PLM5164QDDATQ1 [TI]

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8;
PLM5164QDDATQ1
型号: PLM5164QDDATQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8

转换器
文件: 总35页 (文件大小:2027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
具有超低 IQ LM5164-Q1 100V 输入,1A 同步降压直流/直流转换器  
1 特性  
3 说明  
1
符合面向汽车 应用的 AEC-Q100 标准  
LM5164-Q1 同步降压转换器用于在宽输入电压范围内  
进行调节,从而最大限度地减少对外部浪涌抑制组件的  
需求。50ns 的最短可控导通时间有助于实现较大的降  
压比,支持从 48V 标称输入到低电压轨的直接降压转  
换,从而降低系统的复杂性并减少解决方案成本。  
LM5164-Q1 在输入电压突降至 6V 时能够根据需要以  
接近 100% 的占空比继续工作,使其成为适用于高性  
48V 电池汽车 应用 和 MHEV/EV 系统。  
器件温度等级 1-40℃ 至 125℃,环境温度范  
专为可靠耐用的应用 设计  
6V 100V 的宽输入电压范围  
结温范围:–40°C +150°C  
固定 3ms 内部软启动计时器  
峰值和谷值电流限制保护  
输入 UVLO 和热关断保护  
LM5164-Q1 具有集成式高侧和低侧功率 MOSFET,  
可提供高达 1A 的输出电流。恒定导通时间 (COT) 控  
制架构可提供几乎恒定的开关频率,具有出色的负载和  
线路瞬态响应。其他 特性 LM5164-Q1 的其他特性包  
括超低 IQ 和二极管仿真模式运行(可实现高轻负载效  
率)、创新的峰值和谷值过流保护、集成式 VCC 偏置  
电源和自举二极管、精密使能和输入 UVLO 以及具有  
自动恢复功能的热关断保护。开漏 PGOOD 指示器可  
提供进行定序、故障报告和输出电压监视功能。  
适用于可扩展的汽车电源  
最短导通时间和关闭时间低:50ns  
高达 1MHz 的可调节开关频率  
可实现高轻负载效率的二极管仿真  
10.5µA 空载输入静态电流  
3µA 关断静态电流  
针对 CISPR 25 EMI 标准进行了优化  
通过集成技术减小解决方案尺寸,降低成本  
COT 模式控制架构  
LM5164-Q1 符合汽车 AEC-Q100 1 级标准并采用 8  
引脚 SO PowerPAD™ 封装。其 1.27mm 引脚间距可  
以为高电压 可靠性提供足够的间距。  
集成式 0.725Ω NFET 降压开关支持宽占空比范  
集成式 0.34Ω NFET 同步整流器省去了外部肖  
特基二极管  
器件信息(1)  
1.2V 内部电压基准  
器件型号  
LM5164-Q1  
封装  
封装尺寸(标称值)  
无环路补偿组件  
SO PowerPAD (8)  
4.89mm × 3.90mm  
内部 VCC 偏置稳压器和自举二极管  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
使用 WEBENCH® 电源设计器创建定制设计  
2 应用  
汽车 48V 轻混合动力 ECU 偏置电源  
汽车直流/直流转换器  
汽车 HVAC 压缩机和 PTC 加热器  
典型应用  
典型应用效率,VOUT = 12V  
100  
VOUT = 12 V  
IOUT = 1 A  
LO  
68 µH  
U1  
VIN = 6 V...100 V  
90  
80  
70  
60  
VIN  
SW  
CBST  
2.2 nF  
LM5164-Q1  
CIN  
RFB1  
448 kW  
2.2 µF  
EN/UVLO  
BST  
COUT  
47 µF  
FB  
RON  
RRON  
100 kW  
RFB2  
50  
49.9 kW  
VIN = 14V  
VIN = 24V  
VIN = 48V  
VIN = 72V  
PGOOD  
GND  
40  
30  
0.001  
*VOUT tracks VIN if VIN < 12 V  
0.01  
0.1  
1
Load (A)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSB51  
 
 
 
 
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics ............................................. 7  
Detailed Description .............................................. 9  
7.1 Overview .................................................................. 9  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 15  
8
9
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application .................................................. 16  
Power Supply Recommendations...................... 22  
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Example .................................................... 25  
11 器件和文档支持 ..................................................... 26  
11.1 器件支持................................................................ 26  
11.2 相关文档 ............................................................... 26  
11.3 接收文档更新通知 ................................................. 27  
11.4 社区资源................................................................ 27  
11.5 ....................................................................... 27  
11.6 静电放电警告......................................................... 27  
11.7 术语表 ................................................................... 27  
12 机械、封装和可订购信息....................................... 27  
7
4 修订历史记录  
Changes from Original (September 2018) to Revision A  
Page  
第一版生产数据数据表............................................................................................................................................................ 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
5 Pin Configuration and Functions  
DDA Package  
8-Pin SO PowerPAD  
Top View  
GND  
SW  
VIN  
BST  
EP  
EN/UVLO  
PGOOD  
RON  
FB  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
1
GND  
G
Ground connection for internal circuits.  
Regulator supply input pin to high-side power MOSFET and internal bias regulator. Connect  
directly to the input supply of the buck converter with short, low impedance paths.  
2
3
VIN  
P/I  
Precision enable and undervoltage lockout (UVLO) programming pin. If the EN/UVLO voltage is  
below 1.1 V, the converter is in the shutdown mode with all functions disabled. If the UVLO voltage  
is greater than 1.1 V and below 1.5 V, the converter is in standby mode with the internal VCC  
regulator operational and no switching. If the EN/UVLO voltage is above 1.5 V, the start-up  
sequence begins.  
EN/UVLO  
I
4
5
RON  
FB  
I
I
On-time programming pin. A resistor between this pin and GND sets the buck switch on-time.  
Feedback input of voltage regulation comparator.  
Power good indicator. This pin is an open-drain output pin. Connect to a source voltage through an  
external pullup resistor between 10 kΩ to 100 kΩ  
6
7
PGOOD  
BST  
O
Bootstrap gate-drive supply. Required to connect a high-quality 2.2-nF 50-V X7R ceramic capacitor  
between BST and SW to bias the internal high-side gate driver.  
P/I  
Switching node that is internally connected to the source of the high-side NMOS buck switch and  
the drain of the low-side NMOS synchronous rectifier. Connect to the switching node of the power  
inductor.  
8
SW  
EP  
P
Exposed pad of the package. No internal electrical connection. Solder the EP to the GND pin and  
connect to a large copper plane to reduce thermal resistance.  
(1) G = Ground, I = Input, O = Output, P = Power  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of –40°C to +150°C (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
100  
100  
5.5  
UNIT  
VIN to GND  
EN to GND  
FB to GND  
RON to GND  
Input voltage  
V
5.5  
Bootstrap  
capacitor  
External BST to SW capacitance  
1.5  
2.5  
nF  
V
BST to GND  
–0.3  
–0.3  
–1.5  
–3  
105.5  
5.5  
BST to SW  
Output voltage  
SW to GND  
100  
SW to GND (20-ns transient)  
PGOOD to GND  
–0.3  
–40  
–65  
14  
150  
150  
Operating junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC-Q100-002  
HBM ESD Classification Level 2, all pins(1)  
±2000  
V
Charged device model (CDM), per AEC-Q100-011  
CDM ESD Classification level C4B. All pins except 1, 4, 5, and 8  
Electrostatic  
discharge  
V(ESD)  
±500  
±750  
Charged device model (CDM), per AEC-Q100-011  
CDM ESD Classification level C4B. Pins 1, 4, 5, and 8  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of –40°C to +150°C (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
100  
UNIT  
V
VIN  
Input voltage  
6
VSW  
Switch node voltage  
Enable voltage  
100  
V
VEN/UVLO  
ILOAD  
FSW  
100  
V
Load current  
1
1.25  
1000  
A
Switching frequency  
External BST to SW capacitance  
Programmable on-time  
kHz  
nF  
ns  
CBST  
tON  
2.2  
50  
10000  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
6.4 Thermal Information  
LM5164-Q1  
THERMAL METRIC(1)  
DDA (SOIC)  
8 PINS  
41.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
37.3  
30.6  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
6.7  
ΨJB  
24.4  
RθJC(bot)  
2.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the full –40°C to 150°C junction  
temperature range unless otherwise indicated. VIN = 24 V and VEN/UVLO = 2 V unless otherwise stated.  
PARAMETER  
SUPPLY CURRENT  
IQ-SHUTDOWN VIN shutdown current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VEN = 0 V  
3
10.5  
600  
15  
25  
µA  
µA  
µA  
IQ-SLEEP1  
IQ-ACTIVE  
EN/UVLO  
VSD-RISING  
VSD-FALLING  
VEN-RISING  
VEN-FALLING  
FEEDBACK  
VREF  
VIN sleep current  
VIN active current  
VEN = 2.5 V, VFB = 1.5 V  
VEN = 2.5 V  
880  
Shutdown threshold  
Shutdown threshold  
Enable threshold  
Enable threshold  
VEN/UVLO rising  
VEN/UVLO falling  
VEN/UVLO rising  
VEN/UVLO falling  
1.1  
V
V
V
V
0.45  
1.45  
1.35  
1.5  
1.4  
1.55  
1.44  
FB regulation voltage  
VFB falling  
1.181  
1.2  
1.218  
V
TIMING  
tON1  
On-time1  
On-time2  
On-time3  
On-time4  
VVIN = 6 V, RRON = 75 kΩ  
VVIN = 6 V, RRON = 25 kΩ  
VVIN = 12 V, RRON = 75 kΩ  
VVIN = 12 V, RRON = 25 kΩ  
5000  
650  
ns  
ns  
ns  
ns  
tON2  
tON3  
2550  
830  
tON4  
PGOOD  
FB upper threshold for PGOOD high  
to low  
VPG-UTH  
VPG-LTH  
VPG-HYS  
VFB rising  
VFB falling  
1.105  
1.055  
1.14  
1.08  
1.175  
1.1  
V
V
FB lower threshold for PGOOD high to  
low  
PGOOD upper and lower threshold  
hysteresis  
VFB falling  
VFB = 1 V  
60  
30  
mV  
RPG  
PGOOD pulldown resistance  
Ω
BOOTSTRAP  
VBST-UV  
Gate drive UVLO  
VBST rising  
2.7  
3.4  
V
POWER SWITCHES  
RDSON-HS High-side MOSFET RDSON  
RDSON-LS Low-side MOSFET RDSON  
ISW = –100 mA  
ISW = 100 mA  
0.725  
0.33  
Ω
Ω
Copyright © 2018–2019, Texas Instruments Incorporated  
5
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the full –40°C to 150°C junction  
temperature range unless otherwise indicated. VIN = 24 V and VEN/UVLO = 2 V unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SOFT START  
tSS  
Internal soft-start time  
1.75  
3
4.75  
ms  
CURRENT LIMIT  
IPEAK1  
Peak current limit threshold (HS)  
1.25  
1.25  
200  
1.5  
1.5  
1.75  
1.75  
A
A
IPEAK2  
Peak current limit threshold (LS)  
Min of (IPEAK1 or IPEAK2) minus IVALLEY  
Valley current limit threshold  
IDELTA-ILIM  
IVALLEY  
300  
1.2  
mA  
A
0.95  
1.4  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
175  
10  
°C  
°C  
TSD-HYS  
6
版权 © 2018–2019, Texas Instruments Incorporated  
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
6.6 Typical Characteristics  
At TA = 25°C, VOUT = 12 V, LO = 68 µH, RRON = 105 kΩ, unless otherwise specified. See 12.  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
VIN = 14V  
VIN = 24V  
VIN = 48V  
VIN = 72V  
VIN = 14V  
VIN = 24V  
VIN = 48V  
VIN = 72V  
0.001  
0.01  
0.1  
1
0
0.2  
0.4  
0.6  
0.8  
1
Load (A)  
Load (A)  
1. Conversion Efficiency (Log Scale)  
2. Conversion Efficiency (Linear Scale)  
20  
20  
Sleep  
Shutdown  
Sleep  
Shutdown  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Junction Temperature (èC)  
Input Voltage (V)  
D005  
D006  
3. VIN Shutdown and Sleep Supply Current vs  
4. VIN Shutdown and Sleep Supply Current vs Input  
Temperature  
Voltage  
725  
700  
675  
650  
625  
600  
575  
550  
600  
590  
580  
570  
560  
550  
540  
530  
520  
510  
500  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Junction Temperature (èC)  
Input Voltage (V)  
D007  
D008  
5. VIN Active Current vs Temperature  
6. VIN Active Current vs Input Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
7
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, VOUT = 12 V, LO = 68 µH, RRON = 105 kΩ, unless otherwise specified. See 12.  
1.21  
1.205  
1.2  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
1.195  
High-Side FET  
Low-Side FET  
1.19  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D009  
D010  
7. Feedback Comparator Threshold vs Temperature  
1.6  
8. MOSFETs On-State Resistance vs Temperature  
7
6
5
4
3
2
1
0
RRT = 105 kW  
RRT = 43.2 kW  
1.5  
1.4  
1.3  
1.2  
1.1  
1
Peak Current  
Valley Current  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Junction Temperature (èC)  
Input Voltage (V)  
D011  
D012  
9. Peak and Valley Current Limit vs Temperature  
10. COT On-Time vs VIN  
8
版权 © 2018–2019, Texas Instruments Incorporated  
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
7 Detailed Description  
7.1 Overview  
The LM5164-Q1 is an easy-to-use, ultra-low IQ constant on-time (COT) synchronous step-down buck regulator.  
With integrated high-side and low-side power MOSFETs, the LM5164-Q1 is a low-cost, highly efficient buck  
converter that operates from a wide input voltage of 6 V to 100 V, delivering up to 1-A DC load current. The  
LM5164-Q1 is available an 8-pin SO Power PAD package with 1.27-mm pin pitch for adequate spacing in high-  
voltage applications.. This constant on-time (COT) converter is ideal for low-noise, high-current, and fast load  
transient requirements, operating with a predictive on-time switching pulse. Over the input voltage range, input  
voltage feedforward is employed to achieve a quasi-fixed switching frequency. A controllable on-time as low as  
50 ns permits high step-down ratios and a minimum forced off-time of 50 ns provides extremely high duty cycles  
allowing VIN to drop close to VOUT before frequency foldback occurs. At light loads the device transitions into an  
ultra-low IQ mode to maintain high efficiency and prevent draining battery cells connected to the input when the  
system is in standby. The LM5164-Q1 implements a smart peak and valley current limit detection circuit to  
ensure robust protection during output short circuit conditions. Control loop compensation is not required for this  
regulator, reducing design time and external component count.  
The LM5164-Q1 incorporates additional features for comprehensive system requirements, including an open-  
drain Power Good circuit for power-rail sequencing and fault reporting, internally-fixed soft start, monotonic start-  
up into prebiased loads, precision enable for programmable line undervoltage lockout (UVLO), smart cycle-by-  
cycle current limit for optimal inductor sizing, and thermal shutdown with automatic recovery. These features  
enable a flexible and easy-to-use platform for a wide range of applications. The LM5164-Q1 supports a wide  
range of end-equipment systems requiring a regulated output from a high input supply where the transient  
voltage deviates from its DC level. Examples of such end equipment systems are 48-V automotive systems, high  
cell-count battery-pack systems, 24-V industrial systems, and 48-V telecom and PoE voltage ranges. The pin  
arrangement is designed for a simple layout requiring only a few external components.  
版权 © 2018–2019, Texas Instruments Incorporated  
9
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
7.2 Functional Block Diagram  
VIN  
CIN  
VIN  
VDD  
BIAS  
REGULATOR  
VDD UVLO  
RUV1  
EN/UVLO  
œ
STANDBY  
+
THERMAL  
SHUTDOWN  
RUV2  
1.5 V  
œ
SHUTDOWN  
BST  
+
LOGIC  
0.4 V  
VIN  
CBST  
RON  
ON/OFF  
TIMERS  
DISABLE  
CONSTANT  
ON-TIME  
CONTROL  
LOGIC  
VOUT  
LO  
VOUT  
SW  
VCC  
RFB1  
FEEDBACK  
COMPARATOR  
SLEEP  
COUT  
FB  
DETECT  
œ
+
ZC  
+
œ
RRON  
VREF  
PGOOD  
ZX DETECT  
RFB2  
PEAK/VALLEY  
CURRENT LIMIT  
œ
+
FB  
GND  
PGOOD  
0.9*VREF  
COMPARATOR  
7.3 Feature Description  
7.3.1 Control Architecture  
The LM5164-Q1 step-down switching converter employs a constant on time (COT) control scheme. The COT  
control scheme sets a fixed on-time tON of the high-side FET using a timing resistor (RON). The tON is adjusted as  
Vin changes and is inversely proportion to input voltage to maintain a fixed frequency when in continuous  
conduction mode (CCM). After expiration of tON, the high side FET remains off until the feedback pin is equal or  
below the reference voltage of 1.2 V. In order to maintain stability, the feedback comparator requires a minimal  
ripple voltage that is in phase with the inductor current during the off-time. Furthermore, this change in feedback  
voltage during the off-time must be large enough to dominate any noise present at the feedback node. The  
minimum recommended ripple voltage is 20 mV. Refer to 1 for different types of ripple injection schemes that  
ensure stability over the full input voltage range.  
During a rapid start-up or a positive load step, the regulator operates with minimum off-times until regulation is  
achieved. This feature enables extremely fast load transient response with minimum output voltage undershoot.  
When regulating the output in steady-state operation, the off-time automatically adjusts itself to produce the SW-  
pin duty cycle required for output voltage regulation to maintain a fixed switching frequency. In CCM the  
switching frequency FSW is programmed by the RRON resistor. Use 公式 1 to calculate the switching frequency.  
VOUT (V)2500  
FSW (kHz) =  
RRON(kW)  
(1)  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
Feature Description (接下页)  
1. Ripple Generation Methods  
TYPE 1  
TYPE 2  
TYPE 3  
Lowest Cost  
Reduced Ripple  
Minimum Ripple  
LO  
LO  
VOUT  
VIN  
LO  
VIN  
CIN  
VOUT  
VOUT  
VIN  
VIN  
SW  
VIN  
SW  
VIN  
SW  
RA  
CA  
LM5164  
CBST  
LM5164  
LM5164  
CBST  
CFF  
CIN  
CIN  
RFB1  
CBST  
RFB1  
RESR  
RESR  
EN/UVLO  
BST  
FB  
EN/UVLO  
BST  
FB  
EN/UVLO  
BST  
FB  
RFB1  
COUT  
CB  
RON  
RON  
RON  
COUT  
RFB2  
COUT  
RFB2  
RRON  
RRON  
RRON  
RFB2  
PGOOD  
GND  
PGOOD  
GND  
PGOOD  
GND  
10  
CA  
í
20mV  
RESR  
í
FSW (RFB1 || RFB2  
)
(7)  
DIL(nom)  
VOUT  
20mV VOUT  
(4)  
(5)  
(6)  
RESR  
í
RACA  
Ç
VFB1 ∂ DIL(nom)  
(2)  
(3)  
RESR  
í
V
- VOUT t  
(
)
IN-nom  
ON @V  
(
)
IN-nom  
2V FSW COUT  
VOUT  
IN  
RESR  
í
20mV  
tTR-settling  
(8)  
(9)  
2V FSW COUT  
1
IN  
CFF  
í
CB í  
2p FSW (RFB1 || RFB2  
)
3RFB1  
1 presents 3 different methods for generating appropriate voltage ripple at the feedback node. Type-1 ripple  
generation method uses a single resistor, RESR in series with the output capacitor. The generated voltage ripple  
has two components, capacitive ripple caused by the inductor ripple current charging and discharging the output  
capacitor and resistive ripple caused by the inductor ripple current flowing into the output capacitor and through  
series resistance RESR. The capacitive ripple component is out of phase with the inductor current and does not  
decrease monotonically during the off-time. The resistive ripple component is in phase with the inductor current  
and decreases monotonically during the off-time. The resistive ripple must exceed the capacitive ripple at VOUT  
for stable operation. If this condition is not satisfied, unstable switching behavior is observed in COT converters,  
with multiple on-time bursts in close succession followed by a long off time. 公式 2 and 公式 3 define the value of  
the series resistance RESR to ensure sufficient in-phase ripple at the feedback node.  
Type-2 ripple generation uses a CFF capacitor in addition to the series resistor. As the output voltage ripple is  
directly AC-coupled by CFF to the feedback node, the RESR and ultimately the output voltage ripple are reduced  
by a factor of VOUT / VFB1  
.
Type-3 ripple generation uses an RC network consisting of RA and CA, and the switch node voltage to generate a  
triangular ramp that is in-phase with the inductor current. This triangular wave is the AC-coupled into the  
feedback node with capacitor CB. Because this circuit does not use output voltage ripple, it is suited for  
applications where low output voltage ripple is critical. TI application note AN-1481 Controlling Output ripple and  
achieving ESR independence in constant on-time (COT) regulator designs provides additional details on this  
topic.  
Diode emulation mode (DEM) prevents negative inductor current, and pulse skipping maintains highest efficiency  
at light load currents by decreasing the effective switching frequency. DEM operation occurs when the  
synchronous power MOSFET switches off as inductor valley current reaches zero. Here, the load current is less  
than half of the peak-to-peak inductor current ripple in CCM. Turning off the low-side MOSFET at zero current  
reduces switching loss, and preventing negative current conduction reduces conduction loss. Power conversion  
efficiency is thus higher in a DEM converter than an equivalent forced-PWM CCM converter. With DEM  
operation, the duration that both power MOSFETs remain off progressively increases as load current decreases.  
When this idle duration exceeds 15 μs, the converter transitions into an ultra-low IQ mode, consuming only 10-μA  
quiescent current from the input.  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
 
 
 
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Internal VCC Regulator and Bootstrap Capacitor  
The LM5164-Q1 contains an internal linear regulator that is powered from VIN with a nominal output of 5 V,  
eliminating the need for an external capacitor to stabilize the linear regulator. The internal VCC regulator supplies  
current to internal circuit blocks including the synchronous FET driver and logic circuits. The input pin (VIN) can  
be connected directly to line voltages up to 100 V. As the power MOSFET has a low total gate charge, use a low  
bootstrap capacitor value to reduce the stress on the internal regulator. It is required to select a high-quality 2.2-  
nF 50-V X7R ceramic bootstrap capacitor as specified in the Absolute Maximum Ratings. Selecting a higher  
value capacitance stresses the internal VCC regulator and damages the device. A lower capacitance than  
required may not be sufficient to drive the internal gate of the power MOSFET. An internal diode connects from  
the VCC regulator to the BST pin to replenish the charge in the high-side gate drive bootstrap capacitor when the  
SW voltage is low.  
7.3.3 Regulation Comparator  
The feedback voltage at FB is compared to an internal 1.2-V reference. The LM5164-Q1 voltage regulation loop  
regulates the output voltage by maintaining the FB voltage equal to the internal reference voltage, VREF. A  
resistor divider programs the ratio from output voltage VOUT to FB. For a target VOUT setpoint, calculate RFB2  
based on the selected RFB1 using 公式 10.  
1.2V  
RFB2  
=
RFB1  
VOUT -1.2V  
(10)  
TI recommends selecting RFB1 in the range of 100 kΩ to 1 Mfor most applications. A larger RFB1 consumes  
less DC current, which is mandatory if light-load efficiency is critical. RFB1 larger than 1 MΩ is not recommended  
as the feedback path becomes more susceptible to noise. It is important to route the feedback trace away from  
the noisy area of the PCB and keep the feedback resistors close to the FB pin.  
7.3.4 Internal Soft Start  
The LM5164-Q1 employs an internal soft-start control ramp that allows the output voltage to gradually reach a  
steady-state operating point, thereby reducing start-up stresses and current surges. The soft-start feature  
produces a controlled, monotonic output voltage start-up. The soft-start time is internally set to 3 ms.  
7.3.5 ON-Time Generator  
The on-time of the LM5164-Q1 high-side FET is determined by the RRON resistor and is inversely proportional to  
the input voltage, VIN. The inverse relationship with VIN results in a nearly constant frequency as VIN is varied.  
Calculate the on-time using 公式 11.  
RRON kW  
(
)
tON s =  
(
)
V
V 2.5  
)
(
IN  
(11)  
Determine the RRON resistor using 公式 12 to set a specific switching frequency in CCM.  
VOUT (V)2500  
RRON(kW) =  
FSW (kHz)  
(12)  
Select RRON for a minimum on-time (at maximum VIN) greater than 50 ns for proper operation. In addition to this  
minimum on-time, the maximum frequency for this device is limited to 1 MHz.  
7.3.6 Current Limit  
The LM5164-Q1 manages overcurrent conditions with cycle-by-cycle current limiting of the peak inductor current.  
The current sensed in the high-side MOSFET is compared every switching cycle to the current limit threshold  
(1.5 A). To protect the converter from potential current runaway conditions, the LM5164-Q1 includes a fold-back  
valley current limit feature, set at 1.2 A, that is enabled if a peak current limit is detected. As shown in 11, if  
the peak current in the high-side MOSFET exceeds 1.5 A (typical), the present cycle is immediately terminated  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
Feature Description (接下页)  
regardless of the programmed on-time (tON), the high-side MOSFET is turned off and the fold-back valley current  
limit is activated. The low-side MOSFET remains on until the inductor current drops below this fold-back valley  
current limit, after which the next on-pulse is initiated. This method folds back the switching frequency to prevent  
overheating and limits the average output current to less than 1.5 A to ensure proper short-circuit and heavy-load  
protection of the LM5164-Q1.  
vFB  
VREF  
iL  
Peak ILIM  
IAVG(ILIM)  
Valley ILIM  
IAVG1  
t
tON  
tSW  
< tON  
> tSW  
11. Current Limit Timing Diagram  
Current is sensed after a leading-edge blanking time following the high-side MOSFET turnon transition. The  
propagation delay of the current limit comparator is 100 ns. During high step-down conditions when the on-time  
is less than 100 ns, a back-up peak current limit comparator in the low-side FET also set at 1.5 A will enable the  
fold-back valley current limit set at 1.2 A. This innovative current limit scheme enables ultra-low duty-cycle  
operation permitting large step down voltage conversions while ensuring robust protection of the converter.  
7.3.7 N-Channel Buck Switch and Driver  
The LM5164-Q1 integrates an N-channel buck switch and associated floating high-side gate driver. The gate-  
driver circuit works in conjunction with an external bootstrap capacitor and an internal high-voltage bootstrap  
diode. A high-quality 2.2-nF, 50-V X7R ceramic capacitor connected between the BST and SW pins provides the  
voltage to the high-side driver during the buck switch on-time. See Internal VCC Regulator and Bootstrap  
Capacitor for limitations. During the off-time, the SW pin is pulled down to approximately 0 V, and the bootstrap  
capacitor charges from the internal VCC through the internal bootstrap diode. The minimum off-timer, set to 50  
ns (typical), ensures a minimum time each cycle to recharge the bootstrap capacitor. When the on-time is less  
than 300ns, the minimum off-timer is forced to 250 ns to ensure that the BST capacitor is charged in a single  
cycle. This is vital during wake up from sleep mode when the BST capacitor is most likely discharged.  
7.3.8 Synchronous Rectifier  
The LM5164-Q1 provides an internal low-side synchronous rectifier N-channel MOSFET. This MOSFET provides  
a low-resistance path for the inductor current to flow when the high-side MOSFET is turned off.  
The synchronous rectifier operates in a diode emulation mode. Diode emulation enables the regulator to operate  
in a pulse-skipping mode during light load conditions. This mode leads to a reduction in the average switching  
frequency at light loads. Switching losses and FET gate driver losses, both of which are proportional to switching  
frequency, are significantly reduced at very light loads and efficiency is improved. This pulse-skipping mode also  
reduces the circulating inductor current and losses associated with conventional CCM at light loads.  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.9 Enable/Undervoltage Lockout (EN/UVLO)  
The LM5164-Q1 contains a dual-level EN/UVLO circuit. When the EN/UVLO voltage is below 1.1 V (typical), the  
converter is in a low-current shutdown mode and the input quiescent current (IQ) is dropped down to 3 µA. When  
the voltage is greater than 1.1 V but less than 1.5 V (typical), the converter is in standby mode. In standby mode  
the internal bias regulator is active while the control circuit is disabled. When the voltage exceeds the rising  
threshold of 1.5 V (typical), normal operation begins. Install a resistor divider from VIN to GND to set the  
minimum operating voltage of the regulator. Use 公式 13 and 公式 14 to calculate the input UVLO turnon and  
turnoff voltages, respectively.  
÷
RUV1  
RUV2  
V
= 1.5V 1+  
IN(on)  
«
(13)  
÷
RUV1  
RUV2  
V
= 1.4V 1+  
IN(off)  
«
(14)  
TI recommends selecting RUV1 in the range of 1 Mfor most applications. A larger RUV1 consumes less DC  
current, which is mandatory if light-load efficiency is critical. If input UVLO is not required, the power-supply  
designer can either drive EN/UVLO as an enable input driven by a logic signal or connect it directly to VIN. If  
EN/UVLO is directly connected to VIN, the regulator begins switching as soon as the internal bias rails are  
active.  
7.3.10 Power Good (PGOOD)  
The LM5164-Q1 provides a PGOOD flag pin to indicate when the output voltage is within the regulation level.  
Use the PGOOD signal for start-up sequencing of downstream converters or for fault protection and output  
monitoring. PGOOD is an open-drain output that requires a pullup resistor to a DC supply not greater than 14 V.  
The typical range of pullup resistance is 10 kto 100 k. If necessary, use a resistor divider to decrease the  
voltage from a higher voltage pullup rail. When the FB voltage exceeds 95% of the internal reference VREF, the  
internal PGOOD switch turns off and PGOOD can be pulled high by the external pullup. If the FB voltage falls  
below 90% of VREF, an internal 25-Ω PGOOD switch turns on and PGOOD is pulled low to indicate that the  
output voltage is out of regulation. The rising edge of PGOOD has a built-in deglitch delay of 5 µs.  
7.3.11 Thermal Protection  
The LM5164-Q1 includes an internal junction temperature monitor to protect the device in the event of a higher  
than normal junction temperature. If the junction temperature exceeds 175°C (typical), thermal shutdown occurs  
to prevent further power dissipation and temperature rise. The LM5164-Q1 initiates a restart sequence when the  
junction temperature falls to 165°C, based on a typical thermal shutdown hysteresis of 10°C. This is a non-  
latching protection, and, as such, the device cycles into and out of thermal shutdown if the fault persists.  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
EN/UVLO provides ON and OFF control for the LM5164-Q1. When VEN/UVLO is below approximately 1.1 V, the  
device is in shutdown mode. Both the internal linear regulator and the switching regulator are off. The quiescent  
current in shutdown mode drops to 3 µA at VIN = 24 V. The LM5164-Q1 also employs internal bias rail  
undervoltage protection. If the internal bias supply voltage is below its UV threshold, the regulator remains off.  
7.4.2 Active Mode  
The LM5164-Q1 is in active mode when VEN/UVLO is above the precision enable threshold and the internal bias  
rail is above its UV threshold. In COT active mode, the LM5164-Q1 is in one of three modes depending on the  
load current:  
1. CCM with fixed switching frequency when load current is above half of the peak-to-peak inductor current  
ripple  
2. Pulse skipping and diode emulation mode (DEM) when the load current is less than half of the peak-to-peak  
inductor current ripple in CCM operation  
3. Current limit CCM with peak and valley current limit protection when an overcurrent condition is applied at  
the output.  
7.4.3 Sleep Mode  
Control Architecture gives a brief introduction to the LM5164-Q1 diode emulation (DEM) feature. The converter  
enters DEM during light-load conditions when the inductor current decays to zero and the synchronous MOSFET  
is turned off to prevent negative current in the system. In the DEM state, the load current is lower than half the  
peak-to-peak inductor current ripple and the switching frequency decreases when the load is further decreased  
as the device operates in a pulse skipping mode. A switching pulse is set when VFB drops below 1.2 V.  
As the frequency of operation decreases and VFB remains above 1.2 V (VREF) with the output capacitor sourcing  
the load current for greater than 15 µs, the converter enters an ultra-low IQ sleep mode to prevent draining the  
input power supply. The input quiescent current (IQ) required by the LM5164-Q1 decreases to 10 µA in sleep  
mode, improving the light-load efficiency of the regulator. In this mode all internal controller circuits are turned off  
to ensure very low current consumption by the device. Such low IQ renders the LM5164-Q1 as the best option to  
extend operating lifetime for off-battery applications. The FB comparator and internal bias rail are active to detect  
when the FB voltage drops below the internal reference VREF and the converter transitions out of sleep mode into  
active mode. There is a 9 µs wake-up delay from sleep to active states.  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM5164-Q1 requires only a few external components to step down from a wide range of supply voltages to a  
fixed output voltage. Several features are integrated to meet system design requirements, including precision  
enable, input voltage UVLO, internal soft start, programmable switching frequency, and a PGOOD indicator.  
To expedite and streamline the process of designing of a LM5164-Q1-based converter, a comprehensive  
LM5164-Q1 Quickstart calculator is available for download to assist the designer with component selection for a  
given application. This tool is complemented by the availability of an evaluation module (EVM), numerous  
PSPICE models, as well as TI's WEBENCH® Power Designer.  
8.2 Typical Application  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation and test results of  
an LM5164-Q1-powered implementation, see TI Designs reference design library.  
The schematic of a 12-V, 1-A COT converter is shown in 12.  
VOUT = 12 V  
LO  
68 mH  
U1  
VIN = 15 V...100 V  
IOUT = 1 A  
VIN  
SW  
CA  
3.3 nF  
RA  
CBST  
LM5164-Q1  
CIN  
453 kW  
2.2 nF  
RFB1  
453 kW  
2.2 mF  
EN/UVLO  
BST  
COUT  
CB  
47 mF  
56 pF  
FB  
RON  
RRON  
RFB2  
49.9 kW  
100 kW  
PGOOD  
GND  
Copyright © 2018, Texas Instruments Incorporated  
12. Typical Application VIN(nom) = 48 V, VOUT = 12 V, IOUT(max) = 1 A, FSW(nom) = 300 kHz  
This and subsequent design examples are provided herein to showcase the LM5164-Q1  
converter in several different applications. Depending on the source impedance of the  
input supply bus, an electrolytic capacitor may be required at the input to ensure stability,  
particularly at low input voltage and high output current operating conditions. See Power  
Supply Recommendations for more detail.  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
8.2.1 Design Requirements  
The target full-load efficiency is 92% based on a nominal input voltage of 48 V and an output voltage of 12 V.  
The required input voltage range is 15 V to 100 V. The LM5164-Q1 delivers a fixed 12-V output voltage. The  
switching frequency is set by resistor RRON at 300 kHz. The output voltage soft-start time is 3 ms. The required  
components are listed in 2. Refer to the LM5164-Q1EVM-041 EVM user's guide for more detail.  
2. List of Components  
COUNT  
REF DES  
CIN  
VALUE  
2.2 µF  
22 µF  
DESCRIPTION  
PART NUMBER  
CGA6N3X7R2A225K230AB  
TMK325B7226KMHT  
CGA3E2X7R2A332K080AA  
C0603C560J5GACTU  
GCM155R71H222KA37D  
MSS1246T-683MLB  
MANUFACTURER  
TDK  
2
1
1
1
1
1
1
1
1
1
1
Capacitor, Ceramic, 2.2µF, 100V, X7R, 10%  
Capacitor, Ceramic, 22µF, 25V, X7R, 10%  
Capacitor, Ceramic, 3300pF, 16V, X7R, 10%  
Capacitor, Ceramic, 56pF, 50V, X7R, 10%  
Capacitor, Ceramic, 2200pF, 50V, X7R, 10%  
Inductor, 68 µH, 170 mΩ, >1.8A  
COUT  
CA  
Taiyo Yuden  
TDK  
3300 pF  
56 pF  
CB  
Kemet  
CBST  
LF  
2.2 nF  
68 µH  
MuRata  
Coilcraft  
Susumu Co Ltd  
Yageo  
RRON  
RFB1  
RFB2  
RA  
100 kΩ  
453 kΩ  
49.9 kΩ  
453 kΩ  
Resistor, Chip, 100 k, 1%, 0.1 W, 0603  
Resistor, Chip, 453 k, 1%, 0.1 W, 0603  
Resistor, Chip, 49.9 k, 1%, 0.1 W, 0603  
Resistor, Chip, 453 k, 1%, 0.1W, 0603  
Wide VIN synchronous buck converter  
RG1608P-1053-B-T5  
RT0603BRD07448KL  
RG1608P-4992-B-T5  
RT0603BRD07453KL  
LM5164QDDARQ1  
Susumu Co Ltd  
Yageo  
U1  
TI  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM5164-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Switching Frequency (RRON  
)
The switching frequency of LM5164-Q1 is set by the on-time programming resistor placed at RON. As shown by  
公式 15, a standard 100 kΩ, 1% resistor sets the switching frequency at 300 kHz.  
VOUT (V)2500  
RRON(kW) =  
FSW (kHz)  
(15)  
Note that at very low duty cycles, the 50 ns minimum controllable on-time of the high-side MOSFET, tON(min)  
,
limits the maximum switching frequency. In CCM, tON(min) limits the voltage conversion step-down ratio for a given  
switching frequency. Calculate the minimum controllable duty cycle using 公式 16.  
DMIN = tON(min) FSW  
(16)  
Ultimately, the choice of switching frequency for a given output voltage affects the available input voltage range,  
solution size and efficiency. The maximum supply voltage for a given tON(min) before switching frequency  
reduction occurs is given by 公式 17.  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
 
 
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
VOUT  
V
=
IN(max)  
tON(min) FSW  
(17)  
8.2.2.3 Buck Inductor (LO)  
The inductor ripple current (assuming CCM operation) and peak inductor current are given respectively by 公式  
18 and 公式 19.  
÷
VOUT  
VOUT  
DIL =  
1-  
FSW LO  
V
IN  
«
(18)  
(19)  
DIL  
2
IL(peak) = IOUT(max)  
+
For most applications, choose an inductance such that the inductor ripple current, ΔIL, is between 30% and 50%  
of the rated load current at nominal input voltage. Calculate the inductance using 公式 20.  
«
VOUT  
VOUT  
LO  
=
1-  
÷
÷
FSW ∂ DIL  
V
IN(nom)  
(20)  
Choosing a 68-μH inductor in this design results in 447-mA peak-to-peak ripple current at a nominal input voltage  
of 48 V, equivalent to 45% of the 1-A rated load current.  
Check the inductor data sheet to make sure the saturation current of the inductor is well above the current limit  
setting of the LM5164-Q1. Ferrite-core inductors have relatively lower core losses and are preferred at high  
switching frequencies, but exhibit a hard saturation characteristic – the inductance collapses abruptly when the  
saturation current is exceeded. This results in an abrupt increase in inductor ripple current, higher output voltage  
ripple, and reduced efficiency in turn compromising reliability. Note that inductor saturation current levels  
generally decrease as the core temperature increases.  
8.2.2.4 Output Capacitor (COUT  
)
Select a ceramic output capacitor to limit the capacitive voltage ripple at the converter output. This is the  
sinusoidal ripple voltage that is generated from the triangular inductor current ripple flowing into and out of the  
capacitor. Select an output capacitance using 公式 21 to limit the voltage ripple component to 0.5% of the output  
voltage.  
DIL  
COUT  
í
8 FSW VOUT(ripple)  
(21)  
Substituting ΔIL(nom) of 447 mA gives COUT greater than 3.1 μF. With voltage coefficients of ceramic capacitors  
taken in consideration, a 22-µF, 25-V rated capacitor with X7R dielectric is selected.  
8.2.2.5 Input Capacitor (CIN)  
An input capacitor is necessary to limit the input ripple voltage while providing AC current to the buck power  
stage at every switching cycle. To minimize the parasitic inductance in the switching loop, position the input  
capacitors as close as possible to the VIN and GND pins of the LM5164-Q1. The input capacitors conduct a  
square-wave current of peak-to-peak amplitude equal to the output current. It follows that the resultant capacitive  
component of AC ripple voltage is a triangular waveform. Together with the ESR-related ripple component, the  
peak-to-peak ripple voltage amplitude is given by 公式 22.  
IOUT D 1-D  
(
)
+ IOUT RESR  
V
=
IN(ripple)  
FSW CIN  
(22)  
The input capacitance required for a load current, based on an input voltage ripple specification (ΔVIN), is given  
by 公式 23:  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
IOUT D1- D  
(
)
CIN  
í
FSW V  
-IOUT RESR  
(
)
IN(ripple)  
(23)  
The recommended high-frequency input capacitance is 2.2 µF or higher. Ensure the input capacitor is a high-  
quality X7S or X7R ceramic capacitor with sufficient voltage rating for CIN. Based on the voltage coefficient of  
ceramic capacitors, choose a voltage rating of twice the maximum input voltage. Additionally, some bulk  
capacitance is required if the LM5164-Q1 is not located within approximately 5 cm from the input voltage source.  
This capacitor provides parallel damping to the resonance associated with parasitic inductance of the supply  
lines and high-Q ceramics. See Power Supply Recommendations for more detail.  
8.2.2.6 Type 3 Ripple Network  
A Type 3 ripple generation network uses an RC filter consisting of RA and CA across SW and VOUT to generate a  
triangular ramp that is in phase with the inductor current. This triangular ramp is then AC-coupled into the  
feedback node using capacitor CB as shown in 12. Type 3 ripple injection is suited for applications where low  
output voltage ripple is crucial.  
Calculate RA and CA using 公式 24 and 公式 25 to provide the required ripple amplitude at the FB pin.  
10  
CA  
í
FSW R  
RFB2  
(
)
FB1  
(24)  
For the feedback resistor values given in 12, 公式 24 dictates a minimum CA of 742 pF. In this design, a 3300  
pF capacitance is chosen. This is done to keep RA within practical limits between 100 kand 1 Mwhen using  
公式 25.  
V
- VOUT t  
(
)
IN(nom)  
ON(nom)  
RACA  
í
20mV  
(25)  
Based on CA set at 3.3 nF, RA is calculated to be 453 kto provide a 20-mV ripple voltage at FB. The general  
recommendation for a Type 3 network is to calculate RA and CA to get 20 mV of ripple at typical operating  
conditions, while ensuring a 12-mV minimum ripple voltage on FB at minimum VIN.  
While the amplitude of the generated ripple does not affect the output voltage ripple, it impacts the output  
regulation as it reflects as a DC error of approximately half the amplitude of the generated ripple. For example, a  
converter circuit with Type 3 network that generates a 40-mV ripple voltage at the feedback node has  
approximately 10-mV worse load regulation scaled up through the FB divider to VOUT than the same circuit that  
generates a 20-mV ripple at FB. Calculate the coupling capacitance CB using 公式 26.  
tTR-settling  
CB í  
3RFB1  
where  
tTR-settling is the desired load transient response settling time  
(26)  
CB calculates to 56 pF based on a 75-µs settling time. This value avoids excessive coupling capacitor discharge  
by the feedback resistors during sleep intervals when operating at light loads. To avoid capacitance fall-off with  
DC bias, use a C0G or NP0 dielectric capacitor for CB.  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
 
 
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
8.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
VIN = 14V  
VIN = 24V  
VIN = 48V  
VIN = 72V  
VIN = 14V  
VIN = 24V  
VIN = 48V  
VIN = 72V  
0.001  
0.01  
0.1  
1
0
0.2  
0.4  
0.6  
0.8  
1
Load (A)  
Load (A)  
13. Conversion Efficiency (Log Scale)  
14. Conversion Efficiency (Linear Scale)  
12.4  
12.3  
12.2  
12.1  
12  
11.9  
11.8  
11.7  
11.6  
VIN = 15V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 60V  
0
0.2  
0.4  
0.6  
0.8  
1
Output Current (A)  
VIN = 24 V  
IOUT = 0.25 A to 1 A at 0.1 A/μs  
16. Load Step Response  
15. Load and Line Regulation Performance  
VIN = 24 V  
IOUT = 0 A  
VIN = 24 V  
IOUT = 1 A (Resistive)  
17. No-Load Start-up with VIN  
18. Full-Load Start-up with VIN  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
VIN = 24 V  
IOUT = 0 A  
VIN = 24 V  
IOUT = 1 A (Resistive)  
19. No-Load Start-up and Shutdown with EN/UVLO  
20. Full-Load Start-up and Shutdown with EN/UVLO  
VIN = 24 V  
IOUT = 0 A  
VIN = 24 V  
Load = 0 A to Short  
21. Pre-bias Start-up with EN/UVLO  
22. Short Circuit Applied  
VIN = 24 V  
Load = Short to 0 A  
VIN = 24 V  
Load = 0 A to Short to 0 A  
23. Short Circuit Recovery  
24. No Load to Short Circuit/Short Circuit Recovery  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
VIN = 24 V  
IOUT = 0 A  
VIN = 24 V  
IOUT = 1 A  
25. No-Load Switching  
26. Full-Load Switching  
9 Power Supply Recommendations  
The LM5164-Q1 buck converter is designed to operate from a wide input voltage range between 6 V and 100 V.  
The characteristics of the input supply must be compatible with the Absolute Maximum Ratings and  
Recommended Operating Conditions tables. In addition, the input supply must be capable of delivering the  
required input current to the fully-loaded regulator. Estimate the average input current with 公式 27.  
VOUT IOUT  
IIN  
=
V ∂ h  
IN  
where  
η is the efficiency  
(27)  
If the converter is connected to an input supply through long wires or PCB traces with a large impedance, take  
special care to achieve stable performance. The parasitic inductance and resistance of the input cables may  
have an adverse affect on converter operation. The parasitic inductance in combination with the low-ESR  
ceramic input capacitors form an underdamped resonant circuit. This circuit can cause overvoltage transients at  
VIN each time the input supply is cycled ON and OFF. The parasitic resistance causes the input voltage to dip  
during a load transient. If the converter is operating close to the minimum input voltage, this dip can cause false  
UVLO fault triggering and a system reset. The best way to solve such issues is to reduce the distance from the  
input supply to the regulator and use an aluminum electrolytic input capacitor in parallel with the ceramics. The  
moderate ESR of the electrolytic capacitor helps to damp the input resonant circuit and reduce any voltage  
overshoots. A 10-μF electrolytic capacitor with a typical ESR of 0.5 Ω provides enough damping for most input  
circuit configurations.  
An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as  
well as some of the effects mentioned above. The application report Simple Success with Conducted EMI for  
DC-DC Converters (SNVA489) provides helpful suggestions when designing an input filter for any switching  
regulator.  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
10 Layout  
10.1 Layout Guidelines  
PCB layout is a critical portion of good power supply design. There are several paths that conduct high slew-rate  
currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise and EMI or  
degrade the power supply performance.  
1. To help eliminate these problems, bypass the VIN pin to GND with a low-ESR ceramic bypass capacitor with  
a high-quality dielectric. Place CIN as close as possible to the LM5164-Q1 VIN and GND pins. Grounding for  
both the input and output capacitors should consist of localized top-side planes that connect to the GND pin  
and GND PAD.  
2. Minimize the loop area formed by the input capacitor connections to the VIN and GND pins.  
3. Locate the inductor close to the SW pin. Minimize the area of the SW trace or plane to prevent excessive  
capacitive coupling.  
4. Tie the GND pin directly to the power pad under the device and to a heat-sinking PCB ground plane.  
5. Use a ground plane in one of the middle layers as a noise shielding and heat dissipation path.  
6. Have a single-point ground connection to the plane. Route the ground connections for the feedback, soft-  
start, and enable components to the ground plane. This prevents any switched or load currents from flowing  
in analog ground traces. If not properly handled, poor grounding results in degraded load regulation or erratic  
output voltage ripple behavior.  
7. Make VIN, VOUT and ground bus connections as wide as possible. This reduces any voltage drops on the  
input or output paths of the converter and maximizes efficiency.  
8. Minimize trace length to the FB pin. Place both feedback resistors, RFB1 and RFB2, close to the FB pin. Place  
CFF (if needed) directly in parallel with RFB1. If output setpoint accuracy at the load is important, connect the  
VOUT sense at the load. Route the VOUT sense path away from noisy nodes and preferably through a layer on  
the other side of a grounded shielding layer.  
9. The RON pin is sensitive to noise. Thus, locate the RRON resistor as close as possible to the device and  
route with minimal lengths of trace. The parasitic capacitance from RON to GND must not exceed 20 pF.  
10. Provide adequate heat sinking for the LM5164-Q1 to keep the junction temperature below 150°C. For  
operation at full rated load, the top-side ground plane is an important heat-dissipating area. Use an array of  
heat-sinking vias to connect the exposed pad to the PCB ground plane. If the PCB has multiple copper  
layers, these thermal vias must also be connected to inner layer heat-spreading ground planes.  
10.1.1 Compact PCB Layout for EMI Reduction  
Radiated EMI generated by high di/dt components relates to pulsing currents in switching converters. The larger  
area covered by the path of a pulsing current, the more electromagnetic emission is generated. The key to  
minimizing radiated EMI is to identify the pulsing current path and minimize the area of that path.  
The critical switching loop of the buck converter power stage in terms of EMI is denoted in 27. The topological  
architecture of a buck converter means that a particularly high di/dt current path exists in the loop comprising the  
input capacitor and the integrated MOSFETs of the LM5164-Q1, and it becomes mandatory to reduce the  
parasitic inductance of this loop by minimizing the effective loop area.  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
Layout Guidelines (接下页)  
VIN  
VIN  
2
CIN  
LM5164  
High  
di/dt  
loop  
BST  
High-side  
NMOS  
Q1  
LO  
gate driver  
SW  
VOUT  
8
1
CO  
Q2  
Low-side  
NMOS  
gate driver  
GND  
GND  
27. DC/DC Buck Converter With Power Stage Circuit Switching Loop  
The input capacitor provides the primary path for the high di/dt components of the high-side MOSFET's current.  
Placing a ceramic capacitor as close as possible to the VIN and GND pins is the key to EMI reduction. Keep the  
trace connecting SW to the inductor as short as possible and just wide enough to carry the load current without  
excessive heating. Use short, thick traces or copper pours (shapes) for current conduction path to minimize  
parasitic resistance. Place the output capacitor close to the VOUT side of the inductor, and connect the capacitor's  
return terminal to the GND pin and exposed PAD of the LM5164-Q1.  
10.1.2 Feedback Resistors  
Reduce noise sensitivity of the output voltage feedback path by placing the resistor divider close to the FB pin,  
rather than close to the load. This reduces the trace length of FB signal and noise coupling. The FB pin is the  
input to the feedback comparator, and as such is a high impedance node sensitive to noise. The output node is a  
low impedance node, so the trace from VOUT to the resistor divider can be long if a short path is not available.  
Route the voltage sense trace from the load to the feedback resistor divider, keeping away from the SW node,  
the inductor and VIN to avoid contaminating the feedback signal with switch noise, while also minimizing the trace  
length. This is most important when high feedback resistances, greater than 100 kΩ, are used to set the output  
voltage. Also, route the voltage sense trace on a different layer from the inductor, SW node and VIN, such that  
there is a ground plane that separates the feedback trace from the inductor and SW node copper polygon. This  
provides further shielding for the voltage feedback path from switching noise sources.  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
10.2 Layout Example  
28 shows an example layout for the PCB top layer of a 2-layer board with essential components placed on the  
top side.  
Type 3 ripple  
injection  
Connect BST cap  
close to BST and SW  
Place FB resistors very  
close to FB & GND pins  
PGOOD  
connection  
Thermal vias under  
LM5164 PAD  
Place resistor R8  
close to the RON pin  
GND  
Optional RC  
VOUT  
connection  
Connect ceramic  
input cap close to  
VIN and GND  
EN/UVLO  
connection  
connection snubber to  
reduce SW  
node ringing  
28. LM5164-Q1 Single-Sided PCB Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
LM5164-Q1  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 开发支持  
LM5164-Q1 快速入门计算器  
LM5164-Q1 仿真模型  
如需 TI 的参考设计库,请访问 TIDesigns  
如需 TI WEBENCH 设计环境,请访问 WEBENCH® 设计中心  
11.1.2.1 使用 WEBENCH® 工具定制设计方案  
单击此处以使用带 WEBENCH® 电源设计器的 LM5164-Q1 器件来创建定制设计。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.2 相关文档  
请参阅如下相关文档:  
LM5164-Q1EVM-041 EVM 用户指南》  
《为您的 COT 降压转换器选择理想的纹波生成网络》  
白皮书:  
《评估适用于具有成本效益的严苛应用的宽 VIN、低 EMI 同步降压电路》 应用  
《电源的传导 EMI 规格概述》  
《电源的辐射 EMI 规格概述》  
TI Designs:  
TIDA-01395《具有宽输入电压转换器和电池量表且适用于智能恒温器的 24V 交流电源级》  
TIDA-010030《精确计量和 50μA 待机电流、13 节、48V 锂离子电池组参考设计》  
Power House 博客:  
使用低静态电流开关进行高电压转换  
Behind the Wheel 博客:  
直流/直流转换器封装和引脚排列设计如何提高汽车 EMI 性能  
AN-2162:轻松解决直流/直流转换器的传导 EMI 问题》  
《汽车启动仿真器用户指南》  
《利用宽输入电压直流/直流转换器为无人机供电》  
《使用新的热指标》  
《半导体和 IC 封装热指标》  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
LM5164-Q1  
www.ti.com.cn  
ZHCSIT4A SEPTEMBER 2018REVISED MARCH 2019  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5164QDDARQ1  
LM5164QDDATQ1  
PLM5164QDDATQ1  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
OBSOLETESO PowerPAD  
DDA  
DDA  
DDA  
8
8
8
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Call TI  
-40 to 150  
-40 to 150  
L5164Q  
L5164Q  
Samples  
Samples  
250  
RoHS & Green  
TBD  
NIPDAUAG  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Feb-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM5164-Q1 :  
Catalog : LM5164  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
2500  
250  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5164QDDARQ1  
LM5164QDDATQ1  
SO  
Power  
PAD  
DDA  
DDA  
8
8
330.0  
330.0  
12.8  
12.8  
6.4  
6.4  
5.2  
5.2  
2.1  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
SO  
Power  
PAD  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM5164QDDARQ1  
LM5164QDDATQ1  
SO PowerPAD  
SO PowerPAD  
DDA  
DDA  
8
8
2500  
250  
366.0  
366.0  
364.0  
364.0  
50.0  
50.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

PLM61460AASQRJRTQ1

汽车 3V 至 36V、6A、低噪声同步降压转换器 | RJR | 14
TI

PLM63460AASQRYFTQ1

采用增强型 QFN 封装的汽车类 3V 至 36V、6A、低 EMI 同步降压转换器 | RYF | 22 | -40 to 150
TI

PLM66100QDCKRQ1

具有集成式 FET 的汽车类 1.5V 至 5.5V、1.5A、0.5µA IQ 理想二极管 | DCK | 6 | -40 to 125
TI

PLM74900QRGERQ1

具有断路器、欠压和过压保护以及故障输出功能的汽车类理想二极管 | RGE | 24 | -40 to 125
TI

PLM74910QRGERQ1

具有断路器、200kHz ACS 以及欠压和过压保护功能的汽车类理想二极管 | RGE | 24 | -40 to 125
TI

PLM75

ENCLOSURE IP66 GRP
ETC

PLMC153A

MASK PLD, 35ns, PQCC20
NXP

PLMC153N

MASK PLD, 35ns, PDIP20
NXP

PLMH5485DGKSEP

Radiation-tolerant 850-MHz fully differential amplifier | DGK | 8 | -55 to 125
TI

PLMH5485HKX/EM

Radiation-hardness-assured (RHA) 850-MHz fully differential amplifier | HKX | 8 | 25 to 25
TI

PLMK6CE01920CDLFT

低抖动、高性能、体声波 (BAW) 固定频率 LVCMOS 振荡器 | DLF | 4 | -40 to 105
TI

PLMK6CE02400CDLET

低抖动、高性能、体声波 (BAW) 固定频率 LVCMOS 振荡器 | DLE | 4 | -40 to 105
TI