PPS36BA38ACADDFRQ1 [TI]

具有窗口看门狗计时器的汽车类纳安级静态电流精密监控器 | DDF | 8 | -40 to 125;
PPS36BA38ACADDFRQ1
型号: PPS36BA38ACADDFRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有窗口看门狗计时器的汽车类纳安级静态电流精密监控器 | DDF | 8 | -40 to 125

监控
文件: 总39页 (文件大小:1757K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS36-Q1  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
TPS36-Q1 具有精密窗口看门狗计时器的汽车类毫微IQ 精密电压监控器  
1 特性  
3 说明  
• 具有符AEC-Q100 标准的下列特性  
TPS36-Q1 一款超低功耗型值为 250nA器  
可提供具有可编程窗口看门狗计时器的精密电压监  
控器。TPS36-Q1 支持用于欠压监控的宽阈值电平在  
额定温度范围内的精度1.2%。  
– 器件温度等1-40°C 125°C 的环境工作温  
度范围  
• 出厂编程或用户可编程的看门狗超时  
±10% 精确计时器最大值)  
TPS36-Q1 可提供具有多种功能的高精度窗口看门狗计  
时器广泛适用于各种应用。关闭窗口计时器可以由工  
厂编程或用户使用外部电容器进行编程。可以使用逻辑  
引脚的组合来动态更改打开窗口与关闭窗口的比率。看  
门狗还提供独特的功能例如启用/禁用、启动延迟、  
独立WDO 引脚选项。  
– 出厂编程的关闭窗口1 毫秒100 秒  
• 出厂编程或用户可编程的复位延迟  
±10% 精确计时器最大值)  
– 出厂编程选项2 毫秒10 秒  
• 输入电压范围VDD = 1.04 V 6.0 V  
• 固定阈值电(VIT-)1.05 V 5.4 V  
– 步长50mV 的阈值电压  
1.2% 电压阈值精度最大值)  
– 内置迟(VHYS)5%典型值)  
• 超低电源电流IDD = 250nA典型值)  
• 开漏、推挽低电平有效输出  
• 各种可编程选项:  
RESET WDO 延迟可设定为出厂编程的默认延迟设  
置或通过外部电容器进行编程。该器件还提供锁存输出  
操作监控器或看门狗故障清除之前会锁存输出。  
TPS36-Q1 提供了 TPS3852-Q1 器件系列的性能升级  
替代产品。TPS36-Q1 采用小型 8 引脚 SOT-23 封  
装。  
– 看门狗启用/禁用  
器件信息  
(1)  
– 看门狗启动延迟无延迟10 秒  
– 打开窗口与关闭窗口比率选项1X 511X  
– 锁存输出选项  
封装尺寸标称值)  
器件型号  
TPS36-Q1  
DDF (8)  
2.90mm × 1.60mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
MR 功能支持  
2 应用  
车载充电(OBC) 和无线充电器  
驾驶员监控  
电池管理系(BMS)  
前置摄像头  
环视系ECU  
10  
Supply  
Device lot 1  
Device lot 2  
Device lot 3  
VDD  
VDD  
RESET  
WDO  
RESET  
NMI  
5
0
MR  
TPS36-Q1  
µC  
WDI  
GPIO  
GPIO  
CRST  
CWD  
WD-EN  
SET[0:1]  
GPIO  
-5  
GND  
GND  
GND  
TPS36-Q1 offers various pinout options to support different features.  
Choose suitable pinout based on application needs  
-10  
-40  
-7  
26  
59  
92  
125  
典型应用电路  
Ambient Temperature (C)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGE9  
 
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
Table of Contents  
8.1 Overview...................................................................15  
8.2 Functional Block Diagrams....................................... 15  
8.3 Feature Description...................................................16  
8.4 Device Functional Modes..........................................25  
9 Application and Implementation..................................26  
9.1 Application Information............................................. 26  
9.2 Typical Applications.................................................. 27  
9.3 Power Supply Recommendations.............................29  
9.4 Layout....................................................................... 29  
10 Device and Documentation Support..........................30  
10.1 接收文档更新通知................................................... 30  
10.2 支持资源..................................................................30  
10.3 Trademarks.............................................................31  
10.4 静电放电警告.......................................................... 31  
10.5 术语表..................................................................... 31  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 器件比较............................................................................ 3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings .............................................................. 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics ............................................8  
7.6 Timing Requirements .................................................9  
7.7 Switching Characteristics .........................................10  
7.8 Timing Diagrams....................................................... 11  
7.9 Typical Characteristics..............................................12  
8 Detailed Description......................................................15  
Information.................................................................... 31  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2022) to Revision A (December 2022)  
Page  
• 将“预告信息”更改为“量产数据发布”...........................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
2
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
5 器件比较  
5-1 显示了 TPS36-Q1 的器件命名规则。对于所有可能的输出类型、阈值电压选项、看门狗时间选项和输出断  
言延迟选项请参阅8 了解更多详细信息。有关其他选项的详细信息和可用性请联系 TI 销售代码或访问 TI  
E2E 论坛。  
TPS36 X X XX X X X XXX X Q1  
Threshold  
Tape/Reel  
Voltage  
R: Reel  
T: Tape  
Pinout Op on  
Package  
DDF: SOT23-8  
01: 1.05 V  
02: 1.10 V  
...  
87: 5.35 V  
88: 5.40 V  
A*  
B*  
C
D
Output Assert  
Time  
Output Topology,  
Watchdog  
Watchdog  
Close Time  
A: External  
Capacitor **  
B: 1 msec  
A: External  
Capacitor **  
B: 2 msec  
C: 10 msec  
D: 25 msec  
E: 50 msec  
F: 100 msec  
G: 200 msec  
H: 1 sec  
Startup Delay  
A: DL, No Delay  
B: DL, 200 msec  
C: DL, 500 msec  
D: DL, 1 sec  
Open Time  
Ra o  
A: 2, 4, 16  
B: 4, 8 , 32  
C: 8, 16, 64  
D: 16, 32, 128  
E: 32, 64, 256  
F: 64, 128, 512  
C: 5 msec  
E: DL, 5 sec  
D: 10 msec  
E: 20 msec  
F: 50 msec  
G: 100 msec  
H: 200 msec  
I: 1 sec  
J = 1.4 sec  
K = 1.6 sec  
L = 10 sec  
M = 50 sec  
N = 100 sec  
F: DL, 10 sec  
G: PL, No Delay  
H: PL, 200 msec  
I: PL, 500 msec  
J: PL, 1 sec  
I: 10 sec  
J = Latched  
output  
K: PL, 5 sec  
L: PL, 10 sec  
DL – Open Drain output  
PL – Push Pull output  
* Pinout op on supports Start up Delay se ngs of “No Delay” and “10 sec” only.  
** Capacitor programmable me feature available with pinout op ons A & B. For xed me  
and latched output features use pinout op ons C & D.  
Refer ‘Mechanical, Packaging and Orderable Informa on’ sec on for list of released orderable.  
For any other orderable, contact local TI support.  
5-1. 器件命名规则  
TPS36-Q1 属于引脚兼容的器件系列提供了不同的功能集详见5-1。  
5-1. 引脚兼容的器件系列  
器件  
电压监控器  
看门狗类型  
TPS35-Q1  
TPS36-Q1  
TPS3435-Q1  
TPS3436-Q1  
Timeout  
窗口  
Timeout  
窗口  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
6 Pin Configuration and Functions  
8
7
VDD  
8
7
VDD  
SET0  
CWD  
MR  
1
2
1
2
CWD  
RESET  
RESET  
CRST  
GND  
3
6
5
WDI  
CRST  
GND  
3
6
5
WDI  
4
SET0  
4
SET1  
Not to scale  
Not to scale  
6-1. Pin Configuration Option A  
DDF Package, 8-Pin SOT-23,  
TPS36-Q1 Top View  
6-2. Pin Configuration Option B  
DDF Package, 8-Pin SOT-23,  
TPS36-Q1 Top View  
8
7
VDD  
8
7
VDD  
SET0  
MR  
SET0  
1
2
1
2
RESET  
WD-EN  
RESET  
WDO  
WDI  
3
6
5
WD-EN  
SET1  
WDI  
3
6
5
GND  
4
GND  
4
SET1  
Not to scale  
Not to scale  
Pinout PREVIEW  
6-3. Pin Configuration Option C  
DDF Package, 8-Pin SOT-23,  
TPS36-Q1 Top View  
6-4. Pin Configuration Option D  
DDF Package, 8-Pin SOT-23,  
TPS36-Q1 Top View  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
6-1. Pin Functions  
PIN NUMBER  
PINOUT A PINOUT B PINOUT C PINOUT D  
PIN  
NAME  
I/O  
DESCRIPTION  
Programmable reset timeout pin. Connect a capacitor between this pin and GND to  
program the reset timeout period. See 8.3.4 for more details.  
CRST  
3
3
I
I
Programmable watchdog timeout input. Watchdog close time is set by connecting a  
capacitor between this pin and ground. See 8.3.2.1 for more details.  
CWD  
GND  
MR  
2
4
1
2
4
4
4
Ground pin  
Manual reset pin. A logic low on this pin asserts the RESET. See 8.3.3 for more  
details.  
2
I
Reset output. Connect RESET to VDD using a pull up resistance when using open  
drain output. RESET is asserted when the voltage at the VDD pin goes below the  
undervoltage threshold (VIT-) or MR pin is driven LOW. For pinout options which do  
not support independent WDO pin, RESET is also asserted for watchdog error. See  
8.3.4 for more details.  
RESET  
7
5
7
7
7
O
Logic input. SET0, SET1, and WD-EN pins select the watchdog window ratios and  
enable-disable the watchdog; see 8.3.2.5 for more details.  
SET0  
SET1  
VDD  
1
5
8
1
5
8
6
3
1
5
8
2
3
I
I
I
I
I
Logic input. SET0, SET1, and WD-EN pins select the watchdog window ratios and  
enable-disable the watchdog; see 8.3.2.5 for more details.  
Supply voltage pin. For noisy systems, connecting a 0.1-µF bypass capacitor is  
recommended.  
8
Logic input. Logic high input enables the watchdog monitoring feature. See 8.3.2.3  
for more details.  
WD-EN  
WDI  
Watchdog input. A falling transition (edge) must occur at this pin during the open  
window in order for RESET / WDO to not assert. See 8.3.2 for more details.  
6
6
Watchdog output. Connect WDO to VDD using pull up resistance when using open  
drain output. WDO asserts when a watchdog error occurs. WDO only asserts when  
RESET is high. When a watchdog error occurs, WDO asserts for the set RESET  
timeout delay (tD). When RESET is asserted, WDO is deasserted and watchdog  
functionality is disabled. See 8.3.4 for more details.  
WDO  
6
O
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range, unless otherwise noted(1)  
MIN  
MAX  
UNIT  
Voltage  
Voltage  
VDD  
6.5  
V
0.3  
CWD, CRST, WDEN, SETx, WDI, MR (2), RESET (Push  
Pull), WDO (Push Pull)  
VDD+0.3 (3)  
0.3  
V
RESET (Open Drain), WDO (Open Drain)  
RESET, WDO pin  
6.5  
20  
0.3  
20  
40  
65  
Current  
mA  
Temperature (4)  
Temperature  
Operating ambient temperature, TA  
Storage, Tstg  
125  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR.  
(3) The absolute maximum rating is (VDD + 0.3) V or 6.5 V, whichever is smaller  
(4) As a result of the low dissipated power in this device, it is assumed that TJ = TA.  
7.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
±2000  
±750  
V(ESD) Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.9  
0
NOM  
MAX  
6
UNIT  
VDD (Active Low output)  
CWD, CRST, WDEN, SETx, WDI, MR (1)  
RESET (Open Drain) , WDO (Open Drain)  
RESET (Open Drain) , WDO (Push Pull)  
RESET, WDO pin current  
VDD  
6
Voltage  
V
0
0
VDD  
5
Current  
CRST  
CWD  
TA  
mA  
nF  
nF  
5  
1.5  
1.5  
40  
CRST pin capacitor range  
1800  
1000  
125  
CWD pin capacitor range  
Operating ambient temperature  
(1) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR. VMR should not be higher than VDD.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
6
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
 
 
 
 
 
 
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
7.4 Thermal Information  
TPS36-Q1  
THERMAL METRIC(1)  
DDF (SOT23-8)  
8 PINS  
175.3  
94.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
92.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.4  
ψJT  
91.9  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
7.5 Electrical Characteristics  
At 1.04 V VDD 6 V, MR = Open, RESET pull-up resistor (Rpull-up) = 100 kΩto VDD, WDO pull-up resistor (Rpull-up) = 100  
kΩto VDD, output load (CLOAD) = 10 pF and over operating free-air temperature range 40to 125, unless otherwise  
noted. VDD ramp rate 1 V/µs. Typical values are at TA = 25℃  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
COMMON PARAMETERS  
VDD  
Input supply voltage  
Active LOW output  
1.04  
1.4  
1.2  
3
6
1.4  
1.2  
7
V
%
%
VIT= 1.05 V to 1.95 V  
VIT= 2.0 V to 5.4 V  
VIT= 1.05 V to 5.4 V  
±0.5  
±0.5  
5
Negative-going input threshold accuracy  
VIT–  
VHYS  
(1)  
Hysteresis VITpin  
TA = 40to  
85℃  
VDD = 2 V  
VIT= 1.05 V to 1.95  
V
0.25  
0.25  
0.25  
0.25  
0.8  
3
0.8  
IDD  
Supply current into VDD pin (2)  
µA  
V
TA = 40to  
85℃  
VDD = 6 V  
VIT= 1.05 V to 5.4 V  
3
Low level input voltage WDEN, WDI,  
VIL  
0.3VDD  
SETx, MR (3)  
High level input voltage WDEN, WDI,  
VIH  
0.7VDD  
V
SETx, MR (3)  
RMR  
Manual reset internal pull-up resistance  
100  
kΩ  
RESET / WDO (Open-drain active-low)  
VDD =1.5 V, 1.55 V VIT3.35 V  
IOUT(Sink) = 500 µA  
300  
300  
Low level output voltage  
VOL  
mV  
VDD = 3.3 V, 3.4 V VIT5.4 V  
IOUT(Sink) = 2 mA  
VDD = VPULLUP = 6V  
TA = 40to 85℃  
10  
10  
30  
nA  
nA  
Ilkg(OD)  
Open-Drain output leakage current  
VDD = VPULLUP = 6V  
120  
RESET / WDO (Push-pull active-low)  
VOL(max) = 300 mV  
IOUT(Sink) = 15 µA  
VPOR  
Power on RESET voltage (5)  
Low level output voltage  
900  
300  
300  
300  
mV  
mV  
VDD = 0.9 V, 1.05 V VIT1.5 V  
IOUT(Sink) = 15 µA  
VDD = 1.5 V, 1.55 V VIT3.35 V  
IOUT(Sink) = 500 µA  
VOL  
VDD = 3.3 V, 3.4 V VIT5.4 V  
IOUT(Sink) = 2 mA  
VDD = 1.8 V, 1.05 V VIT1.4 V  
IOUT(Source) = 500 µA  
0.8VDD  
0.8VDD  
0.8VDD  
High level output voltage  
VDD = 3.3 V, 1.45 V VIT3.0 V  
IOUT(Source) = 500 µA  
VOH  
V
VDD = 6 V, 3.05 V VIT5.4 V  
IOUT(Source) = 2 mA  
(1) VITthreshold voltage range from 1.05 V to 5.4 V in 50 mV steps.  
(2) If the logic signal driving MR is less than VDD, then additional current flows into VDD and out of MR.  
(3) VPOR is the minimum VDD voltage level for a controlled output state  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
8
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
7.6 Timing Requirements  
At 1.04 V VDD 6 V, MR = Open, RESET pull-up resistor (Rpull-up) = 100 kΩto VDD, WDO pull-up resistor (Rpull-up) = 100  
kΩto VDD, output RESET / WDO load (CLOAD) = 10 pF and over operating free-air temperature range 40to 125,  
unless otherwise noted. VDD ramp rate 1 V/µs. Typical values are at TA = 25℃  
PARAMETER  
TEST CONDITIONS  
5% VIToverdrive(1)  
MIN  
TYP  
MAX  
UNIT  
tGI_VIT–  
tMR_PW  
tP-WD  
Glitch immunity VIT–  
15  
µs  
MR pin pulse duration to assert reset  
WDI pulse duration to start next frame (2)  
100  
ns  
VDD > VIT–  
VDD > VIT–  
500  
200  
ns  
WD-EN hold time to enable or disable WD  
operation (2)  
tHD-WDEN  
tHD-SETx  
µs  
µs  
SETx hold time to change WD timer setting  
VDD > VIT–  
150  
(2)  
Orderable Option TPS36xxxxB  
Orderable Option TPS36xxxxC  
Orderable Option TPS36xxxxD  
Orderable Option TPS36xxxxE  
Orderable Option TPS36xxxxF  
Orderable Option TPS36xxxxG  
Orderable Option TPS36xxxxH  
Orderable Option TPS36xxxxI  
Orderable Option TPS36xxxxJ  
Orderable Option TPS36xxxxK  
Orderable Option TPS36xxxxL  
Orderable Option TPS36xxxxM  
Orderable Option TPS36xxxxN  
0.8  
4
1
5
1.2  
6
9
10  
11  
18  
20  
22  
ms  
45  
50  
55  
90  
100  
200  
1
110  
220  
1.1  
1.54  
1.76  
11  
tWC  
Watchdog close window time period  
180  
0.9  
1.26  
1.44  
9
1.4  
1.6  
10  
s
45  
50  
55  
90  
100  
110  
(n-1) X  
tWO  
Watchdog open window time period  
SETx pin decide multipler n  
ms  
tWC  
(1) Overdrive % = [(VDD/ VIT) 1] × 100%  
(2) Not production tested  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
7.7 Switching Characteristics  
At 1.04 V VDD 6 V, MR = Open, RESET pull-up resistor (Rpull-up) = 100 kΩto VDD, WDO pull-up resistor (Rpull-up) = 100  
kΩto VDD, output RESET / WDO load (CLOAD) = 10 pF and over operating free-air temperature range 40to 125,  
unless otherwise noted. VDD ramp rate 1 V/µs. Typical values are at TA = 25℃  
PARAMETER  
Startup delay(4)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tSTRT  
tP_HL  
500  
µs  
RESET detect delay for VDD falling below  
VIT–  
VDD : (VIT+ + 10%) to (VIT–  
10%)(1)  
30  
0
50  
µs  
Orderable part number TPS36xA,  
TPS36xG  
Orderable part number TPS36xB,  
TPS36xH  
180  
450  
0.9  
4.5  
9
200  
500  
1
220  
550  
1.1  
5.5  
11  
ms  
Orderable part number TPS36xC,  
TPS36xI  
tSD  
Watchdog startup delay  
Orderable part number TPS36xD,  
TPS36xJ  
Orderable part number TPS36xE,  
TPS36xK  
5
s
Orderable part number TPS36xF,  
TPS36xL  
10  
2
Orderable part number  
TPS36xxxxxxB  
1.6  
9
2.4  
11  
ms  
ms  
ms  
ms  
ms  
ms  
s
Orderable part number  
TPS36xxxxxxC  
10  
25  
50  
100  
200  
1
Orderable part number  
TPS36xxxxxxD  
22.5  
45  
27.5  
55  
Orderable part number  
TPS36xxxxxxE  
tD  
Reset time delay (3)  
Orderable part number  
TPS36xxxxxxF  
90  
110  
220  
1.1  
11  
Orderable part number  
TPS36xxxxxxG  
180  
0.9  
9
Orderable part number  
TPS36xxxxxxH  
Orderable part number  
TPS36xxxxxxI  
10  
tD  
s
s
tWDO  
Watchdog timeout delay  
Propagation delay from MR low to reset  
assertion  
VDD VIT+ 0.2 V,  
MR = VMR_H to VMR_L  
tMR_RES  
100  
ns  
VDD = 3.3 V,  
MR = VMR_L to VMR_H  
tMR_tD  
Delay from MR release to reset deassert  
tD  
s
(1) tP_HL measured from threshold trip point (VIT) to RESET assert. VIT+ = VIT+ VHYS  
(2) Specified by design parameter. When VDD starts from less than the specified minimum VDD and then exceeds VIT+, reset is  
deasserted after the startup delay (tSTRT) + tD delay.  
(3) VDD voltage transitions from (VIT- 10%) to (VIT+ 10%)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
10  
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
7.8 Timing Diagrams  
VIT+  
VIT-  
VDD  
VPOR  
tSTRT + tD  
ttDt  
tP-HL  
tSD  
RESET  
WDO  
ttWO  
t
tWC  
tWC  
tWC  
ttWO  
t
ttWO  
t
ttSD  
t
ttDt  
ttSDt  
tP-WD  
Ignore  
WDI  
Ignore  
Ignore  
Devices with only RESET output, the output will be AND  
operation of RESET and WDO signals.  
7-1. Functional Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
7.9 Typical Characteristics  
all curves are taken at TA = 25°C (unless otherwise noted)  
1
60  
48  
36  
24  
12  
0
Device1  
Device2  
Device3  
0.5  
0
-0.5  
-1  
-0.5 -0.4 -0.3 -0.2 -0.1  
0
0.1 0.2 0.3 0.4 0.5  
-40  
-7  
26  
59  
92  
125  
VIT- Accuracy (%)  
Ambient Temperature (C)  
7-3. VIT- Accuracy Histogram  
7-2. VIT- Accuracy vs Temperature  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
30  
25  
20  
15  
10  
TA = 25C  
TA = 125C  
TA = 40C  
Device1  
Device2  
Device3  
-40  
-7  
26  
59  
92  
125  
0
10  
20  
30  
40  
50  
Ambient Temperature (C)  
Overdrive (%)  
7-4. VIT- Hysteresis Vs Temperature  
7-5. Supply Glitch Immunity vs Overdrive  
10  
60  
48  
36  
24  
12  
0
Device lot 1  
Device lot 2  
Device lot 3  
5
0
-5  
-10  
-40  
-7  
26  
59  
92  
125  
-5  
-4  
-3  
-2  
-1  
Time Accuracy (%)  
7-7. Timer Accuracy Histogram  
0
1
2
3
4
5
Ambient Temperature (C)  
7-6. Timer Accuracy vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
12  
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
7.9 Typical Characteristics (continued)  
all curves are taken at TA = 25°C (unless otherwise noted)  
100  
80  
60  
40  
20  
TA = 25C  
TA = 125C  
TA = 40C  
0
0
200  
400  
600  
800  
1000  
CWD Capacitance (nF)  
7-8. tWC vs Capacitance  
7-9. tD vs Capacitance  
1
0.8  
0.6  
0.4  
0.2  
0
TA = 40C  
TA = 0C  
TA = 25C  
TA = 85C  
TA = 125C  
1
2
3
4
5
Sink current (mA)  
7-10. RESET VOL vs I sink, VDD = 1.5 V  
7-11. WDO VOL vs I sink, VDD = 1.5 V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
TA = 40C  
TA = 0C  
TA = 25C  
TA = 85C  
TA = 125C  
1
2
3
4
5
Sink current (mA)  
7-12. RESET VOL vs I sink, VDD = 3.3 V  
7-13. WDO VOL vs I sink, VDD = 3.3 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
7.9 Typical Characteristics (continued)  
all curves are taken at TA = 25°C (unless otherwise noted)  
2
2
1.6  
1.2  
0.8  
0.4  
0
1.6  
1.2  
0.8  
0.4  
TA = 40C  
TA = 0C  
TA = 25C  
TA = 85C  
TA = 125C  
TA = 40C  
TA = 0C  
TA = 25C  
TA = 85C  
TA = 125C  
0
1
2
3
4
5
1
2
3
4
5
Source current (mA)  
Source current (mA)  
7-14. RESET VOH vs I source, VDD = 2.0 V  
7-15. WDO VOH vs I source, VDD = 2.0 V  
6
5.6  
5.2  
4.8  
4.4  
4
6
5.6  
5.2  
4.8  
4.4  
4
TA = 40C  
TA = 0C  
TA = 25C  
TA = 85C  
TA = 125C  
TA = 40C  
TA = 0C  
TA = 25C  
TA = 85C  
TA = 125C  
1
2
3
4
5
1
2
3
4
5
Source Current (mA)  
Source current (mA)  
7-16. RESET VOH vs I source, VDD = 6.0 V  
7-17. WDO VOH vs I source, VDD = 6.0 V  
7-18. Supply Current vs Power-Supply Voltage  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
14  
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
8 Detailed Description  
8.1 Overview  
The TPS36-Q1 is a high-accuracy under voltage supervisor with an integrated window watchdog timer device.  
The device family supports multiple features related to watchdog operation in a compact 8 pin SOT23 package.  
The devices are available in 4 different pinout configurations. Each pinout offers access to different features to  
meet the various application requirements. The device family is rated for -Q100 applications.  
8.2 Functional Block Diagrams  
MR  
RESET  
RESET  
Logic  
Capacitive  
Divider  
VDD  
+
Reference  
GND  
Oscillator  
Capacitance  
Detection  
Watchdog Timer  
Logic  
GND  
CRST  
CWD  
WDI  
SET0  
8-1. Pinout Option A  
Capacitive  
Divider  
RESET  
Logic  
+
RESET  
VDD  
Reference  
GND  
Oscillator  
Capacitance  
Detection  
Watchdog Timer  
Logic  
GND  
CRST  
CWD  
WDI  
SET0  
SET1  
8-2. Pinout Option B  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
MR  
RESET  
Logic  
RESET  
Capacitive  
Divider  
VDD  
+
Reference  
GND  
Oscillator  
Watchdog Timer  
Logic  
GND  
WDI  
SET0  
SET1 WD-EN  
8-3. Pinout Option C  
RESET  
WDO  
Capacitive  
Divider  
RESET and  
WDO  
Logic  
VDD  
+
Reference  
GND  
Oscillator  
Watchdog Timer  
Logic  
GND  
WDI  
SET0  
SET1 WD-EN  
8-4. Pinout Option D  
8.3 Feature Description  
8.3.1 Voltage Supervisor  
The TPS36-Q1 offers high accuracy under voltage supervisor function at very low quiescent current. The voltage  
supervisor function is always active. After the device powers up from VDD < VPOR, the RESET and WDO  
outputs will be actively driven when VDD is greater than VPOR. The device starts monitoring the supply level  
when the VDD voltage is greater than 1.04 V. The device will hold the RESET pin asserted for tSTRT + tD time  
after the VDD > VIT+ (VIT- + VHYS). Refer 8.3.4 for the tD value computation. For a capacitor based tD delay  
option, the RESET will be asserted for tSTRT + 2 msec time if the CRST pin is open.  
Device pinout options A to C offer only RESET output. In these devices the internal RESET output from  
supervisor and WDO output from watchdog timer are ANDed together to drive the external RESET output.  
The supervisor offers wide range of fixed monitoring thresholds (VIT-) from 1.05 V to 5.40 V in steps of 50 mV.  
The device asserts the RESET output when the VDD signal falls below VIT- threshold. The device offers  
hysteresis functionality for voltage supervision. This ensures the supply has recovered above the monitoring  
threshold before the RESET output is deasserted. The TPS36-Q1 typical voltage hysteresis (VHYS) is 5%. Along  
with the voltage hysteresis, the device keeps the RESET output asserted for time duration tD after the supply has  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
16  
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
risen above VIT+. The RESET output assert duration changes from tD to tSTRT + tD if the VDD signal is ramping  
from voltage < VPOR. The tD time duration can be programmable using an external capacitor or fixed time options  
offered by the device.  
The typical timing behavior for a voltage supervisor and the RESET output is showcased in 8-5. The voltage  
supervisor monitoring output has higher priority over watchdog functionality. If the device voltage supervisor  
output is asserted, the watchdog functionality will be disabled including WDO assert control. The device resumes  
watchdog related functionality only after the supply is stable and the tD time duration has elapsed.  
VIT+  
VIT-  
VDD  
VPOR  
tSTRT + tD  
ttDt  
tP-HL  
tSD  
RESET  
ttWO  
t
tWC  
tWC  
tWC  
ttWO  
t
ttWO  
t
ttSD  
t
ttDt  
ttSDt  
WDO  
WDI  
tP-WD  
Ignore  
Ignore  
Ignore  
Devices with only RESET output, the output will be AND  
operation of RESET and WDO signals.  
8-5. Voltage Supervisor Timing Diagram  
8.3.2 Window Watchdog Timer  
The TPS36-Q1 offers high precision window watchdog timer monitoring. The device is available in multiple  
pinout options A to D which support multiple features to meet ever expanding needs of various applications.  
Ensure a correct pinout is selected to meet the application needs.  
The window watchdog is active when the VDD voltage is higher than the VIT- + VHYS and the RESET is  
deasserted after the tD time. The watchdog stays active as long as VDD > VIT- and watchdog is enabled. TPS36-  
Q1 family offers various startup time delay options to ensure enough time is available for the host to complete  
boot operation. Please refer 8.3.2.4 section for additional details.  
The window watchdog timer frame consists of two windows namely close window (tWC) followed by open window  
(tWO). The device monitors the WDI pin for falling edge. User is expected to provide a valid falling edge on WDI  
pin in the open window. Refer 5 to arrive at the relevant close window and open window values needed for  
application. The timer value is reset when a valid falling edge is detected on WDI pin in the tWO time duration. An  
early fault is reported if a WDI falling edge is detected in close window. A late fault is reported if WDI falling edge  
is not detected in both close and open window. The device asserts RESET output for pinout options A, B and C  
or WDO output for pinout D for time tD in event of watchdog fault. Refer 8.3.4 to arrive at the relevant tD value  
needed for application.  
8-6 shows the basic operation for window watchdog timer operation. The TPS36-Q1 watchdog functionality  
supports multiple features. Details are available in following sub sections.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
ttSD  
t
ttSDt  
ttWO  
t
ttWO  
t
ttWOt  
ttDt  
ttDt  
WDO  
WDI  
ttWC  
t
ttWCt  
tP-WD  
ttWC  
t
Ignore  
Ignore  
NO fault  
Early fault  
Late fault  
Devices with only RESET output, the RESET output will be  
asserted when watchdog error occurs.  
8-6. Window Watchdog Timer Operation  
8.3.2.1 tWC (Close Window) Timer  
The window watchdog frame consists of two sub frames tWC followed by tWO. The host is not expected to drive  
valid WDI transition during tWC time. A valid WDI transition during tWC frame results in early fault condition and  
the WDO output is asserted. RESET output is asserted if pinout does not offer independent WDO output. The  
tWC timer for TPS36-Q1 can be set using an external capacitor connected between CWD pin and GND pin. This  
feature is available with pinout options A or B. Applications which are space constrained or need timer values  
which meet offered timer options, can benefit when using pinout options C or D. The TPS36-Q1 offers multiple  
fixed timer options ranging from 1 msec up-to 100 sec.  
The TPS36-Q1 when using capacitance based timer, senses the capacitance value during the power up or after  
a RESET event. The capacitor is charged and discharged with known internal current source for one cycle to  
sense the capacitance value. The sensed value is used to arrive at tWC timer for the watchdog operation. This  
unique implementation helps reduce the continuous charge and discharge current for the capacitor, thus  
reducing overall current consumption. Continuous charge and discharge of capacitance creates wider dead time  
(no watchdog monitor functionality) when capacitor is discharging. The dead time is higher for high value of  
capacitance. The unique implementation of TPS36-Q1 helps avoid the dead time as the capacitance is not  
continuously charging or discharging under normal operation. Ensure CCWD is < 200 x CCRST for accurate  
calibration of capacitance. The close time window is decided based on SETx pin combination and the CWD  
capacitance. 8-1 to 8-3 highlights the relationship between tWC in second and CWD capacitance in farad.  
The tWC timer is 20% accurate for an ideal capacitor. Accuracy of the capacitance will have additional impact on  
the tWC time. Ensure the capacitance meets the recommended operating range. Capacitance outside the  
recommended range can lead to incorrect operation of the device.  
8-1. tWC Equation 1 SET Pin (Pin Configuration A)  
SET pin value  
Equation  
0
1
tWC (sec) = 79.2 x 106 x CCWD (F)  
tWC (sec) = 39.6 x 106 x CCWD (F)  
8-2. tWC Equation 2 SET Pin, WD-EN = 1 (Pin Configuration C, D)  
Equation  
SET Pin Value  
00  
01  
10  
11  
tWC (sec) = 79.2 x 106 x CCWD (F)  
tWC (sec) = 79.2 x 106 x CCWD (F)  
tWC (sec) = 39.6 x 106 x CCWD (F)  
tWC (sec) = 9.9 x 106 x CCWD (F)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
18  
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
 
 
 
TPS36-Q1  
www.ti.com.cn  
SET Pin Value  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
8-3. tWC Equation 2 SET Pin, WD-EN Not Available (Pin Configuration B)  
Equation  
00  
01  
10  
11  
tWC (sec) = 79.2 x 106 x CCWD (F)  
Watchdog disabled  
tWC (sec) = 39.6 x 106 x CCWD (F)  
tWC (sec) = 9.9 x 106 x CCWD (F)  
The TPS36-Q1 also offers wide selection of high accuracy fixed tWC timer options starting from 1 msec to 100  
sec including various industry standard values. The TPS36-Q1 fixed time options are ±10% accurate for tWC ≥  
10 msec. For tWC < 10 msec, the accuracy is ±20%. tWC value relevant to application can be identified from the  
orderable part number. Refer 5 to identify mapping of orderable part number to tWC value.  
8.3.2.2 tWO (Open Window) Timer  
The window watchdog frame consists of two sub frames tWC followed by tWO. The host is expected to drive valid  
WDI transition during tWO time. A valid WDI transition before beginning of tWO frame causes early fault condition.  
Failure to offer valid WDI transition during tWC and tWO frames results in late fault condition. When a fault  
condition is detected the WDO output is asserted. RESET output is asserted if pinout does not offer independent  
WDO output.  
The tWO value is derived using tWC value and the window open time ratio value n. Equation highlights the  
relationship between tWO and tWC. Refer 5 to select available ratio options.  
tWO = (n - 1) x tWC  
(1)  
Each orderable can offer up to 3 ratio options based on the available SET pins. Refer 8.3.2.5 to identify  
mapping of ratio value to SET pin control. The maximum tWO value is limited to 640 second. Ensure selected tWC  
and ratio combination does not lead to tWO value greater than 640 second.  
8.3.2.3 Watchdog Enable Disable Operation  
The TPS36-Q1 supports watchdog enable or disable functionality. This functionality is critical for different use  
cases as listed below.  
Disable watchdog during firmware update to avoid host RESET.  
Disable watchdog during software step-by-step debug operation.  
Disable watchdog when performing critical task to avoid watchdog error interrupt.  
Keep watchdog disabled until host boots up.  
The TPS36-Q1 supports watchdog enable or disable functionality through either WD-EN pin (pin configuration  
C,D) or SET[1:0] = 0b'01 (pin configuration B) logic combination. For a given pinout only one of these two  
methods is available for the user to disable watchdog operation.  
For a pinout which offers a WD-EN pin, the watchdog enable disable functionality is controlled by the logic state  
of WD-EN pin. Drive WD-EN = 1 to enable the watchdog operation or drive WD-EN = 0 to disable the watchdog  
operation. The WD-EN pin can be toggled any time during the device operation. The 8-7 diagram shows  
timing behavior with WD-EN pin control.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
VIT+  
VDD  
RESET  
WD-EN  
ttWCt  
tWC  
ttWO  
t
WDO  
WDI  
ttDt  
Ignore  
Ignore  
Devices with only RESET output, the output will be AND  
operation of RESET and WDO signals.  
8-7. Watchdog Enable: WD-EN Pin Control  
SET[1:0] = 0b'01 combination can be used to disable watchdog operation with a pinout which offers SET1 and  
SET0 pins, but does not include WD-EN pin. The SET pin logic states can be changed at any time during  
watchdog operation. Refer 8.3.2.5 section for additional details regarding SET[1:0] pin behavior.  
Pinout options A, B offer watchdog timer control using a capacitance connected between CWD and GND pin. A  
capacitance value higher than recommended or connect to GND leads to watchdog functionality getting  
disabled. Capacitance based disable operation overrides the other two options mentioned above. Changing  
capacitance on the fly does not enable or disable watchdog operation. A power supply recycle or device  
recovery after UV fault, MR low event is needed to detect change in capacitance.  
Ongoing watchdog frame is terminated when watchdog is disabled. WDO stays deasserted when watchdog  
operation is disabled. For a pinout with only RESET output, the RESET can assert if supply supervisor error  
occurs. When enabled the device immediately enters tWC frame and start watchdog monitoring operation.  
8.3.2.4 tSD Watchdog Start Up Delay  
The TPS36-Q1 supports watchdog startup delay feature. This feature is activated after power up or after a  
RESET assert event or after WDO assert event. When tSD frame is active, the device monitors the WDI pin but  
the WDO output is not asserted. This feature allows time for the host complete boot process before watchdog  
monitoring can take over. The start up delay helps avoid unexpected WDO or RESET assert events during boot.  
The tSD time is predetermined based on the device part number selected. Refer 5 section for details to map  
the part number to tSD time. Pinout option A, B are available only in no delay or 10 sec start up delay options.  
The tSD frame is complete when the time duration selected for tSD is over or host provides a valid transition on  
the WDI pin. The host must provide a valid transition on the WDI pin during tSD time. The device exits the tSD  
frame and enters watchdog monitoring phase after valid WDI transition. Failure to provide valid transition on WDI  
pin triggers the watchdog error by asserting the WDO output pin. For devices with only RESET output, the  
RESET pin is asserted.  
The tSD frame is not initiated when the watchdog functionality is enabled using WD-EN pin or SET[1:0] pin or  
WDI float functionality as described in 8.3.2.3 section.  
8-8 shows the operation for tSD time frame.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
20  
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
VIT+  
VDD  
VPOR  
tSTRT + tD  
RESET  
ttSD  
t
ttSD  
t
ttWO  
t
ttDt  
WDO  
WDI  
ttWC  
t
ttWC  
t
Ignore  
Ignore  
Devices with only RESET output, the output will be AND  
operation of RESET and WDO signals.  
8-8. tSD Frame Behavior  
8.3.2.5 SET Pin Behavior  
The TPS36-Q1 offers one or two SET pins based on the pinout option selected. SET pins offer flexibility to the  
user to program the tWO timer on the fly to meet various application requirements. Typical use cases where SET  
pin can be used are  
Use wide open window timer when host is in sleep mode, change to small timeout operation when host is  
operational. Watchdog can be used to wake up the host after long duration to perform the application related  
activities before going back to sleep.  
Change to wide open window timer when performing system critical tasks to ensure watchdog does not  
interrupt the critical task. Change timer to application specified interval after the critical task is complete.  
The tWO timer value for the device is combination of tWC timer selection based on the CWD pin or fixed timer  
value along with SET pin logic level. The tWC timer value is decided based on the Watchdog Close Time selector  
in the 5 section. The SET pin logic level is decoded during the device power up. The SET pin value can be  
changed any time during the operation. SETx pin change which leads to change of watchdog timer value or  
enable disable state, terminates the ongoing watchdog frame immediately. SETx pins can be updated when  
WDO or RESET output is asserted as well. The updated tWO timer value will be applied after output is  
deasserted and the tSD timer is over or terminated.  
For a pinout which offers only SET0 pin to the user, the tWO ratio value is decided based on the Watchdog Open  
Time Ratio selector field in the orderable part number. Refer 5 for available options. 8-4 showcases an  
example of the tWO values for different SET0 logic levels when using Watchdog Close Time setting as option D =  
10 msec.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
8-4. tWO Values with SET0 Pin Only (Pin Configuration A)  
tWO  
Watchdog Open Time Ratio Selection  
SET0 = 0  
10 msec  
30 msec  
70 msec  
150 msec  
310 msec  
630 msec  
SET0 = 1  
30 msec  
A
B
C
D
E
F
70 msec  
150 msec  
310 msec  
630 msec  
1270 msec  
Pinout which offer both SET0 & SET1 pins to the user, the tWO ratio value is decided based on the Watchdog  
Open Time Ratio selector field in the orderable part number. Refer 5 for available options. Two SETx pins  
offer 3 different time scaling options. The SET[1:0] = 0b'01 combination disables the watchdog operation. 8-5  
showcases an example of the tWO values for different SET[1:0] logic levels when using Watchdog Close Time  
setting as option G = 100 msec. The package pin out selected does not offer WD-EN pin.  
8-5. tWO Values with SET0 & SET1 Pins, WD-EN Pin Not Available (Pin Configuration B)  
tWO  
Watchdog Open Time  
Ratio selection  
SET[1:0] = 0b'00  
100 msec  
SET[1:0] = 0b'01  
Watchdog disable  
Watchdog disable  
Watchdog disable  
Watchdog disable  
Watchdog disable  
Watchdog disable  
SET[1:0] = 0b'10  
300 msec  
SET[1:0] = 0b'11  
1500 msec  
A
B
C
D
E
F
300 msec  
700 msec  
1500 msec  
3100 msec  
6300 msec  
700 msec  
3100 msec  
6300 msec  
12700 msec  
25500 msec  
51100 msec  
1500 msec  
3100 msec  
6300 msec  
12700 msec  
1. Example for Watchdog Close Time setting = 100 msec.  
Selected pinout option can offer WD-EN pin along with SET[1:0] pins (Pin Configuration C, D). With this pinout,  
the WD-EN pin controls watchdog enable and disable operation. The SET[1:0] = 0b'01 combination operates as  
SET[1:0] = 0b'00.  
Ensure the tWO value with SETx ratio does not exceed 640 sec. If a selection of close window timer and ratio  
results in tWO > 640 sec, the timer value will be restricted to 640 sec.  
8-9 to 8-11 show the timing behavior with respect to SETx status changes.  
WD_EN = 1  
WD ratio = y  
WD ratio = z  
WD ratio = x  
SETx  
ttWO=tWC*(y – 1)t  
ttWO=tWC*(z – 1)t  
ttWO=tWC*(x – 1)t  
ttWO=tWC*(x – 1)t  
WDO  
WDI  
ttWC  
t
ttWCt  
ttWC  
t
ttWCt  
ttWC  
t
tWO  
8-9. Watchdog Behavior with SETx Pin Status  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
22  
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
SET Pin (2 Pins) Operation; WD_EN Pin Not Available  
00 = WD ratio = x  
tWO = tWC*(x–1)  
01 = WD Disabled  
10 = WD ratio = y  
tWO = tWC*(y–1)  
11 = WD ratio = z  
tWO = tWC*(z–1)  
SET[1:0]  
Open Window  
time value  
WD Disabled  
SET Pin (2 Pins) Operation; WD_EN Available = 1  
SET[1:0]  
00 or 01 = WD ratio = x  
10 = WD ratio = y  
tWO = tWC*(y–1)  
11 = WD ratio = z  
tWO = tWC*(z–1)  
Open Window  
time value  
tWO = tWC*(x–1)  
tWC = Fixed based on OPN or programmable using capacitor  
x, y, z = Fixed based on ratio chosen  
8-10. Watchdog Operation with 2 SET Pins  
SET0  
1 = WD ratio = y  
tWO = tWC*(y–1)  
0 = WD ratio = x  
tWO = tWC*(x–1)  
1 = WD ratio = y  
tWO = tWC*(y–1)  
0 = WD ratio = x  
tWO = tWC*(x–1)  
Open Window  
time value  
tWC = Fixed based on OPN or programmable using capacitor  
X, y = Fixed based on ratio chosen  
8-11. Watchdog Operation with 1 SET Pin  
8.3.3 Manual RESET  
The TPS36-Q1 supports manual reset functionality using MR pin. MR pin when driven with voltage lower than  
0.3 x VDD, asserts the RESET output. The MR pin has 100 kpull up to VDD. The MR pin can be left floating.  
The internal pull up will ensure the output is not asserted due to MR pin trigger.  
The output is deasserted after MR pin voltage rises above 0.7 x VDD voltage and time tD is elapsed. Refer 图  
8-12 for more details.  
MR  
0.7 x VDD  
0.3 x VDD  
ttDt  
tP-HL  
ttSDt  
RESET  
8-12. MR Pin Response  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
8.3.4 RESET and WDO Output  
The TPS36-Q1 device can offer RESET or RESET with independent WDO output pin. The output configuration  
is dependent on the pinout variant selected. For a pinout which has only RESET output, the RESET output is  
asserted when VDD voltage is below the monitored threshold or MR pin voltage is lower than threshold or  
watchdog timer error is detected. For a pinout which has independent RESET and WDO output pins, the RESET  
output is asserted when VDD voltage is below the monitored threshold or MR pin voltage is lower than threshold.  
WDO output is asserted only when watchdog timer error is detected. RESET error has higher priority than WDO  
error. If RESET is asserted when WDO is asserted, the device deasserts the WDO pin and watchdog is disabled  
until RESET pin is deasserted and startup delay frame is terminated.  
The output will be asserted for tD time when any relevant events described above are detected. The time tD can  
be programmed by connecting a capacitor between CRST pin and GND or device will assert tD for fixed time  
duration as selected by orderable part number. Refer 5 section for all available options.  
方程式 2 describes the relationship between capacitor value and the time tD. Ensure the capacitance meets the  
recommended operating range. Capacitance outside the recommended range can lead to incorrect operation of  
the device.  
tD (sec) = 4.95 x 106 x CCRST (F)  
(2)  
TPS36-Q1 also offers a unique option of latched output. An orderable with latched output will hold the output in  
asserted state indefinitely until the device is power cycled or the error condition is addressed. If the output is  
latched due to voltage supervisor undervoltage detection, the output latch will be released when VDD voltage  
rises above the VIT- + VHYS level. If the output is latched due to MR pin low voltage, the output latch will be  
released when MR pin voltage rises above 0.7 x VDD level. If the output is latched due to watchdog timer error,  
the output latch will be released when a WDI negative edge is detected or the device is shutdown and powered  
up again. 8-13 shows timing behavior of the device with latched output configuration.  
VIT+  
VIT-  
VDD  
VDDMIN  
WDI  
ttSD  
t
ttSD  
t
tWC  
ttWC  
t
ttWO  
t
WDO  
tSTRT + tD  
RESET  
Devices with only RESET output, the output will be AND  
operation of RESET and WDO signals.  
8-13. Output Latch Timing Behavior  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
24  
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
8.4 Device Functional Modes  
8-6 summarizes the functional modes of the TPS36-Q1.  
8-6. Device Functional Modes  
VDD  
WATCHDOG STATUS  
Not Applicable  
Not Applicable  
Disabled  
WDI  
WDO  
Undefined  
High  
RESET  
Undefined  
Low  
VDD < VPOR  
Ignored  
V
POR VDD < VIT-  
Ignored  
High  
High  
WC(max) tpulse 1 tWC(max)  
+
Enabled  
High  
High  
t
tWO(min)  
VDD VIT+  
1
Enabled  
Enabled  
tWC(max) > tpulse  
Low  
Low  
High  
High  
1
tWC(max) + tWO(max) < tpulse  
(1) Where tpulse is the time between falling edges on WDI.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The following sections describe in detail proper device implementation, depending on the final application  
requirements.  
9.1.1 CRST Delay  
The TPS36-Q1 features two options for setting the reset delay (tD): using a fixed timing and programming the  
timing through an external capacitor.  
9.1.1.1 Factory-Programmed Reset Delay Timing  
Fixed reset delay timings are available using pinouts C and D. Using these timings enables a high-precision,  
10% accurate reset delay timing.  
9.1.1.2 Adjustable Capacitor Timing  
The TPS36-Q1 also offers programmable reset delay option when using pinout A and B. The TPS36-Q1 can be  
programmed to have a desired reset delay by connecting a capacitor between CRST pin and GND. The typical  
delay time resulting from a given external capacitance on the CRST pin can be calculated by 方程3 , where tD  
is the reset delay time in seconds and CCRST is the capacitance in farads.  
tD (sec) = 4.95 × 106 × CCRST (F)  
(3)  
To minimize the difference between the calculated reset delay time and the actual reset delay time, use a use a  
high-quality ceramic dielectric COG capacitor and minimize parasitic board capacitance around this pin. 9-1  
lists the reset delay time ideal capacitor values for CCRST  
.
9-1. Reset Delay Time for Common Ideal Capacitor Values  
RESET  
DELAY TIME (tD)  
CCRST  
UNIT  
MIN (1)  
39.6  
TYP  
49.5  
495  
MAX (1)  
59.4  
10 nF  
100 nF  
1 μF  
ms  
ms  
ms  
396  
594  
3960  
4950  
5940  
(1) Minimum and maximum values are calculated using ideal capacitors.  
9.1.2 Watchdog Window Functionality  
The TPS36-Q1 features two options for setting the close window watchdog timer (tWC): using a fixed timing and  
programming the timing through an external capacitor.  
9.1.2.1 Factory-Programmed watchdog Timing  
Fixed watchdog window close timings are available using pinout C and D. Using these timings enables a high-  
precision, 10% accurate watchdog timer tWC  
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
26  
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
 
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
9.1.2.2 Adjustable Capacitor Timing  
Pinout options A and B support adjustable tWC timing. This is achievable by connecting a capacitor between  
CWD and GND pin. Consult 8-1, 8-2, and 8-3 for calculating typical tWC values using ideal capacitors.  
Capacitor tolerances will cause additional deviation. For the most accurate timing, use ceramic capacitors with  
COG dielectric material.  
9.2 Typical Applications  
9.2.1 Design 1: Monitoring Microcontroller Supply and Watchdog During Operational and Sleep Modes  
The TPS36-Q1 can utilize high-accuracy voltage monitoring and on-the-fly SETx assigning to monitor a  
microcontroller that has both an operational and sleep mode.  
1.8V  
V
TPS36-Q1  
DD  
RESET  
RESET  
GPIO  
VDD  
Microcontroller  
WDI  
WD-EN  
MR  
GPIO  
GPIO  
SET0  
GND  
SET1  
GND  
Copyright © 2023, Texas Instruments Incorporated  
9-1. Monitoring Microcontroller Supply and Watchdog During Operation and Sleep  
9.2.1.1 Design Requirements  
9-2. Design Parameters  
PARAMETER  
DESIGN REQUIREMENT  
DESIGN RESULT  
Typical Voltage Threshold of 1.65 V  
Typical tWC of 50 ms  
Voltage Threshold  
Window Close Time During Operation  
Window Open Time During Operation  
Window Close Time During Sleep  
Window Open Time During Sleep  
RESET Delay  
Typical Voltage Threshold of 1.65 V  
Typical tWC of 50 ms during opertation  
Typical tWO of 1.4 s during operation  
Typical tWC of 50 ms during sleep  
Typical tWO of 12 s during operation  
Typical tWO of 1.55 s  
Typical tWC of 50 ms  
Typical tWO of 12.75 s  
200 ms  
Open-drain  
20 μA  
200 ms  
Open-drain  
Output Logic  
Maximum Device Current Consumption  
250 nA typical, 3 μA maximum  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Setting Voltage Threshold  
The negative-going threshold voltage, VIT-, is set by the device variant. 方程式 4 shows how to calculate the  
"Threshold Voltage" section of the orderable part number.  
OPN "Threshold Voltage" number = (VIT- - 1) / 0.05  
(4)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
In this example, the nominal supply voltage for the microcontroller is 1.8 V. The minimum supply voltage is 10%  
lower than the nominal supply voltage, or 1.62 V. Setting a 1.65 V threshold ensures that the device is reset just  
before the supply voltage reaches the minimum allowed. Thus a 1.65 V threshold is chosen and, using 方程式 4,  
the part number is reduced to TPS36xx13xxxxxxxQ1. The hysteresis is 5% typical, resulting in a positive-going  
threshold voltage, VIT+, of 1.73 V.  
9.2.1.2.2 Determining Window Timings During Operation and Sleep Modes  
The TPS36-Q1 allows for precise 10% accurate watchdog timings. This application requires two different window  
timings in order to maximize power efficiency: one for the microcontroller's operational state and one for its sleep  
state. To achieve this, the host can reassign the SETx pins when it transitions between states. A window close  
time, tWC, of 50 ms typical is chosen because of the application's 50 ms typical tWC requirement. The application  
requires a minimum watchdog open time, tWO, of 1.4 s during operation and a tWO of 12 s during sleep. Thus, the  
possible variant options are narrowed to TPS36xx13FExDDFRQ1.  
9.2.1.2.3 Meeting the Minimum Reset Delay  
The TPS36-Q1 features two options for selecting reset delays: fixed delays and capacitor-programmable delays.  
The TPS36-Q1 supports only fixed watchdog timings and fixed reset delays or programmable watchdog timings  
and programmable reset delays. The application requires a 200 ms minimum reset delay, thus reset delay option  
G is used. Because of these requirements and no need for a startup delay, the TPS36CA13FEGDDFRQ1 is  
used.  
9.2.1.2.4 Setting the Watchdog Window  
In this application, the watchdog timing options are based on the WDI signal that is provided to the TPS36-Q1. A  
watchdog WDI setting must be chosen such that a transition must always occur within the open watchdog  
window. There are several ways to achieve these window parameters. An external capacitor can be placed on  
the CWD pin and calculated to have a sufficient window close time. Another option is to use one of the factory-  
programmed timing options. An additional advantage of choosing one of the factory-programmed options is the  
ability to reduce the number of components required, thus reducing overall BOM cost.  
9.2.1.2.5 Calculating the RESET Pullup Resistor  
The TPS36-Q1 uses an open-drain configuration for the RESET output, as shown in 9-2.When the FET is off,  
the resistor pulls the drain of the transistor to VDD and when the FET is turned on, the FET pulls the output to  
ground, thus creating an effective resistor divider. The resistors in this divider must be chosen to ensure that VOL  
is below its maximum value. To choose the proper pullup resistor, there are three key specifications to keep in  
mind: the pullup voltage (VPU), the recommended maximum RESET pin current (IRST), and VOL. The maximum  
VOL is 0.3 V, meaning that the effective resistor divider created must be able to bring the voltage on the reset pin  
below 0.3 V with IRST kept below 2 mA for VDD 3 V and 500 μA for VDD = 1.5 V. For this example, with a VPU  
=VDD = 1.5 V, a resistor must be chosen to keep IRST below 500 μA because this value is the maximum  
consumption current allowed. To ensure this specification is met, a pullup resistor value of 10 kΩ was selected,  
which sinks a maximum of 180 μA when RESET is asserted.  
VDD  
RESET  
RESET  
CONTROL  
9-2. Open-Drain RESET Configuration  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
28  
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
9.3 Power Supply Recommendations  
This device is designed to operate from an input supply with a voltage range between 1.04 V and 6 V. An input  
supply capacitor is not required for this device; however, if the input supply is noisy, then good analog practice is  
to place a 0.1-µF capacitor between the VDD pin and the GND pin.  
9.4 Layout  
9.4.1 Layout Guidelines  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice recommends  
placing a 0.1-µF ceramic capacitor as near as possible to the VDD pin. If a capacitor is not connected to the  
CRST pin, then minimize parasitic capacitance on this pin so the RESET delay time is not adversely affected.  
Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a  
0.1-µF ceramic capacitor as near as possible to the VDD pin.  
Place CCRST capacitor as close as possible to the CRST pin.  
Place CCWD capacitor as close as possible to the CWD pin.  
Place the pullup resistor on the RESET pin as close to the pin as possible.  
9.4.2 Layout Example  
Pull up  
Open Drain  
Output  
TPS36-Q1  
8
7
VDD  
SET0  
MR  
1
2
RESET  
WDI  
3
6
5
WD-EN  
SET1  
GND  
4
Not to scale  
Copyright © 2023, Texas Instruments Incorporated  
9-3. Typical Layout for the pinout C of TPS36-Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
10 Device and Documentation Support  
10.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGE9  
30  
Submit Document Feedback  
Product Folder Links: TPS36-Q1  
 
 
 
TPS36-Q1  
www.ti.com.cn  
ZHCSO90A NOVEMBER 2022 REVISED APRIL 2023  
10.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS36-Q1  
English Data Sheet: SLVSGE9  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS36BA12ACADDFRQ1  
TPS36BA38ACADDFRQ1  
TPS36CA66BECDDFRQ1  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDF  
DDF  
DDF  
8
8
8
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
NLLOA  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NLHOB  
NLHOD  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS36BA12ACADDFRQ1 SOT-23-  
THIN  
DDF  
DDF  
DDF  
8
8
8
3000  
3000  
3000  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
TPS36BA38ACADDFRQ1 SOT-23-  
THIN  
TPS36CA66BECDDFRQ1 SOT-23-  
THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS36BA12ACADDFRQ1  
TPS36BA38ACADDFRQ1  
TPS36CA66BECDDFRQ1  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
DDF  
DDF  
DDF  
8
8
8
3000  
3000  
3000  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY