PTMAG5253A3IQDMRR [TI]

具有使能引脚、采用超小型 X2SON 封装的低功耗线性霍尔效应传感器 | DMR | 4 | -40 to 125;
PTMAG5253A3IQDMRR
型号: PTMAG5253A3IQDMRR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能引脚、采用超小型 X2SON 封装的低功耗线性霍尔效应传感器 | DMR | 4 | -40 to 125

传感器
文件: 总38页 (文件大小:2478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMAG5253  
ZHCSPM0 – MAY 2023  
TMAG5253 采用超小型封装且具有 EN 引脚的低功耗线性霍应传感器  
1 特性  
3 说明  
业界先进的低功耗:  
TMAG5253 是一款低功耗线性霍尔效应传感器,可按  
比例响应磁通量密度。该器件具有使能引脚,可进入超  
低功耗 (nA) 关断模式。TMAG5253 的启动时间很短  
(< 25μs),专为低功耗位置检测应用而设计。该器件采  
用业界出色的 1.54mm2 超小型封装,适用于空间狭小  
的应用。该器件具有宽电源电压范围,可在 1.65V 至  
3.6V 电压范围内运行。  
电源电压,VCC1.65V - 3.6V  
关断电流:< 20nA25°C 时为 1.8V)  
有效电流:2mA25°C 时为 1.8V)  
平均电流:100Hz 占空比时 < 10µA  
专用使能引脚  
快速开通时间:< 25µs  
比例式模拟输出与 VCC 成比例  
关断模式下的高阻抗输出  
垂 直 于 封 装 顶 部 的 磁 通 量 由 器 件 感 应 , 并 且  
TMAG5253 提供双极灵敏度极性选项,其中北磁极和  
南磁极会产生不同的输出电压。输出会随施加的磁通量  
密度呈线性变化,四个灵敏度选项可以根据所需的感应  
范围提供最大的输出电压摆幅。  
低噪声输出,具有 ±1mA 的驱动能力  
支持正负磁场的双极灵敏度选项  
磁性灵敏度范围选项:  
– A1±20mT 范围  
该器件使用比例式架构,当外部模数转换器 (ADC) 使  
用相同的 VCC 作为其基准电压时,可消除 VCC 容差产  
生的误差。此外,该器件还具有磁体温度补偿功能,可  
抵消 -40°C 125°C 宽温度范围内的磁灵敏度漂移。  
该器件还能够在关断模式下将输出置于高阻抗状态。这  
使得多个器件能够连接到单个 ADC。  
– A2±40mT 范围  
– A3±80mT 范围  
– A4±160mT 范围  
支持钕磁铁温漂的灵敏度补偿  
超小型 X2SON 4 引脚封装:1.54 mm2  
宽工作温度范围:–40°C 125°C  
封装信息(1)  
2 应用  
器件型号  
TMAG5253  
封装  
封装尺寸(标称值)  
游戏控制器和外设  
磁接近传感器  
X2SON (4)  
1.40 mm × 1.10 mm  
移动机器人电机控制  
无线电动工具  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
扫地机器人  
无人机有效载荷控制  
Supply Voltage  
Load  
S
N
OUT  
ADC  
VCC  
GND  
0.1µF  
TMAG5253  
µController  
GPIO  
EN  
典型电路原理图  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBASAI5  
 
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Magnetic Characteristics.............................................5  
7.7 Typical Characteristics................................................6  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
8.2 Functional Block Diagram...........................................9  
8.3 Feature Description.....................................................9  
8.4 Device Functional Modes..........................................15  
9 Application and Implementation..................................16  
9.1 Application Information............................................. 16  
9.2 Typical Applications.................................................. 20  
9.3 Best Design Practices...............................................24  
9.4 Power Supply Recommendations.............................25  
9.5 Layout....................................................................... 25  
10 Device and Documentation Support..........................26  
10.1 Documentation Support.......................................... 26  
10.2 接收文档更新通知................................................... 26  
10.3 支持资源..................................................................26  
10.4 Trademarks.............................................................26  
10.5 静电放电警告.......................................................... 26  
10.6 术语表..................................................................... 26  
11 Mechanical, Packaging, and Orderable  
Information.................................................................... 26  
11.1 Package Option Addendum.................................... 30  
11.2 Tape and Reel Information......................................31  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
*
Initial Release  
May 2023  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
5 Device Comparison  
5-1. Device Comparison  
MINIMUM LINEAR  
MAGNETIC SENSING  
RANGE (mT)  
MAGNETIC RESPONSE  
TYPICAL SENSITIVITY TEMPERATURE  
COEFFICIENT (%/°C)  
ORDERABLE  
TYPE  
TMAG5253BA1(1)  
TMAG5253BA2(1)  
TMAG5253BA3  
TMAG5253BA4(1)  
Bipolar  
Bipolar  
Bipolar  
Bipolar  
±20  
±40  
0.12  
0.12  
0.12  
0.12  
±80  
±160  
(1) Preview only.  
6 Pin Configuration and Functions  
Thermal  
Pad  
Not to scale  
6-1. DMR Package 4-Pin X2SON Top View  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
X2SON  
Power supply. TI recommends connecting this pin to a ceramic capacitor to ground with a value  
of at least 0.1 µF.  
VCC  
1
P
GND  
EN  
2
3
4
G
I
Ground reference  
Enable pin  
OUT  
O
Analog output  
No connect. This pin should be left floating or tied to ground. The pin should be soldered to the  
board for mechanical support.  
Thermal Pad  
5
NC  
(1) I = Input, O = Output, I/O = Input and Output, G = Ground, P = Power, NC = No Connect  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
 
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Power supply voltage  
VCC  
–0.3  
5.5  
Output voltage  
OUT  
–0.3  
VCC + 0.3  
V
Magnetic flux density, BMAX  
Operating junction temperature, TJ  
Storage temperature, Tstg  
Unlimited  
–40  
T
125  
150  
°C  
°C  
–65  
(1) Operation outside theAbsolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
JS-002(2)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification  
ANSI/ESDA/JEDEC JS-002(3)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
3.6  
1
UNIT  
V
VCC  
CL  
IO  
Power supply voltage(1)  
1.65  
Load capacitance on OUT pin  
Output continuous current  
Operating ambient temperature(2)  
nF  
–1  
1
mA  
°C  
TA  
–40  
125  
(1) These are recommended supply ranges. For more details refer to Operating Vcc Ranges section  
(2) Power dissipation and thermal limits must be observed.  
7.4 Thermal Information  
TMAG5253  
THERMAL METRIC(1)  
DMR (X2SON)  
4 PINS  
157.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
110.9  
105  
YJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-board (bottom) thermal resistance  
2.4  
YJB  
101.9  
RθJC(bot)  
85.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
4
Submit Document Feedback  
Product Folder Links: TMAG5253  
 
 
 
 
 
 
 
 
 
 
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics  
for VCC = 1.65 V to 3.6V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
2
MAX  
3.3  
5
UNIT  
VCC = 1.8 V  
ICC_ACTIV  
Operating supply current  
EN > VIH  
mA  
E
VCC = 3.3 V  
2.6  
8
ICC_SHDN Shutdown current  
tON Power-on time  
VCCramp VCC ramp rate  
VCC = 3.3 V , EN < VIL  
VCC > VCC(min)  
T = 25 C  
nA  
µs  
20  
45  
1
0.001  
V / µs  
V
VIH  
Input high voltage for EN pin  
0.65 × VCC  
VIL  
Input low voltage for EN pin  
Input hysteresis voltage for EN pin  
Sensing bandwidth ( -3 dB)  
DC output resistance  
0.35 × VCC  
V
Vhys  
fBW  
0.1 × VCC  
V
Rload = 100 KΩ, Cload=100 pF  
EN > VIH  
15  
1.27  
9
kHz  
ROUT  
ROUT  
DC output resistance  
EN < VIL  
MΩ  
(1) B is the applied magnetic flux density.  
7.6 Magnetic Characteristics  
for VCC = 1.65 V to 3.6V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX UNIT  
VCC = 3.3 V ,  
TMAG5253B  
1.585  
1.65  
1.715  
V
B = 0 mT, TA =  
25°C  
VQ  
Quiescent voltage  
VCC = 1.8 V,  
TMAG5253B  
0.86  
-1.5  
-3  
0.9  
0.94  
TA = 0°C to 85°C versus  
25°C  
1.5  
B = 0 mT  
VQΔT  
Quiescent voltage temperature drift  
% VCC  
3
TA = -40°C to 125°C  
versus 25°C  
VQRE  
VQΔL  
Quiescent voltage ratiometry error(2)  
Quiescent voltage lifetime drift  
TMAG5253B  
±0.2  
0.25  
%
High-temperature operating stress for  
1000 hours  
% VCC  
TMAG5253BA1  
51  
25.5  
12.75  
6.37  
27.62  
13.81  
6.9  
60  
30  
69  
34.5  
TMAG5253BA2  
TMAG5253BA3  
TMAG5253BA4  
TMAG5253BA1  
TMAG5253BA2  
TMAG5253BA3  
TMAG5253BA4  
TMAG5253BA1  
TMAG5253BA2  
TMAG5253BA3  
TMAG5253BA4  
TMAG5253BA1  
TMAG5253BA2  
TMAG5253BA3  
TMAG5253BA4  
VCC = 3.3 V,  
TA = 25°C  
15  
17.25  
7.5  
8.62  
mV/mT  
37.37  
S
Sensitivity  
32.5  
16.25  
8.12  
4.06  
18.68  
9.33  
4.66  
VCC = 1.8 V,  
TA = 25°C  
3.45  
±20  
±40  
VCC = 3.3 V,  
TA = 25°C  
±80  
±160  
±20  
BL  
Linear magnetic sensing range(3) (4)  
mT  
±40  
VCC = 1.8 V,  
TA = 25°C  
±80  
±160  
0.2  
VL  
Linear range of output voltage(4)  
TMAG5253B  
VCC – 0.2  
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
for VCC = 1.65 V to 3.6V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX UNIT  
TA = 0°C to  
85°C versus  
25°C  
STC  
Sensitivity temperature coefficient(5)  
TMAG5253BA  
TMAG5253B  
0.04  
0.12  
0.2 %/°C  
SLE  
SSE  
Sensitivity linearity error(4)  
Sensitivity symmetry error(4)  
VOUT is within VL  
± 0.5  
± 0.5  
%
%
VOUT is within  
VL  
TA = 25°C,  
VCC = 1.65 V -1.9 V , with respect to VCC  
= 1.8V  
–2  
–3  
2
3
%
%
SRE  
Sensitivity ratiometry error(2)  
TA = 25°C,  
VCC = 3 V - 3.6 V , with respect to VCC =  
3.3 V  
High-temperature operating stress for  
1000 hours  
SΔL  
Sensitivity lifetime drift  
0.5  
%
VCC = 3.3 V , Cload=100 pF  
VCC = 1.8V , Cload=100 pF  
170  
350  
BND  
Input-referred RMS noise density  
nT/√Hz  
BND × 6.6 ×  
√fBW , Cload =  
100 pF  
VCC = 3.3 V  
VCC = 1.8 V  
0.137  
BN  
Input-referred peak-to-peak noise  
Output-referred peak-to-peak noise  
mTPP  
0.282  
TMAG5253BA1  
TMAG5253BA2  
TMAG5253BA3  
TMAG5253BA4  
9.2  
4.6  
2.3  
1.8  
BN × S ,  
VCC=3.3 V,  
BW = 15 kHz  
VN  
mVPP  
(1) B is the applied magnetic flux density.  
(2) Refer to the Ratiometric Architecture section  
(3) BL describes the minimum linear sensing range at 25°C taking into account the maximum VQ and Sensitivity tolerances.  
(4) Refer to the Sensitivity Linearity section  
(5) STC describes the rate the device increases Sensitivity with temperature. For more information, see the Magnetic Response section.  
7.7 Typical Characteristics  
for TA = 25°C (unless otherwise noted)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.4  
3.2  
3
2.8  
2.6  
2.4  
2.2  
2
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
VCC = 1.8 V  
VCC = 3.3 V  
1.8  
1.6  
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (oC)  
Magnetic Field (mT)  
TMAG5253BA3 Sensitivity Linearity Error , VCC = 3.3 V  
TMAG5253BA3  
7-1. Sensitivity Linearity Error vs Input Magnetic Field  
7-2. Active Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
6
Submit Document Feedback  
Product Folder Links: TMAG5253  
 
 
 
 
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
7.7 Typical Characteristics (continued)  
for TA = 25°C (unless otherwise noted)  
0.96  
0.94  
0.92  
0.9  
1.8  
1.775  
1.75  
1.725  
1.7  
1.675  
1.65  
1.625  
1.6  
0.88  
0.86  
0.84  
0.82  
0.8  
1.575  
1.55  
1.525  
1.5  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
1.625  
1.675  
1.725  
Supply Voltage (V)  
1.775  
1.825  
1.875  
Supply Voltage (V)  
TMAG5253BA3, 25°C  
TMAG5253A3, 25°C  
7-4. Quiescent Voltage vs Supply Voltage  
7-3. Quiescent Voltage vs Supply Voltage  
9.8  
9.6  
9.4  
9.2  
9
19.5  
19  
18.5  
18  
17.5  
17  
8.8  
8.6  
8.4  
8.2  
8
16.5  
16  
15.5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (oC)  
Temperature (oC)  
TMAG5253BA3, VCC = 3.3 V  
7-6. Sensitivity vs Temperature  
TMAG5253BA3, VCC =1.8 V  
7-5. Sensitivity vs Temperature  
18.6  
18.3  
18  
9.2  
9
17.7  
17.4  
17.1  
16.8  
16.5  
16.2  
15.9  
15.6  
15.3  
15  
8.8  
8.6  
8.4  
8.2  
8
7.8  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
1.625  
1.675  
1.725  
Supply Voltage (V)  
1.775  
1.825  
1.875  
Supply Voltage (V)  
VCC = 3.3V ±10%  
VCC = 1.8 V ±10%  
7-8. Sensitivity vs Supply Voltage  
7-7. Sensitivity vs Supply Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
7.7 Typical Characteristics (continued)  
for TA = 25°C (unless otherwise noted)  
1.65  
1.55  
1.45  
1.35  
1.25  
1.15  
1.05  
0.95  
0.85  
VCC = 1.8 V  
VCC = 3.3 V  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (oC)  
7-9. Quiescent Voltage vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
8
Submit Document Feedback  
Product Folder Links: TMAG5253  
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMAG5253 is a 4-pin, low-power linear Hall effect sensor with fully integrated signal conditioning,  
temperature compensation circuits, mechanical stress cancellation, and output driver. The device supports wide  
supply range and can operate on 1.8-V or 3.3-V power supplies, measures magnetic flux density, and outputs  
a proportional analog voltage that is referenced to VCC. The device also features an enable pin that is used to  
place the device in a ultra-low power (nA) mode when needed.  
The device is offered in bipolar magnetic response version that is sensitive to both the north and the south  
pole. TMAG5253 is also offered in 4 different sensitivity versions (±20 mT, ±40 mT, ±80 mT, or ±160 mT). This  
allows the user to trade off sensitivity range and resolution to support low cost magnet selections or wider range  
wherever it is needed.  
The device is offered in magnetic temperature coefficient of 0.12%/°C to compensate for magnetic sensitivity  
temperature coefficient of Neodymium magnet type.  
8.2 Functional Block Diagram  
VCC  
Power Management  
EN  
0.1µF  
(minimum)  
GND  
OUT  
Clock  
Memory  
Temperature  
compensation  
Output  
Driver  
Precision  
Amplifier  
Offset  
cancellation  
Hall sensor  
Bias  
Optional Filter  
8.3 Feature Description  
8.3.1 Magnetic Flux Direction  
As shown in 8-1, the TMAG5253 is sensitive to the magnetic field component that is perpendicular to the top  
of the package.  
B
X2SON  
PCB  
8-1. Direction of Sensitivity  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
 
 
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
Magnetic flux that travels from the bottom to the top of the package is considered positive in this document. This  
condition exists when a south magnetic pole is near the top (marked-side) of the package as shown in 8-2.  
Magnetic flux that travels from the top to the bottom of the package results in negative millitesla values.  
N
S
PCB  
8-2. The Flux Direction for Positive B  
8.3.2 Hall Element Location  
8-3 shows the location of the sensing element inside each package option along with the tolerances.  
X2SON  
Top View  
X2SON  
Side View  
130 µm  
centered  
±15 µm  
±25 µm  
8-3. Hall Element Location  
8.3.3 Magnetic Response  
8-4 shows the response of the bipolar device option (B), which is sensitive to both the positive and negative  
magnetic fields.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
10  
Submit Document Feedback  
Product Folder Links: TMAG5253  
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
OUT  
VCC  
VL(MAX)  
VQ  
V  
B  
Sensitivity =  
VL(MIN)  
B
south  
-Bmax  
Bmax  
0 mT  
north  
8-4. Magnetic Response for TMAG5253B (Bipolar) Version  
At room temperature, use 方程式 1 to calculate the ideal first-order transfer function of the TMAG5253, where  
the output voltage is a linear function of the input magnetic field and the supply voltage.  
V
CC  
V
= V + B × Sensitivity ×  
Q
V
(1)  
OUT  
CC, NOM  
where  
VQ is the quiescent output voltage for a field of 0 mT.  
– VQ = VCC /2 for Bipolar device option (B)  
B is the applied magnetic flux density  
Sensitivity refers to the magnetic sensitivity of the device  
VOUT is the analog output voltage within the VL range  
VCC refers to the supply voltage of the device  
VCC,NOM is the nominal supply voltage where the sensitivity is defined, such as 1.8 V or 3.3 V  
As an example, consider the TMAG5253BA3, a bipolar magnetic response version with a sensitivity of 15  
mV/mT at 3.3-V supply voltage and at room temperature. With VCC = 3.4 V and an input field of 67 mT, you can  
calculate the output voltage, VOUT for this example.  
V
mT  
3.4 V  
= 2.735 V  
3.3 V  
V
= 1.7 V + 67 mT × 0.015  
×
(2)  
OUT  
8.3.4 Sensitivity Linearity  
The device produces a linear response when the output voltage is within the specified VL range. Outside this  
range, sensitivity is reduced and nonlinear. 8-5 shows the linearity of the magnetic response for bipolar  
version.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
VOUT (V)  
VNL  
SB  
VQ  
VL  
Best fit linear  
SB-  
Measured data  
-B  
B
0
B(mT)  
BL  
8-5. Linearity of the Magnetic Response (Bipolar)  
方程式 3 calculates parameter BL, the minimum linear sensing range at 25°C, and takes the maximum quiescent  
voltage and sensitivity tolerance into account.  
V
– V  
L MAX  
Q MAX  
B
=
(3)  
L MIN  
S
MAX  
Nonlinearity is the deviation of the output voltage from a linear relationship to the input current. Nonlinearity  
voltage, as shown in 8-5, is the maximum voltage deviation from the best-fit line based on measured  
parameters (see 方程式 4).  
V
= V  
– B × S  
+ V  
(4)  
NL  
OUT  
IN  
FIT Q  
where  
VOUT is the voltage output at maximum deviation from best fit  
BIN is the magnetic flux density at maximum deviation from best fit  
SFIT is the best fit sensitivity of the device  
VQ is quiescent voltage at zero magnetic field  
The parameter SLE, Sensitivity Linearity error is the nonlinearity voltage ,VNL specified as a percentage of the  
full-scale linear output range (VFS) shown in 方程式 5.  
V
NL  
S
=
× 100%  
(5)  
LE  
V
FS  
The parameter SSE defines symmetry error as the difference in sensitivity between any positive B value, SB and  
the negative B value of the same magnitude, S–B while the output voltage is within the VL range. This error only  
applies to the bipolar device option. Use 方程式 6 to calculate the symmetry error.  
S
– S  
–B  
B
S
=
× 100%  
(6)  
SE  
0.5 ×  
S
+ S  
–B  
B
where  
SB refers to the sensitivity at a positive field B  
S–B refers to the sensitivity at a negative field B  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
12  
Submit Document Feedback  
Product Folder Links: TMAG5253  
 
 
 
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
8.3.5 Ratiometric Architecture  
The TMAG5253 has a ratiometric analog architecture that scales the quiescent voltage and sensitivity linearly  
with the power-supply voltage. For example, the quiescent voltage and sensitivity are 5% higher when VCC  
=
3.465 V compared to VCC = 3.3 V. This ratiometric behavior enables an external ADC to digitize a consistent  
value regardless of the power-supply voltage tolerance when the ADC uses VCC as its reference.  
SVCC  
Ideal  
Actual sensor data  
VCCNOM  
VCC (V)  
8-6. Sensitivity Ratiometry Error  
Use 方程式 7 to calculate the sensitivity ratiometry error:  
S
/S  
VCC VCC, NOM  
S
= 1 −  
× 100%  
(7)  
RE  
V
/V  
VCC VCC, NOM  
where  
S(VCC) is the sensitivity at the current VCC voltage  
S(NOM) is the sensitivity at a nominal VCC voltage  
VVCC is the current VCC voltage  
VVCC,NOM is the nominal VCC voltage that is 1.8 V or 3.3 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
VQ_VCC  
Ideal  
Quiescent  
Voltage (VQ) (V)  
Actual sensor data  
VCC/2  
VCCNOM  
VCC (V)  
8-7. Quiescent Ratiometry Error  
The TMAG5253 has a ratiometric architecture for the quiescent voltage of the bipolar device option. For the  
bipolar device option, at 0 mT, the quiescent voltage is typically half of the supply voltage, VCC. Use 方程式 8 to  
calculate the quiescent voltage ratiometry error:  
V
/V  
Q VCC  
Q NOM  
Q
= 1 −  
× 100%  
(8)  
RE  
V
/V  
VCC VCC, NOM  
where  
VQ(VCC) is the quiescent voltage at the current VCC voltage  
VQ(NOM) is the quiescent voltage at a nominal VCC voltage  
VCC is the current VCC voltage  
VVCC,NOM is the nominal VCC voltage that is 1.8 V or 3.3 V  
8.3.6 Sensitivity Temperature Compensation  
Magnets generally produce weaker fields as temperature increases. Different types of magnets have different  
sensitivity temperature coefficients. The TMAG5253 compensates by increasing sensitivity with temperature, as  
defined by the parameter STC. Use 方程式 9 to calculate the sensitivity at a fixed supply voltage. ℃  
Sensitivity = Sensitivity  
× 1 + S × T – 25℃  
TC A  
(9)  
25℃  
where  
Sensitivity(25°C) depends on the polarity(unipolar/bipolar) and the four different device options (1, 2, 3, 4)  
STC is typically 0.12%/°C for device options A1 – A4 , 0.20%/°C for device options B1 – B4 and 0%/°C for  
device options Z1 – Z4  
TA is the ambient temperature  
8.3.7 Power-On Time  
After the VCC voltage is applied, the TMAG5253 requires a short initialization time before the output settles to its  
final value. The parameter TON describes the time from when VCC crosses VCC(MIN) until OUT is within 5% of the  
final value, with a constant magnetic field and a typical load of 100 pF from OUT to ground. 8-8 shows this  
timing diagram.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
14  
Submit Document Feedback  
Product Folder Links: TMAG5253  
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
VCC  
1.65V  
TON  
time  
Output  
95% VOUT  
Invalid  
time  
8-8. TON for VCC Ramp  
TON is also used to describe the time from when EN pin is pulled above VIH until OUT is within 5% of the final  
value, with a constant magnetic field and a typical load of 100 pF from OUT to ground. 8-8 shows this timing  
diagram.  
EN  
VIH  
TON  
time  
VOUT  
95% VOUT  
Invalid  
time  
8-9. TON When Using EN Pin  
8.4 Device Functional Modes  
The TMAG5253 has two modes of operations that apply when the Recommended Operating Conditions are met.  
When the EN pin is connected to VCC, the part enters active mode, where the OUT pin provides an analog  
output that corresponds to the magnetic sensitivity and the supply voltage.  
When the EN pin is tied to GND, the TMAG5253 enters an ultra-low power shutdown mode that consumes only  
20-nA current. During the shutdown mode, the OUT pin is driven to a high-impedance state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Selecting the Sensitivity Option  
Select the highest TMAG5253 sensitivity option that can measure the required range of magnetic flux density so  
that the output voltage swing is maximized.  
Larger-sized magnets and farther sensing distances can generally enable better positional accuracy than very  
small magnets at close distances, because magnetic flux density increases exponentially with the proximity to  
a magnet. TI has developed online tools to provide assistance with magnetic field calculations that assist with  
magnet selections and the mechanical placement of the sensor for the most common use cases.  
9.1.2 Temperature Compensation for Magnets  
The magnetic field of magnets based on Neodymium or the Ferrite magnets have a high temperature coefficient.  
The residual induction (Br) of a magnet typically reduces by 0.12%/°C for NdFeB, and 0.20%/°C for ferrite  
material. The TMAG5253 features sensitivity temperature compensation that is designed to directly compensate  
the average drift of magnets. When the operating temperature range of a system is reduced, temperature drift  
errors are also reduced.  
For device options A1 – A4, the sensitivity at TA = 125°C is typically 12% higher than at TA = 25°C. These device  
options are typically used when Neodymium magnets are used along with the TMAG5253.  
9.1.3 Adding a Low-Pass Filter  
As shown in Functional Block Diagram, an RC low-pass filter can be added to the device output for the purpose  
of minimizing voltage noise when the full 15-kHz bandwidth is not needed. This output filter can improve the  
signal-to-noise ratio (SNR) but at the expense of additional latency based on the external filter time constants.  
9.1.4 Designing With Multiple Sensors  
Some applications require multiple linear Hall sensors to detect position in different parts of the system. In those  
cases, the primary challenge would be the availability of multiple ADC that are required to digitize the information  
from the sensors. In cases where the sensor is placed remotely away from the microcontroller, this would also  
mean multiple output lines between the sensor and microcontroller.  
With the ability to place the output in high-impedance state during shutdown mode, multiple TMAG5253s can  
share the analog output. This can minimize the system cost by using a single ADC. 9-1 shows two devices  
that share the same analog output, with their respective EN pins controlled by the microcontroller. A pulldown  
resistor can be used to pull the output to ground when both the devices are placed in shutdown mode.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
16  
Submit Document Feedback  
Product Folder Links: TMAG5253  
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
Supply Voltage  
VCC  
VCC  
EN  
GPIO1  
Device 1  
TMAG5253  
GPIO2  
ADC  
VOUT  
µController  
100K  
GND  
GND  
VCC  
EN  
Device 2  
TMAG5253  
VOUT  
GND  
9-1. Multiple Sensors With Shared Output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
B(mT)  
B1  
B2  
time  
V
VGPIO1  
tmux  
VGPIO2  
ton  
VOUT  
time  
Device 2  
Device 1  
9-2. Timing Diagram for Multiplexing the Sensor Outputs  
9-2 shows how the GPIOs of the microcontroller can be used to multiplex the outputs from the two sensors.  
When the GPIO1 goes high, Device 1 is enabled and drives the output line to the corresponding output after  
the power-on time. During this time, GPIO2 is driven low and Device 2 is placed in shutdown mode. When the  
output from the second device has to be measured, the first device must be turned off before the second device  
is enabled, indicated by tmux in the timing diagram. B1 and B2 correspond to the magnetic fields seen by Device  
1 and Device 2, respectively.  
With the ability to support up to 1-nF capacitive loads, the TMAG5253 enables multiple sensors to be connected  
to the same output. If the load capacitance on each sensor is about 20 pF, this would translate up to the ability of  
50 sensors sharing the same output.  
9.1.5 Duty-Cycled, Low-Power Design  
For battery-powered applications where power is critical, the sensor can be duty-cycled using the EN pin. This  
will ensure the average current consumption remains low to meet the system level power targets. In duty-cycled  
applications, the start-up time must be very fast so the external ADC can sample the signal faster and shutdown  
the device quickly to minimize average power. With very fast start-up and power-off times, the TMAG5253  
enables low average power consumption for the system.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
18  
Submit Document Feedback  
Product Folder Links: TMAG5253  
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
Supply Voltage  
S
N
ADC  
VCC  
OUT  
TMAG5253  
0.1 μF  
µController  
GND  
EN  
GPIO  
9-3. Typical Application Diagram for Duty-Cycled Application  
9-3 shows the typical application diagram when the EN pin is controlled by the microcontroller. 9-4 shows  
the waveforms for this application where the EN pin is duty-cycled. The sampling time of the ADC should be  
scheduled after the output settles down to the required resolution. Notice that the output line is pulled down  
by the external resistor when EN is driven low. Also, if the input magnetic field is changed when the part is in  
shutdown, the device provides the new output corresponding to the field after the device enters active state.  
B (mT)  
me  
VVCC  
me  
tac ve  
tsleep  
VEN  
me  
Iac ve  
Icc  
Ishdn  
me  
VOUT  
HiZ  
HiZ  
HiZ  
HiZ  
me  
9-4. Timing Diagram for Duty-Cycled Application  
9-1 shows the estimated average current consumption for the TMAG5253 versus the sleep time, for VCC = 1.8  
V and the EN pin is tied high for 50 µs.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
9-1. Average Current Consumption  
SLEEP TIME (ms)  
AVERAGE CURRENT (µA)  
1
10  
90.5  
9.4  
1.9  
0.9  
0.1  
50  
100  
1000  
9.2 Typical Applications  
Magnetic 1D sensors are very popular due to contactless and reliable measurements, especially in applications  
requiring long-term measurements in rugged environments. The TMAG5253 offers design flexibility in a wide  
range of industrial and personal electronics applications, because many possible magnet orientations and  
movements produce a usable response from the sensor. In this section three common application examples are  
discussed in detail.  
9.2.1 Slide-By Displacement Sensing  
9-5 shows one of the most common orientations, which uses the full north to south range of the sensor and  
causes a close-to-linear change in magnetic flux density as the magnet moves across.  
Travel Direc on  
S
N
Airgap  
PCB  
d1  
d2  
Travel Distance  
9-5. Slide-By Sensing Magnet Orientation  
9.2.1.1 Design Requirements  
Use the parameters listed in 9-2 for this design example.  
9-2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VCC  
3.3 V  
5 × 5 × 5 mm NdFeB  
(Grade N52)  
Magnet  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
20  
Submit Document Feedback  
Product Folder Links: TMAG5253  
 
 
 
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
9-2. Design Parameters (continued)  
DESIGN PARAMETER  
EXAMPLE VALUE  
Travel distance (d2 – d1)  
Airgap  
20 mm  
2.5 mm (top of package to magnet) + 0.13 mm  
(distance from top of package to sensor location)  
Maximum B at sensor at 25°C  
Device option  
±75 mT  
TMAG5253BA3  
9.2.1.2 Detailed Design Procedure  
When designing a linear magnetic sensing system, always consider these three variables: the magnet, sensing  
distance, and the range of the sensor. Notice from 9-5, the magnetic flux density versus distance has both  
positive and negative values as the magnet slides on top of the sensor. There is a region approximately the  
same length of the magnet which produces a linear change in field. To measure the magnetic flux density across  
the entire range, select the TMAG5253B version with the highest sensitivity that has a BL (linear magnetic  
sensing range) that is larger than the maximum magnetic flux density in the application. With this input, the  
user can monitor the change in position by measuring in the linear input region. 9-6 shows the magnetic flux  
density across the three axes in the sensor location. The sensor is sensitive only to the magnetic field on Z axis,  
and 9-7 shows the output voltage from the sensor, as the magnet slides on top of the sensor.  
Notice that the linear region of sensing is only around ±2.5 mm, where the sensor output varies linearly with the  
position of the magnet. This linear range of operation will increase linearly with the size of the magnet. Based on  
the output voltage, it is determined that the sensor version with magnetic range of ±80 mT is able to cover the  
entire magnetic field range that is seen by the sensor. TI recommends using magnetic field simulation software  
and referring to magnet specifications and the mechanical placements to determine if the sensor with the right  
sensitivity.  
9.2.1.3 Application Curves  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
-12.5 -10 -7.5 -5 -2.5  
0
2.5  
5
7.5 10 12.5  
Distance Along X Axis (mm)  
9-6. Magnetic Field Across X, Y and Z Axes  
When The Magnet Slides by on Top of the Sensor  
9-7. Output Voltage of TMAG5253 When The  
Magnet Slides by on Top of the Sensor  
9.2.2 Head-On Displacement Sensing  
9-8 shows another robust method for measuring linear position by using a magnet and the TMAG5253 in a  
head-on configuration. For this configuration, the linear axis of measurement of the Hall position sensor is along  
the path of travel, which results in a unique mapping of distance to magnetic flux density if the magnet is inline  
with the sensing axis of the Hall position sensor.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
PCB  
9-8. Head-On Displacement Sensing  
9.2.2.1 Design Requirements  
Use the parameters listed in 9-3 for this design example.  
9-3. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
3.3 V  
VCC  
Magnet  
5 × 5 × 5 mm NdFeB  
5 mm  
Travel distance  
Travel distance range from magnet to sensor  
Magnetic field range at the sensor at 25°C  
Device option  
10 mm to 5 mm  
50 to 10 mT  
TMAG5253BA3  
9.2.2.2 Detailed Design Procedure  
Unlike the Slide-By Displacement Sensing configuration, the head-on displacement configuration has a magnetic  
flux density that is either entirely positive or entirely negative, depending on whether the south or north pole  
of the magnet is closest to the sensor. As a result, the user can choose the sensors that are sensitive only  
to south field for this mechanical configuration. In cases where it is not possible to control the polarity of  
the magnet, the bipolar version (TMAG5253B) is chosen. The mapping of magnetic flux density to distance  
depends on various factors, such as the material and dimensions of the magnet. 9-9 shows that the magnetic  
flux density is always positive as the magnet travels towards the sensor. Based on the magnetic field range,  
TMAG5253BA3 version with ±80 mT full scale range is chosen. 9-9 shows the output voltage of this sensor  
as the magnet travels from a distance of 10 mm to a distance of 5 mm towards the sensor. The DRV5056  
Distance Measurement Tool calculates the expected magnetic flux density to distance mapping in a head-on  
configuration for different magnet specifications.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
22  
Submit Document Feedback  
Product Folder Links: TMAG5253  
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
9.2.2.3 Application Curve  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
2.64  
2.56  
2.48  
2.4  
BZ (mT)  
VOUT(V)  
2.32  
2.24  
2.16  
2.08  
2
1.92  
1.84  
4.5  
5.5  
6.5  
7.5  
8.5  
9.5  
10.5  
Distance from Magnet to Sensor (mm)  
9-9. Magnetic Field (BZ) and the Output Voltage of the Sensor (VOUT) vs the Distance from Magnet to  
the Sensor  
9.2.3 Remote-Sensing Applications  
For remote-sensing applications where the sensor is not physically placed on the same board as the ADC or  
the microcontroller, it is important to have the ability to drive a capacitive load from the wiring harness. The  
TMAG5253 enables remote-sensing applications with the ability to support up to 1-nF capacitive load on the  
OUT pin. With a typical cable capacitance of about 100 pF/m, the TMAG5253 can support up to 10 m in cable  
length.  
PCB  
µController  
TMAG5253  
VCC  
EN  
VCC  
ADC  
OUT  
Cable  
VOUT  
GND  
9-10. Remote-Sensing Application With Wire Break Detection  
Some remote-sensing applications might require a device to detect if interconnect wires open or short. The  
TMAG5253 can support this feature with the ability to drive up to ±1-mA current load on the output. To design  
for wire break detection, first select a sensitivity option that causes the output voltage to stay within the VL range  
during normal operation. Second, add a pullup resistor between OUT and VCC. TI recommends a value between  
20 kΩ to 100 kΩ, and the current through OUT must not exceed the IO specification, including current going  
into an external ADC. Then, if the output voltage is ever measured to be within 100 mV of VCC or GND, a fault  
condition exists. 9-10 shows the circuit, and 9-4 describes fault scenarios.  
9-4. Fault Scenarios and the Resulting VOUT  
FAULT SCENARIO  
VOUT  
VCC disconnects  
Close to GND  
Close to VCC  
Close to VCC  
Close to GND  
GND disconnects  
VCC shorts to OUT  
GND shorts to OUT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
9.3 Best Design Practices  
The Hall element is sensitive to magnetic fields that are perpendicular to the top of the package, therefore a  
correct magnet approach must be used for the sensor to detect the field. 9-11 shows correct and incorrect  
approaches.  
CORRECT  
N
S
S
N
N
S
INCORRECT  
N
S
9-11. Correct and Incorrect Magnet Approaches  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
9.4 Power Supply Recommendations  
A decoupling capacitor close to the device must be used to provide local energy with minimal inductance. TI  
recommends using a ceramic capacitor with a value of at least 0.1 µF.  
9.5 Layout  
9.5.1 Layout Guidelines  
Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall  
effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice.  
Magnetic fields also easily pass through most printed circuit boards, which makes placing the magnet on the  
opposite side possible.  
9.5.2 Layout Example  
OUT  
VCC  
Thermal  
Pad  
GND  
EN  
9-12. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Absolute Angle Measurements for Rotational Motion Using Hall-Effect Sensors  
application brief  
Texas Instruments, Tracking Slide-By Displacement with Hall Effect Sensors application brief  
Texas Instruments, Head-on Linear Displacement Sensing using Hall Effect Sensors application brief  
10.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序,可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
26  
Submit Document Feedback  
Product Folder Links: TMAG5253  
 
 
 
 
 
 
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
DMR0004A  
X2SON - 0.4 mm max height  
SCALE 9.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.1ꢀ  
1.0ꢀ  
A
B
PIN 1 INDEX AREA  
1.4ꢀ  
1.3ꢀ  
C
0.4 MAX  
SEATING PLANE  
0.08 C  
0.0ꢀ  
0.00  
2X 0.ꢀ  
SYMM  
2
3
EXPOSED  
THERMAL PAD  
SYMM  
0.6 0.0ꢀ  
0.2ꢀ  
0.1ꢀ  
4X  
PIN 1 ID  
(OPTIONAL)  
4
1
0.27  
0.17  
4X  
0.8 0.0ꢀ  
0.1  
C B  
C
A
0.0ꢀ  
422282ꢀ/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.ꢀM.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DMR0004A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (0.5)  
4X (0.22)  
4X (0.4)  
(R0.05) TYP  
1
4
5
SYMM  
(0.6)  
(1.4)  
(
0.2) VIA  
2
3
SYMM  
(0.8)  
LAND PATTERN EXAMPLE  
SCALE:35X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222825/A 03/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If all or some are implemented, recommended via locations are shown.  
It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DMR0004A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (0.5)  
4X (0.22)  
4X (0.4)  
(R0.05) TYP  
1
4
5
SYMM  
(1.4)  
(0.57)  
METAL  
TYP  
2
3
SYMM  
(0.76)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 5:  
90% PRINTED SOLDER COVERAGE BY AREA  
SCALE:50X  
4222825/A 03/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
11.1 Package Option Addendum  
Packaging Information  
Orderable  
Device  
Package  
Drawing  
Lead/Ball  
Finish(6)  
MSL Peak  
Temp(3)  
Device  
Status(1)  
Package Type  
Pins  
Package Qty  
Eco Plan(2)  
Op Temp (°C)  
Marking(4) (5)  
PTMAG5253A3 ACTIVE  
IQDMRR  
X2SON  
DMR  
4
3000  
RoHS & Green Call TI  
Call TI  
-40 to 125  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material).  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on  
information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties.  
TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming  
materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
30  
Submit Document Feedback  
Product Folder Links: TMAG5253  
 
 
 
 
 
 
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
11.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PTMAG5253A3IQDMR  
R
X2SON  
DMR  
4
3000  
180  
8.4  
1.27  
1.57  
0.50  
4
8
Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMAG5253  
English Data Sheet: SBASAI5  
 
TMAG5253  
ZHCSPM0 – MAY 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
DMR  
SPQ  
Length (mm) Width (mm)  
200 183  
Height (mm)  
PTMAG5253A3IQDMRR  
X2SON  
4
3000  
25  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBASAI5  
32  
Submit Document Feedback  
Product Folder Links: TMAG5253  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTMAG5253A3IQDMRR  
ACTIVE  
X2SON  
DMR  
4
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
DMR 4  
1.1 x 1.4, 0.5 mm pitch  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229480/A  
www.ti.com  
PACKAGE OUTLINE  
DMR0004A  
X2SON - 0.4 mm max height  
SCALE 9.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.15  
1.05  
A
B
PIN 1 INDEX AREA  
1.45  
1.35  
(0.13) TYP  
C
0.4 MAX  
SEATING PLANE  
0.08 C  
NOTE 4  
0.05  
0.00  
2X 0.5  
SYMM  
2
3
NOTE 4  
EXPOSED  
THERMAL PAD  
5
SYMM  
0.6 0.1  
0.25  
0.15  
4X  
PIN 1 ID  
(OPTIONAL)  
4
1
0.27  
0.17  
4X  
0.8 0.1  
0.1  
C B  
C
A
0.05  
4222825/B 05/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. Quantity and shape of side wall metal may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMR0004A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (0.5)  
4X (0.22)  
4X (0.4)  
(R0.05) TYP  
1
4
5
SYMM  
(1.4)  
(0.6)  
(
0.2) VIA  
2
3
SYMM  
(0.8)  
LAND PATTERN EXAMPLE  
SCALE:35X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222825/B 05/2022  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
6. Vias are optional depending on application, refer to device data sheet. If all or some are implemented, recommended via locations are shown.  
It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMR0004A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (0.5)  
4X (0.22)  
4X (0.4)  
(R0.05) TYP  
1
4
5
SYMM  
(1.4)  
(0.57)  
METAL  
TYP  
2
3
SYMM  
(0.76)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 5:  
90% PRINTED SOLDER COVERAGE BY AREA  
SCALE:50X  
4222825/B 05/2022  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

PTMAG6180A0DGKRQ1

Automotive high-precision analog AMR angle sensor with 360° angle range | DGK | 8 | -40 to 150
TI

PTMAG6181A0DGKRQ1

Automotive high-precision analog AMR angle sensor with integrated turns counter | DGK | 8 | -40 to 150
TI

PTMB100A6

IGBT MODULE Six-Pack 100A 600V
NIEC

PTMB100A6C

IGBT SP series Six-Pack 100A 600V
NIEC

PTMB100B12

IGBT MODULE Six-Pack 100A 1200V
NIEC

PTMB100B12C

IGBT SP series Six Pack 100A 1200V
NIEC

PTMB100E6

IGBT Module-Six Pack
NIEC

PTMB100E6C

IGBT Module-Six Pack
NIEC

PTMB100T6

Insulated Gate Bipolar Transistor
NIEC

PTMB150A6

IGBT MODULE Six-Pack 150A 600V
NIEC

PTMB150A6C

IGBT SP series Six-Pack 150A 600V
NIEC

PTMB150E6

IGBT Module-Six Pack
NIEC