REF3433-EP [TI]

增强型产品 3.3V 低温漂、低功耗、小型串联电压基准;
REF3433-EP
型号: REF3433-EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

增强型产品 3.3V 低温漂、低功耗、小型串联电压基准

文件: 总28页 (文件大小:1990K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
REF34xx-EP 低温漂、低功耗、小型封装系列电压基准  
1 特性  
3 说明  
1
初始精度:±0.05%(最大值)  
温度系数:10ppm/°C(最大值)  
REF34xx-EP 器件是一款低温漂  
(10ppm/°C)、低功耗、高精度 CMOS 电压基准,具有  
±0.05% 初始精度、低工作电流且功耗小于 95µA。该  
器件还提供 3.8µVp-p/V 的极低输出噪声,这使得它在  
用于噪声关键型系统中的高分辨率数据转换器时能够保  
持较高的信号完整性。REF34xx-EP 采用小型 SOT-23  
封装,具有更高的规格参数并且能够以引脚对引脚方式  
替代 MAX607x ADR34xxREF34xx-EP 系列与大  
多数 ADC DAC 兼容。  
输出电流:±10mA  
低静态电流:95µA(最大值)  
宽输入电压:12V  
输出 1/f 噪声(0.1Hz 10Hz):3.8µVPP/V  
小型 6 引脚 SOT-23 封装  
出色的长期稳定性(25ppm/1000 小时)  
支持国防、航天和医疗 应用的 AEC-Q100:  
受控基线  
该器件的低输出电压迟滞和低长期输出电压漂移可进一  
步提高稳定性和系统可靠性。器件的小尺寸和低工作电  
(95µA) 特性使其非常适合便携式和电池供电 应用。  
一个组装/测试基地  
一个制造基地  
具有扩展工作温度范围(–55°C 125°C)  
延长了产品生命周期  
延长了产品变更通知  
产品可追溯性  
REF34xx-EP 具有 –55°C 125°C 的宽额定工作温度  
范围。有关其他电压选项,请联系 TI 销售代表。  
器件信息(1)  
部件名称  
REF3425-EP  
REF3430-EP  
REF3433-EP  
REF3440-EP  
封装  
封装尺寸(标称值)  
2 应用  
精密数据采集系统  
SOT-23 (6)  
2.90mm × 1.60mm  
PLC 模拟 I/O 模块  
现场发送器  
工业仪表  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
测试设备  
电源监控  
简化原理图  
不同温度条件下压降与电流负载间的关系  
10  
10 ꢀ  
0.4  
0.36  
124 ꢀ  
+125°C  
0.32  
œ
ADS1287  
REF  
Input Signal  
1 nF  
+
0.28  
+25°C  
0.24  
VIN  
-40°C  
0.2  
0.16  
0.12  
0.08  
0.04  
0
CIN  
1 µF  
COUT  
10 µF  
REF34xx-EP  
Copyright © 2017, Texas Instruments Incorporated  
0
5
10  
Load Current (mA)  
D001  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS942  
 
 
 
 
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 13  
9.3 Feature Description................................................. 13  
9.4 Device Functional Modes........................................ 14  
10 Application and Implementation........................ 15  
10.1 Application Information.......................................... 15  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 7  
Parameter Measurement Information ................ 10  
8.1 Solder Heat Shift..................................................... 10  
8.2 Long-Term Stability................................................. 11  
8.3 Power Dissipation ................................................... 11  
8.4 Noise Performance ................................................. 12  
Detailed Description ............................................ 13  
9.1 Overview ................................................................. 13  
10.2 Typical Application: Basic Voltage Reference  
Connection............................................................... 15  
11 Power Supply Recommendations ..................... 17  
12 Layout................................................................... 18  
12.1 Layout Guidelines ................................................. 18  
12.2 Layout Example .................................................... 18  
13 器件和文档支持 ..................................................... 19  
13.1 文档支持................................................................ 19  
13.2 相关链接................................................................ 19  
13.3 接收文档更新通知 ................................................. 19  
13.4 社区资源................................................................ 19  
13.5 ....................................................................... 19  
13.6 静电放电警告......................................................... 19  
13.7 术语表 ................................................................... 19  
14 机械、封装和可订购信息....................................... 20  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (March 2019) to Revision B  
Page  
已添加 在整个数据表中添加了有关长期稳定性的信............................................................................................................ 1  
Added long-term stability in Electrical Characteristics table................................................................................................... 5  
Added Long-Term Stability section in Parameter Measurement Information section .......................................................... 11  
Changes from Original (December 2018) to Revision A  
Page  
已添加 向数据表添加了新器................................................................................................................................................ 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
www.ti.com.cn  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
5 Device Comparison Table  
PRODUCT  
VOUT  
2.5 V  
3 V  
REF3425-EP  
REF3430-EP  
REF3433-EP  
REF3440-EP  
3.3 V  
4.096 V  
6 Pin Configuration and Functions  
DBV Package  
6-Pin SOT-23  
Top View  
1
6
GND_F  
OUT_F  
OUT_S  
5
2
GND_S  
3
4
ENABLE  
IN  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
GND_F  
GND_S  
ENABLE  
IN  
Ground  
Ground  
Input  
Ground force connection.  
Ground sense connection.  
2
3
Enable connection. Enables or disables the device.  
Input supply voltage connection.  
4
Power  
Output  
Output  
5
OUT_S  
OUT_F  
Reference voltage output sense connection.  
Reference voltage output force connection.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
3
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
VREF + 0.05  
–0.3  
MAX  
13  
UNIT  
IN  
Input voltage  
EN  
V
IN + 0.3  
5.5  
Output voltage  
VREF  
–0.3  
V
Output short circuit current  
20  
mA  
Operating, Tj(2)  
Storage, Tstg  
–55  
–65  
150  
Temperature  
°C  
170  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) By design, the device is specified functional over the operating temperature of –55°C to 150°C.  
7.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
12  
UNIT  
V
(1)  
IN  
EN  
IL  
Supply input voltage (IL = 0 mA, TA = 25°C)  
Enable voltage  
VREF + VDO  
0
–10  
–55  
IN  
V
Output current  
10  
mA  
°C  
Tj  
Operating temperature  
25  
125  
(1) Dropout voltage.  
7.4 Thermal Information  
REF34xx-EP  
DBV (SOT-23)  
6 PINS  
185  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
156  
29.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
33.8  
ψJB  
29.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
 
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
www.ti.com.cn  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
7.5 Electrical Characteristics  
At TA = 25°C unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage  
TA = 25°C  
–0.05%  
0.05%  
10  
accuracy  
Output voltage  
temperature  
–55°C TA 125°C  
2.5  
ppm/°C  
ppm/V  
coefficient(1)  
LINE AND LOAD REGULATION  
VIN = 2.55 V to 12 V, TA = 25°C  
2
ΔV(OΔVIN) Line regulation(2)  
VIN = VREF + VDO to 12 V, –55°C TA 125°C  
15  
30  
IL = 0 mA to 10 mA, VIN = 3  
Sourcing  
20  
V, TA = 25°C  
IL = 0 mA to 10 mA, VIN = 3  
Sourcing  
V, –55°C TA 125°C  
REF3425-EP  
40  
43  
48  
60  
REF3430-EP  
REF3440-EP  
REF3440-EP  
REF3425-EP  
REF3430-EP  
REF3433-EP  
REF3440-EP  
IL = 0 mA to –10 mA, VIN  
VREF + VDO, TA = 25°C  
=
Sinking  
Sinking  
ΔV(OΔIL)  
Load regulation(2)  
ppm/mA  
70  
75  
84  
98  
IL = 0 mA to –10 mA, VIN  
=
VREF + VDO, –55°C TA  
125°C  
Short-circuit  
ISC  
current (output  
shorted to ground)  
VREF = 0, TA = 25°C  
18  
22  
mA  
NOISE  
ƒ = 0.1 Hz to 10 Hz  
5
3.8  
µV p-p/V  
µV rms  
Output voltage  
noise(3)  
en p-p  
ƒ = 0.1 Hz to 10 Hz (REF3440-EP)  
ƒ = 10 Hz to 10 kHz  
24  
ƒ = 1 kHz  
0.25  
0.2  
Output voltage  
noise density  
en  
ppm/Hz  
ƒ = 1 kHz (REF3440-EP)  
LONG-TERM STABILITY  
0 - 1000 hours at 35°C  
25  
10  
Long-term  
stability(4)  
ppm  
1000 - 2000 hours at 35°C  
TURNON  
tON  
CAPACITIVE LOAD  
Stable output  
capacitor value  
Turnon time  
0.1% of output voltage settling, CL = 10 µF  
2.5  
ms  
µF  
CL  
–55°C TA 125°C  
0.1  
10  
(1) Temperature drift is specified according to the box method. See the Feature Description section for more details.  
(2) The ppm/V and ppm/mA in line and load regulation can be also expressed as µV/V and µV/mA.  
(3) The peak-to-peak noise measurement procedure is explained in more detail in the Noise Performance section.  
(4) Long-term stability measurement procedure is explained in more in detail in the Long-Term Stability section.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
At TA = 25°C unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT VOLTAGE  
REF3425-EP  
REF3430-EP  
REF3433-EP  
REF3440-EP  
2.5  
3
VREF  
Output voltage  
V
3.3  
4.096  
POWER SUPPLY  
VIN  
Input voltage  
VREF + VDO  
12  
V
VIN = VREF + VDO to 12 V  
VIN = VREF + VDO to 12 V  
–55°C TA 125°C  
Sourcing  
10  
Output current  
capacity  
IL  
mA  
Sinking  
–10  
Active mode  
Shutdown mode  
72  
2.5  
50  
95  
3
IQ  
Quiescent current  
Dropout voltage  
µA  
–55°C TA 125°C  
IL = 0 mA, TA = 25°C  
VDO  
IL = 0 mA, –55°C TA 125°C  
100  
500  
mV  
IL = 10 mA, –55°C TA 125°C  
Voltage reference in active mode (EN = 1)  
Voltage reference in shutdown mode (EN = 0)  
1.6  
ENABLE pin  
voltage  
VEN  
IEN  
V
0.5  
2
ENABLE pin  
leakage current  
VEN = VIN = 12 V, –55°C TA 125°C  
1
µA  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
www.ti.com.cn  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
7.6 Typical Characteristics  
at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
79.5  
79  
2.6 V  
3.3 V  
5 V  
12 V  
78.5  
78  
77.5  
77  
76.5  
76  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
D004  
Temperature (èC)  
D003  
Figure 1. VIN vs IQ Over Temperature  
Figure 2. Quiescent Current vs Temperature  
-20  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
CL = 1uF  
CL = 10uF  
-40  
-60  
-80  
-100  
-120  
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency(Hz)  
D005  
D009  
Figure 3. Power-Supply Rejection Ratio vs Frequency  
Figure 4. Noise Performance 10 Hz to 10 kHz  
ILOAD  
ILOAD  
+1mA  
+1mA  
+1mA  
+1mA  
-1mA  
-1mA  
1mA/div  
4mV/div  
1mA/div  
4mV/div  
VOUT  
VOUT  
250µs/div  
250µs/div  
(CL = 10µF, IOUT = 1mA)  
(CL = 1µF, IOUT = 1mA)  
D010  
D010  
Figure 6. Load Transient  
Figure 5. Load Transient  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
ILOAD  
ILOAD  
-10mA  
+10mA  
+10mA  
+10mA  
10mA/div  
20mV/div  
10mA/div  
-10mA  
+10mA  
VOUT  
VOUT  
100mV/div  
250µs/div  
250µs/div  
(CL = 1µF, IOUT = 10mA)  
(CL = 10µF, IOUT = 10mA)  
D010  
D010  
Figure 7. Load Transient  
Figure 8. Load Transient  
VIN  
VIN  
4V/div  
4V/div  
VOUT  
VOUT  
15mV/div  
5mV/div  
250µs/div  
(CL = 1µF)  
250µs/div  
D011  
D011  
(CL = 10µF)  
Figure 9. Line Transient  
Figure 10. Line Transient  
2.55  
2.5  
50%  
40%  
30%  
20%  
10%  
0
2.45  
2.4  
2.35  
2.3  
2.25  
2.2  
2.15  
2.1  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
D017  
Temperature (èC)  
Solder Heat Shift (%)  
D013  
Refer to Solder Heat Shift for more information  
Figure 11. Quiescent Current Shutdown Mode  
Figure 12. Solder Heat Shift Distribution  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
www.ti.com.cn  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
En  
1V/div  
VOUT  
Time 1s/div  
0.5ms/div  
D08_  
D018  
Figure 13. Turnon Time (Enable)  
Figure 14. 0.1-Hz to 10-Hz Noise (VREF)  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Solder Heat Shift  
The materials used in the manufacture of the REF34xx-EP have differing coefficients of thermal expansion,  
resulting in stress on the device die when the part is heated. Mechanical and thermal stress on the device die  
can cause the output voltages to shift, degrading the initial accuracy specifications of the product. Reflow  
soldering is a common cause of this error.  
In order to illustrate this effect, a total of 32 devices were soldered on four printed circuit boards [16 devices on  
each printed circuit board (PCB)] using lead-free solder paste and the paste manufacturer suggested reflow  
profile. The reflow profile is as shown in Figure 15. The printed circuit board is comprised of FR4 material. The  
board thickness is 1.65 mm and the area is 114 mm × 152 mm.  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (seconds)  
C01  
Figure 15. Reflow Profile  
The reference output voltage is measured before and after the reflow process; the typical shift is displayed in  
Figure 16. Although all tested units exhibit very low shifts (< 0.01%), higher shifts are also possible depending on  
the size, thickness, and material of the printed circuit board. An important note is that the histograms display the  
typical shift for exposure to a single reflow profile. Exposure to multiple reflows, as is common on PCBs with  
surface-mount components on both sides, causes additional shifts in the output bias voltage. If the PCB is  
exposed to multiple reflows, the device must be soldered in the second pass to minimize its exposure to thermal  
stress.  
50%  
40%  
30%  
20%  
10%  
0
D017  
Solder Heat Shift (%)  
Figure 16. Solder Heat Shift Distribution, VREF (%)  
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
www.ti.com.cn  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
8.2 Long-Term Stability  
One of the key parameters of the REF34xx-EP references is long-term stability. Figure 17 shows the typical drift  
value for the REF34xx-EP is 25 ppm from 0 to 1000 hours. This parameter is characterized by measuring 32  
units at regular intervals for a period of 1000 hours. It is important to understand that long-term stability is not  
ensured by design and that the output from the device may shift beyond the typical 25 ppm specification at any  
time. For systems that require highly stable output voltages over long periods of time, the designer should  
consider burning in the devices prior to use to minimize the amount of output drift exhibited by the reference over  
time.  
10  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
100 200 300 400 500 600 700 800 900 1000  
Hours  
D022  
Figure 17. Long Term Stability - 1000 hours (VREF  
)
8.3 Power Dissipation  
The REF34xx-EP voltage references are capable of source and sink up to 10 mA of load current across the rated  
input voltage range. However, when used in applications subject to high ambient temperatures, the input voltage  
and load current must be carefully monitored to ensure that the device does not exceeded its maximum power  
dissipation rating. The maximum power dissipation of the device can be calculated with Equation 1:  
TJ = TA +P ì RqJA  
D
where  
PD is the device power dissipation  
TJ is the device junction temperature  
TA is the ambient temperature  
RθJA is the package (junction-to-air) thermal resistance  
(1)  
Because of this relationship, acceptable load current in high temperature conditions may be less than the  
maximum current-sourcing capability of the device. In no case should the device be operated outside of its  
maximum power rating because doing so can result in premature failure or permanent damage to the device.  
Copyright © 2018–2019, Texas Instruments Incorporated  
11  
 
 
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
www.ti.com.cn  
8.4 Noise Performance  
Typical 0.1-Hz to 10-Hz voltage noise can be seen in Figure 18. Device noise increases with output voltage and  
operating temperature. Additional filtering can be used to improve output noise levels, although care must be  
taken to ensure the output impedance does not degrade ac performance. Peak-to-peak noise measurement  
setup is shown in Figure 18.  
Time 1s/div  
D08_  
Figure 18. 0.1-Hz to 10-Hz Noise (VREF  
)
12  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
www.ti.com.cn  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
9 Detailed Description  
9.1 Overview  
The REF34xx-EP is family of low-noise, precision bandgap voltage references that are specifically designed for  
excellent initial voltage accuracy and drift. The Functional Block Diagram is a simplified block diagram of the  
REF34xx-EP showing basic band-gap topology.  
9.2 Functional Block Diagram  
Enable  
Blocks  
GNDF  
GNDS  
EN  
OUTF  
OUTS  
IN  
Vdd  
Digital  
Inrush  
Current  
Limit  
Bandgap  
core  
Buffer  
9.3 Feature Description  
9.3.1 Supply Voltage  
The REF34xx-EP family of references features an extremely low dropout voltage. For loaded conditions, a typical  
dropout voltage versus load is shown on the front page. The REF34xx-EP features a low quiescent current that  
is extremely stable over changes in both temperature and supply. The typical room temperature quiescent  
current is 72 µA, and the maximum quiescent current over temperature is just 95 µA. Supply voltages below the  
specified levels can cause the REF34xx-EP to momentarily draw currents greater than the typical quiescent  
current. Use a power supply with a fast rising edge and low output impedance to easily prevent this issue.  
9.3.2 Low Temperature Drift  
The REF34xx-EP is designed for minimal drift error, which is defined as the change in output voltage over  
temperature. The drift is calculated using the box method, as described by Equation 2:  
VREF(MAX) - VREF(MIN)  
«
÷
Drift =  
ì 106  
VREF ì Temperature Range  
(2)  
9.3.3 Load Current  
The REF34xx-EP family is specified to deliver a current load of ±10 mA per output. The VREF output of the device  
are protected from short circuits by limiting the output short-circuit current to 18 mA. The device temperature  
increases according to Equation 3:  
TJ = TA +P ì RqJA  
D
where  
TJ = junction temperature (°C),  
TA = ambient temperature (°C),  
PD = power dissipated (W), and  
RθJA = junction-to-ambient thermal resistance (°C/W)  
(3)  
13  
The REF34xx-EP maximum junction temperature must not exceed the absolute maximum rating of 150°C.  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 EN Pin  
When the EN pin of the REF34xx-EP is pulled high, the device is in active mode. The device must be in active  
mode for normal operation. The REF34xx-EP can be placed in a low-power mode by pulling the ENABLE pin  
low. When in shutdown mode, the output of the device becomes high impedance and the quiescent current of  
the device reduces to 2 µA in shutdown mode. The EN pin must not be pulled higher than VIN supply voltage.  
See the Thermal Information for logic high and logic low voltage levels.  
9.4.2 Negative Reference Voltage  
For applications requiring a negative and positive reference voltage, the REF34xx-EP and OPA735 can be used  
to provide a dual-supply reference from a 5-V supply. Figure 19 shows the REF3425-EP used to provide a 2.5-V  
supply reference voltage. The low drift performance of the REF34xx-EP complements the low offset voltage and  
zero drift of the OPA735 to provide an accurate solution for split-supply applications. Take care to match the  
temperature coefficients of R1 and R2.  
+5 V  
3
4
5
6
REF3425-EP  
+2.5 V  
2
1
R1  
10 kΩ  
R2  
10 kΩ  
+5 V  
–2.5 V  
OPA735  
–5 V  
Copyright © 2017, Texas Instruments Incorporated  
Figure 19. REF3425-EP and OPA735 Create Positive and Negative Reference Voltages  
14  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
www.ti.com.cn  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
As this device has many applications and setups, there are many situations that this data sheet can not  
characterize in detail. Basic applications includes positive/negative voltage reference and data acquisition  
systems. The table below shows the typical application of REF34xx-EP and its companion ADC/DAC.  
Table 1. Typical Applications and Companion ADC/DAC  
Applications  
ADC/DAC  
DAC8881, ADS8332, ADS8568, ADS8317,  
ADS8588S, ADS1287  
PLC - DCS  
Display Test Equipment  
ADS8332  
ADUCM360  
ADS7279  
ADS1112  
Field Transmitters - Pressure  
Video Surveillance - Thermal Cameras  
Medical Blood Glucose Meter  
10.2 Typical Application: Basic Voltage Reference Connection  
The circuit shown in Figure 20 shows the basic configuration for the REF34xx-EP references. Connect bypass  
capacitors according to the guidelines in Input and Output Capacitors section.  
10  
10 ꢀ  
124 ꢀ  
œ
ADS1287  
REF  
Input Signal  
1 nF  
+
VIN  
CIN  
1 µF  
COUT  
10 µF  
REF34xx-EP  
Copyright © 2017, Texas Instruments Incorporated  
Figure 20. Basic Reference Connection  
10.2.1 Design Requirements  
A detailed design procedure is described based on a design example. For this design example, use the  
parameters listed in Table 2 as the input parameters.  
Table 2. Design Example Parameters  
DESIGN PARAMETER  
Input voltage VIN  
VALUE  
5 V  
Output voltage VOUT  
2.5 V  
1 µF  
REF34xx-EP input capacitor  
REF34xx-EP output capacitor  
10 µF  
Copyright © 2018–2019, Texas Instruments Incorporated  
15  
 
 
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
www.ti.com.cn  
10.2.2 Detailed Design Procedure  
10.2.2.1 Input and Output Capacitors  
A 1-µF to 10-µF electrolytic or ceramic capacitor can be connected to the input to improve transient response in  
applications where the supply voltage may fluctuate. Connect an additional 0.1-µF ceramic capacitor in parallel to  
reduce high frequency supply noise.  
A ceramic capacitor of at least a 0.1 µF must be connected to the output to improve stability and help filter out  
high frequency noise. An additional 1-µF to 10-µF electrolytic or ceramic capacitor can be added in parallel to  
improve transient performance in response to sudden changes in load current; however, keep in mind that doing  
so increases the turnon time of the device.  
Best performance and stability is attained with low-ESR, low-inductance ceramic chip-type output capacitors  
(X5R, X7R, or similar). If using an electrolytic capacitor on the output, place a 0.1-µF ceramic capacitor in parallel  
to reduce overall ESR on the output.  
10.2.2.2 4-Wire Kelvin Connections  
Current flowing through a PCB trace produces an IR voltage drop, and with longer traces, this drop can reach  
several millivolts or more, introducing a considerable error into the output voltage of the reference. A 1-in long, 5-  
mm wide trace of 1-oz copper has a resistance of approximately 100 mΩ at room temperature; at a load current  
of 10 mA, this can introduce a full millivolt of error. In an ideal board layout, the reference must be mounted as  
close as possible to the load to minimize the length of the output traces, and, therefore, the error introduced by  
voltage drop. However, in applications where this is not possible or convenient, force and sense connections  
(sometimes referred to as Kelvin sensing connections) are provided as a means of minimizing the IR drop and  
improving accuracy.  
Kelvin connections work by providing a set of high impedance voltage-sensing lines to the output and ground  
nodes. Because very little current flows through these connections, the IR drop across their traces is negligible,  
and the output and ground voltage information can be obtain with minimum IR drop error.  
It is always advantageous to use Kelvin connections whenever possible. However, in applications where the IR  
drop is negligible or an extra set of traces cannot be routed to the load, the force and sense pins for both VOUT  
and GND can simply be tied together, and the device can be used in the same fashion as a normal 3-terminal  
reference (as shown in Figure 19).  
10.2.2.3 VIN Slew Rate Considerations  
In applications with slow-rising input voltage signals, the reference exhibits overshoot or other transient  
anomalies that appear on the output. These phenomena also appear during shutdown as the internal circuitry  
loses power.  
To avoid such conditions, ensure that the input voltage waveform has both a rising and falling slew rate close to  
6 V/ms.  
10.2.2.4 Shutdown/Enable Feature  
The REF34xx-EP references can be switched to a low power shutdown mode when a voltage of 0.5 V or lower is  
input to the ENABLE pin. Likewise, the reference becomes operational for ENABLE voltages of 1.6 V or higher.  
During shutdown, the supply current drops to less than 2 µA, useful in applications that are sensitive to power  
consumption.  
If using the shutdown feature, ensure that the ENABLE pin voltage does not fall between 0.5 V and 1.6 V  
because this causes a large increase in the supply current of the device and may keep the reference from  
starting up correctly. If not using the shutdown feature, however, the ENABLE pin can simply be tied to the IN  
pin, and the reference remains operational continuously.  
16  
Copyright © 2018–2019, Texas Instruments Incorporated  
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
www.ti.com.cn  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
10.2.3 Application Curves  
2.55  
2.5  
79.5  
79  
2.45  
2.4  
78.5  
78  
2.35  
2.3  
77.5  
77  
2.25  
2.2  
2.15  
2.1  
76.5  
76  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
D013  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
D004  
Figure 22. Quiescent Current Shutdown Mode  
Figure 21. Quiescent Current vs Temperature  
11 Power Supply Recommendations  
The REF34xx-EP family of references feature an extremely low-dropout voltage. These references can be  
operated with a supply of only 50 mV above the output voltage. TI recommends a supply bypass capacitor  
ranging between 0.1 µF to 10 µF.  
Copyright © 2018–2019, Texas Instruments Incorporated  
17  
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
Figure 23 illustrates an example of a PCB layout for a data acquisition system using the REF34xx-EP. Some key  
considerations are:  
Connect low-ESR, 0.1-µF ceramic bypass capacitors at VIN, VREF of the REF34xx-EP.  
Decouple other active devices in the system per the device specifications.  
Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup.  
Place the external components as close to the device as possible. This configuration prevents parasitic errors  
(such as the Seebeck effect) from occurring.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when absolutely necessary.  
12.2 Layout Example  
C
GND_F 1  
GND_S 2  
6 OUT_F  
5 OUT_S  
REF34xx-EP  
EN 3  
4 IN  
Figure 23. Layout Example  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
www.ti.com.cn  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
如需相关文档,请参阅:  
INA21x 电压输出、低侧或高侧测量、双向、零漂移系列分流监控器》SBOS437  
《低温漂双向单电源低侧电流检测参考设计》TIDU357  
13.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
3. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
单击此处  
REF3425-EP  
REF3430-EP  
REF3433-EP  
REF3440-EP  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
REF3425-EP, REF3430-EP, REF3433-EP, REF3440-EP  
ZHCSJ86B DECEMBER 2018REVISED APRIL 2019  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
REF3425MDBVTEP  
REF3430MDBVTEP  
REF3433MDBVTEP  
REF3440MDBVTEP  
V62/18622-01XE  
V62/18622-02XE  
V62/18622-03XE  
V62/18622-04XE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
6
6
6
250  
250  
250  
250  
250  
250  
250  
250  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
1RWC  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
1SVC  
1SWC  
1SXC  
1RWC  
1SXC  
1SVC  
1SWC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Apr-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
REF3425MDBVTEP  
REF3430MDBVTEP  
REF3433MDBVTEP  
REF3440MDBVTEP  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
250  
250  
250  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
3.23  
3.23  
3.23  
3.23  
3.17  
3.17  
3.17  
3.17  
1.37  
1.37  
1.37  
1.37  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Apr-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
REF3425MDBVTEP  
REF3430MDBVTEP  
REF3433MDBVTEP  
REF3440MDBVTEP  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
250  
250  
250  
250  
213.0  
213.0  
213.0  
213.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

REF3433IDBVR

3.3V 低温漂、低功耗、小型串联电压基准 | DBV | 6 | -40 to 125
TI

REF3433MDBVTEP

增强型产品 3.3V 低温漂、低功耗、小型串联电压基准 | DBV | 6 | -55 to 125
TI

REF3433QDBVRQ1

REF34-Q1 Low-Drift, Low-Power, Small-Footprint Series Voltage References
TI

REF3433QDGKRQ1

REF34-Q1 Low-Drift, Low-Power, Small-Footprint Series Voltage References
TI

REF3433S-Q1

REF34-Q1 Low-Drift, Low-Power, Small-Footprint Series Voltage References
TI

REF3433SQDBVRQ1

REF34-Q1 Low-Drift, Low-Power, Small-Footprint Series Voltage References
TI

REF3433T

REF34xx Low-Drift, Low-Power, Small-Footprint Series Voltage Reference
TI

REF3433TIDBVR

REF34xx Low-Drift, Low-Power, Small-Footprint Series Voltage Reference
TI

REF3440

4.1V 低温漂、低功耗、小型串联电压基准
TI

REF3440-EP

增强型产品 4.1V 低温漂、低功耗串联电压基准
TI

REF3440IDBVR

4.1V 低温漂、低功耗、小型串联电压基准 | DBV | 6 | -40 to 125
TI

REF3440MDBVTEP

增强型产品 4.1V 低温漂、低功耗串联电压基准 | DBV | 6 | -55 to 125
TI