功能,可直接连接传感元件。此外,PGA305  
器件还集成了稳压器和振荡器,最大程度地减少了外部  
组件数。PGA305 器件可以采用三阶温度和非线性补  
偿来实现高精度。该器件还可以使用集成 I2C 接口或单  
线制串行接口 (OWI) 来实现外部通信并简化系统校准  
流程。集成 DAC 支持绝对电压、比例电压以及 4mA  
20mA 的电流回路输出。  
系统响应时间 < 220µs  
三阶偏移、增益和非线性温度补偿  
诊断功能  
集成 EEPROM 用于存储器件操作、校准数据和  
用户数据  
外设 特性  
可通过 I2C 接口实现数据读取和器件配置  
单线接口,可通过电源引脚进行通信,无需额外  
使用线路  
4mA 20mA 电流回路接口  
比例电压输出和绝对电压输出  
电源管理控制  
器件信息(1)  
器件型号  
PAG305  
封装  
VQFN (36)  
封装尺寸(标称值)  
6.00mm x 6.00mm  
模拟低压检测  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
通用 特性  
工业温度范围:–40°C 150°C  
PAG305 简化方框图  
BRG+  
Ratiometric  
Bridge Excitation  
Power Management  
Reference  
Bridge  
Sensor  
PWR  
(3.3 V œ 30 V)  
INP+  
OWI  
I2C  
EEPROM  
24-Bit  
ADC  
PGA  
INPœ  
SCL  
SDA  
I2CADDR  
Resistive Sensing AFE  
BRGœ  
Control  
and Status  
Registers  
14-Bit  
DAC  
INT+  
GAIN  
24-Bit  
ADC  
OUT  
PGA  
INTœ  
Temperature Sensing AFE  
Third-Order TC and  
Third-Order NL  
Sensor  
Internal  
Oscillator  
Internal  
Temperature  
Sensor  
Optional  
External  
Temperature  
Sensor  
Diagnostics  
Compensation  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLDS231  
 
 
 
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
目录  
6.17 Electrical Characteristics – DAC Output ................. 9  
6.18 Electrical Characteristics – DAC Gain .................... 9  
6.19 Electrical Characteristics – Non-Volatile Memory. 10  
6.20 Electrical Characteristics – Diagnostics................ 10  
6.21 Operating Characteristics...................................... 11  
6.22 I2C Interface Timing Requirements....................... 13  
6.23 Timing Diagram..................................................... 13  
6.24 Typical Characteristics.......................................... 14  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 16  
7.3 Feature Description................................................. 17  
7.4 Device Functional Modes........................................ 46  
7.5 Register Maps......................................................... 46  
Application and Implementation ........................ 64  
8.1 Application Information............................................ 64  
8.2 Typical Applications ................................................ 64  
Power Supply Recommendations...................... 70  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
7
6.5 Electrical Characteristics – Reverse Voltage  
Protection................................................................... 6  
6.6 Electrical Characteristics – Regulators ..................... 6  
6.7 Electrical Characteristics – Internal Reference......... 6  
6.8 Electrical Characteristics – Bridge Sensor Supply.... 6  
8
9
6.9 Electrical Characteristics – Temperature Sensor  
Supply ........................................................................ 7  
6.10 Electrical Characteristics – Internal Temperature  
Sensor........................................................................ 7  
10 Layout................................................................... 70  
10.1 Layout Guidelines ................................................. 70  
10.2 Layout Example .................................................... 70  
11 器件和文档支持 ..................................................... 72  
11.1 接收文档更新通知 ................................................. 72  
11.2 社区资源................................................................ 72  
11.3 ....................................................................... 72  
11.4 静电放电警告......................................................... 72  
11.5 术语表 ................................................................... 72  
12 机械、封装和可订购信息....................................... 72  
6.11 Electrical Characteristics – P Gain (Chopper  
Stabilized) .................................................................. 7  
6.12 Electrical Characteristics – P Analog-to-Digital  
Converter ................................................................... 8  
6.13 Electrical Characteristics – T Gain (Chopper  
Stabilized) .................................................................. 8  
6.14 Electrical Characteristics – T Analog-to-Digital  
Converter ................................................................... 9  
6.15 Electrical Characteristics – One-Wire Interface ...... 9  
6.16 I2C Interface............................................................ 9  
4 修订历史记录  
日期  
修订版本  
说明  
2018 8 月  
*
最初发布版本。  
2
Copyright © 2018, Texas Instruments Incorporated  
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
5 Pin Configuration and Functions  
RHH Package  
36-Pin VQFN With Thermal Pad  
Top View  
NU  
DVDD_MEM  
DVDD  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
NU  
NU  
NU  
NU  
NU  
Thermal  
Pad  
PWR  
AVSS  
INTœ  
INT+  
NU  
DACCAP  
NU  
OUT  
AVDD  
NU  
Not to scale  
NU = Make no external connection.  
Copyright © 2018, Texas Instruments Incorporated  
3
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Pin Functions  
PIN  
NAME  
AVDD  
I/O  
DESCRIPTION  
NO.  
9
O
O
O
I
AVDD regulator output.  
AVSS  
23  
15  
14  
13  
6
Analog ground.  
BRG+  
Bridge drive, positive.  
Bridge drive, negative.  
Output amplifier compensation.  
DAC capacitor.  
BRG–  
COMP  
DACCAP  
DVDD  
O
O
O
I
3
DVDD regulator output.  
Power supply for EEPROM and OTP.  
Digital ground.  
DVDD_MEM  
DVSS  
2
32  
12  
11  
10  
29  
18  
17  
21  
22  
FB+  
Feedback, positive.  
FB–  
I
Feedback, negative.  
GND  
I
Ground.  
I2CADDR  
INP+  
I2C chip address select.  
Resistive sensor positive input.  
Resistive sensor negative input.  
I
INP–  
I
INT+  
I
External temperature sensor positive input.  
External temperature sensor negative input.  
INT–  
I
1, 4, 7, 19, 20,  
24 to 28, 30, 31,  
34, 35  
NU  
Do not connect.  
OUT  
8
O
I
DAC gained output.  
Input power supply.  
ADC reference capacitor.  
I2C clock.  
PWR  
5
REFCAP  
SCL  
16  
36  
33  
O
I/O  
I/O  
SDA  
I2C data.  
Thermal pad  
Connect to analog ground.  
4
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)  
see  
MIN  
–28  
–0.3  
MAX  
33  
UNIT  
V
PWR  
Supply voltage  
Voltage at sensor input pins: INP+, INP–, INT+, INT–  
2
V
Voltage at AVDD, AVSS, BRG+, BRG–, COMP, DACCAP, DVDD, DVDD_MEM,  
DVSS, FB–, GATE, REFCAP, SCL, SDA, I2CADDR  
–0.3  
3.6  
V
Voltage at FB+ pin  
Voltage at OUT pin  
–2  
VPWR + 0.3  
33  
V
V
–0.3  
IPWR, short  
on OUT pin  
Supply current  
25  
mA  
TJmax  
Tstg  
Maximum junction temperature  
Storage temperature  
155  
150  
°C  
°C  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
30  
UNIT  
VPWR  
Power supply voltage  
Slew rate  
3.3  
V
VDD = 0 to 30 V  
0.5  
V/µs  
Power supply current - normal operation No load on BRG, no load on DAC  
2.5  
While EEPROM is being  
Power supply current - EEPROM  
programmed, no load on BRG, no  
programming  
IPWR  
mA  
9(1)  
load on DAC  
TA  
Operating ambient temperature  
–40  
–40  
150  
140  
°C  
°C  
Programming temperature  
EEPROM  
Start-up time (including analog and  
digital)  
VPWR ramp rate 0.5 V/µs  
1
ms  
nF  
Capacitor on PWR pin  
10  
(1) Programming of the EEPROM results in an additional 6 mA of current on the PWR pin.  
Copyright © 2018, Texas Instruments Incorporated  
5
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
6.4 Thermal Information  
PGA305  
RHH (VQFN)  
36 PINS  
30.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
16.4  
5.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
5.4  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics – Reverse Voltage Protection  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MAX  
UNIT  
Reverse voltage  
–28  
V
Voltage drop across reverse voltage  
protection element  
20  
mV  
6.6 Electrical Characteristics – Regulators  
PARAMETER  
AVDD voltage  
DVDD voltage – operating  
TEST CONDITIONS  
MIN  
TYP  
3
UNIT  
V
VAVDD  
VDVDD  
CAVDD = 100 nF  
CDVDD = 100 nF  
1.8  
V
6.7 Electrical Characteristics – Internal Reference  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.2  
MAX  
UNIT  
V
High-voltage reference voltage(1)  
Accurate reference voltage  
Capacitor value on REFCAP pin  
2.5  
V
100  
nF  
(1) TEMP_DRIFT = [(Value at TEMP – Value at 25°C) / (Value at 25°C × ΔTEMP)] × 106.  
6.8 Electrical Characteristics – Bridge Sensor Supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BRG SUPPLY FOR RESISTIVE BRIDGE SENSORS  
Bridge supply control bit = 0b00, no load  
Bridge supply control bit = 0b01, no load  
Bridge supply control bit = 0b10, no load  
2.5  
2
VBRG+  
VBRG–  
Bridge supply voltage  
V
1.25  
IBRG  
Current supply to the bridge  
Capacitive load  
1.5  
2
mA  
nF  
CBRG  
RBRG = 20 kΩ  
6
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
6.9 Electrical Characteristics – Temperature Sensor Supply  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ITEMP SUPPLY FOR TEMPERATURE SENSOR  
Control bit = 0b000  
Control bit = 0b001  
25  
50  
µA  
µA  
µA  
µA  
ITEMP  
Current supply to temperature sensor Control bit = 0b010  
Control bit = 0b011  
100  
500  
OFF  
Control bit = 0b1xx  
CTEMP  
Capacitive load  
100  
nF  
Output impedance  
15  
MΩ  
6.10 Electrical Characteristics – Internal Temperature Sensor  
PARAMETER  
TEST CONDITIONS  
MIN  
–40  
TYP  
MAX  
150  
UNIT  
Temperature range  
°C  
6.11 Electrical Characteristics – P Gain (Chopper Stabilized)  
PARAMETER  
TEST CONDITIONS  
00000, at dc  
MIN  
TYP  
MAX  
UNIT  
5
5.48  
5.97  
6.56  
7.02  
8
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
9.09  
10  
10.53  
11.11  
12.5  
13.33  
14.29  
16  
17.39  
18.18  
19.05  
20  
Gain steps (5 bits)  
V/V  
22.22  
25  
30.77  
36.36  
40  
44.44  
50  
57.14  
66.67  
80  
100  
133.33  
200  
400  
Copyright © 2018, Texas Instruments Incorporated  
7
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Electrical Characteristics – P Gain (Chopper Stabilized) (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Gain bandwidth product  
10  
MHz  
f = 0.1 Hz to 2 kHz, gain = 400 V/V,  
sampling rate = 128 µs, across  
temperature  
Input-referred noise density(1)  
15  
nV/Hz  
Input offset voltage  
Input bias current  
Frequency response  
10  
5
µV  
nA  
Gain = 400 V/V, <1 kHz  
±0.1  
%V/V  
Depends on selected gain, bridge  
supply and sensor span(2)  
Common-mode voltage range  
V
Common-mode rejection ratio  
Input impedance  
fCM = 50 Hz at gain = 5 V/V  
110  
dB  
10  
MΩ  
(1) Total input-referred noise including gain noise, ADC reference noise, ADC thermal noise, and ADC quantization noise.  
(2) Common Mode at P Gain Input and Output: There are two constraints:  
(a) The single-ended voltage of the positive and negative pins at the P gain input must be between 0.3 V and 1.8 V.  
(b) The single-ended voltage of the positive and negative pins at the P gain output must be between 0.1 V and 2 V.  
6.12 Electrical Characteristics – P Analog-to-Digital Converter  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
V
Sigma-delta modulator frequency  
ADC voltage input range  
Number of bits  
1
–2.5  
2.5  
24  
bits  
ADC 2s complement code for –2.5-  
V differential input  
800000hex  
ADC 2s complement code for 0-V  
differential input  
000000hex  
7FFFFFhex  
ADC 2s complement code for 2.5-V  
differential input  
INL  
Integral nonlinearity  
±0.5  
LSB  
6.13 Electrical Characteristics – T Gain (Chopper Stabilized)  
PARAMETER  
TEST CONDITIONS  
Gain control bits = 0b00 at dc  
Gain control bits = 0b01  
Gain control bits = 0b10  
Gain control bits = 0b11  
MIN  
TYP  
MAX  
UNIT  
1.33  
2
Gain steps (2 bits)  
V/V  
5
20  
350  
Gain bandwidth product  
Noise density(1)  
kHz  
f = 0.1 Hz to 100 Hz  
at gain = 5 V/V, across temperature  
110  
nV/Hz  
Input offset voltage  
Input bias current  
Frequency response  
95  
5
µV  
nA  
Gain = 20 V/V, <100 Hz  
fCM = 50 Hz  
0.335  
%V/V  
Depends on selected gain and  
current supply(2)  
Common mode voltage range  
Common-mode rejection ratio  
Input impedance  
110  
dB  
1
MΩ  
(1) Total input-referred noise including gain noise, ADC reference noise, ADC thermal noise, and ADC quantization noise.  
(2) Common Mode at T Gain Input and Output: There are two constraints:  
(a) The single-ended voltage of positive/negative pin at the T gain input should be between 5 mV and 1.8 V.  
(b) The single-ended voltage of positive/negative pin at the T gain output should be between 0.1 V and 2 V.  
8
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
6.14 Electrical Characteristics – T Analog-to-Digital Converter  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
V
Sigma-delta modulator frequency  
ADC voltage input range  
Number of bits  
1
–2.5  
2.5  
24  
bits  
ADC 2s complement code for –2.5-V  
differential input  
2s complement  
800000hex  
LSB  
LSB  
ADC 2s complement code for 0-V  
differential input  
000000hex  
7FFFFFhex  
ADC 2s complement code for 2.5-V  
differential input  
LSB  
LSB  
INL  
Integral nonlinearity  
±0.5  
6.15 Electrical Characteristics – One-Wire Interface  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Communication baud rate(1)  
600  
9600  
bps  
V
OWI_ENH  
OWI_ENL  
OWI_VIH  
OWI_VIL  
OWI_IOH  
OWI_IOL  
OWI activation high  
5.95  
OWI activation low  
5.75  
5.1  
V
OWI transceiver Rx threshold for high  
OWI transceiver Rx threshold for low  
OWI transceiver Tx threshold for high  
OWI transceiver Tx threshold for low  
4.8  
3.9  
500  
2
V
4.2  
V
1379  
5
µA  
µA  
(1) OWI over power line does not work if there is an LDO between the supply to the sensor and the PWR pin, or if the OWI high and low  
voltages are greater than the regulated voltage.  
6.16 I2C Interface  
over operating free-air temperature range at VDD = 5 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.7 ×  
AVDD  
VIH  
VIL  
High-level input voltage  
V
0.3 ×  
AVDD  
Low-level input voltage  
Low-level output voltage  
V
V
IOL = 3 mA, I2C RATE configuration  
bit = 0  
VOL  
0.4  
IOL = 20 mA, I2C RATE configuration  
bit = 1  
VOL  
Low-level output voltage  
SCL clock frequency  
0.4  
V
ƒSCL  
400  
800  
KBPS  
6.17 Electrical Characteristics – DAC Output  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.25  
MAX  
UNIT  
V
Reference bit = 1  
DAC reference voltage  
DAC resolution  
Reference bit = 0 (ratiometric)  
0.25 × VPWR  
14  
bits  
6.18 Electrical Characteristics – DAC Gain  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2
MAX  
UNIT  
V/V  
2×  
4×  
4
Buffer gain (see Figure 20)  
6.67×  
10×  
6.67  
10  
Current loop gain  
1001  
mA/mA  
Copyright © 2018, Texas Instruments Incorporated  
9
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Electrical Characteristics – DAC Gain (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
mV  
V
Gain-bandwidth product  
Zero-code voltage (gain = 4×)  
Full-code voltage (gain = 4×)  
1
DAC code = 0000h, IDAC = 2.5 mA  
DAC code is 1FFFh, IDAC = –2.5 mA  
20  
4.8  
DAC code = 1FFFh , DAC code =  
0000h  
Output current  
±2.5  
mA  
Short-circuit source current  
Short-circuit sink current  
DAC code = 1FFFh  
DAC code = 0000h  
Without compensation  
With compensation  
27  
27  
mA  
mA  
pF  
100  
100  
Maximum capacitance  
nF  
6.19 Electrical Characteristics – Non-Volatile Memory  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
bytes  
cycles  
ms  
Size  
128  
Erase-write cycles  
Programming time  
Data retention  
1000  
8
EEPROM  
1 8-byte page  
10  
years  
6.20 Electrical Characteristics – Diagnostics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
Oscillator circuit supply  
overvoltage threshold  
OSC_PWR_OV  
OSC_PWR_UV  
BRG_OV  
3.3  
V
Oscillator circuit supply  
undervoltage threshold  
2.7  
10  
V
Resistive bridge sensor  
supply overvoltage threshold  
%VBRG  
Resistive bridge sensor  
supply undervoltage  
threshold  
%Prog.  
VBRG  
BRG_UV  
–10  
AVDD_OV  
AVDD_UV  
DVDD_OV  
DVDD_UV  
AVDD overvoltage threshold  
3.3  
2.7  
2
V
V
V
V
AVDD undervoltage  
threshold  
DVDD overvoltage threshold  
DVDD undervoltage  
threshold  
1.53  
Reference overvoltage  
threshold  
REF_OV  
REF_UV  
2.75  
2.25  
V
V
Reference undervoltage  
threshold  
PD2  
PD1  
0
0
1
1
0
1
0
1
1
2
3
4
P gain input diagnostics  
pulldown resistor value  
P_DIAG_PU  
MΩ  
10  
Copyright © 2018, Texas Instruments Incorporated  
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
Electrical Characteristics – Diagnostics (continued)  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
INP+ and INP–  
each has  
threshold  
THRS[2] THRS[1] THRS[0]  
comparator  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
72.5  
70  
VBRG = 2.5 V  
P gain input overvoltage  
threshold value  
INP_OV  
%VBRG  
65  
90  
VBRG = 2 V  
87.5  
82.5  
100  
95  
VBRG = 1.25 V  
INP+ and INP–  
each has  
threshold  
THRS[2] THRS[1] THRS[0]  
comparator  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
7.5  
10.0  
15.0  
10.0  
12.5  
17.5  
17.5  
22.5  
2.1  
VBRG = 2.5 V  
P gain input undervoltage  
threshold value  
INP_UV  
%VBRG  
VBRG = 2.V  
VBRG = 1.25 V  
INT_OV  
T gain input overvoltage  
INT+ and INT– each has threshold comparator  
V
V
Output overvoltage (single-  
ended) threshold for P gain  
PGAIN_OV  
2.25  
0.15  
2.25  
0.15  
Output undervoltage (single-  
ended) threshold for P gain  
PGAIN_UV  
TGAIN_OV  
TGAIN_UV  
V
V
V
Output overvoltage (single-  
ended) threshold for T gain  
Output undervoltage (single-  
ended) threshold for T gain  
Open-wire leakage current 1.  
HARNESS_FAULT1 Open PWR with pullup on  
OUT  
2
µA  
µA  
Open-wire leakage current 2.  
HARNESS_FAULT2 Open GND with pulldown on  
OUT  
20  
6.21 Operating Characteristics  
over operating ambient temperature range (unless otherwise noted). Start-up time and response time testing performed in 0-  
5V absolute voltage mode.  
PARAMETER  
Start-up time(1)  
Start-up time(2)  
TEST CONDITIONS  
MIN  
TYP  
9.6  
MAX  
UNIT  
ms  
ms  
µs  
No IIR filter, Vout step 0 to 2.5 V  
IIR filter = 320Hz, Vout step 0 to 2.5 V  
10.8  
512  
Output rate  
Response time(3)  
No IIR filter, Vout step 0 to 2.5 V  
1700  
µs  
(1) Time from power up to reach 90% of valid output.  
(2) Time from power up to reach valid output, including settling time.  
(3) Time to reach 90% of valid output.  
Copyright © 2018, Texas Instruments Incorporated  
11  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Operating Characteristics (continued)  
over operating ambient temperature range (unless otherwise noted). Start-up time and response time testing performed in 0-  
5V absolute voltage mode.  
PARAMETER  
Response time(4)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IIR filter = 320Hz, Vout step 0 to 2.5 V  
2680  
µs  
3 pressure - 1 temperature calibration,  
overall accuracy calculated using points  
different from points used for calibration  
0.13  
0.08  
3 pressure - 3 temperature calibration,  
input voltage not subject to temperature  
variation, overall accuracy calculated  
using points different from points used  
for calibration  
Absolute-voltage mode, overall accuracy  
(PGA305 only, no sense element)(5)  
%FSO  
%FSO  
%FSO  
4 pressure - 4 temperature calibration,  
input voltage not subject to temperature  
variation, overall accuracy calculated  
using points different from points used  
for calibration  
0.08  
0.15  
0.13  
3 pressure - 1 temperature calibration,  
overall accuracy calculated using points  
different from points used for calibration  
3 pressure - 3 temperature calibration,  
input voltage not subject to temperature  
variation, overall accuracy calculated  
using points different from points used  
for calibration  
Ratiometric-voltage mode, overall  
accuracy (PGA305, no sense  
element)(5)  
4 pressure - 4 temperature calibration,  
input voltage not subject to temperature  
variation, overall accuracy calculated  
using points different from points used  
for calibration  
0.10  
0.18  
0.08  
3 pressure - 1 temperature calibration,  
overall accuracy calculated using points  
different from points used for calibration  
3 pressure - 3 temperature calibration,  
input voltage not subject to temperature  
variation, overall accuracy calculated  
using points different from points used  
for calibration  
Current mode, overall accuracy  
(PGA305, no sense element)(5)  
4 pressure - 4 temperature calibration,  
input voltage not subject to temperature  
variation, overall accuracy calculated  
using points different from points used  
for calibration  
0.06  
(4) Time to reach valid output, including settling time.  
(5) Sense element held at constant temperature while the PGA305 device was calibrated at –25ºC, 25ºC, 85ºC and 125ºC. Accuracy was  
then measured at –40ºC, 50ºC and 150 ºC.  
12  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
6.22 I2C Interface Timing Requirements  
MIN  
500  
500  
1.25  
1.25  
TYP  
MAX  
UNIT  
ns  
tSTASU  
tSTAHD  
tLOW  
START condition set-up time  
START condition hold time  
SCL low time  
ns  
µs  
tHIGH  
SCL high time  
µs  
tRISE  
SCL and SDA rise time  
SCL and SDA fall time  
Data setup time  
7
7
ns  
tFALL  
ns  
tDATSU  
tDATHD  
tSTOSU  
500  
500  
500  
ns  
Data hold time  
ns  
STOP condition set-up time  
ns  
6.23 Timing Diagram  
tHIGH  
tSTASU  
tLOW  
tSTAHD  
tRISE  
tFALL  
tDATHD  
tSTOSU  
tDATSU  
Figure 1. I2C Timing  
Copyright © 2018, Texas Instruments Incorporated  
13  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
6.24 Typical Characteristics  
2800000  
2600000  
2400000  
2200000  
2000000  
1800000  
1600000  
1400000  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (°C)  
D003  
Figure 2. Temperature Sensor Code vs Temperature  
14  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
7 Detailed Description  
7.1 Overview  
The PGA305 device can be used in a variety of applications. The most common ones are for pressure and  
temperature measurement. Depending on the application, the device itself can be configured in different modes.  
These sections give information regarding these configurations.  
The PGA305 device is a high-accuracy, low-drift, low-noise, low-power, and easily programmable signal-  
conditioner device for resistive-bridge pressure and temperature-sensing applications. The PGA305 device  
implements a third-order temperature coefficient (TC) and nonlinearity (NL) algorithm to linearize the analog  
output. The PGA305 device accommodates various sensing element types, such as piezoresistive, ceramic film,  
and steel membrane. It supports the sensing element spans from 1 mV/V to 135 mV/V. The typical applications  
supported are pressure sensor transmitters, transducers, liquid-level meters, flow meters, strain gauges, weight  
scales, thermocouples, thermistors, two-wire resistance thermometers (RTD), and resistive field transmitters. The  
device can also be used in accelerometer and humidity sensor signal-conditioning applications.  
The PGA305 device provides bridge excitation voltages of 2.5 V, 2 V, and 1.25 V, all ratiometric to the ADC  
reference level. The PGA305 device has the unique one-wire interface (OWI) that supports communication and  
configuration through the power-supply line during the calibration process. This feature minimizes the number of  
wires necessary for an application.  
The PGA305 device contains two separated analog front-end (AFE) chains for resistive-bridge inputs and  
temperature-sensing inputs. Each AFE chain has its own gain amplifier and a 16-bit ADC at a 7.8-kHz output  
rate. The resistive-bridge input AFE chain consists of a programmable gain with 32 steps from 5 V/V to 400 V/V.  
For the temperature-sensing AFE input chain, the PGA305 device provides a current source that can supply up  
to 500 µA for optional external temperature sensing. This current source can also be used as constant-current  
bridge excitation. The programmable gain in the temperature-sensing chain has four steps from 1.33 V/V to 20  
V/V. In addition, the PGA305 device integrates an internal temperature sensor that can be configured as the  
input of the temperature-sensing AFE chain.  
A 128-byte EEPROM is integrated in the PGA305 device to store the calibration coefficients and the PGA305  
configuration settings as needed. The PGA305 device has an integrated I2C interface used for data capture and  
also for device configuration. In addition, 14-bit DAC followed by a buffer gain stage of 2 V/V to 10 V/V. The  
device supports industrial-standard ratiometric-voltage output, absolute-voltage output, and 4-mA to 20-mA  
current loop.  
The diagnostic function monitors the operating condition of the PGA305 device. The device can operate with a  
3.3-V to 30-V power supply directly without using an external LDO. The PGA305 device has a wide ambient-  
temperature operating range from –40°C to 150°C. The package form is 6-mm × 6-mm, 36-pin VQFN. In this  
small package size, the PGA305 device has integrated all the functions necessary for resistive-bridge sensing  
applications to minimize the PCB area and simplify the overall application design.  
Copyright © 2018, Texas Instruments Incorporated  
15  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
7.2 Functional Block Diagram  
VDD  
vdd  
DVDD_MEM  
AVSS  
DVSS  
Sensor Voltage Supply  
Bridge Drive  
Linear Regulators  
AVDD Regulator  
GND  
AVDD  
Accurate Reference  
(2.5 V, 10 ppm/°C)  
BRG+  
DVDD  
REF  
DVDD Regulator  
BRGœ  
REFCAP  
P ADC  
INP+  
P Sigma-  
Delta  
Modulator  
vP  
P Gain  
(5 Bits)  
P Decimation  
Filter  
INPœ  
Channel Select  
INT+  
T ADC  
INTœ  
T Sigma-  
Delta  
Modulator  
vT  
T Gain  
(2 Bits)  
T Decimation  
Filter  
vtint  
Internal  
Temperature  
vdd  
OWI Driver  
tx  
rx  
OWI  
EEPROM  
(Calibration Coefficients, Serial No.)  
req  
I2CADDR  
SCL  
Digital Compensation  
Third-Order TC  
I2C  
SDA  
24bit  
vP  
vT  
IIR  
Second-  
Order Filter  
and  
DACCAP  
FB+  
Third-Order NL  
Sensor  
Compensation  
vdd  
DAC  
+
OUT  
14bit  
DAC Gain  
(2 Bits)  
Diagnostics  
COMP  
œ
FBœ  
16  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
7.3 Feature Description  
This section describes individual functional blocks of the PGA305 device.  
7.3.1 Reverse-Voltage Protection Block  
The PGA305 device includes a reverse-voltage protection block. This block protects the device from reverse-  
battery conditions on the external power supply.  
7.3.2 Linear Regulators  
The PGA305 device has two main linear regulators: an AVDD regulator and a DVDD regulator. The AVDD  
regulator supplies the 3-V voltage source for internal analog circuitry, while the DVDD regulator supplies the 1.8-  
V regulated voltage for the digital circuitry. The user must connect bypass capacitors of 100 nF each to the  
AVDD and DVDD pins of the device.  
7.3.3 Internal Reference  
The PGA305 device has two internal references. These references are given in these subsections.  
7.3.3.1 High-Voltage Reference  
The high-voltage reference is an inaccurate reference used in the diagnostic thresholds.  
7.3.3.2 Accurate Reference  
The accurate reference is used to generate reference voltage for the P ADC, T ADC and DAC. TI recommends  
to place a 100-nF capacitor on the REFCAP pin to limit the bandwidth of reference noise.  
The user can set the ADC_EN_VREF bit in the ALPWR register to 0 to disable the accurate reference buffer.  
This allows the user to connect an external single-ended reference voltage to the REFCAP pin and then supply  
the reference voltage to the ADCs and the DAC. Note that the default power-up state of ADC_EN_VREF is such  
that the reference buffer is disabled.  
NOTE  
The accurate reference is valid 50 µs after the digital core starts running at power up.  
7.3.4 BRG+ to BRG– Supply for the Resistive Bridge  
The sensor voltage-supply block of the PGA305 device supplies power to the resistive-bridge sensor. Use the  
BRG_CTRL bits in the BRG_CTRL register to configure the sensor supply in the PGA305 device to a 2.5-V, 2-V,  
or 1.25-V nominal output supply. These three output supply options can accommodate bridge sense elements  
with different resistor values. This nominal supply is ratiometric to the accurate reference as shown in Figure 3.  
Copyright © 2018, Texas Instruments Incorporated  
17  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Feature Description (continued)  
100 nF  
100 nF  
100 nF  
REFCAP  
DVDD  
AVDD  
INT+  
DVDD  
Regulator  
ITEMP  
Buf  
1.8 V  
PWR  
2.5 V  
2.5 V  
3 V  
AVDD  
Regulator  
Ref  
Buf  
2.5 V  
Reference  
Reverse  
Protection  
MUX  
2.5 V  
BRG+  
R1  
2 V  
Buf  
VBRG  
Absolute Ratiometric  
1.25 V  
R1  
R
R
2.5 V  
INP+  
INP–  
PGA  
ADC  
1.25 V  
OUT  
40 kΩ  
DAC  
Gain  
DAC  
DACCAP  
3.3 nF  
Figure 3. Bridge Supply and P ADC Reference are Ratiometric  
The sensor drive includes a switch. This switch can be used to turn off power to the sense element.  
7.3.5 ITEMP Supply for the Temperature Sensor  
The ITEMP block in PGA305 device supplies programmable current to an external temperature sensor, such as  
an RTD temperature probe or NTC or PTC thermistor. The temperature-sensor current source is ratiometric to  
the accurate reference.  
Use the ITEMP_CTRL bits in the TEMP_CTRL register to program the value of the current.  
7.3.6 Internal Temperature Sensor  
PGA305 device includes an internal temperature sensor whose voltage output is digitized by the T ADC and  
made available to the microprocessor. This digitized value is used to implement temperature compensation  
algorithms in software. Note that the voltage generated by the internal temperature sensor is proportional to the  
junction temperature.  
18  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
Feature Description (continued)  
Figure 4 shows the internal temperature sensor AFE.  
VREF = 2.5V  
INT+  
+
œ
To T ADC  
TSEM_N  
œ
INTœ  
TSEM_N  
+
Figure 4. Temperature Sensor AFE  
7.3.7 P Gain  
P gain is designed with precision, low-drift, low-flicker-noise, chopper-stabilized amplifiers. P gain is implemented  
as an instrument amplifier as shown in Figure 5.  
Copyright © 2018, Texas Instruments Incorporated  
19  
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Feature Description (continued)  
The user can use five bits in the P_GAIN_SELECT register to adjust the gain of this stage to accommodate  
sense elements with a wide range of signal spans.  
PGAIN_OPEN  
INP+  
+
-
To P ADC  
-
INPœ  
+
Figure 5. P Gain  
7.3.8 P Analog-to-Digital Converter  
The P analog-to-digital converter digitizes the voltage output of the P-gain amplifier.  
7.3.8.1 P Sigma-Delta Modulator for P ADC  
The sigma-delta modulator for P ADC is a 1-MHz, second-order, 3-bit quantizing sigma-delta modulator.  
7.3.8.2 P Decimation Filter for P ADC  
The pressure signal path internal conversion time is 128 µs.  
The output of the decimation filter in the pressure signal path is a 24-bit signed value. Some example decimation  
output codes for given differential voltages at the input of the sigma-delta modulator are shown in Table 1.  
Table 1. Input Voltage to Output Counts for the P ADC  
SIGMA-DELTA MODULATOR  
24-BIT NOISE-FREE  
DIFFERENTIAL INPUT VOLTAGE  
DECIMATOR OUTPUT  
(V)  
–2.5  
–1.25  
0
–8 388 608 (0x800000)  
–4 194 304 (0xC00000)  
0 (0x000000)  
1.25  
2.5  
4 194 303 (0x3FFFFF)  
8 388 607 (0x7FFFFF)  
20  
Copyright © 2018, Texas Instruments Incorporated  
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
7.3.9 T Gain  
The device has the ability to perform temperature compensation through an internal or external temperature  
sensor. The user can select the source of the temperature measurement with the TEMP_MUX_CTRL bits in  
TEMP_CTRL register. Note that the device connects to an external temperature sensor through the INT+ and  
INT– pins.  
The T gain block is constructed with a low-flicker-noise, low-offset, chopper-stabilized amplifier. The gain is  
configurable with two bits in the T_GAIN_SELECT register. Figure 6 shows the T-gain amplifier topology.  
VREF = 2.5V  
INT+  
+
œ
To T ADC  
TSEM_N  
œ
INTœ  
TSEM_N  
+
Figure 6. Temperature Sensor AFE  
The T-gain amplifier can be configured for single-ended or differential operation using the TSEM_N bit in the  
AMUX_CTRL register. Note that when the T-gain amplifier is set up for single-ended operation, the differential  
voltage converted by the T ADC is with respect to ground. Table 2 shows the configuration that the user must  
select for the different temperature sources.  
Table 2. T-Gain Configuration  
TEMPERATURE SOURCE  
T GAIN CONFIGURATION  
Single-ended  
Internal temperature sensor  
External temperature sensor with one terminal of the sensor connected to ground  
External temperature sensor with neither terminal of the sensor connected to ground  
Single-ended  
Differential  
Copyright © 2018, Texas Instruments Incorporated  
21  
 
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
The T-gain amplifier must be set up for either the single-ended or differential configuration, depending on the  
source of signal to the T gain.  
NOTE  
When T GAIN is configured to measure the internal temperature-sensor output,  
T GAIN must be configured to operate in single-ended mode and with a gain of 5  
V/V.  
7.3.10 T Analog-to-Digital Converter  
The T analog-to-digital converter is for digitizing the T-gain amplifier output. The digitized value is available in the  
TADC_DATA2 and TADC_DATA3 registers.  
7.3.10.1 T Sigma-Delta Modulator for T ADC  
The sigma-delta modulator for T ADC is a 1-MHz, second-order, 3-bit quantizing sigma-delta modulator.  
7.3.10.2 T Decimation Filters for T ADC  
The temperature signal path contains a decimation filter with an internal output rate of 128 µs.  
The output of the decimation filter in the temperature signal path is 24-bit signed value. Some example  
decimation output codes for given differential voltages at the input of the sigma-delta modulator are shown in  
Table 3.  
Table 3. Input Voltage to Output Counts for T ADC  
SIGMA-DELTA MODULATOR  
24-BIT NOISE-FREE  
DIFFERENTIAL INPUT VOLTAGE  
DECIMATOR OUTPUT  
–2.5 V  
–1.25 V  
0 V  
–8 388 608 (0x800000)  
–4 194 304 (0xC00000)  
0 (0x000000)  
1.25 V  
2.5 V  
4 194 303 (0x3FFFFF)  
8 388 607 (0x7FFFFF)  
The nominal relationship between the device junction temperature and 24-bit T ADC Code for T GAIN = 5 V/V is  
shown in Equation 1.  
T ADC Code = 6632.1 × TEMP + 1710281.3,  
where  
TEMP is temperature in °C  
(1)  
7.3.11 P GAIN and T GAIN Calibration  
The P_GAIN value should be set based on the maximum bridge output voltage. The maximum bridge voltage is  
the maximum sum of bridge offset and bridge span across the entire operating temperature range.  
The T GAIN value should be set based on the temperature sense element. The specific values to be used are:  
For the internal temperature sensor, set T_GAIN to 5 V/V gain.  
For an external temperature sensor such as a PTC thermistor, set T_GAIN to 20 V/V gain.  
7.3.12 One-Wire Interface (OWI)  
The device includes an OWI digital communication interface. The function of OWI is to enable writes to and  
reads from all memory locations inside the PGA305 device that are available for OWI access.  
7.3.12.1 Overview of OWI  
The OWI digital communication is a master-slave communication link in which the PGA305 device operates as a  
slave device only. The master device controls when data transmission begins and ends. The slave device does  
not transmit data back to the master until it is commanded to do so by the master.  
22  
Copyright © 2018, Texas Instruments Incorporated  
 
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
The PWR pin of PGA305 device is used as OWI interface, so that when the PGA305 device is embedded inside  
of a system module, only two pins are needed (PWR and GND) for communication. The OWI master  
communicates with the PGA305 device by modulating the voltage on the PWR pin, whereas the PGA305 device  
communicates with the master by modulating the current on the PWR pin. The OWI master activates OWI  
communication by generating an activation pulse on the PWR pin.  
Figure 7 shows a functional equivalent circuit for the structure of the OWI circuitry.  
C and S  
Registers  
Address and  
Data Lines  
PWR  
Enable  
OWI  
Controller  
XCVR SW  
OWI  
Transceiver  
OWI_ACT  
Digital  
Compensation  
Tx  
Rx  
OWI_REQ  
OWI_REQ_INT  
OWI_REQ  
ESFR  
XCVR SW  
C and S  
Registers  
Address and  
Data Lines  
5.75 V  
OWI_REQ  
OWI_REQ Deglitch  
Filter  
OWI  
Activation  
Comparator  
Figure 7. OWI System Components  
Copyright © 2018, Texas Instruments Incorporated  
23  
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
7.3.12.2 Activating and Deactivating the OWI Interface  
7.3.12.2.1 Activating OWI Communication  
The OWI master initiates OWI communication when the OWI master generates an OWI activation-pulse  
sequence on the PWR pin. When the PGA305 device receives a valid OWI activation-pulse sequence, it  
prepares itself for OWI communication. Notice that after the valid OWI activation-pulse sequence is received, the  
logic checks on the EEPROM lock status. If the EEPROM is locked, the sequence 0x5555 must be sent within  
100 ms after the end of the activation-pulse sequence.  
PWR Voltage  
PWR=5.95 V  
>1 ms  
PWR=5.75 V  
PWR=4.8 V  
PWR=4.2 V  
OWI  
COMMUNICATION  
<100 ms  
100 ms<time<200 ms  
>100 ms  
Figure 8. OWI Activation Using Overvoltage Drive  
7.3.12.2.2 Deactivating OWI Communication  
To deactivate OWI communication and restart the compensation engine inside the PGA305 device (if it was in  
reset), these two steps must be performed by the OWI master:  
Set the OWI_XCR_EN bit in the DIG_IF_CTRL register to 0 to turn off the OWI transceiver.  
Set the COMPENSATION_RESET bit in the COMPENSATION_CONTROL register to 0 to de-assert the  
compensation engine reset.  
7.3.12.3 OWI Protocol  
7.3.12.3.1 OWI Frame Structure  
7.3.12.3.1.1 Standard Field Structure  
Data is transmitted on the one-wire interface in byte-sized packets. The first bit of the OWI field is the start bit.  
The next eight bits of the field are data bits to be processed by the OWI control logic. The final bit in the OWI  
field is the stop bit. A group of fields make up a transmission frame. A transmission frame is composed of the  
fields necessary to complete one transmission operation on the one-wire interface. The standard field structure  
for a one-wire field is shown in Figure 9.  
Standard Field  
Figure 9. Standard OWI Field  
24  
Copyright © 2018, Texas Instruments Incorporated  
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
7.3.12.3.1.2 Frame Structure  
A complete one-wire data transmission operation is done in a frame with the structure is shown in Figure 10.  
Command  
Field  
1st Data  
Field  
Nth Data  
Field  
Sync Field  
cmd[0:7]  
data-1[0:7]  
data-N[0:7]  
Inter-Field  
Wait Time  
(One Bit-Time)  
Figure 10. OWI Transmission Frame, N = 1 to 8  
Each transmission frame must have a synchronization field and a command field followed by zero to a maximum  
of eight data fields. The sync field and command fields are always transmitted by the master device. The data  
fields may be transmitted either by the master or the slave, depending on the command given in the command  
field. It is the command field which determines direction of travel of the data fields (master-to-slave or slave-to-  
master). The number of data fields transmitted is also determined by the command in the command field. The  
inter-field wait time is optional and may be necessary for the slave or the master to process data that has been  
received.  
NOTE  
If the OWI remains idle in either the logic-0 or logic-1 state for more than 15 ms, then the  
PGA305 communication resets and requires a sync field as the next data transmission  
from the master.  
7.3.12.3.1.3 Sync Field  
The sync field is the first field in every frame that is transmitted by the master. The sync field is used by the slave  
device to compute the bit width transmitted by the master. This bit width is used to receive accurately all  
subsequent fields transmitted by the master. The format of the sync field is shown in Figure 11.  
Sync Field  
Measured Time  
Figure 11. OWI Sync Field  
NOTE  
Consecutive sync-field bits are measured and compared to determine if a sync field was  
transmitted to the PGA305 device is valid. If the difference in bit widths of any two  
consecutive SYNC field bits is greater than ±25%, then the PGA305 device ignores the  
rest of the OWI frame and does not respond to the OWI message.  
Copyright © 2018, Texas Instruments Incorporated  
25  
 
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
7.3.12.3.1.4 Command Field  
The command field is the second field in every frame sent by the master. The command field contains  
instructions about what to do with and where to send the data that is transmitted to the slave. The command field  
can also instruct the slave to send data back to the master during a read operation. The number of data fields to  
be transmitted is also determined by the command in the command field. The format of the command field is  
shown in Figure 12.  
Command Field  
cmd[0:7]  
Figure 12. OWI Command Field  
7.3.12.3.1.5 Data Fields  
After the master has transmitted the command field in the transmission frame, zero or more data fields are  
transmitted to the slave (write operation) or to the master (read operation). The data fields can be raw EEPROM  
data or address locations in which to store data. The format of the data is determined by the command in the  
command field. The typical format of a data field is shown in Figure 13.  
Data Field  
data[0:7]  
Figure 13. OWI Data Field  
7.3.12.3.2 OWI Commands  
The following is the list of five OWI commands supported by PGA305:  
1. OWI write  
2. OWI read initialization  
3. OWI read response  
4. OWI burst write of EEPROM cache  
5. OWI burst read from EEPROM cache  
7.3.12.3.2.1 OWI Write Command  
FIELD  
DESCRIPTION  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
LOCATION  
Command field  
Data field 1  
Basic write command  
Destination address  
Data byte to be written  
0
P2  
A6  
D6  
P1  
A5  
D5  
P0  
A4  
D4  
0
0
0
1
A7  
D7  
A3  
D3  
A2  
D2  
A1  
D1  
A0  
D0  
Data field 2  
26  
Copyright © 2018, Texas Instruments Incorporated  
 
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
The P2, P1, and P0 bits in the command field determine the memory page that is being accessed by the OWI.  
The memory page decode is shown in Table 4.  
Table 4. OWI Memory Page Decode  
P2  
0
P1  
0
P0  
0
MEMORY PAGE  
Reserved  
Reserved  
0
0
1
Control and status registers, DI_PAGE_ADDRESS  
= 0x02  
0
1
0
0
1
1
1
1
0
0
1
1
0
1
0
Reserved  
Reserved  
EEPROM cache  
Reserved  
Control and status registers, DI_PAGE_ADDRESS  
= 0x07  
1
1
1
7.3.12.3.2.2 OWI Read Initialization Command  
FIELD  
DESCRIPTION  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
LOCATION  
Command field  
Data field 1  
Read initialization  
command  
0
P2  
A6  
P1  
A5  
P0  
A4  
0
0
1
0
Fetch address  
A7  
A3  
A2  
A1  
A0  
The P2, P1, and P0 bits in the command field determine the memory page that is being accessed by the OWI.  
The memory page decode is shown in Table 4.  
7.3.12.3.2.3 OWI Read-Response Command  
FIELD  
LOCATION  
DESCRIPTION  
BIT 7  
0
BIT 6  
1
BIT 5  
1
BIT 4  
1
BIT 3  
0
BIT 2  
0
BIT 1  
1
BIT 0  
1
Command field  
Read-response command  
Data retrieved (OWI drives  
data out)  
Data field 1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
The P2, P1, and P0 bits in the command field determine the memory page that is being accessed by the OWI.  
The memory page decode is shown in Table 4.  
7.3.12.3.2.4 OWI Burst-Write Command (EEPROM Cache Access)  
FIELD  
DESCRIPTION  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
LOCATION  
Command field  
Data field 1  
EE_CACHE write-command  
cache bytes (0–7)  
1
1
0
1
0
0
0
0
First data byte to be written  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Second data byte to be  
written  
Data field 2  
Data field 3  
Data field 4  
Data field 5  
Data field 6  
Third data byte to be written  
Fourth data byte to be written  
Fifth data byte to be written  
Sixth data byte to be written  
D7  
D7  
D7  
D7  
D6  
D6  
D6  
D6  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
Seventh data byte to be  
written  
Data field 7  
Data field 8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Eighth data byte to be written  
Copyright © 2018, Texas Instruments Incorporated  
27  
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
7.3.12.3.2.5 OWI Burst Read Command (EEPROM Cache Access)  
FIELD  
LOCATION  
DESCRIPTION  
BIT 7  
1
BIT 6  
1
BIT 5  
0
BIT 4  
1
BIT 3  
0
BIT 2  
0
BIT 1  
1
BIT 0  
1
Burst-read response (8  
bytes)  
Command field  
First data byte retrieved  
EEPROM cache byte 0  
Data field 1  
Data field 2  
Data field 3  
Data field 4  
Data field 5  
Data field 6  
D7  
D7  
D7  
D7  
D7  
D7  
D6  
D6  
D6  
D6  
D6  
D6  
D5  
D5  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
D0  
D0  
Second data byte retrieved  
EEPROM cache byte 1  
Third data byte retrieved  
EEPROM cache byte 2  
Fourth data byte retrieved  
EEPROM cache byte 3  
Fifth data byte retrieved  
EEPROM cache byte 4  
Sixth data byte retrieved  
EEPROM cache byte 5  
Seventh data byte  
retrieved  
EEPROM cache byte 6  
Data field 7  
Data field 8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Eighth data byte retrieved  
EEPROM cache byte 7  
7.3.12.3.3 OWI Operations  
7.3.12.3.3.1 Write Operation  
The write operation on the one-wire interface is fairly straightforward. The command field specifies the write  
operation, where the subsequent data bytes are to be stored in the slave, and how many data fields are going to  
be sent. Additional command instructions can be sent in the first few data fields if necessary. The write operation  
is shown in Figure 14.  
Command  
Field  
1st Data  
Field  
Nth Data  
Field  
Sync Field  
Write Cmd  
(To Slave)  
Write Data  
(To Slave)  
Write Data  
(To Slave)  
(To Slave)  
Inter-Field  
Wait Time  
Figure 14. Write Operation, N = 1 to 8  
7.3.12.3.3.2 Read Operation  
The read operation requires two consecutive transmission frames to move data from the slave to the master. The  
first frame is the read-initialization frame. It tells the slave to retrieve data from a particular location within the  
slave device and prepare to send it over the OWI. The data location may be specified in the command field or  
may require additional data fields for complete data-location specification. The data is not sent until the master  
commands it to be sent in the subsequent frame called the read-response frame. During the read-response  
frame, the data direction changes from master slave to slave master immediately after the read response  
command field is sent. Enough time elapses between the command field and data field to allow the signal drivers  
to change direction. This wait time is 20 µs, and the timer for this wait time is located on the slave device. After  
this wait time is complete, the slave transmits the requested data. The master device is expected to have  
switched its signal drivers and is ready to receive data. The read frames are shown in Figure 15.  
28  
Copyright © 2018, Texas Instruments Incorporated  
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
Command  
Field  
1st Data  
Field  
Nth Data  
Field  
Sync Field  
(To Slave)  
READ_INIT  
(To Slave)  
Opt Data  
Opt Data  
(To Slave)  
(To Slave)  
Inter-Field  
Wait Time  
Figure 15. Read-Initialization Frame, N = 1 to 8  
1st Data  
Field  
Command  
Field  
Nth Data  
Field  
Sync Field  
(To Slave)  
RD_RESP  
Read Data  
(To Master)  
Read Data  
(To Slave)  
(To Master)  
Data Changes Direction Between  
Command Field and First Data Field  
Inter-Field  
Wait Time  
Figure 16. Read-Response Frame, N = 1 to 8  
7.3.12.3.3.3 EEPROM Burst Write  
The user can use the EEPROM burst write to write eight bytes of data to the EEPROM cache with one OWI  
frame to allow fast programming of EEPROM. Note that the EEPROM page must be selected before the  
EEPROM can transfer the contents of the EEPROM memory cells to the EEPROM cache.  
7.3.12.3.3.4 EEPROM Burst Read  
The user can use the EEPROM burst read is used to read eight bytes of data from the EEPROM cache with one  
OWI frame to allow a fast reading of the EEPROM cache contents. The read process is used to verify the writes  
to the EEPROM cache.  
7.3.12.4 OWI Communication-Error Status  
The PGA305 device detects errors in OWI communication. The OWI_ERROR_STATUS_LO and  
OWI_ERROR_STATUS_HI registers contain OWI communication error bits. The communication errors detected  
include:  
Out-of-range communication baud rate  
Invalid SYNC field  
Invalid STOP bits in command and data  
Invalid OWI command  
7.3.13 I2C Interface  
The device includes an I2C digital communication interface capable of running up to 800 kHz. The main function  
of the I2C is to enable data capture from the PGA305 device as well as writes and reads from all registers  
available for I2C access.  
7.3.13.1 Overview of I2C Interface  
I2C is a synchronous serial communication standard that requires the following two pins for communication:  
SDA: I2C serial data line (SDA)  
SCL: I2C serial clock line (SCL)  
In addition, the I2CADDR pin is used to select the I2C device address of PGA305. Specifically:  
I2CADDR - Logic 1 - Device address - 0x20, 0x22, 0x25 depending on the Digital Interface Page that is  
accessed.  
Copyright © 2018, Texas Instruments Incorporated  
29  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
I2CADDR - Logic 0 - Device address - 0x40, 0x42, 0x45 depending on the Digital Interface Page that is  
accessed.  
It is noted that for valid I2C communication to occur I2CADDR should not change value during an I2C transaction.  
I2C communicates in a master-and-slave style communication bus where one device, the master, can initiate  
data transmission. The device always acts as the slave device in I2C communication where the external device  
that communicates to it acts as the master. The master device is responsible for initiating communication over  
the SDA line and supplying the clock signal on the SCL line. When the I2C SDA line is pulled low, it is considered  
a logical zero, and when the I2C SDA line is floating high, it is considered a logical one. For the I2C interface to  
have access to the configuration registers, the IF_SEL and the COMPENSATION_RESET bits in the  
COMPENSATION_CONTROL register have to be set to logic one.  
7.3.13.2 Clocking Details of I2C Interface  
The device samples the data on the SDA line when the rising edge of the SCL line is high, and is changed when  
the SCL line is low. The only exceptions to this indication are a start, stop, or repeated start condition as shown  
in Figure 17.  
SDA  
acknowledgement  
signal from slave  
acknowledgement  
signal from receiver  
MSB  
byte complete,  
interrupt within slave  
clock line held low while  
interrupts are serviced  
Sr  
or  
P
S
or  
Sr  
SCL  
1
2
7
8
9
1
2
3 - 8  
9
SCK  
SCK  
START or  
repeat START  
condition  
STOP or  
repeated START  
condition  
SDA  
SCL  
SDA  
SCL  
START condition  
STOP condition  
SDA  
SCL  
1 - 7  
9
9
8
1 - 7  
8
9
1 - 7  
8
R/W  
ADDRESS  
ACK  
DATA  
ACK  
DATA  
START  
ACK  
STOP  
condition  
condition  
Figure 17. I2C Clocking Details  
30  
Copyright © 2018, Texas Instruments Incorporated  
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
7.3.13.3 I2C Interface Protocol  
Figure 18 shows the basic protocol of the I2C frame for a Write operation.  
SLAVE  
ADDRESS  
[6:0]  
Register  
Address  
[7:0]  
DATA  
[7:0]  
S
0
A
A
A/A  
P
Data Transferred  
(n bytes + acknowledge)  
From Master To Slave  
From Slave To Master  
A = acknowledge (SDA LOW)  
A = not acknowledge (SDA HIGH)  
S = START condition  
P = STOP Condition  
Figure 18. I2C Write Operation: A Master-Transmitter Addressing a PGA305 Slave With a 7-Bit Slave  
Address  
The diagram represents the data fed into or out from the I2C SDA port.  
The basic data transfer is to send two bytes of data to the specified slave address. The first data field is the  
register address and the second data field is the data sent or received.  
The I2C slave address is used to determine which memory page is being referenced. Table 5 shows the mapping  
of the slave address to the memory page.  
Table 5. Slave Addresses  
SLAVE ADDRESS WHEN  
I2CADDR = 1  
SLAVE ADDRESS WHEN  
I2CADDR = 0  
PGA305 MEMORY PAGE  
PGA305 Data Read and  
0x20  
0x40  
COMPENSATION_CONTROL  
register (di_page_address = 0x00)  
Control and Status Registers  
(di_page_address = 0x02)  
0x22  
0x25  
0x42  
0x45  
EEPROM Registers  
(di_page_address = 0x05)  
Figure 19 shows the basic PGA305 I2C protocol for a read operation.  
SLAVE  
ADDRESS  
[6:0]  
SLAVE  
ADDRESS  
[6:0]  
Register Address  
[7:0]  
Slave Data  
[7:0]  
S
0
A
A
RS  
1
A
P
From Master To Slave  
From Slave To Master  
A = acknowledge (SDA LOW)  
S = START condition  
RS = Repeat Start Condition (same as Start condition)  
P = STOP Condition  
Figure 19. I2C Read Operation: A Master-Transmitter Addressing a PGA305 Slave With a 7-Bit Slave  
Address  
The slave address determines the memory page. The R/W bit is set to 0.  
The register address specifies the 8-bit address of the requested data.  
Copyright © 2018, Texas Instruments Incorporated  
31  
 
 
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
The repeat start condition replaces the write data from the above write operation description. This informs the  
PGA305 devices that Read operation will take place instead of a write operation.  
The second slave address contains the memory page from which the data will be retrieved. The R/W bit is set to  
1.  
Slave data is transmitted after the acknowledge is received by the master.  
Table 6 lists a few examples of I2C Transfers.  
Table 6. I2C Transfers Examples  
MASTER TO SLAVE DATA ON I2C SDA  
(I2CADDR = 0)  
MASTER TO SLAVE DATA ON I2C SDA  
(I2CADDR = 1)  
COMMAND  
Slave address: 010 0010  
Slave address: 100 0010  
Register address: 0011 0000  
Data: 1000 0000  
Write 0x80 to Control and  
Status Registers 0x30  
(DAC_REG0_1)  
Register address: 0011 0000  
Data: 1000 0000  
Read from EEPROM Byte Slave Address: 010 0101  
Slave Address: 100 0101  
7
Register Address: 0000 0111  
Register Address: 0000 0111  
Write to EEPROM Cache Slave Address: 010 0101  
Slave Address: 100 0101  
Byte 7  
Register Address: 1000 0111  
Register Address: 1000 0111  
7.3.13.4 PGA305 I2C Runtime Commands  
During the PGA305 Operation while the Compensation Algorithm runs (COMPENSATION_RESET = 0), the I2C  
interface can collect data from the device when the interface sends I2C commands to the PGA305 device and  
reads a response from the PGA305 device. The runtime commands used in the PGA305 device are listed in  
Table 7.  
Note that the register address used for I2C Write Command is always 0x09 on DI Page 0x00.  
Table 7. I2C Runtime Write Commands  
I2C WRITE  
COMMAND  
Description  
Data Format (I2CADDR = 0)  
Data Format (I2CADDR = 1)  
Reads one 24bit sample from the  
PADC Channel  
Slave address: 100 0000 (Slave Slave address: 010 0000 (Slave  
Address + DI Page) Address + DI Page)  
0x00 - Read  
PADC Source  
Value  
Register address: 0000 1001 (Register Register address: 0000 1001 (Register  
Address)  
Address)  
Data: 0000 0000 (Data)  
Data: 0000 0000 (Data)  
Reads one 24-bit sample from the  
TADC Channel  
Slave address: 100 0000 (Slave Slave address: 010 0000 (Slave  
Address + DI Page) Address + DI Page)  
0x02 - Read  
TADC Source  
Value  
Register address: 0000 1001 (Register Register address: 0000 1001 (Register  
Address)  
Address)  
Data: 0000 0010 (Data)  
Data: 0000 0010 (Data)  
Reads One 24-bit or 16-bit sample  
from the Compensated output of the  
device. The same value that is read by  
using this command is fed into the  
DAC output of the PGA305 device.  
Slave address: 100 0000 (Slave Slave address: 010 0000 (Slave  
Address + DI Page) Address + DI Page)  
0x04 - Read  
PGA305  
Compensated  
Output Value  
Register address: 0000 1001 (Register Register address: 0000 1001 (Register  
Address)  
Address)  
Data: 0000 0100 (Data)  
Data: 0000 0100 (Data)  
Reads the PGA305 Diagnostics. For  
more Information see "Reading  
Diagnostics Information through I2C"  
Chapter.  
Slave address: 100 0000 (Slave Slave address: 010 0000 (Slave  
Address + DI Page) Address + DI Page)  
0x06 - Read  
PGA305  
Diagnostics  
Register address: 0000 1001 (Register Register address: 0000 1001 (Register  
Address)  
Address)  
Data: 0000 0110 (Data)  
Data: 0000 0110 (Data)  
32  
Copyright © 2018, Texas Instruments Incorporated  
 
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
Table 7. I2C Runtime Write Commands (continued)  
I2C WRITE  
COMMAND  
Description  
Data Format (I2CADDR = 0)  
Data Format (I2CADDR = 1)  
Loads the lower 16bits of any  
previously executed command  
Slave address: 100 0000 (Slave Slave address: 010 0000 (Slave  
Address + DI Page) Address + DI Page)  
0x70 - Read Trail  
Word  
Register address: 0000 1001 (Register Register address: 0000 1001 (Register  
Address)  
Address)  
Data: 0111 0000 (Data)  
Data: 0111 0000 (Data)  
After the I2C interface sends a Write Command to the PGA305 device, the I2C interface reads the response is  
read through a read response command presented in the following table.  
Note that there are two 8-bit I2C registers that are used to read 16 bits of PGA305 response. The register  
addresses used for I2C Read Response are 0x05 on DI Page 0x00 for the Most Significant Byte and 0x04 on DI  
Page 0x00 for the Least Significant Byte.  
Table 8. I2C Runtime Read Response Command  
I2C Read Response  
Data Format (I2CADDR = 0)  
Data Format (I2CADDR = 1)  
Slave address: 100 0000 (Slave Address + DI Page)  
Register address: 0000 0101 (Register Address)  
Data: 0000 0000 (Data)  
Slave address: 010 0000 (Slave Address + DI Page)  
Register address: 0000 0101 (Register Address)  
Data: 0000 0000 (Data)  
Read Most Significant  
Byte  
Slave address: 100 0000 (Slave Address + DI Page)  
Register address: 0000 0100 (Register Address)  
Data: 0000 0000 (Data)  
Slave address: 010 0000 (Slave Address + DI Page)  
Register address: 0000 0100 (Register Address)  
Data: 0000 0000 (Data)  
Read Least Significant  
Byte  
7.3.13.5 PGA305 I2C Transfer Example  
This I2C example presents the read of a single 24-bit sample from the PGA device. In this example, Command  
0x04 Read PGA305 Compensated Output Value is used while the PGA305 slave address is 0x20 (I2CADDR =  
1).  
Table 9. I2C Transfer Example  
I2C Data Flow  
Description  
I2C Master  
PGA305  
1. Master Sends  
0x40 (Slave Address + DI Page + R/W bit)  
0x09(Register Address)  
0x04 (Data)  
Acknowledge  
Acknowledge  
Acknowledge  
Command 0x04 (Read  
PGA305 Compensated  
Output Value)  
0x40 (Slave Address + DI Page + R/W bit)  
0x04(Register Address)  
Acknowledge  
2. Master Reads Byte2  
(MS Byte)  
Acknowledge  
0x41 (Slave Address + DI Page + R/W bit)  
0xbb (Where 'bb' is the data Value)  
0x40 (Slave Address + DI Page + R/W bit)  
0x09(Register Address)  
0x70 (Data)  
Acknowledge  
Acknowledge  
Acknowledge  
3. Master sends  
Commands 0x70 (Read  
Trail Word)  
0x40 (Slave Address + DI Page + R/W bit)  
0x05(Register Address)  
Acknowledge  
4. Master Reads Byte1  
(Mid Significant Byte)  
Acknowledge  
0x41 (Slave Address + DI Page + R/W bit)  
0xbb (Where 'bb' is the data Value)  
0x40 (Slave Address + DI Page + R/W bit)  
0x04(Register Address)  
Acknowledge  
5. Master Reads Byte0  
(Least Significant Byte)  
Acknowledge  
0x41 (Slave Address + DI Page + R/W bit)  
0xbb (Where 'bb' is the data Value)  
Copyright © 2018, Texas Instruments Incorporated  
33  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
If the PGA305 device operates in 16-bit mode (ADC_24BIT_EN = 0), step 2 can be skipped.  
7.3.14 DAC Output  
The device includes a 14-bit digital-to-analog converter that produces an absolute output voltage with respect to  
the accurate reference voltage or a ratiometric output voltage with respect to the PWR supply.  
When the microprocessor undergoes a reset, the DAC registers are driven to the 0x000 code.  
7.3.14.1 Ratiometric vs Absolute  
Use the DAC_RATIOMETRIC bit in DAC_CONFIG to configure the DAC output in either ratiometric-to-PWR  
mode or independent-of-PWR (or absolute) mode.  
NOTE  
In ratiometric mode, changes in the VPWR voltage result in a proportional change in the  
output voltage because the current reference for the DAC is derived from VPWR  
.
7.3.15 DAC Gain  
The DAC gain buffer is a configurable buffer stage for the DAC output. The DAC gain amplifier can be configured  
to operate in voltage amplification mode for voltage output or current amplification mode for 4-mA to 20-mA  
applications. In voltage output mode, set the DAC_GAIN bits in the DAC_CONFIG register to a specific value to  
configure the DAC gain as shown in Figure 20. Use the 2-bit DAC_GAIN field to configure the DAC gain to one  
of four possible gain configurations.  
The final step of DAC gain is connected to PWR and ground, which gives the user the ability to drive the VOUT  
voltage close to the VPWR voltage.  
The DAC gain buffer also implements a COMP pin to allow the user to implement compensation when driving  
large capacitive loads.  
34  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
PWR  
40 kΩ  
VDAC  
+
OUT  
S1  
-
40 kΩ  
COMP  
FB  
Open  
2 V/V  
S5  
75 kΩ  
S0  
37.5 kΩ  
15 kΩ  
4 V/V  
6.67 V/V  
10 V/V  
7.5 kΩ  
15 kΩ  
40 Ω  
FB+  
DACCAP  
Figure 20. PGA305 Output Buffer  
7.3.16 Memory  
7.3.16.1 EEPROM Memory  
Figure 21 shows the EEPROM structure. The contents of the EEPROM must be transferred to the EEPROM  
cache before writes. This means that the EEPROM can be programmed eight bytes at a time. EEPROM reads  
occur without the EEPROM cache.  
Copyright © 2018, Texas Instruments Incorporated  
35  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Read DATA_OUT[31:0]  
Digital  
Compensation  
Cache  
ADDRESS[3:0]  
EEPROM  
Program  
DATA_OUT[63:0]  
EEPROM  
Memory  
Cells  
EEPROM  
Cache  
(8 Bytes, 1 ´ 64 Bits)  
(128 Bytes, 16 ´ 64 Bits)  
Cache Write  
DATA_IN[7:0]  
Digital Interface  
OWI  
Read DATA_OUT[7:0]  
Figure 21. Structure of the EEPROM Interface  
7.3.16.1.1 EEPROM Cache  
The EEPROM cache serves as temporary storage of data being transferred to selected EEPROM locations  
during the programming process.  
7.3.16.1.2 EEPROM Programming Procedure  
For programming the EEPROM, the EEPROM is organized in 16 pages of eight bytes each. Write to the 8-byte  
EEPROM cache to program the EEPROM memory cells. Select the EEPROM memory page to transfer the  
contents of the EEPROM cache.  
1. Write the upper four bits of the 7-bit EEPROM address to the EEPROM_PAGE_ADDRESS register to select  
the EEPROM page.  
2. Write to the EEPROM_CACHE register to load the 8-byte EEPROM cache. Note that all eight bytes must be  
loaded into the EEPROM_CACHE register.  
3. Set the ERASE_AND_PROGRAM bit in the EEPROM_CTRL register. Setting this bit automatically erases  
the selected EEPROM memory page and programs it with the contents of the EEPROM_CACHE register.  
Alternatively, the user can write 1 to the ERASE bit in the EEPROM_CTRL register to erase the selected  
EEPROM memory page, and then write 1 to the PROGAM bit in the EEPROM_CTRL register once the  
erase is complete. The status of the erase and program operations can be monitored through the  
EEPROM_STATUS register.  
7.3.16.1.3 EEPROM Programming Current  
The EEPROM programming process results in an additional 6-mA current on the PWR pin for the duration of  
programming.  
7.3.16.1.4 CRC  
The last byte of the EEPROM memory is reserved for the CRC. This CRC value covers all data in the EEPROM  
memory. Every time the last byte is programmed, the CRC value is automatically calculated and validated. The  
validation process checks the calculated CRC value with the last byte programmed in the EEPROM memory cell.  
If the calculated CRC matches the value programmed in the last byte, the CRC_GOOD bit is set in the  
EEPROM_CRC_STATUS register.  
36  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
The user can set the CALCULATE_CRC bit in the EEPROM_CRC register to initiate the CRC check. The status  
of the CRC calculation is available in the CRC_CHECK_IN_PROG bit in the EEPROM_CRC_STATUS register,  
while the result of the CRC validation is available in the CRC_GOOD bit in the EEPROM_CRC_STATUS  
register.  
The CRC calculation pseudo code is as follows:  
currentCRC8 = 0xFF; // Current value of CRC8  
for NextData  
D = NextData;  
C = currentCRC8;  
begin  
nextCRC8_BIT0 = D_BIT7 ^ D_BIT6 ^ D_BIT0 ^ C_BIT0 ^ C_BIT6 ^ C_BIT7;  
nextCRC8_BIT1 = D_BIT6 ^ D_BIT1 ^ D_BIT0 ^ C_BIT0 ^ C_BIT1 ^ C_BIT6;  
nextCRC8_BIT2 = D_BIT6 ^ D_BIT2 ^ D_BIT1 ^ D_BIT0 ^ C_BIT0 ^ C_BIT1 ^ C_BIT2 ^ C_BIT6;  
nextCRC8_BIT3 = D_BIT7 ^ D_BIT3 ^ D_BIT2 ^ D_BIT1 ^ C_BIT1 ^ C_BIT2 ^ C_BIT3 ^ C_BIT7;  
nextCRC8_BIT4 = D_BIT4 ^ D_BIT3 ^ D_BIT2 ^ C_BIT2 ^ C_BIT3 ^ C_BIT4;  
nextCRC8_BIT5 = D_BIT5 ^ D_BIT4 ^ D_BIT3 ^ C_BIT3 ^ C_BIT4 ^ C_BIT5;  
nextCRC8_BIT6 = D_BIT6 ^ D_BIT5 ^ D_BIT4 ^ C_BIT4 ^ C_BIT5 ^ C_BIT6;  
nextCRC8_BIT7 = D_BIT7 ^ D_BIT6 ^ D_BIT5 ^ C_BIT5 ^ C_BIT6 ^ C_BIT7;  
end  
currentCRC8 = nextCRC8_D8;  
endfor  
NOTE  
The EEPROM CRC calculation is complete 340 µs after the digital core starts running at  
power up.  
7.3.16.2 Control and Status Registers Memory  
The digital compensator uses the Control and Status registers to interact with the analog blocks of the device.  
7.3.17 Diagnostics  
The PGA305 device implements the diagnostics listed in Table 10.  
Table 10. Programming Diagnostics  
DIAGNOSTICS DESCRIPTION  
Digital-compensation-logic execution-timing error  
Digital-compensation-logic checksum error  
EEPROM is corrupted or EEPROM CRC = 0  
ACTION  
DAC is disabled and compensation logic is set to reset  
DAC is disabled and compensation logic is set to reset  
DAC code is driven to 0 code  
DAC output is driven to the value determined by the FAULT register in  
EEPROM  
Power-supply and signal-chain errors  
The user can set the DIAG_ENABLE register in EEPROM to a non-zero value to enable the diagnostics listed in  
Table 10. To disable diagnostics, set the DIAG_ENABLE register in EEPROM to 0.  
Copyright © 2018, Texas Instruments Incorporated  
37  
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
7.3.17.1 Power Supply Diagnostics  
The PGA305 device includes circuits to monitor the reference and power supply for faults. Specifically, the  
signals that are monitored are:  
AVDD voltage  
DVDD voltage  
Bridge supply voltage  
Internal oscillator supply voltage  
Reference output voltage  
The Electrical Characteristics – Diagnostics table lists the voltage thresholds for each of the power rails.  
7.3.17.2 Signal Chain Faults  
The PGA305 device includes circuits to monitor the P and T signal chains for faults. This section describes the  
faults monitored by the PGA305 device.  
7.3.17.2.1 P Gain and T Gain Input Faults  
The PGA305 device includes circuits to monitor for sensor connectivity faults. Specifically, the device monitors  
the bridge sensor pins for opens (including loss of connection from the sensor), short to ground, and short-to-  
sensor supply. The device can compare the voltage at INP+ and INP– pins with the overvoltage and  
undervoltage thresholds listed in the Electrical Characteristics – Diagnostics table as a way to monitor for sensor  
connectivity faults.  
The device also includes an overvoltage monitor at the INT+ and INT– pins through the use of 1-Mpullup  
resistors.  
Figure 22 shows the block diagram of the P gain and T gain input faults.  
38  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
OV  
OV  
UV  
VINP_OV  
VINP_UV  
UV  
PGAIN_OPEN  
INP+  
P Gain  
(5 Bits)  
To P ADC  
INPœ  
OV  
OV  
VINT_OV  
AVDD  
INT+  
T Gain  
(5 Bits)  
To T ADC  
INTœ  
Figure 22. Block Diagram of P Gain and T Gain Diagnostics  
The bridge-sensor connectivity faults are detected through the use of an internal pulldown resistor. The value of  
the pulldown resistor and the threshold can be configured using the AFEDIAG_CFG EEPROM register. Table 11  
describes the possible configurations.  
Table 11. Definition of AFEDIAG_CFG EEPROM Register  
BITS  
DESCRIPTION  
0: PD1  
1: PD2  
See Electrical Characteristics – Diagnostics.  
See Electrical Characteristics – Diagnostics.  
2: THRS[0]  
3: THRS[1]  
4: THRS[2]  
1: Disables pulldown resistors used for open and short diagnostics on the INP+ and INP– pins  
0: Enables pulldown resistors used for open and short diagnostics on the INP+ and INP– pins  
5: DIS_R_P  
1: Disables pullup resistors used for open and short diagnostics on the INT+ and INT– pins  
0: Enables pullup resistors used for open and short diagnostics on the INT+ and INT– pins  
6: DIS_R_T  
7:  
Copyright © 2018, Texas Instruments Incorporated  
39  
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
7.3.17.2.2 P Gain and T Gain Output Diagnostics  
The PGA305 device includes modules that verify that the output signal of each gain is within a certain range.  
This ensures that gain stages in the signal chain are working correctly.  
OV  
PGAIN_OV  
OV  
UV  
PGAIN_UV  
UV  
INP+  
P Gain  
To P ADC  
(5 Bits)  
INP–  
OV  
TGAIN_OV  
OV  
UV  
TGAIN_UV  
UV  
INT+  
T Gain  
To T ADC  
(2 Bits)  
INT–  
Figure 23. Block Diagram of P Gain and T Gain Output Diagnostics  
7.3.17.2.3 Masking Signal Chain Faults  
Use the bits in the AFEDIAG_MASK register in EEPROM to selectively enable and disable the signal chain  
diagnostics. Table 12 lists the mask bits. The user can set a bit to 1 enables detection of the corresponding fault  
and set the bit to 0 to disable the detection of corresponding fault.  
Table 12. Signal Chain Fault Masking Bits  
BIT  
0
DESCRIPTION  
INP+ or INP– overvoltage  
INP+ or INP– unvervoltage  
1
40  
Copyright © 2018, Texas Instruments Incorporated  
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
Table 12. Signal Chain Fault Masking Bits (continued)  
BIT  
2
DESCRIPTION  
INT+ or INT– overvoltage  
N/A  
3
4
P GAIN output overvoltage  
P GAIN output undervoltage  
T GAIN output overvoltage  
T GAIN output undervoltage  
5
6
7
7.3.17.2.4 Fault Detection Timing  
The PGA305 fault-monitoring circuits monitor faults either at power up or periodically. Table 13 shos the fault-  
detection timing.  
Table 13. Fault Detection Timing  
MINIMUM TIME AFTER  
FAULT OCCURS  
MAXIMUM TIME AFTER  
FAULT OCCURS  
FAULT  
POWER UP OR RUN TIME  
Digital-compensation execution-timing error  
Digital-compensation checksum error  
Run time  
Run time  
500 ms  
500 ms  
Power up only (EEPROM is  
accessed only at power up)  
EEPROM is corrupted or EEPROM CRC = 0  
Power supply and signal chain errors  
N/A  
N/A  
Run time  
8 ms  
16 ms  
7.3.18 Reading Diagnostics Information Through I2C  
To receive Diagnostics Information through the I2C Interface while the PGA305 compensation algorithm runs, the  
I2C command 0x06 is used. The Implemented Diagnostics in PGA305 are stuck fault, which means that if a  
diagnostic fault occurred in the past, this will be reported when the next diagnostics read occurs even in the case  
where the fault is not present in the system any longer. When the I2C command has been received, the I2C will  
report the Power Supply diagnostics and the Analog Front End Diagnostics and will clear the stuck diagnostic  
flags.  
The I2C example in Table 14 shows the diagnostics read process from the PGA device. In this example the  
PGA305 slave address is assumed to be 0x20 (I2CADDR = 1).  
Table 14. Diagnostics Information  
I2C Data Flow  
Description  
I2C Master  
PGA305  
0x40 (Slave Address + DI Page + R/W bit)  
0x09(Register Address)  
0x06 (Data)  
Acknowledge  
Acknowledge  
Acknowledge  
1. Master Sends  
Command 0x06 (Read  
PGA305 Diagnostics)  
0x40 (Slave Address + DI Page + R/W bit)  
0x05(Register Address)  
Acknowledge  
2. Master Reads Byte1  
(Power Supply  
Diagnostics)  
Acknowledge  
0x41 (Slave Address + DI Page + R/W bit)  
0xbb (Where 'bb' is the data Value)  
0x40 (Slave Address + DI Page + R/W bit)  
0x04(Register Address)  
Acknowledge  
2. Master Reads Byte0  
(Analog Front-End  
Diagnostics)  
Acknowledge  
0x41 (Slave Address + DI Page + R/W bit)  
0xbb (Where 'bb' is the data Value)  
Copyright © 2018, Texas Instruments Incorporated  
41  
 
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Further, Table 15 lists the bits that order for the Power Supply Diagnostics (Byte1) and the Analog Front End  
Diagnostics (Byte2).  
Table 15. Diagnostics Information  
Power Supply (Byte 1)  
Analog Front End (Byte 0)  
Bit 7: Digital Regulator DVDD Under Voltage Bit 7:Temperature Channel AFE Output Under Voltage (TGAIN_UV)  
(DVDD_UV)  
Bit 6: Temperature Channel AFE Output Over Voltage (TGAIN_OV)  
Bit 6: Digital Regulator DVDD Over Voltage  
Bit 5: Pressure Channel AFE Output Under Voltage (PGAIN_UV)  
(DVDD_OV)  
Bit 4: Pressure Channel AFE Output Over Voltage (PGAIN_OV)  
Bit 5: Analog Regulator AVDD Unde  
Bit 3: Unused (N/A)  
rVoltage (AVDD_UV)  
Bit 2: INT+ and INT- pins Over Voltage (INT_OV)  
Bit 4: Analog Regulator AVDD Over Voltage  
(AVDD_OV)  
Bit 1: INP+ and INP- pins Under Voltage (INP_UV)  
Bit 3: Reference Under Voltage (REF_UV)  
Bit 2: Reference Over Voltage (REF_OV)  
Bit 0: INP+ and INP- pins Over Voltage (INP_OV)  
Bit 1: Bridge Supply Over Voltage  
(VBRG_OV)  
Bit 0: Bridge Supply Under Voltage  
(VBRG_UV)  
7.3.19 Digital Compensation and Filter  
The PGA305 device implements a third-order TC and NL correction of the pressure and temperature inputs. The  
user can use a second-order IIR filter to filter and write the corrected output to the DAC as shown in Figure 24.  
Digital Compensation  
Digital  
Offset  
DATA_OUT  
Filtered  
24 or 16 Bits  
ADC_24BIT_EN  
I2C  
Interface  
Scaling  
INP+  
24  
Bits  
24  
Bits  
P Gain,  
P ADC  
Digital  
Gain  
+
+
INPœ  
3rd-Order  
TC and NL  
Sensor  
DATA_OUT  
24 Bits  
IIR 2nd-  
Order Filter  
Compensation  
INT+  
24  
Bits  
T Gain,  
T ADC  
24  
Bits  
Digital  
Gain  
INTœ  
DAC  
Filtered  
14 Bits  
OUT  
DAC,  
DAC Gain  
Scaling  
Digital  
Offset  
Figure 24. Digital Transfer Block Diagram  
7.3.19.1 Digital Gain and Offset  
The digital compensation implements digital gain and offset for both pressure and temperature. These are  
calculated based on the OFF_EN bit in the OFFSET_ENABLE register. Use Equation 2 and Equation 3 when the  
OFF_EN bit is 0.  
P = PGAIN × P ADC + POFFSET  
where  
PGAIN is the Pressure digital gain defined by the PADC_GAIN_MSB, PADC_GAIN_LSB registers  
POFFSET is the Pressure digital offset defined by the PADC_OFFSET_BYTE1, PADC_OFFSET_BYTE0 (MSB,  
LSB) registers  
P is the pressure  
42  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
P ADC is the pressure digital output  
(2)  
T = TGAIN × T ADC + TOFFSET  
where  
TGAIN is the Temperature digital gain defined by the TADC_GAIN_MSB, TADC_GAIN_LSB registers  
TOFFSET is the Temperature digital offset defined by the TADC_OFFSET_BYTE1, TADC_OFFSET_BYTE0  
(MSB, LSB) registers  
T is the temperature  
T ADC is the temperature digital output  
(3)  
Use Equation 4 and Equation 5 if the OFF_EN bit is set to 1:  
P = PGAIN × (P ADC + POFFSET  
)
where  
PGAIN is the Pressure digital gain defined by the PADC_GAIN_MSB, PADC_GAIN_LSB registers  
POFFSET is the Pressure digital offset defined by the PADC_OFFSET_BYTE1, PADC_OFFSET_BYTE0 (MSB,  
LSB) registers  
P is the pressure  
P ADC is the pressure digital output  
(4)  
T = TGAIN × (T ADC + TOFFSET  
)
where  
TGAIN is the Temperature digital gain defined by the TADC_GAIN_MSB, TADC_GAIN_LSB registers  
TOFFSET is the Temperature digital offset defined by the TADC_OFFSET_BYTE1, TADC_OFFSET_BYTE0  
(MSB, LSB) registers  
T is the temperature  
T ADC is the temperature digital output  
(5)  
NOTE  
For high-offset sensors or sensor bridges with a low or high common mode, it may be  
useful to use the Offset Enabled (OFF_EN = 1) option which will cancel the offset and the  
amplify the values in the digital domain. The PGA305 device allows the ability to cancel  
the offset and amplify the signal further before being used in the compensation equation.  
The determination of the digital gain and offset values is implemented automatically by the  
PGA305 GUI.  
7.3.19.2 TC and NL Correction  
Use Equation 6 to calculate the digital compensation.  
DATA_OUT = (h0 + h1 × T + h2 × T2 + h3 × T3) + (g0 + g1 × T + g2 × T2 + g3 × T3) × P + (n0 + n1 × T + n2 × T2 + n3 × T3)  
× P2 + (m0 + m1 × T + m2 × T2 + m3 × T3) × P3  
where  
DATA_OUT = Data thas is available to read using the I2C Interface  
DAC = Digitally compensated value at the input of the DAC  
hx, gx, nx and mx are TC and NL compensation coefficients programmed in EEPROM  
P is pressure  
T is temperature  
(6)  
DAC = DATA_OUT / 1024 in 24-bit mode, or  
DAC = DATA_OUT / 4 in 16-bit mode  
7.3.19.2.1 TC and NL Coefficients  
The PGA305 device implements third-order TC and NL compensation of the bridge offset, bridge span, and  
bridge nonlinearity. The equation has 16 coefficients, and hence requires at least 16 different measurement  
points to compute a unique set of 16 coefficients. Use Equation 7 to calculate the TC-compensated DAC output.  
DATA_OUT = (h0 + h1T + h2T2 + h3T3) + (g0 + g1T + g2T2 + g3T3) × P + (n0 + n1T + n2T2 + n3T3) × P2 + (m0 + m1T +  
Copyright © 2018, Texas Instruments Incorporated  
43  
 
 
 
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
m2T2 + m3T3) × P3  
(7)  
The 16 different P ADC and T ADC measurements can be made, for example, at four temperatures and at four  
different pressures. Note that:  
P GAIN and T GAIN values must be set to a fixed value for all measurements.  
At each measurement point, the P ADC value and the T ADC value must be recorded in order to compute the  
16 coefficients.  
Sometimes, it may be expensive to measure P ADC and T ADC at different temperatures and pressures. In  
this case, there are three approaches:  
Use a model of the bridge to estimate P ADC and T ADC measurements instead of actually measuring.  
Use batch modeling, in which a family of sense elements is characterized across temperature, and the TC  
coefficients of the compensation equation are determined prior to calibration. On a production line,  
measurements are made at a limited number of temperature and pressure set points, and coefficients are  
adjusted accordingly. Discuss with TI application engineers for details.  
Reduce the number of coefficients by reducing the order of TC compensation. Discuss the procedure to  
use fewer coefficients with TI application engineers.  
7.3.19.2.1.1 No TC and NL Coefficients  
Use Equation 8 for the P ADC-to-DAC conversion.  
DATA_OUT = H0EE + G0EE × P ADC  
(8)  
Table 16. Coefficient Values for No TC and NL Compensation  
COEFFICIENT  
VALUE (HEX)  
(1)  
h0  
h1  
h2  
h3  
g0  
g1  
g2  
g3  
n0  
n1  
n2  
n3  
m0  
m1  
m2  
m3  
H0EE  
0x000000  
0x000000  
0x000000  
(1)  
G0EE  
0x000000  
0x000000  
0x000000  
0x000000  
0x000000  
0x000000  
0x000000  
0x000000  
0x000000  
0x000000  
0x000000  
(1) H0EE and G0EE are the values stored in EEPROM, which are 222 times the actual H0 and G0 coefficients.  
Consider an example of scaling the positive half of the 16-bit P ADC to a 14-bit DAC value. In this case, H0 = 0  
and G0 = 0.5. Therefore, H0EE = 0, and G0EE = 221.  
7.3.19.2.2 TC Compensation Using the Internal Temperature Sensor  
Temperature compensation can be performed using the internal temperature sensor with T GAIN = 5 V/V gain.  
The internal temperature ADC values at the different temperatures listed in Table 17.  
Table 17. T ADC Value for the Internal Temperature Sensor  
TEMPERATURE  
T ADC VALUE (HEX VALUE)  
–40°C  
0°C  
0x16C900 (TBD)  
0x1ACF00 (TBD)  
0x29E500 (TBD)  
150°C  
44  
Copyright © 2018, Texas Instruments Incorporated  
 
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
For T ADC at intermediate temperatures, use linear interpolation.  
7.3.19.3 Clamping  
The output of the digital compensation is clamped. The low and high clamp values are programmable using the  
LOW_CLAMP and HIGH_CLAMP registers in the EEPROM. In addition, the user can use the NORMAL_LOW  
and NORMAL_HIGH registers in the EEPROM to configure the normal operating output. Figure 25 shows an  
example of the clamping feature for a 0-V to 5-V output operational mode. In a similar way, the output of the  
compensation can be configured when the 4-mA to 20-mA operational mode is used. In such case, however, the  
LOW_CLAMP value must be larger than the maximum current necessary for normal operation of the device.  
5 V  
Diagnostics  
HIGH_CLAMP, 4.75 V  
High Clamp  
NORMAL_HIGH, 4.5 V  
Normal Pressure  
NORMAL_LOW, 0.5 V  
Low Clamp  
LOW_CLAMP, 0.25 V  
Diagnostics  
0 V  
Figure 25. Example of Clamping the Digital Compensation Output  
7.3.19.4 Filter  
The IIR filter is as follows:  
w(n) = (a0 × DATA_OUT(n) + a1 × w(n – 1) + a2w(n – 2))  
where  
a0, a1, and a2 are the IIR filter coefficients,  
DATA_OUT(n) is the DATA_OUT output prior to the IIR filter,  
(9)  
DATA_OUTF(n) = (b0 × w(n) + b1 × w(n – 1) + b2w(n – 2)  
where  
b0, b1, and b2 are the IIR filter coefficients,  
and DATA_OUTF(n) is the output of the PGA305 device after the second-order IIR filter.  
(10)  
7.3.20 Filter Coefficients  
7.3.20.1 No Filtering  
If filtering must be disabled, set a0 = 0x0000.  
Copyright © 2018, Texas Instruments Incorporated  
45  
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
7.3.20.2 Filter Coefficients for P ADC Sampling Rate = 1024 µs  
Table 18. Filter Cutoff Frequency and Filter Coefficients  
CUTOFF  
FREQUENCY  
(Hz)  
a0 (Hex)  
a1 (Hex)  
a2 (Hex)  
b0 (Hex)  
b1 (Hex)  
b2 (Hex)  
0B01  
76.8  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
4000  
AAA1  
2060  
0B01  
1602  
89.6  
B169  
B818  
BEAE  
C52D  
CB95  
D1EA  
D82D  
DE61  
E487  
EAA3  
F0B6  
F6C3  
FCCC  
02D4  
08DD  
0EE9  
14FC  
1B17  
213C  
1CEE  
19E0  
172D  
14CE  
12BC  
10F2  
0F6A  
0E21  
0D14  
0C3F  
0BA1  
0B37  
0B02  
0B01  
0B33  
0B99  
0C33  
0D05  
0E0F  
0E57  
11F8  
15DB  
19FB  
1E52  
22DC  
2798  
2C82  
319B  
36E2  
3C56  
41FA  
47CE  
4DD4  
540F  
5A82  
612F  
681B  
6F4B  
1CAF  
23F0  
2BB7  
33F6  
3CA3  
45B8  
4F2F  
5905  
6336  
6DC4  
78AD  
83F4  
8F9C  
9BA9  
A81F  
B504  
C25E  
D037  
DE96  
0E57  
11F8  
15DB  
19FB  
1E52  
22DC  
2798  
2C82  
319B  
36E2  
3C56  
41FA  
47CE  
4DD4  
540F  
5A82  
612F  
681B  
6F4B  
102.4  
115.2  
128  
140.8  
153.6  
166.4  
179.2  
192  
204.8  
217.6  
230.4  
243.2  
256  
268.8  
281.6  
294.4  
307.2  
320  
For Other Filter Cutoff frequencies please contact Texas Instruments support.  
7.4 Device Functional Modes  
There are two main functional modes for the PGA305 device: current (4-mA to 20-mA loop) and voltage modes.  
Depending on which mode is in use, the external components and connections are slightly different.  
7.4.1 Voltage Mode  
When configured in this mode, the FB– pin must be connected to the OUT pin. If the OUT pin is driving a large  
capacitive load, a compensation capacitor can be connected to the COMP pin and an isolation resistor can be  
placed between the OUT and FB– pins. The FB+ pin is not used in voltage mode.  
7.4.2 Current Mode  
When configured in this mode, the OUT pin is driving the base of a bipolar junction transistor (BJT) as shown in  
47. The COMP pin is connected to the emitter of the BJT and the FB+ pin is connected to the return terminal  
of the supply. The FB– pin is not used in current mode.  
7.5 Register Maps  
7.5.1 Register Settings  
Before the PAG305 device can be used in any application, the device must be configured by setting various  
control registers to the desired values. Table 19 lists all the registers that must be configured and their respective  
default configurations. Note that the registers are configured by writing to the appropriate EEPROM addresses  
listed in the Control and Status Registers section.  
46  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
Register Maps (continued)  
Table 19. Default Register Settings  
REGISTER  
DIG_IF_CTRL  
VALUE (HEX)  
DESCRIPTION  
0x62  
0x00  
0x02  
0x01  
0x80  
0x00  
0x40  
0x00  
0x67  
0x06  
0x9A  
0x39  
0x34  
0x03  
0xCF  
0x3C  
I2C Interface Enabled in Fast Mode (400kHz - 800kHz)  
DAC is set for absolute voltage output.  
DAC_CONFIG  
OP_STAGE_CTRL  
BRG_CTRL  
Output is configured for 0V - 5V absolute Voltage Output (DAC Gain 4V/V).  
Bridge excitation is set to 2.5 V.  
P_GAIN_SELECT  
T_GAIN_SELECT  
TEMP_CTRL  
P_GAIN is set to 5 V/V gain with Signal Inversion.  
T_GAIN is set for 1.33 V/V gain without Signal Inversion.  
ITEMP drive is disabled and T signal chain is set for VINT+ – VINT–  
.
TEMP_SE  
T GAIN is in single-ended configuration.  
NORMAL_LOW_LSB  
NORMAL_LOW_MSB  
NORMAL_HIGH_LSB  
NORMAL_HIGH_MSB  
LOW_CLAMP_LSB  
LOW_CLAMP_MSB  
HIGH_CLAMP_LSB  
HIGH_CLAMP_MSB  
DAC normal low output set to 0x0667. Must be updated during calibration  
DAC normal low output set to 0x0667. Must be updated during calibration  
DAC normal high output set to 0x399A. Must be updated during calibration  
DAC normal high output set to 0x399A. Must be updated during calibration  
DAC clamp low output set to 0x0334. Must be updated during calibration  
DAC clamp low output set to 0x0334. Must be updated during calibration  
DAC clamp high output set to 0x3CCF. Must be updated during calibration  
DAC clamp high output set to 0x3CCF. Must be updated during calibration  
Application Diagnostics are Disabled (The device will not Reset on WatchDog Error or  
EEPROM CRC Error)  
DIAG_ENABLE  
EEPROM_LOCK  
AFEDIAG_CFG  
0x00  
0x00  
0x07  
EEPROM is unlocked.  
Diagnostics pulldown (1 M) and pullup (1 M) resistors enabled, VINP_UV threshold  
= 10% and VINP_OV threshold = 70%  
DIAG_ENABLE  
0x00  
0x21  
Diagnostics are disabled.  
AFEDIAG_MASK  
VINP_OV and PGAIN_UV detection enabled  
Serial number specified by customer  
SERIAL_NUMBER_BYTE0-1-2-3 0x00000000  
Copyright © 2018, Texas Instruments Incorporated  
47  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
7.5.2 Control and Status Registers  
Table 20. Control and Status Registers  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
Register Name  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
H0 [2]  
D1  
H0 [1]  
D0  
H0_LSB  
H0_MID  
N/A  
N/A  
0x40000000  
0x40000001  
RW  
RW  
H0 [7]  
H0 [6]  
H0 [5]  
H0 [4]  
H0 [3]  
H0 [0]  
H0 [8]  
N/A  
N/A  
H0 [15]  
H0 [14]  
H0 [22]  
H0 [13]  
H0 [21]  
H0 [12]  
H0 [20]  
H0 [11]  
H0 [10]  
H0 [9]  
H0 [23] -  
SIGN  
H0_MSB  
N/A  
N/A  
0x40000002  
RW  
H0 [19]  
H0 [18]  
H0 [17]  
H0 [16]  
H1_LSB  
H1_MID  
N/A  
N/A  
N/A  
N/A  
0x40000003  
0x40000004  
RW  
RW  
H1 [7]  
H1 [6]  
H1 [5]  
H1 [4]  
H1 [3]  
H1 [2]  
H1 [1]  
H1 [9]  
H1 [0]  
H1 [8]  
H1 [15]  
H1 [14]  
H1 [13]  
H1 [12]  
H1 [11]  
H1 [10]  
H1 [23] -  
SIGN  
H1_MSB  
N/A  
N/A  
0x40000005  
RW  
H1 [22]  
H1 [21]  
H1 [20]  
H1 [19]  
H1 [18]  
H1 [17]  
H1 [16]  
H2_LSB  
H2_MID  
N/A  
N/A  
N/A  
N/A  
0x40000006  
0x40000007  
RW  
RW  
H2 [7]  
H2 [6]  
H2 [5]  
H2 [4]  
H2 [3]  
H2 [2]  
H2 [1]  
H2 [9]  
H2 [0]  
H2 [8]  
H2 [15]  
H2 [14]  
H2 [13]  
H2 [12]  
H2 [11]  
H2 [10]  
H2 [23] -  
SIGN  
H2_MSB  
N/A  
N/A  
0x40000008  
RW  
H2 [22]  
H2 [21]  
H2 [20]  
H2 [19]  
H2 [18]  
H2 [17]  
H2 [16]  
H3_LSB  
H3_MID  
N/A  
N/A  
N/A  
N/A  
0x40000009  
0x4000000A  
RW  
RW  
H3 [7]  
H3 [6]  
H3 [5]  
H3 [4]  
H3 [3]  
H3[11]  
H3 [2]  
H3 [1]  
H3 [9]  
H3 [0]  
H3 [8]  
H3 [15]  
H3 [14]  
H3 [13]  
H3 [12]  
H3 [10]  
H3 [23] -  
SIGN  
H3_MSB  
N/A  
N/A  
0x4000000B  
RW  
H3 [22]  
H3 [21]  
H3 [20]  
H3 [19]  
H3 [18]  
H3 [17]  
H3 [16]  
G0_LSB  
G0_MID  
N/A  
N/A  
N/A  
N/A  
0x4000000C  
0x4000000D  
RW  
RW  
G0 [7]  
G0 [6]  
G0 [5]  
G0 [4]  
G0 [3]  
G0 [2]  
G0 [1]  
G0 [9]  
G0 [0]  
G0 [8]  
G0 [15]  
G0 [14]  
G0 [13]  
G0 [12]  
G0 [11]  
G0 [10]  
G0 [23] -  
SIGN  
G0_MSB  
N/A  
N/A  
0x4000000E  
RW  
G0 [22]  
G0 [21]  
G0 [20]  
G0 [19]  
G0 [18]  
G0 [17]  
G0 [16]  
G1_LSB  
G1_MID  
N/A  
N/A  
N/A  
N/A  
0x4000000F  
0x40000010  
RW  
RW  
G1 [7]  
G1 [6]  
G1 [5]  
G1 [4]  
G1 [3]  
G1 [2]  
G1 [1]  
G1 [9]  
G1 [0]  
G1 [8]  
G1 [15]  
G1 [14]  
G1 [13]  
G1 [12]  
G1 [11]  
G1 [10]  
G1 [23] -  
SIGN  
G1_MSB  
N/A  
N/A  
0x40000011  
RW  
G1 [22]  
G1 [21]  
G1 [20]  
G1 [19]  
G1 [18]  
G1 [17]  
G1 [16]  
G2_LSB  
G2_MID  
N/A  
N/A  
N/A  
N/A  
0x40000012  
0x40000013  
RW  
RW  
G2 [7]  
G2 [6]  
G2 [5]  
G2 [4]  
G2 [3]  
G2 [2]  
G2 [1]  
G2 [9]  
G2 [0]  
G2 [8]  
G2 [15]  
G2 [14]  
G2 [13]  
G2 [12]  
G2 [11]  
G2 [10]  
G2 [23] -  
SIGN  
G2_MSB  
N/A  
N/A  
0x40000014  
RW  
G2 [22]  
G2 [21]  
G2 [20]  
G2 [19]  
G2 [18]  
G2 [17]  
G2 [16]  
G3_LSB  
G3_MID  
N/A  
N/A  
N/A  
N/A  
0x40000015  
0x40000016  
RW  
RW  
G3 [7]  
G3 [6]  
G3 [5]  
G3 [4]  
G3 [3]  
G3[11]  
G3 [2]  
G3 [1]  
G3 [9]  
G3 [0]  
G3 [8]  
G3 [15]  
G3 [14]  
G3 [13]  
G3 [12]  
G3 [10]  
G3 [23] -  
SIGN  
G3_MSB  
N/A  
N/A  
0x40000017  
RW  
G3 [22]  
G3 [21]  
G3 [20]  
G3 [19]  
G3 [18]  
G3 [17]  
G3 [16]  
N0_LSB  
N0_MID  
N/A  
N/A  
N/A  
N/A  
0x40000018  
0x40000019  
RW  
RW  
N0 [7]  
N0 [6]  
N0 [5]  
N0 [4]  
N0 [3]  
N0 [2]  
N0 [1]  
N0 [9]  
N0 [0]  
N0 [8]  
N0 [15]  
N0 [14]  
N0 [13]  
N0 [12]  
N0 [11]  
N0 [10]  
48  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
Table 20. Control and Status Registers (continued)  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
Register Name  
R/W  
D7  
D6  
N0 [22]  
D5  
N0 [21]  
D4  
N0 [20]  
D3  
D2  
N0 [18]  
D1  
D0  
N0 [16]  
N0 [23] -  
SIGN  
N0_MSB  
N/A  
N/A  
0x4000001A  
RW  
N0 [19]  
N0 [17]  
N1_LSB  
N1_MID  
N/A  
N/A  
N/A  
N/A  
0x4000001B  
0x4000001C  
RW  
RW  
N1 [7]  
N1 [6]  
N1 [5]  
N1 [4]  
N1 [3]  
N1 [2]  
N1 [1]  
N1 [9]  
N1 [0]  
N1 [8]  
N1 [15]  
N1 [14]  
N1 [13]  
N1 [12]  
N1 [11]  
N1 [10]  
N1 [23] -  
SIGN  
N1_MSB  
N/A  
N/A  
0x4000001D  
RW  
N1 [22]  
N1 [21]  
N1 [20]  
N1 [19]  
N1 [18]  
N1 [17]  
N1 [16]  
N2_LSB  
N2_MID  
N/A  
N/A  
N/A  
N/A  
0x4000001E  
0x4000001F  
RW  
RW  
N2 [7]  
N2 [6]  
N2 [5]  
N2 [4]  
N2 [3]  
N2 [2]  
N2 [1]  
N2 [9]  
N2 [0]  
N2 [8]  
N2 [15]  
N2 [14]  
N2 [13]  
N2 [12]  
N2 [11]  
N2 [10]  
N2 [23] -  
SIGN  
N2_MSB  
N/A  
N/A  
0x40000020  
RW  
N2 [22]  
N2 [21]  
N2 [20]  
N2 [19]  
N2 [18]  
N2 [17]  
N2 [16]  
N3_LSB  
N3_MID  
N/A  
N/A  
N/A  
N/A  
0x40000021  
0x40000022  
RW  
RW  
N3 [7]  
N3 [6]  
N3 [5]  
N3 [4]  
N3 [3]  
N3[11]  
N3 [2]  
N3 [1]  
N3 [9]  
N3 [0]  
N3 [8]  
N3 [15]  
N3 [14]  
N3 [13]  
N3 [12]  
N3 [10]  
N3 [23] -  
SIGN  
N3_MSB  
N/A  
N/A  
0x40000023  
RW  
N3 [22]  
N3 [21]  
N3 [20]  
N3 [19]  
N3 [18]  
N3 [17]  
N3 [16]  
M0_LSB  
M0_MID  
N/A  
N/A  
N/A  
N/A  
0x40000024  
0x40000025  
RW  
RW  
M0 [7]  
M0 [6]  
M0 [5]  
M0 [4]  
M0 [3]  
M0 [2]  
M0 [1]  
M0 [9]  
M0 [0]  
M0 [8]  
M0 [15]  
M0 [14]  
M0 [13]  
M0 [12]  
M0 [11]  
M0 [10]  
M0 [23] -  
SIGN  
M0_MSB  
N/A  
N/A  
0x40000026  
RW  
M0 [22]  
M0 [21]  
M0 [20]  
M0 [19]  
M0 [18]  
M0 [17]  
M0 [16]  
M1_LSB  
M1_MID  
N/A  
N/A  
N/A  
N/A  
0x40000027  
0x40000028  
RW  
RW  
M1 [7]  
M1 [6]  
M1 [5]  
M1 [4]  
M1 [3]  
M1 [2]  
M1 [1]  
M1 [9]  
M1 [0]  
M1 [8]  
M1 [15]  
M1 [14]  
M1 [13]  
M1 [12]  
M1 [11]  
M1 [10]  
M1 [23] -  
SIGN  
M1_MSB  
N/A  
N/A  
0x40000029  
RW  
M1 [22]  
M1 [21]  
M1 [20]  
M1 [19]  
M1 [18]  
M1 [17]  
M1 [16]  
M2_LSB  
M2_MID  
N/A  
N/A  
N/A  
N/A  
0x4000002A  
0x4000002B  
RW  
RW  
M2 [7]  
M2 [6]  
M2 [5]  
M2 [4]  
M2 [3]  
M2 [2]  
M2 [1]  
M2 [9]  
M2 [0]  
M2 [8]  
M2 [15]  
M2 [14]  
M2 [13]  
M2 [12]  
M2 [11]  
M2 [10]  
M2 [23] -  
SIGN  
M2_MSB  
N/A  
N/A  
0x4000002C  
RW  
M2 [22]  
M2 [21]  
M2 [20]  
M2 [19]  
M2 [18]  
M2 [17]  
M2 [16]  
M3_LSB  
M3_MID  
N/A  
N/A  
N/A  
N/A  
0x4000002D  
0x4000002E  
RW  
RW  
M3 [7]  
M3 [6]  
M3 [5]  
M3 [4]  
M3 [3]  
M3[11]  
M3 [2]  
M3 [1]  
M3 [9]  
M3 [0]  
M3 [8]  
M3 [15]  
M3 [14]  
M3 [13]  
M3 [12]  
M3 [10]  
M3 [23] -  
SIGN  
M3_MSB  
N/A  
N/A  
0x4000002F  
RW  
M3 [22]  
I2C_  
M3 [21]  
M3 [20]  
M3 [19]  
M3 [18]  
M3 [17]  
M3 [16]  
DIG_IF_CTRL  
N/A  
N/A  
0x40000030  
RW  
DEGLITCH_ I2C_RATE  
EN  
Reserved  
Reserved  
Reserved  
I2C_EN  
Reserved  
PADC_DA PADC_DAT PADC_DAT PADC_DAT PADC_DAT PADC_DAT PADC_DAT PADC_DAT  
TA[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0]  
PADC_DATA1  
PADC_DATA2  
0x2  
0x2  
0x20  
0x21  
N/A  
N/A  
R
R
PADC_DA PADC_DAT PADC_DAT PADC_DAT PADC_DAT PADC_DAT PADC_DAT PADC_DAT  
TA[15] A[14] A[13] A[12] A[11] A[10] A[9] A[8]  
Copyright © 2018, Texas Instruments Incorporated  
49  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Table 20. Control and Status Registers (continued)  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
Register Name  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PADC_DA PADC_DAT PADC_DAT PADC_DAT PADC_DAT PADC_DAT PADC_DAT PADC_DAT  
TA_SIGN A[22] A[21] A[20] A[19] A[18] A[17] A[16]  
PADC_DATA3  
TADC_DATA1  
TADC_DATA2  
TADC_DATA3  
DAC_REG0_1  
DAC_REG0_2  
0x2  
0x2  
0x22  
0x24  
0x25  
0x26  
0x30  
0x31  
0x38  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
R
TADC_DA TADC_DATA TADC_DATA TADC_DATA TADC_DATA TADC_DATA TADC_DATA TADC_DATA  
TA[7] [6] [5] [4] [3] [2] [1] [0]  
R
TADC_DA TADC_DATA TADC_DATA TADC_DATA TADC_DATA TADC_DATA TADC_DATA TADC_DATA  
TA[15] [14] [13] [12] [11] [10] [9] [8]  
0x2  
0x2  
0x2  
0x2  
0x2  
R
TADC_DA TADC_DATA TADC_DATA TADC_DATA TADC_DATA TADC_DATA TADC_DATA TADC_DATA  
TA_SIGN [22] [21] [20] [19] [18] [17] [16]  
R
DAC_REG DAC_REG0[ DAC_REG0[ DAC_REG0[ DAC_REG0[ DAC_REG0[ DAC_REG0[ DAC_REG0[  
RW  
RW  
RW  
0[7]  
6]  
5]  
4]  
3]  
2]  
10]  
1]  
9]  
0]  
DAC_REG0[ DAC_REG0[ DAC_REG0[ DAC_REG0[ DAC_REG0[ DAC_REG0[  
13]  
12]  
11]  
8]  
DAC_CTRL_  
STATUS  
DAC_  
ENABLE  
0x40000031  
0x40000032  
DAC_  
RATIOMETR  
IC  
DAC_CONFIG  
0x2  
0x39  
RW  
OP_STAGE_CTR  
L
DACCAP_E  
N
DAC_GAIN[2 DAC_GAIN[1 DAC_GAIN[0  
0x2  
0x2  
0x2  
0x2  
0x3B  
0x46  
0x47  
0x48  
0x40000033  
0x40000034  
0x40000035  
0x40000036  
RW  
RW  
RW  
RW  
4_20MA_EN  
P_GAIN[3]  
]
]
]
VBRDG_  
CTRL[1]  
VBRDG_  
CTRL[0]  
BRDG_CTRL  
BRDG_EN  
P_GAIN_  
SELECT  
P_INV  
T_INV  
P_GAIN[4]  
P_GAIN[2]  
P_GAIN[1]  
T_GAIN[1]  
P_GAIN[0]  
T_GAIN[0]  
T_GAIN_  
SELECT  
TEMP_MUX TEMP_MUX TEMP_MUX TEMP_MUX  
ITEMP_  
CTRL[2]  
ITEMP_  
CTRL[1]  
ITEMP_  
CTRL[0]  
TEMP_CTRL  
0x2  
0x4C  
0x40000037  
RW  
_
_
_
_
CTRL[3]  
CTRL[2]  
CTRL[1]  
CTRL[0]  
TEMP_SE  
N/A  
N/A  
N/A  
N/A  
0x4000003A  
0x4000003C  
RW  
RW  
TEMP_SE  
NORMAL_LOW_L  
SB  
NORMAL_ NORMAL_L NORMAL_L NORMAL_L NORMAL_L NORMAL_L NORMAL_L NORMAL_L  
LOW[7] OW[6] OW[5] OW[4] OW[3] OW[2] OW[1] OW[0]  
NORMAL_LOW_  
MSB  
NORMAL_ NORMAL_L NORMAL_L NORMAL_L NORMAL_L NORMAL_L NORMAL_L NORMAL_L  
LOW[15] OW[14] OW[13] OW[12] OW[11] OW[10] OW[9] OW[8]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x4000003D  
0x4000003E  
0x4000003F  
0x40000040  
RW  
RW  
RW  
RW  
NORMAL_HIGH_L  
SB  
NORMAL_ NORMAL_HI NORMAL_HI NORMAL_HI NORMAL_HI NORMAL_HI NORMAL_HI NORMAL_HI  
HIGH[7] GH[6] GH[5] GH[4] GH[3] GH[2] GH[1] GH[0]  
NORMAL_HIGH_  
MSB  
NORMAL_ NORMAL_HI NORMAL_HI NORMAL_HI NORMAL_HI NORMAL_HI NORMAL_HI NORMAL_HI  
HIGH[15] GH[14] GH[13] GH[12] GH[11] GH[10] GH[9] GH[8]  
LOW_CLAMP_LS  
B
LOW_CLA LOW_CLAM LOW_CLAM LOW_CLAM LOW_CLAM LOW_CLAM LOW_CLAM LOW_CLAM  
MP[7] P[6] P[5] P[4] P[3] P[2] P[1] P[0]  
50  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
Register Name  
ZHCSIP5 AUGUST 2018  
Table 20. Control and Status Registers (continued)  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
R/W  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LOW_CLAMP_MS  
B
LOW_CLA LOW_CLAM LOW_CLAM LOW_CLAM LOW_CLAM LOW_CLAM LOW_CLAM LOW_CLAM  
MP[15] P[14] P[13] P[12] P[11] P[10] P[9] P[8]  
N/A  
N/A  
0x40000041  
0x40000042  
0x40000043  
0x40000044  
0x40000045  
0x40000046  
0x40000047  
0x40000048  
HIGH_CLAMP_LS  
B
HIGH_CLA HIGH_CLAM HIGH_CLAM HIGH_CLAM HIGH_CLAM HIGH_CLAM HIGH_CLAM HIGH_CLAM  
MP[7] P[6] P[5] P[4] P[3] P[2] P[1] P[0]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
HIGH_CLAMP_M  
SB  
HIGH_CLA HIGH_CLAM HIGH_CLAM HIGH_CLAM HIGH_CLAM HIGH_CLAM HIGH_CLAM HIGH_CLAM  
MP[15] P[14] P[13] P[12] P[11] P[10] P[9] P[8]  
PADC_GAI PADC_GAIN PADC_GAIN PADC_GAIN PADC_GAIN PADC_GAIN PADC_GAIN PADC_GAIN  
N[7] [6] [5] [4] [3] [2] [1] [0]  
PADC_GAIN_LSB N/A  
PADC_GAIN_MID N/A  
PADC_GAI PADC_GAIN PADC_GAIN PADC_GAIN PADC_GAIN PADC_GAIN PADC_GAIN PADC_GAIN  
N[15] [14] [13] [12] [11] [10] [9] [8]  
PADC_GAIN_MS  
B
PADC_GAI PADC_GAIN PADC_GAIN PADC_GAIN PADC_GAIN PADC_GAIN PADC_GAIN PADC_GAIN  
N_SIGN [22] [21] [20] [19] [18] [17] [16]  
N/A  
PADC_OFFSET_L  
SB  
PADC_OF PADC_OFF PADC_OFF PADC_OFF PADC_OFF PADC_OFF PADC_OFF PADC_OFF  
FSET[7] SET[6] SET[5] SET[4] SET[3] SET[2] SET[1] SET[0]  
N/A  
PADC_OF PADC_OFF PADC_OFF PADC_OFF PADC_OFF PADC_OFF PADC_OFF PADC_OFF  
PADC_GAIN_MID N/A  
FSET[15]  
SET[14]  
SET[13]  
SET[12]  
SET[11]  
SET[10]  
SET[9]  
SET[8]  
PADC_OF  
FSET_SIG  
N
PADC_OFFSET_  
MSB  
PADC_OFF PADC_OFF PADC_OFF PADC_OFF PADC_OFF PADC_OFF PADC_OFF  
SET[22] SET[21] SET[20] SET[19] SET[18] SET[17] SET[16]  
N/A  
N/A  
0x40000049  
RW  
IIR_FILT_A IIR_FILT_A0[ IIR_FILT_A0[ IIR_FILT_A0[ IIR_FILT_A0[ IIR_FILT_A0[ IIR_FILT_A0[ IIR_FILT_A0[  
0[7] 6] 5] 4] 3] 2] 1] 0]  
A0_LSB  
A0_MSB  
A1_LSB  
A1_MSB  
A2_LSB  
A2_MSB  
B0_LSB  
B0_MSB  
B1_LSB  
B1_MSB  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x4000004A  
0x4000004B  
0x4000004C  
0x4000004D  
0x4000004E  
0x4000004F  
0x40000050  
0x40000051  
0x40000052  
0x40000053  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
IIR_FILT_A IIR_FILT_A0[ IIR_FILT_A0[ IIR_FILT_A0[ IIR_FILT_A0[ IIR_FILT_A0[ IIR_FILT_A0[ IIR_FILT_A0[  
0[15] 14] 13] 12] 11] 10] 9] 8]  
IIR_FILT_A IIR_FILT_A1[ IIR_FILT_A1[ IIR_FILT_A1[ IIR_FILT_A1[ IIR_FILT_A1[ IIR_FILT_A1[ IIR_FILT_A1[  
1[7] 6] 5] 4] 3] 2] 1] 0]  
IIR_FILT_S IIR_FILT_A1[ IIR_FILT_A1[ IIR_FILT_A1[ IIR_FILT_A1[ IIR_FILT_A1[ IIR_FILT_A1[ IIR_FILT_A1[  
IGN 14] 13] 12] 11] 10] 9] 8]  
IIR_FILT_A IIR_FILT_A2[ IIR_FILT_A2[ IIR_FILT_A2[ IIR_FILT_A2[ IIR_FILT_A2[ IIR_FILT_A2[ IIR_FILT_A2[  
2[7] 6] 5] 4] 3] 2] 1] 0]  
IIR_FILT_A IIR_FILT_A2[ IIR_FILT_A2[ IIR_FILT_A2[ IIR_FILT_A2[ IIR_FILT_A2[ IIR_FILT_A2[ IIR_FILT_A2[  
2[15] 14] 13] 12] 11] 10] 9] 8]  
IIR_FILT_B IIR_FILT_B0[ IIR_FILT_B0[ IIR_FILT_B0[ IIR_FILT_B0[ IIR_FILT_B0[ IIR_FILT_B0[ IIR_FILT_B0[  
0[7] 6] 5] 4] 3] 2] 1] 0]  
IIR_FILT_B IIR_FILT_B0[ IIR_FILT_B0[ IIR_FILT_B0[ IIR_FILT_B0[ IIR_FILT_B0[ IIR_FILT_B0[ IIR_FILT_B0[  
0[15] 14] 13] 12] 11] 10] 9] 8]  
IIR_FILT_B IIR_FILT_B1[ IIR_FILT_B1[ IIR_FILT_B1[ IIR_FILT_B1[ IIR_FILT_B1[ IIR_FILT_B1[ IIR_FILT_B1[  
1[7] 6] 5] 4] 3] 2] 1] 0]  
IIR_FILT_B IIR_FILT_B1[ IIR_FILT_B1[ IIR_FILT_B1[ IIR_FILT_B1[ IIR_FILT_B1[ IIR_FILT_B1[ IIR_FILT_B1[  
1[15] 14] 13] 12] 11] 10] 9] 8]  
Copyright © 2018, Texas Instruments Incorporated  
51  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Table 20. Control and Status Registers (continued)  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
Register Name  
R/W  
RW  
RW  
RW  
RW  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
IIR_FILT_B IIR_FILT_B2[ IIR_FILT_B2[ IIR_FILT_B2[ IIR_FILT_B2[ IIR_FILT_B2[ IIR_FILT_B2[ IIR_FILT_B2[  
2[7] 6] 5] 4] 3] 2] 1] 0]  
B2_LSB  
N/A  
N/A  
N/A  
0x40000054  
0x40000055  
0x40000056  
0x40000057  
IIR_FILT_B IIR_FILT_B2[ IIR_FILT_B2[ IIR_FILT_B2[ IIR_FILT_B2[ IIR_FILT_B2[ IIR_FILT_B2[ IIR_FILT_B2[  
2[15]  
B2_MSB  
N/A  
N/A  
N/A  
14]  
13]  
12]  
11]  
10]  
9]  
8]  
DIAG_ENAB  
LE  
DIAG_ENABLE  
N/A  
EEPROM_L  
OCK  
EEPROM_LOCK  
AFEDIAG_CFG  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x40000058  
0x40000059  
0x4000005C  
0x4000005D  
RW  
RW  
RW  
RW  
-
DIS_R_T  
DIS_R_P  
THRS[2]  
PGAIN_OV  
THRS[1]  
THRS[0]  
INT_OV  
PD2  
PD1  
AFEDIAG_MASK N/A  
TGAIN_UV TGAIN_OV  
PGAIN_UV  
-
INP_UV  
INP_OV  
FAULT_LSB  
FAULT_MSB  
N/A  
N/A  
TADC_GAI TADC_GAIN TADC_GAIN TADC_GAIN TADC_GAIN TADC_GAIN TADC_GAIN TADC_GAIN  
N[7] [6] [5] [4] [3] [2] [1] [0]  
TADC_GAIN_LSB N/A  
TADC_GAIN_MID N/A  
TADC_GAIN_MSB N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0x4000005E  
0x4000005F  
0x40000060  
0x40000061  
0x40000062  
RW  
RW  
RW  
RW  
RW  
TADC_GAI TADC_GAIN TADC_GAIN TADC_GAIN TADC_GAIN TADC_GAIN TADC_GAIN TADC_GAIN  
N[15] [14] [13] [12] [11] [10] [9] [8]  
TADC_GAI TADC_GAIN TADC_GAIN TADC_GAIN TADC_GAIN TADC_GAIN TADC_GAIN TADC_GAIN  
N_SIGN [22] [21] [20] [19] [18] [17] [16]  
TADC_OFFSET_L  
SB  
TADC_OF TADC_OFFS TADC_OFFS TADC_OFFS TADC_OFFS TADC_OFFS TADC_OFFS TADC_OFFS  
FSET[7] ET[6] ET[5] ET[4] ET[3] ET[2] ET[1] ET[0]  
N/A  
TADC_OFFSET_  
TADC_OF TADC_OFFS TADC_OFFS TADC_OFFS TADC_OFFS TADC_OFFS TADC_OFFS TADC_OFFS  
N/A  
MID  
FSET[15]  
ET[14]  
ET[13]  
ET[12]  
ET[11]  
ET[10]  
ET[9]  
ET[8]  
TADC_OF  
FSET_SIG  
N
TADC_OFFSET_  
MSB  
TADC_OFFS TADC_OFFS TADC_OFFS TADC_OFFS TADC_OFFS TADC_OFFS TADC_OFFS  
N/A  
N/A  
0x40000063  
RW  
ET[22]  
ET[21]  
ET[20]  
ET[19]  
ET[18]  
ET[17]  
ET[16]  
SERIAL_NUMBER  
N/A  
N/A  
N/A  
N/A  
N/A  
0x40000064  
0x40000065  
0x40000066  
0x40000067  
RW  
RW  
RW  
RW  
_BYTE0  
SERIAL_NUMBER  
N/A  
_BYTE1  
SERIAL_NUMBER  
N/A  
_BYTE2  
SERIAL_NUMBER  
N/A  
_BYTE3  
ADC_24BIT_ENA  
BLE  
ADC_24BIT_  
EN  
N/A  
N/A  
0x40000068  
0x40000069  
0x4000007F  
RW  
RW  
R
OFFSET_ENABLE N/A  
N/A  
OFF_EN  
EEPROM_CRC  
0x5  
EEPROM_ EEPROM_C EEPROM_C EEPROM_C EEPROM_C EEPROM_C EEPROM_C EEPROM_C  
CRC[7] RC[6] RC[5] RC[4] RC[3] RC[2] RC[1] RC[0]  
0x8D  
_VALUE  
52  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
Register Name  
ZHCSIP5 AUGUST 2018  
Table 20. Control and Status Registers (continued)  
DI Page  
Address  
DI Offset  
Address  
EEPROM  
Address  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
COMPENSA  
D0  
COMPENSATION  
_
0x0  
0x0C  
N/A  
RW  
TION_RESE IF_SEL  
T
CONTROL  
EEPROM ARRAY 0x5  
EEPROM_CACHE 0x5  
0x00-0x7F N/A  
0x80-0x87 N/A  
RW  
RW  
EEPROM_PAGE_  
0x5  
0x88  
0x89  
0x8A  
N/A  
N/A  
N/A  
RW  
RW  
RW  
ADDR[2]  
ADDR[1]  
ERASE  
ADDR[0]  
ADDRESS  
FIXED_  
ERASE_  
ERASE_AN  
D
PROG_TIME _PROGRAM  
EEPROM_CTRL  
EEPROM_CRC  
0x5  
0x5  
PROGRAM  
CALCULATE  
_CRC  
PROGRAM_  
IN  
_PROGRES  
S
ERASE_IN  
_PROGRES _PROGRES  
S
READ_IN  
EEPROM_STATU  
S
0x5  
0x5  
0x8B  
0x8C  
N/A  
N/A  
R
R
S
CRC_CHEC  
K
EEPROM_CRC  
_STATUS  
CRC_GOOD  
_IN_PROG  
Copyright © 2018, Texas Instruments Incorporated  
53  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
7.5.2.1 Digital Interface Control (M0 Address = 0x40000506) (DI Page Address = 0x2) (DI Page Offset =  
0x06)  
Table 21. DIG_IF_CTRL Register  
7
6
5
4
3
2
1
0
I2C_DEGLITC  
H_EN  
I2C_RATE  
-
-
-
I2C_EN  
-
RW  
1
RW  
0
R
0
R
0
R
0
RW  
1
R
0
Table 22. DIG_IF_CTRL Field Descriptions  
Register  
Bit  
Description  
0:  
1: I2C is Enabled  
0: I2C is Disabled  
1: I2C_EN  
2:  
3:  
4:  
DIG_IF_CTRL  
1: I2C transfer rate is >400KPBPS, 800 KBPS  
0: I2C transfer rate is 400 KBPS  
5: I2C_RATE  
1: Enables deglitch filters on I2C interface  
0: Disables deglitch filters on I2C interface  
6: I2C_DEGLITCH_EN  
7:  
7.5.2.2 DAC_CTRL_STATUS (M0 Address: 0x40000538) (DI Page Address: 0x2) (DI Page Offset: 0x38)  
Table 23. DAC_CTRL_STATUS Register  
7
6
5
4
3
2
1
0
DAC_  
ENABLE  
R
0
R
0
RW  
0
RW  
0
Table 24. DAC_CTRL_STATUS Field Descriptions  
Register  
Bit  
Description  
1: DAC is enabled to drive DAC GAIN; i.e., DAC GAIN output is based on DAC_REG0  
value  
0: DAC_ENABLE  
0: DAC GAIN output is based on the setting of PWM_EN bit in PWM_EN register  
1:  
3:  
4:  
4:  
5:  
6:  
7:  
DAC_CTRL_ST  
ATUS  
54  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
7.5.2.3 DAC_CONFIG (EEPROM Address = 0x40000032) (DI Page Address: 0x2) (DI Page Offset: 0x39)  
Figure 26. DAC_CONFIG Register  
7
6
5
4
3
2
1
0
DAC_  
RATIOMETRIC  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
RW  
0
Table 25. DAC_CONFIG Field Descriptions  
Register  
Bit  
Description  
1: DAC is in ratiometric mode  
0: DAC is in absolute mode  
0: DAC_RATIOMETRIC  
1–7: UNUSED  
DAC_CONFIG  
7.5.2.4 OP_STAGE_CTRL (EEPROM Address = 0x40000033) (DI Page Address: 0x2) (DI Page Offset:  
0x3B)  
Figure 27. OP_STAGE_CTRL Register  
7
6
5
4
3
2
1
0
UNUSED  
UNUSED  
PULLUP_EN  
DACCAP_EN  
4_20MA_EN  
DAC_GAIN[2]  
DAC_GAIN[1]  
DAC_GAIN[0]  
RW  
0
RW  
0
RW  
0
RW  
1
RW  
0
RW  
1
Table 26. OP_STAGE_CTRL Field Descriptions  
Register  
Bit  
Description  
0: DAC_GAIN[0]  
1: DAC_GAIN[1]  
2: DAC_GAIN[2]  
DAC_GAIN[2]  
DAC_GAIN[1]  
DAC_GAIN[0]  
Description  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Voltage mode disabled  
Gain = 10V/V  
Gain = 4V/V  
Reserved  
Gain = 2V/V  
Reserved  
Gain = 6.67V/V  
Reserved  
OP_STAGE_CTRL  
1: Enable 4 to 20mA Current Loop (Close switch S5 in DAC Gain)  
0: Disable 4 to 20mA Current Loop (Open switch S5 in DAC Gain)  
3: 4_20MA_EN  
4: DACCAP_EN  
1: Enable DACCAP capacitor (Close switch S4 in DAC Gain)  
0: Disable DACCAP capacitor (Open switch S4 in DAC Gain)  
1: Enable Pull up at the input of DAC Gain (Close switch S8 in DAC Gain)  
0: Disable Pull up at the input of DAC Gain (Open switch S8 in DAC Gain)  
5: PULLUP_EN  
6–7: UNUSED  
Copyright © 2018, Texas Instruments Incorporated  
55  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
7.5.2.5 BRDG_CTRL (EEPROM Address = 0x40000034) (DI Page Address: 0x2) (DI Page Offset: 0x46)  
Figure 28. BRDG_CTRL Register  
7
6
5
4
3
2
1
0
VBRDG_  
CTRL[1]  
VBRDG_  
CTRL[0]  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
BRDG_EN  
RW  
0
RW  
0
Table 27. BRDG_CTRL Field Descriptions  
Register  
Bit  
Description  
0: Bridge Voltage Disabled  
1: Bridge Voltage Enabled  
0: BRDG_EN  
VBRDG_CTRL[1]  
VBRDG_CTRL[0]  
Bridge Supply Voltage  
0
0
1
1
0
1
0
1
2.5V  
BRDG_CTRL  
1: VBRDG_CTRL[0]  
2: VBRDG_CTRL[1]  
2.0V  
1.25V  
1.25V  
3–7: UNUSED  
7.5.2.6 P_GAIN_SELECT (EEPROM Address = 0x40000035) (DI Page Address: 0x2) (DI Page Offset:  
0x47)  
Figure 29. P_GAIN_SELECT Register  
7
P_INV  
RW  
0
6
5
4
P_GAIN[4]  
RW  
3
P_GAIN[3]  
RW  
2
P_GAIN[2]  
RW  
1
P_GAIN[1]  
RW  
0
P_GAIN[0]  
RW  
UNUSED  
UNUSED  
0
0
0
0
0
Table 28. P_GAIN_SELECT Field Descriptions  
Register  
Bit  
Description  
0: P_GAIN[0]  
1: P_GAIN[1]  
2: P_GAIN[2]  
3: P_GAIN[3]  
4: P_GAIN[4]  
See Electrical Parameters for Gain Selections  
P_GAIN_SELECT  
5–6: UNUSED  
1: Inverts the output of the PGAIN Output  
0: No Inversion  
7: P_INV  
7.5.2.7 T_GAIN_SELECT (EEPROM Address = 0x40000036) (DI Page Address: 0x2) (DI Page Offset:  
0x48)  
Figure 30. T_GAIN_SELECT Register  
7
T_INV  
RW  
0
6
5
4
3
2
1
T_GAIN[1]  
RW  
0
T_GAIN[0]  
RW  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
0
0
56  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
Table 29. T_GAIN_SELECT Field Descriptions  
Register  
Bit  
0: T_GAIN[0]  
1: T_GAIN[1]  
Description  
See Electrical Parameters for Gain Selections  
T_GAIN_SELECT  
2–6: UNUSED  
1: Inverts the output of the T GAIN Output  
0: No Inversion  
7: T_INV  
7.5.2.8 TEMP_CTRL (EEPROM Address = 0x40000037) (DI Page Address: 0x2) (DI Page Offset: 0x4C)  
Figure 31. TEMP_CTRL Register  
7
6
5
4
3
2
1
0
ITEMP_  
CTRL[2]  
ITEMP_  
CTRL[1]  
ITEMP_  
CTRL[0]  
TEMP_MUX_  
CTRL[3]  
TEMP_MUX_  
CTRL[2]  
TEMP_MUX_  
CTRL[1]  
TEMP_MUX_  
CTRL[0]  
UNUSED  
RW  
1
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
Table 30. TEMP_CTRL Field Descriptions  
Register  
Bit  
Description  
TEMP_MUX_ TEMP_MUX_ TEMP_MUX_  
CTRL[3] CTRL[2] CTRL[1]  
TEMP_MUX_  
CTRL[0]  
Description  
0:  
0
0
0
0
0
1
0
1
INT+ and INT–  
TEMP_MUX_CTRL[0]  
1:  
VTEMP_INT-GND (Internal  
Temperature Sensor)  
TEMP_MUX_CTRL[1]  
2:  
TEMP_MUX_CTRL[2]  
Other Combinations  
Other Combinations  
Reserved  
3:  
TEMP_MUX_CTRL[3]  
TEMP_CTRL  
ITEMP_  
CTRL[2]  
ITEMP_  
CTRL[1]  
ITEMP_  
CTRL[0]  
Description  
4: ITEMP_CTRL[0]  
5: ITEMP_CTRL[1]  
6: ITEMP_CTRL[2]  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
25µA  
50µA  
100µA  
500µA  
OFF  
7: UNUSED  
7.5.2.9 TEMP_SE (EEPROM Address = 0x4000003A)  
Figure 32. TEMP_SE Register  
7
6
5
4
3
2
1
0
TEMP_SE  
RW  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
0
Table 31. TEMP_SE Field Descriptions  
Register  
Bit  
Description  
1: Output of Temperature Mux is differential  
0: Output of Temperature Mux is single-ended  
0: TEMP_SE  
TEMP_SE  
1–7: UNUSED  
Copyright © 2018, Texas Instruments Incorporated  
57  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
7.5.2.10 DIAG_ENABLE (EEPROM Address = 0x40000056)  
Figure 33. DIAG_ENABLE Register  
7
6
5
4
3
2
1
0
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
DIAG_ENABLE  
RW  
0
Table 32. DIAG_ENABLE Field Descriptions  
Register  
Bit  
Description  
Read:  
0: DIAG_ENABLE  
1–7: UNUSED  
1: Enables Diagnostics  
0: Disables Diagnostics  
DIAG_ENABLE  
7.5.2.11 EEPROM_LOCK (EEPROM Address = 0x40000057)  
Figure 34. EEPROM_LOCK Register  
7
6
5
4
3
2
1
0
EEPROM_LOC  
K
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
RW  
0
Table 33. EEPROM_LOCK Field Descriptions  
Register  
Bit  
Description  
1: EEPROM is locked - EEPROM is not accessible  
0: EEPROM is unlocked - EEPROM is accessible  
0: EEPROM_LOCK  
1–7: UNUSED  
EEPROM_LOCK  
7.5.2.12 AFEDIAG_CFG (EEPROM Address = 0x40000058)  
Figure 35. AFEDIAG_CFG Register  
7
6
DIS_R_T  
RW  
5
DIS_R_P  
RW  
4
THRS[2]  
RW  
3
THRS[1]  
RW  
2
THRS[0]  
RW  
1
PD2  
RW  
0
0
PD1  
RW  
0
UNUSED  
0
0
0
0
0
58  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
Register  
ZHCSIP5 AUGUST 2018  
Table 34. AFEDIAG_CFG Field Descriptions  
Bit  
Description  
Pull Down  
Resistor Value  
PD2  
PD1  
0: PD1  
1: PD2  
0
1
0
1
0
0
1
1
4MΩ  
3MΩ  
2MΩ  
1MΩ  
VINP_UV  
Threshold  
VINP_OV  
Threshold  
THRS[2]  
THRS[1]  
THRS[0]  
95% of  
Programmed  
VBRDG  
5% of Programmed  
VBRDG  
2: THRS[0]  
3: THRS[1]  
4: THRS[2]  
0
0
0
7.5% of  
Programmed  
VBRDG  
92.5% if  
Programmed  
VBRDG  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
10% of  
Programmed  
VBRDG  
90% of  
Programmed  
VBRDG  
12.5% of  
Programmed  
VBRDG  
87.5% of  
Programmed  
VBRDG  
AFEDIAG_CFG  
15% of  
Programmed  
VBRDG  
85% of  
Programmed  
VBRDG  
20% of  
Programmed  
VBRDG  
80% of  
Programmed  
VBRDG  
25% of  
Programmed  
VBRDG  
75% of  
Programmed  
VBRDG  
30% of  
Programmed  
VBRDG  
70% of  
Programmed  
VBRDG  
1: Disables pulldown resistors used for open/short diagnostics on the INP+ and INP– pins  
0: Enables pulldown resistors used for open/short diagnostics on the INP+ and INP– pins  
5: DIS_R_P  
1: Disables pullup resistors used for open/short diagnostics on the INT+ and INT– pins  
0: Enables pullup resistors used for open/short diagnostics on the INT+ and INT– pins  
6: DIS_R_T  
7: UNUSED  
7.5.2.13 AFEDIAG_MASK (EEPROM Address = 0x40000059)  
Figure 36. AFEDIAG_MASK Register  
7
6
5
4
3
2
1
INP_UV  
RW  
0
INP_OV  
RW  
TGAIN_UV  
TGAIN_OV  
PGAIN_UV  
PGAIN_OV  
UNUSED  
INT_OV  
RW  
RW  
0
RW  
0
RW  
0
RW  
0
0
0
0
Copyright © 2018, Texas Instruments Incorporated  
59  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Table 35. AFEDIAG_MASK Field Descriptions  
Register  
Bit  
Description  
1: Enable overvoltage detection at input pins of P Gain  
0: Disable overvoltage detection at input pins of P Gain  
0: INP_OV  
1: Enable undervoltage detection at input pins of P Gain  
0: Disable undervoltage detection at input pins of P Gain  
1: INP_UV  
1: Enable overvoltage detection at input pins of T Gain  
0: Disable overvoltage detection at input pins of T Gain  
2: INT_OV  
3: UNUSED  
4: PGAIN_OV  
AFEDIAG  
1: Enable overvoltage detection at output pins of P Gain  
0: Disable overvoltage detection at output pins of P Gain  
1: Enable undervoltage detection at output pins of P Gain  
0: Disable undervoltage detection at output pins of P Gain  
5: PGAIN_UV  
6: TGAIN_OV  
7: TGAIN_UV  
1: Enable overvoltage detection at output pins of T Gain  
0: Disable overvoltage detection at output pins of T Gain  
1: Enable undervoltage detection at output pins of T Gain  
0: Disable undervoltage detection at output pins of T Gain  
7.5.2.14 ADC_24BIT_ENABLE (EEPROM Address = 0x40000068)  
Figure 37. ADC_24BIT_ENABLE Register  
7
6
5
4
3
2
1
0
ADC_24BIT_E  
N
RW  
1
Table 36. ADC_24BIT_ENABLE Field Descriptions  
Register  
Bit  
Description  
1: 24 bit Data Compensation and Output  
0: 16 bit Data Compensation and Output  
0: ADC_24BIT_EN  
1:  
2:  
3:  
4:  
5:  
6:  
7:  
ADC_24BIT_EN  
ABLE  
7.5.2.15 OFFSET_ENABLE (EEPROM Address = 0x40000069)  
Figure 38. OFFSET_ENABLE Register  
7
6
5
4
3
2
1
0
OFF_EN  
RW  
0
60  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
Register  
ZHCSIP5 AUGUST 2018  
Table 37. OFFSET_ENABLE Field Descriptions  
Bit  
Description  
1: Offset Sensor Digital Gain and Offset Compensation Used  
0: Normal Sensor Digital Gain and Offset Compensation Used  
0: OFF_EN  
1:  
2:  
3:  
4:  
5:  
6:  
7:  
OFFSET_ENAB  
LE  
7.5.2.16 COMPENSATION_CONTROL (EEPROM Address = N/A) (DI Page Address: 0x0) (DI Page Offset:  
0x0C)  
Figure 39. COMPENSATION_CONTROL Register  
7
6
5
4
3
2
1
0
COMPENSATI  
ON_RESET  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
IF_SEL  
RW  
0
RW  
0
Table 38. COMPENSATION_CONTROL Field Descriptions  
Register  
Bit  
Description  
1: Digital Interface accesses the PAG305 resources  
0: Calculation Engine accesses the PAG305 resources  
0: IF_SEL  
COMPENSATION_CONTROL  
1: Compensation Engine is in Reset  
0: Compensation Engine is Running  
1: COMPENSATION_RESET  
2–7: UNUSED  
7.5.2.17 EEPROM_PAGE_ADDRESS (EEPROM Address = N/A) (DI Page Address: 0x5) (DI Page Offset:  
0x88)  
Figure 40. EEPROM_PAGE_ADDRESS Register  
7
6
5
4
3
ADDR[3]  
RW  
2
ADDR[2]  
RW  
1
ADDR[1]  
RW  
0
ADDR[0]  
RW  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
0
0
0
0
Table 39. EEPROM_PAGE_ADDRESS Field Descriptions  
Register  
EEPROM_PAGE_ADDRESS  
Bit  
Description  
EEPROM page address used in the EEPROM Programming Procedure  
0–3: ADDR[0-3]  
4–7: UNUSED  
7.5.2.18 EEPROM_CTRL (EEPROM Address = N/A) (DI Page Address: 0x5) (DI Page Offset: 0x89)  
Figure 41. EEPROM_CTRL Register  
7
6
5
4
3
2
1
0
FIXED_  
ERASE_  
PROG_TIME  
ERASE_AND  
_PROGRAM  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
ERASE  
PROGRAM  
Copyright © 2018, Texas Instruments Incorporated  
61  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
7
6
5
4
3
RW  
0
2
RW  
0
1
RW  
0
0
RW  
0
Table 40. EEPROM_CTRL Field Descriptions  
Register  
Bit  
Description  
1: Program contents of EEPROM cache into EEPROM memory pointed to by  
0: PROGRAM  
1: ERASE  
EEPROM_PAGE_ADDRESS  
0: No action  
1: Erase contents of EEPROM memory pointed to by EEPROM_PAGE_ADDRESS  
0: No action  
EEPROM_  
CTRL  
1: Erase contents of EEPROM memory pointed to by EEPROM_PAGE_ADDRESS and  
program of contents of EEPROM cache  
0: No action  
2: ERASE_AND_PROGRAM  
1: Use Fixed 8ms as the Erase/Program time  
0: Use Variable time <8ms as the Erase/Program time. The EEPROM programming logic  
will determine the duration to program the EEPROM memory.  
3:  
FIXED_ERASE_PROG_TIME  
4–7: UNUSED  
7.5.2.19 EEPROM_CRC (EEPROM Address = N/A) (DI Page Address: 0x5) (DI Page Offset: 0x8A)  
Figure 42. EEPROM_CRC Register  
7
6
5
4
3
2
1
0
CALCULATE  
_CRC  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
RW  
0
Table 41. EEPROM_CRC Field Descriptions  
Register  
Bit  
Description  
1: Calculate EEPROM CRC  
0: No action  
0: CALCULATE_CRC  
1–7: UNUSED  
EEPROM_CRC  
7.5.2.20 EEPROM_STATUS (EEPROM Address = N/A) (DI Page Address: 0x5) (DI Page Offset: 0x8B)  
Figure 43. EEPROM_STATUS Register  
7
6
5
4
3
2
1
0
PROGRAM_IN  
_PROGRESS  
ERASE_IN  
_PROGRESS  
READ_IN  
_PROGRESS  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
R
0
R
0
R
0
Table 42. EEPROM_STATUS Field Descriptions  
Register  
Bit  
Description  
1: EEPROM Read in progress  
0: EEPROM Read not in progress  
0: READ_IN_PROGRESS  
1: EEPROM Erase in progress  
0: EEPROM Erase not in progress  
1: ERASE_IN_PROGRESS  
EEPROM_STATUS  
1: EEPROM Program in progress  
0: EEPROM Program not in progress  
2: PROGRAM_IN_PROGRESS  
3–7: UNUSED  
62  
Copyright © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
7.5.2.21 EEPROM_CRC_STATUS (EEPROM Address = N/A) (DI Page Address: 0x5) (DI Page Offset:  
0x8C)  
Figure 44. EEPROM_CRC_STATUS Register  
7
6
5
4
3
2
1
0
CRC_CHECK  
_IN_PROG  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
CRC_GOOD  
R
0
R
0
Table 43. EEPROM_CRC_STATUS Field Descriptions  
Register  
Bit  
Description  
1: EEPROM CRC check in progress  
0: EEPROM CRC check not in progress  
0: CRC_CHECK_IN_PROGRESS  
EEPROM_CRC_  
STATUS  
1: EEPROM Programmed CRC matches calculated CRC  
0: EEPROM Programmed CRC does not match calculated CRC  
1: CRC_GOOD  
2–7: UNUSED  
7.5.2.22 EEPROM_CRC_VALUE (EEPROM Address = 0x4000007F) (DI Page Address: 0x5) (DI Page  
Offset: 0x8D)  
Figure 45. EEPROM_CRC_VALUE Register  
7
6
5
4
3
2
1
0
R
1
R
1
R
1
R
1
R
1
R
1
R
1
R
1
Table 44. EEPROM_CRC_VALUE Field Descriptions  
Register  
EEPROM_CRC_VALUE  
Bit  
Description  
CRC value as calculated by the digital logic  
0–7  
EEPROM CRC value should be located in the last byte of the EEPROM  
版权 © 2018, Texas Instruments Incorporated  
63  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The PGA305 can be used in a variety of applications to measure pressure and temperature. Depending on the  
application, the device can be configured in different modes.  
8.2 Typical Applications  
46 depicts the PGA305 in a typical application, including device power, connections for the analog inputs from  
a resistive bridge sensor and temperature sensor, as well as I2C communication lines, and finally the output  
stage in a voltage output configuration.  
100 n  
VIN (3.3 V œ 30 V)  
100 n  
100 n  
BRG +  
INP +  
INP -  
I2C_ADDR  
SDA  
MCU  
SCL  
BRG -  
INT +  
INT œ  
AVSS  
GND  
COMP  
OUT  
VOUT  
PGA305  
°C  
FB -  
FB +  
100 n  
100 n  
100 n  
F.Bead  
DACCAP  
REFCAP  
DVSS  
46. Typical Application Diagram  
64  
版权 © 2018, Texas Instruments Incorporated  
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
Typical Applications (接下页)  
8.2.1 4-mA to 20-mA Output With Internal Sense Resistor  
47 provides an example of how to wire a PGA305 device for 4 to 20mA current output mode. The internal  
structure of the output stage is shown, including the states of the internal switches when the device is configured  
for 4 to 20mA current output mode.  
Sensor  
Controller  
PWR  
OUT  
PWR  
40 k  
VDAC  
+
S1  
œ
40 kꢀ  
COMP  
+
DAC  
100 nF  
Reference  
Is Absolute  
1.25 V  
œ
Open  
FBœ  
S2  
S0  
2 V/V  
4 V/V  
150 kꢀ  
6.67 V/V  
10 V/V  
40 ꢀ  
FB+  
DACCAP  
Iloop  
GND  
AVDD  
REFCAP  
DVDD  
100 nF  
100 nF  
100 nF  
47. 4-mA to 20-mA Output With Internal Sense Resistor Diagram  
8.2.1.1 Design Requirements  
There are only a few requirements to take into account when using the PGA305 device in a design:  
Do not exceed the maximum slew rate of 0.5 V/µs at the PWR pin.  
Place a 100-nF capacitor from the AVDD pin to ground, as close to the AVDD pin as possible.  
Place a 100-nF capacitor from the DVDD pin to ground, as close to the DVDD pin as possible.  
Place a capacitor between 10 nF and 1000 nF from the REFCAP pin to ground as close to the REFCAP pin  
as possible.  
Place a 150-resistor between the COMP pin and the emitter of the BJT for current-loop stability purposes.  
Place a 10-resistor between the FB+ pin and the negative terminal of the controller for current  
measurement.  
版权 © 2018, Texas Instruments Incorporated  
65  
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Calibration Tips  
8.2.1.2.1.1 Programming the EEPROM for 4-mA to 20-mA Output  
The EEPROM in the PGA305 is configured by default to operate in current mode using the OP_STG_CTRL  
register. If not, the user must follow this sequence to change it to current mode:  
1. Send an OWI activation pulse to stop the digital compensation from running.  
2. Set OP_STAGE_CTRL to 0x80 for current mode and DAC_CONFIG EEPROM to 0x00 or 0x01 for No_Gain.  
3. Let the digital compensation run again to read the new EEPROM values.  
8.2.1.3 Application Curve  
Voltage measured between the GND pin in the PGA305 device and the  
negative terminal of the controller. This includes the internal 40-Ω resistor and  
an external 10-Ω resistor, VPWR = 15 V. The DAC codes used were 0x880 and  
0x2760 for 4 mA and 20 mA, respectively.  
48. Loop Current Step From 4 mA to 20 mA  
66  
版权 © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
Typical Applications (接下页)  
8.2.2 0- to 10-V Absolute Output With Internal Drive  
49 provides an example of how to wire a PGA305 device for 0 to 10V absolute output voltage mode. The  
internal structure of the output stage is shown, including the states of the internal switches when the device is  
configured for absolute voltage output. Note that the position of S0 is dependent on the configuration of the  
voltage output gain selected in the OP_STAGE_CTRL register.  
Sensor  
Controller  
PWR  
OUT  
PWR  
40 k  
100 nF  
VDAC  
+
VOUT  
S1  
+
œ
œ
40 kꢀ  
COMP  
DAC  
Reference  
Is Absolute  
1.25 V  
Open  
FBœ  
S2  
2 V/V  
4 V/V  
100 nF  
S0  
150 kꢀ  
6.67 V/V  
10 V/V  
40 ꢀ  
GND  
FB+  
DACCAP  
AVDD  
REFCAP  
100 nF  
100 nF  
100 nF  
100 nF  
DVDD  
49. 0- to 10-V Absolute Output With Internal Drive Diagram  
8.2.2.1 Design Requirements  
There are only a few requirements to take into account when using the PGA305 in a design:  
Do not exceed the maximum slew rate of 0.5 V/µs at the VDD pin.  
Place a 100-nF capacitor from the AVDD pin to ground, as close to the AVDD pin as possible.  
Place a 100-nF capacitor from the DVDD pin to ground, as close to the DVDD pin as possible.  
Place a capacitor between 10 nF and 1000 nF from the REFCAP pin to ground, as close to the REFCAP pin  
as possible.  
Use the COMP pin and an isolation resistor to implement compensation when driving large capacitive loads  
with the OUT pin.  
版权 © 2018, Texas Instruments Incorporated  
67  
 
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.3 0- to 5-V Ratiometric Output With Internal Drive  
50 provides an example of how to wire a PGA305 device for 0 to 5V ratiometric output voltage mode. The  
internal structure of the output stage is shown, including the states of the internal switches when the device is  
configured for ratiometric voltage output. Note that the position of S0 is dependent on the configuration of the  
voltage output gain selected in the OP_STAGE_CTRL register.  
Sensor  
Controller  
PWR  
OUT  
PWR  
40 k  
100 nF  
VDAC  
+
VOUT  
S1  
+
œ
œ
40 kꢀ  
COMP  
DAC  
Reference  
Is Absolute  
1.25 V  
Open  
FBœ  
S2  
2 V/V  
4 V/V  
100 nF  
S0  
150 kꢀ  
6.67 V/V  
10 V/V  
40 ꢀ  
GND  
FB+  
DACCAP  
AVDD  
REFCAP  
100 nF  
100 nF  
100 nF  
100 nF  
DVDD  
50. 0- to 5-V Ratiometric Output With Internal Drive Diagram  
8.2.3.1 Design Requirements  
There are only a few requirements to take into account when using the PGA305 in a design:  
Do not exceed the maximum slew rate of 0.5 V/µs at the PWR pin.  
Place a 100-nF capacitor from the AVDD pin to ground, as close to the AVDD pin as possible.  
Place a 100-nF capacitor from the DVDD pin to ground, as close to the DVDD pin as possible.  
Place a capacitor between 10 nF and 1000 nF from the REFCAP pin to ground, as close to the REFCAP pin  
as possible.  
Use the COMP pin and an isolation resistor to implement compensation when driving large capacitive loads  
with the OUT pin.  
68  
版权 © 2018, Texas Instruments Incorporated  
 
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
Typical Applications (接下页)  
8.2.3.2 Detailed Design Procedure  
8.2.3.2.1 Programmer Tips  
8.2.3.2.1.1 Resetting the Microprocessor and Enable Digital Interface  
The user must configure these bits to reset the M0 microprocessor and enable digital interface:  
1. Set the IF_SEL bit in the MICRO_INTERFACE_CONTROL register to 1.  
2. Set the MICRO_RESET bit in the MICRO_INTERFACE_CONTROL register to 1.  
8.2.3.2.1.2 Turning On the Accurate Reference Buffer (REFCAP Voltage)  
The following bits must be configured to turn ON the accurate reference buffer:  
1. Set the SD bit in the ALPWR register to 0.  
2. Set the ADC_EN_VREF bit in the ALPWR register to 1.  
By turning on the accurate reference buffer, the reference voltage can be measured on REFCAP pin. Further, the  
capacitor on the REFCAP pin is connected to the reference buffer.  
8.2.3.2.1.3 Turning On DAC and DAC GAIN  
The user must configure these bits to turn on DAC and DAC GAIN:  
Set the SD bit in ALPWR register to 0.  
Set the ADC_EN_VREF bit in the ALPWR register to 1.  
Set the DAC_ENABLE bit in the DAC_CTRL_STATUS register to 1.  
Set the 4_20_MA_EN bit in the OP_STAGE_CTRL register for the voltage-output or current-output mode.  
Set the DACCAP_EN bit in the OP_STAGE_CTRL register to connect or disconnect the external capacitor at  
the DAC output.  
Set the DAC_RATIOMETRIC bit in the DAC_CONFIG register for ratiometric or absolute-voltage output  
mode.  
Set the TEST_MUX_DAC_EN bit in the AMUX_CTRL register to 1.  
版权 © 2018, Texas Instruments Incorporated  
69  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The PGA305 device has a single pin, PWR, for the input power supply. The maximum slew rate for the PWR pin  
is 0.5 V/µs as specified in the Recommended Operating Conditions. Faster slew rates might generate a POR. A  
decoupling capacitor for PWR should be placed as close to the pin as possible.  
10 Layout  
10.1 Layout Guidelines  
Standard good layout practices must be used when designing a board to test the PGA305 device. Depending on  
the number of layers in the board, one or more GND planes should be inserted as internal layers. However,  
given the limited number of external components required for an application using the PGA305 device and the  
number of NC pins in the device, so it is possible to design a simple two-layer board. In addition, the PWR  
decoupling capacitor must be placed as close to the pin as possible. In a similar way, the 100-nF recommended  
capacitors for the AVDD and DVDD regulators as well as the 10-nF to 1000-nF recommended capacitor for  
REFCAP must be placed as close to their respective pins as possible.  
Depending on the application, the signal traces for FB–, FB+, COMP, and OUT must be routed so that they do  
not cross one another to minimize coupling.  
10.2 Layout Example  
51 shows how the main guidelines listed in these layout guidelines can be implemented in a six-layer,  
socketed EVM of the PGA305 device. Two main GND planes (layer 2 and 5) were used to provide a nearby  
GND plane to each of the signal layers and the power plane (layer 3) in the EVM. This EVM supports voltage  
and current modes for the device, so depending on the application, GND separation may be necessary as a  
result. For this example, layer 2 is a solid GND plane for the majority of the circuitry in the EVM (IRETURN).  
Most of the circuitry is referred to this GND plane, so layers 3 and 4 also contain copper pours connected to  
IRETURN. This GND plane is the return path for the supply used in the 4-mA to 20-mA loop. Layer 5 is a split  
plane for the ground references for the digital communication signals used for this EVM (USBGND) and the  
ground pins in the device (GND, AVSS and DVSS), referred to as ASICGND. The EVM provides jumpers to  
connect, or disconnect, these three planes one from another, depending on the desired configuration.  
51 shows the recommended capacitors for the proper operation of the PGA305 device. These capacitors are  
placed as close to their respective pins of the socket used for this particular EVM as possible. The signal traces  
for FB–, FB+, COMP, and OUT are also routed in the same layer to avoid crossing each other and to minimize  
coupling.  
70  
版权 © 2018, Texas Instruments Incorporated  
PGA305  
www.ti.com.cn  
ZHCSIP5 AUGUST 2018  
Layout Example (接下页)  
DVDD Capacitor  
PWR Capacitor  
AVDD Capacitor  
2.3 In  
REFCAP  
FB+ Trace  
FB– Trace  
COMP Trace  
OUT Trace  
5 In  
51. Layout Diagram  
版权 © 2018, Texas Instruments Incorporated  
71  
PGA305  
ZHCSIP5 AUGUST 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
72  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PGA305ARHHR  
PGA305ARHHT  
ACTIVE  
VQFN  
VQFN  
RHH  
36  
36  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
PGA305A  
RHH  
ACTIVE  
RHH  
NIPDAU  
PGA305A  
RHH  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RHH 36  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225440/A  
www.ti.com  
PACKAGE OUTLINE  
RHH0036C  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
3
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
A
B
PIN 1 INDEX AREA  
6.1  
5.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
4.4 0.1  
2X 4  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
18  
10  
9
19  
SYMM  
37  
2X 4  
32X 0.5  
1
27  
0.30  
36X  
PIN 1 ID  
0.18  
36  
28  
0.1  
C A B  
0.65  
0.45  
36X  
0.05  
4225412/A 10/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHH0036C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.4)  
SYMM  
SEE SOLDER MASK  
DETAIL  
28  
36  
36X (0.75)  
27  
1
36X (0.24)  
(1.95)  
TYP  
32X (0.5)  
(1.12)  
TYP  
37  
SYMM  
(5.65)  
(R0.05) TYP  
(
0.2) TYP  
VIA  
19  
9
18  
10  
(1.12)  
TYP  
(1.95) TYP  
(5.65)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225412/A 10/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHH0036C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
16X ( 0.92)  
(0.56)  
TYP  
(1.12)  
TYP  
36  
28  
36X (0.75)  
27  
1
36X (0.24)  
32X (0.5)  
(1.12) TYP  
(0.56) TYP  
37  
SYMM  
(5.65)  
(R0.05) TYP  
19  
9
18  
10  
SYMM  
(5.65)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 15X  
EXPOSED PAD 37  
70% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4225412/A 10/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY