PT4661C [TI]

30-A Dual Output Isolated DC/DC Converter; 30 -A双输出隔离式DC / DC转换器
PT4661C
型号: PT4661C
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

30-A Dual Output Isolated DC/DC Converter
30 -A双输出隔离式DC / DC转换器

转换器
文件: 总17页 (文件大小:336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PT4660 Series  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS140C – MAY 2001 – REVISED OCTOBER 2003  
Features  
Dual 15-A Outputs  
Dual Logic On/Off Control  
Over-Temperature Shutdown  
Over-Voltage Protection  
(Coordinated Shutdown)  
Under-Voltage Lockout  
Input Differential EMI Filter  
IPC Lead Free 2  
Safety Approvals:  
UL1950  
(Independantly Regulated)  
Power-up/Down Sequencing  
Input Voltage Range:  
36 V to 75 V  
1500 VDC Isolation  
Temp Range: –40 to 100 °C  
High Efficiency: 88 %  
Fixed Frequency Operation  
Over-Current Protection  
(Both Outputs)  
CSA 22.2 950  
Description  
Ordering Information  
protection, and an input under-voltage  
lockout (UVLO). In addition, both  
output voltages are designed to meet  
the power-up/power-down sequenc-  
ing requirements of popular DSPs.  
The PT4660 series is housed in  
space-saving solderable copper case.  
The package does not require a  
heatsink and is available in both  
vertical and horizontal configura-  
tions, including surface mount. The  
‘N’ configuration occupies less than 2  
in² of PCB area.  
Pt. No.  
Vo1/Vo2  
The PT4660 Excalibur™ Series  
is a 30-A rated, dual-output isolated  
DC/DC converter that combines  
state-of-the-art power conversion  
technology with unparalleled flex-  
ibility. These modules operate from  
a standard telecom (–48 V) central  
office (CO) supply to produce two  
independantly regulated outputs.  
The PT4660 series is characterized  
with high efficiencies and ultra-fast  
transient response, and incorporates  
many features to facilitate system  
integration. These include a flexible  
“On/Off” enable control, output  
current limit, over-temperature  
PT4661o  
PT4662o  
PT4663o  
PT4665o  
PT4666o  
PT4667o  
PT4668o  
= 5.0/3.3 Volts  
= 3.3/2.5 Volts  
= 3.3/1.8 Volts  
= 3.3/1.5 Volts  
= 2.5/1.8 Volts  
= 5.0/1.8 Volts  
= 3.3/1.2 Volts  
PT Series Suffix  
(PT1234x)  
Case/Pin  
Order  
Package  
Configuration  
Suffix  
Code  
Vertical  
Horizontal  
SMD  
N
A
C
(EKD)  
(EKA)  
(EKC)  
(Reference the applicable package code draw-  
ing for the dimensions and PC board layout)  
Typical Application  
V1 Adjust  
V2 Adjust  
20  
13  
Vo 2 adj  
Vo1 adj  
Vo 1  
Vo 2  
+VIN  
9–12  
Vo1  
1
3
+Vin  
21–24  
Vo2  
PT4660  
L
O
A
D
L
O
A
D
EN 1*  
4
EN  
2
–V IN  
C O M  
2
14–19  
–Vin  
COM  
* Inverted logic  
For technical support and further information, visit http://power.ti.com  
PT4660 Series  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS140C – MAY 2001 – REVISED OCTOBER 2003  
Pin-Out Information  
Pin Function  
On/Off Logic  
Pin 3 Pin 4  
Output Status  
Pin  
Function  
Pin  
Function  
1
2
3
4
5
6
7
8
9
+V  
-V  
10  
+Vo1  
in  
19  
COM  
1
0
×
×
1
0
Off  
On  
Off  
11  
12  
13  
14  
15  
16  
17  
18  
+Vo1  
in  
20  
21  
22  
23  
24  
25  
26  
Vo2 Adjust  
+Vo2  
EN 1  
+Vo1  
EN 2  
Vo1 Adjust  
COM  
COM  
COM  
COM  
COM  
+Vo2  
TEMP  
+Vo2  
Notes:  
Logic 1 =Open collector  
Logic 0 = –Vin (pin 2) potential  
AUX  
+Vo2  
Do Not Connect  
Do Not Connect  
+Vo1  
Do Not Connect  
Do Not Connect  
For positive Enable function, connect pin 3  
to pin 2 and use pin 4.  
For negative Enable function, leave pin 4  
open and use pin 3.  
Note: Shaded functions indicate signals that are  
referenced to the input (-Vin) potential.  
Pin Descriptions  
+Vin: The positive input supply for the module with respect  
to –Vin. When powering the module from a –48 V telecom  
central office supply, this input is connected to the primary  
system ground.  
TEMP: This is the output voltage produced by the modules  
internal temperature sensor. The voltage at this pin is  
referenced to –Vin and rises approximately 10 mV/°C  
from an intital value of 0.1 VDC at –40 °C.  
–Vin: The negative input supply for the module, and the  
0 VDC reference for the EN 1, EN 2, TEMP, and AUX  
signals. When the module is powered from a +48-V supply,  
this input is connected to the 48-V Return.  
Vtemp =0.5 + 0.01·Tsense  
The signal is available whenever the module is supplied  
with a valid input voltage, and is independant of the enable  
logic status. (Note: A load impedance of less than 1 Mwill  
adversly affect the module’s over-temperature shutdown threshold.  
Use a high-impedance input when monitoring this signal.)  
EN 1: This an open-collector (open-drain) negative logic  
input that enables the module output. This pin is TTL  
compatible and referenced to -Vin. A logic ‘0’ at this pin  
enables the modules outputs, and a logic ‘1’ or high  
impedance disables the modules outputs. If not used,  
the pin must be connected to –Vin.  
Vo1: The higher regulated output voltage, which is refer-  
enced to the COM node.  
Vo2: The lower regulated output voltage, which is refer-  
enced to the COM node.  
EN 2: An open-collector (open-drain) positive logic input  
that enables the module output. This pin is TTL compat-  
ible and referenced to –Vin. A logic ‘1’ or high impedance  
enables the modules outputs. If not used, the pin should  
be left open circuit.  
COM: The secondary return reference for the modules two  
regulated output voltages. It is dc isolated from the input  
supply pins.  
Vo1 Adjust: Using a single resistor, this pin allows Vo1 to  
be adjusted higher or lower than the preset value. If not  
used, this pin should be left open circuit.  
AUX: Produces a regulated output voltage of 11.6 V 5 %,  
which is referenced to –Vin. The current drawn from the  
pin must be limited to 10mA. The voltage may be used  
to indicate the output status of the module to a primary  
referenced circuit, or power a low-current amplifer.  
Vo2 Adjust: Using a single resistor, this pin allows Vo2 to  
be adjusted higher or lower than the preset value. If not  
used, this pin should be left open circuit.  
For technical support and further information, visit http://power.ti.com  
PT4660 Series  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS140C – MAY 2001 – REVISED OCTOBER 2003  
Specifications (Unless otherwise stated, Ta =25 °C, Vin =48 V, & Io1=Io2=10 A)  
PT4660 SERIES  
Characteristics  
Symbols  
Conditions  
Min  
Typ  
Max  
Units  
Output Current  
Io1, Io2  
Vo1  
Vo1 3.3 V  
Vo1 =5.0 V  
All voltages  
Vo1 3.3 V  
Vo1 =5.0 V  
0
0
0
0
0
15  
10  
15  
30  
25  
A
A
A
Vo2  
Io1+Io2  
Total (both outputs)  
Input Voltage Range  
Set Point Voltage Tolerance  
Temperature Variation  
Line Regulation  
Vin  
Votol  
Regtemp  
Regline  
Regload  
36  
48  
1
0.5  
5
2
2
2
2
75  
2
10  
10  
10  
10  
5
V
%Vo  
%Vo  
mV  
–40 to +100 °C Case, Io1 =Io2 =0 A  
Over Vin range with Io1=Io2=5 A  
1 A Io1 Io1max, Io2 =1 A  
1 A Io2 Io1max, Io1 =1 A  
1 A Io2 Io1max, Io1 =1 A  
1 A Io1 Io1max, Io2 =1 A  
Includes set-point, line load,  
–40 °C to +100 °C case  
Load Regulation  
Vo1  
Vo2  
Vo1  
Vo2  
Vo1  
Vo2  
PT4661  
PT4662  
PT4663  
PT4665  
PT4666  
PT4667  
PT4668  
mV  
mV  
Cross Regulation  
Total Output Variation  
Efficiency  
Regcross  
Votol  
η
2
2
3
3
%Vo  
88  
87  
86  
86  
85  
88  
86  
%
Vo Ripple (pk-pk)  
V
r
Io1=Io2=5 A, 20 MHz bandwidth  
Vo =5 V  
Vo <5 V  
75  
50  
mVpp  
Transient Response  
ttr  
1 A/µs load step from 50 % to 100 % Iomax  
(either output)  
25  
100  
µSec  
%Vo  
6.0  
Current Limit  
Output Rise Time  
Output Over-Voltage Protection  
Output Voltage Adjustment  
Switching Frequency  
Under-Voltage-Lockout  
ILIM  
ton  
OVP  
Voadj  
fs  
Each output with other unloaded  
At turn-on to within 90 % of Vo  
Either output; shutdown and latch off  
Vo1, Vo2  
15.5  
270  
18  
5
125  
10  
10  
330  
A
mSec  
%Vo  
%Vo  
kHz  
(1)  
UVLO  
Rising  
Falling  
30  
34  
32  
36  
V
Internal Input Capacitance  
Cin  
2
µF  
Enable Control Inputs  
Input High Voltage  
Input Low Voltage  
Input Low Current  
Referenced to –Vin  
VIH  
VIL  
IIL  
3.5  
0
0.8  
V
(2)  
0
0.5  
3
5
mA  
mA  
µF  
Standby Current  
Iin standby  
Cout  
Viso  
C iso  
Riso  
Pins 2, 3, & 4 connected  
Per each output  
External Output Capacitance  
Primary/Secondary Isolation  
5,000  
1500  
V
1500  
pF  
MΩ  
10  
(3)  
(3)  
Temperature Sense  
Vtemp  
Output voltage at temperatures:-  
Over Vin range  
–40 °C  
–40  
0.1  
1.5  
V
100 °C  
Operating Temperature Range  
T
a
85 (4)  
°C  
Over-Temperature  
ProtectionOTP  
Case  
temperature  
(auto  
restart)  
100  
°C  
Solder Reflow Temperature  
Storage Temperature  
Mechanical Shock  
Treflow  
Surface temperature of module pins or case  
–40  
500  
10  
20  
215 (5)  
125  
°C  
°C  
Gs  
T
s
Per Mil-STD-883D, Method 2002.3  
Per Mil-STD-883D, Method 2007.2, Suffix N  
(6)  
(6)  
Mechanical Vibration  
Gs  
20–2,000 Hz  
Suffixes A, C  
Weight  
Flammability  
90  
grams  
Materials meet UL 94V-0  
Notes: (1) This is a fixed parameter. Adjusting Vo1 or Vo2 higher will increase the module’s sensitivity to over-voltage detection. For more information, see the  
application note on output voltage adjustment.  
(2) The EN1 and EN2 control inputs (pins 3 & 4) have internal pull-ups and may be controlled with an open-collector (or open-drain) transistor. Both  
inputs are diode protected and can be connected to +Vin. The maximum open-circuit voltage is 5.4 V.  
(3) Voltage output at “TEMP” pin is defined by the equation:- VTEMP = 0.5 + 0.01·T, where T is in °C. See pin descriptions for more information.  
(4) See SOA curves or consult the factory for the appropriate derating.  
(5) During solder reflow of SMD package version do not elevate the module case, pins, or internal component temperatures above a peak of 215 °C. For  
further guidance refer to the application note, “Reflow Soldering Requirements for Plug-in Power Surface Mount Products,” (SLTA051).  
(6) The case pins on the through-holed package types (suffixes N & A) must be soldered. For more information see the applicable package outline drawing.  
For technical support and further information, visit http://power.ti.com  
PT4661—48 V  
Typical Characteristics  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS140C – MAY 2001 – REVISED OCTOBER 2003  
PT4661 (V1/V2 =5.0V/3.3V); Vin =48V (See Notes A & B)  
Efficiency vs I1out; I2out @1A, 3A, and 6A  
Power Dissipation vs (Io1 + Io2)  
100  
20  
16  
12  
8
90  
I
2 out  
80  
70  
60  
50  
6
3
1
4
0
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
I1 out (A)  
Io1 + Io2 (A)  
Safe Operating Area: (Io1 + Io2)  
Efficiency vs I1out; I2out @9A, 12A, and 15A  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
Airflow  
I2 out  
300LFM  
200LFM  
100LFM  
Nat Conv  
9
12  
15  
0
5
10  
15  
20  
25  
0
2
4
6
8
10  
Io1 + Io2 (A)  
I1 out (A)  
Cross Regulation: V1out vs I2out @I1out =1A  
5.05  
5.025  
5
4.975  
4.95  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1A  
3.32  
3.31  
3.3  
3.29  
3.28  
0
2
4
6
8
10  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and further information, visit http://power.ti.com  
Typical Characteristics  
PT4662—48 V  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS140C – MAY 2001 – REVISED OCTOBER 2003  
PT4662 (V1/V2 =3.3 V/2.5 V); Vin =48 V (See Notes A & B)  
Efficiency vs I1out; I2out @1 A, 3 A, and 6 A  
Power Dissipation vs (Io1 + Io2)  
90  
20  
16  
12  
8
85  
I2 out  
6
3
1
80  
75  
70  
4
0
0
3
6
9
12  
15  
0
6
12  
18  
24  
30  
I1 out (A)  
Io1 + Io2 (A)  
Safe Operating Area: (Io1 + Io2)  
Efficiency vs I1out; I2out @9 A, 12 A, and 15 A  
90  
85  
80  
75  
70  
90  
80  
70  
60  
50  
40  
30  
20  
Airflow  
I2 out  
300LFM  
200LFM  
100LFM  
Nat conv  
9
12  
15  
0
3
6
9
12  
15  
0
5
10  
15  
20  
25  
30  
I1 out (A)  
Io1 + Io2 (A)  
Cross Regulation: V1out vs I2out @I1out =1 A  
3.36  
3.33  
3.30  
3.27  
3.24  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1 A  
2.530  
2.515  
2.500  
2.485  
2.470  
0
3
6
9
12  
15  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25 °C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and further information, visit http://power.ti.com  
Typical Characteristics  
PT4663—48 V  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS140C – MAY 2001 – REVISED OCTOBER 2003  
PT4663 (V1/V2 =3.3 V/1.8 V); Vin =48 V (See Notes A & B)  
Efficiency vs I1out; I2out @1 A, 3 A, and 6 A  
Power Dissipation vs (Io1 + Io2)  
90  
20  
16  
12  
8
85  
I2 out  
6
80  
75  
70  
3
1
4
0
0
3
6
9
12  
15  
0
6
12  
18  
24  
30  
I1 out (A)  
Io1 + Io2 (A)  
Safe Operating Area: (Io1 + Io2)  
Efficiency vs I1out; I2out @9 A, 12 A, and 15 A  
90  
85  
80  
75  
70  
90  
80  
70  
60  
50  
40  
30  
20  
Airflow  
I2 out  
300LFM  
200LFM  
100LFM  
Nat Conv  
9
12  
15  
0
5
10  
15  
20  
25  
30  
0
3
6
9
12  
15  
Io1 + Io2 (A)  
Iout (A)  
Cross Regulation: V1out vs I2out @I1out =1 A  
3.36  
3.34  
3.32  
3.3  
3.28  
3.26  
3.24  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1 A  
1.82  
1.81  
1.8  
1.79  
1.78  
0
3
6
9
12  
15  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25 °C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and further information, visit http://power.ti.com  
Typical Characteristics  
PT4665—48 V  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS140C – MAY 2001 – REVISED OCTOBER 2003  
PT4665 (V1/V2 =3.3 V/1.5 V); Vin =48 V (See Notes A & B)  
Efficiency vs I1out; I2out @1 A, 3 A, and 6 A  
Power Dissipation vs (Io1 + Io2)  
100  
20  
16  
12  
8
90  
I2 out  
80  
6
3
1
70  
60  
50  
4
0
0
3
6
9
12  
15  
0
6
12  
18  
24  
30  
I1 out (A)  
Io1 + Io2 (A)  
Safe Operating Area: (Io1 + Io2)  
Efficiency vs I1out; I2out @9 A, 12 A, and 15 A  
100  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
40  
30  
20  
Airflow  
I2 out  
300LFM  
200LFM  
100LFM  
Nat Conv  
9
12  
15  
0
3
6
9
12  
15  
0
5
10  
15  
20  
25  
30  
I2 out (A)  
Io1 + Io2 (A)  
Cross Regulation: V1out vs I2out @I1out =1 A  
3.32  
3.31  
3.3  
3.29  
3.28  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1 A  
1.51  
1.505  
1.5  
1.495  
1.49  
0
3
6
9
12  
15  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25 °C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and further information, visit http://power.ti.com  
Typical Characteristics  
PT4666—48 V  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS140C – MAY 2001 – REVISED OCTOBER 2003  
PT4666 (V1/V2 =2.5 V/1.8 V); Vin =48 V (See Notes A & B)  
Efficiency vs I1out; I2out @1 A, 3 A, and 6 A  
Power Dissipation vs I1out and I2out  
100  
10  
8
90  
I2 out  
80  
6
6
3
1
70  
4
60  
50  
2
0
0
3
6
9
12  
15  
0
3
6
9
12  
15  
I1 out (A)  
Io1 + Io2 (A)  
Efficiency vs I1out; I2out @9 A, 12 A, and 15 A  
Safe Operating Area: (Io1 + Io2)  
100  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
40  
30  
20  
Airflow  
I2 out  
300LFM  
200LFM  
100LFM  
Nat Conv  
9
12  
15  
0
3
6
9
12  
15  
0
5
10  
15  
20  
25  
30  
I1 out (A)  
Io1 + Io2 (A)  
Cross Regulation: V1out vs I2out @I1out =1 A  
2.52  
2.51  
2.5  
2.49  
2.48  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1 A  
1.81  
1.805  
1.8  
1.795  
1.79  
0
3
6
9
12  
15  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25 °C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and further information, visit http://power.ti.com  
Typical Characteristics  
PT4667—48 V  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS140C – MAY 2001 – REVISED OCTOBER 2003  
PT4667 (V1/V2 =5 V/1.8 V); Vin =48 V (See Notes A & B)  
Efficiency vs I1out; I2out @1 A, 3 A, and 6 A  
Power Dissipation vs (Io1 + Io2)  
100  
20  
16  
12  
8
90  
I2 out  
80  
6
3
1
70  
60  
50  
4
0
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
I1 out (A)  
Io1 + Io2 (A)  
Safe Operating Area: (Io1 + Io2)  
Efficiency vs I1out; I2out @9 A, 12 A, and 15 A  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
Airflow  
I2 out  
300LFM  
200LFM  
100LFM  
Nat conv  
9
12  
15  
0
5
10  
15  
20  
25  
0
2
4
6
8
10  
Io1 + Io2 (A)  
I1 out (A)  
Cross Regulation: V1out vs I2out @I1out =1 A  
5.02  
5.01  
5
4.99  
4.98  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1 A  
1.81  
1.805  
1.8  
1.795  
1.79  
0
2
4
6
8
10  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25 °C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and further information, visit http://power.ti.com  
Typical Characteristics  
PT4668—48 V  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS140C – MAY 2001 – REVISED OCTOBER 2003  
PT4668 (V1/V2 =3.3 V/1.2 V); Vin =48 V (See Notes A & B)  
Efficiency vs I1out; I2out @1 A, 3 A, and 6 A  
Power Dissipation vs (Io1 + Io2)  
100  
20  
16  
12  
8
90  
I
2 out  
80  
70  
60  
50  
6
3
1
4
0
0
6
12  
18  
24  
30  
0
3
6
9
12  
15  
Io1 + Io2 (A)  
I1 out (A)  
Efficiency vs I1out; I2out @9 A, 12 A, and 15 A  
Safe Operating Area: (Io1 + Io2)  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
Airflow  
I2 out  
300LFM  
200LFM  
100LFM  
Nat Conv  
9
12  
15  
0
5
10  
15  
20  
25  
30  
0
3
6
9
12  
15  
Io1 + Io2 (A)  
I1 out (A)  
Cross Regulation: V1out vs I2out @I1out =1 A  
3.32  
3.31  
3.3  
3.29  
3.28  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1 A  
1.21  
1.205  
1.2  
1.195  
1.19  
0
3
6
9
12  
15  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25 °C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and further information, visit http://power.ti.com  
Application Notes  
PT4660 & PT4680 Series  
Operating Features & System Considerations for the  
PT4660 & PT4680 Dual-Output Converters  
host system for diagnostic purposes. Consult the ‘Pin  
Descriptions’ section of the data sheet for further infor-  
mation on this feature.  
Over-Current Protection  
The dual-outputs of the PT4660 and PT4680 series of  
DC/DC converters have independent output voltage  
regulation and current limit control. Applying a load  
current in excess of the current limit threshold at either  
output will cause the respective output voltage to drop.  
However, the voltage at Vo2 is derived from Vo1. There-  
fore a current limit fault on Vo1 will also cause Vo2 to  
drop. Conversely, a current limit fault applied to Vo2  
will only cause Vo2 voltage to drop, and Vo1 will remain  
in regulation.  
Under-Voltage Lock-Out  
The Under-Voltage Lock-Out (UVLO) circuit prevents  
operation of the converter whenever the input voltage to  
the module is insufficient to maintain output regulation.  
The UVLO has approximately 2 V of hysterisis. This is  
to prevent oscillation with a slowly changing input volt-  
age. Below the UVLO threshold the module is off and  
the enable control inputs, EN1 and EN2 are inoperative.  
The current limit is continuous with some current fold-  
back. This means that at short circuit, the value of the  
output current can be less than the rated output of the  
converter. This is to reduce power dissipation when a fault  
is present. As with any foldback-limited source, if a con-  
stant current load is applied to the converter with a value  
greater than the short-circuit current, the output voltage  
will not come up. Resistive and non-linear load circuits  
are not affected by this characteristic as long as the cur-  
rent at startup does not exceed the short-circuit current  
of the converter. The majority of low-voltage analog  
and digital applications are not affected by this restric-  
tion. However, when testing with an electronic load the  
constant resistance setting should be used.  
Primary-Secondary Isolation  
The PT4460 and PT4680 series of DC/DC converters  
incorporate electrical isolation between the input termi-  
nals (primary) and the output terminals (secondary). All  
converters are production tested to a withstand voltage  
of 1500 VDC. The isolation complies with UL60950 and  
EN60950, and the requirements for operational isolation.  
This allows the converter to be configured for either a  
positive or negative input voltage source.  
The regulation control circuitry for these modules is  
located on the secondary (output) side of the isolation  
barrier. Control signals are passed between the primary  
and secondary sides of the converter via a proprietory  
magnetic coupling scheme. This eliminates the use of  
opto-couplers. The data sheet ‘Pin Descriptions’ and  
‘Pin-Out Information’ provides guidance as to which  
reference (primary or secondary) that must be used for  
each of the external control signals.  
Output Over-Voltage Protection  
Each output is monitored for over voltage (OV). For fail  
safe operation and redundancy, the OV fault detection  
circuitry uses a separate reference to the voltage regula-  
tion circuits. The OV threshold is fixed, and set nominally  
25 % higher than the set-point output voltage. If either  
output exceeds the threshold, the converter is shutdown  
and must be actively reset. The OV protection circuit  
can be reset by momentarily turning the converter off.  
This is accomplished by either cycling one of the output  
enable control pins (EN1 or EN2), or by removing the  
input power to the converter. Note: If Vo1 or Vo2 is adjusted  
to a higher voltage, the margin between the respective steady-  
state output voltage and its OV threshold is reduced. This can  
make the module sensitive to OV fault detection, that may  
result from random noise and load transients.  
Fuse Requirements  
To comply with safety agency requirements, these con-  
verters must be operated with an external input fuse.  
A fast-acting 250-V fuse is required. Table 1-1 gives  
the recommended current rating for the product series  
being used.  
Table 1-1; Recommended Fuse Rating  
Product  
Series  
Input  
Bus  
Total  
Iout  
Fuse  
Rating  
Over-Temperature Protection  
PT4660  
PT4680  
48 V  
24 V  
30 A  
20 A  
7 A  
10 A  
The converter has an internal temperature sensor. At a  
case temperature of approximately 115 °C the converter  
will shut down, and will automatically restart when the  
temperature returns to about 100 °C. The analog voltage  
generated by the sensor is also made available at the  
TEMP output (pin 5), and can be monitored by the  
For technical support and further information, visit http://power.ti.com  
Application Notes  
PT4660 & PT4680 Series  
the outputs of the converter. An example of this configu-  
ration is detailed in Figure 2-2. Note: The converter will  
only produce and output voltage if a valid input voltage is  
applied to Vin.  
Using the On/Off Enable Controls on the PT4660  
& PT4680 Series of Dual-Output Converters  
The PT4660 (48V input) and PT4680 (24V input) se-  
ries of dual-output DC/DC converters incorporate  
both positive and negative logic output enable controls.  
EN1 (pin 3) is the negative enable input, and EN2 (pin 4)  
is the positive enable input. Both inputs are TTL logic  
compatible, and are electrically referenced to -Vin (pin 2)  
on the primary (input) side of the converter. A pull-up  
resistor is not required, but may be added if desired.  
Adding a pull-up resistor from either EN1 or EN2, up to  
+Vin, will not damage the converter.  
Figure 2-2; Negative Enable Configuration  
3
EN 1*  
4
EN  
2
PT4660  
1
=Outputs On  
BSS138  
– VIN  
Automatic (UVLO) Power-Up  
2
–Vin  
Connecting EN1 (pin 3) to -Vin (pin 2) and leaving EN2  
(pin 4) open-circuit configures the converter for automatic  
power up. (See data sheet “Typical Application”). The  
converter control circuitry incorporates an “Under Voltage  
Lockout” (UVLO) function, which disables the output  
until the minimum specified input voltage is present  
(See data sheet Specifications). The UVLO circuitry  
ensures a clean transition during power-up and power-  
down, allowing the converter to tolerate a slow-rising  
input voltage. For most applications EN1 and EN2, can  
be configured for automatic power-up.  
On/Off Output Voltage Sequencing  
The output voltages from these dual-output DC/DC  
converters are independantly regulated, and are inter-  
nally sequenced to meet the power-up requirements of  
popular microprocessor and DSP chipsets. Figure 2-3  
shows the waveforms from a PT4661 after the converter  
is enabled at t=0s. During power-up, the Vo1 and Vo2  
voltage waveforms typically track within 0.4V prior to  
Vo2 reaching regulation. The waveforms were measured  
with a 5-Adc resistive load at each output, and with a  
48-VDC input source applied. The converter typically  
produces a fully regulated output within 25ms. The  
actual turn-on time will vary slightly with input voltage,  
but the power-up sequence is independent of the load at  
either output.  
Positive Output Enable (Negative Inhibit)  
To configure the converter for a positive enable function,  
connect EN1 (pin 3) to -Vin (pin 2), and apply the system  
On/Off control signal to EN2 (pin 4). In this configura-  
tion, a logic ‘0’ (-Vin potential) applied to pin 4 disables  
the converter outputs. An example of this configuration  
is detailed in Figure 2-1.  
Figure 2-1; Positive Enable Configuration  
Figure 2-3; Vo1, Vo2 Power-Up Sequence  
Vo1 (2V/Div)  
Vo2 (2V/Div)  
3
EN 1*  
4
EN  
2
PT4660  
IIN (0.5A/Div)  
1
=Outputs Off  
VIN  
BSS138  
2
–Vin  
0
5
10  
15  
20  
25  
30  
35  
t (milliseconds)  
During turn-off, both outputs drop rapidly due to the  
discharging effect of actively switched rectifiers. The  
voltage at Vo1 remains higher than Vo2 during this  
period. The discharge time is typically 100µs, but will  
vary with the amount of external load capacitance.  
Negative Output Enable (Positive Inhibit)  
To configure the converter for a negative enable function,  
EN2 (pin 4) is left open circuit, and the system On/Off  
control signal is applied to EN1 (pin 3). A logic ‘0’ (-Vin  
potential) must then be applied to pin 3 in order to enable  
For technical support and further information, visit http://power.ti.com  
Application Notes  
PT4660 & PT4680 Series  
Adjusting the Output Voltage of the PT4660  
& PT4680 Series of Dual-Output Converters  
3. Vo2 must always be at least 0.3 V lower than Vo1.  
4. The over-voltage protection threshold is fixed, and is set  
nominally 25 % above the set-point output voltage.  
Adjusting Vo1 or Vo2 higher will reduce the voltage  
margin between the respective steady-state output  
voltage and its over-voltage (OV) protection threshold.  
This could make the module sensitive to OV fault  
detection, as a result of random noise and load tran-  
sients.  
The dual output voltages from the PT4660 (48-V Bus),  
and PT4680 (24-V Bus) series of DC/DC converters can  
be independently adjusted by up to 10 %, higher or lower  
than the factory trimmed pre-set voltage. The adjustment  
method requires the addition of a single external resistor 1.  
Table 3-1 gives the adjustment range of Vo1 and Vo2 for  
each model in the series as Va(min) and Va(max).  
Note: An OV fault is a latched condition that shuts down  
both outputs of the converter. The fault can only be cleared  
by cycling one of the Enable control pins (EN1* / EN2), or  
by momentarily removing the input power to the module.  
Vo1 Adjust Down: Add a resistor (R1), between pin 13  
(Vo1 Adj) and pin 12 (Vo1) 2.  
Vo1 Adjust Up: To increase the output, add a resistor R2  
5. Never connect capacitors to either the Vo1 Adj or  
Vo2 Adj pins. Any capacitance added to these control  
pins will affect the stability of the respective regulated  
output.  
between pin 13 (Vo1 Adj) and pin 14 (COM) 2, 4  
.
Vo2 Adjust Down: Add a resistor (R3) between pin 20  
(Vo2 Adj) and pin 21 (Vo2) 2.  
The adjust up and adjust down resistor values can also be  
calculated using the following formulas. Be sure to select  
the correct formula parameter from Table 3-1 for the  
output and model being adjusted.  
Vo2 Adjust Up: Add a resistor R4 between pin 20  
(Vo2 Adj) and pin 19 (COM) 2, 4  
.
Refer to Figure 3-1 and Table 3-2 for both the placement and  
value of the required resistor.  
Ro · (Va – Vr )  
(R1) or (R3)  
R2 or R4  
=
=
– Rs  
– Rs  
k  
kΩ  
(Vo – Va)  
Notes:  
Ro · Vr  
Va – Vo  
1. Adjust resistors are not required if Vo1 and Vo2 are to  
remain at their respective nominal set-point voltage.  
In this case, Vo1 Adj (pin 13) and Vo2 Adj (pin 20) are  
left open-circuit  
Where: Vo = Original output voltage, (Vo1 or Vo2)  
Va = Adjusted output voltage  
2. Use only a single 1% resistor in either the (R1) or R2  
location to adjust Vo1, and in the (R3) or R4 location  
to adjust Vo2. Place the resistor as close to the converter  
as possible.  
Vr = The reference voltage from Table 3-1  
Ro = The resistance constant in Table 3-1  
Rs = The series resistance from Table 3-1  
Figure 3-1; Placement of Output Adjust Resistors  
Vo1  
Vo2  
9–12  
Vo 1  
Vo 2  
+ VIN  
1
+Vin  
21–24  
(R1)  
(R3)  
PT4660  
13  
20  
Vo 1 adj  
Vo 2 adj  
L
O
A
D
L
O
A
D
3
EN 1*  
4
EN  
2
– VIN  
2
–Vin  
R 2  
R 4  
C O M  
14–19  
COM  
*
Inverted logic  
For technical support and further information, visit http://power.ti.com  
Application Notes  
PT4660 & PT4680 Series  
Table 3-1; ADJUSTMENT RANGE AND FORMULA PARAMETERS  
Vo1 Bus  
Vo2 Bus (2)  
24 V Bus Pt.# PT4681/7 PT4682/3/5/8  
48 V Bus Pt.# PT4661/7 PT4662/3/5/8  
PT4686  
PT4666  
(R1)/R2  
PT4681  
PT4661  
(R3)/R4  
PT4682  
PT4662  
(R3)/R4  
PT4683/7  
PT4663/7  
(R3)/R4  
PT4686  
PT4666  
(R3)/R4  
PT4685  
PT4665  
(R3)/R4  
PT4668  
(R3)/R4  
Adj. Resistor  
(R1)/R2  
(R1)/R2  
Vo(nom)  
Va(min)  
Va(max)  
Vr  
5.0 V  
4.5 V  
5.5 V  
2.5 V  
4.99  
20.0  
3.3 V  
2.97 V  
3.63 V  
1.65 V  
4.99  
2.5 V  
2.25 V  
2.75 V  
1.25  
4.99  
20.0  
3.3 V  
2.97 V  
3.63 V  
1.65 V  
1.21  
2.5 V  
2.25 V  
2.75 V  
1.25 V  
1.21  
1.8 V  
1.62 V  
1.98 V  
0.9 V  
1.21  
1.8 V  
1.62 V  
1.98 V  
0.9 V  
1.21  
1.5 V  
1.35 V  
1.65 V  
0.75 V  
1.21  
1.2 V  
1.08 V  
1.32 V  
0.6V  
1.21  
3.32  
Ro (k)  
Rs (k)  
20.0  
4.99  
4.99  
4.99  
3.32  
4.99  
Table 3-2a; ADJUSTMENT RESISTOR VALUES, Vo1  
24 V Bus Pt.# PT4681/7  
48 V Bus Pt.# PT4661/7  
PT4682/3/5  
PT4662/3/5/8  
(R1)/R2  
PT4686  
PT4666  
(R1)/R2  
Adj. Resistor  
(R1)/R2  
Vo(nom)  
Va(reqd)  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
5.0 V  
3.3 V  
2.5 V  
Va(reqd)  
3.6  
Va(reqd)  
2.75  
2.7  
2.65  
2.6  
2.55  
2.5  
5.0 kΩ  
11.2 kΩ  
21.6 kΩ  
42.4 kΩ  
105.0 kΩ  
7.4 kΩ  
14.3 kΩ  
25.7 kΩ  
48.6 kΩ  
117.0 kΩ  
5.0 kΩ  
11.2 kΩ  
21.6 kΩ  
42.4 kΩ  
105.0 kΩ  
3.54  
3.48  
3.42  
3.36  
3.3  
2.45  
2.4  
2.35  
2.3  
(99.8 k)  
(37.4 k)  
(16.6 k)  
(6.2 k)  
(0.0 k)  
3.24  
3.18  
3.12  
3.06  
3.0  
(112.0 k)  
(43.6 k)  
(20.8 k)  
(9.3 k)  
4.9  
4.8  
4.7  
4.6  
(99.8) kΩ  
(37.4) kΩ  
(16.6) kΩ  
(6.2) kΩ  
(0.0)  
2.25  
(2.5 k)  
4.5  
R1 = (Blue), R2 = Black  
Table 3-2b; ADJUSTMENT RESISTOR VALUES, Vo2  
24 V Bus Pt.# PT4681  
PT4682  
PT4662  
(R3)/R4  
PT4683/6/7  
PT4663/6/7  
(R3)/R4  
PT4686  
PT4685  
PT4665  
(R3)/R4  
48 V Bus Pt.# PT4661  
PT4666  
(R3)/R4  
PT4668  
Adj. Resistor  
(R3)/R4  
(R3)/R4  
Vo(nom)  
Va(reqd)  
3.6  
3.54  
3.48  
3.42  
3.36  
3.3  
3.24  
3.18  
3.12  
3.06  
3.0  
2.75  
2.7  
2.65  
2.6  
2.55  
2.5  
2.45  
2.4  
3.3 V  
2.5 V  
1.8 V  
1.8 V  
1.5 V  
1.2 V  
Va(reqd)  
1.95  
1.9  
1.85  
1.8  
1.75  
1.7  
1.65  
1.6  
1.55  
1.5  
1.45  
1.4  
1.35  
1.3  
1.275  
1.25  
1.225  
1.2  
1.7 kΩ  
3.3 kΩ  
6.1 kΩ  
11.6 kΩ  
28.3 kΩ  
2.3 kΩ  
5.9 kΩ  
16.8 kΩ  
3.9 kΩ  
7.6 kΩ  
18.5 kΩ  
(15.6) kΩ  
(4.7) kΩ  
(1.1) kΩ  
(17.3) kΩ  
(6.4) kΩ  
(2.7) kΩ  
(27.1) kΩ  
(10.4) kΩ  
(4.9) kΩ  
(2.1) kΩ  
(0.5) kΩ  
1.1 kΩ  
4.1 kΩ  
13.2 kΩ  
(12.0) kΩ  
(2.9) kΩ  
(0.0) kΩ  
1.1 kΩ  
2.6 kΩ  
5.1 kΩ  
10.1 kΩ  
25.3 kΩ  
3.9 kΩ  
6.4 kΩ  
11.2 kΩ  
25.7 kΩ  
(24.1) kΩ  
(8.9) kΩ  
(3.9) kΩ  
(1.4) kΩ  
(0.0)kΩ  
1.175  
1.15  
1.125  
1.1  
(24.5) kΩ  
(10.0) kΩ  
(5.2) kΩ  
(2.7) kΩ  
2.35  
2.3  
2.25  
R3 = (Blue), R4 = Black  
For technical support and further information, visit http://power.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Jun-2005  
PACKAGING INFORMATION  
Orderable Device  
PT4661A  
PT4661C  
PT4661N  
PT4662A  
PT4662C  
PT4662N  
PT4663A  
PT4663C  
PT4663N  
PT4665A  
PT4665C  
PT4665N  
PT4666A  
PT4666C  
PT4666N  
PT4667A  
PT4667C  
PT4667N  
PT4668A  
PT4668C  
PT4668N  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SIP MOD  
ULE  
EKA  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
26  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Level-1-215C-UNLIM  
Level-3-215C-168HRS  
Level-1-215C-UNLIM  
Level-1-215C-UNLIM  
Level-3-215C-168HRS  
Level-1-215C-UNLIM  
Level-1-215C-UNLIM  
Level-3-215C-168HRS  
Level-1-215C-UNLIM  
Level-1-215C-UNLIM  
Level-3-215C-168HRS  
Level-1-215C-UNLIM  
Level-1-215C-UNLIM  
Level-3-215C-168HRS  
Level-1-215C-UNLIM  
Level-1-215C-UNLIM  
Level-3-215C-168HRS  
Level-1-215C-UNLIM  
Level-1-215C-UNLIM  
Level-3-215C-168HRS  
Level-1-215C-UNLIM  
SIP MOD  
ULE  
EKC  
EKD  
EKA  
EKC  
EKD  
EKA  
EKC  
EKD  
EKA  
EKC  
EKD  
EKA  
EKC  
EKD  
EKA  
EKC  
EKD  
EKA  
EKC  
EKD  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
SIP MOD  
ULE  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
Eco Plan  
24-Jun-2005  
(2)  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY