PTMUX6222DGSR [TI]

具有 1.8V 逻辑电平和闩锁效应抑制的 36V、1:1 (SPST) 2 通道精密开关(低电平有效)

| DGS | 10 | -40 to 125;
PTMUX6222DGSR
型号: PTMUX6222DGSR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.8V 逻辑电平和闩锁效应抑制的 36V、1:1 (SPST) 2 通道精密开关(低电平有效)

| DGS | 10 | -40 to 125

开关
文件: 总39页 (文件大小:1885K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
TMUX622x 1.8V 逻辑器件36VRON1:1 (SPST)2 沟道开关  
1 特性  
3 说明  
• 双电源电压范围±4.5V ±18 V  
• 单电源电压范围4.5V 36 V  
• 低导通电阻2.1 Ω  
• –40°C +125°C 工作温度  
1.8V 逻辑电平  
逻辑引脚具有集成的下拉电阻器  
失效防护逻辑  
轨到轨运行  
TMUX622x 是互补金属氧化物半导体 (CMOS) 开关,  
采用双通道 1:1 (SPST) 置。该器件支持单电源  
4.5V 36 V、双电源±4.5V ±18 V或非对  
称电源VDD = 12V VSS = 5V 。  
TMUX622x 可在源极 (Sx) 和漏极 (D) 引脚上支持从  
VSS VDD 范围的双向模拟和数字信号。  
TMUX622x 可以通过控制 SEL 引脚打开信号路径 1  
S1 D1或信号路径 2S2 D2来启用或禁  
用。所有逻辑控制输入均支持 1.8V VDD 的逻辑电  
因此当器件在有效电源电压范围内运行时可确  
TTL CMOS 逻辑兼容性。失效防护逻辑电路允许  
先在控制引脚上施加电压然后在电源引脚上施加电  
从而保护器件免受潜在的损害。  
双向运行  
2 应用  
有线网络  
远程无线电单元  
患者监护和诊断  
超声波扫描仪  
光学测试设备  
光纤网络  
工厂自动化和工业控制  
可编程逻辑控制(PLC)  
模拟输入模块  
交流充电站  
半导体测试  
TMUX622x 是精密开关和多路复用器系列器件。这些  
器件具有非常低的导通和关断漏电流 (50pA)因此可  
用于高精度测量应用。  
封装信息(1)  
封装尺寸标称值)  
器件型号  
TMUX6221  
TMUX6222  
封装  
DGSVSSOP,  
10)  
3.00mm × 3.00mm  
数据采集系统  
燃气表  
流量变送器  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
VDD  
VSS  
VDD  
VSS  
SW  
SW  
S1  
D1  
D2  
S1  
S2  
D1  
D2  
SW  
SW  
S2  
SEL1  
SEL2  
SEL1  
SEL2  
TMUX6221  
(SELx = Logic 1)  
TMUX6222  
(SELx = Logic 1)  
方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS452  
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
Table of Contents  
7.9 Crosstalk...................................................................19  
7.10 Bandwidth............................................................... 19  
7.11 THD + Noise............................................................20  
7.12 Power Supply Rejection Ratio (PSRR)...................20  
8 Detailed Description......................................................21  
8.1 Overview...................................................................21  
8.2 Functional Block Diagram.........................................21  
8.3 Feature Description...................................................21  
8.4 Device Functional Modes..........................................23  
8.5 Truth Tables.............................................................. 23  
9 Application and Implementation..................................24  
9.1 Application Information............................................. 24  
9.2 Typical Applications.................................................. 24  
9.3 Power Supply Recommendations.............................26  
9.4 Layout....................................................................... 26  
10 Device and Documentation Support..........................28  
10.1 Documentation Support.......................................... 28  
10.2 Receiving Notification of Documentation Updates..28  
10.3 支持资源..................................................................28  
10.4 Trademarks.............................................................28  
10.5 静电放电警告.......................................................... 28  
10.6 术语表..................................................................... 28  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Thermal Information....................................................5  
6.4 Recommended Operating Conditions.........................5  
±15 V Dual Supply: Electrical Characteristics ..................6  
±15 V Dual Supply: Switching Characteristics .................7  
36 V Single Supply: Electrical Characteristics ................. 8  
36 V Single Supply: Switching Characteristics ................ 9  
12 V Single Supply: Electrical Characteristics ............... 10  
12 V Single Supply: Switching Characteristics ...............11  
±5 V Dual Supply: Electrical Characteristics ..................12  
±5 V Dual Supply: Switching Characteristics .................13  
7 Parameter Measurement Information..........................14  
7.1 On-Resistance.......................................................... 14  
7.2 Off-Leakage Current................................................. 14  
7.3 On-Leakage Current................................................. 15  
7.4 tON(EN) and tOFF(EN) .................................................. 16  
7.5 tON (VDD) Time............................................................17  
7.6 Propagation Delay.................................................... 17  
7.7 Charge Injection........................................................18  
7.8 Off Isolation...............................................................18  
Information.................................................................... 28  
11.1 Tape and Reel Information......................................29  
11.2 Mechanical Data..................................................... 31  
4 Revision History  
DATE  
REVISION  
NOTES  
March 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
S1  
S2  
1
2
3
4
5
10  
9
D1  
D2  
N.C.  
GND  
VDD  
8
VSS  
SEL2  
SEL1  
7
6
Not to scale  
5-1. DGS Package,  
10-Pin VSSOP  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NAME  
S1  
NO.  
1
I/O  
I/O  
Drain pin. Can be an input or output.  
S2  
2
Source pin 1. Can be an input or output.  
N.C.  
GND  
3
No internal connection. Can be shorted to GND or left floating.  
Ground (0 V) reference  
4
P
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
5
6
7
P
I
Logic control input, has internal pull-down resistor. Controls the switch connection. For more  
information, see 8.5.  
SEL1  
SEL2  
Logic control input, has internal pull-down resistor. Controls the switch connection. For more  
information, see 8.5.  
I
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a decoupling  
capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
8
P
D2  
D1  
9
I/O  
I/O  
Drain pin. Can be an input or output.  
Drain pin. Can be an input or output.  
10  
(1) I = input, O = output, I/O = input and output, P = power.  
(2) For what to do with unused pins, refer to 8.4.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
V
38  
VDD VSS  
VDD  
Supply voltage  
38  
V
0.5  
38  
VSS  
0.5  
V
VSEL or VEN  
ISEL or IEN  
VS or VD  
IIK  
Logic control input pin voltage (SELx)  
Logic control input pin current (SELx)  
Source or drain voltage (Sx, Dx)  
Diode clamp current(3)  
38  
V
0.5  
30  
VDD+0.5  
30  
mA  
V
30  
VSS0.5  
30  
mA  
mA  
°C  
°C  
°C  
IS or ID (CONT)  
TA  
Source or drain continuous current (Sx, Dx)  
Ambient temperature  
IDC + 10 %(4)  
150  
55  
65  
Tstg  
Storage temperature  
150  
TJ  
Junction temperature  
150  
(1) Operation outside the Absolute Maximum Rating may cause permanent device damage. Absolute Maximum Rating do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Condition. If  
used outside the Recommended Operating Condition but within the Absolute Maximum Rating, the device may not be fully functional,  
and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltages are with respect to ground, unless otherwise specified.  
(3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.  
(4) Refer to Source or Drain Continuous Current table for IDC specifications.  
6.2 ESD Ratings  
VALUE  
UNIT  
TMUX622x  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
±500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
4
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
 
 
 
 
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
6.3 Thermal Information  
TMUX622x  
DGS (VSSOP)  
10 PINS  
TBD  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
TBD  
TBD  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
TBD  
ΨJT  
TBD  
ΨJB  
RθJC(bot)  
TBD  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
VSS  
0
NOM  
MAX  
36  
UNIT  
V
(1)  
Power supply voltage differential  
VDD VSS  
VDD  
Positive power supply voltage  
36  
V
VS or VD  
VSEL or VEN  
Signal path input/output voltage (source or drain pin) (Sx, D)  
Address or enable pin voltage  
VDD  
36  
V
V
(2)  
IS or ID (CONT) Source or drain continuous current (Sx, D)  
TA Ambient temperature  
IDC  
mA  
°C  
125  
40  
(1) VDD and VSS can be any value as long as 4.5 V (VDD VSS) 36 V, and the minimum VDD is met.  
(2) Refer to Source or Drain Continuous Current table for IDC specifications.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
 
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
MAX UNIT  
±15 V Dual Supply: Electrical Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
2.1  
2.9  
3.8  
Ω
Ω
VS = 10 V to +10 V  
ID = 10 mA  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
4.5  
Ω
0.05  
0.5  
0.25  
0.3  
Ω
On-resistance mismatch between VS = 10 V to +10 V  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
Ω
channels  
ID = 10 mA  
0.35  
0.6  
Ω
Ω
VS = 10 V to +10 V  
IS = 10 mA  
0.7  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
Ω
0.85  
Ω
0.01  
0.05  
VS = 0 V, IS = 10 mA  
/°C  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
0.15  
1.6  
15  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
0.15  
1.6  
15  
IS(OFF)  
Source off leakage current(1)  
Drain off leakage current(1)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
0.05  
0.05  
0.15  
1.6  
15  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
0.15  
1.6  
15  
ID(OFF)  
40°C to +85°C  
40°C to +125°C  
25°C  
0.15  
1.6  
15  
0.15  
1.6  
15  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is on  
VS = VD = ±10 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
2.5  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
1.5  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3.5  
POWER SUPPLY  
25°C  
39  
7
60  
70  
85  
25  
30  
45  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
6
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
±15 V Dual Supply: Switching Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ± 10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
100  
170  
185  
200  
180  
195  
210  
ns  
ns  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
tON  
Turn-on time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
100  
ns  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
ns  
tOFF  
Turn-off time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
0.19  
0.2  
ms  
ms  
ms  
ps  
VDD rise time = 1 µs  
RL = 300 Ω, CL = 35 pF  
Device turn on time  
(VDD to output)  
tON (VDD)  
40°C to +85°C  
40°C to +125°C  
25°C  
0.2  
tPD  
Propagation delay  
Charge injection  
500  
-15  
RL = 50 Ω, CL = 5 pF  
QINJ  
VS = 0 V, CL = 100 pF  
25°C  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
OISO  
OISO  
XTALK  
XTALK  
BW  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
70  
50  
114  
93  
60  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
dB  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Crosstalk  
dB  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
MHz  
dB  
3dB Bandwidth  
Insertion loss  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
IL  
0.18  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
40  
VPP = 15 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0005  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
33  
33  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
120  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
MAX UNIT  
36 V Single Supply: Electrical Characteristics  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
2.5  
3.2  
4.2  
4.9  
0.2  
0.25  
0.3  
1
Ω
Ω
VS = 0 V to 30 V  
ID = 10 mA  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
0.1  
0.3  
Ω
VS = 0 V to 30 V  
ID = 10 mA  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
Ω
Ω
Ω
VS = 0 V to 30 V  
IS = 10 mA  
1.5  
2
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
Ω
Ω
0.009  
0.05  
VS = 18 V, IS = 10 mA  
/°C  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
0.25  
3.5  
26  
VDD = 39.6 V, VSS = 0 V  
Switch state is off  
VS = 30 V / 1 V  
0.25  
3.5  
26  
IS(OFF)  
Source off leakage current(1)  
Drain off leakage current(1)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 30 V  
0.05  
0.05  
0.25  
3.5  
26  
VDD = 39.6 V, VSS = 0 V  
Switch state is off  
VS = 30 V / 1 V  
0.25  
3.5  
26  
ID(OFF)  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 30 V  
0.25  
3.5  
26  
0.25  
3.5  
26  
VDD = 39.6 V, VSS = 0 V  
Switch state is on  
VS = VD = 30 V or 1 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
2.5  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
1.5  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3.5  
POWER SUPPLY  
25°C  
30  
60  
70  
85  
µA  
µA  
µA  
VDD = 39.6 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
8
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
36 V Single Supply: Switching Characteristics  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
110  
180  
190  
200  
180  
195  
200  
ns  
ns  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
tON  
Turn-on time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
90  
ns  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
ns  
tOFF  
Turn-off time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
0.17  
0.19  
0.19  
500  
ms  
ms  
ms  
ps  
VDD rise time = 1 µs  
RL = 300 Ω, CL = 35 pF  
Device turn on time  
(VDD to output)  
tON (VDD)  
40°C to +85°C  
40°C to +125°C  
25°C  
tPD  
Propagation delay  
Charge injection  
RL = 50 Ω, CL = 5 pF  
QINJ  
VS = 18 V, CL = 100 pF  
25°C  
pC  
13  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
OISO  
OISO  
XTALK  
XTALK  
BW  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
70  
50  
112  
93  
65  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
dB  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Crosstalk  
dB  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
MHz  
dB  
3dB Bandwidth  
Insertion loss  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
IL  
0.19  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
60  
VPP =18 V, VBIAS = 18 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0004  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
25°C  
25°C  
35  
35  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 18 V, f = 1 MHz  
25°C  
120  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
MAX UNIT  
12 V Single Supply: Electrical Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
ANALOG SWITCH  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
4.6  
6
7.5  
8.4  
0.2  
0.32  
0.35  
2
Ω
Ω
VS = 0 V to 10 V  
ID = 10 mA  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
0.08  
1.2  
Ω
VS = 0 V to 10 V  
ID = 10 mA  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
Ω
Ω
Ω
VS = 0 V to 10 V  
IS = 10 mA  
2.2  
2.4  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
Ω
Ω
0.017  
0.05  
VS = 6 V, IS = 10 mA  
/°C  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
0.5  
2
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
0.5  
2  
IS(OFF)  
Source off leakage current(1)  
Drain off leakage current(1)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 10 V  
12  
0.5  
2
12  
0.5  
2  
0.05  
0.05  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
ID(OFF)  
40°C to +85°C  
40°C to +125°C  
25°C  
VD = 1 V / 10 V  
12  
0.5  
2
12  
0.5  
2  
VDD = 13.2 V, VSS = 0 V  
Switch state is on  
VS = VD = 10 V or 1 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
12  
12  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
2.5  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
1.5  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3.5  
POWER SUPPLY  
25°C  
15  
45  
55  
65  
µA  
µA  
µA  
VDD = 13.2 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
10  
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
12 V Single Supply: Switching Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
120  
180  
210  
230  
210  
235  
250  
ns  
ns  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
tON  
Turn-on time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
130  
ns  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
ns  
tOFF  
Turn-off time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
0.19  
0.2  
ms  
ms  
ms  
ps  
VDD rise time = 1 µs  
RL = 300 Ω, CL = 35 pF  
Device turn on time  
(VDD to output)  
tON (VDD)  
40°C to +85°C  
40°C to +125°C  
25°C  
0.2  
tPD  
Propagation delay  
Charge injection  
500  
6  
RL = 50 Ω, CL = 5 pF  
QINJ  
VS = 6 V, CL = 100 pF  
25°C  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
OISO  
OISO  
XTALK  
XTALK  
BW  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
70  
50  
112  
93  
75  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
dB  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Crosstalk  
dB  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
MHz  
dB  
3dB Bandwidth  
Insertion loss  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
IL  
0.3  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
65  
VPP = 6 V, VBIAS = 6 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0009  
CS(OFF)  
CD(OFF)  
CS(ON)  
CD(ON)  
Source off capacitance  
Drain off capacitance  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
25°C  
25°C  
38  
38  
pF  
pF  
,
On capacitance  
VS = 6 V, f = 1 MHz  
25°C  
110  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
MAX UNIT  
±5 V Dual Supply: Electrical Characteristics  
VDD = +5 V ± 10%, VSS = 5 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +5 V, VSS = 5 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
4
7.2  
8.6  
10  
Ω
Ω
VDD = +4.5 V, VSS = 4.5 V  
VS = 4.5 V to +4.5 V  
ID = 10 mA  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
Ω
0.1  
1.3  
0.3  
0.35  
0.4  
2.2  
2.5  
2.8  
Ω
On-resistance mismatch between VS = 4.5 V to +4.5 V  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
Ω
channels  
ID = 10 mA  
Ω
Ω
VS = 4.5 V to +4.5 V  
ID = 10 mA  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
40°C to +125°C  
25°C  
Ω
Ω
0.019  
0.05  
VS = 0 V, IS = 10 mA  
/°C  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
nA  
0.25  
1
VDD = +5.5 V, VSS = 5.5 V  
Switch state is off  
VS = +4.5 V / 4.5 V  
VD = 4.5 V / + 4.5 V  
0.25  
1  
IS(OFF)  
Source off leakage current(1)  
Drain off leakage current(1)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
25°C  
12  
0.25  
1
12  
0.25  
1  
0.05  
0.05  
VDD = +5.5 V, VSS = 5.5 V  
Switch state is off  
VS = +4.5 V / 4.5 V  
VD = 4.5 V / + 4.5 V  
ID(OFF)  
40°C to +85°C  
40°C to +125°C  
25°C  
12  
0.25  
1
12  
0.25  
1  
VDD = +5.5 V, VSS = 5.5 V  
Switch state is on  
VS = VD = ±4.5 V  
IS(ON)  
ID(ON)  
40°C to +85°C  
40°C to +125°C  
12  
12  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
2.5  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
1.5  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3.5  
POWER SUPPLY  
25°C  
26  
5
45  
55  
65  
11  
14  
22  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = +5.5 V, VSS = 5.5 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD = +5.5 V, VSS = 5.5 V  
Logic inputs = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
12  
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
±5 V Dual Supply: Switching Characteristics  
VDD = +5 V ± 10%, VSS = 5 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +5 V, VSS = 5 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
220  
300  
350  
380  
280  
330  
350  
ns  
ns  
VS = 3 V  
RL = 300 Ω, CL = 35 pF  
tON  
Turn-on time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
210  
ns  
VS = 3 V  
RL = 300 Ω, CL = 35 pF  
ns  
tOFF  
Turn-off time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
ns  
0.19  
0.19  
0.19  
500  
5  
ms  
ms  
ms  
ps  
VDD rise time = 1 µs  
RL = 300 Ω, CL = 35 pF  
Device turn on time  
(VDD to output)  
tON (VDD)  
40°C to +85°C  
40°C to +125°C  
25°C  
tPD  
Propagation delay  
Charge injection  
RL = 50 Ω, CL = 5 pF  
QINJ  
VS = 0 V, CL = 100 pF  
25°C  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
OISO  
OISO  
XTALK  
XTALK  
BW  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
70  
50  
117  
94  
78  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
dB  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Crosstalk  
dB  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
MHz  
dB  
3dB Bandwidth  
Insertion loss  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
IL  
0.35  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
68  
VPP = 5 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.001  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
40  
40  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
110  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. 7-1 shows the measurement setup used to measure RON. Voltage (V) and current (ISD) are  
measured using the following setup, where RON is computed as RON = V / ISD  
:
V
ISD  
Sx  
Dx  
VS  
RON  
7-1. On-Resistance  
7.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current.  
2. Drain off-leakage current.  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
7-2 shows the setup used to measure both off-leakage currents.  
.
.
VDD  
VSS  
VDD  
VSS  
Is (OFF)  
ID (OFF)  
D1  
D2  
D1  
D2  
S1  
S2  
S1  
S2  
A
A
Is (OFF)  
ID (OFF)  
VD  
VD  
VS  
VS  
A
A
GND  
GND  
VS  
VS  
VD  
VD  
IS(OFF)  
ID(OFF)  
7-2. Off-Leakage Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
14  
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VSS  
VDD  
VSS  
Is (ON)  
ID (ON)  
S1  
S2  
D1  
D2  
D1  
D2  
S1  
S2  
N.C.  
N.C.  
A
N.C.  
A
Is (ON)  
ID (ON)  
VD  
A
A
N.C.  
VS  
GND  
GND  
VD  
VS  
IS(ON)  
ID(ON)  
7-3. On-Leakage Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
7.4 tON(EN) and tOFF(EN)  
Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen  
past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-4  
shows the setup used to measure turn-on time, denoted by the symbol tON(EN)  
.
Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen  
past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-4  
shows the setup used to measure turn-off time, denoted by the symbol tOFF(EN)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VSEL  
0 V  
VDD  
VSS  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
VS  
Sx  
Dx  
Output  
tON  
tOFF  
90%  
RL  
CL  
Output  
0 V  
10%  
GND  
VSELx  
7-4. Turn-On and Turn-Off Time Measurement Setup  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
16  
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
7.5 tON (VDD) Time  
The tON (VDD) time is defined as the time taken by the output of the device to rise to 90% after the supply has  
risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in  
the system. 7-5 shows the setup used to measure turn on time, denoted by the symbol tON (VDD)  
.
VSS  
0.1 µF  
0.1 µF  
VDD  
Supply  
VDD  
VDD  
VSS  
tr = 10 µs  
4.5 V  
Ramp  
VS  
D1  
D2  
Output  
CL  
S1  
0 V  
tON  
RL  
Output  
VS  
S2  
90%  
Output  
0 V  
CL  
3 V  
SELx  
GND  
7-5. tON (VDD) Time Measurement Setup  
7.6 Propagation Delay  
Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal  
has risen or fallen past the 50% threshold. 7-6 and 方程式 1 shows the setup used to measure propagation  
delay, denoted by the symbol tPD  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
250 mV  
Input  
VDD  
S1  
VSS  
50%  
50%  
tr < 40 ps  
tf < 40 ps  
(VS)  
50 Ω  
50 Ω  
Output  
CL  
D1  
D2  
VS  
0 V  
tPD  
1
tPD 2  
RL  
S2  
Output  
VS  
Output  
0 V  
50%  
50%  
RL  
CL  
GND  
7-6. Propagation Delay Measurement Setup  
t
= max t 1, t 2  
PD  
(1)  
Prop Delay  
PD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
 
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
7.7 Charge Injection  
The TMUX622x has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS  
transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal.  
The amount of charge injected into the source or drain of the device is known as charge injection, and is  
denoted by the symbol QC. 7-7 shows the setup used to measure charge injection from source (Sx) to drain  
(D).  
VDD  
VSS  
0.1 µF  
0.1 µF  
VS  
3 V  
VSEL  
VDD  
VSS  
tr < 20 ns  
tf < 20 ns  
S1  
S2  
Output  
CL  
D1  
D2  
0 V  
VS  
Output  
CL  
Output  
VS  
VOUT  
SELx  
QINJ = CL ×  
VOUT  
VSEL  
GND  
7-7. Charge-Injection Measurement Setup  
7.8 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 7-8 and 方  
2 shows the setup used to measure off isolation. Use off isolation equation to compute off isolation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S1  
D1  
50  
VOUT  
VSIG  
50  
Sx/Dx  
50  
GND  
7-8. Off Isolation Measurement Setup  
V
OUT  
Off Isolation = 20 × LOG  
(2)  
V
S
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
18  
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
7.9 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 7-9 shows the setup used to measure, and 方程式 3 shows the  
equation used to calculate crosstalk.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VOUT  
S1  
S2  
D1  
50  
50  
Vs  
D2  
50  
50  
GND  
VSIG  
7-9. Crosstalk Measurement Setup  
V
OUT  
Crosstalk = 20 × LOG  
(3)  
V
S
7.10 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the device. The  
characteristic impedance, Z0, for the measurement is 50 Ω. 7-10 and 方程式 4 shows the setup used to  
measure bandwidth.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
Sx  
Dx  
50  
VOUT  
VSIG  
50  
GND  
7-10. Bandwidth Measurement Setup  
V
OUT  
Bandwidtℎ = 20 × Log  
(4)  
V
S
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
 
 
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
7.11 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
mux output. The on-resistance of the device varies with the amplitude of the input signal and results in distortion  
when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as  
THD + N.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Audio Precision  
SX  
40 Ω  
Dx  
VOUT  
VS  
RL  
GND  
7-11. THD + N Measurement Setup  
7.12 Power Supply Rejection Ratio (PSRR)  
PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage  
pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave  
of 100 mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the  
AC PSRR.  
VDD  
Network Analyzer  
VSS  
DC Bias  
Injector  
With and Without  
Capacitor  
50  
0.1 µF  
0.1 µF  
VDD  
S1  
VSS  
620 mVPP  
VIN  
VBIAS  
Other Sx/  
Dx pins  
50 Ω  
50 Ω  
VOUT  
D1  
GND  
RL  
CL  
7-12. AC PSRR Measurement Setup  
V
OUT  
PSRR = 20 × Log  
(5)  
V
IN  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
20  
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TMUX622x is a 1:1, 2-channel switch. Each input is turned on or turned off based on the state of the select  
line and enable pin.  
8.2 Functional Block Diagram  
The following figure shows the functional block diagram of the TMUX622x.  
VDD  
VSS  
VDD  
VSS  
SW  
SW  
S1  
S2  
D1  
D2  
S1  
S2  
D1  
D2  
SW  
SW  
SEL1  
SEL2  
SEL1  
SEL2  
TMUX6221  
(SELx = Logic 1)  
TMUX6222  
(SELx = Logic 1)  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX622x conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each  
channel has very similar characteristics in both directions and supports both analog and digital signals.  
8.3.2 Rail-to-Rail Operation  
The valid signal path input and output voltage for TMUX622x ranges from VSS to VDD  
.
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX622x has 1.8 V logic compatible control for all logic control inputs. 1.8 V logic level inputs allows the  
device to interface with processors that have lower logic I/O rails and eliminates the need for an external  
translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations, refer to  
Simplifying Design with 1.8 V logic Muxes and Switches.  
8.3.4 Integrated Pull-Down Resistor on Logic Pins  
The TMUX622x have internal weak pull-down resistors to GND to ensure the logic pins are not left floating. The  
value of this pull-down resistor is approximately 4 MΩ, but is clamped to about 1 µA at higher voltages. This  
feature integrates up to four external components and reduces system size and cost.  
8.3.5 Fail-Safe Logic  
The TMUX622x supports Fail-Safe Logic on the control input pins (EN and SEL) allowing for operation up to 36  
V above ground, regardless of the state of the supply pins. This feature allows voltages on the control pins to be  
applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system  
complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-  
Safe Logic feature allows the logic input pins of the TMUX622x to be ramped to +36 V while VDD and VSS = 0 V.  
The logic control inputs are protected against positive faults of up to +36 V in powered-off condition, but do not  
offer protection against negative overvoltage conditions.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
 
 
 
 
 
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
8.3.6 Latch-Up Immune  
Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition  
is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains  
even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic  
damage due to excessive current levels. The latch-up condition typically requires a power cycle to eliminate the  
low impedance path.  
The TMUX622x family of devices are constructed on silicon-on-insulator (SOI) based process where an oxide  
layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures  
from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events  
due to overvoltage or current injections. The latch-up immunity feature allows the TMUX622x family of switches  
and multiplexers to be used in harsh environments.  
8.3.7 Ultra-Low Charge Injection  
The TMUX622x has a transmission gate topology, as shown in 8-1. Any mismatch in the stray capacitance  
associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
8-1. Transmission Gate Topology  
The TMUX622x contains specialized architecture to reduce charge injection on the Drain (Dx). To further reduce  
charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the Source (Sx). This  
will ensure that excess charge from the switch transition will be pushed into the compensation capacitor on the  
Source (Sx) instead of the Drain (Dx). As a general rule, Cp should be 20x larger than the equivalent load  
capacitance on the Drain (Dx). 8-2 shows charge injection variation with different compensation capacitors on  
the Source side. This plot was captured on the TMUX6219 as part of the TMUX62xx family with a 100 pF load  
capacitance.  
8-2. Charge Injection Compensation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
22  
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
8.4 Device Functional Modes  
The TMUX622x devices have two independently selectable single-pole, single-throw switches that are turned-on  
or turned-off based on the state of the corresponding select pin. The control pins can be as high as 36 V.  
The TMUX622x devices can be operated without any external components except for the supply decoupling  
capacitors. The SEL pins has internal pull-down resistor of 4 MΩ. If unused, tie the SEL pins to GND so that the  
device does not consume additional current. For more information, see Implications of Slow or Floating CMOS  
Inputs. Unused signal path inputs (S1, S2, D1, or D2) should be connected to GND.  
8.5 Truth Tables  
8-1 provides the truth tables for the TMUX622x.  
8-1. TMUX6221 Truth Table  
SEL x  
CHANNEL x  
Channel x OFF  
Channel x ON  
0
1
8-2. TMUX6222 Truth Table  
CHANNEL x  
SEL x  
0
1
Channel x ON  
Channel x OFF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
TMUX622x is part of the precision switches and multiplexers family of devices. TMUX622x offers low RON, low  
on and off leakage currents and ultra-low charge injection performance. These properties make TMUX622x ideal  
for implementing high precision industrial systems requiring selection of one of two inputs or outputs.  
9.2 Typical Applications  
9.2.1 Switched Gain Amplifier Discrete PGA  
Switches and multiplexers are commonly used in the feedback path of the amplifier circuits to provide  
configurable gain control. By using various resistor values on each switch path, the TMUX622x allows the  
system to have multiple gain settings. An external resistor, ensures the amplifier is not operating in an open loop  
configuration, and gives up to 4 gain settings. The leakage current, on-resistance, and charge injection  
performance of the TMUX622x are key specifications to evaluate when selecting a device for gain control.  
9-1 shows the TMUX622x configured to select the gain of an op-amp, creating a discrete PGA.  
For more information on how to use TI's analog switches in Discrete Programmable Gain Amplifier (PGA) such  
as the impact of On-Capacitance, see Choosing the Right Multiplexer for a Discrete Programmable Gain  
Amplifier (PGA)  
V
DD VSS  
0.1µF  
0.1µF  
VI/O  
Processor  
SEL1  
SEL2  
720  
110  
1.8V Logic I/O  
Digital Processing  
900  
VI/O  
VDD  
-
OP  
AMP  
Gain / Filter  
Network  
ADC  
VIN  
+
VSS  
9-1. Gain Switching  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
24  
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
9.2.1.1 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETERS  
Supply (VDD  
Supply (VSS  
VALUES  
15 V  
)
)
-15 V  
Input or output signal range  
Control logic thresholds  
-15 V to 15 V (Rail-to-Rail)  
1.8 V compatible  
9.2.1.2 Detailed Design Procedure  
The TMUX622x device can operate without any external components except for the supply decoupling  
capacitors. All inputs signals passing through the switch must fall within the recommend operating conditions of  
the TMUX622x including signal range and continuous current. For this design example, with a supply of +15 V  
and -15 V, the signals can range from +15 V to -15 V when the device is powered.  
The application shown in Switching Gain Settings demonstrates how to use the TMUX622x to control the  
feedback gain of a precision op-amp. This feedback design can very sensitive to induced voltage and current  
offsets. The TMUX622x has a typical on-leakage current of 100 pA which would lead to an accuracy well within  
1% of a full scale 1 µA signal, thus minimizing errors from current offsets. The low on-resitance of the  
TMUX622x leads to a low error in the feedback resistance and resulting gain. This additionally minimizes any  
voltage offsets.  
9-2. Programable Gain and Error  
SEL1  
SEL2  
Gain  
10x  
5x  
Gain Error  
0%  
0
1
0
0
0
1
0.13%  
0.16%  
2x  
9.2.1.3 Application Curves  
The TMUX622x is capable of switching signals with minimal distortion because of the ultra-low leakage currents  
and excellent on-resistance flatness. 9-2 shows how the on-resistance for the TMUX622x varies with different  
supply voltages.  
TA = 25°C  
9-2. On-Resistance vs Source or Drain Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
9.3 Power Supply Recommendations  
The TMUX622x operates across a wide supply range of of ±4.5 V to ±18 V (4.5 V to 36 V in single-supply  
mode). The device also performs well with asymmetrical supplies such as VDD = 12 V and VSS = 5 V.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails  
to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF at both the  
VDD and VSS pins to ground. Place the bypass capacitors as close to the power supply pins of the device as  
possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs)  
that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply  
decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use  
of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple  
vias in parallel lowers the overall inductance and is beneficial for connections to ground and power planes.  
Always ensure the ground (GND) connection is established before supplies are ramped.  
9.4 Layout  
9.4.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and selfinductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 9-3 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
9-3. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via  
introduces discontinuities in the signals transmission line and increases the chance of picking up interference  
from the other layers of the board. Be careful when designing test points, through-hole pins are not  
recommended at high frequencies.  
Some key considerations are:  
For reliable operation, connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD/VSS and  
GND. We recommend a 0.1 µF and 1 µF capacitor, placing the lowest value capacitor as close to the pin as  
possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground  
planes.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
26  
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
9.4.2 Layout Example  
S1  
S2  
D1  
D2  
TMUX622x  
NC  
VSS  
SEL1  
SEL2  
GND  
VDD  
Wide (low inductance)  
trace for power  
C
C
Wide (low inductance)  
trace for power  
Via to ground plane  
9-4. TMUX622x Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers.  
Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment.  
Texas Instruments, Multiplexers and Signal Switches Glossary.  
Texas Instruments, QFN/SON PCB Attachment.  
Texas Instruments, Quad Flatpack No-Lead Logic Packages.  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches.  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers.  
Texas Instruments, True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC Circuit.  
10.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
28  
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
 
 
 
 
 
 
 
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
11.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PTMUX6221DGSR  
PTMUX6222DGSR  
VSSOP  
VSSOP  
DGS  
DGS  
10  
10  
2500  
2500  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
2500  
2500  
Length (mm) Width (mm)  
Height (mm)  
50.0  
PTMUX6221DGSR  
PTMUX6222DGSR  
VSSOP  
VSSOP  
DGS  
DGS  
10  
10  
366.0  
366.0  
364.0  
364.0  
50.0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
30  
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
11.2 Mechanical Data  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
 
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
10  
SYMM  
6
5
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCDS452  
32  
Submit Document Feedback  
Product Folder Links: TMUX6221 TMUX6222  
TMUX6221, TMUX6222  
ZHCSOX0 MARCH 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
1
10  
SYMM  
8X (0.5)  
6
5
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMUX6221 TMUX6222  
English Data Sheet: SCDS452  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTMUX6221DGSR  
PTMUX6222DGSR  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGS  
DGS  
10  
10  
2500  
2500  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Samples  
Samples  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-May-2023  
Addendum-Page 2  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY