RM42L432PZT [TI]

16- and 32-Bit RISC Flash Microcontroller 100-LQFP -40 to 105;
RM42L432PZT
型号: RM42L432PZT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16- and 32-Bit RISC Flash Microcontroller 100-LQFP -40 to 105

时钟 微控制器 外围集成电路
文件: 总104页 (文件大小:8348K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
RM42L432 16- and 32-Bit RISC Flash Microcontroller  
Check for Samples: RM42L432  
1 RM42L432 16- and 32-Bit RISC Flash Microcontroller  
1.1 Features  
1
• High-Performance Microcontroller for Safety-  
Critical Applications  
• Multiple Communication Interfaces  
– Two CAN Controllers (DCANs)  
– Dual CPUs Running in Lockstep  
– ECC on Flash and RAM Interfaces  
– Built-In Self-Test for CPU and On-Chip RAMs  
– Error Signaling Module with Error Pin  
– Voltage and Clock Monitoring  
DCAN1 - 32 Mailboxes with Parity  
Protection  
DCAN2 - 16 Mailboxes with Parity  
Protection  
Compliant to CAN Protocol Version 2.0B  
– Multibuffered Serial Peripheral Interface  
(MibSPI) Module  
• ARM® Cortex™ – R4 32-Bit RISC CPU  
– Efficient 1.66 DMIPS/MHz with 8-Stage  
Pipeline  
128 Words with Parity Protection  
– Two Standard Serial Peripheral Interface  
(SPI) Modules  
– UART (SCI) Interface with Local Interconnect  
Network (LIN 2.1) Interface Support  
– 8-Region Memory Protection Unit  
– Open Architecture with Third-Party Support  
• Operating Conditions  
– 100-MHz System Clock  
• High-End Timer (N2HET) Module  
– Up to 19 Programmable Pins  
– Core Supply Voltage (VCC): 1.2-V Nominal  
– I/O Supply Voltage (VCCIO): 3.3-V Nominal  
– ADC Supply Voltage (VCCAD): 3.3-V Nominal  
• Integrated Memory  
– 128-Word Instruction RAM with Parity  
Protection  
– Each Includes Hardware Angle Generator  
– Dedicated High-End Timer Transfer Unit  
(HTU)  
– 384KB of Program Flash with ECC  
– 32KB of RAM with ECC  
– 16KB of Flash for Emulated EEPROM with  
ECC  
• Enhanced Quadrature Encoder Pulse (eQEP)  
Module  
– Motor Position Encoder Interface  
• 12-Bit Multibuffered Analog-to-Digital Converter  
(ADC) Module  
• Common Platform Architecture  
– Consistent Memory Map Across Family  
– Real-Time Interrupt (RTI) Timer (OS Timer)  
– 96-Channel Vectored Interrupt Module (VIM)  
– 16 Channels  
– 2-Channel Cyclic Redundancy Checker  
(CRC)  
• Frequency-Modulated Phase-Locked Loop  
(FMPLL) with Built-In Slip Detector  
• IEEE 1149.1 JTAG, Boundary Scan and ARM  
CoreSight™ Components  
• Advanced JTAG Security Module (AJSM)  
– 64 Result Buffers with Parity Protection  
• Up to 45 General-Purpose I/O (GPIO) Capable  
Pins  
– 8 Dedicated GPIO Pins with up to 8 External  
Interrupts  
• Package  
– 100-Pin Quad Flatpack (PZ) [Green]  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date. Products conform to  
specifications per the terms of the Texas Instruments standard warranty. Production  
processing does not necessarily include testing of all parameters.  
Copyright © 2012–2013, Texas Instruments Incorporated  
 
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
1.2 Applications  
Industrial Safety Applications  
Industrial Automation  
Safe Programmable Logic Controllers (PLCs)  
Power Generation and Distribution  
Turbines and Windmills  
Elevators and Escalators  
Medical Applications  
Ventilators  
Defibrillators  
Infusion and Insulin Pumps  
Radiation Therapy  
Robotic Surgery  
2
RM42L432 16- and 32-Bit RISC Flash Microcontroller  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
1.3 Description  
The RM42L432 device is a high-performance microcontroller for safety systems. The safety architecture  
includes dual CPUs in lockstep, CPU and Memory Built-In Self Test (BIST) logic, ECC on both the flash  
and the data SRAM, parity on peripheral memories, and loopback capability on peripheral I/Os.  
The RM42L432 device integrates the ARM Cortex-R4 CPU which offers an efficient 1.66 DMIPS/MHz, and  
can run up to 100 MHz providing up to 166 DMIPS. The device supports little-endian [LE] format.  
The RM42L432 device has 384KB integrated flash and 32-KB data RAM with single-bit error correction  
and double-bit error detection. The flash memory on this device is a nonvolatile, electrically erasable and  
programmable memory implemented with a 64-bit-wide data bus interface. The flash operates on a 3.3-V  
supply input (same level as I/O supply) for all read, program, and erase operations. When in pipeline  
mode, the flash operates with a system clock frequency of up to 100 MHz. The SRAM supports single-  
cycle read and write accesses in byte, halfword, and word modes throughout the supported frequency  
range.  
The RM42L432 device features peripherals for real-time control-based applications, including a Next  
Generation High-End Timer (N2HET) timing coprocessor with up to 19 total I/O terminals and a 12-bit  
Analog-to-Digital Converter (ADC) supporting 16 inputs in the 100-pin package.  
The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time  
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer  
micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs,  
capture or compare inputs, or GPIO. The N2HET is especially well suited for applications requiring  
multiple sensor information and drive actuators with complex and accurate time pulses. A High-End Timer  
Transfer Unit (HTU) can perform DMA-type transactions to transfer N2HET data to or from main memory.  
A Memory Protection Unit (MPU) is built into the HTU.  
The enhanced quadrature encoder pulse (eQEP) module is used for direct interface with a linear or rotary  
incremental encoder to get position, direction, and speed information from a rotating machine as used in  
high-performance motion and position-control systems.  
The device has a 12-bit-resolution MibADC with 16 channels and 64 words of parity-protected buffer RAM.  
The MibADC channels can be converted individually or can be grouped by software for sequential  
conversion sequences. There are three separate groups. Each group can be converted once when  
triggered or configured for continuous conversion mode.  
The device has multiple communication interfaces: one MibSPI, two SPIs, one UART/LIN, and two  
DCANs. The SPI provides a convenient method of serial interaction for high-speed communications  
between similar shift-register type devices. The UART/LIN supports the Local Interconnect standard 2.1  
and can be used as a UART in full-duplex mode using the standard Non-Return-to-Zero (NRZ) format.  
The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication  
protocol that efficiently supports distributed real-time control with robust communication rates of up to 1  
Mbps. The DCAN is ideal for applications operating in noisy and harsh environments (for example,  
automotive and industrial fields) that require reliable serial communication or multiplexed wiring.  
The frequency-modulated phase-locked loop (FMPLL) clock module is used to multiply the external  
frequency reference to a higher frequency for internal use. The FMPLL provides one of the five possible  
clock source inputs to the global clock module (GCM). The GCM manages the mapping between the  
available clock sources and the device clock domains.  
The device also has an external clock prescaler (ECP) module. When the ECP is enabled, it outputs a  
continuous external clock on the ECLK pin. The ECLK frequency is a user-programmable ratio of the  
peripheral interface clock (VCLK) frequency. This low-frequency output can be monitored externally as an  
indicator of the operating frequency of the device.  
The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt or  
external Error pin is triggered when a fault is detected. The nERROR can be monitored externally as an  
indicator of a fault condition in the microcontroller.  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432 16- and 32-Bit RISC Flash Microcontroller  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
3
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
With integrated safety features and a wide choice of communication and control peripherals, the  
RM42L432 device is an ideal solution for real-time control applications with safety-critical requirements.  
4
RM42L432 16- and 32-Bit RISC Flash Microcontroller  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
1.4 Functional Block Diagram  
nTRST  
TMS  
DAP  
with  
ICEPick  
TCK  
AJSM  
RTCK  
TDI  
CCM-R4  
Debug  
Gasket  
TDO  
N2HET  
128 Words  
with Parity  
VCCP1  
FLTP1  
FLTP2  
N2HET[31:28, 26, 24:22, 20:16,  
14, 12, 10, 8, 6, 4, 2, 0]  
Flash  
384kB  
with ECC  
Cortex-R4  
Cortex-R4U  
with MPU  
8 regions  
nRST  
nPORRST  
TEST  
ECLK  
ns  
SYS  
RAM  
32kB  
with ECC  
GIOA[7:0]/INT[7:0]  
GIO  
LIN  
STC  
LBIST  
LINRX  
LINTX  
HTU  
2 Regions  
8 DCP  
with MPU  
MiBSPI1  
8 Transfer  
Groups  
MIBSPI1SIMO  
MIBSPI1SOMI  
MIBSPI1CLK  
MIBSPI1nCS[3:0]  
MIBSPI1nENA  
128 Buffers  
with Parity  
BRIDGE  
SPI2SIMO  
SPI2SOMI  
SPI2CLK  
SPI2  
SPI2nCS[0]  
SCR  
SPI3SIMO  
SPI3SOMI  
SPI3CLK  
SPI3nCS[3:0]  
SPI3nENA  
SPI3  
Peripheral  
Bridge  
16kB  
Flash for  
EEPROM  
w/ECC  
CRC  
R4  
2 Channel Slave I/F  
DCAN1  
32 Messages  
with Parity  
PCR  
CAN1RX  
CAN1TX  
OSCIN  
OSC  
PLL  
Clock  
Monitor  
DCAN2  
16 Messages  
with Parity  
OSCOUT  
Kelvin_GND  
VCCPLL  
CAN2RX  
CAN2TX  
RTI  
VSSPLL  
ADIN[21, 20, 17, 16, 11:0]  
ADEVT  
VCCAD /ADREFH  
VSSAD /ADREFLO  
VIM  
96 Channel  
with Parity  
MiBADC  
64 Words  
with Parity  
nERROR  
ESM  
eQEP  
IOMM  
DCC  
Figure 1-1. Functional Block Diagram  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432 16- and 32-Bit RISC Flash Microcontroller  
5
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
1
RM42L432 16- and 32-Bit RISC Flash  
Microcontroller .......................................... 1  
1.1 Features ............................................. 1  
1.2 Applications .......................................... 2  
1.3 Description ........................................... 3  
1.4 Functional Block Diagram ........................... 5  
4.8 Device Memory Map ................................ 41  
4.9 Flash Memory ...................................... 46  
4.10 Flash Program and Erase Timings for Program  
Flash ................................................ 48  
4.11 Flash Program and Erase Timings for Data Flash . 48  
4.12 Tightly-Coupled RAM Interface Module ............ 49  
4.13 Parity Protection for Accesses to peripheral RAMs 49  
4.14 On-Chip SRAM Initialization and Testing ........... 51  
4.15 Vectored Interrupt Manager ........................ 53  
4.16 Real Time Interrupt Module ........................ 55  
4.17 Error Signaling Module ............................. 57  
4.18 Reset / Abort / Error Sources ...................... 61  
4.19 Digital Windowed Watchdog ....................... 62  
4.20 Debug Subsystem .................................. 63  
Revision History .............................................. 7  
2
Device Package and Terminal Functions .......... 8  
2.1 PZ QFP Package Pinout (100-Pin) .................. 8  
2.2 Terminal Functions ................................... 9  
2.3 Output Multiplexing and Control .................... 16  
2.4 Special Multiplexed Options ........................ 17  
Device Operating Conditions ....................... 18  
3
3.1  
Absolute Maximum Ratings Over Operating Free-  
Air Temperature Range, ............................ 18  
5
Peripheral Information and Electrical  
3.2  
3.3  
Device Recommended Operating Conditions ...... 18  
Specifications .......................................... 67  
Switching Characteristics over Recommended  
5.1 Peripheral Legend .................................. 67  
Operating Conditions for Clock Domains .......... 19  
5.2  
Multi-Buffered 12-bit Analog-to-Digital Converter .. 67  
3.4 Wait States Required ............................... 19  
5.3 General-Purpose Input/Output ..................... 75  
5.4 Enhanced High-End Timer (N2HET) ............... 76  
5.5 Controller Area Network (DCAN) ................... 79  
3.5  
Power Consumption Over Recommended  
Operating Conditions ............................... 20  
Input/Output Electrical Characteristics Over  
3.6  
5.6  
Local Interconnect Network Interface (LIN) ........ 80  
Multi-Buffered / Standard Serial Peripheral Interface  
...................................................... 81  
Recommended Operating Conditions .............. 21  
5.7  
3.7 Output Buffer Drive Strengths ...................... 21  
3.8 Input Timings ....................................... 22  
3.9 Output Timings ..................................... 22  
5.8 Enhanced Quadrature Encoder (eQEP) ............ 91  
6
7
Device and Documentation Support ............... 93  
4
System Information and Electrical Specifications  
6.1  
Device and Development-Support Tool  
............................................................. 24  
Nomenclature ....................................... 93  
4.1 Voltage Monitor Characteristics .................... 24  
6.2 Device Identification ................................ 93  
6.3 Community Resources ............................. 95  
6.4 Module Certifications ............................... 95  
Mechanical Data ...................................... 100  
7.1 Thermal Data ...................................... 100  
7.2 Packaging Information ............................ 100  
4.2  
Power Sequencing and Power On Reset .......... 25  
4.3 Warm Reset (nRST) ................................ 27  
4.4 ARM© Cortex-R4™ CPU Information .............. 28  
4.5 Clocks .............................................. 31  
4.6 Clock Monitoring .................................... 38  
4.7 Glitch Filters ........................................ 40  
6
Contents  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
This data manual revision history highlights the technical changes made to the initial revision of the  
device-specific data manual to make it an A revision.  
Document Revision History  
Section  
Change  
From  
To  
Section 3.1  
Section 3.2  
Increased absolute max voltage VCCIO and Input Voltage  
Added maximum 3.3V supply voltage slew rate  
4.1 V  
4.6 V  
1 V/µs  
Added table of control bits for programmable 8 mA / 2 mA  
buffers  
Table 3-3  
Section 3.4  
Section 3.3  
Revised wait state requirements  
Added that after reset, flash bank 7 reads have two data wait-  
states  
15 mA, 34 mA, 15  
mA,  
Section 3.5  
Combined ICCIO, ICCP and ICCAD  
45 mA  
Section 3.5  
Section 3.6  
Section 3.6  
Section 3.6  
Added derating factors for Icc current  
VOH , IOH = 50 µA, standard output mode  
Input clamp current  
VCCIO -0.2  
-2 mA  
VCCIO -0.3  
-3.5 mA  
3.5 mA  
Input clamp current  
2 mA  
Added table note warning not to do byte or halfword writes to  
SPI2PC9[32.16]  
Table 3-3  
Table 4-21  
Table 4-1  
Table 4-6  
Table 5-5  
Corrected size of bank 7 and programming times  
Vmon Vcc high  
64KB  
1.0 V  
16KB  
1.13 V  
Corrected nRST timings  
8 tc(VCLK)  
32 tc(VCLK)  
Updated ADC leakage table  
Section 5.7.4  
Section 5.7.5  
Updated SPI timings  
Table 6-2  
Updated Die-ID register  
Section 6.4  
Added section for module certifications  
Copyright © 2012–2013, Texas Instruments Incorporated  
Contents  
7
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
2 Device Package and Terminal Functions  
2.1 PZ QFP Package Pinout (100-Pin)  
50  
49  
ADIN[10]  
ADIN[1]  
ADIN[9]  
76  
nTRST  
77  
TDI  
48  
47  
78  
TDO  
VSSAD/ADREFLO  
VCCAD/ADREFHI  
ADIN[21]  
79  
TCK  
RTCK  
46  
45  
80  
81  
nRST  
44  
ADIN[20]  
ADIN[7]  
82  
nERROR  
N2HET[10]  
43  
42  
83  
ADIN[0]  
84  
ECLK  
VCCIO  
VSS  
41  
40  
39  
ADIN[17]  
85  
86  
87  
ADIN[16]  
MIBSPI1nCS[3]  
SPI3nCS[0]  
VSS  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
VCC  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
SPI3nENA  
SPI3CLK  
N2HET[12]  
N2HET[14]  
CAN2TX  
SPI3SIMO  
SPI3SOMI  
CAN2RX  
MIBSPI1nCS[1]  
VSS  
VCC  
LINRX  
LINTX  
nPORRST  
VCC  
VCCP  
VSS  
N2HET[16]  
N2HET[18]  
VCC  
VCCIO  
MIBSPI1nCS[2]  
N2HET[6]  
VSS  
Figure 2-1. PZ QFP Package Pinout (100-Pin)  
Note: Pins can have multiplexed functions. Only the default function is depicted in above diagram.  
8
Device Package and Terminal Functions  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
2.2 Terminal Functions  
The following table identifies the external signal names, the associated pin numbers along with the  
mechanical package designator, the pin type (Input, Output, IO, Power or Ground), whether the pin has  
any internal pullup/pulldown, whether the pin can be configured as a GIO, and a functional pin description.  
NOTE  
All I/O signals except nRST are configured as inputs while nPORRST is low and immediately  
after nPORRST goes High.  
All output-only signals are configured as inputs while nPORRST is low, and are configured  
as outputs immediately after nPORRST goes High.  
While nPORRST is low, the input buffers are disabled, and the output buffers are tri-stated.  
NOTE  
In the Terminal Functions table below, the "Default Pull State" is the state of the pullup or  
pulldown while nPORRST is low and immediately after nPORRST goes High. The default  
pull direction may change when software configures the pin for an alternate function. The  
"Pull Type" is the type of pull asserted when the signal name in bold is enabled for the given  
terminal.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Device Package and Terminal Functions  
9
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
2.2.1 High-End Timer (N2HET)  
Table 2-1. High-End Timer (N2HET)  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
N2HET[0]  
N2HET[2]  
N2HET[4]  
N2HET[6]  
N2HET[8]  
N2HET[10]  
N2HET[12]  
N2HET[14]  
N2HET[16]  
19  
22  
25  
26  
74  
83  
89  
90  
97  
93  
I/O  
Pull Down  
Programmable,  
20uA  
Timer input capture or output compare. The  
N2HET applicable terminals can be programmed  
as general-purpose input/output (GIO).  
Each N2HET terminal is equipped with a  
suppression filter. If the terminal is configured as  
an input it enables to filter out pulses which are  
smaller than a programmable duration.  
MIBSPI1nCS[1]/EQEPS/  
N2HET[17]  
N2HET[18]  
98  
27  
MIBSPI1nCS[2]/N2HET[20]/  
N2HET[19]  
MIBSPI1nCS[2]/N2HET[20]/  
27  
N2HET[19]  
N2HET[22]  
11  
64  
39  
58  
18  
68  
N2HET[24]  
MIBSPI1nCS[3]/N2HET[26]  
ADEVT/N2HET[28]  
GIOA[7]/N2HET[29]  
MIBSPI1nENA/N2HET[23]/  
N2HET[30]  
GIOA[6]/SPI2nCS[1]/N2HET[31]  
12  
2.2.2 Enhanced Quadrature Encoder Pulse Modules (eQEP)  
Table 2-2. PGE Enhanced Quadrature Encoder Pulse Modules (eQEP)  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
SPI3CLK/EQEPA  
SPI3nENA/EQEPB  
SPI3nCS[0]/EQEPI  
36  
37  
38  
93  
Input  
Input  
I/O  
Pullup  
Fixed, 20uA  
Enhanced QEP Input A  
Enhanced QEP Input B  
Enhanced QEP Index  
Enhanced QEP Strobe  
MIBSPI1nCS[1]/EQEPS/N2HET  
I/O  
[17]  
10  
Device Package and Terminal Functions  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
2.2.3 General-Purpose Input/Output (GIO)  
Table 2-3. General-Purpose Input/Output (GIO)  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
GIOA[0]/SPI3nCS[3]  
GIOA[1]/SPI3nCS[2]  
GIOA[2]/SPI3nCS[1]  
GIOA[3]/SPI2nCS[3]  
GIOA[4]/SPI2nCS[2]  
GIOA[5]/EXTCLKIN  
1
2
I/O  
Pull Down  
Programmable,  
20uA  
General-purpose input/output  
All GPIO terminals are capable of generating  
interrupts to the CPU on rising/falling/both edges.  
5
8
9
10  
12  
18  
GIOA[6]/SPI2nCS[1]/N2HET[31]  
GIOA[7]/N2HET[29]  
2.2.4 Controller Area Network Interface Modules (DCAN1, DCAN2)  
Table 2-4. Controller Area Network Interface Modules (DCAN1, DCAN2)  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
CAN1RX  
CAN1TX  
CAN2RX  
CAN2TX  
63  
62  
92  
91  
I/O  
Pull Up  
Programmable,  
20uA  
CAN1 Receive, or general-purpose I/O (GPIO)  
CAN1 Transmit, or GPIO  
CAN2 Receive, or GPIO  
CAN2 Transmit, or GPIO  
2.2.5 Multi-Buffered Serial Peripheral Interface (MibSPI1)  
Table 2-5. Multi-Buffered Serial Peripheral Interface (MibSPI1)  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
MIBSPI1CLK  
67  
73  
93  
I/O  
Pull Up  
Programmable,  
20uA  
MibSPI1 Serial Clock, or GPIO  
MibSPI1 Chip Select, or GPIO  
MIBSPI1nCS[0]  
MIBSPI1nCS[1]/EQEPS/N2HET  
[17]  
MIBSPI1nCS[2]/N2HET[20]/N2  
27  
HET[19]  
MIBSPI1nCS[3]/N2HET[26]  
39  
68  
MIBSPI1nENA/N2HET[23]/N2H  
MibSPI1 Enable, or GPIO  
ET[30]  
MIBSPI1SIMO  
MIBSPI1SOMI  
65  
66  
MibSPI1 Slave-In-Master-Out, or GPIO  
MibSPI1 Slave-Out-Master-In, or GPIO  
Copyright © 2012–2013, Texas Instruments Incorporated  
Device Package and Terminal Functions  
11  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
2.2.6 Standard Serial Peripheral Interface (SPI2)  
Table 2-6. Standard Serial Peripheral Interface (SPI2)  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
SPI2CLK  
71  
23  
12  
9
I/O  
Pull Up  
Programmable,  
20uA  
SPI2 Serial Clock, or GPIO  
SPI2 Chip Select, or GPIO  
SPI2nCS[0]  
GIOA[6]/SPI2nCS[1]/N2HET[31]  
GIOA[4]/SPI2nCS[2]  
GIOA[3]/SPI2nCS[3]  
SPI2SIMO  
8
70  
69  
SPI2 Slave-In-Master-Out, or GPIO  
SPI2 Slave-Out-Master-In, or GPIO  
SPI2SOMI  
The drive strengths for the SPI2CLK, SPI2SIMO and SPI2SOMI signals are selected individually by configuring the respective SRS bits of  
the SPIPC9 register fo SPI2.  
SRS = 0 for 8mA drive (fast). This is the default mode as the SRS bits in the SPIPC9 register default to 0.  
SRS = 1 for 2mA drive (slow)  
SPI3CLK/EQEPA  
SPI3nCS[0]/EQEPI  
GIOA[2]/SPI3nCS[1]  
GIOA[1]/SPI3nCS[2]  
GIOA[0]/SPI3nCS[3]  
SPI3nENA/EQEPB  
SPI3SIMO  
36  
38  
5
I/O  
Pull Up  
Programmable,  
20uA  
SPI3 Serial Clock, or GPIO  
SPI3 Chip Select, or GPIO  
2
1
37  
35  
34  
SPI3 Enable, or GPIO  
SPI3 Slave-In-Master-Out, or GPIO  
SPI3 Slave-Out-Master-In, or GPIO  
SPI3SOMI  
2.2.7 Local Interconnect Network Controller (LIN)  
Table 2-7. Local Interconnect Network Controller (LIN)  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
LINRX  
LINTX  
94  
95  
I/O  
Pull Up  
Programmable,  
20uA  
LIN Receive, or GPIO  
LIN Transmit, or GPIO  
2.2.8 Multi-Buffered Analog-to-Digital Converter (MibADC)  
Table 2-8. Multi-Buffered Analog-to-Digital Converter (MibADC)  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
ADEVT/N2HET[28]  
58  
I/O  
Pull Up  
Programmable,  
20uA  
ADC Event Trigger or GPIO  
12  
Device Package and Terminal Functions  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
Table 2-8. Multi-Buffered Analog-to-Digital Converter (MibADC) (continued)  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
ADIN[0]  
42  
49  
51  
52  
54  
55  
56  
43  
57  
48  
50  
53  
40  
41  
44  
45  
46  
Input  
-
-
Analog Inputs  
ADIN[1]  
ADIN[2]  
ADIN[3]  
ADIN[4]  
ADIN[5]  
ADIN[6]  
ADIN[7]  
ADIN[8]  
ADIN[9]  
ADIN[10]  
ADIN[11]  
ADIN[16]  
ADIN[17]  
ADIN[20]  
ADIN[21]  
ADREFHI/VCCAD  
Input/Pow  
er  
-
-
-
-
ADC High Reference Level/ADC Operating  
Supply  
ADREFLO/VSSAD  
47  
Input/Grou  
nd  
ADC Low Reference Level/ADC Supply Ground  
2.2.9 System Module  
Table 2-9. System Module  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
ECLK  
84  
I/O  
Pull Down  
Programmable,  
20uA  
External prescaled clock output, or GIO.  
External Clock In  
GIOA[5]/EXTCLKIN  
10  
31  
Input  
Input  
Pull Down  
Pull Down  
20uA  
nPORRST  
100uA  
Power-on reset, cold reset External power supply  
monitor circuitry must drive nPORRST low when  
any of the supplies to the microcontroller fall out  
of the specified range. This terminal has a glitch  
filter.  
nRST  
81  
I/O  
Pull Up  
100uA  
The external circuitry can assert a system reset  
by driving nRST low. To ensure that an external  
reset is not arbitrarily generated, TI recommends  
that an external pull-up resistor is connected to  
this terminal. This terminal has a glitch filter.  
2.2.10 Error Signaling Module (ESM)  
Table 2-10. Error Signaling Module (ESM)  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
nERROR  
82  
I/O  
Pull Down  
20uA  
ESM Error Signal. Indicates error of high severity.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Device Package and Terminal Functions  
13  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
2.2.11 Main Oscillator  
Table 2-11. Main Oscillator  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
OSCIN  
14  
Input  
-
-
From external crystal/resonator, or external clock  
input  
OSCOUT  
16  
15  
Output  
Input  
-
-
-
-
To external crystal/resonator  
Dedicated ground for oscillator  
KELVIN_GND  
2.2.12 Test/Debug Interface  
Table 2-12. Test/Debug Interface  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
nTRST  
RTCK  
TCK  
76  
80  
79  
77  
78  
75  
24  
Input  
Output  
Input  
I/O  
Pull Down  
-
Fixed, 100uA  
-
JTAG test hardware reset  
JTAG return test clock  
JTAG test clock  
Pull Down  
Pull Up  
Pull Down  
Pull Up  
Pull Down  
Fixed, 100uA  
Fixed, 100uA  
Fixed, 100uA  
Fixed, 100uA  
Fixed, 100uA  
TDI  
JTAG test data in  
TDO  
I/O  
JTAG test data out  
JTAG test select  
TMS  
I/O  
TEST  
I/O  
Test enable. Reserved for internal use only. This  
terminal has a glitch filter.  
For proper operation, this terminal must be  
connected to ground using an external resistor.  
2.2.13 Flash  
Table 2-13. Flash  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
FLTP1  
FLTP2  
3
4
Input  
Input  
-
-
-
-
Flash Test Pins. For proper operation this  
terminal must connect only to a test pad or not be  
connected at all [no connect (NC)].  
The test pad must not be exposed in the final  
product where it might be subjected to an ESD  
event.  
VCCP  
96  
3.3V  
Power  
-
-
Flash external pump voltage (3.3 V). This  
terminal is required for both Flash read and Flash  
program and erase operations.  
14  
Device Package and Terminal Functions  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
2.2.14 Core Supply  
Table 2-14. Core Supply  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
13  
21  
30  
32  
61  
88  
99  
1.2V  
Power  
-
-
Digital logic and RAM supply  
2.2.15 I/O Supply  
Table 2-15. I/O Supply  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
VCCIO  
VCCIO  
VCCIO  
VCCIO  
6
3.3V  
Power  
-
-
I/O Supply  
28  
60  
85  
2.2.16 Core and I/O Supply Ground Reference  
Table 2-16. Core and I/O Supply Ground Reference  
Terminal  
Signal  
Type  
Default  
Pull State  
Pull Type  
Description  
Signal Name  
100  
PZ  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
7
17  
20  
29  
33  
59  
72  
86  
87  
100  
Ground  
-
-
Device Ground Reference. This is a single  
ground reference for all supplies except for the  
ADC Supply.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Device Package and Terminal Functions  
15  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
2.3 Output Multiplexing and Control  
Output multiplexing will be utilized in the device. The multiplexing is utilized to allow development of  
additional package/feature combinations as well as to maintain pinout compatibility with the marketing  
device family.  
In all cases indicated as multiplexed, the output buffers are multiplexed.  
Table 2-17. Output Mux Options  
100PZ Pin  
Default Function  
GIOA[0]  
Control 1  
Option2  
SPI3nCS[3]  
SPI3nCS[2]  
SPI3nCS[1]  
SPI2nCS[3]  
SPI2nCS[2]  
EXTCLKIN  
SPI2nCS[1]  
N2HET[29]  
EQEPS  
Control 2  
Option 3  
Control 3  
1
PINMMR0[8]  
PINMMR1[0]  
PINMMR1[8]  
PINMMR1[16]  
PINMMR1[24]  
PINMMR2[0]  
PINMMR2[8]  
PINMMR2[16]  
PINMMR6[8]  
PINMMR3[0]  
PINMMR4[8]  
PINMMR5[8]  
PINMMR3[16]  
PINMMR4[0]  
PINMMR3[24]  
PINMMR4[16]  
PINMMR0[9]  
PINMMR1[1]  
PINMMR1[9]  
PINMMR1[17]  
PINMMR1[25]  
PINMMR2[1]  
PINMMR2[9]  
PINMMR2[17]  
PINMMR6[9]  
PINMMR3[1]  
PINMMR4[9]  
PINMMR5[9]  
PINMMR3[17]  
PINMMR4[1]  
PINMMR3[25]  
PINMMR4[17]  
-
-
2
GIOA[1]  
-
-
5
GIOA[2]  
-
-
8
GIOA[3]  
-
-
9
GIOA[4]  
-
-
10  
12  
18  
93  
27  
39  
68  
36  
38  
37  
58  
GIOA[5]  
-
-
GIOA[6]  
N2HET[31]  
PINMMR2[10]  
GIOA[7]  
-
-
MIBSPI1nCS[1]  
MIBSPI1nCS[2]  
MIBSPI1nCS[3]  
MIBSPI1nENA  
SPI3CLK  
N2HET[17]  
PINMMR6[10]  
N2HET[20]  
N2HET[26]  
N2HET[23]  
EQEPA  
N2HET[19]  
PINMMR3[2]  
-
-
N2HET[30]  
PINMMR5[10]  
-
-
-
-
-
-
-
-
SPI3nCS[0]  
SPI3nENA  
ADEVT  
EQEPI  
EQEPB  
N2HET[28]  
2.3.1 Notes on Output Multiplexing  
Table 2-17 shows the output signal multiplexing and control signals for selecting the desired functionality  
for each pin.  
The pins default to the signal defined by the "Default Function" column in Table 2-17  
The "CTRL x" columns indicate the multiplexing control register and the bit that must be set in order to  
select the corresponding functionality to be output on any particular pin.  
For example, consider the multiplexing on pin 18, shown below.  
Table 2-18. Muxing Example  
100PZ Pin  
Default Function  
Control 1  
Option2  
Control 2  
Option 3  
Control 3  
18  
GIOA[7]  
PINMMR2[16]  
N2HET[29]  
PINMMR2[17]  
-
-
When GIOA[7] is configured as an output pin in the GIO module control register, then the programmed  
output level appears on pin 18 by default. The PINMMR2[16] bit is set by default to indicate that the  
GIOA[7] signal is selected to be output.  
If the application needs to output the N2HET[29] signal on pin 18, it must clear PINMMR2[16] and set  
PINMMR2[17].  
Note that the pin is connected as input to both the GIO and N2HET modules. That is, there is no input  
multiplexing on this pin.  
2.3.2 General Rules for Multiplexing Control Registers  
The PINMMR control registers can only be written in privileged mode. A write in a non–privileged mode  
will generate an error response.  
If the application writes all 0’s to any PINMMR control register, then the default functions are selected  
for the affected pins.  
16  
Device Package and Terminal Functions  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
Each byte in a PINMMR control register is used to select the functionality for a given pin. If the  
application sets more than one bit within a byte for any pin, then the default function is selected for this  
pin.  
Some bits within the PINMMR registers could be associated with internal pads that are not brought out  
in the 100 pin package. As a result, bits marked reserved should not be written as a 1.  
2.4 Special Multiplexed Options  
Special controls are implemented to affect particular functions on this microcontroller. These controls are  
described in this section.  
2.4.1 Filtering for eQEP Inputs  
2.4.1.1 eQEPA Input  
When PINMMR8[0] = 1, the eQEPA input is double-synchronized using VCLK.  
When PINMMR8[0] = 0 and PINMMR8[1] = 1, the eQEPA input is double-synchronized and then  
qualified through a fixed 6-bit counter using VCLK.  
PINMMR8[0] = 0 and PINMMR8[1] = 0 is an illegal combination and behavior defaults to PINMMR8[0]  
= 1.  
2.4.1.2 eQEPB Input  
When PINMMR8[8] = 1, the eQEPB input is double-synchronized using VCLK.  
When PINMMR8[8] = 0 and PINMMR8[9] = 1, the eQEPB input is double-synchronized and then  
qualified through a fixed 6-bit counter using VCLK.  
PINMMR8[8] = 0 and PINMMR8[9] = 0 is an illegal combination and behavior defaults to PINMMR8[8]  
= 1.  
2.4.1.3 eQEPI Input  
When PINMMR8[16] = 1, the eQEPI input is double-synchronized using VCLK.  
When PINMMR8[16] = 0 and PINMMR8[17] = 1, the eQEPI input is double-synchronized and then  
qualified through a fixed 6-bit counter using VCLK.  
PINMMR8[16] = 0 and PINMMR8[17] = 0 is an illegal combination and behavior defaults to  
PINMMR8[16] = 1.  
2.4.1.4 eQEPS Input  
When PINMMR8[24] = 1, the eQEPS input is double-synchronized using VCLK.  
When PINMMR8[24] = 0 and PINMMR8[25] = 1, the eQEPS input is double-synchronized and then  
qualified through a fixed 6-bit counter using VCLK.  
PINMMR8[24] = 0 and PINMMR8[25] = 0 is an illegal combination and behavior defaults to  
PINMMR8[24] = 1.  
2.4.2 N2HET PIN_nDISABLE Input Port  
When PINMMR9[0] = 1, GIOA[5] is connected directly to N2HET PIN_nDISABLE input of the N2HET  
module.  
When PINMMR9[0] = 0 and PINMMR9[1] = 1, EQEPERR is inverted and double-synchronized using  
VCLK before connecting directly to the N2HET PIN_nDISABLE input of the N2HET module.  
PINMMR9[0] = 0 and PINMMR9[1] = 0 is an illegal combination and behavior defaults to PINMMR9[0]  
= 1.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Device Package and Terminal Functions  
17  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
3 Device Operating Conditions  
(1)  
3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range,  
(2)  
VCC  
-0.3 V to 1.43 V  
-0.3 V to 4.6 V  
-0.3 V to 3.6 V  
-0.3 V to 4.6 V  
-0.3 V to 4.6 V  
±20 mA  
(2)  
Supply voltage range:  
Input voltage range:  
VCCIO, VCCP  
VCCAD  
All input pins  
ADC input pins  
IIK (VI < 0 or VI > VCCIO  
)
All pins, except ADIN  
Input clamp current:  
IIK (VI < 0 or VI > VCCAD  
)
±10 mA  
ADIN  
Total  
±40 mA  
-40°C to 105°C  
-40°C to 130°C  
-65°C to 150°C  
Operating free-air temperature range, TA:  
Operating junction temperature range, TJ:  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to their associated  
grounds.  
3.2 Device Recommended Operating Conditions(1)  
MIN  
1.14  
3
NOM  
1.2  
3.3  
3.3  
3.3  
0
MAX UNIT  
VCC  
Digital logic supply voltage (Core)  
1.32  
3.6  
V
V
VCCIO  
Digital logic supply voltage (I/O)  
VCCAD / VADREFHI  
MibADC supply voltage / A-to-D high-voltage reference source  
Flash pump supply voltage  
3
3.6  
V
VCCP  
3
3.6  
V
VSS  
Digital logic supply ground  
V
VSSAD / VADREFLO  
MibADC supply ground / A-to-D low-voltage reference source  
Maximum positive slew rate for VCCIO, VCCAD and VCCP supplies  
Operating free-air temperature  
-0.1  
0.1  
1
V
VSLEW  
TA  
V/µs  
°C  
°C  
-40  
-40  
105  
130  
TJ  
Operating junction temperature(2)  
(1) All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD  
(2) Reliability data is based upon a temperature profile that is equivalent to 100,000 power-on hours at 105°C junction temperature.  
18  
Device Operating Conditions  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
3.3 Switching Characteristics over Recommended Operating Conditions for Clock Domains  
Table 3-1. Clock Domain Timing Specifications  
Parameter  
fHCLK  
Description  
Conditions  
MIN  
MAX  
100  
Unit  
MHz  
MHz  
HCLK - System clock frequency  
fGCLK  
GCLK - CPU clock frequency (ratio fGCLK  
fHCLK = 1:1)  
:
fHCLK  
fVCLK  
VCLK - Primary peripheral clock frequency  
100  
100  
MHz  
MHz  
fVCLK2  
VCLK2 - Secondary peripheral clock  
frequency  
fVCLKA1  
fRTICLK  
VCLKA1 - Primary asynchronous  
peripheral clock frequency  
100  
MHz  
MHz  
RTICLK - clock frequency  
fVCLK  
3.4 Wait States Required  
The TCM RAM can support program and data fetches at full CPU speed without any address or data wait states  
required. There are no registers which need to be programmed for RAM wait states.  
The TCM flash can support zero address and data wait states up to a CPU speed of 50MHz in non-pipelined  
mode.The flash supports a maximum CPU clock speed of 100MHz in pipelined mode with no address wait states  
and one data wait state.  
The proper wait states should be set in the register fields Address Setup Wait State Enable (ASWSTEN  
0xFFF87000[4]), Random Wait states (RWAIT 0xFFF87000[11:8]), and Emulation Wait states (EWAIT  
0xFFF872B8[19:16]) as shown in Figure 3-1 below.  
Flash Address Waitstates  
ASWSTEN  
0
0MHz  
100MHz  
100MHz  
Main Memory Data Waitstates (Bank 0)  
RWAIT  
0
1
0MHz  
50MHz  
50MHz  
EEPROM Emulation Memory Waitstates (Bank 7)  
EWAIT  
1
2
3
4
67MHz  
84MHz  
100MHz  
0MHz  
Figure 3-1. Wait States Scheme  
The flash wrapper defaults to non-pipelined mode with address wait states disabled, ASWSTEN=0; the main  
memory random-read data wait state, RWAIT=1; and the emulation memory random-read wait states, EWAIT=1.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Device Operating Conditions  
19  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
3.5 Power Consumption Over Recommended Operating Conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fHCLK = 100MHz  
VCC digital supply current (operating mode)  
150(1)  
mA  
fVCLK  
=
100MHz,  
Flash in pipelined  
mode, VCCmax  
ICC  
LBIST clock rate =  
50MHz  
VCC Digital supply current (LBIST mode)  
VCC Digital supply current (PBIST mode)  
165(2)(3)  
mA  
(2)(3)  
PBIST ROM clock  
frequency = 100MHz  
150  
mA  
mA  
ICCREFHI  
ICCAD  
ICCIO  
ADREFHI supply current (operating mode)  
VCCAD supply current (operating mode)  
VCCIO Digital supply current (operating mode.  
VCCP pump supply current  
ADREFHImax  
3
45(4)  
VCCADmax  
No DC load, VCCmax  
Read mode  
mA  
mA  
ICCP  
read from one bank  
and program or  
erase another,  
VCCPmax  
65(4)  
ICCP,  
3.3V supply current  
ICCIO, CCAD  
I
(1) The maximum ICC, value can be derated  
linearly with voltage  
by 0.76 mA/MHz for lower operating frequency when fHCLK= fVCLK  
for lower junction temperature by the equation below where TJK is the junction temperature in Kelvin and the result is in milliamperes.  
36 - 0.001 0.026T  
JK  
(2) The maximum ICC, value can be derated  
linearly with voltage  
for lower junction temperature by the equation below where TJK is the junction temperature in Kelvin and the result is in milliamperes.  
36 - 0.001 0.026T  
JK  
(3) LBIST and PBIST currents are for a short duration, typically less than 10ms. They are usually ignored for thermal calculations for the  
device and the voltage regulator  
(4) Maximum current requirement of the three combined supplies  
20  
Device Operating Conditions  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
3.6 Input/Output Electrical Characteristics Over Recommended Operating Conditions(1)  
PARAMETER  
Input hysteresis  
TEST CONDITIONS  
MIN  
180  
-0.3  
2
TYP  
MAX  
UNIT  
mV  
V
Vhys  
VIL  
All inputs  
Low-level input voltage  
High-level input voltage  
All inputs(2)  
All inputs(2)  
0.8  
VCCIO + 0.3  
0.2 VCCIO  
0.2  
VIH  
V
IOL = IOLmax  
IOL = 50 µA,  
standard output  
mode  
VOL  
Low-level output voltage  
V
IOH = IOHmax  
0.8 VCCIO  
VCCIO -0.3  
IOH = 50 µA,  
standard output  
mode  
VOH  
High-level output voltage  
V
VI < VSSIO - 0.3 or VI  
> VCCIO + 0.3  
-3.5  
3.5  
IIC  
Input clamp current (I/O pins)  
mA  
IIH Pull-down 20µA  
VI = VCCIO  
5
40  
40  
195  
-5  
IIH Pull-down 100µA VI = VCCIO  
IIL Pull-up 20µA  
IIL Pull-up 100µA  
VI = VSS  
VI = VSS  
-40  
-195  
-1  
II  
Input current (I/O pins)  
µA  
-40  
1
No Pull up or Pull-  
down  
All other pins  
CI  
Input capacitance  
Output capacitance  
2
3
pF  
pF  
CO  
(1) Source currents (out of the device) are negative while sink currents (into the device) are positive.  
(2) This does not apply to the nPORRST pin.  
3.7 Output Buffer Drive Strengths  
Table 3-2. Output Buffer Drive Strengths  
Low-level Output Current,  
IOL for VI=VOLmax  
or  
Signals  
High-level Output Current,  
IOH for VI=VOHmin  
EQEPI, EQEPS,  
TMS, TDI, TDO, RTCK,  
nERROR  
8mA  
4mA  
TEST,  
MIBSPI1SIMO, MIBSPI1SOMI, MIBSPI1CLK, SPI3CLK, SPI3SIMO, SPI3SOMI,  
nRST  
AD1EVT,  
CAN1RX, CAN1TX, CAN2RX, CAN2TX,  
GIOA[0-7],  
LINRX, LINTX,  
2mA zero-dominant  
MIBSPI1NCS[0-3], MIBSPI1NENA  
N2HET[0], N2HET[2], N2HET[4], N2HET[6], N2HET[8], N2HET[10], N2HET[12], N2HET[14],  
N2HET[16], N2HET[18], N2HET[22], N2HET[24],  
SPI2NCS[0-3], SPI3NENA  
Copyright © 2012–2013, Texas Instruments Incorporated  
Device Operating Conditions  
21  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
Table 3-2. Output Buffer Drive Strengths (continued)  
Low-level Output Current,  
IOL for VI=VOLmax  
or  
Signals  
High-level Output Current,  
IOH for VI=VOHmin  
ECLK,  
selectable 8mA / 2mA  
SPI2CLK, SPI2SIMO, SPI2SOMI  
The default output buffer drive strength is 8mA for these signals.  
Table 3-3. Selectable 8ma/2ma Control  
Signal  
Control Bit  
SYSPC10[0]  
SPI2PC9[9](1)  
SPI2PC9[10](1)  
SPI2PC9[11](1)  
Address  
8mA  
2mA  
ECLK  
0xFFFF FF78  
0xFFF7 F668  
0xFFF7 F668  
0xFFF7 F668  
0
0
0
0
1
1
1
1
SPI2CLK  
SPI2SIMO  
SPI2SOMI  
(1) Do not do byte or half-word writes to SPI2PC9[31.16] as it may inadvertently change the drive strength of the SPI2 pins  
3.8 Input Timings  
tpw  
VCCIO  
Input  
VIH  
VIH  
VIL  
VIL  
0
Figure 3-2. TTL-Level Inputs  
Table 3-4. Timing Requirements for Inputs(1)  
Parameter  
MIN  
tc(VCLK) + 10(2)  
MAX  
Unit  
tpw  
Input minimum pulse width  
ns  
(1) tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK)  
(2) The timing shown above is only valid for pin used in GIO mode.  
3.9 Output Timings  
Table 3-5. Switching Characteristics for Output Timings versus Load Capacitance ©L)  
Parameter  
MIN  
MAX  
2.5  
4
Unit  
Rise time, tr  
Fall time, tf  
8mA pins  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
ns  
7.2  
12.5  
2.5  
4
ns  
7.2  
12.5  
22  
Device Operating Conditions  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
 
 
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
Table 3-5. Switching Characteristics for Output Timings versus Load Capacitance ©L) (continued)  
Parameter  
MIN  
MAX  
5.6  
10.4  
16.8  
23.2  
5.6  
10.4  
16.8  
23.2  
8
Unit  
Rise time, tr  
Fall time, tf  
Rise time, tr  
Fall time, tf  
Rise time, tr  
Fall time, tf  
Rise time, tr  
Fall time, tf  
4mA pins  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL= 50 pF  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
CL = 15 pF  
CL = 50 pF  
CL = 100 pF  
CL = 150 pF  
2mA-z pins  
15  
23  
33  
8
15  
23  
33  
Selectable 8mA / 2mA-z  
pins  
8mA mode  
2.5  
4
7.2  
12.5  
2.5  
4
7.2  
12.5  
8
2mA-z mode  
15  
23  
33  
8
15  
23  
33  
tr  
t
f
VCCIO  
Output  
VOH  
VOH  
VOL  
VOL  
0
Figure 3-3. CMOS-Level Outputs  
Table 3-6. Timing Requirements for Outputs(1)  
Parameter  
MIN  
MAX  
UNIT  
td(parallel_out)  
Delay between low to high, or high to low transition of general-purpose output signals  
that can be configured by an application in parallel, e.g. all signals in a GIOA port, or  
all N2HET signals.  
5
ns  
(1) This specification does not account for any output buffer drive strength differences or any external capacitive loading differences. Check  
Table 3-2for output buffer drive strength information on each signal.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Device Operating Conditions  
23  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4 System Information and Electrical Specifications  
4.1 Voltage Monitor Characteristics  
A voltage monitor is implemented on this device. The purpose of this voltage monitor is to eliminate the  
requirement for a specific sequence when powering up the core and I/O voltage supplies.  
4.1.1 Important Considerations  
The voltage monitor does not eliminate the need of a voltage supervisor circuit to guarantee that the  
device is held in reset when the voltage supplies are out of range.  
The voltage monitor only monitors the core supply (VCC) and the I/O supply (VCCIO). The other  
supplies are not monitored by the VMON. For example, if the VCCAD or VCCP are supplied from a  
source different from that for VCCIO, then there is no internal voltage monitor for the VCCAD and  
VCCP supplies.  
4.1.2 Voltage Monitor Operation  
The voltage monitor generates the Power Good MCU signal (PGMCU) as well as the I/Os Power Good IO  
signal (PGIO) on the device. During power-up or power-down, the PGMCU and PGIO are driven low when  
the core or I/O supplies are lower than the specified minimum monitoring thresholds. The PGIO and  
PGMCU being low isolates the core logic as well as the I/O controls during the power-up or power-down  
of the supplies. This allows the core and I/O supplies to be powered up or down in any order.  
When the voltage monitor detects a low voltage on the I/O supply, it will assert a power-on reset. When  
the voltage monitor detects an out-of-range voltage on the core supply, it asynchronously makes all output  
pins high impedance, and asserts a power-on reset. The voltage monitor is disabled when the device  
enters a low power mode.  
The VMON also incorporates a glitch filter for the nPORRST input. Refer to Section 4.2.3.1 for the timing  
information on this glitch filter.  
Table 4-1. Voltage Monitoring Specifications  
PARAMETER  
VCC low - VCC level below this  
MIN  
TYP  
MAX  
UNIT  
0.75  
0.9  
1.13  
V
threshold is detected as too low.  
Voltage monitoring  
thresholds  
VCC high - VCC level above this  
threshold is detected as too high.  
1.40  
1.85  
1.7  
2.4  
2.1  
2.9  
VMON  
VCCIO low - VCCIO level below this  
threshold is detected as too low.  
4.1.3 Supply Filtering  
The VMON has the capability to filter glitches on the VCC and VCCIO supplies.  
The following table shows the characteristics of the supply filtering. Glitches in the supply larger than the  
maximum specification cannot be filtered.  
Table 4-2. VMON Supply Glitch Filtering Capability  
Parameter  
MIN  
MAX  
1us  
Width of glitch on VCC that can be filtered  
Width of glitch on VCCIO that can be filtered  
250ns  
250ns  
1us  
24  
System Information and Electrical Specifications  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.2 Power Sequencing and Power On Reset  
4.2.1 Power-Up Sequence  
There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage. The power-  
up sequence starts with the I/O voltage rising above the minimum I/O supply threshold, (see Table 4-4 for  
more details), core voltage rising above the minimum core supply threshold and the release of power-on  
reset. The high frequency oscillator will start up first and its amplitude will grow to an acceptable level. The  
oscillator start up time is dependent on the type of oscillator and is provided by the oscillator vendor. The  
different supplies to the device can be powered up in any order.  
The device goes through the following sequential phases during power up.  
Table 4-3. Power-Up Phases  
Oscillator start-up and validity check  
eFuse autoload  
1032 oscillator cycles  
1160 oscillator cycles  
688 oscillator cycles  
617 oscillator cycles  
3497 oscillator cycles  
Flash pump power-up  
Flash bank power-up  
Total  
The CPU reset is released at the end of the above sequence and fetches the first instruction from address  
0x00000000.  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
25  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4.2.2 Power-Down Sequence  
The different supplies to the device can be powered down in any order.  
4.2.3 Power-On Reset: nPORRST  
This reset must be asserted by an external circuitry whenever the I/O or core supplies are outside the  
recommended range. This signal has a glitch filter on it. It also has an internal pulldown.  
4.2.3.1 nPORRST Electrical and Timing Requirements  
Table 4-4. Electrical Requirements for nPORRST  
NO Parameter  
MIN  
MAX  
Unit  
VCCPORL  
VCC low supply level when nPORRST must be active during power-  
up  
0.5  
V
VCCPORH  
VCC high supply level when nPORRST must remain active during  
power-up and become active during power down  
1.14  
V
V
V
VCCIOPORL  
VCCIOPORH  
VIL(PORRST)  
VCCIO / VCCP low supply level when nPORRST must be active during  
power-up  
1.1  
VCCIO / VCCP high supply level when nPORRST must remain active  
during power-up and become active during power down  
3.0  
Low-level input voltage of nPORRST VCCIO > 2.5V  
Low-level input voltage of nPORRST VCCIO < 2.5V  
0.2 * VCCIO  
0.5  
V
V
3
tsu(PORRST)  
Setup time, nPORRST active before VCCIO and VCCP > VCCIOPORL  
during power-up  
0
ms  
6
7
th(PORRST)  
tsu(PORRST)  
Hold time, nPORRST active after VCC > VCCPORH  
1
2
ms  
µs  
Setup time, nPORRST active before VCC < VCCPORH during power  
down  
8
9
th(PORRST)  
th(PORRST)  
tf(nPORRST)  
Hold time, nPORRST active after VCCIO and VCCP > VCCIOPORH  
Hold time, nPORRST active after VCC < VCCPORL  
1
0
ms  
ms  
ns  
Filter time nPORRST pin;  
475  
2000  
Pulses less than MIN will be filtered out, pulses greater than MAX  
will generate a reset.  
3.3 V  
1.2 V  
VCCIOPORH  
VCCIOPORH  
VCCIO / VCCP  
8
6
VCCPORH  
VCC  
VCCPORH  
7
6
VCCIOPORL  
7
VCCIOPORL  
VCCPORL  
VCCPORL  
VCC (1.2 V)  
VCCIO / VCCP(3.3 V)  
3
9
VIL  
VIL  
VIL  
VIL(PORRST)  
VIL(PORRST)  
nPORRST  
NOTE: There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage; this is just an exemplary drawing.  
Figure 4-1. nPORRST Timing Diagram  
26  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.3 Warm Reset (nRST)  
This is a bidirectional reset signal. The internal circuitry drives the signal low on detecting any device reset  
condition. An external circuit can assert a device reset by forcing the signal low. On this terminal, the  
output buffer is implemented as an open drain (drives low only). To ensure an external reset is not  
arbitrarily generated, TI recommends that an external pullup resistor is connected to this terminal.  
This terminal has a glitch filter. It also has an internal pullup  
4.3.1 Causes of Warm Reset  
Table 4-5. Causes of Warm Reset  
DEVICE EVENT  
SYSTEM STATUS FLAG  
Exception Status Register, bit 15  
Global Status Register, bit 0  
Power-Up Reset  
Oscillator fail  
PLL slip  
Global Status Register, bits 8 and 9  
Exception Status Register, bit 13  
Exception Status Register, bit 5  
Exception Status Register, bit 4  
Exception Status Register, bit 3  
Watchdog exception / Debugger reset  
CPU Reset (driven by the CPU STC)  
Software Reset  
External Reset  
4.3.2 nRST Timing Requirements  
Table 4-6. nRST Timing Requirements  
PARAMETER  
MIN  
MAX  
UNIT  
(1)  
tv(RST)  
Valid time, nRST active after  
nPORRST inactive  
2256tc(OSC)  
ns  
Valid time, nRST active (all other  
System reset conditions)  
32tc(VCLK)  
475  
tf(nRST)  
Filter time nRST pin;  
2000  
ns  
Pulses less than MIN will be  
filtered out, pulses greater than  
MAX will generate a reset  
(1) Assumes the oscillator has started up and stabilized before nPORRST is released .  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
27  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4.4 ARM© Cortex-R4™ CPU Information  
4.4.1 Summary of ARM Cortex-R4 CPU Features  
The features of the ARM Cortex-R4™ CPU include:  
An integer unit with integral Embedded ICE-RT logic.  
High-speed Advanced Microprocessor Bus Architecture (AMBA) Advanced eXtensible Interfaces (AXI)  
for Level two (L2) master and slave interfaces.  
Dynamic branch prediction with a global history buffer, and a 4-entry return stack  
Low interrupt latency.  
Non-maskable interrupt.  
A Harvard Level one (L1) memory system with:  
Tightly-Coupled Memory (TCM) interfaces with support for error correction or parity checking  
memories  
ARMv7-R architecture Memory Protection Unit (MPU) with 8 regions  
Dual core logic for fault detection in safety-critical applications.  
An L2 memory interface:  
Single 64-bit master AXI interface  
64-bit slave AXI interface to TCM RAM blocks  
A debug interface to a CoreSight Debug Access Port (DAP).  
A Perfomance Monitoring Unit (PMU)  
A Vectored Interrupt Controller (VIC) port.  
For more information on the ARM Cortex-R4 CPU please see www.arm.com.  
4.4.2 ARM Cortex-R4 CPU Features Enabled by Software  
The following CPU features are disabled on reset and must be enabled by the application if required.  
ECC On Tightly-Coupled Memory (TCM) Accesses  
Hardware Vectored Interrupt (VIC) Port  
Memory Protection Unit (MPU)  
4.4.3 Dual Core Implementation  
The device has two Cortex-R4 cores, where the output signals of both CPUs are compared in the CCM-  
R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed by 2 clock  
cycles as shown in Figure 4-3.  
The CPUs have a diverse CPU placement given by following requirements:  
different orientation; e.g. CPU1 = "north" orientation, CPU2 = "flip west" orientation  
dedicated guard ring for each CPU  
Flip West  
North  
F
Figure 4-2. Dual - CPU Orientation  
4.4.4 Duplicate clock tree after GCLK  
The CPU clock domain is split into two clock trees, one for each CPU, with the clock of the 2nd CPU  
running at the same frequency and in phase to the clock of CPU1. See Figure 4-3.  
28  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.4.5 ARM Cortex-R4 CPU Compare Module (CCM) for Safety  
This device has two ARM Cortex-R4 CPU cores, where the output signals of both CPUs are compared in  
the CCM-R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed in  
a different way as shown in the figure below.  
Output + Control  
CCM-R4  
2 cycle delay  
CCM-R4  
compare  
compare  
error  
CPU1CLK  
CPU 1  
CPU 2  
2 cycle delay  
CPU2CLK  
Input + Control  
Figure 4-3. Dual Core Implementation  
To avoid an erroneous CCM-R4 compare error, the application software must initialize the registers of  
both CPUs before the registers are used, including function calls where the register values are pushed  
onto the stack.  
4.4.6 CPU Self-Test  
The CPU STC (Self-Test Controller) is used to test the two Cortex-R4 CPU Cores using the Deterministic  
Logic BIST Controller as the test engine.  
The main features of the self-test controller are:  
Ability to divide the complete test run into independent test intervals  
Capable of running the complete test or running a few intervals at a time  
Ability to continue from the last executed interval (test set) or to restart from the beginning (First test  
set)  
Complete isolation of the self-tested CPU core from the rest of the system during the self-test run  
Ability to capture the failure interval number  
Timeout counter for the CPU self-test run as a fail-safe feature  
4.4.6.1 Application Sequence for CPU Self-Test  
1. Configure clock domain frequencies.  
2. Select the number of test intervals to be run.  
3. Configure the timeout period for the self-test run.  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
29  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4. Save the CPU state if required  
5. Enable self-test.  
6. Wait for CPU reset.  
7. In the reset handler, read CPU self-test status to identify any failures.  
8. Retrieve CPU state if required.  
For more information refer to the device technical reference manual.  
4.4.6.2 CPU Self-Test Clock Configuration  
The maximum clock rate for the self-test is 50MHz. The STCCLK is divided down from the CPU clock,  
when necessary. This divider is configured by the STCCLKDIV register at address 0xFFFFE108.  
For more information see the device Technical Reference Manual..  
4.4.6.3 CPU Self-Test Coverage  
Table 4-7 shows CPU test coverage achieved for each self-test interval. It also lists the cumulative test  
cycles. The test time can be calculated by multiplying the number of test cycles with the STC clock period.  
Table 4-7. CPU Self-Test Coverage  
INTERVALS  
TEST COVERAGE, %  
0
TEST CYCLES  
0
0
1
60.06  
68.71  
73.35  
76.57  
78.7  
1365  
2
2730  
3
4095  
4
5460  
5
6825  
6
80.4  
8190  
7
81.76  
82.94  
83.84  
84.58  
85.31  
85.9  
9555  
8
10920  
12285  
13650  
15015  
16380  
17745  
19110  
20475  
21840  
23205  
24570  
25935  
27300  
28665  
30030  
31395  
32760  
34125  
35490  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
86.59  
87.17  
87.67  
88.11  
88.53  
88.93  
89.26  
89.56  
89.86  
90.1  
90.36  
90.62  
90.86  
91.06  
30  
System Information and Electrical Specifications  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.5 Clocks  
4.5.1 Clock Sources  
The table below lists the available clock sources on the device. Each of the clock sources can be enabled  
or disabled using the CSDISx registers in the system module. The clock source number in the table  
corresponds to the control bit in the CSDISx register for that clock source.  
The table also shows the default state of each clock source.  
Table 4-8. Available Clock Sources  
Clock  
Source #  
Name  
Description  
Default State  
0
1
2
3
4
OSCIN  
PLL1  
Main Oscillator  
Output From PLL1  
Enabled  
Disabled  
Disabled  
Disabled  
Enabled  
Reserved  
EXTCLKIN1  
CLK80K  
Reserved  
External Clock Input #1  
Low Frequency Output of Internal Reference Oscillator  
High Frequency Output of Internal Reference  
Oscillator  
5
CLK10M  
Enabled  
6
7
Reserved  
Reserved  
Reserved  
Reserved  
Disabled  
Disabled  
4.5.1.1 Main Oscillator  
The oscillator is enabled by connecting the appropriate fundamental resonator/crystal and load capacitors  
across the external OSCIN and OSCOUT pins as shown in Figure 4-4. The oscillator is a single stage  
inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test  
measurement and low power modes.  
TI strongly encourages each customer to submit samples of the device to the resonator/crystal  
vendors for validation. The vendors are equipped to determine what load capacitors will best tune  
their resonator/crystal to the microcontroller device for optimum start-up and operation over  
temperature/voltage extremes.  
An external oscillator source can be used by connecting a 3.3V clock signal to the OSCIN pin and leaving  
the OSCOUT pin unconnected (open) as shown in the figure below.  
(see Note B)  
OSCIN  
Kelvin_GND  
OSCOUT  
OSCIN  
OSCOUT  
C1  
C2  
External  
Clock Signal  
(toggling 0-3.3V)  
(see Note A)  
Crystal  
(a)  
(b)  
Note A: The values of C1 and C2 should be provided by the resonator/crystal vendor.  
Note B: Kelvin_GND should not be connected to any other GND.  
Figure 4-4. Recommended Crystal/Clock Connection  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
31  
 
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4.5.1.1.1 Timing Requirements for Main Oscillator  
Table 4-9. Timing Requirements for Main Oscillator  
Parameter  
MIN  
50  
Type  
MAX  
200  
Unit  
ns  
tc(OSC)  
Cycle time, OSCIN (when using a sine-wave input)  
tc(OSC_SQR)  
Cycle time, OSCIN, (when input to the OSCIN is a  
square wave )  
50  
200  
ns  
tw(OSCIL)  
tw(OSCIH)  
Pulse duration, OSCIN low (when input to the OSCIN  
is a square wave)  
15  
15  
ns  
ns  
Pulse duration, OSCIN high (when input to the OSCIN  
is a square wave)  
32  
System Information and Electrical Specifications  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.5.1.2 Low Power Oscillator  
The Low Power Oscillator (LPO) is comprised of two oscillators — HF LPO and LF LPO, in a single  
macro.  
4.5.1.2.1 Features  
The main features of the LPO are:  
Supplies a clock at extremely low power for power-saving modes. This is connected as clock source #  
4 of the Global Clock Module.  
Supplies a high-frequency clock for non-timing-critical systems. This is connected as clock source # 5  
of the Global Clock Module.  
Provides a comparison clock for the crystal oscillator failure detection circuit.  
BIAS_EN  
LFEN  
CLK80K  
LF_TRIM  
Low  
Power  
Oscillator  
HFEN  
CLK10M  
HF_TRIM  
CLK10M_VALID  
nPORRST  
Figure 4-5. LPO Block Diagram  
Figure 4-5 shows a block diagram of the internal reference oscillator. This is a low power oscillator (LPO)  
and provides two clock sources: one nominally 80KHz and one nominally 10MHz.  
4.5.1.2.2 LPO Electrical and Timing Specifications  
Table 4-10. LPO Specifications  
Parameter  
MIN  
Typical  
MAX  
Unit  
Clock Detection  
oscillator fail frequency - lower threshold, using  
untrimmed LPO output  
1.375  
2.4  
4.875  
MHz  
oscillator fail frequency - higher threshold, using  
untrimmed LPO output  
22  
38.4  
78  
MHz  
LPO - HF oscillator  
untrimmed frequency  
trimmed frequency  
5.5  
8
9
19.5  
11  
MHz  
MHz  
µs  
(fHFLPO  
)
9.6  
startup time from STANDBY (LPO BIAS_EN High for  
at least 900µs)  
10  
cold startup time  
900  
180  
100  
µs  
kHz  
µs  
LPO - LF oscillator  
untrimmed frequency  
36  
85  
startup time from STANDBY (LPO BIAS_EN High for  
at least 900µs)  
cold startup time  
2000  
µs  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
33  
 
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4.5.1.3 Phase Locked Loop (PLL) Clock Modules  
The PLL is used to multiply the input frequency to some higher frequency.  
The main features of the PLL are:  
Frequency modulation can be optionally superimposed on the synthesized frequency of PLL.  
Configurable frequency multipliers and dividers.  
Built-in PLL Slip monitoring circuit.  
Option to reset the device on a PLL slip detection.  
4.5.1.3.1 Block Diagram  
Figure below shows a high-level block diagram of the PLL macro on this microcontroller.  
PLLCLK  
OSCIN  
INTCLK  
/NR  
/OD  
/R  
VCOCLK  
post_ODCLK  
PLL  
/1 to /64  
/1 to /8  
/1 to /32  
/NF  
fPLLCLK = (fOSCIN / NR) * NF / (OD * R)  
/1 to /256  
Figure 4-6. PLL Block Diagram  
4.5.1.3.2 PLL Timing Specifications  
Table 4-11. PLL Timing Specifications  
PARAMETER  
MIN  
MAX  
20  
UNIT  
fINTCLK  
PLL1 Reference Clock frequency  
1
MHz  
MHz  
fpost_ODCLK  
Post-ODCLK – PLL1 Post-divider input  
clock frequency  
400  
fVCOCLK  
VCOCLK – PLL1 Output Divider (OD) input  
clock frequency  
150  
550  
MHz  
4.5.2 Clock Domains  
4.5.2.1 Clock Domain Descriptions  
The table below lists the device clock domains and their default clock sources. The table also shows the  
system module control register that is used to select an available clock source for each clock domain.  
Table 4-12. Clock Domain Descriptions  
Clock Domain Name  
Default Clock  
Source  
Clock Source  
Selection Register  
Description  
HCLK  
GCLK  
OSCIN  
OSCIN  
GHVSRC  
GHVSRC  
Is disabled via the CDDISx registers bit 1  
Always the same frequency as HCLK  
In phase with HCLK  
Is disabled separately from HCLK via the CDDISx registers bit 0  
Can be divided by 1 up to 8 when running CPU self-test  
(LBIST) using the CLKDIV field of the STCCLKDIV register at  
address 0xFFFFE108  
GCLK2  
OSCIN  
GHVSRC  
Always the same frequency as GCLK  
2 cycles delayed from GCLK  
Is disabled along with GCLK  
Gets divided by the same divider setting as that for GCLK when  
running CPU self-test (LBIST)  
34  
System Information and Electrical Specifications  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
Table 4-12. Clock Domain Descriptions (continued)  
Clock Domain Name  
Default Clock  
Source  
Clock Source  
Selection Register  
Description  
VCLK  
OSCIN  
GHVSRC  
Divided down from HCLK  
Can be HCLK/1, HCLK/2, ... or HCLK/16  
Is disabled separately from HCLK via the CDDISx registers bit 2  
Can be disabled separately for eQEP using CDDISx registers  
bit 9  
VCLK2  
OSCIN  
GHVSRC  
Divided down from HCLK  
Can be HCLK/1, HCLK/2, ... or HCLK/16  
Frequency must be an integer multiple of VCLK frequency  
Is disabled separately from HCLK via the CDDISx registers bit 3  
VCLKA1  
RTICLK  
VCLK  
VCLK  
VCLKASRC  
RCLKSRC  
Defaults to VCLK as the source  
Frequency can be as fast as HCLK frequency  
Is disabled via the CDDISx registers bit 4  
Defaults to VCLK as the source  
If a clock source other than VCLK is selected for RTICLK, then  
the RTICLK frequency must be less than or equal to VCLK/3  
Application can ensure this by programming the RTI1DIV  
field of the RCLKSRC register, if necessary  
Is disabled via the CDDISx registers bit 6  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4.5.2.2 Mapping of Clock Domains to Device Modules  
Each clock domain has a dedicated functionality as shown in the figure below.  
GCM  
0
OSCIN  
FMzPLL  
1
GCLK, GCLK2 (to CPU)  
X1..256  
/1..8  
/1..32  
*
/1..64  
HCLK (to SYSTEM)  
4
80kHz  
Low Power  
Oscillator  
/1..16  
/1..16  
10MHz  
5
3
VCLK (to System and  
Peripheral Modules)  
VCLK2 (to N2HET)  
EXTCLKIN  
* The frequency at this node must not  
exceed the maximum HCLK frequency.  
0
1
3
4
AVCLK1 (to DCAN1, 2)  
5
VCLK  
0
1
3
/1, 2, 4, or 8  
4
RTICLK (to RTI+DWWD)  
5
VCLK  
CDDISx.9  
AVCLK1  
VCLK  
VCLK2  
VCLK2  
HRP  
/1..64  
/1,2,..256  
/2,3..224  
/1,2..32  
/1,2..65536  
/1,2,..1024  
eQEP  
HET TU  
LRP  
/20..27  
Prop_seg Phase_seg2  
Phase_seg1  
ECLK  
SPI  
Baud Rate  
ADCLK  
LIN  
Baud Rate  
LIN  
External Clock  
High Loop  
Resolution Clock  
SPIx,MibSPIx  
MibADC  
CAN Baud Rate  
DCAN1, 2  
N2HET  
Figure 4-7. Device Clock Domains  
36  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.5.3 Clock Test Mode  
The RM4x platform architecture defines a special mode that allows various clock signals to be brought out  
on to the ECLK pin and N2HET[2] device outputs. This mode is called the Clock Test mode. It is very  
useful for debugging purposes and can be configured via the CLKTEST register in the system module.  
Table 4-13. Clock Test Mode Options  
CLKTEST[3-0]  
SIGNAL ON ECLK  
CLKTEST[11-8]  
SIGNAL ON N2HET[2]  
0000  
Oscillator  
0000  
Oscillator Valid Status  
Main PLL free-running clock output  
(PLLCLK)  
0001  
0001  
Main PLL Valid status  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Reserved  
Reserved  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Reserved  
Reserved  
CLK80K  
Reserved  
CLK10M  
CLK10M Valid status  
Reserved  
Reserved  
Reserved  
Reserved  
GCLK  
CLK80K  
RTI Base  
Oscillator Valid status  
Oscillator Valid status  
Oscillator Valid status  
Oscillator Valid status  
Oscillator Valid status  
Oscillator Valid status  
Oscillator Valid status  
Reserved  
VCLKA1  
Reserved  
Reserved  
Reserved  
Flash HD Pump Oscillator  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
37  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4.6 Clock Monitoring  
The LPO Clock Detect (LPOCLKDET) module consists of a clock monitor (CLKDET) and an internal low  
power oscillator (LPO).  
The LPO provides two different clock sources – a low frequency (LFLPO) and a high frequency (HFLPO).  
The CLKDET is a supervisor circuit for an externally supplied clock signal (OSCIN). In case the OSCIN  
frequency falls out of a frequency window, the CLKDET flags this condition in the global status register  
(GLBSTAT bit 0: OSC FAIL) and switches all clock domains sourced by OSCIN to the HFLPO clock (limp  
mode clock).  
The valid OSCIN frequency range is defined as: fHFLPO / 4 < fOSCIN < fHFLPO * 4.  
4.6.1 Clock Monitor Timings  
For more information on LPO and Clock detection, refer to Table 4-10.  
upper  
threshold  
lower  
threshold  
guaranteed fail  
guaranteed pass  
guaranteed fail  
f[MHz]  
1.375  
4.875  
22  
78  
Figure 4-8. LPO and Clock Detection, Untrimmed HFLPO  
4.6.2 External Clock (ECLK) Output Functionality  
The ECLK pin can be configured to output a pre-scaled clock signal indicative of an internal device clock.  
This output can be externally monitored as a safety diagnostic.  
4.6.3 Dual Clock Comparator  
The Dual Clock Comparator (DCC) module determines the accuracy of selectable clock sources by  
counting the pulses of two independent clock sources (counter 0 and counter 1). If one clock is out of  
spec, an error signal is generated. For example, the DCC can be configured to use CLK10M as the  
reference clock (for counter 0) and VCLK as the "clock under test" (for counter 1). This configuration  
allows the DCC to monitor the PLL output clock when VCLK is using the PLL output as its source.  
An additional use of this module is to measure the frequency of a selectable clock source, using the input  
clock as a reference, by counting the pulses of two independent clock sources. Counter 0 generates a  
fixed-width counting window after a preprogrammed number of pulses. Counter 1 generates a fixed-width  
pulse (1 cycle) after a pre-programmed number of pulses. This pulse sets as an error signal if counter 1  
does not reach 0 within the counting window generated by counter 0.  
4.6.3.1 Features  
Takes two different clock sources as input to two independent counter blocks.  
One of the clock sources is the known-good, or reference clock; the second clock source is the "clock  
under test."  
Each counter block is programmable with initial, or seed values.  
The counter blocks start counting down from their seed values at the same time; a mismatch from the  
expected frequency for the clock under test generates an error signal which is used to interrupt the  
CPU.  
38  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
 
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.6.3.2 Mapping of DCC Clock Source Inputs  
Table 4-14. DCC Counter 0 Clock Sources  
TEST MODE  
CLOCK SOURCE [3:0]  
CLOCK NAME  
oscillator (OSCIN)  
high frequency LPO  
test clock (TCK)  
VCLK  
others  
0x5  
0xA  
X
0
1
Table 4-15. DCC Counter 1 Clock Sources  
TEST MODE  
KEY [3:0]  
CLOCK SOURCE [3:0]  
CLOCK NAME  
others  
-
N2HET[31]  
Main PLL free-running clock  
output  
0x0  
0x1  
0x2  
n/a  
low frequency LPO  
high frequency LPO  
flash HD pump oscillator  
EXTCLKIN  
0xA  
0x3  
0
1
0x4  
0x5  
0x6  
n/a  
0x7  
ring oscillator  
VCLK  
0x8 - 0xF  
X
X
HCLK  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
39  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4.7 Glitch Filters  
A glitch filter is present on the following signals.  
Table 4-16. Glitch Filter Timing Specifications  
Pin  
Parameter  
MIN  
MAX  
Unit  
nPORRST  
tf(nPORRST)  
475  
2000  
ns  
Filter time nPORRST pin;  
pulses less than MIN will be filtered out, pulses greater than  
MAX will generate a reset(1)  
nRST  
TEST  
tf(nRST)  
475  
475  
2000  
2000  
ns  
ns  
Filter time nRST pin;  
pulses less than MIN will be filtered out, pulses greater than  
MAX will generate a reset  
tf(TEST)  
Filter time TEST pin;  
pulses less than MIN will be filtered out, pulses greater than  
MAX will pass through  
(1) The glitch filter design on the nPORRST signal is designed such that no size pulse will reset any part of the microcontroller (flash pump,  
I/O pins, etc.) without also generating a valid reset signal to the CPU.  
40  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.8 Device Memory Map  
4.8.1 Memory Map Diagram  
The figure below shows the device memory map.  
0xFFFFFFFF  
SYSTEM Modules  
Peripherals - Frame 1  
0xFFF80000  
0xFFF7FFFF  
0xFF000000  
0xFE000000  
CRC  
RESERVED  
0xFCFFFFFF  
0xFC000000  
Peripherals - Frame 2  
RESERVED  
0xF07FFFFF  
Flash Module Bus2 Interface  
(Flash ECC, OTP andEEPROM accesses)  
0xF0000000  
RESERVED  
0x2005FFFF  
0x20000000  
Flash (384KB) (Mirrored Image)  
RESERVED  
0x08407FFF  
0x08400000  
RAM - ECC  
RESERVED  
0x08007FFF  
0x08000000  
RAM (32KB)  
RESERVED  
0x0005FFFF  
0x00000000  
Flash (384KB)  
Figure 4-9. RM42LS432 Memory Map  
The Flash memory in all configurations is mirrored to support ECC logic testing. The base address of the  
mirrored Flash image is 0x2000 0000.  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
41  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4.8.2 Memory Map Table  
Please refer to Figure 1-1 for a block diagram showing the device interconnects.  
Table 4-17. Device Memory Map  
ADDRESS RANGE  
START END  
Memories tightly coupled to the ARM Cortex-R4 CPU  
RESPONSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUA  
SIZE L SIZE  
MODULE NAME  
TCM Flash  
CS0  
0x0000_0000  
0x00FF_FFFF  
16MB  
384KB  
TCM RAM + RAM  
ECC  
CSRAM0  
0x0800_0000  
0x0BFF_3FFF  
64MB  
32KB  
Abort  
Flash mirror  
frame  
Mirrored Flash  
0x2000_0000  
0x20FF_FFFF  
16MB  
384KB  
Flash Module Bus2 Interface  
Customer OTP,  
TCM Flash Banks  
0xF000_0000  
0xF000_07FF  
0xF000_E3FF  
2KB  
1KB  
64KB  
8KB  
Customer OTP,  
EEPROM Bank  
0xF000_E000  
0xF004_0000  
Customer  
OTP–ECC, TCM  
Flash Banks  
0xF004_00FF  
0xF004_1C7F  
256B  
128B  
Customer  
OTP–ECC,  
0xF004_1C00  
EEPROM Bank  
TI OTP, TCM  
Flash Banks  
0xF008_0000  
0xF008_E000  
0xF00C_0000  
0xF00C_1C00  
0xF008_07FF  
0xF008_E3FF  
0xF00C_00FF  
0xF00C_1C7F  
2KB  
1KB  
Abort  
64KB  
8KB  
TI OTP, EEPROM  
Bank  
TI OTP–ECC,  
TCM Flash Banks  
256B  
128B  
TI OTP–ECC,  
EEPROM Bank  
EEPROM  
Bank–ECC  
0xF010_0000  
0xF020_0000  
0xF040_0000  
0xF010_07FF  
0xF020_3FFF  
0xF040_DFFF  
256KB  
2MB  
2KB  
16KB  
48KB  
EEPROM Bank  
Flash Data Space  
ECC  
1MB  
Cyclic Redundancy Checker (CRC) Module Registers  
CRC  
CRC frame  
PCS[7]  
0xFE00_0000  
0xFF0E_0000  
0xFF1C_0000  
0xFEFF_FFFF  
Peripheral Memories  
0xFF0F_FFFF  
16MB  
128KB  
128KB  
512B  
2KB  
2KB  
Accesses above 0x200 generate abort.  
Abort for accesses above 2KB  
MIBSPI1 RAM  
DCAN2 RAM  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x7FF. Abort generated for  
accesses beyond offset 0x800.  
PCS[14]  
0xFF1D_FFFF  
0xFF1F_FFFF  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x7FF. Abort generated for  
accesses beyond offset 0x800.  
DCAN1 RAM  
MIBADC RAM  
PCS[15]  
PCS[31]  
0xFF1E_0000  
0xFF3E_0000  
128KB  
128KB  
2KB  
8KB  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x1FFF.  
Look-up table for ADC wrapper. Starts  
at offset 0x2000 ans ends at 0x217F.  
Wrap around for accesses between  
offsets 0x180 and 0x3FFF. Aborts  
generated for accesses beyond 0x4000  
0xFF3F_FFFF  
MIBADC Look-Up  
Table  
384  
bytes  
42  
System Information and Electrical Specifications  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
Table 4-17. Device Memory Map (continued)  
ADDRESS RANGE  
RESPONSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUA  
MODULE NAME  
SIZE  
L SIZE  
START  
END  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x3FFF. Abort generated for  
accesses beyond 0x3FFF.  
N2HET RAM  
HTU RAM  
PCS[35]  
PCS[39]  
0xFF46_0000  
0xFF4E_0000  
0xFF47_FFFF  
128KB  
128KB  
16KB  
1KB  
0xFF4F_FFFF  
Abort  
Debug Components  
CoreSight Debug  
ROM  
Reads return zeros, writes have no  
effect  
CSCS0  
CSCS1  
0xFFA0_0000  
0xFFA0_1000  
0xFFA0_0FFF  
0xFFA0_1FFF  
4KB  
4KB  
4KB  
4KB  
Reads return zeros, writes have no  
effect  
Cortex-R4 Debug  
Peripheral Control Registers  
0xFFF7_A400 256B  
Reads return zeros, writes have no  
effect  
HTU  
N2HET  
GIO  
PS[22]  
PS[17]  
PS[16]  
PS[15]  
PS[8]  
0xFFF7_A4FF  
0xFFF7_B8FF  
0xFFF7_BCFF  
0xFFF7_C1FF  
0xFFF7_DDFF  
0xFFF7_DFFF  
0xFFF7_E4FF  
0xFFF7_F5FF  
0xFFF7_F7FF  
0xFFF7_F9FF  
0xFFF7_99FF  
0xFCF7_99FF  
256B  
256B  
256B  
512B  
512B  
512B  
256B  
512B  
512B  
512B  
256B  
256B  
Reads return zeros, writes have no  
effect  
0xFFF7_B800  
0xFFF7_BC00  
0xFFF7_C000  
0xFFF7_DC00  
0xFFF7_DE00  
0xFFF7_E400  
0xFFF7_F400  
0xFFF7_F600  
0xFFF7_F800  
0xFFF7_9900  
0xFCF7_9900  
256B  
256B  
512B  
512B  
512B  
256B  
512B  
512B  
512B  
256B  
256B  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
MIBADC  
DCAN1  
DCAN2  
LIN  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
PS[8]  
Reads return zeros, writes have no  
effect  
PS[6]  
Reads return zeros, writes have no  
effect  
MibSPI1  
SPI2  
PS[2]  
Reads return zeros, writes have no  
effect  
PS[2]  
Reads return zeros, writes have no  
effect  
SPI3  
PS[1]  
Reads return zeros, writes have no  
effect  
EQEP  
PS[25]  
PS2[25]  
Reads return zeros, writes have no  
effect  
EQEP (Mirrored)  
System Modules Control Registers and Memories  
Wrap around for accesses to  
unimplemented address offsets lower  
than 0x3FF. Accesses beyond 0x3FF  
will be ignored.  
VIM RAM  
PPCS2  
0xFFF8_2000  
0xFFF8_2FFF  
4KB  
1KB  
Flash Wrapper  
PPCS7  
0xFFF8_7000  
0xFFF8_C000  
0xFFF8_7FFF  
0xFFF8_CFFF  
4KB  
4KB  
4KB  
4KB  
Abort  
eFuse Farm  
Controller  
PPCS12  
Abort  
Reads return zeros, writes have no  
effect  
PCR registers  
PPS0  
PPS0  
0xFFFF_E000  
0xFFFF_E100  
0xFFFF_E0FF  
0xFFFF_E1FF  
256B  
256B  
256B  
256B  
System Module -  
Frame 2 (see  
device TRM)  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
PBIST  
STC  
PPS1  
PPS1  
0xFFFF_E400  
0xFFFF_E600  
0xFFFF_E5FF  
0xFFFF_E6FF  
512B  
256B  
512B  
256B  
Reads return zeros, writes have no  
effect  
IOMM  
Multiplexing  
control module  
Generates address error interrupt if  
enabled.  
PPS2  
0xFFFF_EA00  
0xFFFF_EBFF  
512B  
512B  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
Table 4-17. Device Memory Map (continued)  
ADDRESS RANGE  
RESPONSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUA  
MODULE NAME  
SIZE  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
L SIZE  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
256B  
START  
END  
Reads return zeros, writes have no  
effect  
DCC  
ESM  
PPS3  
PPS5  
PPS5  
PPS6  
PPS6  
PPS7  
PPS7  
PPS7  
0xFFFF_EC00  
0xFFFF_F500  
0xFFFF_F600  
0xFFFF_F800  
0xFFFF_F900  
0xFFFF_FC00  
0xFFFF_FD00  
0xFFFF_FE00  
0xFFFF_ECFF  
Reads return zeros, writes have no  
effect  
0xFFFF_F5FF  
0xFFFF_F6FF  
0xFFFF_F8FF  
0xFFFF_F9FF  
0xFFFF_FCFF  
0xFFFF_FDFF  
0xFFFF_FEFF  
Reads return zeros, writes have no  
effect  
CCMR4  
Reads return zeros, writes have no  
effect  
RAM ECC even  
RAM ECC odd  
RTI + DWWD  
VIM Parity  
VIM  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
Reads return zeros, writes have no  
effect  
System Module -  
Frame 1 (see  
device TRM)  
Reads return zeros, writes have no  
effect  
PPS7  
0xFFFF_FF00  
0xFFFF_FFFF  
256B  
256B  
44  
System Information and Electrical Specifications  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.8.3 Master/Slave Access Privileges  
The table below lists the access permissions for each bus master on the device. A bus master is a module  
that can initiate a read or a write transaction on the device.  
Each slave module on the main interconnect is listed in the table. A "Yes" indicates that the module listed  
in the "MASTERS" column can access that slave module.  
Table 4-18. Master / Slave Access Matrix  
MASTERS  
ACCESS MODE  
SLAVES ON MAIN SCR  
Flash Module Bus2 Non-CPU Accesses  
Interface: to Program Flash  
CRC  
Peripheral Control  
Registers, All  
OTP, ECC, EEPROM and CPU Data RAM  
Bank  
Peripheral  
Memories, And All  
System Module  
Control Registers  
And Memories  
CPU READ  
CPU WRITE  
HTU  
User/Privilege  
User/Privilege  
Privilege  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
45  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.9 Flash Memory  
www.ti.com  
4.9.1 Flash Memory Configuration  
Flash Bank: A separate block of logic consisting of 1 to 16 sectors. Each flash bank normally has a  
customer-OTP and a TI-OTP area. These flash sectors share input/output buffers, data paths, sense  
amplifiers, and control logic.  
Flash Sector: A contiguous region of flash memory which must be erased simultaneously due to physical  
construction constraints.  
Flash Pump: A charge pump which generates all the voltages required for reading, programming, or  
erasing the flash banks.  
Flash Module: Interface circuitry required between the host CPU and the flash banks and pump module.  
Table 4-19. Flash Memory Banks and Sectors  
Memory Arrays (or Banks)(1)  
Block  
No.  
Sector  
No.  
Segment  
Low Address  
High Address  
BANK0 (384kBytes)  
0
0
1
8K Bytes  
8K Bytes  
8K Bytes  
8K Bytes  
8K Bytes  
8K Bytes  
8K Bytes  
8K Bytes  
8K Bytes  
8K Bytes  
8K Bytes  
8K Bytes  
32K Bytes  
128K Bytes  
128K Bytes  
4K Bytes  
4K Bytes  
4K Bytes  
4K Bytes  
0x0000_0000  
0x0000_2000  
0x0000_4000  
0x0000_6000  
0x0000_8000  
0x0000_A000  
0x0000_C000  
0x0000_E000  
0x0001_0000  
0x0001_2000  
0x0001_4000  
0x0001_6000  
0x0001_8000  
0x0002_0000  
0x0004_0000  
0xF020_0000  
0xF020_1000  
0xF020_2000  
0xF020_3000  
0x0000_1FFF  
0x0000_3FFF  
0x0000_5FFF  
0x0000_7FFF  
0x0000_9FFF  
0x0000_BFFF  
0x0000_DFFF  
0x0000_FFFF  
0x0001_1FFF  
0x0001_3FFF  
0x0001_5FFF  
0x0001_7FFF  
0x0001_FFFF  
0x0003_FFFF  
0x0005_FFFF  
0xF020_0FFF  
0xF020_1FFF  
0xF020_2FFF  
0xF020_3FFF  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0
1
2
0
1
2
3
BANK7 (16kBytes) for EEPROM  
emulation(2)(3)  
1
2
3
(1) The Flash banks are 144-bit wide bank with ECC support.  
(2) Flash bank7 is an FLEE bank and can be programmed while executing code from flash bank0.  
(3) Code execution is not allowed from flash bank7.  
4.9.2 Main Features of Flash Module  
Support for multiple flash banks for program and/or data storage  
Simultaneous read access on a bank while performing program or erase operation on any other bank  
Integrated state machines to automate flash erase and program operations  
Software interface for flash program and erase operations  
Pipelined mode operation to improve instruction access interface bandwidth  
Support for Single Error Correction Double Error Detection (SECDED) block inside Cortex-R4 CPU  
Error address is captured for host system debugging  
Support for a rich set of diagnostic features  
46  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.9.3 ECC Protection for Flash Accesses  
All accesses to the program flash memory are protected by Single Error Correction Double Error Detection  
(SECDED) logic embedded inside the CPU. The flash module provides 8 bits of ECC code for 64 bits of  
instructions or data fetched from the flash memory. The CPU calculates the expected ECC code based on  
the 64 bits received and compares it with the ECC code returned by the flash module. A signle-bit error is  
corrected and flagged by the CPU, while a multi-bit error is only flagged. The CPU signals an ECC error  
via its Event bus. This signaling mechanism is not enabled by default and must be enabled by setting the  
"X" bit of the Performance Monitor Control Register, c9.  
MRC p15,#0,r1,c9,c12,#0  
ORR r1, r1, #0x00000010  
MCR p15,#0,r1,c9,c12,#0  
MRC p15,#0,r1,c9,c12,#0  
;Enabling Event monitor states  
;Set 4th bit (‘X’) of PMNC register  
The application must also explicitly enable the CPU's ECC checking for accesses on the CPU's ATCM  
and BTCM interfaces. These are connected to the program flash and data RAM respectively. ECC  
checking for these interfaces can be done by setting the B1TCMPCEN, B0TCMPCEN and ATCMPCEN  
bits of the System Control coprocessor's Auxiliary Control Register, c1.  
MRC p15, #0, r1, c1, c0, #1  
ORR r1, r1, #0x0e000000  
DMB  
;Enable ECC checking for ATCM and BTCMs  
MCR p15, #0, r1, c1, c0, #1  
4.9.4 Flash Access Speeds  
For information on flash memory access speeds and the relevant wait states required, refer to Section 3.4.  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
47  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4.10 Flash Program and Erase Timings for Program Flash  
Table 4-20. Timing Specifications for Program Flash  
Parameter  
Wide Word (144bit) programming time  
384KByte programming time(1)  
MIN  
NOM  
MAX  
300  
4
Unit  
µs  
s
tprog (144bit)  
tprog (Total)  
40  
-40°C to 105°C  
0°C to 60°C, for first  
25 cycles  
1
2
s
terase  
Sector/Bank erase time(2)  
-40°C to 105°C  
0.30  
16  
4
s
0°C to 60°C, for first  
25 cycles  
100  
ms  
twec  
Write/erase cycles with 15 year Data Retention -40°C to 105°C  
requirement  
1000  
cycles  
(1) This programming time includes overhead of state machine, but does not include data transfer time. The programming time assumes  
programming 144 bits at a time at the maximum specified operating frequency.  
(2) During bank erase, the selected sectors are erased simultaneously. The time to erase the bank is specified as equal to the time to erase  
a sector.  
4.11 Flash Program and Erase Timings for Data Flash  
Table 4-21. Timing Specifications for Data Flash  
Parameter  
Wide Word (72bit) programming time  
16KByte programming time(1)  
MIN  
NOM  
MAX  
300  
330  
165  
Unit  
µs  
tprog (72 bit)  
tprog (Total)  
40  
-40°C to 105°C  
ms  
ms  
0°C to 60°C, for first  
25 cycles  
85  
terase  
Sector/Bank erase time(2)  
-40°C to 105°C  
0.200  
14  
8
s
0°C to 60°C, for first  
25 cycles  
100  
ms  
twec  
Write/erase cycles with 15 year Data Retention -40°C to 105°C  
requirement  
100000  
cycles  
(1) This programming time includes overhead of state machine, but does not include data transfer time. The programming time assumes  
programming 144 bits at a time at the maximum specified operating frequency.  
(2) During bank erase, the selected sectors are erased simultaneously. The time to erase the bank is specified as equal to the time to erase  
a sector.  
48  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.12 Tightly-Coupled RAM Interface Module  
Figure 4-10 illustrates the connection of the Tightly Coupled RAM (TCRAM) to the Cortex-R4™ CPU.  
VBUSP I/F PMT I/F  
36 Bit  
Upper 32 bits data &  
4 ECC bits  
wide  
RAM  
Cortex R4™  
EVEN Address  
TCM BUS  
TCRAM  
B0  
TCM  
36 Bit  
Interface 1  
wide  
RAM  
64 Bit data bus  
Lower32 bits data &  
4 ECC bits  
A
TCM  
36 Bit
wide
RAM  
Upper 32 bits data &  
4 ECC bits  
B1  
TCM  
ODD Address  
TCM BUS  
TCRAM  
Interface 2  
64 Bit data bus  
36 Bit  
wide  
RAM  
Lower32 bits data &  
4 ECC bits  
VBUSP I/F PMT I/F  
Figure 4-10. TCRAM Block Diagram  
4.12.1 Features  
The features of the Tightly Coupled RAM (TCRAM) Module are:  
Acts as slave to the Cortex-R4 CPU's BTCM interface  
Supports CPU's internal ECC scheme by providing 64-bit data and 8-bit ECC code  
Monitors CPU Event Bus and generates single or multi-bit error interrupts  
Stores addresses for single and multi-bit errors  
Provides CPU address bus integrity checking by supporting parity checking on the address bus  
Performs redundant address decoding for the RAM bank chip select and ECC select generation logic  
Provides enhanced safety for the RAM addressing by implementing two 36-bit wide byte-interleaved  
RAM banks and generating independent RAM access control signals to the two banks  
Supports auto-initialization of the RAM banks along with the ECC bits  
No support for bit-wise RAM accesses  
4.12.2 TCRAMW ECC Support  
The TCRAMW passes on the ECC code for each data read by the Cortex-R4 CPU from the RAM. It also  
stores the CPU's ECC port contents in the ECC RAM when the CPU does a write to the RAM. The  
TCRAMW monitors the CPU's event bus and provides registers for indicating single/multi-bit errors and  
also for identifying the address that caused the single or multi-bit error. The event signaling and the ECC  
checking for the RAM accesses must be enabled inside the CPU.  
For more information see the device Technical Reference Manual.  
4.13 Parity Protection for Accesses to peripheral RAMs  
Accesses to some peripheral RAMs are protected by odd/even parity checking. During a read access the  
parity is calculated based on the data read from the peripheral RAM and compared with the good parity  
value stored in the parity RAM for that peripheral. If any word fails the parity check, the module generates  
a parity error signal that is mapped to the Error Signaling Module. The module also captures the  
peripheral RAM address that caused the parity error.  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
49  
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
The parity protection for peripheral RAMs is not enabled by default and must be enabled by the  
application. Each individual peripheral contains control registers to enable the parity protection for  
accesses to its RAM.  
NOTE  
The CPU read access gets the actual data from the peripheral. The application can choose  
to generate an interrupt whenever a peripheral RAM parity error is detected.  
50  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.14 On-Chip SRAM Initialization and Testing  
4.14.1 On-Chip SRAM Self-Test Using PBIST  
4.14.1.1 Features  
Extensive instruction set to support various memory test algorithms  
ROM-based algorithms allow application to run TI production-level memory tests  
Independent testing of all on-chip SRAM  
4.14.1.2 PBIST RAM Groups  
Table 4-22. PBIST RAM Grouping  
Test Pattern (Algorithm)  
March 13N(1)  
two port  
(cycles)  
March 13N(1)  
single port  
(cycles)  
triple read  
slow read  
triple read  
fast read  
Memory  
RAM Group  
Test Clock  
MEM Type  
ALGO MASK  
0x1  
ALGO MASK  
0x2  
ALGO MASK  
0x4  
ALGO MASK  
0x8  
PBIST_ROM  
STC_ROM  
DCAN1  
1
2
ROM CLK  
ROM CLK  
VCLK  
ROM  
X
X
X
X
ROM  
3
Dual Port  
Dual Port  
Single Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
Dual Port  
12720  
6480  
DCAN2  
4
VCLK  
ESRAM1  
MIBSPI1  
VIM  
6
HCLK  
133160  
7
VCLK  
33440  
12560  
4200  
10  
11  
13  
14  
VCLK  
MIBADC  
N2HET1  
HTU1  
VCLK  
VCLK  
25440  
6480  
VCLK  
(1) There are several memory testing algorithms stored in the PBIST ROM. However, TI recommends the March13N algorithm for  
application testing.  
The PBIST ROM clock can be divided down from HCLK. The divider is selected by programming the  
ROM_DIV field of the Memory Self-Test Global Control Register (MSTGCR) at address 0xFFFFFF58.  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
51  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4.14.2 On-Chip SRAM Auto Initialization  
This microcontroller allows some of the on-chip memories to be initialized via the Memory Hardware  
Initialization mechanism in the System module. This hardware mechanism allows an application to  
program the memory arrays with error detection capability to a known state based on their error detection  
scheme (odd/even parity or ECC).  
The MINITGCR register enables the memory initialization sequence, and the MSINENA register selects  
the memories that are to be initialized.  
For more information on these registers refer to the device Technical Reference Manual.  
The mapping of the different on-chip memories to the specific bits of the MSINENA registers is shown in  
Table 4-23.  
Table 4-23. Memory Initialization  
ADDRESS RANGE  
CONNECTING MODULE  
MSINENA REGISTER BIT #(1)  
BASE ADDRESS  
0x08000000  
0xFF0E0000  
0xFF1C0000  
0xFF1E0000  
0xFF3E0000  
0xFF460000  
0xFF4E0000  
0xFFF82000  
ENDING ADDRESS  
0x08007FFF  
0xFF0FFFFF  
0xFF1DFFFF  
0xFF1FFFFF  
0xFF3FFFFF  
0xFF47FFFF  
0xFF4FFFFF  
0xFFF82FFF  
RAM  
0
7(2)  
6
MIBSPI1 RAM  
DCAN2 RAM  
DCAN1 RAM  
MIBADC RAM  
N2HET RAM  
HTU RAM  
5
8
3
4
VIM RAM  
2
(1) Unassigned register bits are reserved.  
(2) The MibSPI1 module performs an initialization of the transmit and receive RAMs as soon as the module is brought out of reset using the  
SPI Global Control Register 0 (SPIGCR0). This is independent of whether the application chooses to initialize the MibSPI1 RAMs using  
the system module auto-initialization method.  
52  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
 
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.15 Vectored Interrupt Manager  
The vectored interrupt manager (VIM) provides hardware assistance for prioritizing and controlling the  
many interrupt sources present on this device. Interrupts are caused by events outside of the normal flow  
of program execution. Normally, these events require a timely response from the central processing unit  
(CPU); therefore, when an interrupt occurs, the CPU switches execution from the normal program flow to  
an interrupt service routine (ISR).  
4.15.1 VIM Features  
The VIM module has the following features:  
Supports 96 interrupt channels.  
Provides programmable priority and enable for interrupt request lines.  
Provides a direct hardware dispatch mechanism for fastest IRQ dispatch.  
Provides two software dispatch mechanisms when the CPU VIC port is not used.  
Index interrupt  
Register vectored interrupt  
Parity protected vector interrupt table against soft errors.  
4.15.2 Interrupt Request Assignments  
Table 4-24. Interrupt Request Assignments  
Modules  
Interrupt Sources  
Default VIM Interrupt  
Channel  
ESM  
Reserved  
RTI  
ESM High level interrupt (NMI)  
Reserved  
0
1
RTI compare interrupt 0  
RTI compare interrupt 1  
RTI compare interrupt 2  
RTI compare interrupt 3  
RTI overflow interrupt 0  
RTI overflow interrupt 1  
Reserved  
2
RTI  
3
RTI  
4
RTI  
5
RTI  
6
RTI  
7
Reserved  
GIO  
8
GIO interrupt A  
9
N2HET  
HTU  
N2HET level 0 interrupt  
HTU level 0 interrupt  
MIBSPI1 level 0 interrupt  
LIN level 0 interrupt  
MIBADC event group interrupt  
MIBADC sw group 1 interrupt  
DCAN1 level 0 interrupt  
SPI2 level 0 interrupt  
Reserved  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
MIBSPI1  
LIN  
MIBADC  
MIBADC  
DCAN1  
SPI2  
Reserved  
Reserved  
ESM  
Reserved  
ESM Low level interrupt  
Software interrupt (SSI)  
PMU interrupt  
SYSTEM  
CPU  
GIO  
GIO interrupt B  
N2HET  
HTU  
N2HET level 1 interrupt  
HTU level 1 interrupt  
MIBSPI1 level 1 interrupt  
MIBSPI1  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
53  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
Table 4-24. Interrupt Request Assignments (continued)  
Modules  
Interrupt Sources  
Default VIM Interrupt  
Channel  
LIN  
LIN level 1 interrupt  
MIBADC sw group 2 interrupt  
DCAN1 level 1 interrupt  
SPI2 level 1 interrupt  
MIBADC magnitude compare interrupt  
Reserved  
27  
MIBADC  
DCAN1  
SPI2  
28  
29  
30  
MIBADC  
Reserved  
DCAN2  
Reserved  
SPI3  
31  
32-34  
35  
DCAN2 level 0 interrupt  
Reserved  
36  
SPI3 level 0 interrupt  
SPI3 level 1 interrupt  
Reserved  
37  
SPI3  
38  
Reserved  
DCAN2  
Reserved  
FMC  
39-41  
42  
DCAN2 level 1 interrupt  
Reserved  
43-60  
61  
FSM_DONE interrupt  
Reserved  
Reserved  
HWAG  
62-79  
80  
HWA_INT_REQ_H  
Reserved  
Reserved  
DCC  
81  
DCC done interrupt  
Reserved  
82  
Reserved  
eQEPINTn  
PBIST  
83  
eQEP Interrupt  
84  
PBIST Done Interrupt  
Reserved  
85  
Reserved  
HWAG  
86-87  
88  
HWA_INT_REQ_L  
Reserved  
Reserved  
89-95  
NOTE  
Address location 0x00000000 in the VIM RAM is reserved for the phantom interrupt ISR  
entry; therefore only request channels 0..94 can be used and are offset by 1 address in the  
VIM RAM.  
54  
System Information and Electrical Specifications  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.16 Real Time Interrupt Module  
The real-time interrupt (RTI) module provides timer functionality for operating systems and for  
benchmarking code. The RTI module can incorporate several counters that define the timebases needed  
for scheduling an operating system.  
The timers also allow you to benchmark certain areas of code by reading the values of the counters at the  
beginning and the end of the desired code range and calculating the difference between the values.  
4.16.1 Features  
The RTI module has the following features:  
Two independent 64 bit counter blocks  
Four configurable compares for generating operating system ticks. Each event can be driven by either  
counter block 0 or counter block 1.  
Fast enabling/disabling of events  
Two time-stamp (capture) functions for system or peripheral interrupts, one for each counter block  
4.16.2 Block Diagrams  
Figure 4-11 shows a high-level block diagram for one of the two 64-bit counter blocks inside the RTI  
module. Both the counter blocks are identical.  
31  
0
Compare  
up counter  
RTICPUCx  
OVLINTx  
31  
0
31  
0
To Compare  
Unit  
=
Up counter  
RTIUCx  
Free running counter  
RTIFRCx  
RTICLK  
31  
0
31  
0
Capture  
up counter  
RTICAUCx  
Capture  
free running counter  
RTICAFRCx  
CAP event source 0  
CAP event source 1  
External  
control  
Figure 4-11. Counter Block Diagram  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
55  
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
31  
Update  
compare  
0
RTIUDCPy  
+
31  
0
Compare  
RTICOMPy  
From counter  
block 0  
=
INTy  
From counter  
block 1  
Compare  
control  
Figure 4-12. Compare Block Diagram  
4.16.3 Clock Source Options  
The RTI module uses the RTICLK clock domain for generating the RTI time bases.  
The application can select the clock source for the RTICLK by configuring the RCLKSRC register in the  
System module at address 0xFFFFFF50. The default source for RTICLK is VCLK.  
For more information on clock sources refer to Table 4-8 and Table 4-12.  
56  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.17 Error Signaling Module  
The Error Signaling Module (ESM) manages the various error conditions on the RM4x microcontroller. The  
error condition is handled based on a fixed severity level assigned to it. Any severe error condition can be  
configured to drive a low level on a dedicated device terminal called nERROR. This can be used as an  
indicator to an external monitor circuit to put the system into a safe state.  
4.17.1 Features  
The features of the Error Signaling Module are:  
128 interrupt/error channels are supported, divided into 3 different groups  
64 channels with maskable interrupt and configurable error pin behavior  
32 error channels with non-maskable interrupt and predefined error pin behavior  
32 channels with predefined error pin behavior only  
Error pin to signal severe device failure  
Configurable timebase for error signal  
Error forcing capability  
4.17.2 ESM Channel Assignments  
The Error Signaling Module (ESM) integrates all the device error conditions and groups them in the order  
of severity. Group1 is used for errors of the lowest severity while Group3 is used for errors of the highest  
severity. The device response to each error is determined by the severity group it is connected to.  
Table 4-26 shows the channel assignment for each group.  
Table 4-25. ESM Groups  
ERROR GROUP  
Group1  
INTERRUPT CHARACTERISTICS  
maskable, low or high priority  
non-maskable, high priority  
no interrupt generated  
INFLUENCE ON ERROR PIN  
configurable  
fixed  
Group2  
Group3  
fixed  
Table 4-26. ESM Channel Assignments  
ERROR SOURCES  
GROUP  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
CHANNELS  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
1
2
3
4
5
6
FMC - correctable error: bus1 and bus2 interfaces (does not include accesses to  
EEPROM bank)  
N2HET - parity  
HTU - parity  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
7
8
HTU - MPU  
9
PLL - Slip  
10  
11  
12  
13  
14  
15  
16  
17  
Clock Monitor - interrupt  
Reserved  
Reserved  
Reserved  
VIM RAM - parity  
Reserved  
MibSPI1 - parity  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
57  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
Table 4-26. ESM Channel Assignments (continued)  
ERROR SOURCES  
GROUP  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
CHANNELS  
Reserved  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
MibADC - parity  
Reserved  
DCAN1 - parity  
Reserved  
DCAN2 - parity  
Reserved  
Reserved  
RAM even bank (B0TCM) - correctable error  
CPU - selftest  
RAM odd bank (B1TCM) - correctable error  
Reserved  
DCC - error  
CCM-R4 - selftest  
Reserved  
Reserved  
Reserved  
FMC - correctable error (EEPROM bank access)  
FMC - uncorrectable error (EEPROM bank access)  
IOMM - Mux configuration error  
Reserved  
Reserved  
eFuse farm – this error signal is generated whenever any bit in the eFuse farm  
error status register is set. The application can choose to generate and interrupt  
whenever this bit is set in order to service any eFuse farm error condition.  
eFuse farm - self test error. It is not necessary to generate a separate interrupt  
when this bit gets set.  
Group1  
41  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
Group1  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
58  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
Table 4-26. ESM Channel Assignments (continued)  
ERROR SOURCES  
GROUP  
Group1  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group2  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
CHANNELS  
Reserved  
63  
0
Reserved  
Reserved  
1
CCMR4 - compare  
2
Reserved  
3
FMC - uncorrectable error (address parity on bus1 accesses)  
4
Reserved  
5
RAM even bank (B0TCM) - uncorrectable error  
6
Reserved  
7
RAM odd bank (B1TCM) - uncorrectable error  
8
Reserved  
9
RAM even bank (B0TCM) - address bus parity error  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0
Reserved  
RAM odd bank (B1TCM) - address bus parity error  
Reserved  
Reserved  
Reserved  
TCM - ECC live lock detect  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RTI_WWD_NMI  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
eFuse Farm - autoload error  
Reserved  
1
2
RAM even bank (B0TCM) - ECC uncorrectable error  
Reserved  
3
4
RAM odd bank (B1TCM) - ECC uncorrectable error  
Reserved  
5
6
FMC - uncorrectable error: bus1 and bus2 interfaces (does not include address  
parity error and errors on accesses to EEPROM bank)  
7
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
8
9
10  
11  
12  
13  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
59  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
Table 4-26. ESM Channel Assignments (continued)  
ERROR SOURCES  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GROUP  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
Group3  
CHANNELS  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
60  
System Information and Electrical Specifications  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.18 Reset / Abort / Error Sources  
Table 4-27. Reset/Abort/Error Sources  
ESM HOOKUP  
group.channel  
ERROR SOURCE  
SYSTEM MODE  
ERROR RESPONSE  
CPU TRANSACTIONS  
User/Privilege  
Precise write error (NCNB/Strongly Ordered)  
Precise read error (NCB/Device or Normal)  
Imprecise write error (NCB/Device or Normal)  
Precise Abort (CPU)  
Precise Abort (CPU)  
Imprecise Abort (CPU)  
n/a  
n/a  
n/a  
User/Privilege  
User/Privilege  
Undefined Instruction Trap  
(CPU)(1)  
Illegal instruction  
User/Privilege  
n/a  
n/a  
MPU access violation  
User/Privilege  
SRAM  
Abort (CPU)  
B0 TCM (even) ECC single error (correctable)  
User/Privilege  
ESM  
1.26  
3.3  
Abort (CPU), ESM =>  
nERROR  
B0 TCM (even) ECC double error (non-correctable)  
User/Privilege  
User/Privilege  
B0 TCM (even) uncorrectable error (i.e. redundant address  
decode)  
ESM => NMI => nERROR  
2.6  
B0 TCM (even) address bus parity error  
User/Privilege  
User/Privilege  
ESM => NMI => nERROR  
ESM  
2.10  
1.28  
B1 TCM (odd) ECC single error (correctable)  
Abort (CPU), ESM =>  
nERROR  
B1 TCM (odd) ECC double error (non-correctable)  
User/Privilege  
3.5  
B1 TCM (odd) uncorrectable error (i.e. redundant address  
decode)  
User/Privilege  
User/Privilege  
ESM => NMI => nERROR  
ESM => NMI => nERROR  
2.8  
B1 TCM (odd) address bus parity error  
2.12  
FLASH WITH CPU BASED ECC  
FMC correctable error - Bus1 and Bus2 interfaces (does not  
include accesses to EEPROM bank)  
User/Privilege  
User/Privilege  
ESM  
1.6  
3.7  
FMC uncorrectable error - Bus1 accesses  
(does not include address parity error)  
Abort (CPU), ESM =>  
nERROR  
FMC uncorrectable error - Bus2 accesses  
(does not include address parity error and EEPROM bank  
accesses)  
User/Privilege  
ESM => nERROR  
3.7  
FMC uncorrectable error - address parity error on Bus1  
accesses  
User/Privilege  
ESM => NMI => nERROR  
2.4  
FMC correctable error - Accesses to EEPROM bank  
FMC uncorrectable error - Accesses to EEPROM bank  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.35  
1.36  
High-End Timer Transfer Unit (HTU)  
NCNB (Strongly Ordered) transaction with slave error response  
User/Privilege  
User/Privilege  
User/Privilege  
User/Privilege  
Interrupt => VIM  
Interrupt => VIM  
ESM  
n/a  
n/a  
1.9  
1.8  
External imprecise error (Illegal transaction with ok response)  
Memory access permission violation  
Memory parity error  
ESM  
N2HET  
User/Privilege  
MIBSPI  
User/Privilege  
MIBADC  
User/Privilege  
DCAN  
Memory parity error  
ESM  
ESM  
ESM  
1.7  
MibSPI1 memory parity error  
MibADC Memory parity error  
1.17  
1.19  
DCAN1 memory parity error  
DCAN2 memory parity error  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.21  
1.23  
(1) The Undefined Instruction TRAP is NOT detectable outside the CPU. The trap is taken only if the instruction reaches the execute stage  
of the CPU.  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
61  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
Table 4-27. Reset/Abort/Error Sources (continued)  
ESM HOOKUP  
group.channel  
ERROR SOURCE  
SYSTEM MODE  
ERROR RESPONSE  
PLL  
PLL slip error  
User/Privilege  
ESM  
ESM  
ESM  
1.10  
1.11  
1.30  
CLOCK MONITOR  
Clock monitor interrupt  
DCC error  
User/Privilege  
DCC  
User/Privilege  
CCM-R4  
Self test failure  
Compare failure  
User/Privilege  
ESM  
1.31  
2.2  
User/Privilege  
ESM => NMI => nERROR  
VIM  
Memory parity error  
User/Privilege  
ESM  
Reset  
ESM  
ESM  
1.15  
n/a  
VOLTAGE MONITOR  
n/a  
VMON out of voltage range  
CPU Selftest (LBIST) error  
Mux configuration error  
CPU SELFTEST (LBIST)  
User/Privilege  
1.27  
1.37  
PIN MULTIPLEXING CONTROL  
User/Privilege  
eFuse Controller  
User/Privilege  
eFuse Controller Autoload error  
ESM => nERROR  
3.1  
eFuse Controller - Any bit set in the error status register  
eFuse Controller self-test error  
User/Privilege  
User/Privilege  
ESM  
ESM  
1.40  
1.41  
WINDOWED WATCHDOG  
n/a  
WWD Non-Maskable Interrupt exception  
ESM => NMI => nERROR  
2.24  
ERRORS REFLECTED IN THE SYSESR REGISTER  
Power-Up Reset  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Oscillator fail / PLL slip(2)  
Watchdog exception  
CPU Reset (driven by the CPU STC)  
Software Reset  
External Reset  
(2) Oscillator fail/PLL slip can be configured in the system register (SYS.PLLCTL1) to generate a reset.  
4.19 Digital Windowed Watchdog  
This device includes a digital windowed watchdog (DWWD) module that protects against runaway code  
execution.  
The DWWD module allows the application to configure the time window within which the DWWD module  
expects the application to service the watchdog. A watchdog violation occurs if the application services the  
watchdog outside of this window, or fails to service the watchdog at all. The application can choose to  
generate a system reset or a non-maskable interrupt to the CPU in case of a watchdog violation.  
The watchdog is disabled by default and must be enabled by the application. Once enabled, the watchdog  
can only be disabled upon a system reset.  
62  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.20 Debug Subsystem  
4.20.1 Block Diagram  
The device contains an ICEPICK module to allow JTAG access to the scan chains.  
Boundary Scan I/F  
Boundary Scan  
BSR/BSDL  
Debug  
ROM1  
TRST  
TMS  
TCK  
RTCK  
TDI  
TDO  
Debug APB  
Secondary Tap 0  
DAP  
APB slave  
Cortex  
R4  
Secondary Tap 2  
Test Tap 0  
AJSM  
eFuse Farm  
Figure 4-13. ZWT Debug Subsystem Block Diagram  
4.20.2 Debug Components Memory Map  
Table 4-28. Debug Components Memory Map  
FRAME ADDRESS RANGE  
RESPONSE FOR ACCESS TO  
UNIMPLEMENTED LOCATIONS IN  
FRAME  
FRAME CHIP  
SELECT  
FRAME ACTUA  
MODULE NAME  
SIZE  
4KB  
4KB  
L SIZE  
START  
END  
CoreSight Debug  
ROM  
Reads return zeros, writes have no  
effect  
CSCS0  
CSCS1  
0xFFA0_0000  
0xFFA0_0FFF  
4KB  
Reads return zeros, writes have no  
effect  
Cortex-R4 Debug  
0xFFA0_1000  
0xFFA0_1FFF  
4KB  
4.20.3 JTAG Identification Code  
The JTAG ID code for this device is 0x0B97102F. This is the same as the device ICEPick Identification  
Code.  
4.20.4 Debug ROM  
The Debug ROM stores the location of the components on the Debug APB bus:  
Table 4-29. Debug ROM table  
ADDRESS  
0x000  
DESCRIPTION  
pointer to Cortex-R4  
Reserved  
VALUE  
0x0000 1003  
0x0000 2002  
0x0000 3002  
0x0000 4002  
0x0000 0000  
0x001  
0x002  
Reserved  
0x003  
Reserved  
0x004  
end of table  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
63  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4.20.5 JTAG Scan Interface Timings  
Table 4-30. JTAG Scan Interface Timing(1)  
No.  
Parameter  
Min  
MAX  
Unit  
MHz  
MHz  
ns  
fTCK  
TCK frequency (at HCLKmax)  
12  
fRTCK  
RTCK frequency (at TCKmax and HCLKmax)  
Delay time, TCK to RTCK  
10  
1
2
3
4
5
td(TCK -RTCK)  
tsu(TDI/TMS - RTCKr)  
th(RTCKr -TDI/TMS)  
th(RTCKr -TDO)  
td(TCKf -TDO)  
24  
12  
Setup time, TDI, TMS before RTCK rise (RTCKr)  
Hold time, TDI, TMS after RTCKr  
26  
0
ns  
ns  
Hold time, TDO after RTCKf  
0
ns  
Delay time, TDO valid after RTCK fall (RTCKf)  
ns  
(1) Timings for TDO are specified for a maximum of 50pF load on TDO  
TCK  
RTCK  
1
1
TMS  
TDI  
2
3
TDO  
4
5
Figure 4-14. JTAG Timing  
64  
System Information and Electrical Specifications  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
4.20.6 Advanced JTAG Security Module  
This device includes a an Advanced JTAG Security Module (AJSM). which provides maximum security to  
the device’s memory content by allowing users to secure the device after programming.  
Flash Module Output  
OTP Contents  
(example)  
. . .  
. . .  
H
L
H
L
H
L
L
H
Unlock By Scan  
Register  
H
H
L
L
Internal Tie-Offs  
(example only)  
L
L
H
H
UNLOCK  
128-bit comparator  
Internal Tie-Offs  
(example only)  
H
L
L
H
H
L
L
H
Figure 4-15. AJSM Unlock  
The device is unsecure by default by virtue of a 128-bit visible unlock code programmed in the OTP  
address 0xF0000000.The OTP contents are XOR-ed with the "Unlock By Scan" register contents. The  
outputs of these XOR gates are again combined with a set of secret internal tie-offs. The output of this  
combinational logic is compared against a secret hard-wired 128-bit value. A match results in the  
UNLOCK signal being asserted, so that the device is now unsecure.  
A user can secure the device by changing at least one bit in the visible unlock code from 1 to 0. Changing  
a 0 to 1 is not possible since the visible unlock code is stored in the One Time Programmable (OTP) flash  
region. Also, changing all the 128 bits to zeros is not a valid condition and will permanently secure the  
device.  
Once secured, a user can unsecure the device by scanning an appropriate value into the "Unlock By  
Scan" register of the AJSM module. The value to be scanned is such that the XOR of the OTP contents  
and the Unlock-By-Scan register contents results in the original visible unlock code.  
The Unlock-By-Scan register is reset only upon asserting power-on reset (nPORRST).  
A secure device only permits JTAG accesses to the AJSM scan chain via the Secondary Tap # 2 of the  
ICEPick module. All other secondary taps, test taps and the boundary scan interface are not accessible in  
this state.  
Copyright © 2012–2013, Texas Instruments Incorporated  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
65  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
4.20.7 Boundary Scan Chain  
The device supports BSDL-compliant boundary scan for testing pin-to-pin compatibility. The boundary  
scan chain is connected to the Boundary Scan Interface of the ICEPICK module.  
Device Pins (conceptual)  
TRST  
TMS  
TCK  
TDI  
Boundary  
Scan  
Boundary Scan Interface  
TDO  
RTCK  
TDI  
TDO  
BSDL  
Figure 4-16. Boundary Scan Implementation (Conceptual Diagram)  
Data is serially shifted into all boundary-scan buffers via TDI, and out via TDO.  
66  
System Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
5 Peripheral Information and Electrical Specifications  
5.1 Peripheral Legend  
Table 5-1. Peripheral Legend  
Abbreviation  
Full Name  
MibADC  
CCM-R4  
CRC  
Multi-Buffered Analog to Digital Converter  
CPU Compare Module – CortexR4  
Cyclic Redundancy Check  
DCAN  
DCC  
Controller Area Network  
Dual Clock Comparator  
ESM  
Error Signaling Module  
GIO  
General-Purpose Input/Output  
High End Timer Transfer Unit  
Local Interconnect Network  
Multi-Buffered Serial Peripheral Interface  
Platform High End Timer  
HTU  
LIN  
MibSPI  
N2HET  
RTI  
Real-Time Interrupt Module  
Serial Communications Interface  
Serial Peripheral Interface  
SCI  
SPI  
VIM  
Vectored Interrupt Manager  
Enhanced Quadrature Encoder Pulse  
eQEP  
5.2 Multi-Buffered 12-bit Analog-to-Digital Converter  
The multibuffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that  
enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could  
be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are given  
with respect to ADREFLO unless otherwise noted.  
Table 5-2. MibADC Overview  
Description  
Resolution  
Value  
12 bits  
Assured  
Monotonic  
Output conversion code  
00h to FFFh [00 for VAI ADREFLO; FFF for VAI ADREFHI]  
5.2.1 Features  
12-bit resolution  
ADREFHI and ADREFLO pins (high and low reference voltages)  
Total Sample/Hold/Convert time: 600ns Typical Minimum at 30MHz ADCLK  
One memory region per conversion group is available (event, group 1, group 2)  
Allocation of channels to conversion groups is completely programmable  
Memory regions are serviced by interrupt  
Programmable interrupt threshold counter is available for each group  
Programmable magnitude threshold interrupt for each group for any one channel  
Option to read either 8-bit, 10-bit or 12-bit values from memory regions  
Single or continuous conversion modes  
Embedded self-test  
Embedded calibration logic  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
67  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
Enhanced power-down mode  
Optional feature to automatically power down ADC core when no conversion is in progress  
External event pin (ADEVT) programmable as general-purpose I/O  
5.2.2 Event Trigger Options  
The ADC module supports 3 conversion groups: Event Group, Group1 and Group2. Each of these 3  
groups can be configured to be hardware event-triggered. In that case, the application can select from  
among 8 event sources to be the trigger for a group's conversions.  
5.2.2.1 MIBADC Event Trigger Hookup  
Table 5-3. MIBADC Event Trigger Hookup  
Event #  
Source Select Bits For G1, G2 Or Event  
(G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0])  
Trigger  
1
2
3
4
5
6
7
8
000  
001  
010  
011  
100  
101  
110  
111  
ADEVT  
N2HET[8]  
N2HET[10]  
RTI compare 0 interrupt  
N2HET[12]  
N2HET[14]  
N2HET[17]  
N2HET[19]  
NOTE  
For ADEVT, N2HET trigger sources, the connection to the MibADC module trigger input is  
made from the output side of the input buffer. This way, a trigger condition can be generated  
either by configuring the function as output onto the pad, or by driving the function from an  
external trigger source as input. If the mux controller module is used to select different  
functionality instead of ADEVT or N2HET[x], care must be taken to disable these signals  
from triggering conversions; there is no multiplexing on input connections.  
NOTE  
For the RTI compare 0 interrupt source, the connection is made directly from the output of  
the RTI module. That is, the interrupt condition can be used as a trigger source even if the  
actual interrupt is not signaled to the CPU.  
68  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
5.2.3 ADC Electrical and Timing Specifications  
Table 5-4. MibADC Recommended Operating Conditions  
Parameter  
MIN  
ADREFLO  
VSSAD  
ADREFLO  
- 2  
MAX  
VCCAD  
ADREFHI  
ADREFHI  
2
Unit  
V
ADREFHI  
ADREFLO  
VAI  
A-to-D high-voltage reference source  
A-to-D low-voltage reference source  
Analog input voltage  
V
V
IAIC  
Analog input clamp current  
mA  
(VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3)  
Table 5-5. MibADC Electrical Characteristics Over Full Ranges of Recommended Operating Conditions(1)  
Parameter  
Description/Conditions  
MIN  
Type MAX  
Unit  
Rmux  
Analog input mux on-  
resistance  
See Figure 5-1  
95  
250  
Ω
Rsamp  
ADC sample switch on-  
resistance  
See Figure 5-1  
60  
250  
Ω
Cmux  
Csamp  
IAIL  
Input mux capacitance  
See Figure 5-1  
7
8
16  
13  
pF  
pF  
nA  
ADC sample capacitance  
See Figure 5-1  
Analog off-state input  
leakage current  
VCCAD = 3.6V maximum  
VSSAD < VIN < VSSAD  
100mV  
+
-300  
-200  
-200  
-8  
-1  
200  
VSSAD + 100mV < VIN  
VCCAD - 200mV  
<
-0.3  
1
200  
500  
2
nA  
nA  
µA  
µA  
µA  
VCCAD - 200mV < VIN  
VCCAD  
<
IAOSB  
Analog on-state input bias  
VCCAD = 3.6V maximum  
VSSAD < VIN < VSSAD  
100mV  
+
VSSAD + 100mV < VIN  
VCCAD - 200mV  
<
-4  
2
VCCAD - 200mV < VIN  
VCCAD  
<
-4  
12  
IADREFHI  
ICCAD  
ADREFHI input current  
Static supply current  
ADREFHI = VCCAD, ADREFLO = VSSAD  
Normal operating mode  
3
mA  
mA  
See  
Sectio  
n 3.5  
ADC core in power down mode  
5
µA  
(1) 1 LSB = (ADREFHI – ADREFLO)/ 2n where n = 10 in 10-bit mode and 12 in 12-bit mode  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
69  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
Rext  
Pin  
Rmux  
Smux  
VS1  
23*IAIL  
Cext  
On-State  
Leakage  
Smux  
Rext  
Pin  
Rmux  
VS2  
IAIL  
Cext  
IAIL  
IAIL  
Off-State  
Leakages  
Smux  
Rext  
Pin  
Rmux  
Ssamp  
Rsamp  
VS24  
IAIL  
Csamp  
Cmux  
Cext  
IAIL  
IAIL  
Figure 5-1. MibADC Input Equivalent Circuit  
Table 5-6. MibADC Timing Specifications  
Parameter  
Cycle time, MibADC clock  
MIN  
33  
NOM  
MAX  
Unit  
ns  
(1)  
tc(ADCLK)  
(2)  
td(SH)  
Delay time, sample and hold  
time  
200  
ns  
td(PU-ADV)  
Delay time from ADC power on  
until first input can be sampled  
1
µs  
12-bit mode  
td(C)  
Delay time, conversion time  
400  
600  
ns  
ns  
(3)  
td(SHC)  
Delay time, total sample/hold  
and conversion time  
10-bit mode  
td(C)  
Delay time, conversion time  
330  
530  
ns  
ns  
(4)  
td(SHC)  
Delay time, total sample/hold  
and conversion time  
(1) The MibADC clock is the ADCLK, generated by dividing down the VCLK by a prescale factor defined by the ADCLOCKCR register bits  
4:0.  
(2) The sample and hold time for the ADC conversions is defined by the ADCLK frequency and the AD<GP>SAMP register for each  
conversion group. The sample time needs to be determined by accounting for the external impedance connected to the input channel as  
well as the ADC’s internal impedance.  
(3) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, e.g the  
prescale settings.  
(4) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, e.g the  
prescale settings.  
70  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
Table 5-7. MibADC Operating Characteristics Over Full Ranges of Recommended Operating Conditions  
Parameter  
Description/Conditions  
MIN  
Type  
MAX  
Unit  
CR  
Conversion range ADREFHI - ADREFLO  
3
3.6  
V
over which  
specified  
accuracy is  
maintained  
ZSET  
Offset Error  
Difference between the first ideal  
transition (from code 000h to 001h)  
and the actual transition  
10-bit  
mode  
With ADC  
Calibration  
1
2
2
4
LSB  
LSB  
LSB  
LSB  
Without ADC  
Calibration  
12-bit  
mode  
With ADC  
Calibration  
Without ADC  
Calibration  
FSET  
EDNL  
EINL  
Gain Error  
Differential  
Difference between the last ideal  
transition (from code FFEh to FFFh)  
and the actual transition minus offset.  
10-bit mode  
12-bit mode  
2
3
LSB  
LSB  
Difference between the actual step  
10-bit mode  
12-bit mode  
± 1.5  
± 2  
LSB  
LSB  
nonlinearity error width and the ideal value. (See  
Figure 5-2)  
Integral  
Maximum deviation from the best  
10-bit mode  
12-bit mode  
± 2  
± 2  
LSB  
LSB  
nonlinearity error straight line through the MibADC.  
MibADC transfer characteristics,  
excluding the quantization error. (See  
Figure 5-3)  
ETOT  
Total unadjusted  
error  
Maximum value of the difference  
between an analog value and the  
ideal midstep value. (See Figure 5-4)  
10-bit  
mode  
With ADC  
Calibration  
± 2  
± 4  
± 4  
± 7  
LSB  
LSB  
LSB  
LSB  
Without ADC  
Calibration  
12-bit  
mode  
With ADC  
Calibration  
Without ADC  
Calibration  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
71  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
5.2.4 Performance (Accuracy) Specifications  
5.2.4.1 MibADC Nonlinearity Errors  
www.ti.com  
The differential nonlinearity error shown in Figure Figure 5-2 (sometimes referred to as differential  
linearity) is the difference between an actual step width and the ideal value of 1 LSB.  
0 ... 110  
0 ... 101  
0 ... 100  
0 ... 011  
Differential Linearity  
Error (–½ LSB)  
1 LSB  
0 ... 010  
Differential Linearity  
Error (–½ LSB)  
0 ... 001  
0 ... 000  
1 LSB  
0
1
2
3
4
5
Analog Input Value (LSB)  
n
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/2 where n=10 in 10-bit mode and 12 in 12-bit mode  
Figure 5-2. Differential Nonlinearity (DNL) Error  
72  
Peripheral Information and Electrical Specifications  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
The integral nonlinearity error shown in Figure Figure 5-3 (sometimes referred to as linearity error) is the  
deviation of the values on the actual transfer function from a straight line.  
0 ... 111  
0 ... 110  
Ideal  
Transition  
0 ... 101  
0 ... 100  
0 ... 011  
0 ... 010  
0 ... 001  
0 ... 000  
Actual  
Transition  
At Transition  
011/100  
(–½ LSB)  
End-Point Lin. Error  
At Transition  
001/010 (–1/4 LSB)  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
n
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/2 where n=10 in 10-bit mode and 12 in 12-bit mode  
Figure 5-3. Integral Nonlinearity (INL) Error  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
73  
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
5.2.4.2 MibADC Total Error  
The absolute accuracy or total error of an MibADC as shown in Figure Figure 5-4 is the maximum value of  
the difference between an analog value and the ideal midstep value.  
0 ... 111  
0 ... 110  
0 ... 101  
0 ... 100  
Total Error  
At Step 0 ... 101  
(–1 1/4 LSB)  
0 ... 011  
0 ... 010  
Total Error  
At Step  
0 ... 001 (1/2 LSB)  
0 ... 001  
0 ... 000  
0
1
2
3
4
5
6
7
Analog Input Value (LSB)  
n
NOTE A: 1 LSB = (ADREFHI – ADREFLO)/2 where n=10 in 10-bit mode and 12 in 12-bit mode  
Figure 5-4. Absolute Accuracy (Total) Error  
74  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
 
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
5.3 General-Purpose Input/Output  
The GPIO module on this device supports one port GIOA. The I/O pins are bidirectional and bit-  
programmable. GIOA supports external interrupt capability.  
5.3.1 Features  
The GPIO module has the following features:  
Each IO pin can be configured as:  
Input  
Output  
Open Drain  
The interrupts have the following characteristics:  
Programmable interrupt detection either on both edges or on a single edge (set in GIOINTDET)  
Programmable edge-detection polarity, either rising or falling edge (set in GIOPOL register)  
Individual interrupt flags (set in GIOFLG register)  
Individual interrupt enables, set and cleared through GIOENASET and GIOENACLR registers  
respectively  
Programmable interrupt priority, set through GIOLVLSET and GIOLVLCLR registers  
Internal pullup/pulldown allows unused I/O pins to be left unconnected  
For information on input and output timings see Section 3.8 and Section 3.9  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
75  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
5.4 Enhanced High-End Timer (N2HET)  
The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time  
applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer  
micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs,  
capture or compare inputs, or general-purpose I/O.. It is especially well suited for applications requiring  
multiple sensor information and drive actuators with complex and accurate time pulses.  
5.4.1 Features  
The N2HET module has the following features:  
Programmable timer for input and output timing functions  
Reduced instruction set (30 instructions) for dedicated time and angle functions  
128 words of instruction RAM protected by parity  
User defined number of 25-bit virtual counters for timer, event counters and angle counters  
7-bit hardware counters for each pin allow up to 32-bit resolution in conjunction with the 25-bit virtual  
counters  
Up to 19 pins usable for input signal measurements or output signal generation  
Programmable suppression filter for each input pin with adjustable limiting frequency  
Low CPU overhead and interrupt load  
Efficient data transfer to or from the CPU memory with dedicated High-End-Timer Transfer Unit (HTU)  
Diagnostic capabilities with different loopback mechanisms and pin status readback functionality  
5.4.2 N2HET RAM Organization  
The timer RAM uses 4 RAM banks, where each bank has two port access capability. This means that one  
RAM address may be written while another address is read. The RAM words are 96-bits wide, which are  
split into three 32-bit fields (program, control, and data).  
5.4.3 Input Timing Specifications  
The N2HET instructions PCNT and WCAP impose some timing constraints on the input signals.  
1
N2HETx  
3
4
2
Figure 5-5. N2HET Input Capture Timings  
76  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
Table 5-8. Dynamic Characteristics for the N2HET Input Capture Functionality  
PARAMETER  
MIN(1) (2)  
MAX(1) (2)  
UNIT  
1
2
3
4
Input signal period, PCNT or WCAP for rising edge (hr)(lr) tc(VCLK2) + 2  
to rising edge  
225(hr)(lr)tc(VCLK2) - 2  
ns  
Input signal period, PCNT or WCAP for falling edge (hr) (lr) tc(VCLK2) + 2  
to falling edge  
225 (hr)(lr) tc(VCLK2) - 2  
225 (hr)(lr) tc(VCLK2) - 2  
225 (hr)(lr) tc(VCLK2) - 2  
ns  
ns  
ns  
Input signal high phase, PCNT or WCAP for rising  
edge to falling edge  
2(hr) tc(VCLK2) + 2  
Input signal low phase, PCNT or WCAP for falling  
edge to rising edge  
2(hr) tc(VCLK2) + 2  
(1) hr = High-resolution prescaler, configured using the HRPFC field of the Prescale Factor Register (HETPFR).  
(2) lr = Loop-resolution prescaler, configured using the LFPRC field of the Prescale Factor Register (HETPFR)  
5.4.4 N2HET Checking  
5.4.4.1 Output Monitoring using Dual Clock Comparator (DCC)  
N2HET[31] is connected as a clock source for counter 1 in DCC1. This allows the application to measure  
the frequency of the pulse-width modulated (PWM) signal on N2HET[31].  
N2HET[31] can be configured to be an internal-only channel. That is, the connection to the DCC module is  
made directly from the output of the N2HET module (from the input of the output buffer).  
For more information on DCC see Section 4.6.3.  
5.4.5 Disabling N2HET Outputs  
Some applications require the N2HET outputs to be disabled under some fault condition. The N2HET  
module provides this capability via the "Pin Disable" input signal. This signal, when driven low, causes the  
N2HET outputs identified by a programmable register (HETPINDIS) to be tri-stated. Please refer to the  
device Technical Reference Manual for more details on the "N2HET Pin Disable" feature.  
GIOA[5] and EQEPERR are connected to the "Pin Disable" input for N2HET. In the case of GIOA[5]  
connection, this connection is made from the output of the input buffer. In the case of EQEPERR, the  
EQEPERR output signal is asserted in the event of a phase error. This signal is inverted and double-  
synchronized to VCLK2 for input into the N2HET PIN_nDISABLE port.  
The PIN_nDISABLE port input source is selectable between the GIOA[5] and EQEPERR sources. This is  
achieved via the PINMMR9[1:0] bits.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
77  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
5.4.6 High-End Timer Transfer Unit (N2HET)  
A High End Timer Transfer Unit (N2HET) can perform DMA type transactions to transfer N2HET data to or  
from main memory. A Memory Protection Unit (MPU) is built into the N2HET.  
5.4.6.1 Features  
CPU independent  
Master Port to access system memory  
8 control packets supporting dual buffer configuration  
Control packet information is stored in RAM protected by parity  
Event synchronization (N2HET transfer requests)  
Supports 32 or 64 bit transactions  
Addressing modes for N2HET address (8 byte or 16 byte) and system memory address (fixed, 32 bit or  
64bit)  
One shot, circular and auto switch buffer transfer modes  
Request lost detection  
5.4.6.2 Trigger Connections  
Table 5-9. N2HET Request Line Connection  
Modules  
N2HET  
N2HET  
N2HET  
N2HET  
N2HET  
N2HET  
N2HET  
N2HET  
Request Source  
HTUREQ[0]  
HTUREQ[1]  
HTUREQ[2]  
HTUREQ[3]  
HTUREQ[4]  
HTUREQ[5]  
HTUREQ[6]  
HTUREQ[7]  
HTU Request  
HTU DCP[0]  
HTU DCP[1]  
HTU DCP[2]  
HTU DCP[3]  
HTU DCP[4]  
HTU DCP[5]  
HTU DCP[6]  
HTU DCP[7]  
78  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
5.5 Controller Area Network (DCAN)  
The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication  
protocol that efficiently supports distributed real-time control with robust communication rates of up to 1  
megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and harsh  
environments (e.g., automotive and industrial fields) that require reliable serial communication or  
multiplexed wiring.  
5.5.1 Features  
Features of the DCAN module include:  
Supports CAN protocol version 2.0 part A, B  
Bit rates up to 1 MBit/s  
The CAN kernel can be clocked by the oscillator for baud-rate generation.  
32 and 16 mailboxes on DCAN1 and DCAN2, respectively  
Individual identifier mask for each message object  
Programmable FIFO mode for message objects  
Programmable loop-back modes for self-test operation  
Automatic bus on after Bus-Off state by a programmable 32-bit timer  
Message RAM protected by parity  
Direct access to Message RAM during test mode  
CAN Rx / Tx pins configurable as general purpose IO pins  
Message RAM Auto Initialization  
For more information on the DCAN see the device Technical Reference Manual.  
5.5.2 Electrical and Timing Specifications  
Table 5-10. Dynamic Characteristics for the DCANx TX and RX pins  
Parameter  
MIN  
MAX  
15  
Unit  
ns  
td(CANnTX)  
td(CANnRX)  
Delay time, transmit shift register to CANnTX pin(1)  
Delay time, CANnRX pin to receive shift register  
5
ns  
(1) These values do not include rise/fall times of the output buffer.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
79  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
5.6 Local Interconnect Network Interface (LIN)  
The SCI/LIN module can be programmed to work either as an SCI or as a LIN. The core of the module is  
an SCI. The SCI’s hardware features are augmented to achieve LIN compatibility.  
The SCI module is a universal asynchronous receiver-transmitter that implements the standard nonreturn  
to zero format. The SCI can be used to communicate, for example, through an RS-232 port or over a K-  
line.  
The LIN standard is based on the SCI (UART) serial data link format. The communication concept is  
single-master/multiple-slave with a message identification for multi-cast transmission between any network  
nodes.  
5.6.1 LIN Features  
The following are features of the LIN module:  
Compatible to LIN 1.3, 2.0 and 2.1 protocols  
Multi-buffered receive and transmit units  
Identification masks for message filtering  
Automatic Master Header Generation  
Programmable Synch Break Field  
Synch Field  
Identifier Field  
Slave Automatic Synchronization  
Synch break detection  
Optional baudrate update  
Synchronization Validation  
231 programmable transmission rates with 7 fractional bits  
Error detection  
2 Interrupt lines with priority encoding  
80  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
5.7 Multi-Buffered / Standard Serial Peripheral Interface  
The MibSPI is a high-speed synchronous serial input/output port that allows a serial bit stream of  
programmed length (2 to 16 bits) to be shifted in and out of the device at a programmed bit-transfer rate.  
Typical applications for the SPI include interfacing to external peripherals, such as I/Os, memories, display  
drivers, and analog-to-digital converters.  
5.7.1 Features  
Both Standard and MibSPI modules have the following features:  
16-bit shift register  
Receive buffer register  
8-bit baud clock generator, supports max up to 20Mhz baud rate  
SPICLK can be internally-generated (master mode) or received from an external clock source (slave  
mode)  
Each word transferred can have a unique format  
SPI I/Os not used in the communication can be used as digital input/output signals  
Table 5-11. MibSPI/SPI Default Configurations  
MibSPIx/SPIx  
MibSPI1  
I/Os  
MIBSPI1SIMO[0], MIBSPI1SOMI[0], MIBSPI1CLK, MIBSPI1nCS[3:0], MIBSPI1nENA  
SPI2SIMO, SPI2SOMI, SPI2CLK, SPI2nCS[0]  
SPI2  
SPI3  
SPI3SIMO, SPI3SOMI, SPI3CLK, SPI3nENA, SPI3nCS[0]  
5.7.2 MibSPI Transmit and Receive RAM Organization  
The Multibuffer RAM is comprised of 128 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a  
16-bit transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer  
RAM can be partitioned into multiple transfer group with variable number of buffers each.  
5.7.3 MibSPI Transmit Trigger Events  
Each of the transfer groups can be configured individually. For each of the transfer groups a trigger event  
and a trigger source can be chosen. A trigger event can be, for example, a rising edge or a permanent low  
level at a selectable trigger source. Up to 15 trigger sources are available which can be utilized by each  
transfer group. These trigger options are listed in Table 5-12 and .  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
81  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
5.7.3.1 MIBSPI1 Event Trigger Hookup  
Table 5-12. MIBSPI1 Event Trigger Hookup  
Event #  
Disabled  
EVENT0  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
EVENT5  
EVENT6  
EVENT7  
EVENT8  
EVENT9  
EVENT10  
EVENT11  
EVENT12  
EVENT13  
EVENT14  
TGxCTRL TRIGSRC[3:0]  
Trigger  
No trigger source  
GIOA[0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
GIOA[1]  
GIOA[2]  
GIOA[3]  
GIOA[4]  
GIOA[5]  
GIOA[6]  
GIOA[7]  
N2HET[8]  
N2HET[10]  
N2HET[12]  
N2HET[14]  
N2HET[16]  
N2HET[18]  
Intern Tick counter  
NOTE  
For N2HET trigger sources, the connection to the MibSPI1 module trigger input is made from  
the input side of the output buffer (at the N2HET module boundary). This way, a trigger  
condition can be generated even if the N2HET signal is not selected to be output on the pad.  
NOTE  
For GIOx trigger sources, the connection to the MibSPI1 module trigger input is made from  
the output side of the input buffer. This way, a trigger condition can be generated either by  
selecting the GIOx pin as an output pin, or by driving the GIOx pin from an external trigger  
source.  
82  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
5.7.4 MibSPI/SPI Master Mode I/O Timing Specifications  
Table 5-13. SPI Master Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO  
= output, and SPISOMI = input)(1)(2)(3)  
NO. Parameter  
tc(SPC)M  
2(5) tw(SPCH)M  
MIN  
MAX  
Unit  
ns  
1
Cycle time, SPICLK(4)  
40  
256tc(VCLK)  
0.5tc(SPC)M + 3  
Pulse duration, SPICLK high (clock  
polarity = 0)  
0.5tc(SPC)M – tr(SPC)M – 3  
ns  
tw(SPCL)M  
3(5) tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK low (clock  
polarity = 1)  
0.5tc(SPC)M – tf(SPC)M – 3  
0.5tc(SPC)M – tf(SPC)M – 3  
0.5tc(SPC)M – tr(SPC)M – 3  
0.5tc(SPC)M – 6  
0.5tc(SPC)M + 3  
0.5tc(SPC)M + 3  
0.5tc(SPC)M + 3  
Pulse duration, SPICLK low (clock  
polarity = 0)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Pulse duration, SPICLK high (clock  
polarity = 1)  
4(5) td(SPCH-SIMO)M Delay time, SPISIMO valid before  
SPICLK low (clock polarity = 0)  
td(SPCL-SIMO)M Delay time, SPISIMO valid before  
SPICLK high (clock polarity = 1)  
5(5) tv(SPCL-SIMO)M  
0.5tc(SPC)M – 6  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 0)  
0.5tc(SPC)M – tf(SPC) – 4  
0.5tc(SPC)M – tr(SPC) – 4  
tf(SPC) + 2.2  
tv(SPCH-SIMO)M Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 1)  
6(5) tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK  
low (clock polarity = 0)  
tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK  
high (clock polarity = 1)  
7(5) th(SPCL-SOMI)M Hold time, SPISOMI data valid after  
SPICLK low (clock polarity = 0)  
tr(SPC) + 2.2  
10  
th(SPCH-SOMI)M Hold time, SPISOMI data valid after  
SPICLK high (clock polarity = 1)  
8(6) tC2TDELAY  
10  
Setup time CS active  
until SPICLK high  
(clock polarity = 0)  
CSHOLD = 0 C2TDELAY*tc(VCLK) + 2*tc(VCLK)  
- tf(SPICS) + tr(SPC) – 7  
(C2TDELAY+2) * tc(VCLK)  
tf(SPICS) + tr(SPC) + 5.5  
-
-
-
-
CSHOLD = 1 C2TDELAY*tc(VCLK) + 3*tc(VCLK)  
- tf(SPICS) + tr(SPC) – 7  
(C2TDELAY+3) * tc(VCLK)  
tf(SPICS) + tr(SPC) + 5.5  
Setup time CS active  
until SPICLK low  
CSHOLD = 0 C2TDELAY*tc(VCLK) + 2*tc(VCLK)  
- tf(SPICS) + tf(SPC) – 7  
(C2TDELAY+2) * tc(VCLK)  
tf(SPICS) + tf(SPC) + 5.5  
(clock polarity = 1)  
CSHOLD = 1 C2TDELAY*tc(VCLK) + 3*tc(VCLK)  
- tf(SPICS) + tf(SPC) – 7  
(C2TDELAY+3) * tc(VCLK)  
tf(SPICS) + tf(SPC) + 5.5  
9(6) tT2CDELAY  
Hold time SPICLK low until CS inactive  
(clock polarity = 0)  
0.5*tc(SPC)M  
T2CDELAY*tc(VCLK) + tc(VCLK)  
tf(SPC) + tr(SPICS) - 7  
+
0.5*tc(SPC)M  
T2CDELAY*tc(VCLK) + tc(VCLK)  
tf(SPC) + tr(SPICS) + 11  
+
ns  
ns  
-
-
-
-
Hold time SPICLK high until CS  
inactive (clock polarity = 1)  
0.5*tc(SPC)M  
T2CDELAY*tc(VCLK) + tc(VCLK)  
tr(SPC) + tr(SPICS) - 7  
+
0.5*tc(SPC)M +  
T2CDELAY*tc(VCLK) + tc(VCLK)  
tr(SPC) + tr(SPICS) + 11  
10  
11  
tSPIENA  
SPIENAn Sample point  
(C2TDELAY+1) * tc(VCLK)  
tf(SPICS) – 29  
-
(C2TDELAY+1)*tc(VCLK)  
ns  
ns  
tSPIENAW  
SPIENAn Sample point from write to  
buffer  
(C2TDELAY+2)*tc(VCLK)  
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared.  
(2) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)  
(3) For rise and fall timings, see Table 3-5.  
(4) When the SPI is in Master mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(VCLK) 40 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)M = 2tc(VCLK) 40 ns.  
The external load on the SPICLK pin must be less than 60pF.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(6) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
83  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISIMO  
Master Out Data Is Valid  
6
7
Master In Data  
Must Be Valid  
SPISOMI  
Figure 5-6. SPI Master Mode External Timing (CLOCK PHASE = 0)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
8
9
10  
11  
SPIENAn  
Figure 5-7. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)  
84  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
Table 5-14. SPI Master Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO  
= output, and SPISOMI = input)(1)(2)(3)  
NO.  
Parameter  
MIN  
MAX  
Unit  
ns  
(4)  
1
tc(SPC)M  
Cycle time, SPICLK  
40  
256tc(VCLK)  
0.5tc(SPC)M + 3  
2(5) tw(SPCH)M  
tw(SPCL)M  
3(5) tw(SPCL)M  
tw(SPCH)M  
Pulse duration, SPICLK high (clock  
polarity = 0)  
0.5tc(SPC)M – tr(SPC)M – 3  
ns  
Pulse duration, SPICLK low (clock  
polarity = 1)  
0.5tc(SPC)M – tf(SPC)M – 3  
0.5tc(SPC)M – tf(SPC)M – 3  
0.5tc(SPC)M – tr(SPC)M – 3  
0.5tc(SPC)M – 6  
0.5tc(SPC)M + 3  
0.5tc(SPC)M + 3  
0.5tc(SPC)M + 3  
Pulse duration, SPICLK low (clock  
polarity = 0)  
ns  
ns  
Pulse duration, SPICLK high (clock  
polarity = 1)  
4(5) tv(SIMO-SPCH)M  
Valid time, SPICLK high after  
SPISIMO data valid (clock polarity =  
0)  
tv(SIMO-SPCL)M  
Valid time, SPICLK low after  
0.5tc(SPC)M – 6  
SPISIMO data valid (clock polarity =  
1)  
5(5) tv(SPCH-SIMO)M  
tv(SPCL-SIMO)M  
6(5) tsu(SOMI-SPCH)M  
tsu(SOMI-SPCL)M  
7(5) tv(SPCH-SOMI)M  
tv(SPCL-SOMI)M  
Valid time, SPISIMO data valid after  
SPICLK high (clock polarity = 0)  
0.5tc(SPC)M – tr(SPC) – 4  
ns  
ns  
ns  
ns  
Valid time, SPISIMO data valid after  
SPICLK low (clock polarity = 1)  
0.5tc(SPC)M – tf(SPC) – 4  
Setup time, SPISOMI before  
SPICLK high (clock polarity = 0)  
tr(SPC) + 2.2  
tf(SPC) + 2.2  
10  
Setup time, SPISOMI before  
SPICLK low (clock polarity = 1)  
Valid time, SPISOMI data valid after  
SPICLK high (clock polarity = 0)  
Valid time, SPISOMI data valid after  
SPICLK low (clock polarity = 1)  
10  
8(6) tC2TDELAY  
Setup time CS  
active until SPICLK  
high (clock polarity =  
0)  
CSHOLD = 0  
CSHOLD = 1  
CSHOLD = 0  
CSHOLD = 1  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY+2) * tc(VCLK)  
tf(SPICS) + tr(SPC) + 5.5  
(C2TDELAY+2) * tc(VCLK)  
tf(SPICS) + tr(SPC) – 7  
-
-
-
-
-
-
-
-
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY+3) * tc(VCLK)  
tf(SPICS) + tr(SPC) + 5.5  
(C2TDELAY+3) * tc(VCLK)  
tf(SPICS) + tr(SPC) – 7  
Setup time CS  
active until SPICLK  
low (clock polarity =  
1)  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M  
+
ns  
(C2TDELAY+2) * tc(VCLK)  
tf(SPICS) + tf(SPC) – 7  
(C2TDELAY+2) * tc(VCLK)  
tf(SPICS) + tf(SPC) + 5.5  
-
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY+3) * tc(VCLK)  
tf(SPICS) + tf(SPC) + 5.5  
(C2TDELAY+3) * tc(VCLK)  
tf(SPICS) + tf(SPC) – 7  
-
9(6) tT2CDELAY  
Hold time SPICLK low until CS  
inactive (clock polarity = 0)  
T2CDELAY*tc(VCLK)  
tc(VCLK) - tf(SPC) + tr(SPICS)  
7
+
T2CDELAY*tc(VCLK)  
tc(VCLK) - tf(SPC) + tr(SPICS)  
11  
+
ns  
ns  
+
+
Hold time SPICLK high until CS  
inactive (clock polarity = 1)  
T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPC) + tr(SPICS)  
7
+
T2CDELAY*tc(VCLK)  
tc(VCLK) - tr(SPC) + tr(SPICS)  
11  
+
10 tSPIENA  
SPIENAn Sample Point  
(C2TDELAY+1)* tc(VCLK)  
tf(SPICS) – 29  
-
(C2TDELAY+1)*tc(VCLK)  
ns  
ns  
11 tSPIENAW  
SPIENAn Sample point from write to  
buffer  
(C2TDELAY+2)*tc(VCLK)  
(1) The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set.  
(2) tc(VCLK) = interface clock cycle time = 1 / f(VCLK)  
(3) For rise and fall timings, see the Table 3-5.  
(4) When the SPI is in Master mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)M (PS +1)tc(VCLK) 40 ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)M = 2tc(VCLK) 40 ns.  
The external load on the SPICLK pin must be less than 60pF.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(6) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
85  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Master Out Data Is Valid  
Data Valid  
SPISIMO  
SPISOMI  
6
7
Master In Data  
Must Be Valid  
Figure 5-8. SPI Master Mode External Timing (CLOCK PHASE = 1)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
8
9
10  
11  
SPIENAn  
Figure 5-9. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)  
86  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
5.7.5 SPI Slave Mode I/O Timings  
Table 5-15. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = input, SPISIMO =  
input, and SPISOMI = output)(1)(2)(3)(4)  
NO.  
1
Parameter  
tc(SPC)S  
MIN  
40  
MAX  
Unit  
ns  
Cycle time, SPICLK(5)  
2(6)  
tw(SPCH)S  
tw(SPCL)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
14  
ns  
14  
3(6)  
4(6)  
tw(SPCL)S  
14  
ns  
ns  
tw(SPCH)S  
td(SPCH-SOMI)S  
14  
Delay time, SPISOMI valid after SPICLK high (clock  
polarity = 0)  
trf(SOMI) + 20  
trf(SOMI) + 20  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
th(SPCL-SIMO)S  
th(SPCH-SIMO)S  
td(SPCL-SENAH)S  
td(SPCH-SENAH)S  
td(SCSL-SENAL)S  
Delay time, SPISOMI valid after SPICLK low (clock polarity  
= 1)  
5(6)  
6(6)  
7(6)  
8
Hold time, SPISOMI data valid after SPICLK high (clock  
polarity =0)  
2
ns  
ns  
ns  
ns  
ns  
Hold time, SPISOMI data valid after SPICLK low (clock  
polarity =1)  
2
Setup time, SPISIMO before SPICLK low (clock polarity =  
0)  
4
Setup time, SPISIMO before SPICLK high (clock polarity =  
1)  
4
2
Hold time, SPISIMO data valid after SPICLK low (clock  
polarity = 0)  
Hold time, SPISIMO data valid after S PICLK high (clock  
polarity = 1)  
2
Delay time, SPIENAn high after last SPICLK low (clock  
polarity = 0)  
1.5tc(VCLK)  
1.5tc(VCLK)  
tf(ENAn)  
2.5tc(VCLK)+tr(ENAn)  
+
22  
Delay time, SPIENAn high after last SPICLK high (clock  
polarity = 1)  
2.5tc(VCLK)+ tr(ENAn)  
22  
+
9
Delay time, SPIENAn low after SPICSn low (if new data  
has been written to the SPI buffer)  
tc(VCLK)+tf(ENAn)+27  
(1) The MASTER bit (SPIGCR1.0) is cleared and the CLOCK PHASE bit (SPIFMTx.16) is cleared.  
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].  
(3) For rise and fall timings, see Table 3-5.  
(4) tc(VCLK) = interface clock cycle time = 1 /f(VCLK)  
(5) When the SPI is in Slave mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)S (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)S = 2tc(VCLK) 40ns.  
(6) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
87  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI Data Is Valid  
SPISOMI  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 5-10. SPI Slave Mode External Timing (CLOCK PHASE = 0)  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
8
SPIENAn  
SPICSn  
9
Figure 5-11. SPI Slave Mode Enable Timing (CLOCK PHASE = 0)  
88  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
Table 5-16. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = input, SPISIMO =  
input, and SPISOMI = output)(1)(2)(3)(4)  
NO. Parameter  
tc(SPC)S  
2(6) tw(SPCH)S  
tw(SPCL)S  
3(6) tw(SPCL)S  
tw(SPCH)S  
MIN  
40  
MAX  
Unit  
ns  
1
Cycle time, SPICLK(5)  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
14  
ns  
14  
14  
ns  
ns  
14  
4(6) td(SOMI-SPCL)S  
Dealy time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
trf(SOMI) + 20  
trf(SOMI) + 20  
td(SOMI-SPCH)S  
5(6) th(SPCL-SOMI)S  
th(SPCH-SOMI)S  
Delay time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity =0)  
2
ns  
ns  
ns  
ns  
Hold time, SPISOMI data valid after SPICLK low (clock  
polarity =1)  
2
6(6) tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock  
polarity = 0)  
4
tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock polarity  
= 1)  
7(6) tv(SPCH-SIMO)S  
4
2
High time, SPISIMO data valid after SPICLK high  
(clock polarity = 0)  
tv(SPCL-SIMO)S  
High time, SPISIMO data valid after SPICLK low (clock  
polarity = 1)  
2
8
td(SPCH-SENAH)S Delay time, SPIENAn high after last SPICLK high  
(clock polarity = 0)  
1.5tc(VCLK)  
1.5tc(VCLK)  
tf(ENAn)  
tc(VCLK)  
2.5tc(VCLK)+tr(ENAn) + 22  
2.5tc(VCLK)+tr(ENAn) + 22  
tc(VCLK)+tf(ENAn)+ 27  
td(SPCL-SENAH)S Delay time, SPIENAn high after last SPICLK low (clock  
polarity = 1)  
9
td(SCSL-SENAL)S Delay time, SPIENAn low after SPICSn low (if new data  
has been written to the SPI buffer)  
ns  
ns  
10  
td(SCSL-SOMI)S  
Delay time, SOMI valid after SPICSn low (if new data  
has been written to the SPI buffer)  
2tc(VCLK)+trf(SOMI)+ 28  
(1) The MASTER bit (SPIGCR1.0) is cleared and the CLOCK PHASE bit (SPIFMTx.16) is set.  
(2) If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8].  
(3) For rise and fall timings, see Table 3-5.  
(4) tc(VCLK) = interface clock cycle time = 1 /f(VCLK)  
(5) When the SPI is in Slave mode, the following must be true:  
For PS values from 1 to 255: tc(SPC)S (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits.  
For PS values of 0: tc(SPC)S = 2tc(VCLK) 40ns.  
(6) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
89  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 5-12. SPI Slave Mode External Timing (CLOCK PHASE = 1)  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
8
SPIENAn  
SPICSn  
9
10  
SPISOMI  
Slave Out Data Is Valid  
Figure 5-13. SPI Slave Mode Enable Timing (CLOCK PHASE = 1)  
90  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
5.8 Enhanced Quadrature Encoder (eQEP)  
Figure 5-14 shows the eQEP module interconnections on the device.  
VBUSP Interface  
EQEPA  
EQEPB  
EQEPI  
EQEPIO  
EQEPIOE  
EQEPENCLK  
EQEP  
Module  
CDDISx.9  
EQEP  
CLK  
GATE  
VCLK  
VCLK  
ACK  
CLKSTOP_REQ  
I/O  
MUX  
CTRL  
SYS_nRST  
EQEPS  
EQEPSO  
EQEPSOE  
EQEPINTn  
VIM  
nEQEPERR  
_SYNC  
EQEPERR  
NHET  
nDIS  
GIOA[5]  
VCLK2  
NHETnDIS_SEL  
Figure 5-14. eQEP Module Interconnections  
5.8.1 Clock Enable Control for eQEPx Modules  
The device level control of the eQEP clock is accomplished through the enable/disable of the VCLK clock  
domain for eQEP only. This is realized using bit 9 of the CLKDDIS register. The eQEP clock source is  
enabled by default.  
5.8.2 Using eQEPx Phase Error  
The eQEP module sets the EQEPERR signal output whenever a phase error is detected in its inputs  
EQEPxA and EQEPxB. This error signal from both the eQEP modules is input to the connection selection  
multiplexor. As shown in Figure 5-14, the output of this selection multiplexor is inverted and connected to  
the N2HET module. This connection allows the application to define the response to a phase error  
indicated by the eQEP modules.  
5.8.3 Input Connections to eQEPx Modules  
The input connections to each of the eQEP modules can be selected between a double-VCLK-  
synchronized input or a double-VCLK-synchronized and filtered input, as shown in Table 5-17.  
Table 5-17. Device-Level Input Synchronization  
Input Signal  
Control for Double-Synchronized Connection to  
eQEPx  
Control for Double-Synchronized and Filtered  
Connection to eQEPx  
eQEPA  
eQEPB  
eQEPI  
eQEPS  
PINMMR8[0] = 1  
PINMMR8[8] = 1  
PINMMR8[16] = 1  
PINMMR8[24] = 1  
PINMMR8[0] = 0 and PINMMR8[1] = 1  
PINMMR8[8] = 0 and PINMMR8[9] = 1  
PINMMR8[16] = 0 and PINMMR8[17] = 1  
PINMMR8[24] = 0 and PINMMR8[25] = 1  
Copyright © 2012–2013, Texas Instruments Incorporated  
Peripheral Information and Electrical Specifications  
91  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
5.8.4 Enhanced Quadrature Encoder Pulse (eQEPx) Timing  
Table 5-18. eQEPx Timing Requirements  
PARAMETER  
QEP input period  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
cycles  
cycles  
tw(QEPP)  
Synchronous  
2 tc(VCLK)  
Synchronous, with input 2 tc(VCLK) + filter width  
filter  
tw(INDEXH)  
QEP Index Input High Time  
QEP Index Input Low Time  
Synchronous  
2 tc(VCLK)  
cycles  
cycles  
Synchronous, with input 2 tc(VCLK) + filter width  
filter  
tw(INDEXL)  
Synchronous  
2 tc(VCLK)  
cycles  
cycles  
Synchronous, with input 2 tc(VCLK) + filter width  
filter  
tw(STROBH) QEP Strobe Input High Time  
tw(STROBL) QEP Strobe Input Low Time  
Synchronous  
2 tc(VCLK)  
cycles  
cycles  
Synchronous, with input 2 tc(VCLK) + filter width  
filter  
Synchronous  
2 tc(VCLK)  
cycles  
cycles  
Synchronous, with input 2 tc(VCLK) + filter width  
filter  
Table 5-19. eQEPx Switching Characteristics  
PARAMETER  
MIN  
MAX  
UNIT  
cycles  
cycles  
td(CNTR)xin  
Delay time, external clock to counter increment  
4 tc(VCLK)  
6 tc(VCLK)  
td(PCS-OUT)QEP  
Delay time, QEP input edge to position compare sync output  
92  
Peripheral Information and Electrical Specifications  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
Copyright © 2012–2013, Texas Instruments Incorporated  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
6 Device and Documentation Support  
6.1 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of  
all devices.Each device has one of three prefixes: X, P, or null (no prefix) (for example, xRM46L852).  
These prefixes represent evolutionary stages of product development from engineering prototypes  
through fully qualified production devices/tools.  
Device development evolutionary flow:  
x
Experimental device that is not necessarily representative of the final device's electrical  
specifications and may not use production assembly flow.  
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet  
final electrical specifications.  
null  
Fully-qualified production device.  
x and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices have been characterized fully, and the quality and reliability of the device have  
been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to  
be used.  
6.2 Device Identification  
The figure below illustrates the numbering and symbol nomenclature for the RM42L432 .  
RM 4 2 L 4 3 2 PZ T R  
Prefix:  
x = Not Qualified  
Removed when qualified  
Shipping Options:  
R = Tape and Reel  
RM = Real Time Microcontroller  
Temperature Range:  
T = -40...+105oC  
CPU:  
4 = ARM Cortex-R4  
Package Type:  
PZ = 100 Pin Package  
Series Number  
Architecture:  
L = Lockstep  
Reserved  
Reserved  
Flash / RAM Size:  
4 = 384kB flash, 32kB RAM  
Figure 6-1. Device Numbering Conventions  
6.2.1 Device Identification Code Register  
The device identification code register identifies several aspects of the device including the silicon version.  
The details of the device identification code register are shown in Table 6-1. The device identification code  
register value for this device is:  
Rev 0 = 0x8048AD05  
Rev A = 0x8048AD0D  
Copyright © 2012–2013, Texas Instruments Incorporated  
Device and Documentation Support  
93  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
Figure 6-2. Device ID Bit Allocation Register  
31  
CP-15  
R-1  
30  
29  
13  
28  
27  
11  
26  
25  
24  
23  
22  
21  
20  
19  
3
18  
17  
16  
TECH  
R-0  
UNIQUE ID  
R-00000000100100  
15  
14  
12  
10  
9
8
7
6
5
4
2
1
1
0
0
1
TECH  
I/O  
PERIPH FLASH ECC  
RAM  
ECC  
VERSION  
VOLT PARITY  
AGE  
R-101  
R-0  
R-1  
R-10  
R-1  
R-00001  
R-1  
R-0  
R-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
94  
Device and Documentation Support  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
Table 6-1. Device ID Bit Allocation Register Field Descriptions  
Bit  
Field  
Value  
Description  
31  
CP15  
Indicates the presence of coprocessor 15  
CP15 present  
1
30-17  
UNIQUE ID  
100100  
Silicon version (revision) bits.  
This bitfield holds a unique number for a dedicated device configuration (die).  
16-13  
12  
TECH  
Process technology on which the device is manufactured.  
0101  
0
F021  
I/O VOLTAGE  
I/O voltage of the device.  
I/O are 3.3v  
11  
PERIPHERAL  
PARITY  
Peripheral Parity  
1
Parity on peripheral memories  
Flash ECC  
10-9  
8
FLASH ECC  
RAM ECC  
10  
Program memory with ECC  
Indicates if RAM memory ECC is present.  
ECC implemented  
1
0
7-3  
2-0  
REVISION  
FAMILY ID  
Revision of the Device.  
101  
The platform family ID is always 0b101  
6.2.2 Die Identification Registers  
The four die ID registers at addresses 0xFFFFE1F0, 0xFFFFE1F4, 0xFFFFE1F8 and FFFFE1FC form a  
128-bit dieid with the information as shown in Table Table 6-2.  
Table 6-2. Die-ID Registers  
Item  
X Coord. on Wafer  
Y Coord. on Wafer  
Wafer #  
# of Bits  
Bit Location  
12  
12  
8
0xFFFFE1F0[11:0]  
0xFFFFE1F0[23:12]  
0xFFFFE1F0[31:24]  
0xFFFFE1F4[23:0]  
Lot #  
24  
72  
Reserved  
0xFFFFE1F4[31:24], 0xFFFFE1F8[31:0],  
0xFFFFE1FC[31:0]  
6.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
Hercules™ ARM® Cortex™ Safety Microcontroller Section of the TI E2E Support Community. TI's  
Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers.  
At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve  
problems with fellow engineers.  
6.4 Module Certifications  
The following communications modules have received certification of adherence to a standard.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Device and Documentation Support  
95  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
6.4.1 DCAN Certification  
Figure 6-3. DCAN Certification  
96  
Device and Documentation Support  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
6.4.2 LIN Certification  
6.4.2.1 LIN Master Mode  
Figure 6-4. LIN Certification - Master Mode  
Copyright © 2012–2013, Texas Instruments Incorporated  
Device and Documentation Support  
97  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
6.4.2.2 LIN Slave Mode - Fixed Baud Rate  
Figure 6-5. LIN Certification - Slave Mode - Fixed Baud Rate  
98  
Device and Documentation Support  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
www.ti.com  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
6.4.2.3 LIN Slave Mode - Adaptive Baud Rate  
Figure 6-6. LIN Certification - Slave Mode - Adaptive Baud Rate  
Copyright © 2012–2013, Texas Instruments Incorporated  
Device and Documentation Support  
99  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
RM42L432  
SPNS180A SEPTEMBER 2012REVISED SEPTEMBER 2013  
www.ti.com  
7 Mechanical Data  
7.1 Thermal Data  
Table 7-1 shows the thermal resistance characteristics for the PQFP - PZ mechanical packages.  
Table 7-1. Thermal Resistance Characteristics  
(S-PQFP Package) [PZ]  
PARAMETER  
RθJA  
°C/W  
48  
RθJC  
5
7.2 Packaging Information  
The following packaging information reflects the most current released data available for the designated  
device(s). This data is subject to change without notice and without revision of this document.  
100  
Mechanical Data  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: RM42L432  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Oct-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
RM42L432PZT  
ACTIVE  
LQFP  
PZ  
100  
90  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-3-260C-168 HR  
-40 to 105  
RM42  
L432PZT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Oct-2013  
Addendum-Page 2  
MECHANICAL DATA  
MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996  
PZ (S-PQFP-G100)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
75  
M
0,08  
51  
50  
76  
26  
100  
0,13 NOM  
1
25  
12,00 TYP  
Gage Plane  
14,20  
SQ  
13,80  
0,25  
16,20  
SQ  
0,05 MIN  
0°7°  
15,80  
1,45  
1,35  
0,75  
0,45  
Seating Plane  
0,08  
1,60 MAX  
4040149/B 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY