PREF7040QFKHT [TI]

REF70 2 ppm/°C Maximum Drift, 0.23 ppmp-p 1/f Noise, Precision Voltage Reference;
PREF7040QFKHT
型号: PREF7040QFKHT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

REF70 2 ppm/°C Maximum Drift, 0.23 ppmp-p 1/f Noise, Precision Voltage Reference

文件: 总40页 (文件大小:2646K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REF70  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
REF70 2 ppm/°C Maximum Drift, 0.23 ppmp-p 1/f Noise, Precision Voltage Reference  
1 Features  
3 Description  
Low noise enables precision measurements:  
– 1/f Noise (0.1 Hz to 10 Hz): 0.23 ppmp-p  
– 10 Hz to 1 kHz: 0.35 ppmrms  
Low temperature drift coefficient:  
– 2 ppm/°C maximum (-40°C to 125°C)  
High accuracy: ±0.025% maximum  
Humidity resistant hermetic ceramic package  
(LCCC)  
Low long-term stability (1k hr): 28 ppm  
Low dropout: 400 mV  
Designed for a wide range of applications:  
– Wide input voltage up to 18 V  
– Output current: ±10 mA  
The REF70 is a family of high precision series voltage  
references that offers the industry’s lowest noise  
(0.23 ppmp-p), very low temperature drift coefficient  
(2 ppm/°C), and high accuracy (±0.025%). The  
REF70 offers a high PSRR, low drop-out voltage  
and excellent load and line regulation to help meet  
strict transient requirements. This combination of  
precision and features is designed for applications  
such as test and measurement that demand a precise  
reference to be paired with precision, high-resolution  
data converters such as ADS8900B, ADS127L01 and  
DAC11001A, to achieve optimal performance in the  
signal chain. The REF70 is also designed for noise-  
sensitive medical applications such as ultrasound and  
X-ray to help enable low-noise measurements from  
the analog front end.  
– Voltage options: 1.25 V, 2.5 V, 3 V, 3.3 V, 4.096  
V, 5 V  
Ultra-flexible solution:  
– Stable with 1-μF to 100-μF output low-ESR  
capacitor  
– High PSRR: 107 dB at 1 kHz  
– Operating temperature range: −40°C to +125°C  
The REF70 family is available in VSSOP and LCCC  
package options. The LCCC (FKH) package is a  
hermetically sealed ceramic package that allows for  
low, long-term drift for applications that require a  
stable reference over a long time period without  
calibration.  
2 Applications  
Semiconductor test equipment  
Precision data acquisition systems  
Precision weight scales  
Ultrasound scanner  
The REF70 is specified for the wide temperature  
range of −40°C to +125°C. The wide temperature  
range enables operation across various industrial  
applications.  
X-ray systems  
Industrial instrumentation  
PLC analog I/O modules  
Field transmitters  
Device Information  
PART NAME  
REF70  
PACKAGE (1)  
BODY SIZE (NOM)  
5.00 mm × 5.00 mm  
3.00 mm x 3.00 mm  
LCCC (8)  
VSSOP (8)  
Power monitoring  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
2.501  
2.50075  
2.5005  
2.50025  
2.5  
0.64  
0.56  
0.48  
0.4  
0.32  
0.24  
0.16  
0.08  
0
2.49975  
2.4995  
2.49925  
2.499  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
Noise (ppmp-p  
)
Output Voltage Vs Free-Air-Temperature  
0.1-Hz to 10-Hz Voltage Noise Distribution  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
 
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................4  
6 Pin Configuration and Functions...................................5  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................6  
7.5 REF7012 Electrical Characteristics............................ 7  
7.6 REF7025 Electrical Characteristics............................ 8  
7.7 REF7030 Electrical Characteristics............................ 9  
7.8 REF7033 Electrical Characteristics.......................... 10  
7.9 REF7040 Electrical Characteristics...........................11  
7.10 REF7050 Electrical Characteristics........................ 12  
7.11 Typical Characteristics............................................ 13  
8 Parameter Measurement Information..........................17  
8.1 Solder Heat Shift.......................................................17  
8.2 Long-Term Stability................................................... 18  
8.3 Thermal Hysteresis...................................................18  
8.4 Noise Performance................................................... 19  
8.5 Temperature Drift...................................................... 21  
8.6 Power Dissipation..................................................... 21  
9 Detailed Description......................................................23  
9.1 Overview...................................................................23  
9.2 Functional Block Diagram.........................................23  
9.3 Feature Description...................................................23  
9.4 Device Functional Modes..........................................23  
10 Application and Implementation................................25  
10.1 Application Information........................................... 25  
10.2 Typical Applications................................................ 25  
11 Power Supply Recommendation................................30  
12 Layout...........................................................................31  
12.1 Layout Guidelines................................................... 31  
12.2 Layout Example...................................................... 31  
13 Device and Documentation Support..........................32  
13.1 Documentation Support.......................................... 32  
13.2 Receiving Notification of Documentation Updates..32  
13.3 Support Resources................................................. 32  
13.4 Trademarks.............................................................32  
13.5 Electrostatic Discharge Caution..............................32  
13.6 Glossary..................................................................32  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 32  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (September 2021) to Revision D (November 2021)  
Page  
Changed REF7012 status from Preproduction device to Released device........................................................4  
Changed REF7012 status to Released Device. Updated specifications to meet production release device.....7  
Added REF7030 Electrical Characteristics table................................................................................................9  
Added REF7033 Electrical Characteritics table................................................................................................10  
Added REF7012 Thermal Hysteresis figure..................................................................................................... 13  
Added JEDEC standard details to follow for solder reflow profiles. Updated solder shift histogram plot......... 17  
Added Thermal Hysteresis plots for REF7012 device .....................................................................................18  
Changes from Revision B (April 2021) to Revision C (September 2021)  
Page  
Add 1.25 V variant to Features on page1...........................................................................................................1  
In the Device Comparison Table, added the 1.25V variant and added foot notes to indicate which devices are  
released vs pre-production ................................................................................................................................ 4  
Changed Dropout voltage to min VIN = 2.75 V for VOUT < 2.5 V. .................................................................... 6  
Added Electrical Characteristics table for REF7012 (Product Preview)............................................................. 7  
Changed VINMIN from 3 V to VOUT + VDO ...........................................................................................................8  
Added Electrical Characteristics table for REF7040 (Product Preview)............................................................11  
Added Electrical Characteristics table for REF7050 (Product Preview)........................................................... 12  
Added to the notes above the Typical Characteristics plots, Vref = 2.5 V to the default conditions................. 13  
Under Temperature Drift section of the Parameter Measurement Information, corrected the figure from Long  
Term Drift plot to Temperature Drift...................................................................................................................21  
Changes from Revision A (December 2020) to Revision B (April 2021)  
Changed REF7025 to more general REF70 series in heading and device information. Added ADC companion  
products..............................................................................................................................................................1  
Page  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: REF70  
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
Changed Figures 7-2 and 7-20, Long-Term Stability (First 1000 Hours), to longer duration (2000 hours).......13  
Corrected typical shift from 0.021% to 0.009%.................................................................................................17  
Changed Figure 8-3, Long-Term Stability LCCC -1000 hours), to longer duration (2000 hours)..................... 18  
Corrected Figure 8-5, Thermal Hysteresis Distribution Cycle 2 (-40°C to 125°C), data and title..................... 18  
Reordered figures and paragraphs for better flow............................................................................................ 20  
Changed VREF to VREF(25°C) in Equation 2........................................................................................................21  
Added missing supply bypass capacitor value (10-μF).................................................................................... 23  
Clarified piezoelectric contribution to noise and added links to resources....................................................... 26  
Added clarification on how to connect OUTF and OUTS in specific load current condition............................. 27  
Corrected part numbers and added links in Table 10-2, Reference Op Amp Options .....................................28  
Changes from Revision * (October 2020) to Revision A (December 2020)  
Page  
APL to RTM release............................................................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: REF70  
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
5 Device Comparison Table  
PRODUCT (2)  
REF7012 (1)  
REF7025 (1)  
REF7030  
VOUT  
1.25 V  
2.5 V  
3.0 V  
REF7033  
3.3 V  
REF7040  
4.096 V  
5.0 V  
REF7050  
(1) Released device - REF7012, REF7025.  
(2) Preproduction device - REF7030, REF7033, REF7040, REF7050.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: REF70  
 
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
6 Pin Configuration and Functions  
GND  
8
OUTF  
1
2
3
7
6
5
EN  
VIN  
OUTS  
GND  
GND  
4
GND  
Figure 6-1. FKH Package  
8-Pin LCCC  
Top View  
GND  
1
2
8
7
EN  
VIN  
OUTF  
3
4
6
5
GND  
GND  
OUTS  
GND  
Figure 6-2. DGK Package  
8-Pin VSSOP  
Top View  
Table 6-1. Pin Functions  
PIN  
FKH  
TYPE  
DESCRIPTION  
NAME  
DGK  
Device enable control. Low level input disables the reference output  
and device enters shutdown mode. Device can be enabled by  
driving voltage > 1.6V. If the pin is left floating, the internal pull up  
will enable the device.  
EN  
1
1
Input  
Input supply voltage connection. Connect a minimum 0.1-μF  
decoupling capacitor to ground for the best performance.  
VIN  
2
2
Power  
GND  
GND  
GND  
OUTS  
3
4
5
6
3
4
5
6
Ground  
Ground  
Ground  
Input  
Ground connection.  
Ground connection.  
Ground connection  
Reference voltage output sense connection.  
Reference voltage output force connection. Connect a output  
capacitor between 1-μF to 100-μF for the best performance.  
OUTF  
GND  
7
8
7
8
Output  
Ground  
Ground connection.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: REF70  
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
-0.3  
MAX  
UNIT  
V
Input voltage  
VIN  
EN  
20  
VIN + 0.3  
6
Enable voltage  
V
Output voltage  
VOUT  
ISC  
V
Output short circuit current  
Operating temperature range  
Storage temperature range  
25  
mA  
°C  
°C  
TA  
-55  
-65  
150  
Tstg  
170  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied. These are stress ratings only and functional operation of the device at these or any other conditions  
beyond those specified in the Electrical Characteristics Table is not implied.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001,  
all pins(1)  
± 1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
± 500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
(1)  
VIN  
EN  
IL  
Input voltage  
VOUT + VDO  
18  
VIN  
10  
V
V
Enable voltage  
Output current  
0
–10  
–40  
mA  
°C  
TA  
Operating temperature  
25  
125  
(1) VDO = Dropout voltage. For VOUT < 2.5 V minimum VIN = 2.75 V  
7.4 Thermal Information  
REF70xx  
THERMAL METRIC(1)  
FKH (CERAMIC)  
DGK (MSOP)  
8 PINS  
201.2  
UNIT  
8 PINS  
95.8  
59.0  
58.3  
48.2  
58.1  
28.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
85.7  
122.9  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
21.2  
ΨJB  
121.4  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: REF70  
 
 
 
 
 
 
 
 
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
7.5 REF7012 Electrical Characteristics  
Specifications are tested at TA = 25°C, IL = 0 mA, CIN = 0.1 µF, COUT = 10 µF, VIN = 3 V, OUTS connected to OUTF, unless  
otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage accuracy TA = 25°C  
–0.025  
0.025  
2
%
Output voltage  
–40°C ≤ TA ≤ 125°C  
ppm/  
temperature coefficient  
LINE AND LOAD REGULATION  
2.7 V ≤ VIN ≤ 18 V  
4
5
ΔVO / ΔVIN Line regulation  
ppm/V  
2.7 V ≤ VIN ≤ 18 V, 40°C ≤ TA ≤ 125°C  
IL = 0 mA to 10mA, VIN = 3 V  
30  
15  
IL = 0 mA to 10mA, VIN = 3 V, 40°C ≤ TA ≤ 125°C  
IL = 0 mA to –10mA, VIN = 3 V  
ΔVO / ΔIL  
Load regulation  
ppm/mA  
15  
IL = 0 mA to –10mA, VIN = 3 V,  
–40°C ≤ TA ≤ 125°C  
30  
NOISE  
enp-p  
en  
Low frequency noise  
Output voltage noise  
ƒ = 0.1 Hz to 10 Hz  
ƒ = 10 Hz to 1 kHz  
0.25  
0.35  
ppmp-p  
ppmrms  
HYSTERESIS AND LONG-TERM STABILITY  
0 to 250h at 35°C –FKH package  
15  
35  
18  
11  
11  
Long-term stability  
ppm  
ppm  
0 to 1000h at 35°C – FKH package  
25°C, –40°C, 125°C, 25°C – FKH package  
25°C, –40°C, 85°C, 25°C – FKH package  
25°C, 0°C, 70°C, 25°C – FKH package  
Output voltage  
hysteresis  
TURN ON TIME  
tON Turn-on time  
CAPACITIVE LOAD  
0.1% settling, COUT = 1µF  
0.5  
ms  
Stable input capacitor  
range  
CIN  
–40≤ TA ≤ 125℃  
–40≤ TA ≤ 125℃  
0.1  
1
µF  
µF  
Stable output capacitor  
range (1)  
COUT  
100  
POWER SUPPLY  
VIN Input voltage  
2.75  
18  
6.5  
7.5  
10  
V
mA  
mA  
uA  
uA  
V
TA = 25°C  
4
5
Active mode  
–40°C ≤ TA ≤ 125°C  
IQ  
Quiescent current  
Enable pin voltage  
TA = 25°C  
Shutdown mode  
–40°C ≤ TA ≤ 125°C  
12  
Active mode (EN=1)  
Shutdown mode (EN=0)  
VIN = VEN = 18V  
1.6  
VEN  
0.5  
4
V
3.2  
30  
uA  
uA  
mA  
IEN  
ISC  
Enable pin current  
Short circuit current  
VIN = VEN = 18V, 40°C ≤ TA ≤ 125°C  
VOUT = 0V  
5
(1) ESR for the capacitor can range from 10mΩ to 400mΩ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: REF70  
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
7.6 REF7025 Electrical Characteristics  
Specifications are tested at TA = 25°C, IL = 0 mA, CIN = 0.1 µF, COUT = 10 µF, VIN = VOUT + 0.5V, OUTS connected to OUTF,  
unless otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage accuracy TA = 25°C  
–0.025  
0.025  
2
%
Output voltage  
–40°C ≤ TA ≤ 125°C  
ppm/℃  
temperature coefficient  
LINE AND LOAD REGULATION  
VOUT + VDO ≤ VIN ≤ 18 V  
4
5
ΔVO / ΔVIN Line regulation  
ppm/V  
VOUT + VDO ≤ VIN ≤ 18 V, –40°C ≤ TA ≤ 125°C  
IL = 0 mA to 10mA, VIN = VOUT + VDO  
30  
10  
IL = 0 mA to 10mA, VIN = VOUT + VDO, –40°C ≤  
TA ≤ 125°C  
ΔVO / ΔIL  
Load regulation  
ppm/mA  
IL = 0 mA to –10mA, VIN = VOUT + VDO  
5
IL = 0 mA to –10mA, VIN = VOUT + VDO, –40°C ≤  
TA ≤ 125°C  
15  
NOISE  
enp-p  
en  
Low frequency noise  
Output voltage noise  
ƒ = 0.1 Hz to 10 Hz  
ƒ = 10 Hz to 1 kHz  
0.23  
0.35  
ppmp-p  
ppmrms  
HYSTERESIS AND LONG-TERM STABILITY  
0 to 250h at 35°C - FKH package  
10  
28  
Long-term stability  
ppm  
ppm  
0 to 1000h at 35°C - FKH package  
25°C, –40°C, 125°C, 25°C – FKH package  
25°C, –40°C, 85°C, 25°C – FKH package  
25°C, 0°C, 70°C, 25°C – FKH package  
180  
100  
40  
Output voltage  
hysteresis  
TURN ON TIME  
tON Turn-on time  
CAPACITIVE LOAD  
0.1% settling, COUT = 1µF  
0.5  
ms  
Stable input capacitor  
range  
CIN  
–40≤ TA ≤ 125℃  
–40≤ TA ≤ 125℃  
0.1  
1
µF  
µF  
Stable output capacitor  
range (1)  
COUT  
100  
18  
POWER SUPPLY  
VIN Input voltage  
VOUT  
+
V
VDO  
TA = 25°C  
4
5
6
6.5  
10  
mA  
mA  
uA  
uA  
V
Active mode  
–40°C ≤ TA ≤ 125°C  
IQ  
Quiescent current  
TA = 25°C  
Shutdown mode  
–40°C ≤ TA ≤ 125°C  
12  
Active mode (EN=1)  
1.6  
VEN  
Enable pin voltage  
Enable pin current  
Shutdown mode (EN=0)  
VIN = VEN = 18V  
0.5  
4
V
3.2  
25  
uA  
uA  
mV  
mV  
mA  
IEN  
VIN = VEN = 18V, 40°C ≤ TA ≤ 125°C  
IL = 5mA, –40°C ≤ TA ≤ 125°C  
IL = 10mA, –40°C ≤ TA ≤ 125°C  
VOUT = 0V  
5
250  
400  
VDO  
ISC  
Dropout voltage  
Short circuit current  
(1) ESR for the capacitor can range from 10mΩ to 400mΩ  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: REF70  
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
7.7 REF7030 Electrical Characteristics  
Specifications are tested at TA = 25°C, IL = 0 mA, CIN = 0.1 µF, COUT = 10 µF, VIN = VOUT + 0.5V, OUTS connected to OUTF,  
unless otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage accuracy TA = 25°C  
–0.025  
0.025  
2
%
Output voltage  
–40°C ≤ TA ≤ 125°C  
ppm/℃  
temperature coefficient  
LINE AND LOAD REGULATION  
3.2 V ≤ VIN ≤ 18 V  
4
5
ΔVO / ΔVIN Line regulation  
ppm/V  
3.2 V ≤ VIN ≤ 18 V, 40°C ≤ TA ≤ 125°C  
IL = 0 mA to 10mA, VIN = 3.5 V  
30  
10  
IL = 0 mA to 10mA, VIN = 3.5 V, 40°C ≤ TA ≤  
125°C  
ΔVO / ΔIL  
Load regulation  
ppm/mA  
IL = 0 mA to –10mA, VIN = 3.5 V  
5
IL = 0 mA to –10mA, VIN = 3.5 V, 40°C ≤ TA ≤  
125°C  
15  
NOISE  
enp-p  
en  
Low frequency noise  
Output voltage noise  
ƒ = 0.1 Hz to 10 Hz  
ƒ = 10 Hz to 1 kHz  
0.23  
0.35  
ppmp-p  
ppmrms  
HYSTERESIS AND LONG-TERM STABILITY  
0 to 250h at 35°C - FKH package  
10  
28  
Long-term stability  
ppm  
ppm  
0 to 1000h at 35°C - FKH package  
25°C, –40°C, 125°C, 25°C – FKH package  
25°C, –40°C, 85°C, 25°C – FKH package  
25°C, 0°C, 70°C, 25°C – FKH package  
180  
100  
40  
Output voltage  
hysteresis  
TURN ON TIME  
tON Turn-on time  
CAPACITIVE LOAD  
0.1% settling, COUT = 1µF  
0.5  
ms  
Stable input capacitor  
range  
CIN  
–40≤ TA ≤ 125℃  
–40≤ TA ≤ 125℃  
0.1  
1
µF  
µF  
Stable output capacitor  
range (1)  
COUT  
100  
18  
POWER SUPPLY  
VIN Input voltage  
VOUT  
+
V
VDO  
TA = 25°C  
4
5
6
6.5  
10  
mA  
mA  
uA  
uA  
V
Active mode  
–40°C ≤ TA ≤ 125°C  
IQ  
Quiescent current  
TA = 25°C  
Shutdown mode  
–40°C ≤ TA ≤ 125°C  
12  
Active mode (EN=1)  
1.6  
VEN  
Enable pin voltage  
Enable pin current  
Shutdown mode (EN=0)  
VIN = VEN = 18V  
0.5  
4
V
3.2  
25  
uA  
uA  
mV  
mV  
mA  
IEN  
VIN = VEN = 18V, 40°C ≤ TA ≤ 125°C  
IL = 5mA, –40°C ≤ TA ≤ 125°C  
IL = 10mA, –40°C ≤ TA ≤ 125°C  
VOUT = 0V  
5
250  
400  
VDO  
ISC  
Dropout voltage  
Short circuit current  
(1) ESR for the capacitor can range from 10mΩ to 400mΩ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: REF70  
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
7.8 REF7033 Electrical Characteristics  
Specifications are tested at TA = 25°C, IL = 0 mA, CIN = 0.1 µF, COUT = 10 µF, VIN = VOUT + 0.5V, OUTS connected to OUTF,  
unless otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage accuracy TA = 25°C  
–0.025  
0.025  
2
%
Output voltage  
–40°C ≤ TA ≤ 125°C  
ppm/℃  
temperature coefficient  
LINE AND LOAD REGULATION  
3.5 V ≤ VIN ≤ 18 V  
4
5
ΔVO / ΔVIN Line regulation  
ppm/V  
3.5 V ≤ VIN ≤ 18 V, 40°C ≤ TA ≤ 125°C  
IL = 0 mA to 10mA, VIN = 3.8 V  
30  
10  
IL = 0 mA to 10mA, VIN = 3.8 V, 40°C ≤ TA ≤  
125°C  
ΔVO / ΔIL  
Load regulation  
ppm/mA  
IL = 0 mA to –10mA, VIN = 3.8 V  
5
IL = 0 mA to –10mA, VIN = 3.8 V, 40°C ≤ TA ≤  
125°C  
15  
NOISE  
enp-p  
en  
Low frequency noise  
Output voltage noise  
ƒ = 0.1 Hz to 10 Hz  
ƒ = 10 Hz to 1 kHz  
0.23  
0.35  
ppmp-p  
ppmrms  
HYSTERESIS AND LONG-TERM STABILITY  
0 to 250h at 35°C - FKH package  
10  
28  
Long-term stability  
ppm  
ppm  
0 to 1000h at 35°C - FKH package  
25°C, –40°C, 125°C, 25°C – FKH package  
25°C, –40°C, 85°C, 25°C – FKH package  
25°C, 0°C, 70°C, 25°C – FKH package  
180  
100  
40  
Output voltage  
hysteresis  
TURN ON TIME  
tON Turn-on time  
CAPACITIVE LOAD  
0.1% settling, COUT = 1µF  
0.5  
ms  
Stable input capacitor  
range  
CIN  
–40≤ TA ≤ 125℃  
–40≤ TA ≤ 125℃  
0.1  
1
µF  
µF  
Stable output capacitor  
range (1)  
COUT  
100  
18  
POWER SUPPLY  
VIN Input voltage  
VOUT  
+
V
VDO  
TA = 25°C  
4
5
6
6.5  
10  
mA  
mA  
uA  
uA  
V
Active mode  
–40°C ≤ TA ≤ 125°C  
IQ  
Quiescent current  
TA = 25°C  
Shutdown mode  
–40°C ≤ TA ≤ 125°C  
12  
Active mode (EN=1)  
1.6  
VEN  
Enable pin voltage  
Enable pin current  
Shutdown mode (EN=0)  
VIN = VEN = 18V  
0.5  
4
V
3.2  
25  
uA  
uA  
mV  
mV  
mA  
IEN  
VIN = VEN = 18V, 40°C ≤ TA ≤ 125°C  
IL = 5mA, –40°C ≤ TA ≤ 125°C  
IL = 10mA, –40°C ≤ TA ≤ 125°C  
VOUT = 0V  
5
250  
400  
VDO  
ISC  
Dropout voltage  
Short circuit current  
(1) ESR for the capacitor can range from 10mΩ to 400mΩ  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: REF70  
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
7.9 REF7040 Electrical Characteristics  
Specifications are tested at TA = 25°C, IL = 0 mA, CIN = 0.1 µF, COUT = 10 µF, VIN = VOUT + 0.5V, OUTS connected to OUTF,  
unless otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage accuracy TA = 25°C  
–0.025  
0.025  
2
%
Output voltage  
–40°C ≤ TA ≤ 125°C  
ppm/℃  
temperature coefficient  
LINE AND LOAD REGULATION  
VOUT + VDO ≤ VIN ≤ 18 V  
4
5
ΔVO / ΔVIN Line regulation  
ppm/V  
VOUT + VDO ≤ VIN ≤ 18 V, –40°C ≤ TA ≤ 125°C  
IL = 0 mA to 10mA, VIN = VOUT + VDO  
30  
10  
IL = 0 mA to 10mA, VIN = VOUT + VDO, –40°C ≤  
TA ≤ 125°C  
ΔVO / ΔIL  
Load regulation  
ppm/mA  
IL = 0 mA to –10mA, VIN = VOUT + VDO  
5
IL = 0 mA to –10mA, VIN = VOUT + VDO, –40°C ≤  
TA ≤ 125°C  
15  
NOISE  
enp-p  
en  
Low frequency noise  
Output voltage noise  
ƒ = 0.1 Hz to 10 Hz  
ƒ = 10 Hz to 1 kHz  
0.23  
0.35  
ppmp-p  
ppmrms  
HYSTERESIS AND LONG-TERM STABILITY  
0 to 250h at 35°C - FKH package  
10  
28  
Long-term stability  
ppm  
ppm  
0 to 1000h at 35°C - FKH package  
25°C, –40°C, 125°C, 25°C – FKH package  
25°C, –40°C, 85°C, 25°C – FKH package  
25°C, 0°C, 70°C, 25°C – FKH package  
180  
100  
40  
Output voltage  
hysteresis  
TURN ON TIME  
tON Turn-on time  
CAPACITIVE LOAD  
0.1% settling, COUT = 1µF  
0.5  
ms  
Stable input capacitor  
range  
CIN  
–40≤ TA ≤ 125℃  
–40≤ TA ≤ 125℃  
0.1  
1
µF  
µF  
Stable output capacitor  
range (1)  
COUT  
100  
18  
POWER SUPPLY  
VIN Input voltage  
VOUT  
+
V
VDO  
TA = 25°C  
4
5
6
6.5  
10  
mA  
mA  
uA  
uA  
V
Active mode  
–40°C ≤ TA ≤ 125°C  
IQ  
Quiescent current  
TA = 25°C  
Shutdown mode  
–40°C ≤ TA ≤ 125°C  
12  
Active mode (EN=1)  
1.6  
VEN  
Enable pin voltage  
Enable pin current  
Shutdown mode (EN=0)  
VIN = VEN = 18V  
0.5  
4
V
3.2  
25  
uA  
uA  
mV  
mV  
mA  
IEN  
VIN = VEN = 18V, 40°C ≤ TA ≤ 125°C  
IL = 5mA, –40°C ≤ TA ≤ 125°C  
IL = 10mA, –40°C ≤ TA ≤ 125°C  
VOUT = 0V  
5
250  
400  
VDO  
ISC  
Dropout voltage  
Short circuit current  
(1) ESR for the capacitor can range from 10mΩ to 400mΩ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: REF70  
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
7.10 REF7050 Electrical Characteristics  
Specifications are tested at TA = 25°C, IL = 0 mA, CIN = 0.1 µF, COUT = 10 µF, VIN = VOUT + 0.5V, OUTS connected to OUTF,  
unless otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage accuracy TA = 25°C  
–0.025  
0.025  
2
%
Output voltage  
–40°C ≤ TA ≤ 125°C  
ppm/℃  
temperature coefficient  
LINE AND LOAD REGULATION  
VOUT + VDO ≤ VIN ≤ 18 V  
4
5
ΔVO / ΔVIN Line regulation  
ppm/V  
VOUT + VDO ≤ VIN ≤ 18 V, –40°C ≤ TA ≤ 125°C  
IL = 0 mA to 10mA, VIN = VOUT + VDO  
30  
10  
IL = 0 mA to 10mA, VIN = VOUT + VDO, –40°C ≤  
TA ≤ 125°C  
ΔVO / ΔIL  
Load regulation  
ppm/mA  
IL = 0 mA to –10mA, VIN = VOUT + VDO  
5
IL = 0 mA to –10mA, VIN = VOUT + VDO, –40°C ≤  
TA ≤ 125°C  
15  
NOISE  
enp-p  
en  
Low frequency noise  
Output voltage noise  
ƒ = 0.1 Hz to 10 Hz  
ƒ = 10 Hz to 1 kHz  
0.23  
0.35  
ppmp-p  
ppmrms  
HYSTERESIS AND LONG-TERM STABILITY  
0 to 250h at 35°C - FKH package  
10  
28  
Long-term stability  
ppm  
ppm  
0 to 1000h at 35°C - FKH package  
25°C, –40°C, 125°C, 25°C – FKH package  
25°C, –40°C, 85°C, 25°C – FKH package  
25°C, 0°C, 70°C, 25°C – FKH package  
180  
100  
40  
Output voltage  
hysteresis  
TURN ON TIME  
tON Turn-on time  
CAPACITIVE LOAD  
0.1% settling, COUT = 1µF  
0.5  
ms  
Stable input capacitor  
range  
CIN  
–40≤ TA ≤ 125℃  
–40≤ TA ≤ 125℃  
0.1  
1
µF  
µF  
Stable output capacitor  
range (1)  
COUT  
100  
18  
POWER SUPPLY  
VIN Input voltage  
VOUT  
+
V
VDO  
TA = 25°C  
4
5
6
6.5  
10  
mA  
mA  
uA  
uA  
V
Active mode  
–40°C ≤ TA ≤ 125°C  
IQ  
Quiescent current  
TA = 25°C  
Shutdown mode  
–40°C ≤ TA ≤ 125°C  
12  
Active mode (EN=1)  
1.6  
VEN  
Enable pin voltage  
Enable pin current  
Shutdown mode (EN=0)  
VIN = VEN = 18V  
0.5  
4
V
3.2  
25  
uA  
uA  
mV  
mV  
mA  
IEN  
VIN = VEN = 18V, 40°C ≤ TA ≤ 125°C  
IL = 5mA, –40°C ≤ TA ≤ 125°C  
IL = 10mA, –40°C ≤ TA ≤ 125°C  
VOUT = 0V  
5
250  
400  
VDO  
ISC  
Dropout voltage  
Short circuit current  
(1) ESR for the capacitor can range from 10mΩ to 400mΩ  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: REF70  
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
7.11 Typical Characteristics  
at TA = 25°C, VIN = VEN = VREF + 0.5 V, IL = 0 mA, CL = 10 μF, CIN = 0.1 μF, VREF = 2.5 V (unless otherwise noted)  
2.501  
50%  
2.50075  
40%  
2.5005  
2.50025  
30%  
2.5  
2.49975  
20%  
2.4995  
10%  
2.49925  
2.499  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
0
Figure 7-1. Output Voltage Vs Free-Air Temperature  
Temperature Drift -40°C to 125°C (ppm/°C)  
Figure 7-2. Temperature Drift Distribution  
16  
14  
12  
10  
8
50%  
40%  
30%  
20%  
10%  
0
6
4
2
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Figure 7-4. Line Regulation vs Temperature  
Output Initial Accuracy (%)  
Figure 7-3. Accuracy Distribution  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
Figure 7-5. Load Regulation (Sourcing) vs Temperature  
Figure 7-6. Load Regulation (Sinking) vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: REF70  
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
7.11 Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = VREF + 0.5 V, IL = 0 mA, CL = 10 μF, CIN = 0.1 μF, VREF = 2.5 V (unless otherwise noted)  
10mA  
10 mA/div  
VIN  
-10mA  
-10mA  
5 V/div  
VOUT  
100 mV/div  
10 mV/div  
100µs/div  
200µs/div  
Figure 7-7. Line Regulation Response  
Figure 7-8. Load Transient Response (CL = 1 μF)  
2
10mA  
1mF  
10 mA/div  
10mF  
1.75  
1.5  
1.25  
1
100mF  
-10mA  
-10mA  
0.75  
0.5  
0.25  
0
10 mV/div  
200µs/div  
10 20 50 100  
1000 10000  
Frequency (Hz)  
100000  
1000000  
Figure 7-9. Load Transient Response (CL = 10 μF)  
Figure 7-10. Output Impedance  
6
2.4  
2
5
4
3
2
1
0
1.6  
1.2  
0.8  
0.4  
0
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
Figure 7-11. Quiescent Current vs Temperature  
Figure 7-12. Shutdown Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: REF70  
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
7.11 Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = VREF + 0.5 V, IL = 0 mA, CL = 10 μF, CIN = 0.1 μF, VREF = 2.5 V (unless otherwise noted)  
1.5  
1.2  
0.9  
0.6  
0.3  
0
300  
250  
200  
150  
100  
50  
VEN_HIGH  
VEN_LOW  
0mA  
5mA  
10mA  
0
0
4
8 12  
Input Voltage (V)  
16  
20  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
Figure 7-13. Enable Threshold vs VIN  
Figure 7-14. Dropout Voltage vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.64  
0.56  
0.48  
0.4  
0.32  
0.24  
0.16  
0.08  
0
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
Noise (ppmp-p  
)
Figure 7-16. Noise Performance 10 Hz to 100 kHz  
Figure 7-15. 0.1-Hz to 10-Hz Voltage Noise Distribution (300  
units)  
120  
35%  
1uF  
10uF  
30%  
25%  
20%  
15%  
10%  
5%  
100  
80  
60  
40  
20  
0
100uF  
0
10  
100  
1k  
10k  
100k  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Frequency (Hz)  
Thermal Hysteresis (ppm)  
Figure 7-17. Power-Supply Rejection Ratio vs Frequency  
Figure 7-18. REF7025 FKH Thermal Hysteresis Distribution (0°C  
to 70°C)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: REF70  
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
7.11 Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = VREF + 0.5 V, IL = 0 mA, CL = 10 μF, CIN = 0.1 μF, VREF = 2.5 V (unless otherwise noted)  
150  
100  
50  
50  
40  
30  
20  
10  
0
0
-50  
-100  
-150  
0
5
10  
20  
25  
30  
0
400  
800  
1200  
1600  
2000  
Thermal Hysteresis (ppm)  
Time (hr)  
Figure 7-19. REF7012 FKH Thermal Hysteresis Distribution (0°C  
to 70°C)  
Figure 7-20. Long-Term Stability (First 2000 Hours)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: REF70  
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
8 Parameter Measurement Information  
8.1 Solder Heat Shift  
The materials used in the manufacture of the REF70 have differing coefficients of thermal expansion, resulting  
in stress on the device die when the part is heated during soldering process. Mechanical and thermal stress on  
the device die can cause the output voltages to shift, degrading the initial accuracy specifications of the product.  
Reflow soldering is a common cause of this error. In order to illustrate this effect, a total of 32 devices were  
soldered on two printed circuit boards [16 devices on each printed circuit board (PCB)] using lead-free solder  
paste and the paste manufacturer suggested reflow profile. The reflow profile is as shown in Figure 8-1. The  
printed circuit board is comprised of FR4 material. The board thickness is 1.65 mm and the area is 114 mm ×  
152 mm.  
For recommended reflow profiles using 'Sn-Pb Eutectic Assembly' or 'Pb-Free Assembly' please refer JEDEC  
J-STD-020 standard.  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (seconds)  
C01  
Figure 8-1. Reflow Profile  
The reference output voltage is measured before and after the reflow process. Although all tested units exhibit  
very low shifts, higher shifts are also possible depending on the size, thickness, and material of the printed circuit  
board. An important note is that the Figure 8-2 display the typical shift for exposure to a single reflow profile.  
Exposure to multiple reflows, as is common on PCBs with surface-mount components on both sides, causes  
additional shifts in the output bias voltage. If the PCB is exposed to multiple reflows, the device must be soldered  
in the last pass to minimize its exposure to thermal stress.  
80%  
60%  
40%  
20%  
0
0
0.01  
0.02  
0.03  
0.04  
0.05  
Solder Shift (%)  
Figure 8-2. Solder Shift  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: REF70  
 
 
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
8.2 Long-Term Stability  
One of the key parameters of the REF70 references is long-term stability also known as long-term drift. The  
long-term stability value was tested in a typical setup that reflects standard PCB board manufacturing practices.  
The boards are made of standard FR4 material and the board does not have special cuts or grooves around the  
devices to relieve the mechanical stress of the PCB. The devices and boards in this test do not undergo high  
temperature burn in post-soldering prior to testing. These conditions reflect a real world use case scenario and  
common manufacturing techniques.  
During the long-term stability testing, precautions are taken to ensure that only the long-term stability drift is  
being measured. The boards are maintained at 35°C in an oil bath. The oil bath ensures that the temperature  
is constant across the device over time compared to an air oven. The measurements are captured every 30  
minutes with a calibrated 8.5 digit multimeter.  
Typical long-term stability characteristic is expressed as a deviation over time. Figure 8-3 shows the typical drift  
value for the REF70 FKH VOUT is 28 ppm from 0 to 1000 hours. It is important to understand that long-term  
stability is not ensured by design and that the value is typical. The REF70 will experience the highest drift in the  
initial 1000 hr. Subsequent deviation is typically lower than 13 ppm for the next 1000 hr.  
150  
100  
50  
0
-50  
-100  
-150  
0
400  
800  
1200  
1600  
2000  
Time (hr)  
Figure 8-3. Long Term Stability LCCC -2000 hours (VOUT  
)
8.3 Thermal Hysteresis  
Thermal hysteresis is measured with the REF70 FKH soldered to a PCB, similar to a real-world application.  
Thermal hysteresis for the device is defined as the change in output voltage after operating the device at 25°C,  
cycling the device through the specified temperature range, and returning to 25°C. This can be seen in Figure  
8-4 to Figure 8-5. Hysteresis can be expressed by Equation 1:  
«
÷
| VPRE - VPOST  
VNOM  
|
VHYST  
=
ì106 ppm  
(
)
(1)  
where  
VHYST = thermal hysteresis (in units of ppm)  
VNOM = the specified output voltage  
VPRE = output voltage measured at 25°C pre-temperature cycling  
VPOST = output voltage measured after the device has cycled from 25°C through the specified temperature  
range of –40°C to +125°C and returns to 25°C.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: REF70  
 
 
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
50%  
50%  
40%  
30%  
20%  
10%  
0
40%  
30%  
20%  
10%  
0
120 130 140 150 160 170 180 190 200 210 220 230 240  
0
10  
20  
30  
40  
Thermal Hysteresis (ppm)  
Thermal Hysteresis (ppm)  
Figure 8-4. REF7025 Thermal Hysteresis  
Distribution (-40°C to 125°C)  
Figure 8-5. REF7012 Thermal Hysteresis  
Distribution (-40°C to 125°C)  
8.4 Noise Performance  
8.4.1 1/f Noise  
1/f noise, also known as flicker noise, is a low frequency noise that affects the device output voltage which can  
affect precision measurements in ADCs. This noise increases proportionally with output voltage and operating  
temperature. It is measured by filtering the output from 0.1-Hz to 10-Hz. Since the 1/f noise is an extremely  
low value, the frequency of interest needs to be amplified and band-pass filtered. This is done by using a  
high-pass filter to block the DC voltage. The resulting noise is then amplified by a gain of 1000. The bandpass  
filter is created by a series of high-pass and low-pass filter that adds additional gain to make it more visible  
on a oscilloscope as shown in Figure 8-6. 1/f noise must be tested in a Faraday cage enclosure to block  
environmental noise.  
VIN  
VREFP  
VIN EN  
REF70xx  
CIN  
OUTF  
OUTS  
Low Noise  
Preamplifier  
G = 1000  
High-pass Filter  
FC = 0.07 Hz  
CL  
GND  
2nd Order  
High-pass Filter  
FC = 0.1 Hz  
G = 10  
2nd Order  
Low-pass Filter  
FC = 10 Hz  
G = 10  
2nd Order  
Low-pass Filter  
FC = 10 Hz  
G = 1  
Scope  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8-6. 1/f Noise Test Setup  
Typical 1/f noise (0.1-Hz to 10-Hz) distribution can be seen in Figure 8-7.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: REF70  
 
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
0.64  
0.56  
0.48  
0.4  
0.32  
0.24  
0.16  
0.08  
0
Noise (ppmp-p  
)
Figure 8-7. 0.1-Hz to 10-Hz Voltage Noise Distribution  
The 1/f noise is in such a low frequency range that it is not practical to filter out which makes it a key parameter  
for ultra-low noise measurements. Noise sensitive designs must use the lowest 1/f noise for the highest precision  
measurements. Figure 8-8 shows the effect of 1/f noise over 10s.  
Time 1s/div  
Figure 8-8. 0.1-Hz to 10-Hz Voltage Noise  
8.4.2 Broadband Noise  
Broadband noise is a noise that appears at higher frequency compared to 1/f noise. The broadband noise is  
usually flat and uniform over frequency as shown in Figure 8-10. The broadband noise is measured by high-pass  
filtering the output of the REF70 and measuring the result on a spectrum analyzer as shown in Figure 8-9.  
The DC component of the REF70 is removed by using a high-pass filter and then amplified. When measuring  
broadband noise, it is not necessary to have high gain in order to achieve maximum bandwidth.  
VIN  
VREFP  
VIN EN  
REF70xx  
CIN  
OUTF  
OUTS  
High-pass Filter  
G = 11  
Post Amplifier  
G = 11  
Spectrum  
Analyzer  
CL  
GND  
Figure 8-9. Broadband Noise Test Setup  
For noise sensitive designs, a low-pass filter can be used to reduce broadband noise output noise levels by  
removing the high frequency components. When designing a low-pass filter special care must be taken to  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: REF70  
 
 
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
ensure the output impedance of the filter does not degrade ac performance. This can occur in RC low-pass  
filters where a large series resistance can impact the load transients due to output current fluctuations.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
Figure 8-10. Noise Performance 10 Hz to 100 kHz  
8.5 Temperature Drift  
The REF70 is designed and tested for a minimal output voltage temperature drift, which is defined as the  
change in output voltage over temperature. Every unit shipped is tested at multiple temperatures to ensure that  
the product meets data sheet specifications. The temperature coefficient is calculated using the box method  
in which a box is formed by the min/max limits for the nominal output voltage over the operating temperature  
range. REF70 has a low maximum temperature coefficient of 2 ppm/°C from –40°C to +125°C. This method  
corresponds more accurately to the method of test and provides a closer estimate of actual error than the other  
methods. The box method specifies limits for the temperature error but does not specify the exact shape and  
slope of the device under test. Due to temperature curvature correction to achieve low-temperature drift, the  
temperature drift is expected to be non-linear. See SLYT183 for more information on the box method. The box  
method equation is shown in Equation 2:  
VREF(MAX) - VREF(MIN)  
Drift =  
ì106  
«
÷
÷
VREF(25èC) ìTemperature Range  
(2)  
2.501  
2.50075  
2.5005  
2.50025  
2.5  
2.49975  
2.4995  
2.49925  
2.499  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
Figure 8-11. Output Voltage Vs Free-Air Temperature  
8.6 Power Dissipation  
The REF70 voltage references are capable of source and sink up to 10 mA of load current across the rated  
input voltage range. However, when used in applications subject to high ambient temperatures, the input voltage  
and load current must be carefully monitored to ensure that the device does not exceeded its maximum power  
dissipation rating. The maximum power dissipation of the device can be calculated with Equation 3:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: REF70  
 
 
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
TJ = TA +P ì RqJA  
D
(3)  
where  
PD is the device power dissipation  
TJ is the device junction temperature  
TA is the ambient temperature  
RθJA is the package (junction-to-air) thermal resistance  
Because of this relationship, acceptable load current in high temperature conditions may be less than the  
maximum current-sourcing capability of the device. In no case should the device be operated outside of its  
maximum power rating because doing so can result in premature failure or permanent damage to the device.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: REF70  
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
9 Detailed Description  
9.1 Overview  
The REF70 is family of ultra low-noise, precision bandgap voltage references that are specifically designed for  
excellent initial voltage accuracy and drift. The Section 9.2 is a simplified block diagram of the REF70 showing  
basic band-gap topology.  
9.2 Functional Block Diagram  
VIN  
Digital  
Core  
Bandgap  
Core  
+
Reference  
Buffer  
Å
VIN  
OUTF  
OUTS  
REN  
Enable  
Controller  
EN  
GND  
9.3 Feature Description  
9.3.1 EN Pin  
The EN pin of the REF70 has an internal 16 MΩ pull-up resistor (REN) to VIN. This allows the EN pin of the  
REF70 to be left floating. When the EN pin of the REF70 is pulled high, the device is in active mode. The device  
must be in active mode for normal operation. The REF70 can be placed in shutdown mode by pulling the EN pin  
low. When in shutdown mode, the output of the device becomes high impedance and the quiescent current of  
the device reduces to 12 µA in shutdown mode. The EN pin must not be pulled higher than VIN supply voltage.  
See the Section 7.6 for logic high and logic low voltage levels.  
9.4 Device Functional Modes  
9.4.1 Basic Connections  
Figure 9-1 shows the typical connections for the REF70. TI recommends a supply bypass capacitor (CIN)  
ranging from 0.1-μF to 10-μF. A 1-μF to 100-μF output capacitor (CL) must be connected from OUTF to GND.  
The equivalent series resistance (ESR) value of CL must be 10mΩ to 400mΩ to ensure output stability.  
AVDD  
VOUT  
VIN  
EN  
OUTF  
OUTS  
REF7025  
GND  
CIN  
CL  
Copyright © 2020, Texas Instruments Incorporated  
Figure 9-1. Basic Connections  
9.4.2 Negative Reference Voltage  
For applications requiring a negative and positive reference voltage, the REF70 and OPA211 can be used to  
provide a dual-supply reference from a 5-V supply. Figure 9-2 shows the REF70 used to provide a 2.5-V supply  
reference voltage and -2.5V negative reference voltage. The low noise performance of the REF70 complements  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: REF70  
 
 
 
 
 
 
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
the low noise of the OPA211 to provide an accurate solution for split-supply applications. Take care to match the  
temperature coefficients of R1 and R2.  
+5V  
VIN EN  
OUTF  
+2.5V  
REF7025  
OUTS  
R1  
GND  
10 k  
R2  
10 kꢀ  
+5V  
-2.5V  
OPA211  
-5V  
Copyright © 2020, Texas Instruments Incorporated  
Figure 9-2. The REF70 and OPA211 Create Positive and Negative Reference Voltages  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: REF70  
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
This device is a natural fit for many precision applications and it can be connected to system components  
in various ways and thus there are many situations that this data sheet can not characterize in detail. Basic  
applications include positive/negative voltage reference and data acquisition systems. The table below shows  
the typical applications of REF70 and its companion data converters.  
APPLICATION  
DATA CONVERTER  
Precision Data Acquisition  
Industrial Instrumentation  
Semiconductor Test  
ADS124S08, ADS8900B, ADS1278, ADS1262, DAC80501,  
DAC8562  
ADS127L01, ADS8699, ADS1256, ADS1251, DAC9881, DAC8811,  
DAC1220, DAC80508  
ADS8598H, ADS131M08, ADS8686S, ADS8881, DAC11001A,  
DAC91001A, DAC7744  
Power Monitoring, PLC Analog I/O  
Field Transmitters  
ADS131E04, ADS131A02,  
ADS1247, ADS1220  
10.2 Typical Applications  
10.2.1 Typical Application: Basic Voltage Reference Connection  
The circuit shown in Figure 10-1 shows the basic configuration for the REF70 references. Connect bypass  
capacitors according to the guidelines in Section 10.2.1.2.1.  
AVDD  
VIN EN  
OUTF  
REF7025  
OUTS  
GND  
AVDD  
OPA2320  
REFN0 REFP0  
AVDD  
AIN0  
AVDD  
ADS124S08  
AIN  
AVDD  
AVSS  
AIN1  
OPA2320  
Copyright © 2020, Texas Instruments Incorporated  
Figure 10-1. Basic Reference Connection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: REF70  
 
 
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
10.2.1.1 Design Requirements  
A detailed design procedure is based on a design example. For this design example, use the parameters listed  
in Table 10-1 as the input parameters.  
Table 10-1. Design Example Parameters  
DESIGN PARAMETER  
VALUE  
Input voltage VIN  
5.5 V  
Output voltage VOUT  
2.5 V  
REF7025 input capacitor  
REF7025 output capacitor  
10-µF  
10-µF  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Input and Output Capacitors  
A 1 μF to 10 μF bypass capacitor should be connected to the input to improve transient response in applications  
where the supply voltage may fluctuate. Connect an additional 0.1 μF capacitor in parallel to reduce high  
frequency supply noise.  
A low ESR capacitor of 1 μF to 100 μF must be connected to the output to improve stability and help filter  
out high frequency noise. Best performance and stability is attained with low-ESR output capacitors with an  
ESR from 10 mΩ to 400 mΩ. For very low noise applications, special care must be taken with X7R and  
other MLCC capacitors due to their piezoelectric effect. Mechanical vibration can transduce to voltage via the  
piezoelectric effect which appears as noise in the μV range, potentially dominating the noise of the REF70. More  
information on how the piezoelectric effect can be explored in systems can be found in Stress-induced outbursts:  
Microphonics in ceramic capacitors (Part 1) and Stress-induced outbursts: Microphonics in ceramic capacitors  
(Part 2). It is recommended that to use film capacitors for noise sensitive applications.  
The transient startup response of the REF70 is shown in Figure 10-2. The startup response of the REF70 family  
is dependent on the output capacitor. While larger capacitors will decrease the output noise, they will increase  
the startup response.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: REF70  
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
10.2.1.2.1.1 Application Curve  
Figure 10-2. REF7025 Startup (C = 10 μF)  
10.2.1.2.2 Force and Sense Connection  
Current flowing through a PCB trace produces an IR voltage drop, and with longer traces, this drop can reach  
several millivolts or more, introducing a considerable error into the output voltage of the reference. A 3000-mil  
long, 15-mil wide trace of 1-ounce copper has a resistance of approximately 100 mΩ at room temperature; at a  
load current of 10 mA, this can introduce a full millivolt of error. In an ideal board layout, the reference must be  
mounted as close as possible to the load to minimize the length of the output traces, and, therefore, the error  
introduced by voltage drop. However, in applications where this is not possible or convenient, force and sense  
connections (sometimes referred to as Kelvin sensing connections) are provided as a means of minimizing the  
IR drop and improving accuracy.  
Kelvin connections work by providing a set of high impedance voltage-sensing lines to the output and ground  
nodes. Because very little current flows through these connections, the IR drop across their traces is negligible,  
and the output and ground. The REF70 has kelvin connection capabilities due to its output force (OUTF) and  
input sense (OUTS) connection as shown in Basic Reference Connection. The output force voltage will vary  
upwards from the internal VREF voltage to ensure that at VOUT, which is where the OUTF and OUTS connect at  
the point-of-load, the voltage will be precisely VREF. The sense connection on the REF70 requires 4 mA due to  
its architecture, therefore if the load current is expected to be less than 4mA, then OUTF should be shorted to  
OUTS.  
It is always advantageous to use Kelvin connections whenever possible. However, in applications where the IR  
drop is negligible or an extra set of traces cannot be routed to the load, the force and sense pins for VOUT can  
simply be tied together close to the pins, and the device can be used in the same fashion as a normal 3-terminal  
reference.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: REF70  
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
10.2.2 Typical Application: DAC Force and Sense Reference Drive Circuit  
Certain DACs require external voltage references to operate properly. There are DACs that only require a  
positive voltage for operating in which the basic connection will work. For other DACs there can be a need a  
positive and negative reference voltage due to their bipolar output.  
The circuit shown in Figure 10-3 shows a DAC force and sense reference drive circuit for the DACx1001 using  
the REF70. This circuit takes advantage of the DACx1001 RCM circuit to remove the need of additional external  
resistors to make a negative reference due to the integrated precision resistors. This circuit requires additional  
buffers due to undesired series resistance on the reference input of the DAC.  
VIN  
VREFP  
VIN EN  
CIN  
OUTF  
OUTS  
REFPF  
REFPS  
REF7050  
CL  
C1  
GND  
ROFS  
RCM  
RFB  
DACx1001  
REFNS  
REFNF  
C2  
VREFN  
Copyright © 2020, Texas Instruments Incorporated  
Figure 10-3. Basic Force and Sense Reference Drive Circuit Connections with DACx1001  
10.2.2.1 Design Requirements  
For this design example, use the reference op amp recommendation listed in Table 10-2 for the buffer circuit.  
Table 10-2. Reference Op Amp Options  
SELECTION PARAMETERS  
Low voltage and current noise  
Low offset and drift  
OP AMPS  
OPA211, OPA827, OPA828  
OPA189  
The REF70 turn-on time is dependent on the output capacitor. In certain applications that require a fast turn-on  
can require a smaller output capacitor as shown in Figure 10-4  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: REF70  
 
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
2
1.6  
1.2  
0.8  
0.4  
0
1mF  
10mF  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
Figure 10-4. REF70 Turn-on Time  
For DAC designs that do not have the RCM feature, use Figure 10-5 as it in generates the negative reference  
circuit to create the VREFN. More details on this type of design can be found in SBAA322.  
VIN  
VCC  
VIN EN  
CIN  
OUTF  
OUTS  
VREFH-F  
REF7050  
C1  
CL  
GND  
VSS  
VREFH-S  
DAC8871  
R1  
10 k  
R2  
10 kꢀ  
VREFL-S  
VCC  
C2  
VCC  
VREFL-F  
VSS  
VSS  
Copyright © 2020, Texas Instruments Incorporated  
Figure 10-5. Basic Force and Sense Reference Drive Circuit Connections  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: REF70  
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
11 Power Supply Recommendation  
The REF70 family of references features a low-dropout voltage. These references can be operated with a supply  
of only 50 mV above the output voltage for 0-mA output current conditions. The dropout voltage will vary with  
the output current so refer to the dropout voltage to see typical dropout voltage requirements. TI recommends a  
supply bypass capacitor ranging between 0.1 µF to 10 µF.  
During start-up the REF70 can experience moments of high input current due to the output capacitors. The input  
current can momentarily rise to ISC  
.
300  
250  
200  
150  
100  
50  
0mA  
5mA  
10mA  
0
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
Figure 11-1. Dropout Voltage vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: REF70  
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
12 Layout  
12.1 Layout Guidelines  
Figure 12-1 illustrates an example of a PCB layout for a data acquisition system using the REF70. Some key  
considerations are:  
Connect low-ESR, 0.1-μF ceramic bypass capacitors at VIN of the REF70.  
Connect low-ESR, 1-uF to 100-uF capacitor at OUTF of the REF70.  
Decouple other active devices in the system per the device specifications.  
Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise  
pickup.  
Place the external components as close to the device as possible. This configuration prevents parasitic errors  
(such as the Seebeck effect) from occurring.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when absolutely necessary.  
12.2 Layout Example  
Analog GND  
OUTF  
GND  
8
Enable Control  
Input Voltage  
7
EN 1  
VIN  
GND 3  
VREF  
CL  
CIN  
6 OUTS  
GND  
2
5
4
GND  
Copyright © 2020, Texas Instruments Incorporated  
Figure 12-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: REF70  
 
 
 
 
REF70  
www.ti.com  
SNAS781D – OCTOBER 2020 – REVISED DECEMBER 2021  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Voltage Reference Design Tips For Data Converters  
Texas Instruments, Voltage Reference Selection Basics  
13.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
13.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: REF70  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jan-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PREF7030QFKHT  
PREF7033QFKHT  
PREF7040QFKHT  
PREF7050QFKHT  
REF7012QFKHT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
LCCC  
LCCC  
LCCC  
LCCC  
FKH  
FKH  
FKH  
FKH  
FKH  
8
8
8
8
8
250  
250  
250  
250  
250  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
RoHS-Exempt  
& Green  
N / A for Pkg Type  
REF12FKH  
REF25FKH  
REF7025QFKHT  
ACTIVE  
LCCC  
FKH  
8
250  
RoHS-Exempt  
& Green  
Call TI  
Level-2-260C-1 YEAR  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jan-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
REF7012QFKHT  
REF7025QFKHT  
LCCC  
LCCC  
FKH  
FKH  
8
8
250  
250  
180.0  
180.0  
12.4  
12.4  
5.35  
5.35  
5.35  
5.35  
1.57  
1.57  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Dec-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
REF7012QFKHT  
REF7025QFKHT  
LCCC  
LCCC  
FKH  
FKH  
8
8
250  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
FKH0008A  
LCCC - 1.6 mm max height  
S
C
A
L
E
2
.
5
0
0
LEADLESS CERAMIC CHIP CARRIER  
5.15  
4.85  
4.58 MAX  
(R0.2) TYP  
1.6 MAX  
NOTE 3  
PKG  
(0.65) TYP  
(0.1) TYP  
4
NOTE 3  
TYP  
4X 1.27 0.2  
3
5
PKG  
2X  
2.54 0.2  
(2)  
1
7
0.84  
8X  
0.44  
NOTE 3  
TYP  
8
1.2  
0.8  
7X  
4222330/C 12/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M  
2. This drawing is subject to change without notice.  
3. Terminals are gold plated.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
FKH0008A  
LCCC - 1.6 mm max height  
LEADLESS CERAMIC CHIP CARRIER  
SYMM  
PKG  
8
7X (1.6)  
(2.5)  
1
7
(1.75)  
8X (0.7)  
PKG  
4X (1.27)  
(R0.05)  
(2.2)  
5
3
4
(4.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222330/C 12/2020  
NOTES: (continued)  
4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
FKH0008A  
LCCC - 1.6 mm max height  
LEADLESS CERAMIC CHIP CARRIER  
SYMM  
8
7X (1.6)  
(2.5)  
1
7
(1.75)  
9X (0.7)  
PKG  
4X (1.27)  
(2.2)  
5
3
4
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:12X  
4222330/C 12/2020  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY