PTPS7B8601BQDDARQ1 [TI]

具有电源正常状态指示功能的汽车类 500mA、40V 超低 IQ 低压降 (LDO) 线性稳压器 | DDA | 8 | -40 to 150;
PTPS7B8601BQDDARQ1
型号: PTPS7B8601BQDDARQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电源正常状态指示功能的汽车类 500mA、40V 超低 IQ 低压降 (LDO) 线性稳压器 | DDA | 8 | -40 to 150

稳压器
文件: 总29页 (文件大小:1802K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7B86-Q1  
SBVS362 JUNE 2020  
TPS7B86-Q1 500-mA, 40-V, Low-Dropout Regulator  
With Power-Good  
1 Features  
3 Description  
The TPS7B86-Q1 is a low-dropout linear regulator  
designed to connect to the battery in automotive  
applications. The device has an input voltage range  
extending to 40 V, which allows the device to  
withstand transients (such as load dumps) that are  
anticipated in automotive systems. With only a 20-µA  
quiescent current at light loads, the device is an  
optimal solution for powering always-on components  
such as microcontrollers (MCUs) and controller area  
network (CAN) transceivers in standby systems.  
1
AEC-Q100 qualified for automotive applications:  
Temperature grade 1: –40°C to +125°C, TA  
Junction temperature: –40°C to +150°C, TJ  
Input voltage range: 3 V to 40 V (42 V max)  
Output voltage range:  
Adjustable output: 1.2 V to 18 V  
Fixed output: 3.3 V and 5 V  
Maximum output current: 500 mA  
Output voltage accuracy: ±1% (max)  
Low dropout voltage:  
The device has a state-of-the-art transient response  
that allows the output to quickly react to changes in  
load or line (for example, during cold-crank  
conditions). Additionally, the device has a novel  
architecture that minimizes output overshoot when  
recovering from dropout. During normal operation, the  
device has a tight DC accuracy of ±1% over line,  
load, and temperature.  
500 mV (max) at 450 mA (VOUT 3.3 V)  
Low quiescent current:  
20 µA (typ) at light loads  
5 µA (max) when disabled  
Excellent line transient response:  
The device is equipped with a power-good output to  
indicate when the output voltage is close to its final  
value. The power-good delay can be adjusted by  
external components, thus allowing the delay time to  
be configured for a specific system.  
±2% VOUT deviation during cold-crank  
±2% VOUT deviation (1-V/µs VIN slew rate)  
Dropout voltage: 555 mV (max) at VOUT 3.3 V  
Power-good with programmable delay period  
Stable with a 2.2-µF or larger capacitor  
Package options:  
The device is available in thermally conductive  
packaging to allow the device to efficiently transfer  
heat to the circuit board.  
3-pin TO-252 package: (RθJA): 29.7°C/W  
8-pin SO-8 package: (RθJA): 41.8°C/W  
Device Information(1)  
PART NUMBER  
PACKAGE  
HSOP (8)  
TO-252 (5)  
BODY SIZE (NOM)  
4.89 mm × 3.90 mm  
6.60 mm × 6.10 mm  
2 Applications  
TPS7B86-Q1  
Reconfigurable instrument clusters  
Body control modules (BCM)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Always-on battery-connected applications:  
Automotive gateways  
Remote keyless entries (RKE)  
Output Equal to Reference Voltage  
Line Transient Response (3-V/µs VIN Slew Rate)  
TPS7B86-Q1  
V
I
45  
40  
35  
30  
25  
20  
15  
10  
5
0.25  
V
V
bat  
reg  
VIN  
VOUT  
10 F  
0.1 F  
0.2  
0.15  
0.1  
EN  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
GND  
GND  
0
0
500  
1000  
1500  
Time (ms)  
2000  
2500  
3000  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for pre-production products; subject to  
change without notice.  
 
 
 
TPS7B86-Q1  
SBVS362 JUNE 2020  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Application .................................................. 22  
Power Supply Recommendations...................... 22  
1
2
3
4
5
6
Features.................................................................. 1  
8
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagrams ..................................... 14  
7.3 Feature Description................................................. 16  
9
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Examples................................................... 24  
11 Device and Documentation Support ................. 25  
11.1 Device Support...................................................... 25  
11.2 Documentation Support ........................................ 25  
11.3 Receiving Notification of Documentation Updates 25  
11.4 Support Resources ............................................... 25  
11.5 Trademarks........................................................... 25  
11.6 Electrostatic Discharge Caution............................ 25  
11.7 Glossary................................................................ 25  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 25  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
June 2020  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TPS7B86-Q1  
 
TPS7B86-Q1  
www.ti.com  
SBVS362 JUNE 2020  
5 Pin Configuration and Functions  
KVU Package  
5-Pin TO-252  
Top View  
DDA Package  
8-Pin SOIC  
Top View  
VO  
FB/NC  
NC  
1
2
3
4
8
7
6
5
VI  
EN  
NC  
GND  
Thermal pad  
Thermal  
Pad  
GND  
Not to scale  
DDA Package With PG (Preview)  
8-Pin SOIC  
Top View  
Not to scale  
IN  
OUT  
FB/NC  
DELAY  
NC  
1
8
7
6
5
EN  
PG  
GND  
2
3
4
Thermal  
Pad  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
SBVS362 JUNE 2020  
www.ti.com  
Pin Functions  
PIN  
DDA  
(Without  
PG)  
TYPE(1)  
DESCRIPTION  
DDA  
(With PG)  
NAME  
KVU  
Reset-pulse delay adjustment. Connecting a capacitor from this pin to  
GND changes the power-good (PG) reset delay.  
DELAY  
EN  
2
3
7
2
5
4
I
I
Enable pin. The device is disabled when the enable pin becomes  
lower than the enable logic input low level (VIL).  
7
Feedback pin when using an external resistor divider or an NC pin  
when using the device with a fixed output voltage.  
FB/NC  
GND  
NC  
4
2
5
I
Ground pin. Connect this pin to the thermal pad with a low-impedance  
connection.  
3
G
No internal connection. This pin can be left floating or tied to GND for  
the best thermal performance.  
3, 4, 6  
Input power-supply voltage pin. For best transient response and to  
minimize input impedance, use the recommended value or larger  
ceramic capacitor from IN to ground as listed in the Recommended  
Operating Conditions table and the Input Capacitor section. Place the  
input capacitor as close to the output of the device as possible.  
IN  
1
8
8
P
Regulated output voltage pin. A capacitor is required from OUT to  
ground for stability. For best transient response, use the nominal  
recommended value or larger ceramic capacitor from OUT to ground;  
see the Recommended Operating Conditions table and the Output  
Capacitor section. Place the output capacitor as close to output of the  
device as possible.  
OUT  
5
1
1
6
O
Power good. This pin has an internal pullup resistor. Do not connect  
this pin to VO. VPG is logic level high when VOUT is above the power-  
good threshold.  
PG  
O
Thermal pad. Connect the pad to GND for the best possible thermal  
performance. See the Layout section for more information.  
Thermal pad  
(1) I = input; O = output; P = power; G = ground.  
4
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
www.ti.com  
SBVS362 JUNE 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX UNIT  
VIN  
EN  
VOUT  
FB  
Unregulated input  
Enable input  
42  
42  
V
V
Regulated output  
Feedback  
–0.3 VIN + 0.3 V(2)  
V
–0.3  
–40  
–65  
20  
150  
150  
V
TJ  
Operating junction temperature  
Storage temperature  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. Theseare stress ratings  
only and functional operation of the device at these or any other conditionsbeyond those indicated under recommended operating  
conditions isnot implied. Exposure to absolute-maximum-rated conditions for extended periods may affect devicereliability.  
(2) The absolute maximum rating is VIN + 0.3 V or 20 V, whichever is smaller  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
All pins  
V
Charged-device model (CDM), per AEC Q100-  
011  
Corner pins  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordancewith the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
TYP  
MAX  
40  
UNIT  
VIN  
Input voltage  
V
V
VOUT  
IOUT  
FEN  
VEN  
COUT  
ESR  
CIN  
Output voltage  
1.2  
0
18  
Output current  
500  
5
mA  
kHz  
V
Enable pin frequency  
High voltage (I/O)  
0
2.2  
40  
Output capacitor(1)  
Output capacitor ESR requirements  
Input capacitor  
220  
2
µF  
Ω
0.001  
1
µF  
°C  
TJ  
Operating junction temperature  
–40  
150  
(1) Effective output capacitance of 1 µF minimum required for stability.  
6.4 Thermal Information  
TPS7B86-Q1  
THERMAL METRIC(1)(2)  
KVU (DPAK-5)  
SO8-EP  
8 PINS  
41.8  
55  
UNIT  
5 PINS  
29.7  
40.2  
8.6  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
θJCtop  
θJB  
17.3  
4.5  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.9  
ψJB  
8.5  
17.3  
5.7  
θJCbot  
1.5  
(1) The thermal data is based on the JEDEC standard high K profile,JESD 51-7. Two-signal, two-plane, four-layer board with 2-oz. copper.  
The copper pad is soldered tothe thermal land pattern. Also, correct attachment procedure must be incorporated.  
(2) For more information about traditional and new thermal metrics,see the Semiconductor and IC PackageThermal Metrics application  
report.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
SBVS362 JUNE 2020  
www.ti.com  
6.5 Electrical Characteristics  
Specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 0 mA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF, VEN = 2 V  
(unless otherwise noted). Typical values are at TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.85  
–0.85  
–1  
TYP  
MAX  
0.85  
0.85  
1
UNIT  
VIN = VOUT + 1V to 40 V, IOUT = 100 µA to 450 mA, TJ = 25ºC  
VIN = VOUT + 1V to 40 V, IOUT = 100 µA to 500 mA, TJ = 25ºC  
VIN = VOUT + 1V to 40 V, IOUT = 100 µA to 450 mA  
VIN = VOUT + 1V to 40 V, IOUT = 100 µA to 500 mA  
VIN = VOUT + 1V, IOUT = 100 µA to 450 mA , VOUT 3.3 V  
VIN = VOUT + 1V, IOUT = 100 µA to 500 mA , VOUT 3.3 V  
VIN = VOUT + 1V, IOUT = 100 µA to 450 mA , VOUT < 3.3 V  
VIN = VOUT + 1V, IOUT = 100 µA to 500 mA , VOUT < 3.3 V  
VIN = VOUT + 1V to 40 V, IOUT = 100 µA  
VOUT  
Regulated output  
%
–1  
1
0.4  
0.45  
0.6  
0.65  
0.2  
20  
ΔVOUT(ΔIOUT)  
Load regulation  
%
%
ΔVOUT(ΔIOUT)  
ΔVOUT(ΔVIN)  
Load regulation  
Line regulation  
%
VIN = VOUT + 1V to 40V, IOUT = 0 mA, TJ = 25ºC  
VIN = VOUT + 1V to 40 V, IOUT = 0 mA  
TBD  
µA  
µA  
µA  
IQ  
Quiescent current  
25  
IOUT = 500 µA  
35  
IOUT = 500 mA, VOUT 3.3 V, VIN = VOUT(NOM)  
IOUT = 450 mA, VOUT 3.3 V, VIN = VOUT(NOM)  
IOUT = 315 mA, VOUT 3.3 V, VIN = VOUT(NOM)  
555  
500  
370  
43  
VDO  
Dropout voltage fixed output voltages  
mV  
IOUT 1 mA, VOUT 3.3 V, VIN = VOUT(NOM) x 0.95  
IOUT = 500 mA, VFB = 0.61 V, VIN = 3 V  
IOUT = 450 mA, VFB = 0.61 V, VIN = 3 V  
IOUT = 315 mA, VFB = 0.61 V, VIN = 3 V  
793  
714  
500  
43  
VDO  
Dropout voltage adjustable output  
mV  
µA  
IOUT 1 mA, VFB = 0.61 V, VIN = 3 V  
VEN = 0 V, TJ = 25ºC  
VEN = 0V  
3
ISHUTDOWN  
Shutdown supply current (IGND)  
5
IEN  
EN pin current  
VEN = VIN = 13.5 V  
Reference voltage for FB  
Current into FB pin  
VIN rising, IOUT = 1 mA  
VIN falling, IOUT = 1 mA  
1
µA  
V
VFB  
Feedback voltage  
0.643  
0.65  
0.657  
10  
IFB  
Feedback current  
nA  
V
VUVLO(RISING)  
VUVLO(FALLING)  
VUVLO(HYST)  
VIL  
Rising Input Supply UVLO  
Falling Input Supply UVLO  
V UVLO(IN) Hysteresis  
2.6  
2.7  
2.5  
2.82  
2.6  
2.38  
V
200  
mV  
V
Enable Logic input low level  
Enable Logic input high level  
Output current limit  
0.7  
VIH  
2
V
ICL  
VIN = VOUT + 1 V, VOUT short to 90% x VOUT(NOM)  
VIN - VOUT = 1V, Frequency = 1 kHz, IOUT = 450 mA  
540  
780  
mA  
dB  
kΩ  
V
PSRR  
Power supply ripple rejection  
70  
30  
RPG  
Power Good internal pull up resistor  
PG pin low level output voltage  
Default power-good threshold  
Default power-good threshold  
Power-good hysteresis  
10  
50  
0.4  
95  
VPG(OL)  
VPG(TH,RISING)  
VPG(TH,FALLING)  
VPG(HYST)  
VDLY(TH)  
IDLY(CHARGE)  
TJ  
VOUT 0.83 x VOUT  
VOUT rising  
VOUT falling  
85  
83  
93  
%VOUT  
2
1.21  
1.5  
Threshold to release Power good high Voltage at Delay pin rising  
1.17  
1
1.25  
2
V
Delay capacitor charging current  
Junction temperature  
Voltage at Delay pin = 1V  
µA  
°C  
°C  
°C  
–40  
150  
TSD(SHUTDOWN)  
TSD(HYST)  
Junction shutdown temperature  
Hysteresis of thermal shutdown  
175  
20  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
100  
90  
MAX  
UNIT  
µs  
t(DLY_FIX)  
t(Deglitch)  
Power-good propagation delay  
Power-good deglitch time  
No capacitor connect at DELAY pin  
No capacitor connect at DELAY pin  
µs  
6
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
www.ti.com  
SBVS362 JUNE 2020  
Switching Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Delay capacitor value:  
C(DELAY) = 100 nF  
t(DLY)  
Power-good propagation delay  
80  
ms  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
SBVS362 JUNE 2020  
www.ti.com  
6.7 Typical Characteristics  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF, and VEN  
= 2 V (unless otherwise noted)  
5.015  
5.01  
5.005  
5
0.1  
0.05  
0
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
150 mA  
100 mA  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.3  
4.995  
4.99  
4.985  
4.98  
4.975  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature èC  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
VOUT = 5 V, IOUT = 150 mA  
Figure 2. Line Regulation vs VIN  
Figure 1. Accuracy vs Temperature  
5.015  
5.01  
5.005  
5
5.015  
5.01  
5.005  
5
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
4.995  
4.99  
4.985  
4.98  
4.975  
4.995  
4.99  
4.985  
4.98  
4.975  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
VOUT = 5 V, IOUT = 5 mA  
Figure 3. Line Regulation vs VIN  
VOUT = 5 V, IOUT = 1 mA  
Figure 4. Line Regulation vs VIN  
550  
5.015  
5.01  
5.005  
5
-55 èC  
-40 èC  
0 èC  
25 èC  
85 èC  
125 èC  
150 èC  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
4.995  
4.99  
4.985  
4.98  
4.975  
0
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
0
25  
50  
75  
Output Current (mA)  
100  
125  
150  
VIN = 3 V  
VOUT = 5 V  
Figure 6. Dropout Voltage (VDO) vs IOUT  
Figure 5. Load Regulation vs IOUT  
8
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
www.ti.com  
SBVS362 JUNE 2020  
Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF, and VEN  
= 2 V (unless otherwise noted)  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
-55 èC  
-40 èC  
0 èC  
25 èC  
85 èC  
125 èC  
150 èC  
-55èC  
-40èC  
0èC  
85èC  
150èC  
25èC  
125èC  
0
0
50 100 150 200 250 300 350 400 450 500  
Output Current (mA)  
2
4
6
8
10 12  
Input Voltage (V)  
14  
16  
18  
20  
VIN = 20 V  
IOUT = 450 mA  
Figure 7. Dropout Voltage (VDO) vs IOUT  
Figure 8. Dropout Voltage (VDO) vs VIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 150 mA  
IOUT = 100 mA  
IOUT = 50 mA  
IOUT = 10 mA  
IOUT = 1mA  
VIN = 5.5 V  
VIN = 6 V  
VIN = 7 V  
VIN = 10 V  
VIN = 13.5 V  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
COUT = 10 µF (X7R 50 V), VOUT = 5 V  
COUT = 10 µF (X7R 50 V), IOUT = 150 mA, VOUT = 5 V  
Figure 9. PSRR vs Frequency and IOUT  
Figure 10. PSRR vs Frequency and VIN  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.25  
0.2  
200  
150  
100  
50  
640  
560  
480  
400  
320  
240  
160  
80  
VIN  
VOUT  
VOUT  
IOUT  
0.15  
0.1  
0.05  
0
0
-50  
-0.05  
-0.1  
-0.15  
-0.2  
-100  
-150  
-200  
0
0
0
500  
1000  
1500  
Time (ms)  
2000  
2500  
3000  
0
0.25  
0.5  
0.75  
1
Time (ms)  
1.25  
1.5  
1.75  
2
VOUT = 5 V, IOUT = 1 mA, VIN = 13.5 V to 45 V,  
slew rate = 2.7 V/µs, VEN = 3.3 V  
VOUT = 5 V, IOUT = 0 mA to 100 mA, slew rate = 1 A/µs,  
VEN = 3.3 V  
Figure 11. Line Transients  
Figure 12. Load Transient, No Load to 100 mA  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
SBVS362 JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF, and VEN  
= 2 V (unless otherwise noted)  
10  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
70  
60  
480  
440  
400  
360  
320  
280  
240  
200  
160  
120  
80  
VOUT  
IOUT  
VOUT  
IOUT  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
40  
0
0
0
50  
100  
150  
Time (ms)  
200  
250  
300  
350  
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
VOUT = 5 V, IOUT = 0 mA to 100 mA, slew rate = 1 A/µs,  
VEN = 3.3 V  
VOUT = 5 V, IOUT = 100 mA to 0 mA, slew rate = 1 A/µs,  
VEN = 3.3 V  
Figure 13. Load Transient, No Load to 100-mA Rising Edge  
Figure 14. Load Transient, No Load to 100-mA Falling Edge  
25  
400  
360  
320  
280  
240  
200  
160  
120  
80  
25  
400  
360  
320  
280  
240  
200  
160  
120  
80  
VOUT  
IOUT  
VOUT  
IOUT  
20  
15  
10  
5
20  
15  
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
40  
40  
0
0
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
Time (ms)  
2
2.25 2.5  
0
50  
100  
150  
Time (ms)  
200  
250  
300  
350  
VOUT = 5 V, IOUT = 50 mA to 100 mA, slew rate = 0.1 A/µs,  
VEN = 3.3 V  
VOUT = 5 V, IOUT = 50 mA to 100 mA, slew rate = 0.1 A/µs,  
VEN = 3.3 V  
Figure 15. Load Transient, 50 mA to 100 mA  
Figure 16. Load Transient, 50-mA to 100-mA Rising Edge  
25  
20  
15  
10  
5
400  
360  
320  
280  
240  
200  
160  
120  
80  
80  
70  
60  
50  
40  
30  
20  
10  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-5  
-10  
-15  
-20  
-25  
40  
0
350  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
0
50  
100  
150  
200  
250  
300  
0
Time (ms)  
Time (ms)  
VOUT = 5 V, IOUT = 100 mA to 50 mA, slew rate = 0.1 A/µs,  
VEN = 3.3 V  
VOUT = 5 V, IOUT = 0 mA to 150 mA, slew rate = 1 A/µs,  
VEN = 3.3 V  
Figure 17. Load Transient, 50-mA to 100-mA Falling Edge  
Figure 18. Load Transient, 0 mA to 150 mA  
10  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
www.ti.com  
SBVS362 JUNE 2020  
Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF, and VEN  
= 2 V (unless otherwise noted)  
150  
100  
50  
2400  
2000  
1600  
1200  
800  
400  
0
20  
10  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VOUT  
IOUT  
VOUT  
IOUT  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-50  
-100  
-150  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
0
0
25 50 75 100 125 150 175 200 225 250 275 300  
Time (ms)  
VOUT = 5 V, IOUT = 0 mA to 450 mA, slew rate = 2 A/µs,  
VEN = 3.3 V, CIN = 1 µF, COUT = 10 µF  
VOUT = 5 V, IOUT = 0 mA to 150 mA, slew rate = 1 A/µs,  
VEN = 3.3 V  
Figure 20. Load Transient, 0 mA to 450 mA  
Figure 19. Load Transient, 0-mA to 150-mA Rising Edge  
50  
40  
1400  
50  
40  
1400  
VOUT  
IOUT  
VOUT  
IOUT  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
30  
30  
20  
20  
10  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Time (ms)  
1
0
0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2  
Time (ms)  
VOUT = 5 V, IOUT = 135 mA to 315 mA, slew rate = 2 A/µs,  
VEN = 3.3 V, CIN = 1 µF, COUT = 10 µF  
VOUT = 5 V, IOUT = 135 mA to 315 mA, slew rate = 2 A/µs,  
VEN = 3.3 V, CIN = 1 µF, COUT = 10 µF  
Figure 21. Load Transient, 135 mA to 315 mA  
Figure 22. Load Transient, 135-mA to 315-mA Rising Edge  
150  
125  
100  
75  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
50  
2400  
2100  
1800  
1500  
1200  
900  
VOUT  
IOUT  
VOUT  
IOUT  
25  
0
50  
-25  
25  
0
-50  
-25  
-50  
-75  
-100  
-125  
-150  
-75  
600  
-100  
-125  
-150  
600  
400  
300  
200  
0
0
0
0.25  
0.5  
0.75  
1
Time (ms)  
1.25  
1.5  
1.75  
2
0
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2  
Time (ms)  
VOUT = 5 V, IOUT = 1 mA to 450 mA, slew rate = 2 A/µs,  
VEN = 3.3 V, CIN = 1 µF, COUT = 10 µF  
VOUT = 5 V, IOUT = 1 mA to 450 mA, slew rate = 2 A/µs,  
VEN = 3.3 V, CIN = 1 µF, COUT = 10 µF  
Figure 23. Load Transient, 1 mA to 450 mA  
Figure 24. Load Transient, 1-mA to 450-mA Rising Edge  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
SBVS362 JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF, and VEN  
= 2 V (unless otherwise noted)  
40  
35  
30  
25  
20  
15  
10  
175  
150  
125  
100  
75  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
-55èC  
-40èC  
0èC  
25èC  
85èC  
125èC  
150èC  
50  
25  
0
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
0
5
10  
15  
Input Voltage (V)  
20  
25  
30  
35  
40  
VOUT = 5 V  
Figure 25. Quiescent Current (IQ) vs VIN  
Figure 26. Quiescent Current (IQ) vs VIN  
1.38  
1.36  
1.34  
1.32  
1.3  
92  
91  
90  
89  
88  
87  
Falling Threshold  
Rising Threshold  
Falling Threshold  
Rising Threshold  
1.28  
1.26  
1.24  
1.22  
1.2  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
Figure 27. EN Threshold vs Temperature  
Figure 28. PG Threshold vs Temperature  
6
5.5  
5
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2.8  
2.75  
2.7  
VOUT  
VPG  
IInrush  
Falling Threshold  
Rising Threshold  
4.5  
4
2.65  
2.6  
3.5  
3
2.5  
2
2.55  
2.5  
1.5  
1
2.45  
2.4  
0.5  
0
0
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature (èC)  
Figure 29. Startup Plot Inrush Current  
Figure 30. Undervoltage Lockout (UVLO) Threshold vs  
Temperature  
12  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
www.ti.com  
SBVS362 JUNE 2020  
Typical Characteristics (continued)  
specified at TJ = –40°C to +150°C, VIN = 13.5 V, IOUT = 100 µA, COUT = 2.2 µF, 1 mΩ < COUT ESR < 2 Ω, CIN = 1 µF, and VEN  
= 2 V (unless otherwise noted)  
1.58  
1.57  
1.56  
1.55  
1.54  
1.53  
1.52  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Temperature èC  
VDELAY = 1 V  
Figure 31. Delay Pin Current vs Temperature  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
SBVS362 JUNE 2020  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TPS7B86-Q1 is a low-dropout linear regulator (LDO) designed to connect to the battery in automotive  
applications. The device has an input voltage range extending to 40 V, which allows the device to withstand  
transients (such as load dumps) that are anticipated in automotive systems. With only a 20-µA quiescent current  
at light loads, the device is an optimal solution for powering always-on components.  
The device has a state-of-the-art transient response that allows the output to quickly react to changes in the load  
or line (for example, during cold-crank conditions). Additionally, the device has a novel architecture that  
minimizes output overshoot when recovering from dropout. During normal operation, the device has a tight DC  
accuracy of ±1.5% over line, load, and temperature.  
7.2 Functional Block Diagrams  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
œ
+
UVLO  
FB  
EN  
Bandgap  
GND  
Figure 32. Adjustable Output Block Diagram  
14  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
www.ti.com  
SBVS362 JUNE 2020  
Functional Block Diagrams (continued)  
IN  
OUT  
Current  
Limit  
R1  
Thermal  
Shutdown  
œ
+
UVLO  
R2  
EN  
Bandgap  
GND  
Figure 33. Fixed Output Block Diagram  
FPO  
Figure 34. Adjustable With Power-Good Block Diagram  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
SBVS362 JUNE 2020  
www.ti.com  
7.3 Feature Description  
7.3.1 Enable (EN)  
The enable pin for the device is an active-high pin. The output voltage is enabled when the voltage of the enable  
pin is greater than the high-level input voltage of the EN pin and disabled with the enable pin voltage is less than  
the low-level input voltage of the EN pin. If independent control of the output voltage is not needed, connect the  
enable pin to the input of the device.  
7.3.2 Power-Good (PG)  
The PG signal provides an easy solution to meet demanding sequencing requirements because PG alerts when  
the output nears its nominal value. PG can be used to signal other devices in a system when the output voltage  
is near, at, or above the set output voltage (VOUT(nom)). Figure 35 shows a simplified schematic. The PG signal is  
an internal pullup resistor to the nominal output voltage and is active high. The PG circuit sets the PG pin into a  
high-impedance state to indicate that the power is good.  
OUT  
-
+
PG  
+
VREF  
œ
Figure 35. Simplified Power-Good Schematic  
7.3.3 Adjustable Power-Good Delay Timer (DELAY)  
The power-good delay period is a function of the external capacitor on the DELAY pin. The adjustable delay  
configures the amount of time required before the PG pin becomes high. This delay is configured by connecting  
an external capacitor from this pin to GND. Figure 36 shows a typical timing diagram for the power-good delay  
pin. If the DELAY pin is left floating, the power-good delay is t(DLY_FIX). For more information on how to program  
the PG delay, see the Setting the Adjustable Power-Good Delay section.  
VIN  
V
(UVLO)  
t < t(DEGLITCH)  
V(PG_HYST)  
V(PG_TH) rising  
V(PG_ADJ) rising  
V(PG_TH) falling  
V(PG_ADJ) falling  
VOUT  
V
(DLY_TH)  
DELAY  
t(DEGLITCH)  
t(DEGLITCH)  
t
t
(DLY)  
(DLY)  
PG  
Power Up  
Input Voltage Drop  
Undervoltage  
Power Down  
NOTE: V(PG_TH) falling = V(PG_TH) rising – V(PG_HYST).  
.
Figure 36. Typical Power-Good Timing Diagram  
16  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TPS7B86-Q1  
 
 
TPS7B86-Q1  
www.ti.com  
SBVS362 JUNE 2020  
Feature Description (continued)  
7.3.4 Undervoltage Lockout  
The device has an independent undervoltage lockout (UVLO) circuit that monitors the input voltage, allowing a  
controlled and consistent turn on and off of the output voltage. To prevent the device from turning off if the input  
drops during turn on, the UVLO has hysteresis as specified in the Electrical Characteristics table.  
7.3.5 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the junction temperature  
(TJ) of the pass transistor rises to TSD(shutdown) (typical). Thermal shutdown hysteresis assures that the device  
resets (turns on) when the temperature falls to TSD(reset) (typical).  
The thermal time-constant of the semiconductor die is fairly short, thus the device may cycle on and off when  
thermal shutdown is reached until power dissipation is reduced. Power dissipation during startup can be high  
from large VIN – VOUT voltage drops across the device or from high inrush currents charging large output  
capacitors. Under some conditions, the thermal shutdown protection disables the device before startup  
completes.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed its operational  
specifications. Although the internal protection circuitry of the device is designed to protect against thermal  
overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device  
into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
7.3.6 Current Limit  
The device has an internal current limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a brickwall scheme. In a high-load current fault, the brickwall scheme limits  
the output current to the current limit (ICL). ICL is listed in the Electrical Characteristics table.  
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in brickwall current  
limit, the pass transistor dissipates power [(VIN – VOUT) × ICL]. If thermal shutdown is triggered, the device turns  
off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the output  
current fault condition continues, the device cycles between current limit and thermal shutdown. For more  
information on current limits, see the Know Your Limits application report.  
Figure 37 shows a diagram of the current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
0 V  
IOUT  
IRATED  
0 mA  
ICL  
Figure 37. Current Limit  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TPS7B86-Q1  
 
TPS7B86-Q1  
SBVS362 JUNE 2020  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
The Device Functional Mode Comparison table shows the conditions that lead to the different modes of  
operation. See the Electrical Characteristics table for parameter values.  
Table 1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
VEN > VEN(HI)  
VEN > VEN(HI)  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
Disabled  
(any true condition  
disables the device)  
VIN < VUVLO  
VEN < VEN(LOW)  
Not applicable  
TJ > TSD(shutdown)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO  
The output current is less than the current limit (IOUT < ICL  
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased to  
less than the enable falling threshold  
)
)
)
7.4.3 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage  
tracks the input voltage. During this mode, the transient performance of the device becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during startup), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
7.4.4 Disabled  
The output of the device can be shutdown by forcing the voltage of the enable pin to less than the maximum EN  
pin low-level input voltage (see the Electrical Characteristics table). When disabled, the pass transistor is turned  
off, internal circuits are shutdown, and the output voltage is actively discharged to ground by an internal  
discharge circuit from the output to ground.  
18  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
www.ti.com  
SBVS362 JUNE 2020  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Input and Output Capacitor Selection  
The TPS7B86-Q1 requires an output capacitor of 2.2 µF or larger (1 µF or larger capacitance) for stability and an  
equivalent series resistance (ESR) between 0.001 Ω and 2 Ω. For the best transient performance, use X5R- and  
X7R-type ceramic capacitors because these capacitors have minimal variation in value and ESR over  
temperature. When choosing a capacitor for a specific application, be mindful of the DC bias characteristics for  
the capacitor. Higher output voltages cause a significant derating of the capacitor. For best performance, the  
maximum recommended output capacitance is 220 µF.  
Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor  
from IN to GND. Some input supplies have a high impedance, thus placing the input capacitor on the input  
supply helps reduce the input impedance. This capacitor counteracts reactive input sources and improves  
transient response, input ripple, and PSRR. If the input supply has a high impedance over a large range of  
frequencies, several input capacitors can be used in parallel to lower the impedance over frequency. Use a  
higher-value capacitor if large, fast, rise-time load transients are anticipated, or if the device is located several  
inches from the input power source.  
8.1.2 Adjustable Device Feedback Resistor Selection  
The adjustable-version device requires external feedback divider resistors to set the output voltage. VOUT is set  
using the feedback divider resistors, R1 and R2, according to the following equation:  
VOUT = VFB × (1 + R1 / R2)  
(1)  
To ignore the FB pin current error term in the VOUT equation, set the feedback divider current to 100x the FB pin  
current listed in the Electrical Characteristics table. This setting provides the maximum feedback divider series  
resistance, as shown in the following equation:  
R1 + R2 VOUT / (IFB × 100)  
(2)  
8.1.3 Feed-Forward Capacitor (CFF)  
For the adjustable-voltage version device, a feed-forward capacitor (CFF) can be connected from the OUT pin to  
the FB pin. CFF improves transient, noise, and PSRR performance, but is not required for regulator stability.  
Recommended CFF values are listed in the Recommended Operating Conditions table. A higher capacitance CFF  
can be used; however, the startup time increases. For a detailed description of CFF tradeoffs, see the Pros and  
Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator application report.  
CFF and R1 form a zero in the loop gain at frequency fZ, while CFF, R1, and R2 form a pole in the loop gain at  
frequency fP. CFF zero and pole frequencies can be calculated from the following equations:  
fZ = 1 / (2 × π × CFF × R1)  
(3)  
(4)  
fP = 1 / (2 × π × CFF × (R1 || R2))  
8.1.4 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN – VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a switch.  
The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed output  
voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than the  
nominal output regulation, then the output voltage falls as well.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
SBVS362 JUNE 2020  
www.ti.com  
Application Information (continued)  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. Use Equation 5 to calculate the RDS(ON) of the device.  
VDO  
RDS(ON)  
=
IRATED  
(5)  
8.1.5 Reverse Current  
Excessive reverse current can damage this device. Reverse current flows through the intrinsic body diode of the  
pass transistor instead of the normal conducting channel. At high magnitudes, this current flow degrades the  
long-term reliability of the device.  
Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute  
maximum rating of VOUT VIN + 0.3 V.  
If the device has a large COUT and the input supply collapses with little or no load current  
The output is biased when the input supply is not established  
The output is biased above the input supply  
If reverse current flow is expected in the application, external protection is recommended to protect the device.  
Reverse current is not limited in the device, so external limiting is required if extended reverse voltage operation  
is anticipated.  
8.1.6 Power Dissipation (PD)  
Circuit reliability requires consideration of the device power dissipation, location of the circuit on the printed circuit  
board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must have few or no  
other heat-generating devices that cause added thermal stress.  
To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference  
and load conditions. Equation 6 calculates power dissipation (PD).  
PD = (VIN – VOUT) × IOUT  
(6)  
NOTE  
Power dissipation can be minimized, and therefore greater efficiency can be achieved, by  
correct selection of the system voltage rails. For the lowest power dissipation use the  
minimum input voltage required for correct output regulation.  
For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal  
pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area must contain an  
array of plated vias that conduct heat to additional copper planes for increased heat dissipation.  
The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device.  
According to Equation 7, power dissipation and junction temperature are most often related by the junction-to-  
ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of the ambient  
air (TA).  
TJ = TA + (RθJA × PD)  
(7)  
Thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the particular PCB  
design, and therefore varies according to the total copper area, copper weight, and location of the planes. The  
junction-to-ambient thermal resistance listed in the Thermal Information table is determined by the JEDEC  
standard PCB and copper-spreading area, and is used as a relative measure of package thermal performance.  
8.1.7 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the linear regulator when in-circuit on a typical PCB board application. These metrics are not thermal  
resistance parameters and instead offer a practical and relative way to estimate junction temperature. These psi  
metrics are determined to be significantly independent of the copper area available for heat-spreading. The  
Thermal Information table lists the primary thermal metrics, which are the junction-to-top characterization  
20  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TPS7B86-Q1  
 
 
 
TPS7B86-Q1  
www.ti.com  
SBVS362 JUNE 2020  
Application Information (continued)  
parameter (ψJT) and junction-to-board characterization parameter (ψJB). These parameters provide two methods  
for calculating the junction temperature (TJ). As described in , use the junction-to-top characterization parameter  
(ψJT) with the temperature at the center-top of device package (TT) to calculate the junction temperature. As  
described in , use the junction-to-board characterization parameter (ψJB) with the PCB surface temperature 1 mm  
from the device package (TB) to calculate the junction temperature.  
TJ = TT + ψJT × PD  
where:  
PD is the dissipated power  
TT is the temperature at the center-top of the device package  
(8)  
TJ = TB + ψJB × PD  
where  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
(9)  
For detailed information on the thermal metrics and how to use them, see the Semiconductor and IC Package  
Thermal Metrics application report.  
8.1.8 Pulling Up the PG Pin to a Different Voltage  
Because the power-good (PG) pin is pulled up internally to the output rail, output signals on this pin cannot be  
pulled up to any voltage or wire AND'd like a typical open-drain PG output can be. If these signals must be pulled  
up to another logic level, then an external circuit can be implemented using a p-channel metal-oxide-  
semiconductor field effect (PMOS) transistor and a pullup resistor. Implementing the circuit shown in Figure 38  
allows the outputs to be pulled up to any logic rail. This implementation also allows the outputs to be AND'd  
together like traditional power-good pins.  
SENSE_OUT  
Figure 38. Additional Components for the PG Pin to be Pulled Up to Another Rail  
8.1.9 Power-Good  
8.1.9.1 Setting the Adjustable Power-Good Delay  
The power-good delay time can be set in two ways: either by floating the delay pin or by connecting a capacitor  
from this pin to GND. When the DELAY pin is floating, the time defaults to t(DLY_FIX). The delay time is set by  
Equation 10 if a capacitor is connected between the DELAY pin and GND.  
VDLY(TH)  
t = t(DLY _FIX) + CDELAY  
«
÷
÷
IDLY(CHARGE)  
(10)  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TPS7B86-Q1  
 
 
TPS7B86-Q1  
SBVS362 JUNE 2020  
www.ti.com  
8.2 Typical Application  
Figure 39 shows a typical application circuit for the TPS7B86-Q1. Use different values of external components,  
depending on the end application. An application may require a larger output capacitor during fast load steps in  
order to prevent a reset from occurring. TI recommends a low-ESR ceramic capacitor with a dielectric of type  
X5R or X7R.  
IN  
OUT  
FB  
EN  
TPS7B86-Q1  
GND  
Figure 39. Typical Application Schematic for the TPS7B86-Q1  
8.2.1 Design Requirements  
For this design example, use the parameters listed in Table 2 as the input parameters.  
Table 2. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
6 V to 40 V  
5 V  
Output current  
100 mA  
10 µF  
Output capacitor  
Power-good delay capacitor  
100 nF  
8.2.2 Detailed Design Procedure  
8.2.2.1 Input Capacitor  
The device requires an input decoupling capacitor, the value of which depends on the application. The typical  
recommended value for the decoupling capacitor is 1 µF. The voltage rating must be greater than the maximum  
input voltage.  
8.2.2.2 Output Capacitor  
The device requires an output capacitor to stabilize the output voltage. The capacitor value must be between  
2.2 µF and 200 µF and the ESR range must be between 1 mΩ and 2 Ω. For this design a low ESR, 10-µF  
ceramic capacitor was used to improve transient performance.  
9 Power Supply Recommendations  
This device is designed for operation from an input voltage supply with a range between 3 V and 40 V. This input  
supply must be well regulated. If the input supply is located more than a few inches from the TPS7B86-Q1, add  
an electrolytic capacitor with a value of 22 µF and a ceramic bypass capacitor at the input.  
22  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TPS7B86-Q1  
 
 
TPS7B86-Q1  
www.ti.com  
SBVS362 JUNE 2020  
10 Layout  
10.1 Layout Guidelines  
For best overall performance, place all circuit components on the same side of the circuit board and as near as  
practical to the respective LDO pin connections. Place ground return connections to the input and output  
capacitor, and to the LDO ground pin as close as possible to each other, connected by a wide, component-side,  
copper surface. The use of vias and long traces to the input and output capacitors is strongly discouraged and  
negatively affects system performance. TI also recommends a ground reference plane either embedded in the  
PCB itself or located on the bottom side of the PCB opposite the components. This reference plane serves to  
assure accuracy of the output voltage, shield noise, and behaves similarly to a thermal plane to spread (or sink)  
heat from the LDO device when connected to the thermal pad. In most applications, this ground plane is  
necessary to meet thermal requirements.  
10.1.1 Package Mounting  
Solder pad footprint recommendations for the TPS7B86-Q1 are available at the end of this document and at  
www.ti.com.  
10.1.2 Board Layout Recommendations to Improve PSRR and Noise Performance  
As depicted in Figure 40 and Figure 41, place the input and output capacitors close to the device for the layout of  
the TPS7B86-Q1. To enhance the thermal performance, place as many vias as possible around the device.  
These vias improve the heat transfer between the different GND planes in the PCB.  
To improve AC performance such as PSRR, output noise, and transient response, TI recommends a board  
design with separate ground planes for VIN and VOUT, with each ground plane connected only at the GND pin  
of the device. In addition, the ground connection for the output capacitor must connect directly to the GND pin of  
the device.  
Minimize equivalent series inductance (ESL) and ESR in order to maximize performance and ensure stability.  
Place each capacitor as close as possible to the device and on the same side of the PCB as the regulator itself.  
Do not place any capacitors on the opposite side of the PCB from where the regulator is installed. TI strongly  
discourages the use of vias and long traces to connect capacitors because these traces may negatively impact  
system performance and even cause instability.  
If possible, and to ensure the maximum performance specified in this document, use the same layout pattern  
used for the TPS7B86-Q1 evaluation board, available at www.ti.com.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
SBVS362 JUNE 2020  
www.ti.com  
10.2 Layout Examples  
FPO  
Figure 40. SO-8 (DDA) Layout  
FPO  
Figure 41. TO-252 (KVU)  
24  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: TPS7B86-Q1  
TPS7B86-Q1  
www.ti.com  
SBVS362 JUNE 2020  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
For the PSpice model, see the TPS7B4250 PSpice Transient Model.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Various Applications for Voltage-Tracking LDO application report  
Texas Instruments, TPS7B4250 Evaluation Module user guide  
Texas Instruments, TPS7B5250-Q1 Pin FMEA application report  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TPS7B86-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Sep-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPS7B8601QDDARQ1  
PTPS7B8633QDDARQ1  
PTPS7B8650QDDARQ1  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
DDA  
8
8
8
2500  
2500  
2500  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 150  
-40 to 150  
-40 to 150  
Call TI  
Call TI  
TPS7B8601QDDARQ1  
TPS7B8633QDDARQ1  
TPS7B8633QKVURQ1  
TPS7B8650QDDARQ1  
TPS7B8650QKVURQ1  
PREVIEW SO PowerPAD  
PREVIEW SO PowerPAD  
DDA  
DDA  
KVU  
DDA  
KVU  
8
8
5
8
5
2500  
2500  
2500  
2500  
2500  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
PREVIEW  
PREVIEW SO PowerPAD  
PREVIEW TO-252  
TO-252  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Sep-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY