REF4132B40DBVR [TI]

12ppm/°C 低噪声低功耗精密电压基准 | DBV | 5 | -40 to 125;
REF4132B40DBVR
型号: REF4132B40DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12ppm/°C 低噪声低功耗精密电压基准 | DBV | 5 | -40 to 125

文件: 总26页 (文件大小:1839K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
REF4132  
SNAS794A JUNE 2020REVISED JUNE 2020  
REF4132 Low-Drift, Low-Power, Small-Footprint Series Voltage Reference  
1 Features  
3 Description  
The REF4132 device is a low temperature drift  
(12 ppm/°C), low-power, high-precision CMOS  
voltage reference, featuring ±0.05% initial accuracy,  
low operating current with power consumption less  
than 100μA. This device also offers very low output  
noise of 15 μVp-p/V, which enables its ability to  
maintain high signal integrity with high-resolution data  
converters in noise critical systems. Packaged in the  
same SOT-23-5 package, REF4132 offers enhanced  
specifications and pin-to-pin replacement for LM4128  
and LM4132.  
1
Voltage options: 2.5V, 3V, 3.3V, 4.096V, 5V  
Initial accuracy: ±0.05% (maximum)  
Low temperature coefficient :  
A grade: 12 ppm/°C (maximum)  
B grade: 30 ppm/°C (maximum)  
Operating temperature range: 40°C to +125°C  
Output current: ±10 mA  
Low quiescent current: 100 μA (maximum)  
Output 1/f noise (0.1 Hz to 10 Hz): 15 µVPP/V  
Excellent long-term stability 30 ppm/1000 hrs  
Small footprint 5-pin SOT-23 package  
Stability and system reliability are further improved by  
the low output-voltage hysteresis of the device and  
low long-term output voltage drift. Furthermore, the  
small size and low operating current of the devices  
(100 μA) can benefit portable and battery-powered  
applications.  
2 Applications  
Data acquisition (DAQ)  
PLC analog I/O modules  
Field transmitters  
REF4132 is specified for the wide temperature range  
of 40°C to +125°C.  
Motor drive control module  
Battery test equipment  
LCR meters  
Device Information(1)  
PART NAME  
REF4132  
PACKAGE  
BODY SIZE (NOM)  
SOT-23 (5)  
2.90 mm × 1.60 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Simplified Schematic  
Dropout vs. Current Load Over Temperature  
+5 V  
0.4  
0.36  
+125°C  
0.32  
EN  
VIN  
0.28  
VREF  
+25°C  
-40°C  
REF4132  
GND  
+2.5 V  
0.24  
R1  
0.2  
0.16  
0.12  
0.08  
0.04  
0
10 kΩ  
R2  
10 kΩ  
+5 V  
œ
0
5
Load Current (mA)  
10  
OPA735  
+
-2.5 V  
-5 V  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
REF4132  
SNAS794A JUNE 2020REVISED JUNE 2020  
www.ti.com  
Table of Contents  
9.1 Overview ................................................................. 12  
9.2 Functional Block Diagram ....................................... 12  
9.3 Feature Description................................................. 12  
9.4 Device Functional Modes........................................ 13  
10 Application and Implementation........................ 14  
10.1 Application Information.......................................... 14  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 6  
Parameter Measurement Information .................. 9  
8.1 Solder Heat Shift....................................................... 9  
8.2 Long-Term Stability................................................. 10  
8.3 Thermal Hysteresis ................................................. 10  
8.4 Power Dissipation ................................................... 10  
8.5 Noise Performance ................................................. 11  
Detailed Description ............................................ 12  
10.2 Typical Application: Basic Voltage Reference  
Connection............................................................... 14  
11 Power Supply Recommendations ..................... 16  
12 Layout................................................................... 17  
12.1 Layout Guidelines ................................................. 17  
12.2 Layout Example .................................................... 17  
13 Device and Documentation Support ................. 18  
13.1 Documentation Support ........................................ 18  
13.2 Receiving Notification of Documentation Updates 18  
13.3 Community Resources.......................................... 18  
13.4 Trademarks........................................................... 18  
13.5 Electrostatic Discharge Caution............................ 18  
13.6 Glossary................................................................ 18  
8
9
14 Mechanical, Packaging, and Orderable  
Information ........................................................... 18  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (May 2020) to Revision A  
Page  
Added 3V, 3.3V, 4.096V, 5V output voltage variants. ............................................................................................................ 1  
2
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: REF4132  
 
REF4132  
www.ti.com  
SNAS794A JUNE 2020REVISED JUNE 2020  
5 Device Comparison Table  
PRODUCT  
VOUT  
2.5 V  
3.0 V  
3.3 V  
4.096 V  
5 V  
REF4132 - 2.5  
REF4132 - 3.0  
REF4132 - 3.3  
REF4132 - 4.0  
REF4132 - 5.0  
6 Pin Configuration and Functions  
DBV Package  
5-Pin SOT-23  
Top View  
VREF  
1
2
3
5
N/C  
GND  
EN  
4
VIN  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
N/C  
No connect pin, leave floating  
Ground  
2
GND  
EN  
Ground  
Input  
3
Enable pin. Enables or disables the device.  
Reference voltage input  
4
VIN  
Power  
Output  
5
VREF  
Reference voltage output  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: REF4132  
REF4132  
SNAS794A JUNE 2020REVISED JUNE 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
6
UNIT  
V
Input voltage  
VIN  
Enable voltage  
VEN  
VREF  
ISC  
VIN + 0.3  
5.5  
V
Output voltage  
V
Output short circuit current  
Operating temperature range  
Storage temperature range  
20  
mA  
°C  
°C  
TA  
–55  
–65  
150  
Tstg  
170  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied. These are stress ratings only and functional operation of the device at these or any other conditions  
beyond those specified in the Electrical Characteristics Table is not implied.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001,  
all pins(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VREF  
VDO  
+
VIN  
Input Voltage  
5.5  
V
(1)  
VEN  
IL  
Enable Voltage  
0
VIN  
10  
V
Output Current  
–10  
–40  
mA  
TA  
Operating Temperature  
25  
125  
(1) Dropout voltage  
7.4 Thermal Information  
DEVICE  
THERMAL METRIC(1)  
DBV  
5 PINS  
185  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
156  
29.6  
33.8  
29.1  
N/A  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: REF4132  
 
REF4132  
www.ti.com  
SNAS794A JUNE 2020REVISED JUNE 2020  
7.5 Electrical Characteristics  
At VIN = 5.5 V, VEN = VIN, CREF = 10 µF, CIN = 0.1 µF, IL = 0 mA, minimum and maximum specifications at TA = –40to  
125; typical specifications at TA = 25unless otherwise noted  
PARAMETER  
ACCURACY AND DRIFT  
Output voltage  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
–0.05  
0.05  
%
accuracy  
Output voltage  
temperature  
coefficient  
–40°C TA 125°C  
–40°C TA 125°C  
REF4132 A grade  
REF4132 B grade  
12 ppm/  
30 ppm/℃  
LINE & LOAD REGULATION  
VREF + VDO VIN 5.5 V  
2
ppm/V  
15 ppm/V  
55 ppm/V  
ppm/mA  
ΔVREF/ΔVIN  
Line Regulation  
Load Regulation  
VREF + VDO VIN 5.5 V  
VREF = 5 V, VREF + VDO VIN 5.5 V  
IL = 0 mA to 10mA, VIN = VREF + VDO  
IL = 0 mA to 10mA, VIN = VREF + VDO  
20  
ΔVREF/ΔIL  
120 ppm/mA  
POWER SUPPLY  
VREF  
VDO  
+
VIN  
Input voltage  
5.5  
V
Active mode  
80  
100  
5
µA  
µA  
V
IQ  
Quiescent current  
Shutdown mode, VEN = 0 V  
2.5  
Voltage reference in active mode (EN=1)  
Voltage reference in shutdown mode (EN=0)  
1.6  
Enable pin  
Voltage  
VEN  
IEN  
0.5  
2
V
Enable pin  
current  
VEN = 5.5 V  
1
µA  
IL = 0 mA  
IL = 0 mA  
IL = 10 mA  
50  
mV  
mV  
mV  
VDO  
Dropout voltage  
100  
500  
Short circuit current  
ISC  
VREF = 0 V  
18  
11.5  
mA  
(1)  
TURNON  
tON  
Turn-on time  
0.1% settling, CL = 1 µF, 10% to 90%  
2.5  
ms  
NOISE  
Low frequency  
noise  
en(p-p)  
en  
ƒ = 0.1 Hz to 10 Hz  
ƒ = 10 Hz to 10 kHz  
15  
24  
ppmp-p  
µVrms  
Wide band  
noise  
HYSTERESIS AND LONG-TERM STABILITY  
Long-term stability  
0 to 1000h at 35℃  
30  
35  
ppm  
ppm  
Output voltage  
hysteresis  
VHYST  
TA= 25to 40to 125to 25℃  
CAPACITIVE LOAD  
Stable output  
capacitor range  
CL  
0.1  
10  
µF  
(1) At higher ambient temperature the short circuit current capacity is limited due to junction temeprature max limit  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: REF4132  
REF4132  
SNAS794A JUNE 2020REVISED JUNE 2020  
www.ti.com  
7.6 Typical Characteristics  
at TA = 25°C, VIN = VEN = 5 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
0.02  
0.015  
0.01  
85  
84  
83  
82  
81  
80  
79  
78  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
Figure 1. Output Voltage Accuracy vs Temperature  
Figure 2. VIN vs IQ over Temperature  
25  
20  
15  
10  
5
-20  
-40  
CL = 1uF  
CL = 10uF  
-60  
-80  
-100  
0
-120  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
D005  
Figure 3. Short Circuit Current  
Figure 4. Power-Supply Rejection Ratio vs Frequency  
0.26  
0.24  
0.22  
0.2  
12  
11.5  
11  
10.5  
10  
0.18  
0.16  
0.14  
0.12  
9.5  
9
8.5  
8
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
Figure 5. Line Regulation  
Figure 6. Load Regulation Sourcing  
6
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: REF4132  
REF4132  
www.ti.com  
SNAS794A JUNE 2020REVISED JUNE 2020  
Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = 5 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
800  
ILOAD  
720  
+1mA  
+1mA  
640  
560  
480  
-1mA  
1mA/div  
400  
VOUT  
320  
240  
160  
80  
4mV/div  
0
10  
250µs/div  
100  
1k  
Frequency(Hz)  
10k  
100k  
(CL = 1µF, IOUT = 1mA)  
Figure 8. Load Transient  
Figure 7. Noise Performance 10 Hz to 10 kHz  
ILOAD  
+10mA  
ILOAD  
+1mA  
+1mA  
+10mA  
10mA/div  
-1mA  
-10mA  
1mA/div  
4mV/div  
VOUT  
VOUT  
100mV/div  
250µs/div  
250µs/div  
(CL = 10µF, IOUT = 1mA)  
(CL = 1µF, IOUT = 10mA)  
Figure 9. Load Transient  
Figure 10. Load Transient  
3
2.5  
2
ILOAD  
+10mA  
+10mA  
10mA/div  
20mV/div  
-10mA  
1.5  
1
VOUT  
0.5  
0
-40  
250µs/div  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
(CL = 10µF, IOUT = 10mA)  
Figure 11. Load Transient  
Figure 12. Quiescent Current Shutdown Mode  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: REF4132  
REF4132  
SNAS794A JUNE 2020REVISED JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = 5 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
10  
5
0
-5  
En  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
1V/div  
VOUT  
0.5ms/div  
0
100 200 300 400 500 600 700 800 900 1000  
Time (hours)  
Figure 13. Turnon Time (Enable)  
Figure 14. Long Term Stability - 1000 hours (VREF  
)
8
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: REF4132  
REF4132  
www.ti.com  
SNAS794A JUNE 2020REVISED JUNE 2020  
8 Parameter Measurement Information  
8.1 Solder Heat Shift  
The materials used in the manufacture of the REF4132 have differing coefficients of thermal expansion, resulting  
in stress on the device die when the part is heated. Mechanical and thermal stress on the device die can cause  
the output voltages to shift, degrading the initial accuracy specifications of the product. Reflow soldering is a  
common cause of this error.  
In order to illustrate this effect, a total of 32 devices were soldered on two printed circuit boards [16 devices on  
each printed circuit board (PCB)] using lead-free solder paste and the paste manufacturer suggested reflow  
profile. The reflow profile is as shown in Figure 15. The printed circuit board is comprised of FR4 material. The  
board thickness is 1.65 mm and the area is 114 mm × 152 mm.  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (seconds)  
C01  
Figure 15. Reflow Profile  
The reference output voltage is measured before and after the reflow process; the typical shift is displayed in  
Figure 16. Although all tested units exhibit very low shifts (< 0.01%), higher shifts are also possible depending on  
the size, thickness, and material of the printed circuit board. An important note is that the histograms display the  
typical shift for exposure to a single reflow profile. Exposure to multiple reflows, as is common on PCBs with  
surface-mount components on both sides, causes additional shifts in the output bias voltage. If the PCB is  
exposed to multiple reflows, the device must be soldered in the last pass to minimize its exposure to thermal  
stress.  
50%  
40%  
30%  
20%  
10%  
0
Solder Heat Shift (%)  
Figure 16. Solder Heat Shift Distribution, VREF (%)  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: REF4132  
 
 
REF4132  
SNAS794A JUNE 2020REVISED JUNE 2020  
www.ti.com  
8.2 Long-Term Stability  
One of the key parameters of the REF4132 references is long-term stability. Typical characteristic expressed as:  
curves shows the typical drift value for the REF4132 is 30 ppm from 0 to 1000 hours. This parameter is  
characterized by measuring 32 units at regular intervals for a period of 1000 hours. It is important to understand  
that long-term stability is not ensured by design and that the output from the device may shift beyond the typical  
30 ppm specification at any time. For systems that require highly stable output voltages over long periods of  
time, the designer should consider burning in the devices prior to use to minimize the amount of output drift  
exhibited by the reference over time.  
10  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0
100 200 300 400 500 600 700 800 900 1000  
Time (hours)  
Figure 17. Long Term Stability - 1000 hours (VREF  
)
8.3 Thermal Hysteresis  
Thermal hysteresis is measured with the REF4132 soldered to a PCB, similar to a real-world application.  
Thermal hysteresis for the device is defined as the change in output voltage after operating the device at 25°C,  
cycling the device through the specified temperature range, and returning to 25°C. The PCB was baked at 150°C  
for 30 minutes before thermal hysteresis was measured. Hysteresis can be expressed by Equation 1:  
«
÷
| VPRE - VPOST  
VNOM  
|
VHYST  
=
ì106 ppm  
(
)
where  
VHYST = thermal hysteresis (in units of ppm)  
VNOM = the specified output voltage  
VPRE = output voltage measured at 25°C pre-temperature cycling  
VPOST = output voltage measured after the device has cycled from 25°C through the specified temperature  
range of –40°C to +125°C and returns to 25°C.  
(1)  
8.4 Power Dissipation  
The REF4132 voltage references are capable of source and sink up to 10 mA of load current across the rated  
input voltage range. However, when used in applications subject to high ambient temperatures, the input voltage  
and load current must be carefully monitored to ensure that the device does not exceeded its maximum power  
dissipation rating. The maximum power dissipation of the device can be calculated with Equation 2:  
TJ = TA +P ì RqJA  
D
where  
PD is the device power dissipation  
TJ is the device junction temperature  
TA is the ambient temperature  
RθJA is the package (junction-to-air) thermal resistance  
(2)  
10  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: REF4132  
 
 
REF4132  
www.ti.com  
SNAS794A JUNE 2020REVISED JUNE 2020  
Power Dissipation (continued)  
Because of this relationship, acceptable load current in high temperature conditions may be less than the  
maximum current-sourcing capability of the device. In no case should the device be operated outside of its  
maximum power rating because doing so can result in premature failure or permanent damage to the device.  
8.5 Noise Performance  
Typical 0.1-Hz to 10-Hz voltage noise can be seen in Figure 18 . Device noise increases with output voltage and  
operating temperature. Additional filtering can be used to improve output noise levels, although care must be  
taken to ensure the output impedance does not degrade ac performance. Peak-to-peak noise measurement  
setup is shown in Figure 18.  
1s/div  
Figure 18. 0.1-Hz to 10-Hz Noise (VREF  
)
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: REF4132  
 
REF4132  
SNAS794A JUNE 2020REVISED JUNE 2020  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The REF4132 is family of low-noise, precision bandgap voltage references that are specifically designed for  
excellent initial voltage accuracy and drift. The Functional Block Diagram is a simplified block diagram of the  
REF4132 showing basic band-gap topology.  
9.2 Functional Block Diagram  
Bandgap  
Core  
Digital  
N/C  
GND  
EN  
VREF  
Buffer  
Enable  
Blocks  
VIN  
9.3 Feature Description  
9.3.1 Supply Voltage  
The REF4132 family of references features an extremely low dropout voltage. For loaded conditions, a typical  
dropout voltage versus load is shown on Dropout vs. Current Load Over Temperature. The REF4132 features a  
low quiescent current that is extremely stable over changes in both temperature and supply. The typical room  
temperature quiescent current is 80 μA, and the maximum quiescent current over temperature is 100 μA. Supply  
voltages below the specified levels can cause the REF4132 to momentarily draw currents greater than the typical  
quiescent current. Use a power supply with a low output impedance.  
9.3.2 Low Temperature Drift  
The REF4132 is designed for minimal drift error, which is defined as the change in output voltage over  
temperature. The drift is calculated using the box method, as described by Equation 3:  
VREF(MAX) - VREF(MIN)  
«
÷
Drift =  
ì 106  
VREF ì Temperature Range  
(3)  
9.3.3 Load Current  
The REF4132 family is specified to deliver a current load of ±10 mA per output. The VREF output of the device  
are protected from short circuits by limiting the output short-circuit current to 18 mA. The device temperature  
increases according to Equation 4:  
TJ = TA +P ì RqJA  
D
where  
TJ = junction temperature (°C),  
TA = ambient temperature (°C),  
PD = power dissipated (W), and  
RθJA = junction-to-ambient thermal resistance (°C/W)  
(4)  
The REF4132 maximum junction temperature must not exceed 150°C.  
12  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: REF4132  
 
 
 
REF4132  
www.ti.com  
SNAS794A JUNE 2020REVISED JUNE 2020  
9.4 Device Functional Modes  
9.4.1 EN Pin  
When the EN pin (ENABLE PIN) of the REF4132 is pulled high, the device is in active mode. The device must be  
in active mode for normal operation. The REF4132 can be placed in shutdown mode by pulling the ENABLE pin  
low. When in shutdown mode, the output of the device becomes high impedance and the quiescent current of  
the device reduces to 2.5 µA in shutdown mode. The EN pin must not be pulled higher than VIN supply voltage.  
See the Specifications for logic high and logic low voltage levels.  
9.4.2 Negative Reference Voltage  
For applications requiring a negative and positive reference voltage, the REF4132 and OPA735 can be used to  
provide a dual-supply reference from a 5-V supply. Figure 19 shows the REF4132 used to provide a 2.5-V supply  
reference voltage. The low drift performance of the REF4132 complements the low offset voltage and zero drift of  
the OPA735 to provide an accurate solution for split-supply applications. Take care to match the temperature  
coefficients of R1 and R2.  
+5 V  
EN  
VIN  
VREF  
REF4132  
+2.5 V  
R1  
10 kΩ  
GND  
R2  
10 kΩ  
+5 V  
œ
OPA735  
+
-2.5 V  
-5 V  
Figure 19. REF4132 and OPA735 Create Positive and Negative Reference Voltages  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: REF4132  
 
REF4132  
SNAS794A JUNE 2020REVISED JUNE 2020  
www.ti.com  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The REF4132 is a versatile device which can cater to multiple applications and use cases. Basic applications  
includes positive/negative voltage reference and data acquisition systems. The table below shows the typical  
application of REF4132 and its companion ADC/DAC.  
Table 1. Typical Applications and Companion ADC/DAC  
Applications  
ADC/DAC  
PLC - DCS  
DAC8881, ADS8332, ADS8568, ADS8317,  
ADS8588S, ADS1287  
Display Test Equipment  
ADS8332, ADS8168  
ADS1120  
Field Transmitters - Pressure  
Video Surveillance - Thermal Cameras  
Medical Blood Glucose Meter  
ADS7279  
ADS1112  
10.2 Typical Application: Basic Voltage Reference Connection  
The circuit shown in Figure 20 shows the basic configuration for the REF4132 references. Connect bypass  
capacitors according to the guidelines in Layout Guidelines.  
10  
10 ꢀ  
124 ꢀ  
-
ADS1287  
REF  
Input Signal  
1 nF  
+
VIN  
VREF  
CIN  
REF4132  
COUT  
GND  
EN  
VIN  
Copyright © 2020, Texas Instruments Incorporated  
Figure 20. Basic Reference Connection  
10.2.1 Design Requirements  
A detailed design procedure is described based on a design example. For this design example, use the  
parameters listed in Table 2 as the input parameters.  
Table 2. Design Example Parameters  
DESIGN PARAMETER  
Input voltage VIN  
VALUE  
5 V  
Output voltage VOUT  
2.5 V  
1 µF  
REF4132 input capacitor  
REF4132 output capacitor  
10 µF  
14  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: REF4132  
 
 
REF4132  
www.ti.com  
SNAS794A JUNE 2020REVISED JUNE 2020  
10.2.2 Detailed Design Procedure  
10.2.2.1 Input and Output Capacitors  
A 1-μF to 10-μF electrolytic or ceramic capacitor can be connected to the input to improve transient response in  
applications where the supply voltage may fluctuate. Connect an additional 0.1-μF ceramic capacitor in parallel to  
reduce high frequency supply noise.  
A ceramic capacitor of at least a 0.1 μF must be connected to the output to improve stability and help filter out  
high frequency noise. An additional 1-μF to 10-μF electrolytic or ceramic capacitor can be added in parallel to  
improve transient performance in response to sudden changes in load current; however, keep in mind that doing  
so increases the turnon time of the device.  
Best performance and stability is attained with low-ESR, low-inductance ceramic chip-type output capacitors  
(X5R, X7R, or similar). If using an electrolytic capacitor on the output, place a 0.1-μF ceramic capacitor in parallel  
to reduce overall ESR on the output.  
10.2.2.2 VIN Slew Rate Considerations  
In applications with slow-rising input voltage signals, the reference exhibits overshoot or other transient  
anomalies that appear on the output. These phenomena also appear during shutdown as the internal circuitry  
loses power.  
To avoid such conditions, ensure that the input voltage wave-form has both a rising and falling slew rate faster  
than 6 V/ms.  
10.2.2.3 Shutdown/Enable Feature  
The REF4132 references can be switched to a low power shut-down mode when a voltage of 0.5 V or lower is  
input to the ENABLE pin. Likewise, the reference becomes operational for ENABLE voltages of 1.6 V or higher.  
During shutdown, the supply current drops to less than 2.5 μA, useful in applications that are sensitive to power  
consumption.  
If using the shutdown feature, ensure that the ENABLE pin voltage does not fall between 0.5 V and 1.6 V  
because this causes a large increase in the supply current of the device and may keep the reference from  
starting up correctly. If not using the shutdown feature, however, the ENABLE pin can simply be tied to the IN  
pin, and the reference remains operational continuously.  
10.2.3 Application Curves  
85  
84  
83  
82  
81  
80  
79  
78  
3
2.5  
2
1.5  
1
0.5  
0
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
-40  
-15  
10  
35 60  
Temperature (°C)  
85  
110 125  
Figure 21. Quiescent Current vs Temperature  
Figure 22. Quiescent Current Shutdown Mode  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: REF4132  
REF4132  
SNAS794A JUNE 2020REVISED JUNE 2020  
www.ti.com  
11 Power Supply Recommendations  
The REF4132 family of references feature an extremely low-dropout voltage. These references can be operated  
with a supply of only 50 mV above the output voltage. TI recommends a supply bypass capacitor ranging  
between 0.1 µF to 10 µF.  
16  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: REF4132  
REF4132  
www.ti.com  
SNAS794A JUNE 2020REVISED JUNE 2020  
12 Layout  
12.1 Layout Guidelines  
Figure 23 illustrates an example of a PCB layout for a data acquisition system using the REF4132. Some key  
considerations are:  
Connect low-ESR, 0.1-μF ceramic bypass capacitors at VIN, VREF of the REF4132.  
Decouple other active devices in the system per the device specifications.  
Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup.  
Place the external components as close to the device as possible. This configuration prevents parasitic errors  
(such as the Seebeck effect) from occurring.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when absolutely necessary.  
12.2 Layout Example  
COUT  
1
2
5 VREF  
N/C  
GND  
EN  
REF4132  
VIN  
4
3
CIN  
Figure 23. Layout Example  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: REF4132  
 
REF4132  
SNAS794A JUNE 2020REVISED JUNE 2020  
www.ti.com  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation see the following:  
Voltage Reference Design Tips For Data Converters  
Voltage Reference Selection Basics  
Low-Drift Bidirectional Single-Supply Low-Side Current Sensing Reference Design  
OPA375, OPA2375, OPA4375 500-μV (Maximum), 10-MHz,Low Broadband Noise, RRO, Operational  
Amplifier  
13.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.3 Community Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
18  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: REF4132  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
REF4132A25DBVR  
REF4132A30DBVR  
REF4132A33DBVR  
REF4132A40DBVR  
REF4132A50DBVR  
REF4132B25DBVR  
REF4132B30DBVR  
REF4132B33DBVR  
REF4132B40DBVR  
REF4132B50DBVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
24MD  
24ND  
24OD  
24PD  
24QD  
24SD  
24TD  
24UD  
24VD  
24WD  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF REF4132 :  
Automotive: REF4132-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
REF4132A25DBVR  
REF4132A30DBVR  
REF4132A33DBVR  
REF4132A40DBVR  
REF4132A50DBVR  
REF4132B25DBVR  
REF4132B30DBVR  
REF4132B33DBVR  
REF4132B40DBVR  
REF4132B50DBVR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
REF4132A25DBVR  
REF4132A30DBVR  
REF4132A33DBVR  
REF4132A40DBVR  
REF4132A50DBVR  
REF4132B25DBVR  
REF4132B30DBVR  
REF4132B33DBVR  
REF4132B40DBVR  
REF4132B50DBVR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
445.0  
445.0  
445.0  
445.0  
445.0  
445.0  
445.0  
445.0  
445.0  
445.0  
220.0  
220.0  
220.0  
220.0  
220.0  
220.0  
220.0  
220.0  
220.0  
220.0  
345.0  
345.0  
345.0  
345.0  
345.0  
345.0  
345.0  
345.0  
345.0  
345.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY