REF1933AIDDCT [TI]

3.3V Vref、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125;
REF1933AIDDCT
型号: REF1933AIDDCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3V Vref、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125

文件: 总33页 (文件大小:2811K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
REF19xx 低漂移、低功率、双路输出、VREF VREF/2 电压基准  
1 特性  
3 说明  
1
两个输出,VREF VREF/2,便于在单电源系统中  
使用  
仅具有 正向电源电压的应用通常需要一个在模数转换  
(ADC) 输入范围中间位置的附加稳定电压来偏置输  
入双极信号。REF19xx 提供了一个可供 ADC 使用的  
基准电压 (VREF) 和一个可用于偏置输入双极信号的高  
精度电压 (VBIAS)。  
出色的温度漂移性能:  
-40℃ 至 125℃ 时为 25 ppm/°C(最大值)  
高初始精度:±0.1%(最大值)  
温度范围内的 VREF VBIAS 跟踪:  
REF19xx VREF VBIAS 输出端具有优异的温度漂移  
(最大 25 ppm/°C)特性和初始精度 (0.1%),同时可  
保持静态电流低于 430µA。此外,VREF VBIAS 输出  
端可在 –40°C 85°C 的温度范围内彼此跟踪,精度  
6 ppm/°C(最大值)。所有这些 特性 都可提高信  
号链的精度并节省电路板空间,相比分立式解决方案而  
言还能降低系统成本。仅 10mV 的超低压降允许器件  
在极低输入电压条件下工作,这一特性在电池供电系统  
中非常适用。  
-40℃ 至 85℃ 时为 6 ppm/°C(最大值)  
-40℃ 至 125℃ 时为 7 ppm/°C(最大值)  
微型封装:SOT23-5  
低压降电压:10mV  
高输出电流:±20mA  
低静态电流:360μA  
线路调节:3 ppm/V  
负载调节:8 ppm/mA  
2 应用  
VREF VBIAS 电压具有同样出色的技术规范,而且灌  
电流和拉电流能力同样强大。这些器件具有优异的长期  
稳定性和低噪声级别,是高精度工业 应用的理想选  
择。  
数字信号处理:  
电源逆变器  
电机控制  
电流感测  
器件信息(1)  
工业过程控制  
医疗设备  
部件名称  
REF19xx  
封装  
封装尺寸(标称值)  
小外形尺寸晶体管  
(SOT) (5)  
2.90mm x 1.60mm  
数据采集系统  
单电源系统  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
空白  
空白  
应用示例  
VREF VBIAS 与温度间的关系  
Power  
Supply  
0.05  
0.04  
0.03  
VBIAS  
0.02  
0.01  
0
VIN+  
VOUT  
ADC  
INA213  
RSHUNT  
ISENSE  
-0.01  
-0.02  
VREF  
-0.03  
REF  
VIN-  
-0.04  
-0.05  
VBIAS  
1.5 V  
VREF  
3.0 V  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
REF1930  
VIN  
EN  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS697  
 
 
 
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 15  
9.3 Feature Description................................................. 15  
9.4 Device Functional Modes........................................ 16  
10 Applications and Implementation...................... 17  
10.1 Application Information.......................................... 17  
10.2 Typical Application ................................................ 17  
11 Power-Supply Recommendations ..................... 22  
12 Layout................................................................... 23  
12.1 Layout Guidelines ................................................. 23  
12.2 Layout Example .................................................... 23  
13 器件和文档支持 ..................................................... 24  
13.1 文档支持................................................................ 24  
13.2 相关链接................................................................ 24  
13.3 接收文档更新通知 ................................................. 24  
13.4 社区资源................................................................ 24  
13.5 ....................................................................... 24  
13.6 静电放电警告......................................................... 24  
13.7 Glossary................................................................ 24  
14 机械、封装和可订购信息....................................... 25  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics.......................................... 5  
7.6 Typical Characteristics.............................................. 6  
Parameter Measurement Information ................ 12  
8.1 Solder Heat Shift..................................................... 12  
8.2 Thermal Hysteresis ................................................. 13  
8.3 Noise Performance ................................................. 14  
Detailed Description ............................................ 15  
9.1 Overview ................................................................. 15  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (September 2014) to Revision A  
Page  
Changed Input to Output in I/O column of pin 1 row in Pin Functions table ......................................................................... 3  
Added Storage temperature parameter to Absolute Maximum Ratings table (moved from ESD Ratings table)................... 4  
Changed ESD Ratings table: changed title and updated table format .................................................................................. 4  
2
Copyright © 2014–2017, Texas Instruments Incorporated  
 
REF1925, REF1930, REF1933, REF1941  
www.ti.com.cn  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
5 Device Comparison Table  
PRODUCT  
REF1925  
REF1930  
REF1933  
REF1941  
VREF  
2.5 V  
VBIAS  
1.25 V  
1.5 V  
3.0 V  
3.3 V  
1.65 V  
2.048 V  
4.096 V  
6 Pin Configuration and Functions  
DDC Package  
SOT23-5  
(Top View)  
5
VREF  
VBIAS  
GND  
EN  
1
2
3
4
VIN  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
VBIAS  
GND  
EN  
Output  
Bias voltage output (VREF / 2)  
Ground  
2
3
Input  
Input  
Output  
Enable (EN VIN – 0.7 V, device enabled)  
4
VIN  
Input supply voltage  
5
VREF  
Reference voltage output (VREF)  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–55  
MAX  
6
UNIT  
VIN  
Input voltage  
EN  
V
VIN + 0.3  
150  
Operating  
Temperature  
Junction, TJ  
Storage, Tstg  
150  
°C  
–65  
170  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VIN  
Supply input voltage range (IL = 0 mA, TA = 25°C)  
VREF + 0.02(1)  
5.5  
V
(1) See Figure 24 in the Typical Characteristics section for the minimum input voltage at different load currents and temperature.  
7.4 Thermal Information  
REF19xx  
THERMAL METRIC(1)  
DDC (SOT23)  
5 PINS  
193.6  
40.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
34.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
34.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
REF1925, REF1930, REF1933, REF1941  
www.ti.com.cn  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
7.5 Electrical Characteristics  
At TA = 25°C, IL = 0 mA, and VIN = 5 V, unless otherwise noted. Both VREF and VBIAS have the same specifications.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage accuracy  
–0.1%  
0.1%  
Output voltage temperature coefficient(1)  
–40°C TA 125°C  
±10  
±1.5  
±2  
±25 ppm/°C  
–40°C TA 85°C  
–40°C TA 125°C  
±6  
VREF and VBIAS tracking over temperature(2)  
ppm/°C  
±7  
LINE AND LOAD REGULATION  
ΔVO(ΔVI)  
Line regulation  
VREF + 0.02 V VIN 5.5 V  
3
8
35  
20  
ppm/V  
0 mA IL 20 mA ,  
VREF + 0.6 V VIN 5.5 V  
Sourcing  
Sinking  
ΔVO(ΔIL)  
Load regulation  
ppm/mA  
0 mA IL –20 mA,  
VREF + 0.02 V VIN 5.5 V  
8
20  
POWER SUPPLY  
360  
3.3  
430  
460  
5
Active mode  
–40°C TA 125°C  
ICC  
Supply current  
µA  
Shutdown mode  
–40°C TA 125°C  
9
Device in shutdown mode (EN = 0)  
Device in active mode (EN = 1)  
0
0.7  
VIN  
20  
Enable voltage  
Dropout voltage  
V
VIN – 0.7  
10  
mV  
IL = 20 mA  
600  
ISC  
Short-circuit current  
Turn-on time  
50  
mA  
µs  
ton  
0.1% settling, CL = 1 µF  
500  
NOISE  
Low-frequency noise(3)  
0.1 Hz f 10 Hz  
12  
ppmPP  
Output voltage noise density  
f = 100 Hz  
0.25  
ppm/Hz  
CAPACITIVE LOAD  
Stable output capacitor range  
0
10  
µF  
HYSTERESIS AND LONG-TERM STABILITY  
Long-term stability  
0 to 1000 hours  
60  
60  
35  
ppm  
ppm  
Cycle 1  
Cycle 2  
Output voltage hysteresis(4)  
25°C, –40°C, 125°C, 25°C  
(1) Temperature drift is specified according to the box method. See the Feature Description section for more details.  
(2) The VREF and VBIAS tracking over temperature specification is explained in more detail in the Feature Description section.  
(3) The peak-to-peak noise measurement procedure is explained in more detail in the Noise Performance section.  
(4) The thermal hysteresis measurement procedure is explained in more detail in the Thermal Hysteresis section.  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
 
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
7.6 Typical Characteristics  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
0
1
2
3
4
5
6
VREF and VBIAS Tracking Over Temperature (ppm/°C)  
VREF and VBIAS Matching (ppm)  
C016  
C004  
–40°C TA 85°C  
Figure 2. Distribution of VREF – 2 × VBIAS Drift Tracking  
Over Temperature  
Figure 1. VREF – 2 × VBIAS Distribution  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
-0.0125 -0.01 -0.0075 -0.005 -0.0025  
0
0.0025  
0
1
2
3
4
5
6
7
VREF and VBIAS Tracking Over Temperature (ppm/°C)  
Solder Heat Shift Histogram - VREF (%)  
C017  
C041  
–40°C TA 125°C  
Refer to the Solder Heat Shift section for more information.  
Figure 3. Distribution of VREF – 2 × VBIAS Drift Tracking  
Over Temperature  
Figure 4. Solder Heat Shift Distribution (VREF)  
60  
50  
40  
30  
20  
10  
0
0.05  
0.04  
0.03  
0.02  
0.01  
0
VBIAS  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
VREF  
-0.0125 -0.01 -0.0075 -0.005 -0.0025  
0
0.0025  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Solder Heat Shift Histogram - VBIAS (%)  
Temperature (°C)  
C001  
C040  
Refer to the Solder Heat Shift section for more information.  
Figure 5. Solder Heat Shift Distribution (VBIAS  
)
Figure 6. Output Voltage Accuracy (VREF) vs Temperature  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
REF1925, REF1930, REF1933, REF1941  
www.ti.com.cn  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
1000  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
2.4980  
750  
-40°C  
500  
250  
25°C  
0
œ250  
œ500  
œ750  
œ1000  
125°C  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ20  
œ15  
œ10  
œ5  
0
5
10  
15  
20  
Load Current (mA)  
Temperature (°C)  
C003  
C038  
VREF output  
Figure 7. VREF – 2 × VBIAS Tracking vs Temperature  
Figure 8. Output Voltage Change vs Load Current (VREF  
)
12  
1.2503  
-40°C  
11  
10  
9
1.2501  
1.2499  
1.2497  
1.2495  
1.2493  
8
7
25°C  
10  
6
125°C  
15  
5
4
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ20  
œ15  
œ10  
œ5  
0
5
20  
Temperature (°C)  
Load Current (mA)  
C025  
C039  
VREF output  
IL = 20 mA  
VBIAS output  
Figure 10. Load Regulation Sourcing vs Temperature (VREF  
)
Figure 9. Output Voltage Change vs Load Current (VBIAS  
)
12  
12  
11  
10  
9
11  
10  
9
8
8
7
7
6
6
5
5
4
4
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C020  
C021  
VBIAS output  
IL = 20 mA  
VREF output  
IL = –20 mA  
Figure 11. Load Regulation Sourcing vs Temperature (VBIAS  
)
Figure 12. Load Regulation Sinking vs Temperature (VREF)  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
5
4.5  
4
12  
11  
10  
9
3.5  
3
8
7
6
2.5  
2
5
4
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C022  
C019  
VBIAS output  
IL = –20 mA  
VREF output  
Figure 14. Line Regulation vs Temperature (VREF  
Figure 13. Load Regulation Sinking vs Temperature (VBIAS  
)
)
5
100  
4.5  
4
VBIAS  
80  
60  
40  
20  
VREF  
3.5  
3
2.5  
2
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
1
10  
100  
1k  
10k  
100k  
Temperature (°C)  
Frequency (Hz)  
C018  
C026  
VBIAS output  
Figure 15. Line Regulation vs Temperature (VBIAS  
CL = 0 µF  
)
Figure 16. Power-Supply Rejection Ratio vs Frequency  
100  
VIN + 0.25 V  
VIN + 0.25 V  
VBIAS  
500 mV/div  
40 mV/div  
VIN - 0.25 V  
80  
60  
40  
20  
VREF  
VREF  
Time (500 µs/div)  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C027  
C006  
CL = 10 µF  
Figure 17. Power-Supply Rejection Ratio vs Frequency  
CL = 1 µF  
Figure 18. Line Transient Response  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
REF1925, REF1930, REF1933, REF1941  
www.ti.com.cn  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
VIN + 0.25 V  
VIN + 0.25V  
500 mV/div  
40 mV/div  
+1 mA  
+1 mA  
VIN - 0.25V  
2 mA/div  
- 1 mA  
VREF  
VREF  
20 mV/div  
Time (500 µs/div)  
Time (500 µs/div)  
C006  
C032  
CL = 10 µF  
Figure 19. Line Transient Response  
CL = 1 µF  
IL = ±1-mA step  
Figure 20. Load Transient Response  
+20 mA  
+20 mA  
+1 mA  
+1 mA  
40 mA/div  
40 mV/div  
2 mA/div  
-20 mA  
VREF  
- 1 mA  
VREF  
20 mV/div  
Time (500 µs/div)  
Time (500 µs/div)  
C037  
C031  
CL = 10 µF  
IL = ±1-mA step  
CL = 1 µF  
IL = ±20-mA step  
Figure 21. Load Transient Response  
Figure 22. Load Transient Response  
400  
300  
200  
100  
0
125°C  
+20 mA  
+20 mA  
40 mA/div  
40 mV/div  
25°C  
-20 mA  
VREF  
œ40°C  
Time (500 µs/div)  
œ30  
œ20  
œ10  
0
10  
20  
30  
Load Current (mA)  
C036  
C005  
CL = 10 µF  
IL = ±20-mA step  
Figure 23. Load Transient Response  
Figure 24. Minimum Dropout Voltage vs Load Current  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
VIN  
VIN  
2 V/div  
2 V/div  
VREF  
VREF  
Time (100 µs/div)  
Time (100 µs/div)  
C033  
C034  
CL = 1 µF  
CL = 10 µF  
Figure 26. Turn-On Settling Time  
Figure 25. Turn-On Settling Time  
500  
450  
400  
350  
300  
250  
200  
500  
450  
400  
350  
300  
250  
200  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
2
3
4
5
6
Temperature (°C)  
Input Voltage (V)  
C006  
C007  
Figure 27. Quiescent Current vs Temperature  
Figure 28. Quiescent Current vs Input Voltage  
Time (1 s/div)  
Time (1 s/div)  
C028  
C029  
VREF output  
VBIAS output  
Figure 29. 0.1-Hz to 10-Hz Noise (VREF  
)
Figure 30. 0.1-Hz to 10-Hz Noise (VBIAS)  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
REF1925, REF1930, REF1933, REF1941  
www.ti.com.cn  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
1
100  
CL = 0 F  
10  
CL = 0 µF  
CL = 1µF  
0.1  
1
CL = 4.7 F  
CL = 10 F  
0.1  
CL = 10 µF  
0.01  
0.01  
1
10  
100  
Frequency (Hz)  
1k  
10k  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C024  
C030  
VREF output  
Figure 32. Output Impedance vs Frequency (VREF  
Figure 31. Output Voltage Noise Spectrum  
)
100  
10  
40  
CL = 0 F  
35  
30  
25  
20  
15  
10  
5
CL = 1µF  
1
CL = 10 F  
0.1  
0.01  
0
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
Thermal Hysterisis - VREF (ppm)  
Frequency (Hz)  
C023  
C013  
VBIAS output  
Figure 33. Output Impedance vs Frequency (VBIAS  
)
Figure 34. Thermal Hysteresis Distribution (VREF  
)
40  
35  
30  
25  
20  
15  
10  
5
0
Thermal Hysteresis - VBIAS (ppm)  
C014  
Figure 35. Thermal Hysteresis Distribution (VBIAS  
)
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Solder Heat Shift  
The materials used in the manufacture of the REF19xx have differing coefficients of thermal expansion, resulting  
in stress on the device die when the device is heated. Mechanical and thermal stress on the device die can  
cause the output voltages to shift, degrading the initial accuracy specifications of the product. Reflow soldering is  
a common cause of this error.  
In order to illustrate this effect, a total of 92 devices were soldered on four printed circuit boards [23 devices on  
each printed circuit board (PCB)] using lead-free solder paste and the paste manufacturer suggested reflow  
profile. The reflow profile is as shown in Figure 36. The PCB is comprised of FR4 material. The board thickness  
is 1.57 mm and the area is 171.54 mm × 165.1 mm.  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (seconds)  
C01  
Figure 36. Reflow Profile  
The reference and bias output voltages are measured before and after the reflow process; the typical shift is  
displayed in Figure 37 and Figure 38. Although all tested units exhibit very low shifts (< 0.01%), higher shifts are  
also possible depending on the size, thickness, and material of the PCB. An important note is that the histograms  
display the typical shift for exposure to a single reflow profile. Exposure to multiple reflows, which is common on  
PCBs with surface-mount components on both sides, causes additional shifts in the output bias voltage. If the  
PCB is exposed to multiple reflows, solder the device in the second pass to minimize device exposure to thermal  
stress.  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
-0.0125 -0.01 -0.0075 -0.005 -0.0025  
0
0.0025  
-0.0125 -0.01 -0.0075 -0.005 -0.0025  
0
0.0025  
Solder Heat Shift Histogram - VREF (%)  
Solder Heat Shift Histogram - VBIAS (%)  
C040  
C041  
Figure 38. Solder Heat Shift Distribution, VBIAS (%)  
Figure 37. Solder Heat Shift Distribution, VREF (%)  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
REF1925, REF1930, REF1933, REF1941  
www.ti.com.cn  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
8.2 Thermal Hysteresis  
Thermal hysteresis is measured with the REF19xx soldered to a PCB, similar to a real-world application. Thermal  
hysteresis for the device is defined as the change in output voltage after operating the device at 25°C, cycling the  
device through the specified temperature range, and returning to 25°C. Hysteresis can be expressed by  
Equation 1:  
VPRE - VPOST  
VHYST  
=
ñ 106 (ppm)  
÷
÷
VNOM  
«
where  
VHYST = thermal hysteresis (in units of ppm),  
VNOM = the specified output voltage,  
VPRE = output voltage measured at 25°C pre-temperature cycling, and  
VPOST = output voltage measured after the device has cycled from 25°C through the specified temperature  
range of –40°C to 125°C and returns to 25°C.  
(1)  
Typical thermal hysteresis distribution is as shown in Figure 39 and Figure 40.  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
Thermal Hysteresis - VBIAS (ppm)  
Thermal Hysterisis - VREF (ppm)  
C013  
C014  
Figure 39. Thermal Hysteresis Distribution (VREF  
)
Figure 40. Thermal Hysteresis Distribution (VBIAS)  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
 
 
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
8.3 Noise Performance  
Typical 0.1-Hz to 10-Hz voltage noise is shown in Figure 41 and Figure 42. Device noise increases with output  
voltage and operating temperature. Additional filtering can be used to improve output noise levels, although care  
must be taken to ensure the output impedance does not degrade ac performance. Peak-to-peak noise  
measurement setup is shown in Figure 43.  
Time (1 s/div)  
Time (1 s/div)  
Figure 42. 0.1-Hz to 10-Hz Noise (VBIAS  
10 k  
C028  
C029  
Figure 41. 0.1-Hz to 10-Hz Noise (VREF  
)
)
100 ꢁ  
40 mF  
VIN  
To scope  
VREF  
+
10 F  
EN  
1 kꢁ  
2-Pole High-pass  
4-Pole Low-pass  
REF19xx  
0.1 F  
0.1 Hz to 10 Hz Filter  
GND  
VBIAS  
Figure 43. 0.1-Hz to 10-Hz Noise Measurement Setup  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
REF1925, REF1930, REF1933, REF1941  
www.ti.com.cn  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
9 Detailed Description  
9.1 Overview  
The REF19xx is a family of dual-output, VREF and VBIAS (VREF / 2) band-gap voltage references. The Functional  
Block Diagram section provides a block diagram of the basic band-gap topology and the two buffers used to  
derive the VREF and VBIAS outputs. Transistors Q1 and Q2 are biased such that the current density of Q1 is greater  
than that of Q2. The difference of the two base emitter voltages (VBE1 – VBE2) has a positive temperature  
coefficient and is forced across resistor R5. The voltage is amplified and added to the base emitter voltage of Q2,  
which has a negative temperature coefficient. The resulting band-gap output voltage is almost independent of  
temperature. Two independent buffers are used to generate VREF and VBIAS from the band-gap voltage. The  
resistors R1, R2 and R3, R4 are sized such that VBIAS = VREF / 2.  
e-Trim™ is a method of package-level trim for the initial accuracy and temperature coefficient of VREF and VBIAS  
,
implemented during the final steps of manufacturing after the plastic molding process. This method minimizes the  
influence of inherent transistor mismatch, as well as errors induced during package molding. e-Trim is  
implemented in the REF19xx to minimize the temperature drift and maximize the initial accuracy of both the VREF  
and VBIAS outputs.  
9.2 Functional Block Diagram  
R2  
R1  
R6  
R7  
R5  
VREF  
+
+
e-Trim  
+
+
R4  
VBE1 VBE2  
-
-
R3  
Q2  
VBIAS  
Q1  
+
e-Trim  
9.3 Feature Description  
9.3.1 VREF and VBIAS Tracking  
Most single-supply systems require an additional stable voltage in the middle of the analog-to-digital converter  
(ADC) input range to bias input bipolar signals. The VREF and VBIAS outputs of the REF19xx are generated from  
the same band-gap voltage as shown in the Functional Block Diagram section. Hence, both outputs track each  
other over the full temperature range of –40°C to 125°C with an accuracy of 7 ppm/°C (max). The tracking  
accuracy increases to 6 ppm/°C (max) when the temperature range is limited to –40°C to 85°C. The tracking  
error is calculated using the box method, as described by Equation 2:  
VDIFF(MAX) - VDIFF (MIN)  
«
÷
Tracking Error =  
ñ106 (ppm)  
VREF ñTemperature Range  
where  
VDIFF = VREF - 2VBIAS  
(2)  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
 
 
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
The tracking accuracy is as shown in Figure 44.  
0.05  
0.04  
0.03  
0.02  
0.01  
0
VBIAS  
-0.01  
-0.02  
-0.03  
-0.04  
VREF  
-0.05  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
Figure 44. VREF and VBIAS Tracking vs Temperature  
9.3.2 Low Temperature Drift  
The REF19xx is designed for minimal drift error, which is defined as the change in output voltage over  
temperature. The drift is calculated using the box method, as described by Equation 3:  
VREF(MAX)-VREF(MIN)  
«
÷
Drift =  
ñ106 (ppm)  
VREFñTemperature Range  
(3)  
9.3.3 Load Current  
The REF19xx family is specified to deliver a current load of ±20 mA per output. Both the VREF and VBIAS outputs  
of the device are protected from short circuits by limiting the output short-circuit current to 50 mA. The device  
temperature increases according to Equation 4:  
TJ = TA +P RJA  
D
where  
TJ = junction temperature (°C),  
TA = ambient temperature (°C),  
PD = power dissipated (W), and  
RθJA = junction-to-ambient thermal resistance (°C/W).  
(4)  
The REF19xx maximum junction temperature must not exceed the absolute maximum rating of 150°C.  
9.4 Device Functional Modes  
When the EN pin of the REF19xx is pulled high, the device is in active mode. The device must be in active mode  
for normal operation. The REF19xx can be placed in a low-power mode by pulling the ENABLE pin low. When in  
shutdown mode, the output of the device becomes high impedance and the quiescent current of the device  
reduces to 5 µA in shutdown mode. See the Electrical Characteristics for logic high and logic low voltage levels.  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
REF1925, REF1930, REF1933, REF1941  
www.ti.com.cn  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
10 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The low-drift, bidirectional, single-supply, low-side, current-sensing solution described in this section can  
accurately detect load currents from –2.5 A to 2.5 A. The linear range of the output is from 250 mV to 2.75 V.  
Positive current is represented by output voltages from 1.5 V to 2.75 V, whereas negative current is represented  
by output voltages from 250 mV to 1.5 V. The difference amplifier is the INA213 current-shunt monitor, whose  
supply and reference voltages are supplied by the low-drift REF1930.  
10.2 Typical Application  
REF19xx  
VREF  
+
VIN  
.andgap  
EN  
+
VBIAS  
+
VCC  
œ
GND  
REF  
V+  
±ILOAD  
VREF  
ADC  
+
IN+  
+
OUT  
VBUS  
œ
w{IÜbÇ  
VOUT  
IN-  
GND  
INA213B  
Figure 45. Low-Side, Current-Sensing Application  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
 
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Typical Application (continued)  
10.2.1 Design Requirements  
The design requirements are as follows:  
1. Supply voltage: 5.0 V  
2. Load current: ±2.5 A  
3. Output: 250 mV to 2.75 V  
4. Maximum shunt voltage: ±25 mV  
10.2.2 Detailed Design Procedure  
Low-side current sensing is desirable because the common-mode voltage is near ground. Therefore, the current-  
sensing solution is independent of the bus voltage, VBUS. When sensing bidirectional currents, use a differential  
amplifier with a reference pin. This procedure allows for the differentiation between positive and negative  
currents by biasing the output stage such that it can respond to negative input voltages. There are a variety of  
methods for supplying power (V+) and the reference voltage (VREF, or VBIAS) to the differential amplifier. For a  
low-drift solution, use a monolithic reference that supplies both power and the reference voltage. Figure 46  
shows the general circuit topology for a low-drift, low-side, bidirectional, current-sensing solution. This topology is  
particularly useful when interfacing with an ADC; see Figure 45. Not only do VREF and VBIAS track over  
temperature, but their matching is much better than alternate topologies. For a more detailed version of the  
design procedure, refer to TIDU357.  
REF19xx  
VREF  
+
VIN  
.andgap  
EN  
+
VBIAS  
+
VCC  
œ
GND  
REF  
V+  
±ILOAD  
+
IN+  
+
OUT  
VBUS  
œ
w{IÜbÇ  
± VSHUNT  
VOUT  
IN-  
GND  
INA213B  
Figure 46. Low-Drift, Low-side, Bidirectional, Current-Sensing Circuit Topology  
The transfer function for the circuit given in Figure 46 is as shown in Equation 5:  
VOUT = G • (êVSHUNT ) + VBIAS  
= G • (êILOAD RSHUNT) + VBIAS  
(5)  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
REF1925, REF1930, REF1933, REF1941  
www.ti.com.cn  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
Typical Application (continued)  
10.2.2.1 Shunt Resistor  
As illustrated in Figure 46, the value of VSHUNT is the ground potential for the system load. If the value of VSHUNT  
is too large, issues may arise when interfacing with systems whose ground potential is actually 0 V. Also, a value  
of VSHUNT that is too negative may violate the input common-mode voltage of the differential amplifier in addition  
to potential interfacing issues. Therefore, limiting the voltage across the shunt resistor is important. Equation 6  
can be used to calculate the maximum value of RSHUNT  
.
VSHUNT(max)  
RSHUNT(max)  
=
ILOAD(max)  
(6)  
Given that the maximum shunt voltage is ±25 mV and the load current range is ±2.5 A, the maximum shunt  
resistance is calculated as shown in Equation 7.  
VSHUNT (max)  
25mV  
2.5A  
RSHUNT (max)  
=
=
=10mW  
ILOAD(max)  
(7)  
To minimize errors over temperature, select a low-drift shunt resistor. To minimize offset error, select a shunt  
resistor with the lowest tolerance. For this design, the Y14870R01000B9W resistor is used.  
10.2.2.2 Differential Amplifier  
The differential amplifier used for this design must have the following features:  
1. Single supply (3 V),  
2. Reference voltage input,  
3. Low initial input offset voltage (VOS),  
4. Low-drift,  
5. Fixed gain, and  
6. Low-side sensing (input common-mode range below ground).  
For this design, a current-shunt monitor (INA213) is used. The INA21x family topology is shown in Figure 47. The  
INA213B specifications can be found in the INA213 product data sheet.  
V+  
IN-  
-
OUT  
IN+  
+
REF  
GND  
Figure 47. INA21x Current-Shunt Monitor Topology  
The INA213B is an excellent choice for this application because all the required features are included. In general,  
instrumentation amplifiers (INAs) do not have the input common-mode swing to ground that is essential for this  
application. In addition, INAs require external resistors to set their gain, which is not desirable for low-drift  
applications. Difference amplifiers typically have larger input bias currents, which reduce solution accuracy at  
small load currents. Difference amplifiers typically have a gain of 1 V/V. When the gain is adjustable, these  
amplifiers use external resistors that are not conducive to low-drift applications.  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
 
 
 
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
Typical Application (continued)  
10.2.2.3 Voltage Reference  
The voltage reference for this application must have the following features:  
1. Dual output (3.0 V and 1.5 V),  
2. Low drift, and  
3. Low tracking errors between the two outputs.  
For this design, the REF1930 is used. The REF19xx topology is as shown in the Functional Block Diagram  
section.  
The REF1930 is an excellent choice for this application because of its dual output. The temperature drift of  
25 ppm/°C and initial accuracy of 0.1% make the errors resulting from the voltage reference minimal in this  
application. In addition, there is minimal mismatch between the two outputs and both outputs track very well  
across temperature, as shown in Figure 48 and Figure 49.  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
0
1
2
3
4
5
6
VREF and VBIAS Tracking Over Temperature (ppm/°C)  
VREF and VBIAS Matching (ppm)  
C016  
C004  
Figure 49. Distribution of VREF – 2 × VBIAS Drift Tracking  
Over Temperature  
Figure 48. VREF – 2 × VBIAS Distribution (At TA = 25°C)  
10.2.2.4 Results  
Table 1 summarizes the measured results.  
Table 1. Measured Results  
ERROR  
UNCALIBRATED (%)  
CALIBRATED (%)  
±0.004  
Error across the full load current range (25°C)  
Error across the full load current range (–40°C to 125°C)  
±0.0355  
±0.0522  
±0.0606  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
REF1925, REF1930, REF1933, REF1941  
www.ti.com.cn  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
10.2.3 Application Curves  
Performing a two-point calibration at 25°C removes the errors associated with offset voltage, gain error, and so  
forth. Figure 50 to Figure 52 show the measured error at different conditions. For a more detailed description on  
measurement procedure, calibration, and calculations, please refer to TIDU357.  
3
2.5  
2
800  
600  
-40°C  
0°C  
400  
200  
1.5  
1
0
25°C  
85°C  
œ200  
œ400  
œ600  
œ800  
0.5  
0
125°C  
-3  
-2  
-1  
0
1
2
3
œ3  
œ2  
œ1  
0
1
2
3
Load current (mA)  
Load current (mA)  
C00  
C00  
Figure 50. Measured Transfer Function  
Figure 51. Uncalibrated Error vs Load Current  
800  
600  
-40°C  
0°C  
400  
200  
0
25°C  
85°C  
œ200  
œ400  
œ600  
œ800  
125°C  
œ3  
œ2  
œ1  
0
1
2
3
Load current (mA)  
C00  
Figure 52. Calibrated Error vs Load Current  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
 
 
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
11 Power-Supply Recommendations  
The REF19xx family of references feature an extremely low-dropout voltage. These references can be operated  
with a supply of only 20 mV above the output voltage. For loaded reference conditions, a typical dropout voltage  
versus load is shown in Figure 53. A supply bypass capacitor ranging between 0.1 µF to 10 µF is recommended.  
400  
125°C  
300  
25°C  
œ40°C  
200  
100  
0
œ30  
œ20  
œ10  
0
10  
20  
30  
Load Current (mA)  
C005  
Figure 53. Dropout Voltage vs Load Current  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
REF1925, REF1930, REF1933, REF1941  
www.ti.com.cn  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
12 Layout  
12.1 Layout Guidelines  
Figure 54 shows an example of a PCB layout for a data acquisition system using the REF1930. Some key  
considerations are:  
Connect low-ESR, 0.1-μF ceramic bypass capacitors at VIN, VREF, and VBIAS of the REF1930.  
Decouple other active devices in the system per the device specifications.  
Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup.  
Place the external components as close to the device as possible. This configuration prevents parasitic errors  
(such as the Seebeck effect) from occurring.  
Minimize trace length between the reference and bias connections to the INA and ADC to reduce noise  
pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible and only make perpendicular crossings when absolutely necessary.  
12.2 Layout Example  
V+  
IN+  
IN-  
Via to  
Input Power  
C
GND  
REF  
C
OUT  
REF  
VREF  
VBIAS  
Via  
to GND  
Plane  
Analog Input  
C
C
Microcontroller  
A/D Input  
GND  
EN  
C
VIN  
DIG1  
AIN  
Figure 54. Layout Example  
版权 © 2014–2017, Texas Instruments Incorporated  
23  
 
REF1925, REF1930, REF1933, REF1941  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档ꢀ  
相关文档请参见以下部分:  
INA21x 电压输出、低侧或高侧测量、双向、零漂移系列分流监控器》(文献编号:SBOS437)  
《低漂移双向单电源低侧电流感测参考设计》(文献编号:TIDU357)  
13.2 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,以及样片或购买的快速访  
问。  
2. 相关链接  
部件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
REF1925  
REF1930  
REF1933  
REF1941  
13.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
13.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
e-Trim is a trademark of Texas Instruments, Inc.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
24  
版权 © 2014–2017, Texas Instruments Incorporated  
REF1925, REF1930, REF1933, REF1941  
www.ti.com.cn  
ZHCSCT4A SEPTEMBER 2014REVISED JANUARY 2017  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2017, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
REF1925AIDDCR  
REF1925AIDDCT  
REF1930AIDDCR  
REF1930AIDDCT  
REF1933AIDDCR  
REF1933AIDDCT  
REF1941AIDDCR  
REF1941AIDDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
5
5
5
5
5
5
5
5
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
GAGM  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
GAGM  
GAHM  
GAHM  
GAIM  
GAIM  
GAJM  
GAJM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
REF1925AIDDCR  
REF1925AIDDCT  
REF1930AIDDCR  
REF1930AIDDCT  
REF1933AIDDCR  
REF1933AIDDCT  
REF1941AIDDCR  
REF1941AIDDCT  
SOT-  
23-THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
5
5
5
5
5
5
5
5
3000  
250  
179.0  
179.0  
179.0  
179.0  
179.0  
179.0  
179.0  
179.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
SOT-  
23-THIN  
SOT-  
23-THIN  
3000  
250  
SOT-  
23-THIN  
SOT-  
23-THIN  
3000  
250  
SOT-  
23-THIN  
SOT-  
23-THIN  
3000  
250  
SOT-  
23-THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
REF1925AIDDCR  
REF1925AIDDCT  
REF1930AIDDCR  
REF1930AIDDCT  
REF1933AIDDCR  
REF1933AIDDCT  
REF1941AIDDCR  
REF1941AIDDCT  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
5
5
5
5
5
5
5
5
3000  
250  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0005A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
5
1
NOTE 4  
(0.15)  
0.95  
3.05  
2.75  
1.9  
2
3
(0.2)  
4
0.1  
TYP  
0.0  
0.5  
0.3  
5X  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.12  
TYP  
0 -8 TYP  
C
SEATING PLANE  
0.6  
0.3  
TYP  
4220752/A 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0005A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
5X (1.1)  
5X (0.6)  
1
5
SYMM  
2
3
4X (0.95)  
4
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4220752/A 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0005A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
5X (1.1)  
5X (0.6)  
1
5
SYMM  
2
3
4X(0.95)  
4
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4220752/A 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY