REF3433SQDBVRQ1 [TI]

REF34-Q1 Low-Drift, Low-Power, Small-Footprint Series Voltage References;
REF3433SQDBVRQ1
型号: REF3433SQDBVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

REF34-Q1 Low-Drift, Low-Power, Small-Footprint Series Voltage References

文件: 总38页 (文件大小:4818K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REF34-Q1
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
REF34-Q1 Low-Drift, Low-Power, Small-Footprint Series  
Voltage References  
1 Features  
3 Description  
AEC-Q100 qualified with the following results:  
– Device temperature grade 1: –40°C to +125°C  
ambient operating temperature  
– Device HBM ESD classification level 2  
– Device CDM ESD classification level C6  
Initial accuracy: ±0.05% (maximum)  
Temperature coefficient : 6 ppm/°C (maximum)  
Operating temperature range: −40°C to +125°C  
Output voltage options: 2.5V, 3.0V, 3.3V, 4.096V,  
5.0V  
The REF34-Q1 devices are low-temperature-drift  
(6 ppm/°C), low-power, high-precision CMOS voltage  
references. The devices have ±0.05% initial accuracy  
and low operating current with power consumption  
less than 95 μA. These devices also offer very low  
output noise of 3.8 µVPP/V, which enable the devices  
to maintain high signal integrity with high-resolution  
data converters and noise critical systems.  
Stability and system reliability are further improved by  
the low output-voltage hysteresis of these devices and  
low long-term output voltage drift. Furthermore, the  
small size and low operating current of the devices  
(95 μA) make them an excellent choise for battery-  
powered applications. The REF34-Q1 features an  
enable pin that can set the device into shutdown  
where it consumes a low stand by current (3 μA) to  
help with overall system power during standby.  
Output current: ±10 mA  
Low quiescent current: 95 μA (maximum)  
Low shutdown mode current: 3 μA (maximum)  
Wide input voltage: 12 V  
Output 1/f noise (0.1 Hz to 10 Hz): 3.8 µVPP/V  
Excellent long-term stability 25 ppm/1000 hrs  
Available in 6-pin and 5-Pin SOT-23 package and  
8-pin MSOP package  
The REF34-Q1 family is specified for the wide  
temperature range of −40°C to +125°C. Contact the  
TI sales representative for additional voltage options.  
2 Applications  
Device Information (1)  
Body control modules  
On board chargers  
Traction inverters  
Battery management systems  
Advanced driver assistance systems  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
2.90 mm × 1.60 mm  
2.90 mm × 1.60 mm  
4.00 mm × 4.00 mm  
REF34xx-Q1  
SOT-23 (6)  
REF34xxS-Q1  
REF34xx-Q1  
SOT-23 (5)  
VSSOP (8)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
3V VDD  
0.4  
0.36  
+125°C  
VDD  
2.5V VREF  
AIN0  
0.32  
VREF+  
OUT  
GND  
IN  
EN  
AIN1  
AIN2  
AIN3  
0.28  
VREF-  
+25°C  
0.24  
REF3425-Q1  
ADS7828-Q1  
0.2  
-40°C  
0.16  
3.3V VDD  
0.12  
0.08  
0.04  
0
I2C  
VDD  
GPIO0  
GPIOx  
I2C  
TDA2 (MCU)  
-10  
-5  
0
Load Current (mA)  
5
10  
drop  
Copyright © 2017, Texas Instruments Incorporated  
Dropout vs Current Load Over Temperature  
Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
6.1 Pin Functions ............................................................. 3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings ....................................... 4  
7.2 ESD Ratings .............................................................. 4  
7.3 Recommended Operating Conditions ........................4  
7.4 Thermal Information ...................................................4  
7.5 Electrical Characteristics ............................................5  
8 Typical Characteristics................................................... 7  
9 Parameter Measurement Information..........................12  
9.1 Solder Heat Shift.......................................................12  
9.2 Long-Term Stability................................................... 13  
9.3 Thermal Hysteresis...................................................13  
9.4 Power Dissipation..................................................... 14  
9.5 Noise Performance................................................... 15  
10 Detailed Description....................................................16  
10.1 Overview.................................................................16  
10.2 Functional Block Diagram.......................................16  
10.3 Feature Description.................................................16  
10.4 Device Functional Modes........................................17  
11 Application and Implementation................................ 18  
11.1 Application Information............................................18  
11.2 Typical Applications.................................................18  
12 Power Supply Recommendations..............................23  
13 Layout...........................................................................23  
13.1 Layout Guidelines................................................... 23  
13.2 Layout Example...................................................... 23  
14 Device and Documentation Support..........................25  
14.1 Documentation Support.......................................... 25  
14.2 Receiving Notification of Documentation Updates..25  
14.3 Support Resources................................................. 25  
14.4 Trademarks.............................................................25  
14.5 Electrostatic Discharge Caution..............................25  
14.6 Glossary..................................................................25  
15 Mechanical, Packaging, and Orderable  
Information.................................................................... 25  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (August 2020) to Revision C (October 2020)  
Page  
Added information for REF34-Q1 DGK Package............................................................................................... 3  
Added information for REF34xx-Q1 DGK package pin functions.......................................................................3  
Changes from Revision A (September 2018) to Revision B (August 2020)  
Page  
Added information for REF34xxS-Q1................................................................................................................. 3  
Added information for REF34xxS-Q1................................................................................................................. 3  
Changes from Revision * (July 2018) to Revision A (September 2018)  
Page  
Changed Advance Information to Production Data............................................................................................ 1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: REF34-Q1  
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
5 Device Comparison Table  
PRODUCT(1)  
VOUT  
2.5 V  
REF3425-Q1  
REF3430-Q1  
REF3433-Q1  
REF3440-Q1  
REF3450-Q1  
REF3425S-Q1  
REF3430S-Q1  
REF3433S-Q1  
REF3440S-Q1  
REF3450S-Q1  
3.0 V  
3.3 V  
4.096 V  
5.0 V  
(1) For full orderable part number please refer to Section 15.  
6 Pin Configuration and Functions  
OUT_F  
OUT_S  
IN  
NIC  
GND_F  
GND_S  
EN  
1
2
3
6
5
4
1
2
3
5
NC  
GND  
IN  
4
OUT  
Not to scale  
Not to scale  
Figure 6-1. DBV Package 6-Pin SOT-23 (Top View) Figure 6-2. DBV Package 5-Pin SOT-23 (Top View)  
ENABLE  
GND_S  
GND_F  
1
2
3
4
IN  
8
7
OUT_S  
OUT_F  
NIC  
6
5
NIC  
Not to scale  
Figure 6-3. DGK Package 8-Pin VSSOP (Top View)  
6.1 Pin Functions  
PIN  
REF34xxS-Q1  
(DBV)  
TYPE  
DESCRIPTION  
REF34xx-Q1  
REF34xx-  
Q1 (DGK)  
NAME  
(DBV)  
GND_F  
GND_S  
GND  
1
2
-
-
-
3
2
-
Ground Ground force connection  
Ground Ground sense connection  
Ground Ground connection  
2
-
ENABLE  
IN  
3
4
5
6
-
1
8
7
6
-
Input  
Power  
Output  
Output  
Output  
-
Enable connection. Enables or disables the device.  
3
-
Input supply voltage connection  
OUT_S  
OUT_F  
OUT  
Reference voltage output sense connection  
Reference voltage output force connection  
Reference voltage output connection  
Test pin, connect from 0V to 18V  
No internal connection  
-
4
1
5
NC  
-
-
NIC  
-
4,5  
-
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: REF34-Q1  
 
 
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
13  
UNIT  
V
IN  
Input voltage  
EN  
VOUT  
IN + 0.3  
5.5  
V
Output voltage  
V
Output short circuit current  
Operating temperature range, TA  
Storage temperature range, Tstg  
20  
mA  
°C  
°C  
–55  
–65  
150  
170  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied. These are stress ratings only and functional operation of the device at these or any other conditions  
beyond those specified in the Electrical Characteristics Table is not implied.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC  
Q100-011  
±1500  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VOUT + V  
IN  
Input Voltage  
12  
V
(1)  
DO  
EN  
IL  
Enable Voltage  
0
–10  
–40  
IN  
10  
V
Output Current  
mA  
°C  
TA  
Operating Temperature  
25  
125  
(1) VDO = Dropout voltage  
7.4 Thermal Information  
REF34-Q1  
THERMAL METRIC(1)  
DBV  
5 PINS  
122.6  
80.2  
42  
DBV  
6 PINS  
122.6  
80.2  
42  
DGK  
UNIT  
8 PINS  
174.1  
61.3  
95.5  
8.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
23.2  
41.9  
N/A  
23.2  
41.9  
N/A  
ΨJB  
93.9  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: REF34-Q1  
 
 
 
 
 
 
 
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
7.5 Electrical Characteristics  
At VIN = VOUT + VDO, COUT = 10 µF, CIN = 0.1 µF, IL = 0 mA, minimum and maximum specifications at TA = –40to 125;  
Typical specifications at TA = 25unless otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage accuracy TA = 25  
–0.05  
0.05  
6
%
Output voltage  
temperature coefficient  
2.5  
ppm/℃  
(1)  
LINE & LOAD REGULATION  
ΔVO/ΔVIN Line Regulation  
VIN = VOUT + VDO (2) to 12 V  
VIN = VOUT + VDO (2) to 12 V  
2
ppm/V  
15  
30  
Sourcing  
20  
IL = 0 mA to 10mA, VIN  
(3)  
= VOUT+ VDO  
Sourcing  
Sinking, REF3425-Q1  
Sinking, REF3430-Q1  
Sinking, REF3433-Q1  
Sinking, REF3440-Q1  
Sinking, REF3450-Q1  
Sinking, REF3425-Q1  
Sinking, REF3430-Q1  
Sinking, REF3433-Q1  
Sinking, REF3440-Q1  
Sinking, REF3450-Q1  
40  
43  
48  
60  
70  
ΔVO/ΔIL  
Load Regulation  
ppm/mA  
IL = 0 mA to –10mA, VIN  
= VOUT+ VDO  
(3)  
70  
75  
84  
98  
140  
NOISE  
0.1Hz ≤ f ≤ 10Hz  
5
enp-p  
Low frequency noise (4)  
µV p–p/V  
0.1Hz ≤ f ≤ 10Hz (REF3440–Q1 and REF3450–  
Q1)  
3.8  
Integrated wide band  
noise  
en  
en  
10Hz ≤ f ≤ 10kHz  
24  
µVrms  
f = 1kHz  
0.25  
0.2  
Output voltage noise  
density  
ppm/√Hz  
f = 1kHz (REF3440–Q1 and REF3450–Q1)  
LONG TERM STABILITY AND HYSTERESIS  
0 to 1000h at 35℃  
1000h to 2000h at 35℃  
0 to 1000h at 35℃  
25  
10  
17  
Long-term stability (5)  
Long-term stability (5)  
DBV Package  
ppm  
ppm  
DGK Package  
DBV Package  
25°C, –40°C,125°C,  
25°C Cycle 1  
30  
10  
20  
10  
25°C, –40°C,125°C,  
25°C Cycle 2  
Output voltage thermal  
hysteresis (6)  
25°C, –40°C,125°C,  
25°C Cycle 1  
DGK Package  
25°C, –40°C,125°C,  
25°C Cycle 2  
TURN-ON TIME  
tON Turn-on time  
0.1% of output voltage settling, CL = 10 µF,  
REF3425–Q1  
2.5  
ms  
µF  
CAPACITIVE LOAD  
Stable output capacitor  
range  
CL  
0.1  
10  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: REF34-Q1  
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
At VIN = VOUT + VDO, COUT = 10 µF, CIN = 0.1 µF, IL = 0 mA, minimum and maximum specifications at TA = –40to 125;  
Typical specifications at TA = 25unless otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
OUTPUT VOLTAGE  
REF3425Q1  
REF3430Q1  
REF3433Q1  
REF3440Q1  
REF3450Q1  
2.5  
3.0  
VOUT  
Output voltage  
3.3  
V
4.096  
5.0  
POWER SUPPLY  
VOUT + V  
VIN  
IL  
Input voltage  
12  
V
DO  
Output current capacity VIN = VOUT + VDO to 12 V  
–10  
10  
95  
3
mA  
Active mode  
Quiescent current  
72  
2.5  
50  
IQ  
µA  
mV  
V
Shutdown mode (7)  
IL = 0 mA  
VDO  
Dropout voltage  
IL = 0 mA  
100  
500  
IL = 10 mA  
Voltage reference in active mode (EN = 1)  
Voltage reference in shutdown mode (EN = 0)  
1.6  
VEN  
ENABLE pin voltage (7)  
0.5  
2
ENABLE pin leakage  
current (7)  
IEN  
ISC  
VEN = VIN = 12V  
1
µA  
Short circuit current  
VOUT = 0 V at TA = 25°C  
18  
22  
mA  
(1) Temperature drift is specified according to the box method. See Low Temperature Drift section for more details.  
(2) VDO for line regulation test is 50 mV.  
(3) VDO for load regulation test is 500 mV.  
(4) The peak-to-peak noise measurement is explained in more detail in section Noise Performance.  
(5) Long-term stability measurement procedure is explained in more detail in section Long–Term Stability.  
(6) Thermal hysteresis measurement procedure is explained in more detail in section Thermal Hysteresis.  
(7) Not applicable for REF34S device (DBV - 5 pin package)  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: REF34-Q1  
 
 
 
 
 
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
8 Typical Characteristics  
at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
74  
73  
72  
71  
12V  
5V  
3V  
70  
3.3V  
69  
68  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
Vinv  
D001  
Drift (ppm/°C)  
Figure 8-2. VIN vs IQ Over Temperature  
(-40°C to 125°C)  
Figure 8-1. Temperature Drift  
0.02  
0.015  
0.01  
75  
74.5  
74  
73.5  
73  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
72.5  
72  
71.5  
71  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
D002  
D004  
Figure 8-3. Output Voltage Accuracy vs Temperature  
Figure 8-4. Quiescent Current vs Temperature  
-20  
0.24  
0.23  
0.22  
0.21  
0.2  
CL = 1uF  
CL = 10uF  
-40  
-60  
0.19  
0.18  
0.17  
0.16  
0.15  
0.14  
0.13  
-80  
-100  
-120  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D005  
D019  
Figure 8-5. Power-Supply Rejection Ratio vs Frequency  
Figure 8-6. Line Regulation  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: REF34-Q1  
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
8 Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
8.7  
8.4  
8.1  
7.8  
7.5  
7.2  
6.9  
6.6  
6.3  
6
55  
52.5  
50  
47.5  
45  
42.5  
40  
37.5  
35  
32.5  
30  
5.7  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D021  
D020  
Figure 8-8. Load Regulation Sinking  
Figure 8-7. Load Regulation Sourcing  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
ILOAD  
+1mA  
+1mA  
-1mA  
1mA/div  
4mV/div  
VOUT  
0
10  
250µs/div  
100  
1k  
Frequency(Hz)  
10k  
100k  
(CL = 1µF, IOUT = 1mA)  
D010  
D009  
Figure 8-10. Load Transient  
Figure 8-9. Noise Performance 10 Hz to 10 kHz  
ILOAD  
ILOAD  
+1mA  
+10mA  
+10mA  
+1mA  
10mA/div  
-10mA  
-1mA  
1mA/div  
4mV/div  
VOUT  
VOUT  
100mV/div  
250µs/div  
250µs/div  
(CL = 1µF, IOUT = 10mA)  
D010  
(CL = 10µF, IOUT = 1mA)  
D010  
Figure 8-12. Load Transient  
Figure 8-11. Load Transient  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: REF34-Q1  
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
8 Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
ILOAD  
-10mA  
+10mA  
10mA/div  
20mV/div  
VIN  
4V/div  
+10mA  
VOUT  
VOUT  
15mV/div  
250µs/div  
(CL = 10µF, IOUT = 10mA)  
250µs/div  
(CL = 1µF)  
D010  
D011  
Figure 8-13. Load Transient  
Figure 8-14. Line Transient  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
VIN  
4V/div  
VOUT  
5mV/div  
250µs/div  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
D011  
(CL = 10µF)  
D013  
Figure 8-15. Line Transient  
Figure 8-16. Quiescent Current Shutdown Mode  
30%  
25%  
20%  
15%  
10%  
5%  
30%  
25%  
20%  
15%  
10%  
5%  
0
0
D016  
D016  
Thermal Hysteresis - Cycle 1 (ppm)  
Thermal Hysteresis - Cycle 2 (ppm)  
Figure 8-17. Thermal Hysteresis Distribution (Cycle 1) - DBV  
Package  
Figure 8-18. Thermal Hysteresis Distribution (Cycle 2) - DBV  
Package  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: REF34-Q1  
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
8 Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
30%  
25%  
20%  
15%  
10%  
5%  
30%  
25%  
20%  
15%  
10%  
5%  
0
0
DGKt  
DGKt  
Thermal Hysteresis - Cycle 2 (ppm)  
Thermal Hysteresis - Cycle 1 (ppm)  
Figure 8-20. Thermal Hysteresis Distribution (Cycle 2) - DGK  
Package  
Figure 8-19. Thermal Hysteresis Distribution (Cycle 1) - DGK  
Package  
50%  
40%  
30%  
20%  
10%  
0
50%  
40%  
30%  
20%  
10%  
0
D017  
DGKs  
Solder Heat Shift (%)  
Solder Heat Shift (%)  
Refer to Section 9.1 for more information  
Refer to Section 9.1 for more information  
Figure 8-21. Solder Heat Shift Distribution - DBV Package  
Figure 8-22. Solder Heat Shift Distribution - DGK Package  
En  
1V/div  
VOUT  
Time 1s/div  
0.5ms/div  
D08_  
D018  
Figure 8-24. 0.1-Hz to 10-Hz Noise (VREF  
)
Figure 8-23. Turnon Time (Enable)  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: REF34-Q1  
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
8 Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = 12 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
10  
5
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
Hours  
Hours  
DGKl  
D022  
Figure 8-26. Long Term Stability - 1000 hours (VREF) - DGK  
Package  
Figure 8-25. Long Term Stability - 1000 hours (VREF) - DBV  
Package  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: REF34-Q1  
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
9 Parameter Measurement Information  
9.1 Solder Heat Shift  
The materials used in the manufacture of the REF34-Q1 have differing coefficients of thermal expansion,  
resulting in stress on the device die when the part is heated. Mechanical and thermal stress on the device die  
can cause the output voltages to shift, degrading the initial accuracy specifications of the product. Reflow  
soldering is a common cause of this error.  
In order to illustrate this effect, a total of 32 devices were soldered on four printed circuit boards [16 devices on  
each printed circuit board (PCB)] using lead-free solder paste and the paste manufacturer suggested reflow  
profile. The reflow profile is as shown in Figure 9-1. The printed circuit board is comprised of FR4 material. The  
board thickness is 1.65 mm and the area is 114 mm × 152 mm. All measurements were taken after baking at  
150°C.  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (seconds)  
C01  
Figure 9-1. Reflow Profile  
The reference output voltage is measured before and after the reflow process; the typical shift is displayed in  
Figure 9-2. Although all tested units exhibit very low shifts (< 0.01%), higher shifts are also possible depending  
on the size, thickness, and material of the printed circuit board. An important note is that the histograms display  
the typical shift for exposure to a single reflow profile. Exposure to multiple reflows, as is common on PCBs with  
surface-mount components on both sides, causes additional shifts in the output bias voltage. If the PCB is  
exposed to multiple reflows, the device must be soldered in the second pass to minimize its exposure to thermal  
stress.  
50%  
40%  
30%  
20%  
10%  
0
50%  
40%  
30%  
20%  
10%  
0
D017  
DGKs  
Solder Heat Shift (%)  
Solder Heat Shift (%)  
Figure 9-2. Solder Heat Shift Distribution, VREF (%)  
- DBV Package  
Figure 9-3. Solder Heat Shift Distribution, VREF (%)  
- DGK Package  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: REF34-Q1  
 
 
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
9.2 Long-Term Stability  
One of the key parameters of the REF34-Q1 references is long-term stability. Typical characteristic expressed  
as: curves shows the typical drift value for the REF34-Q1 is 25 ppm from 0 to 1000 hours. This parameter is  
characterized by measuring 32 units at regular intervals for a period of 1000 hours. It is important to understand  
that long-term stability is not ensured by design and that the output from the device may shift beyond the typical  
25 ppm specification at any time. For systems that require highly stable output voltages over long periods of  
time, the designer should consider burning in the devices prior to use to minimize the amount of output drift  
exhibited by the reference over time  
10  
5
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
100 200 300 400 500 600 700 800 900 1000  
0
100 200 300 400 500 600 700 800 900 1000  
Hours  
Hours  
DGKl  
D022  
Figure 9-5. Long Term Stability - 1000 hours (VREF  
- DGK Package  
)
Figure 9-4. Long Term Stability - 1000 hours (VREF  
- DBV Package  
)
9.3 Thermal Hysteresis  
Thermal hysteresis is measured with the REF34-Q1 soldered to a PCB, similar to a real-world application.  
Thermal hysteresis for the device is defined as the change in output voltage after operating the device at 25°C,  
cycling the device through the specified temperature range, and returning to 25°C. Hysteresis can be expressed  
by Equation 1:  
«
÷
| VPRE - VPOST  
VNOM  
|
VHYST  
=
ì106 ppm  
(
)
(1)  
where  
VHYST = thermal hysteresis (in units of ppm)  
VNOM = the specified output voltage  
VPRE = output voltage measured at 25°C pre-temperature cycling  
VPOST = output voltage measured after the device has cycled from 25°C through the specified temperature  
range of –40°C to +125°C and returns to 25°C.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: REF34-Q1  
 
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
Typical thermal hysteresis distribution is as shown in Figure 9-6.  
30%  
25%  
20%  
15%  
10%  
5%  
30%  
25%  
20%  
15%  
10%  
5%  
0
0
D016  
D016  
Thermal Hysteresis - Cycle 1 (ppm)  
Thermal Hysteresis - Cycle 2 (ppm)  
Figure 9-6. Thermal Hysteresis Distribution (VREF) - Figure 9-7. Thermal Hysteresis Distribution (VREF) -  
DBV Package (Cycle 1)  
DBV Package (Cycle 2)  
30%  
25%  
20%  
15%  
10%  
5%  
30%  
25%  
20%  
15%  
10%  
5%  
0
0
DGKt  
DGKt  
Thermal Hysteresis - Cycle 2 (ppm)  
Thermal Hysteresis - Cycle 1 (ppm)  
Figure 9-9. Thermal Hysteresis Distribution (VREF) -  
DGK Package (Cycle 2)  
Figure 9-8. Thermal Hysteresis Distribution (VREF) -  
DGK Package (Cycle 1)  
9.4 Power Dissipation  
The REF34-Q1 voltage references are capable of source and sink up to 10 mA of load current across the rated  
input voltage range. However, when used in applications subject to high ambient temperatures, the input voltage  
and load current must be carefully monitored to ensure that the device does not exceeded its maximum power  
dissipation rating. The maximum power dissipation of the device can be calculated with Equation 2:  
TJ = TA +P ì RqJA  
D
(2)  
where  
PD is the device power dissipation  
TJ is the device junction temperature  
TA is the ambient temperature  
RθJA is the package (junction-to-air) thermal resistance  
Because of this relationship, acceptable load current in high temperature conditions may be less than the  
maximum current-sourcing capability of the device. In no case should the device be operated outside of its  
maximum power rating because doing so can result in premature failure or permanent damage to the device.  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: REF34-Q1  
 
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
9.5 Noise Performance  
Typical 0.1-Hz to 10-Hz voltage noise can be seen in Figure 9-10 . Device noise increases with output voltage  
and operating temperature. Additional filtering can be used to improve output noise levels, although care must  
be taken to ensure the output impedance does not degrade ac performance. Peak-to-peak noise measurement  
setup is shown in Figure 9-10.  
Time 1s/div  
D08_  
Figure 9-10. 0.1-Hz to 10-Hz Noise (VREF  
)
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: REF34-Q1  
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
10 Detailed Description  
10.1 Overview  
The REF34-Q1 devices are a family of low-noise, precision bandgap voltage references that are specifically  
designed for excellent initial voltage accuracy and drift. The Section 10.2 is a simplified block diagram of the  
REF34-Q1 showing basic band-gap topology.  
10.2 Functional Block Diagram  
Enable  
Blocks  
GNDF  
GNDS  
EN  
OUTF  
OUTS  
IN  
Vdd  
Digital  
Inrush  
Current  
Limit  
Bandgap  
core  
Buffer  
10.3 Feature Description  
10.3.1 Supply Voltage  
The REF34-Q1 family of references features an extremely low dropout voltage. For loaded conditions, a typical  
dropout voltage versus load is shown on the front page. The REF34-Q1 family features a low quiescent current  
that is extremely stable over changes in both temperature and supply. The typical room temperature quiescent  
current is 72 μA, and the maximum quiescent current over temperature is just 95 μA. Supply voltages below the  
specified levels can cause the REF34-Q1 to momentarily draw currents greater than the typical quiescent  
current. Use a power supply with a fast rising edge and low output impedance to easily prevent this issue.  
10.3.2 Low Temperature Drift  
The REF34-Q1 devices are designed for minimal drift error, which is defined as the change in output voltage  
over temperature. The drift is calculated using the box method, as described by Equation 3:  
VREF(MAX) - VREF(MIN)  
«
÷
Drift =  
ì 106  
VREF ì Temperature Range  
(3)  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: REF34-Q1  
 
 
 
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
10.3.3 Load Current  
The REF34-Q1 family is specified to deliver a current load of ±10 mA per output. The VREF output of the device  
are protected from short circuits by limiting the output short-circuit current to 18 mA. The device temperature  
increases according to Equation 4:  
TJ = TA +P ì RqJA  
D
(4)  
where  
TJ = junction temperature (°C),  
TA = ambient temperature (°C),  
PD = power dissipated (W), and  
RθJA = junction-to-ambient thermal resistance (°C/W)  
The REF34-Q1 maximum junction temperature must not exceed the absolute maximum rating of 150°C.  
10.4 Device Functional Modes  
10.4.1 EN Pin  
When the EN pin of the REF34-Q1 is pulled high, the device is in active mode. The device must be in active  
mode for normal operation. The REF34-Q1 can be placed in a low-power mode by pulling the ENABLE pin low.  
When in shutdown mode, the output of the device becomes high impedance and the quiescent current of the  
device reduces to 2 µA in shutdown mode. The EN pin must not be pulled higher than VIN supply voltage. See  
Thermal Information for logic high and logic low voltage levels.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: REF34-Q1  
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
11 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
11.1 Application Information  
As the REF34-Q1 devices have many applications and setups, there are many situations that this data sheet can  
not characterize in detail. Basic applications includes positive/negative voltage reference and data acquisition  
systems.  
Table 11-1. Typical Applications and Companion ADC/DAC  
APPLICATIONS  
ADC/DAC/CONTROLLER  
ADAS  
ADS7828-Q1  
HEV/EV  
ADS7951-Q1, ADS1120-Q1, ADS1258,  
BQ76PL455A-Q1  
11.2 Typical Applications  
11.2.1 Basic Voltage Reference Connection  
The circuit shown in Figure 11-1 shows the basic configuration for the REF34-Q1 references. Connect bypass  
capacitors according to the guidelines in Section 11.2.1.2.1.  
10  
10 ꢀ  
124 ꢀ  
-
Input Signal  
ADS7828-Q1  
REF  
1 nF  
+
VIN  
CIN  
1µF  
COUT  
10 µF  
REF34-Q1  
Copyright © 2017, Texas Instruments Incorporated  
Figure 11-1. Basic Reference Connection  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: REF34-Q1  
 
 
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
11.2.1.1 Design Requirements  
A detailed design procedure is based on a design example. For this design example, use the parameters listed  
in Table 11-2 as the input parameters.  
Table 11-2. Design Example Parameters  
DESIGN PARAMETER  
VALUE  
Input voltage VIN  
12 V  
Output voltage VOUT  
5 V  
REF3450-Q1 input capacitor  
REF3450-Q1 output capacitor  
1 µF  
10 µF  
11.2.1.2 Detailed Design Procedure  
11.2.1.2.1 Input and Output Capacitors  
A 1-μF to 10-μF electrolytic or ceramic capacitor can be connected to the input to improve transient response in  
applications where the supply voltage may fluctuate. Connect an additional 0.1-μF ceramic capacitor in parallel  
to reduce high frequency supply noise.  
A ceramic capacitor of at least a 0.1 μF must be connected to the output to improve stability and help filter out  
high frequency noise. An additional 1-μF to 10-μF electrolytic or ceramic capacitor can be added in parallel to  
improve transient performance in response to sudden changes in load current; however, keep in mind that doing  
so increases the turnon time of the device.  
Best performance and stability is attained with low-ESR, low-inductance ceramic chip-type output capacitors  
(X5R, X7R, or similar). If using an electrolytic capacitor on the output, place a 0.1-μF ceramic capacitor in  
parallel to reduce overall ESR on the output.  
11.2.1.2.2 4-Wire Kelvin Connections  
Current flowing through a PCB trace produces an IR voltage drop, and with longer traces, this drop can reach  
several millivolts or more, introducing a considerable error into the output voltage of the reference. A 1-inch long,  
5-millimeter wide trace of 1-ounce copper has a resistance of approximately 100 mΩ at room temperature; at a  
load current of 10 mA, this can introduce a full millivolt of error. In an ideal board layout, the reference must be  
mounted as close as possible to the load to minimize the length of the output traces, and, therefore, the error  
introduced by voltage drop. However, in applications where this is not possible or convenient, force and sense  
connections (sometimes referred to as Kelvin sensing connections) are provided as a means of minimizing the  
IR drop and improving accuracy.  
Kelvin connections work by providing a set of high impedance voltage-sensing lines to the output and ground  
nodes. Because very little current flows through these connections, the IR drop across their traces is negligible,  
and the output and ground.  
It is always advantageous to use Kelvin connections whenever possible. However, in applications where the IR  
drop is negligible or an extra set of traces cannot be routed to the load, the force and sense pins for both VOUT  
and GND can simply be tied together, and the device can be used in the same fashion as a normal 3-terminal  
reference (as shown in Figure 9-6).  
11.2.1.2.3 VIN Slew Rate Considerations  
In applications with slow-rising input voltage signals, the reference exhibits overshoot or other transient  
anomalies that appear on the output. These phenomena also appear during shutdown as the internal circuitry  
loses power.  
To avoid such conditions, ensure that the input voltage wave-form has both a rising and falling slew rate close to  
6 V/ms.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: REF34-Q1  
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
11.2.1.2.4 Shutdown/Enable Feature  
The REF34-Q1 references can be switched to a low power shut-down mode when a voltage of 0.5 V or lower is  
input to the ENABLE pin. Likewise, the reference becomes operational for ENABLE voltages of 1.6 V or higher.  
During shutdown, the supply current drops to less than 2 μA, useful in applications that are sensitive to power  
consumption.  
If using the shutdown feature, ensure that the ENABLE pin voltage does not fall between 0.5 V and 1.6 V  
because this causes a large increase in the supply current of the device and may keep the reference from  
starting up correctly. If not using the shutdown feature, however, the ENABLE pin can simply be tied to the IN  
pin, and the reference remains operational continuously.  
11.2.1.3 Application Curves  
75  
74.5  
74  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
73.5  
73  
72.5  
72  
71.5  
71  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
D004  
D013  
Figure 11-2. Quiescent Current vs Temperature  
Figure 11-3. Quiescent Current Shutdown Mode  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: REF34-Q1  
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
11.2.2 Advanced Driver Assistance Systems (ADAS) Microcontroller Connection  
11.2.2.1 Basic Voltage Reference Connection  
The circuit shown in Figure 11-4 shows the basic configuration for the REF34-Q1 references.  
3V VDD  
VDD  
2.5V VREF  
AIN0  
VREF+  
OUT  
GND  
IN  
AIN1  
AIN2  
AIN3  
VREF-  
EN  
REF3425-Q1  
ADS7828-Q1  
3.3V VDD  
I2C  
VDD  
GPIO0  
GPIOx  
I2C  
TDA2 (MCU)  
Copyright © 2017, Texas Instruments Incorporated  
Figure 11-4. ADAS Microcontroller Application  
11.2.2.2 Design Requirements  
In ADAS applications it is common to use an ADC with a MCU to monitor the voltage rails to the MCU/DSP/  
FPGAs. In figure Figure 11-4 the automotive TI JacintoTDA2 MCU is using a ADS7828-Q1 to monitor several  
analog input signals and in ADAS these signals will be the system power rails. It is important to monitor these  
power rails because tighter rail requirements allow for further system monitoring and optimization. The  
REF3425-Q1 is used in this application to provide the precise voltage reference signal. In these systems it is not  
typical to have calibration and such the most precise low power voltage reference is necessary to be able to  
measure down to 1% accuracy on key power rails.  
For this design example, use the parameters listed in Table 11-3 as the input parameters and desired output  
parameters.  
Table 11-3. Typical Core Voltage Rail Monitoring  
SPECIFICATION  
REQUIREMENT  
Input Voltage VIN  
Output Voltage  
3V  
2.5V  
Voltage Power Rail  
1V  
1%  
Max Error on Voltage Power Rail  
Temperature Range  
-40°C to 125°C  
11.2.2.3 Detailed Design Procedure  
It is important to keep track of the error margin in this system to make sure that the total error of the voltage  
reference and ADC are less than the maximum 1% error allowed. To calculate the total RSS error of a voltage  
reference use Equation 5.  
2
ErrorVREF Total  
=
Accuracy 2 + TempCo 2 + TempHyst 2 + LongTerm Drift 2 + 1/ f Noise  
(
)
(
)
(
)
(
)
(
)
(5)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: REF34-Q1  
 
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
With the RSS error of the voltage reference, the ADC error needs also needs to be calculated using the RSS  
method as seen in Equation 6. Equation 7 can then be used to sum both errors. It is important to make sure that  
only the applicable voltage reference error in relation to the measured signal is used.  
Total Unadjusted Error = ErrorADC Total  
2
=
Gain Error 2 + Offset Error 2 + INL Error 2 + DNL Error  
(
)
(
)
(
)
(
)
(6)  
(7)  
2 + Error  
2
ErrorVREF+ ADC Total  
=
Error  
(
)
(
)
VREF@AIN Total  
ADC Total  
11.2.2.4 Enable Feature in ADAS  
In ADAS applications it is important to have a low quiescent current when the automotive application does not  
require the ADAS system to be in use. This creates a need for a low standby power so the battery life is  
preserved but there is also need for the system to still be readily available to start-up with minimal delays. In  
such situations the MCU and other systems will go into a standby mode to ensure that the power consumption is  
lowered to the absolute minimum. The REF3425-Q1 offers an enable pin that can be controlled by the MCU to  
activate shutdown mode with causes the REF3425-Q1 to go into stand by and consume 3 μA (maximum) and  
allow for a longer battery life.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: REF34-Q1  
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
12 Power Supply Recommendations  
The REF34-Q1 family of references feature an extremely low-dropout voltage. These references can be  
operated with a supply of only 50 mV above the output voltage. TI recommends a supply bypass capacitor  
ranging between 0.1 µF to 10 µF.  
13 Layout  
13.1 Layout Guidelines  
Figure 13-1 illustrates an example of a PCB layout for a data acquisition system using the REF34-Q1. Some key  
considerations are:  
Connect low-ESR, 0.1-μF ceramic bypass capacitors at VIN, VREF of the REF34-Q1.  
Decouple other active devices in the system per the device specifications.  
Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise  
pickup.  
Place the external components as close to the device as possible. This configuration prevents parasitic errors  
(such as the Seebeck effect) from occurring.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when absolutely necessary.  
13.2 Layout Example  
C
1
2
6 OUT_F  
5 OUT_S  
GND_F  
GND_S  
REF34XX  
EN  
IN  
3
4
Figure 13-1. Layout Example (REF34xx-Q1 DBV Package)  
1
2
5
4
NC  
GND  
IN  
NIC  
REF34S-Q1  
CIN  
OUT  
3
COUT  
Figure 13-2. Layout Example (REF34xxS-Q1 DBV Package)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: REF34-Q1  
 
 
 
 
 
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
CIN  
1
2
3
4
8 IN  
7
ENABLE  
GND_S  
GND_F  
NIC  
OUT_S  
REF34-Q1  
(DGK)  
6
5
OUT_F  
NIC  
COUT  
Figure 13-3. Layout Example (REF34xx-Q1 DGK Package)  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: REF34-Q1  
REF34-Q1  
SBAS901C – JULY 2018 – REVISED OCTOBER 2020  
www.ti.com  
14 Device and Documentation Support  
14.1 Documentation Support  
14.1.1 Related Documentation  
For related documentation see the following:  
INA21x Voltage Output, Low- or High-Side Measurement, Bidirectional, Zero-Drift Series, Current-Shunt  
Monitors  
Low-Drift Bidirectional Single-Supply Low-Side Current Sensing Reference Design  
14.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
14.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
14.4 Trademarks  
Jacintois a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
14.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
14.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
15 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: REF34-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Apr-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
REF3425QDBVRQ1  
REF3425QDGKRQ1  
REF3425SQDBVRQ1  
REF3430QDBVRQ1  
REF3430QDGKRQ1  
REF3430SQDBVRQ1  
REF3433QDBVRQ1  
REF3433QDGKRQ1  
REF3433SQDBVRQ1  
REF3440QDBVRQ1  
REF3440QDGKRQ1  
REF3440SQDBVRQ1  
REF3450QDBVRQ1  
REF3450QDGKRQ1  
REF3450SQDBVRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
VSSOP  
SOT-23  
SOT-23  
VSSOP  
SOT-23  
SOT-23  
VSSOP  
SOT-23  
SOT-23  
VSSOP  
SOT-23  
SOT-23  
VSSOP  
SOT-23  
DBV  
DGK  
DBV  
DBV  
DGK  
DBV  
DBV  
DGK  
DBV  
DBV  
DGK  
DBV  
DBV  
DGK  
DBV  
6
8
5
6
8
5
6
8
5
6
8
5
6
8
5
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1OLC  
2E93  
2D6C  
NIPDAUAG  
NIPDAU  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
1OMC  
2FW3  
2D7C  
1ONC  
2FV3  
2D8C  
1OOC  
2FQ3  
2D9C  
1OPC  
2FX3  
2DAC  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Apr-2021  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Apr-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
REF3425QDBVRQ1  
REF3425QDGKRQ1  
REF3425SQDBVRQ1  
REF3430QDBVRQ1  
REF3430QDGKRQ1  
REF3430SQDBVRQ1  
REF3433QDBVRQ1  
REF3433QDGKRQ1  
REF3433SQDBVRQ1  
REF3440QDBVRQ1  
REF3440QDGKRQ1  
REF3440SQDBVRQ1  
REF3450QDBVRQ1  
REF3450QDGKRQ1  
REF3450SQDBVRQ1  
SOT-23  
VSSOP  
SOT-23  
SOT-23  
VSSOP  
SOT-23  
SOT-23  
VSSOP  
SOT-23  
SOT-23  
VSSOP  
SOT-23  
SOT-23  
VSSOP  
SOT-23  
DBV  
DGK  
DBV  
DBV  
DGK  
DBV  
DBV  
DGK  
DBV  
DBV  
DGK  
DBV  
DBV  
DGK  
DBV  
6
8
5
6
8
5
6
8
5
6
8
5
6
8
5
3000  
2500  
3000  
3000  
2500  
3000  
3000  
2500  
3000  
3000  
2500  
3000  
3000  
2500  
3000  
180.0  
330.0  
180.0  
180.0  
330.0  
180.0  
180.0  
330.0  
180.0  
180.0  
330.0  
180.0  
180.0  
330.0  
180.0  
8.4  
12.4  
8.4  
3.23  
5.3  
3.17  
3.4  
1.37  
1.4  
4.0  
8.0  
4.0  
4.0  
8.0  
4.0  
4.0  
8.0  
4.0  
4.0  
8.0  
4.0  
4.0  
8.0  
4.0  
8.0  
12.0  
8.0  
Q3  
Q1  
Q3  
Q3  
Q1  
Q3  
Q3  
Q1  
Q3  
Q3  
Q1  
Q3  
Q3  
Q1  
Q3  
3.23  
3.23  
5.3  
3.17  
3.17  
3.4  
1.37  
1.37  
1.4  
8.4  
8.0  
12.4  
8.4  
12.0  
8.0  
3.23  
3.23  
5.3  
3.17  
3.17  
3.4  
1.37  
1.37  
1.4  
8.4  
8.0  
12.4  
8.4  
12.0  
8.0  
3.23  
3.23  
5.3  
3.17  
3.17  
3.4  
1.37  
1.37  
1.4  
8.4  
8.0  
12.4  
8.4  
12.0  
8.0  
3.23  
3.23  
5.3  
3.17  
3.17  
3.4  
1.37  
1.37  
1.4  
8.4  
8.0  
12.4  
8.4  
12.0  
8.0  
3.23  
3.17  
1.37  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Apr-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
REF3425QDBVRQ1  
REF3425QDGKRQ1  
REF3425SQDBVRQ1  
REF3430QDBVRQ1  
REF3430QDGKRQ1  
REF3430SQDBVRQ1  
REF3433QDBVRQ1  
REF3433QDGKRQ1  
REF3433SQDBVRQ1  
REF3440QDBVRQ1  
REF3440QDGKRQ1  
REF3440SQDBVRQ1  
REF3450QDBVRQ1  
REF3450QDGKRQ1  
REF3450SQDBVRQ1  
SOT-23  
VSSOP  
SOT-23  
SOT-23  
VSSOP  
SOT-23  
SOT-23  
VSSOP  
SOT-23  
SOT-23  
VSSOP  
SOT-23  
SOT-23  
VSSOP  
SOT-23  
DBV  
DGK  
DBV  
DBV  
DGK  
DBV  
DBV  
DGK  
DBV  
DBV  
DGK  
DBV  
DBV  
DGK  
DBV  
6
8
5
6
8
5
6
8
5
6
8
5
6
8
5
3000  
2500  
3000  
3000  
2500  
3000  
3000  
2500  
3000  
3000  
2500  
3000  
3000  
2500  
3000  
213.0  
366.0  
213.0  
213.0  
366.0  
213.0  
213.0  
366.0  
213.0  
213.0  
366.0  
213.0  
213.0  
366.0  
213.0  
191.0  
364.0  
191.0  
191.0  
364.0  
191.0  
191.0  
364.0  
191.0  
191.0  
364.0  
191.0  
191.0  
364.0  
191.0  
35.0  
50.0  
35.0  
35.0  
50.0  
35.0  
35.0  
50.0  
35.0  
35.0  
50.0  
35.0  
35.0  
50.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/E 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/E 09/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/E 09/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/B 03/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/B 03/2018  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY