REF200AU/2K5 [TI]

双路、100µA 拉/灌电流 | D | 8 | -25 to 85;
REF200AU/2K5
型号: REF200AU/2K5
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、100µA 拉/灌电流 | D | 8 | -25 to 85

光电二极管
文件: 总34页 (文件大小:1212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
REF200 Dual Current Source and Current Sink  
1 Features  
3 Description  
The REF200 combines three circuit building-blocks  
1
Completely floating: no power supply or ground  
connections  
on a single monolithic chip: two 100-µA current  
sources and a current mirror. The sections are  
dielectrically isolated, making them completely  
independent. Also, because the current sources are  
two-terminal devices, they can be used equally well  
as current sinks. The performance of each section is  
individually measured and laser-trimmed to achieve  
high accuracy at low cost.  
High accuracy: 100 µA ±0.5%  
Low temperature coefficient: ±25 ppm/°C  
Wide voltage compliance: 2.5 V to 40 V  
Includes current mirror  
2 Applications  
The sections can be pin-strapped for currents of 50  
µA, 100 µA, 200 µA, 300 µA, or 400 µA. External  
circuitry can obtain virtually any current. These and  
many other circuit techniques are shown in the  
Application Information section of this data sheet.  
Sensor excitation  
Biasing circuitry  
Offsetting current loops  
Low voltage references  
Charge-pump circuitry  
Hybrid microcircuits  
The REF200 is available in an SOIC package.  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
REF200  
SOIC (8)  
3.91 mm × 4.90 mm  
(1) For all available packages, see the package addendum at the  
end of the data sheet.  
Functional Block Diagram  
I1  
I2  
Mirror  
In  
High  
High  
Substrate  
6
8
7
5
100µA  
100µA  
1
2
3
4
I1  
Low  
I2  
Mirror  
Mirror  
Out  
Low  
Common  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
Table of Contents  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Electrical Characteristics........................................... 4  
6.5 Typical Characteristics.............................................. 5  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 7  
7.4 Device Functional Modes.......................................... 8  
8
Application and Implementation .......................... 9  
8.1 Application Information.............................................. 9  
8.2 Typical Application ................................................... 9  
8.3 System Examples ................................................... 12  
Power Supply Recommendations...................... 25  
9
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 25  
11 Device and Documentation Support ................. 26  
11.1 Documentation Support ....................................... 26  
11.2 Receiving Notification of Documentation Updates 26  
11.3 Support Resources ............................................... 26  
11.4 Trademarks........................................................... 26  
11.5 Electrostatic Discharge Caution............................ 26  
11.6 Glossary................................................................ 26  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 26  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (July 2015) to Revision C  
Page  
Changed storage temperature................................................................................................................................................ 4  
Changes from Revision A (August 2013) to Revision B  
Page  
Changed multiple instances of "mA" in data sheet back to "µA" (typo) ................................................................................. 1  
Changes from Original (September 2000) to Revision A  
Page  
Added ESD Ratings and Recommended Operating Conditions tables, and Feature Description, Device Functional  
Modes, Application and Implementation, Power Supply Recommendations, Layout, Device and Documentation  
Support, and Mechanical, Packaging, and Orderable Information sections........................................................................... 1  
2
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
 
REF200  
www.ti.com  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
5 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
I1 Low  
1
2
3
4
8
7
6
5
I1 High  
I2 Low  
Mirror Common  
Mirror Output  
I2 High  
Substrate  
Mirror Input  
Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO.  
1
I1 Low  
Current source 1 low terminal  
Current source 2 low terminal  
Current mirror common terminal  
Current mirror output terminal  
Current mirror input terminal  
I2 Low  
2
Mirror Common  
Mirror Output  
Mirror Input  
Substrate  
I2 High  
3
4
5
6
Substrate (Usually connected to most negative potential in the system)  
Current source 2 high terminal  
7
I1 High  
8
Current source 1 high terminal  
Copyright © 2000–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: REF200  
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
V
Applied voltage  
–6  
Reverse current  
–350  
±80  
85  
µA  
V
Voltage between any two sections  
Operating temperature  
–40  
–55  
°C  
°C  
Tstg  
Storage temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Charged-device model (CDM), per JEDEC specification JESD22-C101(1)  
±750  
V
(1) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
NOM  
MAX  
40  
UNIT  
V
VCOMP  
TA  
Compliance voltage  
Specified temperature range  
–25  
85  
°C  
6.4 Electrical Characteristics  
at TA = 25°C, VS = 15 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT SOURCES  
Current accuracy  
±0.25%  
±0.25%  
25  
±1%  
±1%  
Current match  
Temperature drift  
Specified temperature range  
2.5 V to 40 V  
ppm/°C  
20  
100  
Output impedance  
MΩ  
3.5 V to 30 V  
200  
500  
BW = 0.1 Hz to 10 Hz  
f = 10 kHz  
1
nAp-p  
Noise  
20  
pA/Hz  
Voltage compliance (1%)  
Capacitance  
TMIN to TMAX  
See Typical Characteristics  
10  
pF  
CURRENT MIRROR – I = 100 µA unless otherwise noted  
Gain  
0.995  
40  
1
25  
1.005  
Temperature drift  
ppm/°C  
Impedance (output)  
Nonlinearity  
2 V to 40 V  
100  
MΩ  
I = 0 µA to 250 µA  
0.05%  
1.4  
Input voltage  
V
Output compliance voltage  
Frequency response (–3 dB)  
See Typical Characteristics  
Transfer  
5
MHz  
4
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
REF200  
www.ti.com  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
6.5 Typical Characteristics  
at TA = 25°C, VS = 15 V (unless otherwise noted)  
100.1  
100  
600  
500  
400  
300  
200  
501  
454  
Distribution of three  
99.9  
99.8  
production lots —  
1284 Current Sources.  
Drift specified by  
85°C  
“box method”  
(See text)  
99.7  
117  
86  
99.6  
99.5  
100  
0
66  
30  
15  
6
5
2
0
1
1
–50  
–25  
0
25  
50  
75  
100  
125  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Temperature Drift (ppm/°C)  
Temperature (°C)  
Figure 1. Current Source Typical Drift vs Temperature  
Figure 2. Current Source Temperature Drift Distribution  
100.5  
100.4  
100.3  
100.2  
101  
100.8  
100.6  
100.4  
100.2  
100  
100.1  
25°C  
100  
99.9  
99.8  
99.8  
99.6  
–55°C  
99.7  
99.4  
99.6  
99.2  
99  
125°C  
99.5  
0
1
2
3
4
5
0
5
10  
15  
20  
25  
30  
35  
40  
Voltage (V)  
Voltage (V)  
Figure 4. Current Source Output Current vs Voltage  
Figure 3. Current Source Output Current vs Voltage  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
12kW  
7V  
Reverse Voltage  
Circuit Model  
5kW  
Safe Reverse Current  
Safe Reverse Voltage  
100  
0
–10  
0
–2  
–4  
–6  
–8  
–12  
Reverse Voltage (V)  
Figure 6. Current Source Reverse Current vs Reverse  
Voltage  
Figure 5. Current Source Current Noise (0.1 Hz to 10 Hz)  
Copyright © 2000–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: REF200  
 
 
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, VS = 15 V (unless otherwise noted)  
5
0.1  
0.08  
0.06  
0.04  
0.02  
0
Data from Three  
Representative Units  
(Least-square fit)  
4
VO  
=
1.25V  
3
2
VO = 1V  
1
0
–1  
–2  
–3  
–0.02  
–0.04  
–0.06  
–0.08  
–0.01  
VO = 1.5V  
–4  
–5  
0
50  
100  
150  
200  
250  
10µA  
100µA  
Mirror Current (A)  
1mA  
Current (µA)  
Figure 8. Mirror Transfer Nonlinearity  
Figure 7. Mirror Gain Error vs Current  
4
3
2
1
Input Voltage  
Output  
Compliance  
Voltage  
0
1mA  
1µA  
10µA  
100µA  
10mA  
Current  
Figure 9. Mirror Input Voltage and Output Compliance Voltage vs Current  
6
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
REF200  
www.ti.com  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
7 Detailed Description  
7.1 Overview  
The REF200 device combines three circuit building-blocks on a single monolithic chip—two 100-µA current  
sources and a current mirror. The sections are dielectrically isolated, making them completely independent. Also,  
because the current sources are two terminal devices, they can be used equally well as current sinks. The  
performance of each section is individually measured and laser-trimmed to achieve high accuracy at low cost.  
7.2 Functional Block Diagram  
I1  
I2  
Mirror  
In  
High  
High  
Substrate  
6
8
7
5
100µA  
100µA  
1
2
3
4
I1  
Low  
I2  
Mirror  
Mirror  
Out  
Low  
Common  
7.3 Feature Description  
7.3.1 Temperature Drift  
Drift performance is specified by the box method, as illustrated in Figure 1. The upper and lower current  
extremes measured over temperature define the top and bottom of the box. The sides are determined by the  
specified temperature range of the device. The drift of the unit is the slope of the diagonal, typically 25 ppm/°C  
from –25°C to +85°C.  
Copyright © 2000–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: REF200  
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
7.4 Device Functional Modes  
The three circuit sections of the REF200 are electrically isolated from one another, using a dielectrically-isolated  
fabrication process. A substrate connection is provided (pin 6), which is isolated from all circuitry. This pin should  
be connected to a defined circuit potential to assure rated DC performance. The preferred connection is to the  
most negative constant potential in the system. In most analog systems, this would be –VS. For best ac  
performance, leave pin 6 open and leave unused sections unconnected. Figure 10 shows the simplified circuit  
diagram of the REF200.  
8,7  
5
4
5kΩ  
1kΩ  
1kΩ  
3
Current  
Mirror  
(Substrate)  
Current  
8X  
Source  
(1 of 2)  
4kΩ  
12kΩ  
6
1,2  
Figure 10. Simplified Circuit Diagram  
8
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
 
REF200  
www.ti.com  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
Applications for the REF200 are limitless. Application Bulletin AB-165 (SBOA046) shows additional REF200  
circuits as well as other related current source techniques. In this section, a collection of circuits are shown to  
illustrate some techniques.  
If the current sources are subjected to reverse voltage, a protection diode may be required. A reverse voltage  
circuit model of the REF200 is shown in Figure 6. If reverse voltage is limited to less than 6 V or reverse current  
is limited to less than 350 µA, then no protection circuitry is required. A parallel diode (see (a) in Figure 17)  
protects the device by limiting the reverse voltage across the current source to approximately 0.7 V. In some  
applications, a series diode may be preferable (see (b) in Figure 17), because it allows no reverse current. This  
configuration, however, reduces the compliance voltage range by one diode drop.  
8.2 Typical Application  
Figure 11 shows the schematic of a circuit that translates RTD resistance to a voltage level convenient for an  
ADC input. The REF200 precision current reference provides excitation and an instrumentation amplifier scales  
the signal. The design also uses a 3-wire RTD configuration to minimize errors due to wiring resistance.  
+5V  
REF200  
100µA  
100µA  
+5V  
3 Wire  
RTD  
INA326  
+
R1  
Vout  
R2  
œ
R3 78.7  
Figure 11. RTD Resistance to Voltage Converter Schematic  
Copyright © 2000–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: REF200  
 
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
Typical Application (continued)  
8.2.1 Design Requirements  
The design requirements are as follows:  
Supply Voltage: 5 V  
RTD temperature range: –50°C to +125°C  
RTD resistance range 80.3 to 147.9 Ω  
Output: 0.1 V to 4.9 V  
The design goals and performance are summarized in Table 1. Figure 15 depicts the measured transfer function  
of the design.  
Table 1. Comparison of Design Goals, Calculations, Simulation, and Measured Performance  
VOUT  
RTD  
GOAL  
0.1 V  
4.9 V  
CALCULATED  
0.112 V  
SIMULATED  
0.117 V  
MEASURED  
0.11 3 V  
VOUT maximum scale  
VOUT minimum scale  
80.3 Ω  
142.9 Ω  
4.83 V  
4.82 V  
4.862 V  
8.2.2 Detailed Design Procedure  
Figure 12 and Figure 13 shows the schematic of the RTD amplifier for minimum and maximum output conditions.  
This circuit was designed for a –50°C to 150°C RTD temperature range. At –50°C the RTD resistance is 80.3 Ω  
and the voltage across it is 8.03 mV (VRTD = (100 μA) (80.3 ), see Figure 2). Notice that R3 develops a voltage  
drop that opposes the RTD drop. The drop across R3 is used to shift amplifiers input differential voltage to a  
minimum level. The output is the differential input multiplied by the gain (Vout = 698 160 μV = 0.111 V). At  
150°C, the RTD resistance is 148 and the voltage across it is 14. 8 mV (VRTD = (100 μA × 148 ). This  
produces a differential input of 6.93 mV and an output voltage of 4.84 V (VOUT = 698 6.93 mV = 4.84 V , see  
Figure 13). For more detailed design procedures and results, refer to the reference guide, RTD to Voltage  
Reference Design Using Instrumentation Amplifier and Current Reference (TIDU969).  
+5V  
REF200  
100µA  
100µA  
+5V  
3 Wire  
RTD  
INA326  
+
R1  
VOUT  
0.111V  
+
8.03mV  
+
160µ V  
80.3@  
-50C  
R1  
-
-
-
R3 78.7  
- 7.87mV +  
G = 2(R2/R1)  
200µA  
Figure 12. RTD Amplifier with Minimum Output Condition  
10  
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
 
 
REF200  
www.ti.com  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
+5V  
REF200  
100µA  
100µA  
+5V  
3 Wire  
RTD  
INA326  
+
R1  
VOUT  
4.84V  
+
6.93mV  
+
148@  
150C  
14.8mV  
-
R1  
-
-
R3 78.7  
- 7.87mV +  
G = 2(R2/R1)  
200µA  
Figure 13. RTD Amplifier with Maximum Output Condition  
8.2.2.1 Lead Resistance Cancelation (3-Wire RTD)  
Figure 14 shows the 3-wire RTD configuration can be used to cancel lead resistance. The resistance in each  
lead must be equal to cancel the error. Also, the two current sources in the REF200 must be equal. Notice that  
the voltage developed on the two top leads of the RTD are equal and opposite polarity so that the amplifiers  
input is only from the RTD voltage. In this example, the RTD drop is 14.8 mV and the leads each have 1 mV.  
Notice that the 1 mV drops cancel. Finally, notice that the voltage on the 3rd lead (2 mV) creates a small shift in  
the common mode voltage. In some applications, a larger resistor is intentionally added to shift the common-  
mode voltage. However, the INA326 has a rail-to-rail common mode range, so it can accept common-mode  
voltages near ground.  
+5V  
REF200  
100µA  
100µA  
Large Lead R  
300m  
+5V  
INA326  
10Ω  
+
R1  
VOUT  
-1mV+  
+
14.8mV  
+
148@  
150C  
14.8mV  
-
4.84V  
R1  
-
-
R3 78.7  
10Ω  
3 Wire  
RTD  
- 1mV+  
10Ω  
+2mV-  
PCB  
Figure 14. 3-Wire RTD Configuration Cancels Lead Resistance  
Copyright © 2000–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: REF200  
 
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
8.2.3 Application Curves  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Error (0 Ω)  
Error (10 Ω)  
140  
80  
100  
120  
160  
80  
90  
100  
110  
120  
130  
140  
150  
RTD Resistance ()  
RTD Resistance  
C002  
C001  
Figure 16. Measured Error vs RTD Resistance  
Figure 15. RTD to Vout Transfer Function  
8.3 System Examples  
NOTE: All diodes = 1N4148.  
D1  
D3  
100µA  
D1  
Bidirectional  
Bidirectional  
Current Source  
Current Source  
100µA  
D2  
100µA  
D
D2  
4
(a)  
(b)  
(c)  
(d)  
Figure 17. Reverse Voltage Protection  
+VS  
100µA  
IOUT  
5
4
50µA  
In  
Out  
Mirror  
Com  
3
100µA  
VS  
Figure 18. 50-µA Current Source  
12  
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
 
REF200  
www.ti.com  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
System Examples (continued)  
300µA  
400µA  
200µA  
100µA  
100µA  
100µA  
100µA  
5
4
100µA  
100µA  
In  
Out  
5
4
In  
Out  
Mirror  
Mirror  
Com  
3
Com  
3
Compliance = 4V  
Compliance = 4V  
(a)  
(b)  
(c)  
Figure 19. 200-µA, 300-µA, and 400-µA Floating Current Sources  
Compliance to  
+VS  
Ground  
+VS  
Compliance to  
VS + 5 V  
Compliance to  
–VS + 5.1 V  
50 µA  
100 µA  
27 kΩ  
50 µA  
50 µA  
5
4
In  
Out  
5
4
Mirror  
In  
Out  
5
4
Com  
3
Mirror  
In  
Out  
Mirror  
Com  
3
0.01 µF  
Com  
3
100 µA  
5.1 V  
100 kΩ  
100 µA  
1N4689  
100 µA  
–VS  
(a)  
–VS  
–VS  
(b)  
(c)  
Figure 20. 50-µA Current Sinks  
SERIES-CONNECTED CURRENT SOURCES  
CURRENT vs APPLIED VOLTAGE  
+VS  
101  
High  
100µA  
100µA  
100µA  
100µA  
Low  
100µA/200µA  
100  
5
4
In  
Out  
Mirror  
Com  
3
99  
0
10  
20  
30  
40  
50  
60  
70  
80  
Applied Voltage (V)  
–VS  
Compliance to –VS + 1.5V  
Provides 2X Higher Compliance Voltage  
Figure 21. Improved Low-Voltage Compliance  
Figure 22. 100-µA Current Source—80-V Compliance  
Copyright © 2000–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: REF200  
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
System Examples (continued)  
+VS  
+VS  
100µA  
100µA  
0.01µF  
33kΩ  
L
o
a
d
L
o
a
d
100µA  
+VS  
5.1V  
1N4689  
100µA  
VS  
(b) Compliance to +VS 5V.  
VS  
(a) Compliance approximate  
to Gnd. HV compliance  
limited by FET breakdown.  
L
o
a
d
1N4148  
1N4148  
27kΩ  
High  
VS  
40kΩ  
40kΩ  
100µA  
(c)  
100µA  
0.01µF  
0.01µF  
0.01µF  
0.01µF  
100µA  
100µA  
40kΩ  
40kΩ  
Low  
1N4148  
1N4148  
(d) Floating 200µA cascoded  
current source.  
(e) Bidirectional 200µA  
cascoded current source.  
NOTES: (1) FET cascoded current sources offer improved output impedance and high frequency operation. Circuit in (b)  
also provides improved PSRR. (2) For current sinks (Circuits (a) and (b) only), invert circuits and use Nchannel JFETS.  
Figure 23. FET Cascode Circuits  
14  
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
REF200  
www.ti.com  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
System Examples (continued)  
Using Bourns Op Amp Trimpot®  
Using Standard Potentiometer  
+V  
+VS  
S
V
V
IN  
IN  
RA  
RB  
RA  
RB  
100µA  
100µA  
VOUT  
VOUT  
Op Amp  
Op Amp  
51Ω  
51Ω  
To (1)  
To  
Other  
Amps  
Other  
Amps  
(1)  
2kΩ Linear  
100Ω  
®
Bourns Trimpot  
100µA  
100µA  
V
= VIN (–RB /RA )  
V
= –VIN(RB /RA)  
OUT  
OUT  
Offset Adjustment Range = 5mV  
Offset Adjustment Range = 5mV  
–VS  
–VS  
NOTE: (1) For N Op Amps, use Potentiometer Resistance = N • 100Ω.  
Figure 24. Operational Amplifier Offset Adjustment Circuits  
Copyright © 2000–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: REF200  
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
System Examples (continued)  
R2  
+VS  
100 µA  
NOTE: (1) OPA602 or OPA128  
0.01 µF  
EXAMPLES  
(1)  
R
R
I
OUT  
1
2
IOUT = N • 100 µA  
R1  
Use OPA128  
100 Ω 10 MΩ  
1 nA  
1 μA  
1 mA  
(N • R2 )  
10 kΩ  
10 kΩ  
1 MΩ  
1 kΩ  
R1  
(N • R2)  
IOUT = N • 100 µA  
(1)  
R2  
0.01 µF  
100 µA  
–VS  
(a)  
(b)  
FEATURES:  
(1) Zero volts shunt compliance.  
(2) Adjustable only to values above  
reference value.  
NOTE:  
IO = (N +1) 100 µA  
Current source/sink swing to the  
Load Return rail is limited only  
by the op amp's input common  
mode range and output swing  
capability. Voltage drop across R  
can be tailored for any amplifier to  
allow swing to zero volts from rail.  
+VS  
100 µA  
NR  
R
0.01 µF  
OPA602  
EXAMPLES  
R
NR  
I
OUT  
OPA602  
1 kΩ  
1 kΩ  
4 kΩ 500 μA  
9 kΩ 1 mA  
100 kΩ 9.9 kΩ 10 mA  
NR  
R
0.01 µF  
100 µA  
IO = (N +1) 100 µA  
Reference  
–VS  
(c)  
(d)  
IO = (N +1) 100 µA  
100 µA  
OPA602  
10 pF  
IO = 100 μA (N + 1). Compliance » 3.5 V  
with 0.1 V across R. Max I limited by FET.  
O
For IO = 1 A, R = 0.1 Ω, NR = 1 kΩ.  
NR  
R
0.01 µF  
(e)  
Figure 25. Adjustable Current Sources  
16  
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
REF200  
www.ti.com  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
System Examples (continued)  
INA110  
Instrumentation Amplifier  
ROFFSET  
Cable Shield  
RTD  
VOUT = Gain • 200 µA • Δ RTD  
200-µA  
Reference  
Current  
200-µA  
Compensation  
Current  
+VS  
8
6
5
7
I
O
A
B
C
REF200  
1
2
3
4
–VS  
Figure 26. RTD Excitation With Three-Wire Lead Resistance Compensation  
2 Vp-p  
2 Vp-p  
Triangle Output  
C
OPA602  
Square Output  
R
10 kΩ  
Frequency = 1/4RC (Hz)  
Frequency = 25/C (Hz)  
(C is in µF and R = 10 kΩ)  
1N4148  
1N4148  
Bidirectional  
Current Source  
1/2  
REF200  
1N4148  
1N4148  
Figure 27. Precision Triangle Waveform Generator  
Copyright © 2000–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: REF200  
 
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
System Examples (continued)  
100 kΩ  
VIN  
¦10 V VIN 10 V  
100 µA + Bridge(1)  
C
1/4  
OPA404  
1/4  
OPA404  
1/4  
OPA404  
12 Vp-p  
(1)  
100 µA + Bridge  
Duty Cycle Out  
VIN  
VIN  
=
=
10 V: 100% Duty Cycle  
0 V: 50% Duty Cycle  
60 k  
VIN = œ10 V: 0% Duty Cycle  
(1) See Figure 27.  
Figure 28. Precision Duty-Cycle Modulator  
For current source,  
IOUT  
invert circuitry and  
use P-Channel FET.  
Siliconix  
J109  
0.1 µF  
50kΩ  
100 µA  
–15 V  
Figure 29. Low Noise Current Sink  
18  
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
REF200  
www.ti.com  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
System Examples (continued)  
IOUT  
For current source,  
50 kΩ  
invert circuitry and  
0.1 µF  
use P-Channel FET.  
Siliconix  
J109  
0.1 µF  
50 kΩ  
100 µA  
100 µA  
–15 V  
Figure 30. Low Noise Current Sink With Compliance Below Ground  
High  
High  
300 µA  
400 µA  
0.01 µF  
0.01 µF  
20 kΩ  
20 kΩ  
100 µA  
100 µA  
100 µA  
2N5116  
2N5116  
2N4340  
2N4340  
0.01 µF  
27 kΩ  
5
4
5
4
100 µA  
In  
Out  
In  
Out  
Mirror  
Com  
3
Mirror  
Com  
3
300 µA  
Low  
400 µA  
Low  
(a) Regulation (15 V to 30 V = 0.00003%/V (10 GW)  
(a) Regulation (15 V to 30 V = 0.000025%/V (10 GW)  
Figure 31. Floating 300-µA and 400-µA Cascoded Current Sources  
Copyright © 2000–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: REF200  
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
System Examples (continued)  
+V  
S
100 µA  
10 kΩ  
C
10 kΩ  
V
I
VO = –VI  
OPA602  
Diodes: 1N4148  
or PWS740-3  
VO Rate Limit = 100 µA/C  
Diode Bridge for  
reduced VOS  
.
100 µA  
–V  
S
Figure 32. Rate Limiter  
High  
Compliance  
4 V to 30 V  
25 mA  
100 Ω  
100 μA  
100 Ω  
+VS  
VS  
100 Ω  
100 Ω  
10 kΩ  
40.2 Ω  
NOTE: Each amplifier 1/4 LM324  
Op amp power supplies are derived  
within the circuitry, and this quiescent  
current is included in the 25 mA.  
Low  
Figure 33. 25-mA Floating Current Source  
20  
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
REF200  
www.ti.com  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
System Examples (continued)  
+15 V  
VO  
100 µA  
+10  
R
R
(50 kΩ)  
(50 kΩ)  
VI  
+5  
1N4148  
–10  
–5  
+5  
+10  
VI  
10 pF  
–5  
1N4148  
For VI > –5 V: VO = 0  
For VI < –5 V: VO= –V – 5 V  
VO  
OPA602  
I
–10  
(Dead to 100 µA • R)  
R
R
VO  
(50 kΩ)  
(50 kΩ)  
+10  
+5  
VI  
1N4148  
–10  
–5  
+5  
+10  
VI  
100 µA  
10 pF  
1N4148  
–15 V  
VO  
OPA602  
–5  
For VI < 5 V: VO = 0  
For VI > 5 V: VO = 5 V – V  
I
(Dead to –100 µA • R)  
–10  
Figure 34. Dead-Band Circuit  
Copyright © 2000–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: REF200  
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
System Examples (continued)  
+15 V  
VO  
+10  
+5  
100 µA  
R
R
(50 kΩ)  
(50 kΩ)  
–10  
–5  
+5  
+10  
1N4148  
VI  
–5  
10 pF  
For VI > 5 V: VO = V – 5 V  
For VI < –5 V: VO= V + 5 V  
I
10 kΩ  
10 kΩ  
1N4148  
I
OPA602  
–10  
(Dead to 100 µA • R)  
10 kΩ  
VI  
VO  
OPA602  
R
R
(50 kΩ)  
(50 kΩ)  
1N4148  
100 µA  
10 pF  
1N4148  
–15 V  
OPA602  
Figure 35. Double Dead-Band Circuit  
+VS  
100 µA  
VO = 100 µV  
1 Ω  
Figure 36. Low-Voltage Reference  
22  
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
REF200  
www.ti.com  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
System Examples (continued)  
+VS  
100 µA  
OPA602  
VO = 1 V  
0.01 µF  
10 kΩ  
Figure 37. Voltage Reference  
VO  
+10  
+5  
+7.5 V (R = 75 kΩ)  
+5 V (R = 50 kΩ)  
+2.5 V (R = 25 kΩ)  
1 kΩ  
100 µF  
VO  
OPA121  
10  
5  
+5  
+10  
VI  
OPA121  
VI  
100 µA  
with bridge(1)  
2.5 V (R = 25 kΩ)  
+5 V (R = 50 kΩ)  
+7.5 V (R = 75 kΩ)  
R
5  
(50 kΩ)  
VO = VI (5 V < VI < 5 V)  
VO = 5 V (VI > 5 V)  
VO = 5 V (V < 5 V)  
I
10  
(Bound = 100 µA R)  
(1) See Figure 17.  
Figure 38. Bipolar Limiting Circuit  
VO  
1 kΩ  
+10  
+5  
+7.5 V (R = 75 kΩ)  
+5 V (R = 50 kΩ)  
+2.5 V (R = 25 kΩ)  
100 µF  
VO  
OPA121  
1N4148  
–10  
–5  
+5  
+10  
VI  
OPA121  
VI  
–5  
R
100 µA  
VO = VI (VI < 5 V)  
VO = 5 V (VI > 5 V)  
(VLIMIT = 100 µA • R)  
(50 kΩ)  
–10  
Figure 39. Limiting Circuit  
Copyright © 2000–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: REF200  
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
System Examples (continued)  
+VS  
+5V  
100µA  
VO  
1kΩ  
The  
Window  
5V  
1/2  
LM393  
0
V
I
–VW  
+VW  
(2)  
VCENTER  
R(3)  
0.01µF(1)  
0.01µF(1)  
–VW , +VW = 100µA • R  
(2)  
VCENTER  
VO  
R(3)  
1/2  
LM393  
VI  
100µA  
NOTES: (1) Capacitors optional to reduce noise and switching time.  
(2) Programs center of threshold voltage. (3) Programs window voltage.  
–VS  
Figure 40. Window Comparator  
+VS  
100µA  
100µA  
1/2  
OPA1013  
1/2  
OPA1013  
PMI  
+In  
–In  
MAT03  
–VS  
INA105  
VO = +In – (–In)  
Figure 41. Instrumentation Amplifier With Compliance to –VS  
24  
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
REF200  
www.ti.com  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
9 Power Supply Recommendations  
The REF200 device has completely floating current sources and current mirror. The REF200 device has a wide  
compliance voltage range from 2.5 V to 40 V.  
10 Layout  
10.1 Layout Guidelines  
Figure 42 illustrates an example of a printed-circuit-board (PCB) layout for a data acquisition system using the  
REF2030. Some key considerations are:  
Minimize trace lengths in the current source and current mirror paths to reduce impedance.  
Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup.  
Place the external components as close to the device as possible. This configuration prevents parasitic errors  
(such as the Seebeck effect) from occurring.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when absolutely necessary.  
10.2 Layout Example  
VSUPPLY  
GND  
C
REF200  
To RTD  
R
R
To INA  
R
Figure 42. Example Layout of REF200 in a RTD Measurement System  
Copyright © 2000–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: REF200  
 
REF200  
SBVS020C SEPTEMBER 2000REVISED FEBRUARY 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
RTD to Voltage Reference Design Using Instrumentation Amplifier and Current Reference, TIDU969  
Implementation and Applications of Current Sources and Current Receivers, SBOA046  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
26  
Submit Documentation Feedback  
Copyright © 2000–2020, Texas Instruments Incorporated  
Product Folder Links: REF200  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
REF200AU  
REF200AU/2K5  
REF200AU/2K5E4  
REF200AUE4  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
8
8
8
8
75  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-25 to 85  
-25 to 85  
-25 to 85  
-25 to 85  
REF  
200U  
ACTIVE  
ACTIVE  
ACTIVE  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
REF  
200U  
REF  
200U  
75  
RoHS & Green  
REF  
200U  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
REF200AU/2K5  
SOIC  
D
8
2500  
330.0  
12.4  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
REF200AU/2K5  
D
8
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

REF200AU/2K5E4

DUAL CURRENT SOURCE/CURRENT SINK
BB

REF200AU/2K5E4

双路、100µA 拉/灌电流 | D | 8 | -25 to 85
TI

REF200AUE4

DUAL CURRENT SOURCE/CURRENT SINK
BB

REF200AUE4

双路、100µA 拉/灌电流 | D | 8 | -25 to 85
TI

REF200AUG4

DUAL CURRENT SOURCE/CURRENT SINK
BB

REF200D

Analog Circuit,
BB

REF200_07

DUAL CURRENT SOURCE/CURRENT SINK
BB

REF2025

8ppm/°C 温漂、低功耗、双输出 Vref 和 Vref/2 电压基准
TI

REF2025-Q1

REF20xx-Q1 Low-Drift, Low-Power, Dual-Output, VREF and VREF / 2 Voltage References
TI

REF2025AIDDCR

8ppm/°C 温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI

REF2025AIDDCT

8ppm/°C 温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI

REF2025AISDDCR

8ppm/°C 温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI