SE370C769AFZT [TI]

8-BIT MICROCONTROLLER;
SE370C769AFZT
型号: SE370C769AFZT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-BIT MICROCONTROLLER

可编程只读存储器 时钟 微控制器 外围集成电路
文件: 总73页 (文件大小:1096K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
FN/FZ PACKAGE  
(TOP VIEW)  
CMOS/EEPROM/EPROM Technologies on a  
Single Device  
– Mask-ROM Devices for High-Volume  
Production  
– One-Time-Programmable (OTP) EPROM  
Devices for Low-Volume Production  
– Reprogrammable EPROM Devices for  
Prototyping Purposes  
9
8
7
6
5
4
3
2
1 6867 66 65 6463 62 61  
60  
C3 10  
T2BIC2 / PWM  
11  
12  
13  
14  
15  
16  
59  
58  
57  
56  
55  
54  
C4  
C5  
C6  
C7  
T2BEVT  
D3 / SYSCLK  
D4 / R / W  
D5 / CSPF  
D6/CSH1/EDS  
D7/CSE1/WAIT  
RESET  
INT1  
INT2  
INT3  
SPISOMI  
SPISIMO  
V
CC2  
V
SS2  
Internal System Memory Configurations  
– On-Chip Program Memory Versions  
– ROM: 24K, 32K, or 48K Bytes  
– EPROM: 32K or 48K Bytes  
A0 17  
53  
52  
51  
50  
49  
48  
47  
18  
19  
20  
21  
22  
23  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
SPICLK  
T1IC/CR  
T1PWM  
T1EVT  
– Data EEPROM: 256 Bytes  
24  
25  
26  
46  
45  
44  
T2AEVT  
T2AIC2/PWM  
– Static RAM: 1K or 3.5K Bytes  
– External Memory/Peripheral Wait States  
– Precoded External Chip-Select Outputs  
in Microcomputer Mode  
27 28 2930 31 32 3334 35 3637 38 39 4041 42 43  
Flexible Operating Features  
– Low-Power Modes: STANDBY and HALT  
– Commercial, Industrial, and Automotive  
Temperature Ranges  
Serial Peripheral Interface (SPI)  
– Variable-Length High-Speed Shift  
Register  
– Clock Options  
– Synchronous Master/Slave Operation  
– Divide-by-4 (0.5 MHz – 5 MHz SYSCLK)  
– Divide-by-1 (2 MHz – 5 MHz SYSCLK)  
PLL  
Flexible Interrupt Handling  
– Two S/W Programmable Interrupt Levels  
– Global- and Individual-Interrupt Masking  
– Programmable Rising- or Falling-Edge  
Detect  
– Supply Voltage (V ): 5 V ± 10%  
CC  
Eight-Channel 8-Bit Analog-to-Digital  
Converter 1 (ADC1)  
Three 16-Bit General Purpose Timers  
– Software Configurable as  
TMS370 Series Compatibility  
– Register-to-Register Architecture  
– 256 General-Purpose Registers  
– 14 Powerful Addressing Modes  
– Instructions Upwardly Compatible With  
All TMS370 Devices  
Three 16-Bit Event Counters, or  
Three 16-Bit Pulse Accumulators, or  
Five 16-Bit Input Capture Functions, or  
Six Compare Registers, or  
CMOS/Package /TTL-Compatible I/O Pins  
– 46 Bidirectional Pins, 9 Input Pins  
– 68-Pin Plastic and Ceramic Leaded Chip  
Carrier Packages  
– All Peripheral Function Pins Are  
Software Configurable for Digital I/O  
Three Self-Contained PWM Functions  
– One Timer Has an 8-Bit Prescaler,  
Providing a 24-Bit Real-Time Timer  
On-Chip 24-Bit Watchdog Timer  
– EPROM/OTP: Standard Watchdog  
– Mask-ROM Devices: Hard Watchdog,  
Simple Counter, or Standard Watchdog  
Workstation/PC-Based Development  
System  
Serial Communications Interface (SCI1)  
– C Compiler and C Source Debugger  
– Real-Time In-Circuit Emulation  
– Extensive Breakpoint/Trace Capability  
– Software Performance Analysis  
– Multi-Window User Interface  
– Microcontroller Programmer  
– Asynchronous and Isosynchronous  
Modes  
– Full Duplex, Double-Buffered RX and TX  
– Two Multiprocessor Communication  
Formats  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Isosynchronous = Isochronous  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Pin Descriptions  
PIN  
I/O  
DESCRIPTION  
ALTERNATE  
FUNCTION  
PLCC  
(68)  
NAME  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
17  
18  
19  
20  
21  
22  
23  
24  
Single-chip mode: Port A is a general-purpose bidirectional I/O port.  
I/O Expansion mode: Port A can be individually programmed as the external bidirectional data  
bus (DATA0DATA7).  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
65  
66  
67  
68  
1
2
3
4
Single-chip mode: Port B is a general-purpose bidirectional I/O port.  
I/O Expansion mode: Port B can be individually programmed as the low-order address output  
bus (ADDR0ADDR7).  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
ADDR8  
ADDR9  
5
7
8
10  
11  
12  
13  
14  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
Single-chip mode: Port C is a general-purpose bidirectional I/O port.  
I/O Expansion mode: Port C can be individually programmed as the high-order address output  
bus (ADDR8ADDR15).  
INT1  
INT2  
INT3  
NMI  
52  
51  
50  
I
External (nonmaskable or maskable) interrupt/general-purpose input pin  
I/O External maskable interrupt input/general-purpose bidirectional pin  
I/O External maskable interrupt input/general-purpose bidirectional pin  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
36  
37  
38  
39  
40  
41  
42  
43  
ADC1 analog input (AN0AN7) or positive reference pins (AN1AN7)  
Port E can be programmed individually as general-purpose input pins if not used as ADC1  
analog input or positive reference input.  
I
V
CC3  
V
SS3  
34  
35  
ADC1 positive-supply voltage and optional positive-reference input pin  
ADC1 ground reference pin  
System reset bidirectional pin. RESET, as an input, initializes the microcontroller; as  
RESET  
53  
I/O open-drain output, RESET indicates an internal failure was detected by the watchdog or  
oscillator fault circuit.  
Mode control (MC) pin. MC enables EEPROM write-protection override (WPO) mode, also  
I
MC  
6
EPROM V  
.
PP  
XTAL2/CLKIN  
XTAL1  
31  
32  
I
O
Internal oscillator crystal input/external clock source input  
Internal oscillator output for crystal  
V
V
33, 61  
15, 63  
Positive supply voltage  
Positive supply voltage  
CC1  
CC2  
I = input, O = output  
Ports A, B, C, and D can be configured only as general-purpose I/O pins. Also, port D3 can be configured as SYSCLK.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Pin Descriptions (Continued)  
PIN  
I/O  
DESCRIPTION  
ALTERNATE  
FUNCTION  
PLCC  
(68)  
NAME  
V
V
9
Ground reference for digital logic  
Ground reference for digital I/O logic  
SS1  
16,62  
SS2  
Single-chip mode: Port D is a general-purpose bidirectional I/O port. Each of the  
portDpinscanbeconfiguredindividuallyasageneral-purposeI/Opin, primarymemory  
control signal (function A), or secondary memory control signal (function B). All chip  
selects are independent and can be used for memory-bank switching. See Table 1 for  
function A memory accesses.  
FUNCTION  
A
B
D3  
D4  
SYSCLK SYSCLK  
58  
57  
I/O pin A, B: Internal clock signal is 1/1 (PLL) or 1/4 XTAL2/CLKIN frequency  
I/O pin A, B: Read/write output pin  
R/W  
R/W  
I/O pin A: Chip select peripheral output for peripheral file goes low during memory  
D5  
CSPF  
56  
accesses  
I/O pin B: Reserved  
I/O  
I/O pin A: Chip select half output 1 goes low during memory accesses  
I/O pin B: External data strobe output goes low during memory accesses from external  
memory and has the same timings as the five chip selects.  
D6  
D7  
CSH1  
CSE1  
EDS  
55  
54  
I/O pin A: Chip select eighth output goes low during memory accesses.  
I/O pin B: Wait-input pin extends bus signals.  
WAIT  
§
SCITXD  
SCIRXD  
SCICLK  
SCIIO1  
SCIIO2  
SCIIO3  
30  
29  
28  
SCI transmit data output pin/general-purpose bidirectional pin  
I/O SCI receive data input pin/general-purpose bidirectional pin  
SCI bidirectional serial clock pin/general-purpose bidirectional pin  
T1IC/CR  
T1PWM  
T1EVT  
T1IO1  
T1IO2  
T1IO3  
46  
45  
44  
Timer1 input capture/counter reset input pin/general-purpose bidirectional pin  
I/O Timer1 pulse width modulation (PWM) output pin/general-purpose bidirectional pin  
Timer1 external event input pin/general-purpose bidirectional pin  
T2AIC1/CR  
T2AIC2/PWM  
T2AEVT  
T2AIO1  
T2AIO2  
T2AIO3  
27  
26  
25  
Timer2A input capture 1/counter-reset input pin/general-purpose bidirectional pin  
I/O Timer2A input capture 2/PWM output pin/general-purpose bidirectional pin  
Timer2A external event input pin/general-purpose bidirectional pin  
T2BIC1/CR  
T2BIC2/PWM  
T2BEVT  
T2BIO1  
T2BIO2  
T2BIO3  
64  
60  
59  
Timer2B input capture 1/counter-reset input pin/general-purpose bidirectional pin  
I/O Timer2B input capture 2/PWM output pin/general-purpose bidirectional pin  
Timer2B external event input pin/general-purpose bidirectional pin  
SPISOMI  
SPISIMO  
SPICLK  
SPIIO1  
SPIIO2  
SPIIO3  
49  
48  
47  
SPI slave output pin, master input pin/general-purpose bidirectional pin  
I/O SPI slave input pin, master output pin/general-purpose bidirectional pin  
SPI bidirectional serial clock pin/general-purpose bidirectional pin  
§
I = input, O = output  
Ports A, B, C, and D can be configured only as general-purpose I/O pins. Port D3 also can be configured as SYSCLK.  
The three-pin configuration SCI is referred to as SCI1.  
Table 1. Function A Memory-Access Locations for ‘x6x Devices  
FUNCTION A  
’X67  
‘X68  
‘X69  
CSE1  
A000h – BFFFh (8K bytes)  
C000h – FFFFh (16K bytes)  
10C0h – 10FFh (64 bytes)  
A000h – BFFFh (8K bytes)  
C000h – FFFFh (16K bytes)  
10C0h – 10FFh (64 bytes)  
E000h – EFFFh (4K bytes)  
F000h – FFFFh (4K bytes)  
10C0h – 10FFh (64 bytes)  
CSH1  
CSPF  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
functional block diagram  
E0E7  
or  
AN0AN7  
INT1 INT2 INT3 XTAL1 XTAL2/  
CLKIN  
MC RESET  
V
V
CC3  
Clock Options:  
Divide-by-4 or  
Divide-by-1(PLL)  
Analog to Digital  
Converter 1  
Interrupts  
System Control  
SS3  
SPISOMI  
SPISIMO  
SPICLK  
Serial  
Peripheral  
Interface  
RAM  
1K or 3.5K Bytes  
CPU  
SCIRXD  
SCITXD  
SCICLK  
Serial  
Communications  
Interface 1  
Program Memory  
ROM: 24K, 32K, or  
48K Bytes  
Data EEPROM  
256 Bytes  
T2BIC1/CR  
T2BEVT  
EPROM: 32K or  
Timer 2B  
Timer 2A  
Timer 1  
48K Bytes  
T2BIC2/PWM  
T2AIC1/CR  
T2AEVT  
T2AIC2/PWM  
Memory Expansion  
T1IC/CR  
T1EVT  
T1PWM  
Watchdog  
Port A  
8
Port B  
8
Port C  
Port D  
V
CC1  
V
SS1  
8
5
V
SS2  
V
CC2  
description  
The TMS370C067, TMS370C068, TMS370C069, TMS370C768, TMS370C769, SE370C768, and  
SE370C769 devices are members of the TMS370 family of single-chip 8-bit microcontrollers. Unless otherwise  
noted, the term TMS370Cx6x refers to these devices. The TMS370 family provides cost-effective real-time  
control through integration of advanced peripheral function modules and various on-chip memory  
configurations.  
The TMS370Cx6x family of devices is implemented using high-performance silicon-gate CMOS EPROM and  
EEPROM technologies. The low-operating power, wide-operating temperature range, and noise immunity of  
CMOS technology, coupled with the high performance and extensive on-chip peripheral functions, make the  
TMS370Cx6x devices attractive in system designs for automotive electronics, industrial motor control,  
computer peripheral control, telecommunications, and consumer application.  
All TMS370Cx6x devices contain the following on-chip peripheral modules:  
8-channel, 8-bit analog-to-digital converter 1 (ADC1)  
Serial communications interface 1 (SCI1)  
Serial peripheral interface (SPI)  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
description (continued)  
One 24-bit general-purpose watchdog timer  
Three 16-bit general-purpose timers (one with an 8-bit prescaler)  
Table 2 provides a memory configuration overview of the TMS370Cx6x devices.  
Table 2. Memory Configurations  
PROGRAM  
MEMORY  
(BYTES)  
DATA MEMORY  
(BYTES)  
OPERATING  
MODES  
OFF-CHIP  
MEMORY  
EXP. (BYTES)  
PACKAGES  
68-PIN PLCC/CLCC  
DEVICE  
ROM EPROM  
RAM  
1K  
EEPROM  
256  
µC  
µP  
TMS370C067A  
24K  
32K  
24K  
24K  
8K  
FN – PLCC  
FN – PLCC  
FN – PLCC  
FN – PLCC  
FN – PLCC  
FZ – CLCC  
FZ – CLCC  
TMS370C068A  
TMS370C069A  
TMS370C768A  
TMS370C769A  
1K  
256  
48K  
3.5K  
1K  
256  
32K  
24K  
8K  
256  
48K  
3.5K  
1K  
256  
§
SE370C768A  
SE370C769A  
32K  
24K  
8K  
256  
§
48K  
3.5K  
256  
µC – Microcomputer mode  
µP – Microprocessor mode  
’x69 can only operate up to 3 MHz SYSCLK.  
§
System evaluators and development tools are for use only in a prototype environment, and their reliability has not been characterized.  
The suffix letter (A) appended to the device names shown in the device column of Table 2 indicates the  
configuration of the device. ROM or EPROM devices have different configurations as indicated in Table 3. ROM  
devices with the suffix letter A are configured through a programmable contact during manufacture.  
Table 3. Suffix Letter Configuration  
DEVICE  
WATCHDOG TIMER  
Standard  
CLOCK  
LOW-POWER MODE  
EPROM A  
Divide-by-4 (Standard oscillator)  
Enabled  
Standard  
ROM A  
Hard  
Divide-by-4 or Divide-by-1 (PLL)  
Enabled or disabled  
Simple  
Refer to the “device numbering conventions” section for device nomenclature and the “device part numbers” section for ordering.  
The mask-programmable ROM in the associated TMS370C06x devices is replaced in the TMS370C76x with  
32K or 48K bytes of EPROM while all the other available memory and on-chip peripherals are identical.  
One-time-programmable (OTP) (TMS370C768 and TMS370C769) and reprogrammable devices (SE370C768  
and SE370C769) are available.  
TMS370C768 and TMS370C769 are OTP devices that are available in plastic packages. This microcomputer  
is effective to use for immediate production updates for other members of the TMS370Cx6x family or for  
low-volume production runs when the mask charge or cycle time for low-cost mask-ROM devices is not  
practical.  
The SE370C768 and SE370C769 have windowed ceramic packages to allow reprogramming of the program  
EPROM memory during the development/prototyping phase of design. The SE370C768 and SE370C769  
devices allow quick updates to breadboards and prototype systems while iterating initial designs.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
description (continued)  
The TMS370Cx6x family provides two low-power modes (STANDBY and HALT) for applications where  
low-powerconsumptioniscritical. Bothmodesstopallcentralprocessingunit(CPU)activity(i.e., noinstructions  
are executed). In the STANDBY mode, the internal oscillator and the general-purpose timer remain active. In  
the HALT mode, all device activity is stopped. The device retains all RAM data and peripheral configuration bits  
throughout both low-power modes.  
The TMS370Cx6x features advanced register-to-register architecture that allows direct arithmetic and logical  
operations without requiring an accumulator (for example, ADD R24, R47; add the contents of register 24 to  
the contents of register 47 and store the result in register 47). The TMS370Cx6x family is fully instruction-set  
compatible, allowing easy transition between members of the TMS370 8-bit microcontroller family.  
The SPI and the two operational modes of the SCI1 allow three methods of serial communications. The SCI1  
allows standard RS-232-C communications interface between other common data transmission equipment,  
while the SPI gives high-speed communications between simpler shift-register type devices, such as display  
drivers, ADC1, phase-locked loop (PLL), I/O expansion, or other microcontrollers in the system.  
For large memory applications, the TMS370Cx6x family provides an external bus with non-multiplexed address  
and data. Precoded memory chip-select outputs can be enabled, which allows minimum-chip-count system  
implementations. Wait-state support facilitates performance matching among the CPU, external memory, and  
the peripherals. All pins associated with memory expansion interface are individually software configurable for  
general purpose digital input/output (I/O) pins when operating in the microcomputer mode.  
The TMS370Cx6x family provides the system designer with an economical, efficient solution to real-time control  
applications. The TMS370 family compact development tool (CDT ) solves the challenge of efficiently  
developing the software and hardware required to design the TMS370Cx6x into an ever-increasing number of  
complex applications. The application source code can be written in assembly and C language, and the output  
code can be generated by the linker. The TMS370 family CDT development tool can communicate through a  
standard RS-232-C interface with an existing personal computer. This allows the use of the personal computer  
editors and software utilities already familiar to the designer. The TMS370 family CDT emphasizes extensive  
use of menus and screen windowing so that a system designer with minimal training can begin developing  
software. Precise real-time in-circuit emulation and extensive symbolic debug and analysis tools ensure  
efficient software and hardware implementation as well as reduced time-to-market cycle.  
The TMS370Cx6x family together with the TMS370 family CDT370, starter kit, software tools, the SE370C76x  
reprogrammable devices, comprehensive product documentation, and customer support provide a complete  
solution to the needs of the system designer.  
CDT is a trademark of Texas Instruments Incorporated.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
modes  
The TMS370Cx6x has four operating modes, two basic modes with each mode having two memory  
configurations. The basic operating modes are the microcomputer and microprocessor modes, which are  
selected by the voltage level applied to the dedicated MC pin two cycles before RESET goes inactive. The two  
memory configurations then are selected through software programming of the internal system configuration  
registers. Thefouroperatingmodesarethemicrocomputersinglechip, microcomputerwithexternalexpansion,  
microprocessor without internal program memory, and microprocessor with internal program memory. These  
modes are described in the following list.  
Microcomputer single chip mode:  
Operates as a self-contained microcomputer with all memory and peripherals on-chip  
Maximizes the general-purpose I/O capability for real-time control applications  
Microcomputer with external expansion mode:  
Supports bus expansion to external memory or peripherals, while all on-chip memory (RAM, ROM,  
EPROM, and data EEPROM) remains active  
Configures digital I/O ports (ports A, B, C, and D) through software, under control of the associated port  
control, to become external memory as follows:  
Port A: 8-bit data memory  
Port B and Port C: 16-bit address memory  
Port D: 5-bit control memory (pin not used as function A or B can be configured as I/O)  
Utilizes the pins available (not used for address, data, or control memory) as general-purpose  
input/output by programming them individually  
Lowers the system cost by not requiring an external address/data latch (address memory and data  
memory are nonmultiplexed)  
Reduces external interface decode logic by using the precoded chip select outputs that provide direct  
memory/peripheral chip select or chip enable functions  
Function A maps up to 24K bytes of external memory into the address space by using CSE1 and CSH1  
as memory-bank selects under software control.  
Function B maps up to 24K bytes of external memory into the address space by using EDS under  
software control.  
Microprocessor without internal program memory mode:  
Ports A, B, C, and D (these ports are not programmable) become the address, data, and control buses  
for interface to external memory and peripherals.  
On-chip RAM and data EEPROM remain active, while the on-chip ROM or EPROM is disabled.  
Program area and the reset, interrupt, and trap vectors are located in off-chip memory locations.  
Microprocessor with internal program memory mode:  
Configured as the microprocessor without internal program memory mode with respect to the external  
bus interface  
Application program in external memory enables the internal program ROM or EPROM to be active in  
the system. (Writing a zero to the MEMORY DISABLED control bit (SCCR1.2) of the SCCR1 control  
register accomplishes this.)  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
memory/peripheral wait operation  
The TMS370Cx6x enhances interface flexibility by providing WAIT-state support, decoupling the cycle time of  
the CPU from the read/write access of the external memory or peripherals. External devices can extend the  
read/write accesses indefinitely by placing an active low on the WAIT input pin. The CPU continues to wait as  
long as WAIT remains active.  
Programmable automatic wait-state generation also is provided by the TMS370Cx6x on-chip bus controller.  
Following a hardware reset, the TMS370Cx6x is configured to add one wait state to all external bus transactions  
and memory and peripheral accesses, thus making every external access a minimum of three system clock  
cycles. The designer can disable the automatic wait-state generation if the AUTOWAIT DISABLE bit in SCCR1  
is set to 1. Also, all accesses to the upper four frames of the peripheral file can be extended independently to  
four system clock cycles if the PF AUTO WAIT bit in SCCR0 is set to one. Programmable wait states can be  
used in conjunction with the external WAIT pin. In applications where the external device read/write access can  
interface with the TMS370Cx6x CPU using one wait state, the automatic wait-state generation can eliminate  
external WAIT interface logic, lowering system cost.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
CPU  
The CPU used on TMS370Cx6x devices is the high-performance 8-bit TMS370 CPU module. The ’x6x  
implements an efficient register-to-register architecture that eliminates the conventional accumulator  
bottleneck. The complete ’x6x instruction set is summarized in Table 22. Figure 1 illustrates the CPU registers  
and memory blocks.  
Program Counter (PC)  
15  
0
Legend:  
Stack Pointer (SP)  
7
0
C=Carry  
N=Negative  
Status Register (ST)  
Z=Zero  
C
7
N
6
Z
5
V
4
IE2 IE1  
V=Overflow  
IE2=Level2 interrupts Enable  
IE1=Level1 interrupts Enable  
3
2
1
0
0000h  
00FFh  
0100h  
1K-Byte RAM (0000h03FFh)  
3.5K-Byte RAM (0000h0DFFh)  
03FFh  
0400h  
0DFFh  
0E00h  
Reserved  
0FFFh  
1000h  
10BFh  
10C0h  
10FFh  
1100h  
Peripheral File  
Peripheral Expansion  
Reserved  
RAM (Includes 256-Byte Registers File)  
0000h  
R0(A)  
R1(B)  
1EFFh  
1F00h  
0001h  
0002h  
0003h  
256-Byte Data EEPROM  
R2  
R3  
1FFFh  
2000h  
24K-Byte ROM (2000h7FFFh)  
R127  
007Fh  
7FBDh  
7FBEh  
Interrupts and Reset Vectors;  
Trap Vectors  
7FFFh  
8000h  
32K-Byte ROM/EPROM (2000h9FFFh)  
48K-Byte ROM/EPROM (2000hDFFFh)  
Memory Expansion  
9FFFh  
A000h  
DFFFh  
E000h  
FFFFh  
R255  
00FFh  
Reserved means the address space is reserved for future expansion.  
Figure 1. Programmer’s Model  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
CPU (continued)  
The ’x6x CPU architecture provides the following components:  
CPU registers:  
A stack pointer that points to the last entry in the memory stack  
A status register that monitors the operation of the instructions and contains the global-interrupt-enable  
bits  
A program counter (PC) that points to the memory location of the next instruction to be executed  
A memory map that includes :  
1K- or 3.5K-byte general-purpose RAM that can be used for data-memory storage, program  
instructions, general-purpose register, or the stack (can be located only in the first 256 bytes)  
A peripheral file that provides access to all internal peripheral modules, system-wide control functions,  
and EEPROM/EPROM programming control  
256-byte EEPROM module that provides in-circuit programmability and data retention in power-off  
conditions  
24K-, 32K-, or 48K-byte ROM or 32K-, or 48K-byte EPROM program memory  
stack pointer (SP)  
The SP is an 8-bit CPU register. The stack operates as a last-in, first-out, read/write memory. The stack is used  
typically to store the return address on subroutine calls as well as the status-register contents during interrupt  
sequences.  
The SP points to the last entry or to the top of the stack. The SP increments automatically before data is pushed  
onto the stack and decrements after data is popped from the stack. The stack can be located only in the first  
256 bytes of the on-chip RAM memory.  
status register (ST)  
The ST monitors the operation of the instructions and contains the global-interrupt-enable bits. The ST includes  
four status bits (condition flags) and two interrupt-enable bits:  
The four status bits indicate the outcome of the previous instruction; conditional instructions (for example,  
the conditional-jump instructions) use these status bits to determine program flow.  
The two interrupt-enable bits control the two interrupt levels.  
The ST register, status bit notation, and status bit definitions are shown in Table 4.  
Table 4. Status Registers  
7
C
6
N
5
Z
4
V
3
2
1
0
IE2  
IE1  
Reserved  
Reserved  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
R = read, W = write, 0 = value after reset  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
CPU (continued)  
program counter (PC)  
The contents of the PC point to the memory location of the next instruction to be executed. The PC consists  
of two 8-bit registers in the CPU: the program counter high (PCH) and program counter low (PCL). These  
registers contain the most-significant byte (MSbyte) and least-significant byte (LSbyte) of a 16-bit address.  
The contents of the reset vector (7FFEh, 7FFFh) are loaded into the program counter during reset. The PCH  
(MSbyte of the PC) is loaded with the contents of memory location 7FFEh, and the PCL (LSbyte of the PC) is  
loaded with the contents of memory location 7FFFh. Figure 2 shows this operation using an example value of  
6000h as the contents of memory locations 7FFEh and 7FFFh (reset vector).  
Program Counter  
Memory  
PCH  
60  
PCL  
00  
0000h  
60  
00  
7FFEh  
7FFFh  
Figure 2. Program Counter After Reset  
memory map  
The TMS370Cx6x architecture is based on the Von Neuman architecture, where the program memory and data  
memory share a common address space. All peripheral input/output is memory mapped in this same common  
address space. In the expansion mode, external memory peripherals are also memory-mapped into this  
common address. As shown in Figure 3, the TMS370Cx6x provides a 16 bit-address range to access internal  
or external RAM, ROM, data EEPROM, EPROM input/output pins, peripheral functions, and system-interrupt  
vectors.  
The peripheral file contains all input/output port control, on- and off-chip peripheral status and control, EPROM,  
EEPROM programming, and system-wide control functions. The peripheral file consists of 256 contiguous  
addresses located from 1000h to 10FFh. The 256 contiguous addresses are logically divided into 16 peripheral  
file frames of 16 bytes each. Each on-chip peripheral is assigned to a separate frame through which peripheral  
control and data information is passed. The TMS370Cx6x has its on-chip peripherals and system control  
assigned to peripheral file frames 1 through 8, addresses 1010h through 108Fh.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
memory map (continued)  
’X69  
’X68 ’X67  
’X69  
’X68 ’X67  
’X69  
’X68 ’X67  
’X69  
’X68 ’X67  
Peripheral File Control Registers  
Reserved  
0000h  
0000h  
0400h  
1000h–100Fh  
1K-Byte RAM  
(0000h–03FFh)  
System Control  
Digital Port Control  
1010h–101Fh  
1020h–102Fh  
1030h–103Fh  
1040h–104Fh  
1050h–105Fh  
1060h–106Fh  
1070h–107Fh  
1080h–108Fh  
1090h–109Fh  
SPI Peripheral Control  
Timer 1 Peripheral Contr.  
SCI1 Peripheral Contr.  
Timer 2A Peripheral Contr.  
ADC1 Peripheral Contr.  
Timer 2B Periph. Contr.  
Reserved  
0400h  
0E00h  
3.5K-Byte RAM  
(0000h–0DFFh)  
0E00h  
1000h  
10C0h  
1100h  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Peripheral File  
1000h  
10C0h  
§
§
§
External  
Not Available  
External  
External  
Peripheral Expansion  
1100h  
Reserved  
Vectors  
Timer 2B  
Reserved  
Reserved  
Reserved  
Reserved  
7FBEh–7FBFh  
7FC0h–7FCFh  
7FE0h–7FEBh  
7FECh–7FEDh  
7FEEh–7FEFh  
7FF0h–7FF1h  
7FF2h–7FF3h  
7FF4h–7FF5h  
7FF6h–7FF7h  
7FF8h–7FF9h  
7FFAh–7FFBh  
7FFCh–7FFDh  
7FFEh–7FFFh  
1F00h  
2000h  
1F00h  
2000h  
Trap 15 – 0  
256-Byte Data EEPROM  
(1F00h–1FFFh)  
Reserved  
A /D Converter  
Timer 2A  
24K-Byte ROM  
(2000h–7FFFh)  
Serial Comm I /F TX  
Serial Comm I /F RX  
Timer 1  
7FBEh  
8000h  
A000h  
Interrupts and Reset  
Vectors; Trap Vectors  
§
External  
8000h  
A000h  
Serial Peripferal I /F  
Interrupt 3  
32K-Byte ROM /EPROM  
(2000h–9FFFh)  
N / A  
N / A  
48K-Byte ROM /EPROM  
(2000h–DFFFh)  
Interrupt 2  
E000h  
FFFFh  
Interrupt 1  
E000h  
FFFFh  
Not Available  
(N /A)  
§
§
External  
Memory Expansion  
External  
Reset  
Microprocessor Mode  
Microcomputer  
Single Chip Mode  
Microcomputer  
Microprocessor With  
Internal Program  
Memory  
Mode With External  
Expansion  
On-Chip For TMS370Cx69 Devices  
On-Chip For TMS370Cx68 Devices  
On-Chip For TMS370Cx67 Devices  
§
Reserved = the address space is reserved for future expansion.  
Not available (N/A) = address space is unavailable in the mode illustrated.  
Precoded chip select outputs available on external expansion bus.  
Microprocessor mode is designed for ROM-less devices. ROM and EPROM devices also can be used in this mode, but all on-chip memory is  
ignored.  
Figure 3. TMS370Cx6x Memory Map  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
RAM/register file (RF)  
Locations within RAM address space can serve as either register file or general-purpose read/write memory,  
program memory, or stack instructions. The TMS370Cx67 and TMS370Cx68 devices contain 1K bytes of  
internal RAM, mapped beginning at location 0000h and continuing through location 03FFh, which is shown in  
Table 5 along with ’x69 devices.  
Table 5. RAM Memory Map  
‘x67 and ‘x68  
1K Bytes  
‘x69  
RAM Size  
3.5K Bytes  
Memory Mapped  
0000h – 03FFh  
0000h – 0DFFh  
The first 256 bytes of RAM (0000h – 00FFh) are register files, R0 through R255 (see Figure 1). The first two  
registers, R0 and R1, are also called register A and B, respectively. Some instructions implicitly use register A  
or B; for example, the instruction LDSP (load SP) assumes that the value to be loaded into the stack pointer  
is contained in register B. Registers A and B are the only registers cleared on reset.  
peripheral file (PF)  
The TMS370Cx6x control registers contain all the registers necessary to operate the system and peripheral  
modules on the device. The instruction set includes some instructions that access the PF directly. These  
instructions designate the register by the number of the PF relative to 1000h, preceded by P0 for a hexadecimal  
designator or by P for a decimal designator. For example, the system control register 0 (SCCR0) is located at  
address 1010h; its peripheral file hexadecimal designator is P010, and its decimal designator is P16. Table 6  
lists the TMS370Cx6x peripheral files.  
Table 6. TMS370Cx6x Peripheral File Address Map  
PERIPHERAL FILE  
ADDRESS RANGE  
DESCRIPTION  
DESIGNATOR  
P000P00F  
P010P01F  
P020P02F  
P030P03F  
P040P04F  
P050P05F  
P060P06F  
P070P07F  
P080P08F  
P090P0BF  
P0C0P0FF  
1000h100Fh  
1010h101Fh  
1020h102Fh  
1030h103Fh  
1040h104Fh  
1050h105Fh  
1060h106Fh  
1070h107Fh  
1080h108Fh  
1090h10BFh  
10C0h10FFh  
Reserved for factory test  
System and EEPROM/EPROM control registers  
Digital I/O port control registers  
Serial peripheral interface registers  
Timer 1 registers  
Serial communication interface 1 registers  
Timer 2A registers  
Analog-to-digital converter 1 registers  
Timer 2B registers  
Reserved  
External peripheral control  
data EEPROM  
The TMS370Cx6x devices contain 256 bytes of data EEPROM, and the memory is mapped beginning at  
location 1F00h and continuing through location 1FFFh.  
Writing to the data EEPROM module is controlled by the data-EEPROM control register (DEECTL) and the  
write-protection register (WPR). Programming algorithm examples are available in the TMS370 Family User’s  
Guide (literature number SPNU127) or the TMS370 Data Manual (SPNS014B). The data EEPROM features  
include the following:  
Programming:  
Bit, byte, and block write/erase modes  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
data EEPROM (continued)  
Internal charge pump circuitry. No external EEPROM programming voltage supply is needed.  
Control register: Data EEPROM programming is controlled by the data EEPROM control register  
(DEECTL) located in the PF frame beginning at location P01A.  
In-circuit programming capability: There is no need to remove the device to program it.  
Write-protection: Writes to the data EEPROM are disabled during the following conditions:  
Reset: All programming of the data EEPROM module is halted.  
Write protection active: there is one write-protect bit per 32-byte EEPROM block.  
Low-power mode operation  
Write protection can be overridden by applying 12 V to MC.  
Table 7 shows the memory map of the control registers.  
Table 7. Data EEPROM and Program EPROM Control Registers Memory Map  
NAME  
ADDRESS  
P014  
SYMBOL  
EPCTLH  
Program EPROM control register – high array  
Reserved  
P015P016  
P017  
INT1  
INT2  
External interrupt 1 control register  
External interrupt 2 control register  
External interrupt 3 control register  
Data EEPROM control register  
Reserved  
P018  
P019  
INT3  
P01A  
DEECTL  
P01B  
P01C  
EPCTLM  
EPCTLL  
Program EPROM control register – middle array  
Reserved  
P01D  
P01E  
Program EPROM control register – low array  
For the 24K- and 32K-byte EPROM device, the program memory is controlled by P01C and P01E; for the 48K-byte EPROM device, the program  
memory is controlled by P014, P01C, and P01E.  
program EPROM  
The ‘370C767 program EPROM consists of 24K bytes that are made up of one 16K-byte array and one 8K-byte  
array of EPROM; the 16K-byte array is located at address locations 2000h through 5FFFh, and the 8K-byte  
array is located at address locations 6000h through 7FFFh. The ‘370C768 program EPROM consists of 32K  
bytes that aremadeupoftwo16K-bytearraysofEPROM;thefirst16K-bytearrayislocatedataddresslocations  
2000h through 5FFFh, and the second 16K-byte array is located at address locations 6000h through 9FFFh.  
The ’370C769 program EPROM consists of 48K bytes that are made up of three 16K-byte arrays of EPROM;  
the first 16K-byte array is located at address locations 2000h through 5FFFh, the second 16K-byte array is  
located at address locations 6000h through 9FFFh, the third 16K-byte array is located at address locations  
A000h through DFFFh as shown in Table 8.  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
program EPROM (continued)  
Table 8. EPROM Memory Map  
’767  
’768  
’769  
EPROM  
24K Bytes  
size  
32K Bytes  
48K Bytes  
Memory  
mapped  
16K  
8K  
First 16K  
Second 16K  
First 16K  
2000h5FFFh  
Second 16K  
6000h9FFFh  
Third 16K  
A000hDFFFh  
2000h5FFFh 6000h7FFFh 2000h5FFFh 6000h9FFFh  
Contol  
registers  
EPCTLL  
P01E  
EPCTLM  
P01C  
EPCTLL  
P01E  
EPCTLM  
P01C  
EPCTLL  
P01E  
EPCTLM  
P01C  
EPCTLH  
P014  
The EPROM memory map in Table 8 expresses the following:  
For the 24K-byte EPROM, the 16K-byte array is controlled by EPCTLL register, located at 101Eh  
(P01E); the 8K-byte array is controlled by EPCTLM register, located at 101Ch (P01C).  
For the 32K-byte EPROM, the first 16-byte array is controlled by EPCTLL register, located at 101Eh  
(P01E); the second 16K-byte array is controlled by EPCTLM register, located at 101Ch (P01C).  
For the 48K-bytes EPROM, the first 16K-byte array is controlled by EPCTLL register, located at 101Eh  
(P01E);thesecond16K-bytearrayiscontrolledbyEPCTLMregister, locatedat101Ch(P01C);thethird  
16K-byte array is controlled by EPCTLH register, located at 1014h (P014).  
Reading the program-EPROM modules is identical to reading other internal memory. During programming, the  
EPROM is controlled by the EPCTL. The program EPROM modules’ features include:  
Programming  
In-circuit programming capability if V is applied to MC  
PP  
Control register: Program EPROM programming is controlled by the program EPROM control registers  
(EPCTLL, EPCTLM, and EPCTLH) located in the PF frame as shown in Table 7.  
Programming one EPROM module while executing the other  
Write protection: Writes to the program EPROM are disabled under the following conditions:  
Reset: All programming to the EPROM module is halted.  
Low-power modes  
13 V not applied to MC  
program ROM  
The program ROM consists of 24K, 32K or 48K bytes of mask-programmable ROM. The program ROM is used  
for permanent storage of data or instructions. Programming of the mask ROM is performed at the time of device  
fabrication. Table 9 shows the program ROM memory map.  
Table 9. ROM Memory Map  
‘067  
’068  
‘069  
ROM Size  
24K Bytes  
32K Bytes  
48K Bytes  
Memory Mapped  
2000h – 7FFFh  
2000h – 9FFFh  
2000h – DFFFh  
Memory addresses 7FE0h through 7FEBh are reserved for Texas Instruments Incorporated. Memory addresses 7FBEh through 7FBFh and  
7FECh through 7FFFh are reserved for interrupts and reset vectors. Trap vectors, used with TRAP0 through TRAP15 instructions, are located  
at addresses 7FC0h and 7FCFh.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
system reset  
The system-reset operation ensures an orderly start-up sequence for the TMS370Cx6x CPU-based device.  
There are up to three different actions that can cause a system reset to the device. Two of these actions are  
internally generated, while one (RESET) is controlled externally. These actions are as follows:  
Watchdog (WD) timer. A watchdog-generated reset occurs if an improper value is written to the WD key  
register, or if the re-initialization does not occur before the watchdog timer timeout . See the TMS370 Family  
User’s Guide (literature number SPNU127) or the TMS370 Family Data Manual (literature number  
SPNS014B) for more information.  
Oscillator reset. Reset occurs when the oscillator operates outside the recommended operating range. See  
the TMS370 Family User’s Guide (literature number SPNU127) or the TMS370 Family Data Manual  
(literature number SPNS014B) for more information.  
External RESET Pin. A low level signal can trigger an external reset. To ensure a reset, the external signal  
should be held low for one SYSCLK cycle. Signals of less than one SYSCLK can generate a reset. See the  
TMS370 Family User’s Guide (literature number SPNU127) or the TMS370 Family Data Manual (literature  
number SPNS014B) for more information.  
Once a reset source is activated, the external RESET pin is driven (active) low for a minimum of eight SYSCLK  
cycles. This allows the ’x6x device to reset external system components. Additionally, if a cold start (V  
is off  
CC  
for several hundred milliseconds) condition or oscillator failure occurs or RESET pin is held low, then the reset  
logic holds the device in a reset state for as long as these actions are active.  
After a reset, the program can check the oscillator fault flag (OSC FLT FLAG, SCCR0.4), the cold start flag  
(COLD START, SCCR0.7) and the watchdog reset (WD OVRFL INT FLAG, T1CTL2.5) to determine the source  
of the reset. A reset does not clear these flags. Table 10 lists the reset sources.  
Table 10. Reset Sources  
REGISTER  
SCCR0  
ADDRESS  
1010h  
PF  
BIT NO.  
CONTROL BIT  
COLD START  
SOURCE OF RESET  
Cold (power-up)  
P010  
P010  
P04A  
7
4
5
SCCR0  
1010h  
OSC FLT FLAG  
Oscillator out of range  
Watchdog timer timeout  
T1CTL2  
104Ah  
WD OVRFL INT FLAG  
Once a reset is activated, the following sequence of events occurs:  
1. The CPU registers are initialized: ST = 00h, SP = 01h (reset state).  
2. Registers A and B are initialized to 00h (no other RAM is changed).  
3. The contents of the LSbyte of the reset vector (07FFh) are read and stored in the PCL.  
4. The contents of the MSbyte of the reset vector (07FEh) are read and stored in the PCH.  
5. Program execution begins with an opcode fetch from the address pointed to by the PC.  
The reset sequence takes 20 SYSCLK cycles from the time the reset pulse is released until the first opcode  
fetch. During a reset, RAM contents (except for registers A and B) remain unchanged, and the module control  
register bits are initialized to their reset state. During RESET, the two basic operating modes which are the  
microcomputer and microprocessor modes can be selected by applying the desired voltage level to the  
dedicated MC pin two cycles before RESET goes inactive. See the mode section for operating modes  
description.  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
interrupts  
The TMS370 family software programmable interrupt structure permits flexible on-chip and external interrupt  
configurations to meet real-time interrupt-driven application requirements. The hardware interrupt structure  
incorporates two priority levels as shown in Figure 4. Interrupt level 1 has a higher priority than interrupt  
level 2. The two priority levels can be independently masked by the global-interrupt mask bits (IE1 and IE2) of  
the status register.  
Each system interrupt is independently configured to either the high- or low-priority chain by the application  
program during system initialization. Within each interrupt chain, the interrupt priority is fixed by the position of  
the system interrupt. However, since each system interrupt is selectively configured on either the high-or-low  
priority interrupt chain, the application program can elevate any system interrupt to the highest priority.  
Arbitration between the two priority levels is performed within the CPU. Arbitration within each of the priority  
chains is performed within the peripheral modules to support interrupt expansion for future modules. Pending  
interrupts are serviced upon completion of current instruction execution, depending on their interrupt mask and  
priority conditions.  
The TMS370Cx6x has ten hardware system interrupts (plus RESET) as shown in Table 11. Each system  
interrupt has a dedicated vector located in program memory through which control is passed to the interrupt  
service routines. A system interrupt can have multiple interrupt sources (e.g., SCI RXINT has two interrupt  
sources). All of the interrupt sources are individually maskable by local interrupt-enable control bits in the  
associated PF. Each interrupt source FLAG bit is individually readable for software polling or to determine which  
interrupt source generated the associated system interrupt. Interrupt control block diagram is illustrated in  
Figure 4.  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
interrupts (continued)  
EXT INT 3  
INT 3  
EXT INT 2  
INT 2  
TIMER 2B  
Overflow  
TIMER 2A  
Overflow  
TIMER 1  
Overflow  
INT3 PRI  
Compare1  
Compare1  
Ext Edge  
Compare1  
INT2 PRI  
Ext Edge  
Ext Edge  
EXT INT1  
Compare2  
Compare2  
Input Capture 1  
Watchdog  
Compare2  
CPU  
INT1  
Input Capture 1  
Input Capture 2  
Input Capture 1  
Input Capture 2  
NMI  
T2B PRI  
T2A PRI  
T1 PRI  
Priority  
Logic  
INT1 PRI  
STATUS REG  
IE1  
Level 1 INT  
Level 2 INT  
IE2  
Enable  
AD INT  
AD PRI  
SCI INT  
SPI INT  
SPI PRI  
TX  
RX  
TXPRI  
RXPRI  
BRKDT  
TXRDY  
RXRDY  
A/D  
SPI  
Figure 4. Interrupt Control  
Seven of the system interrupts are generated by on-chip peripheral functions, and three external interrupts are  
supported. Software configuration of the external interrupts is performed through the INT1, INT2, and INT3  
control registers in PF frame 1. Each external interrupt is individually software configurable for input polarity  
(rising or falling edge) for ease of system interface. External interrupt INT1 is software configurable as either  
a maskable or non-maskable interrupt. When INT1 is configured as nonmaskable, it cannot be masked by the  
individual- or global-enable-mask bits. Recall that the INT1 NMI bit is protected during non-privileged operation  
and therefore should be configured during the initialization sequence following reset. To maximize pin flexibility,  
external interrupts INT2 and INT3 can be software configured as general-purpose input/output pins if the  
interrupt function is not required (INT1 can be similarly configured as an input pin). Table 11 shows the  
interrupt-vector sources, corresponding addresses, and hardware priorities.  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
interrupts (continued)  
Table 11. Hardware-System Interrupts  
SYSTEM  
INTERRUPT  
VECTOR  
ADDRESS  
INTERRUPT SOURCE  
INTERRUPT FLAG  
COLD START  
WD OVRFL INT FLAG  
OSC FLT FLAG  
PRIORITY  
External RESET  
Watchdog overflow  
Oscillator fault detect  
RESET  
7FFEh, 7FFFh  
1
External INT1  
INT1 FLAG  
INT2 FLAG  
INT3 FLAG  
SPI INT FLAG  
INT1  
INT2  
INT3  
7FFCh, 7FFDh  
7FFAh, 7FFBh  
7FF8h, 7FF9h  
7FF6h, 7FF7h  
2
3
4
5
External INT2  
External INT3  
SPI RX/TX complete  
SPIINT  
Timer 1 overflow  
T1 OVRFL INT FLAG  
T1C1 INT FLAG  
T1C2 INT FLAG  
T1EDGE INT FLAG  
T1IC1 INT FLAG  
WD OVRFL INT FLAG  
Timer 1 compare 1  
Timer 1 compare 2  
Timer 1 external edge  
Timer 1 input capture 1  
Watchdog overflow  
§
T1INT  
7FF4h, 7FF5h  
6
SCI RX data register full  
SCI RX break detect  
RXRDY FLAG  
BRKDT FLAG  
RXINT  
7FF2h,7FF3h  
7FF0h, 7FF1h  
7
8
SCI TX data register empty  
TXRDY FLAG  
TXINT  
T2AINT  
ADINT  
T2BINT  
Timer 2A overflow  
T2A OVRFL INT FLAG  
T2AC1 INT FLAG  
T2AC2 INT FLAG  
T2AEDGE INT FLAG  
T2AIC1 INT FLAG  
T2AIC2 INT FLAG  
Timer 2A compare 1  
Timer 2A compare 2  
Timer 2A external edge  
Timer 2A input capture 1  
Timer 2A input capture 2  
7FEEh, 7FEFh  
7FECh, 7FEDh  
7FBEh, 7FBFh  
9
ADC1 conversion complete  
AD INT FLAG  
10  
11  
Timer 2B overflow  
T2B OVRFL INT FLAG  
T2BC1 INT FLAG  
T2BC2 INT FLAG  
T2BEDGE INT FLAG  
T2BIC1 INT FLAG  
T2BIC2 INT FLAG  
Timer 2B compare 1  
Timer 2B compare 2  
Timer 2B external edge  
Timer 2B input capture 1  
Timer 2B input capture 2  
§
Relative priority within an interrupt level  
Release microcontroller from STANDBY and HALT low-power modes  
Release microcontroller from STANDBY low-power mode  
privileged operation and EEPROM write-protection override  
The TMS370Cx6x family has significant flexibility to enable the designer to software-configure the system and  
peripherals to meet the requirements of a broad variety of applications. The nonprivileged mode of operation  
ensures the integrity of the system configuration, once it is defined for an application. Following a hardware  
reset, the TMS370Cx6x operates in the privileged mode, where all peripheral file registers have unrestricted  
read/write access, and the application program configures the system during the initialization sequence  
following reset. As the last step of system initialization, the PRIVILEGE DISABLE bit (SCCR2.0) should be set  
to 1 to enter the nonprivileged mode, disabling write operations to specific configuration control bits within the  
peripheral file. Table 12 lists the system configuration bits that are write-protected during the nonprivileged  
mode and must be configured by software prior to exiting the privileged mode.  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
privileged operation and EEPROM write-protection override (continued)  
Table 12. Privileged Bits  
REGISTER  
CONTROL BIT  
PF AUTOWAIT  
NAME  
LOCATION  
P010.5  
P010.6  
SCCRO  
OSC POWER  
P011.2  
P011.4  
MEMORY DISABLE  
AUTOWAIT DISABLE  
SCCR1  
SCCR2  
P012.0  
P012.1  
P012.3  
P012.4  
P012.6  
P012.7  
PRIVILEGE DISABLE  
INT1 NMI  
CPU STEST  
BUS STEST  
PWRDWN/IDLE  
HALT/STANDBY  
P03F.5  
P03F.6  
P03F.7  
SPI ESPEN  
SPI PRIORITY  
SPI STEST  
SPIPRI  
SCIPRI  
P05F.4  
P05F.5  
P05F.6  
P05F.7  
SCI ESPEN  
SCIRX PRIORITY  
SCITX PRIORITY  
SCI STEST  
P04F.6  
P04F.7  
T1 PRIORITY  
T1 STEST  
T1PRI  
P06F.6  
P06F.7  
T2A PRIORITY  
T2A STEST  
T2APRI  
P07F.5  
P07F.6  
P07F.7  
AD ESPEN  
AD PRIORITY  
AD STEST  
ADPRI  
P08F.6  
P08F.7  
T2B PRIORITY  
T2B STEST  
T2BPRI  
The privileged bits are shown in a bold typeface in Table 14.  
The write-protect override (WPO) mode provides an external hardware method of overriding the  
write-protection registers of data EEPROM on the TMS370Cx6x.The WPO mode is entered by applying a 12-V  
input to MC after RESET input goes high (logic 1). The high voltage on MC during the WPO mode is not the  
programming voltage for the data EEPROM or program EPROM. All EEPROM programming voltages are  
generated on-chip. The WPO mode provides hardware system-level capability to modify the content of the data  
EEPROM while the device remains in the application but only while requiring a 12-V external input on the MC  
pin (normally not available in the end application except in a service or diagnostic environment).  
low-power and IDLE modes  
The TMS370Cx6x devices have two low-power modes (STANDBY and HALT) and an IDLE mode. For  
mask-ROM devices, low-power modes can be disabled permanently through a programmable contact at the  
time when the mask is manufactured.  
The STANDBY and HALT low-power modes significantly reduce power consumption by reducing or stopping  
the activity of the various on-chip peripherals when processing is not required. Each of the low-power modes  
is entered by executing the IDLE instruction when the PWRDWN/IDLE bit in SCCR2 has been set to 1. The  
HALT/STANDBY bit in SCCR2 controls which low-power mode is entered.  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
low-power and IDLE modes (continued)  
In the STANDBY mode (HALT/STANDBY = 0), all CPU activity and most peripheral module activity is stopped;  
however, the oscillator, internal clocks, timer 1, and the receive start-bit detection circuit of the serial  
communications interface remain active. System processing is suspended until a qualified interrupt (hardware  
RESET, external interrupt on INT1, INT2, INT3, timer 1 interrupt, or low level on the receive pin of the serial  
communications interface) is detected.  
In the HALT mode (HALT/STANDBY = 1), the TMS370Cx6x is placed in its lowest power-consumption mode.  
The oscillator and internal clocks are stopped, causing all internal activity to be halted. System activity is  
suspended until a qualified interrupt (hardware RESET, external interrupt on the INT1, INT2, INT3, or low level  
on the receive pin of the serial communications interface) is detected. The low-power mode selection bits are  
summarized in Table 13.  
Table 13. Low-Power/Idle Control Bits  
POWER-DOWN CONTROL BITS  
MODE SELECTED  
PWRDWN/IDLE  
(SCCR2.6)  
HALT/STANDBY  
(SCCR2.7)  
1
0
1
STANDBY  
HALT  
1
0
X
IDLE  
X = don’t care  
When low-power modes are disabled through a programmable contact in the mask-ROM devices, writing to the  
SCCR2.6–7 bits is ignored. In addition, if an idle instruction executes when low-power modes are disabled  
through a programmable contact, the device always enters the IDLE mode.  
To provide a method of always exiting low-power modes for mask-ROM devices, INT1 is automatically enabled  
as a nonmaskable interrupt (NMI) during low-power modes when the hard watchdog mode is selected. This  
means that the NMI always is generated, regardless of the interrupt-enable flags.  
The following information is preserved throughout both the STANDBY and HALT modes: RAM (register file),  
CPU registers (stack pointer, program counter, and status register), I/O pin direction and output data, and status  
registers of all on-chip peripheral functions. Since all CPU instruction processing is stopped during the  
STANDBY and HALT modes, the clocking of the watchdog timer is inhibited.  
clock modules  
The ‘x6x family provides two clock options which are referred to as divide-by-1 (PLL) and divide-by-4 (standard  
oscillator). Both the divide-by-1 and divide-by-4 options are configurable during the manufacturing process of  
a TMS370 microcontroller. The ‘x6x ROM-masked devices offer both options to meet system engineering  
requirements. Only one of the two clock options is allowed on each ROM device. An EPROM has only the  
divide-by-1.  
The divide-by-1 clock module option provides the capability for reduced electromagnetic interference (EMI) with  
no added cost.  
Thedivide-by-1providesa1-to-1matchbetweentheexternalresonatorfrequencyandtheinternalsystemclock  
(SYSCLK) frequency. The divide-by-4 produces a SYSCLK which is one-fourth the frequency of the external  
resonator. Inside the divide-by-1 module, the frequency of the external resonator is multiplied by four. The clock  
module then divides the resulting signal by four to provide the four-phased internal system clock signals. The  
resulting SYSCLK is equal to the resonator frequency. The frequencies are formulated as follows:  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
clock modules (continued)  
external resonator frequency  
CLKIN  
4
Divide-by-4 option : SYSCLK  
Divide-by-1 option : SYSCLK  
4
external resonator frequency  
4
4
CLKIN  
The main advantage of choosing a divide-by-1 oscillator is the improved EMI performance. The harmonics of  
low-speed resonators extend through less of the emissions spectrum than the harmonics of faster resonators.  
The divide-by-1 provides the capability of reducing the resonator speed by four times, and this results in a  
steeper decay of emissions produced by the oscillator.  
system configuration registers  
Table 14 contains system configuration and control functions and registers for controlling EEPROM  
programming. The privileged bits are shown in bold typeface and shaded.  
Table 14. Peripheral File Frame 1: System Configuration Registers  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
SCCR0  
AUTOWAIT  
DISABLE  
MEMORY  
DISABLE  
P011  
P012  
SCCR1  
SCCR2  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P013  
P014  
Reserved  
BUSY  
VPPS  
W0  
EXE  
EPCTLH  
P015  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
P018  
P019  
INT1  
INT2  
INT2  
FLAG  
INT2  
PIN DATA  
INT2  
DATA DIR  
INT2  
DATA OUT  
INT2  
POLARITY  
INT2  
PRIORITY  
INT2  
ENABLE  
INT3  
FLAG  
INT3  
PIN DATA  
INT3  
DATA DIR  
INT3  
DATA OUT  
INT3  
POLARITY  
INT3  
PRIORITY  
INT3  
ENABLE  
INT3  
P01A  
P01B  
P01C  
P01D  
P01E  
P01F  
BUSY  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
EXE  
DEECTL  
Reserved  
VPPS  
VPPS  
EPCTLM  
EPCTLL  
Reserved  
W0  
Reserved  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
digital port control  
Peripheral file frame 2 contains the digital I/O pin configuration and control registers. Table 15 lists the specific  
addresses, registers, and control bits within this peripheral file frame.  
Table 15. Peripheral File Frame 2: Digital Port Control Registers  
PF  
P020  
P021  
P022  
P023  
P024  
P025  
P026  
P027  
P028  
P029  
P02A  
P02B  
P02C  
P02D  
P02E  
P02F  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Reserved  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2  
Port A Data  
Port A Direction  
Reserved  
BPORT1  
BPORT2  
BDATA  
BDIR  
Port B Control Register 2  
Port B Data  
Port B Direction  
Reserved  
CPORT1  
CPORT2  
CDATA  
CDIR  
Port C Control Register 2  
Port C Data  
Port C Direction  
Port D Control Register 1  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Control Register 2  
Port D Data  
Port D Direction  
To configure pin D3 as SYSCLK, set port D control register 2 = 08h.  
Table 16. Port Configuration Register Setup  
FUNCTION B  
(µP MODE)  
INPUT  
OUTPUT  
FUNCTION A  
XPORT1 = 1  
XPORT1 = 0‡  
XPORT2 = 0  
XDATA = y  
XDIR = 0  
XPORT1 = 0  
XPORT1 = 0  
PORT  
PIN  
XPORT2 = 0  
XDATA = q  
XDIR = 1  
XPORT2 = 1  
XDATA = x  
XDIR = x  
XPORT2 = 1  
XDATA = x  
XDIR = x  
A
B
C
0–7  
0–7  
0–7  
Data In y  
Data In y  
Data In y  
Data Out q  
Data Out q  
Data Out q  
Data Bus  
Low ADDR  
Hi ADDR  
Reserved  
Reserved  
Reserved  
3
4
5
6
7
SYSCLK  
R/W  
CSPF  
CSH1  
CSE1  
SYSCLK  
R/W  
EDS  
D
Data In y  
Data Out q  
WAIT  
XPORT1 = 1  
XPORT2 =0  
Not defined  
XDATA = x  
XDIR = x  
DPORT only  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 module  
The programmable timer 1 (T1) module of the TMS370Cx6x provides the designer with the enhanced timer  
resources required to perform real-time system control. The T1 module contains the general-purpose timer and  
the watchdog (WD) timer. The two independent 16-bit timers (T1 and WD) allow program selection of input clock  
sources (real-time, external-event, or pulse-accumulate) with multiple 16-bit registers (input-capture and  
compare) for special timer function control. The T1 module includes three external device pins that can be used  
for multiple counter functions (operation mode dependent) or used as general-purpose I/O pins. The T1 module  
is shown in Figure 5.  
Edge  
Select  
16-Bit  
Capt/Comp  
T1IC/CR  
Register  
16-Bit  
Counter  
PWM  
Toggle  
MUX  
T1PWM  
16  
16-Bit  
Compare  
Register  
Interrupt  
Logic  
8-Bit  
Prescaler  
T1EVT  
Interrupt  
Logic  
16-Bit  
MUX  
Watchdog Counter  
(Aux. Timer)  
Figure 5. Timer 1 Block Diagram  
Three T1 I/O pins  
T1IC/CR: Timer 1 input capture/counter reset input pin, or general-purpose bidirectional I/O pin  
T1PWM: Timer 1 pulse-width-modulation (PWM) output pin, or general-purpose bidirectional I/O pin  
T1EVT: Timer 1 event input pin, or general-purpose bidirectional I/O pin  
Two operation modes:  
Dual–compare mode: Provides PWM signal  
Capture/compare mode: Provides input capture pin  
One 16-bit general-purpose resettable counter  
One 16-bit compare register with associated compare logic  
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either  
capture or compare register  
One 16-bit watchdog counter can be used as an event counter, a pulse accumulator, or an interval timer  
if watchdog feature is not needed.  
Prescaler/clock sources that determine one of eight clock sources for general-purpose timer  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on  
the input capture pins (T1IC/CR)  
Interrupts that can be generated on the occurrence of:  
A capture  
A compare equal  
A counter overflow  
An external edge detection  
Sixteen T1 module control registers: Located in the PF frame beginning at address P040  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
Table 17 shows the T1 module control register memory map.  
Table 17. Timer 1 Module Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Modes: Dual-Compare and Capture/Compare  
P040 Bit 15  
P041 Bit 7  
P042 Bit 15  
P043 Bit 7  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 15  
T1 Counter MSbyte  
T1 Counter LSbyte  
Bit 8 T1CNTR  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Watchdog Counter MSbyte  
Watchdog Counter LSbyte  
Watchdog Reset Key  
Bit 8 T1C  
Bit 0  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Bit 0 WDRST  
WD  
INPUT  
SELECT2  
WD  
INPUT  
SELECT1  
WD  
INPUT  
SELECT0  
T1  
INPUT  
SELECT2  
T1  
INPUT  
SELECT1  
WD OVRFL  
TAP SEL  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
WD OVRFL WD OVRFL WD OVRFL  
T1 OVRFL  
INT ENA  
T1 OVRFL  
INT FLAG  
T1 SW  
RESET  
RST ENA  
INT ENA  
INT FLAG  
Mode: Dual-Compare  
T1EDGE  
INT FLAG  
T1C2  
INT FLAG  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
T1  
T1C1  
OUT ENA  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
MODE = 0  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Modes: Dual-Compare and Capture/Compare  
T1EVT  
DATA IN  
T1EVT  
DATA OUT  
T1EVT  
FUNCTION  
T1EVT  
DATA DIR  
P04D  
P04E  
T1PC1  
T1PC2  
T1PRI  
T1PWM  
DATA IN  
T1PWM  
DATA OUT  
T1PWM  
FUNCTION  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA OUT  
T1IC/CR  
FUNCTION  
T1IC/CR  
DATA DIR  
T1  
P04F T1 STEST  
PRIORITY  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard  
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2  
bits are ignored.  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
The timer 1 capture/compare mode block diagram is illustrated in Figure 6. The annotations in Figure 6 identify  
the register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah,  
bit 0, in the T1CTL2 register.  
T1CC.15-0  
16-Bit  
LSB  
T1C1  
OUT ENA  
Capt/Comp  
Register  
Prescale  
Clock  
Source  
MSB  
T1PC2.7-4  
T1PWM  
T1CTL4.6  
T1CNTR.15-0  
LSB  
MSB  
16-Bit  
Counter  
16  
T1 PRIORITY  
0
1
T1C1 INT FLAG  
T1CTL3.5  
T1PRI.6  
Level 1 Int  
Level 2 Int  
Compare=  
Reset  
T1CTL3.0  
T1C.15-0  
T1 SW  
RESET  
T1C1 INT ENA  
16-Bit  
LSB  
T1C1  
RST ENA  
Compare  
Register  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL4.4  
T1CTL2.4  
T1 OVRFL INT ENA  
T1PC2.3-0  
T1IC/CR  
T1EDGE DET ENA  
T1EDGE INT FLAG  
T1CTL3.7  
Edge  
Select  
T1CTL4.0  
T1CTL3.2  
T1EDGE INT ENA  
T1CTL4.2  
T1EDGE POLARITY  
Figure 6. Capture/Compare Mode  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
The timer 1 dual-compare mode block diagram is illustrated in Figure 7. The annotations in Figure 7 identify the  
register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah,  
bit 0, in the T1CTL2 register.  
T1CC.15-0  
16-Bit  
Capt/Comp  
Register  
T1C2 INT FLAG  
T1CTL3.6  
LSB  
Prescaler  
Clock  
Source  
MSB  
Output  
Enable  
T1CTL3.1  
T1C2 INT ENA  
T1CTL4.5  
Compare=  
T1CNTR.15-0  
T1PC2.7-4  
T1PWM  
T1C2 OUT ENA  
T1CTL4.6  
LSB  
MSB  
16-Bit  
Counter  
16  
T1C1 INT FLAG  
T1CTL3.5  
T1CTL3.0  
Reset  
Compare=  
T1C1 OUT ENA  
T1CTL4.3  
T1C1  
RST ENA  
T1C.15-0  
T1 SW  
RESET  
T1C1 INT ENA  
16-Bit  
Compare  
Register  
LSB  
T1CTL4.4  
T1CTL2.0  
T1CR OUT ENA  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL2.4  
T1 OVRFL INT ENA  
T1CTL4.1  
T1CR  
RST ENA  
T1PC2.3-0  
T1IC/CR  
Edge  
Select  
T1 PRIORITY  
T1PRI.6  
T1CTL4.0  
T1EDGE INT FLAG  
T1CTL3.7  
0
1
Level 1 Int  
Level 2 Int  
T1EDGE DET ENA  
T1CTL4.2  
T1CTL3.2  
T1EDGE INT ENA  
T1EDGE POLARITY  
Figure 7. Dual-Compare Mode  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
The TMS370Cx6x device includes a 24-bit watchdog (WD) timer, contained in the T1 module, which can be  
software programmed as an event counter, pulse accumulator, or interval timer if the watchdog function is not  
desired. The WD function is to monitor software and hardware operation and to implement a system reset when  
the WD counter is not serviced properly (WD counter overflow or WD counter is reinitialized by an incorrect  
value). The WD can be configured as one of three mask options: standard watchdog, hard watchdog, or simple  
counter.  
Standard watchdog configuration (see Figure 8) – for ’76xA EPROM and mask-ROM devices  
Watchdog mode  
Ten different WD overflow rates ranging from 6.55 ms to 3.35 s at 5-MHz SYSCLK  
AWDresetkey(WDRST)registerisusedtoclearthewatchdogcounter(WDCNTR)whenacorrect  
value is written.  
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter  
overflows  
Awatchdog overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a  
system reset  
Non-watchdog mode  
Watchdog timer can be configured as an event counter, pulse accumulator, or an interval timer.  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
T1CTL2.6  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Interrupt  
WD OVRFL  
Reset  
Clock  
Prescaler  
T1CTL1.7  
T1CTL2.7  
WD OVRFL  
TAP SEL  
System Reset  
WD OVRFL  
RST ENA  
Watchdog Reset Key  
WDRST.7-0  
Figure 8. Standard Watchdog  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
Hard watchdog configuration (see Figure 9) – for mask-ROM devices  
Eight different WD overflow rates ranging from 26.2 ms to 3.35 s at 5-MHz SYSCLK  
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct  
value is written.  
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter  
overflows  
Automatic activation of the WD timer upon power-up reset  
INT1 is enabled as nonmaskable interrupt during low-power modes  
A watchdog overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a  
system reset  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Reset  
Clock  
Prescaler  
T1CTL1.7  
System Reset  
WD OVRFL  
TAP SEL  
Watchdog Reset Key  
WDRST.7-0  
Figure 9. Hard Watchdog  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 module (continued)  
Simple-counter configuration (see Figure 10) – for mask-ROM devices only  
Simple counter can be configured as an event counter, pulse accumulator, or an interval timer  
WDCNTR.15-0  
WD OVFL  
16-Bit  
Watchdog Counter  
T1CTL2.6  
INT FLAG  
Interrupt  
T1CTL2.5  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL1.7  
WD OVRFL  
TAP SEL  
Watchdog Reset Key  
WDRST.7-0  
Figure 10. Simple Counter  
timer 2n modules (T2A and T2B)  
The TMS370Cx6x device includes two 16-bit general-purpose timer 2 modules (T2A and T2B). The T2A or T2B  
are referred to as T2n throughout this section. The T2n module contains a 16-bit resettable counter, 16-bit  
compare register with associated compare logic, 16-bit capture register, and a 16-bit register that functions as  
a capture register in one mode and as a compare register in the other mode. The T2n module adds additional  
timers that provide event counts, input captures, and compare functions. The T2n module includes three  
external-device pins that can be dedicated as timer functions or used as general-purpose I/O pins. The T2n  
module is shown in Figure 11.  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 2n modules (T2A and T2B) (continued)  
Edge  
T2nIC1/CR  
Detect  
16–Bit  
Capt/Comp  
Register  
Edge  
T2nIC2/PWM  
Detect  
(Dual-Capture Mode)  
PWM  
Toggle  
T2nIC2/PWM  
16–Bit  
Capture  
Register  
INT  
Logic  
(Dual-Compare Mode)  
16  
16–Bit  
Compare  
Register  
Clock  
Select  
16–Bit  
Counter  
T2nEVT  
Figure 11. Timer 2n Block Diagram  
The T2n module features include the following:  
Three T2A I/O pins  
T2nIC1/CR: Timer 2n input capture 1/counter-reset input pin, or general-purpose bidirectional I/O pin  
T2nIC2/PWM: Timer 2n input capture 2/pulse-width-modulation (PWM) output pin, or general-purpose  
bidirectional I/O pin  
T2nEVT: Timer 2n event-input pin, or general-purpose bidirection I/O pin  
Two operation modes:  
Dual-compare mode: Provides PWM signal  
Dual-capture mode: Provides input-capture pin  
One 16-bit general-purpose resettable counter  
One 16-bit compare register with associated compare logic  
One 16-bit capture register with associated capture logic  
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either  
capture or compare registers  
T2n clock sources can be any of the following:  
System clock  
No clock (the counter is stopped)  
External clock synchronized to the system clock (event counter)  
System clock while external input is high (pulse accumulation)  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 2n modules (T2A and T2B) (continued)  
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on  
the input-capture pins (T2nIC1/CR)  
Interrupts that can be generated on the occurrence of:  
A compare equal for dedicated-compare register  
A compare equal for capture-compare register  
A counter overflow  
An external edge 1 detection  
An external edge 2 detection  
Fourteen control registers for each Timer 2 module: Located in the PF frame beginning at address P060  
and P080 for T2A and T2B, respectively.  
The timer 2n module control registers are illustrated in Table 18.  
Table 18. Timer 2n Module Register Memory Map  
PF  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Modes: Dual-Compare and Dual-Capture  
P060 P080 Bit 15  
P061 P081 Bit 7  
P062 P082 Bit 15  
P063 P083 Bit 7  
P064 P084 Bit 15  
P065 P085 Bit 7  
P066 P086 Bit 15  
P067 P087 Bit 7  
T2n Counter MSbyte  
T2n Counter LSbyte  
Bit 8  
T2nCNTR  
T2nC  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Capture Register 2 MSbyte  
Capture Register 2 LSbyte  
T2nCC  
T2nIC  
T2n  
T2n OVRFL  
OVRFL  
T2n  
INPUT  
SELECT1  
T2n INPUT  
SELECT0  
T2n SW  
RESET  
P06A P08A  
T2nCTL1  
INT ENA  
INT FLAG  
Mode: Dual-Compare  
T2nEDGE1  
INT FLAG  
T2nC2  
INT FLAG  
T2nC1  
INT FLAG  
T2nEDGE1  
INT ENA  
T2nC2  
INT ENA  
T2nC1  
INT ENA  
P06B P08B  
P06C P08C  
T2nCTL2  
T2nCTL3  
T2n  
MODE = 0  
T2nC1  
OUT ENA  
T2nC2  
OUT ENA  
T2nC1  
RST ENA  
T2nEDGE1  
OUT ENA  
T2nEDGE1  
POLARITY  
T2nEDGE1  
RST ENA  
T2nEDGE1  
DET ENA  
Mode: Dual-Capture  
T2nEDGE1  
INT FLAG  
T2nEDGE2  
INT FLAG  
T2nC1  
INT FLAG  
T2nEDGE1  
INT ENA  
T2nEDGE2  
INT ENA  
T2nC1  
INT ENA  
P06B P08B  
P06C P08C  
T2nCTL2  
T2nCTL3  
T2n  
MODE = 1  
T2nC1  
RST ENA  
T2nEDGE2  
POLARITY  
T2nEDGE1  
POLARITY  
T2nEDGE2  
DET ENA  
T2nEDGE1  
DET ENA  
Modes: Dual-Compare and Dual-Capture  
T2nEVT  
DATA IN  
T2nEVT  
DATA OUT  
T2nEVT  
FUNCTION  
T2nEVT  
DATA DIR  
P06D P08D  
P06E P08E  
P06F P08F  
T2nPC1  
T2nPC2  
T2nPRI  
T2nIC2/PWM  
DATA IN  
T2nIC2/PWM  
DATA OUT  
T2nIC2/PWM  
FUNCTION  
T2nIC2/PWM  
DATA DIR  
T2nIC1/CR  
DATA IN  
T2nIC1/CR  
DATA OUT  
T2nIC1/CR  
FUNCTION  
T2nIC1/CR  
DATA DIR  
T2n  
PRIORITY  
T2n STEST  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 2n modules (T2A and T2B) (continued)  
The timer 2n dual-compare mode block diagram is illustrated in Figure 12. The annotations on the diagram  
identify the register and the bit(s) in the peripheral frame. For example, the actual address of T2nCTL2.0 is  
106Bh (n = A) or 108Bh (n = B), bit 0, in the T2nCTL2 register.  
T2nCC.15-0  
16-Bit  
LSB  
Capt/Comp  
Register  
MSB  
Output  
Enable  
Clock  
Source  
T2nC2 INT FLAG  
T2nCTL2.6  
T2nCTL3.5  
Compare=  
T2nCTL2.1  
T2nC2 INT ENA  
T2nC1 INT FLAG  
T2nCTL2.5  
T2nCTL2.0  
T2nC1 INT ENA  
T2nCNTR.15-0  
T2nPC2.7-4  
T2nC2 OUT ENA  
T2nCTL3.6  
LSB  
MSB  
16-Bit  
Counter  
16  
T2nIC2/PWM  
Reset  
Compare=  
T2nC1 OUT ENA  
T2nCTL3.3  
T2nC.15-0  
T2n SW  
RESET  
T2nC1  
RST ENA  
T2nCTL3.4  
LSB  
16-Bit  
Compare  
Register  
T2nCTL1.0  
T2nEDGE1  
OUT ENA  
MSB  
T2n OVRFL INT FLAG  
T2n CTL1.3  
T2nCTL3.1  
T2nEDGE1  
RST ENA  
T2nCTL1.4  
T2n OVRFL INT ENA  
T2nPC2.3-0  
T2nIC1/CR  
Edge 1  
Select  
T2n PRIORITY  
T2nPRI.6  
T2nCTL3.0  
T2nEDGE1 DET ENA  
0
1
T2nEDGE1 INT FLAG  
T2n CTL2.7  
Level 1 Int  
Level 2 Int  
T2nCTL3.2  
T2nCTL2.2  
T2nEDGE1 INT ENA  
T2nEDGE1 POLARITY  
Figure 12. Dual-Compare Mode  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 2n modules (T2A and T2B) (continued)  
The timer 2n dual-capture mode block diagram is illustrated in Figure 13. The annotations on the diagram  
identify the register and the bit(s) in the peripheral frame. For example, the actual address of T2nCTL2.0 is  
106Bh (n = A) or 108Bh (n = B), bit 0, in the T2nCTL2 register.  
T2nCC.15–0  
T2nIC.15–0  
16-Bit  
16-Bit  
Capt/Comp  
Register 1  
LSB  
LSB  
Capture  
MSB  
MSB  
Register 23  
Clock  
Source  
T2nCNTR.15–0  
LSB  
16-Bit  
Counter  
16  
MSB  
T2n PRIORITY  
T2nPRI.6  
0
1
T2nC1 INT FLAG  
T2nCTL2.5  
Compare =  
Level 1 Int  
Level 2 Int  
Reset  
T2nCTL2.0  
T2nC.15–0  
T2nC1 INT ENA  
T2n SW  
16-Bit  
Compare  
Register  
LSB  
RESET  
T2nC1  
RST ENA  
T2n OVRFL INT FLAG  
T2nCTL1.3  
MSB  
T2nCTL1.0  
T2nCTL1.4  
T2nCTL3.4  
T2n OVRFL INT ENA  
T2nCTL3.0  
T2nEDGE1 INT FLAG  
T2nCTL2.7  
T2nEDGE1 DET ENA  
T2nPC2.3–0  
Edge1  
Select  
T2nCTL2.2  
T2nIC1/CR  
T2nCTL3.2  
T2nEDGE1 INT ENA  
T2nEDGE1 POLARITY  
T2nCTL3.1  
T2nEDGE2 INT FLAG  
T2nCTL2.6  
T2nEDGE2 DET ENA  
T2nPC2.7–4  
T2nIC2/PWM  
Edge 2  
Select  
T2nCTL3.3  
T2nCTL2.1  
T2nEDGE2 POLARITY  
T2nEDGE2 INT ENA  
Figure 13. Dual-Capture Mode  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
serial peripheral interface (SPI) module  
The SPI is a high-speed, synchronous, serial I/O port that allows a serial bit stream of programmed length  
(1 to 8 bits) to be shifted into and out of the device at a programmable bit-transfer rate.The SPI is used normally  
for communications between the microcontroller and external peripherals or another microcontroller. Typical  
applications include external I/O or peripheral expansion using devices such as shift registers, display drivers,  
and analog-to-digital (A/D) converters. The master/slave operation of the SPI supports multi-device  
communications. The SPI module features include the following:  
Three external pins:  
SPISOMI: SPI slave output/master input pin or general-purpose bidirectional I/O pin  
SPISIMO: SPI slave input/master output pin or general-purpose bidirectional I/O pin  
SPICLK: SPI serial-clock pin or general-purpose bidirectional I/O pin  
Two operational modes: master and slave  
Baud rate: Eight different programmable rates  
Maximum baud rate in master mode: 2.5M bps at 5-MHz SYSCLK  
SYSCLK  
2
SPI BAUD RATE  
2b  
where b = bit rate in SPICCR.5-3 (range 0–7)  
Maximum baud rate in slave mode: 625K bps at 5-MHz SYSCLK  
For maximum slave SPI BAUD RATE < SYSCLK/8  
Data-word format: one to eight data bits  
Simultaneous receiver and transmitter operation (transmit function can be disabled in software)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.  
Seven SPI module-control registers: located in control register frame beginning at address P030h  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
serial peripheral interface (SPI) module (continued)  
The SPI module control registers are illustrated in Table 19.  
Table 19. SPI Module Control Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
SPI SW  
RESET  
CLOCK  
POLARITY  
SPI BIT  
RATE2  
SPI BIT  
RATE1  
SPI BIT  
RATE0  
SPI  
CHAR2  
SPI  
CHAR1  
SPI  
CHAR0  
P030  
SPICCR  
RECEIVER  
OVERRUN  
SPI INT  
FLAG  
MASTER/  
SLAVE  
SPI INT  
ENA  
P031  
TALK  
SPICTL  
P032  
to  
Reserved  
P036  
P037  
P038  
P039  
RCVD7  
SDAT7  
RCVD6  
SDAT6  
RCVD5  
SDAT5  
RCVD4  
SDAT4  
RCVD3  
RCVD2  
SDAT2  
RCVD1  
SDAT1  
RCVD0  
SDAT0  
SPIBUF  
SPIDAT  
Reserved  
SDAT3  
P03A  
to  
Reserved  
P03C  
SPICLK  
DATA IN  
SPICLK  
SPICLK  
SPICLK  
DATA DIR  
P03D  
P03E  
P03F  
SPIPC1  
SPIPC2  
SPIPRI  
DATA OUT FUNCTION  
SPISOMI SPISOMI  
DATA OUT FUNCTION  
SPISIMO  
DATA IN  
SPISIMO  
DATA OUT FUNCTION  
SPISIMO  
SPISIMO  
DATA DIR  
SPISOMI  
DATA IN  
SPISOMI  
DATA DIR  
SPI  
STEST  
SPI  
PRIORITY  
SPI  
ESPEN  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
serial peripheral interface (SPI) module (continued)  
The SPI block diagram is illustrated in Figure 14.  
RECEIVER  
SPIBUF.7-0  
OVERRUN  
SPIBUF Buffer  
SPICTL.7  
Register  
SPIPRI.6  
8
SPICTL.0  
SPI INT FLAG  
0
Level 1 INT  
Level 2 INT  
SPICTL.6  
1
SPIINT ENA  
SPIPC2.7-4  
SPISIMO  
SPIDAT  
Data Register  
SPIDAT.7-0  
SPICTL.1  
SPIPC2.3-0  
SPISOMI  
TALK  
State Control  
MASTER/SLAVE  
SPICCR.2-0  
SPI CHAR  
SPICTL.2  
2
1
0
SPIPC1.3-0  
SPICLK  
System  
Clock  
SPICCR.6  
CLOCK POLARITY  
SPICCR.5-3  
5
4
3
SPI BIT RATE  
The diagram is shown in slave mode.  
Figure 14. SPI Block Diagram  
serial communications interface 1 (SCI1) module  
The TMS370x6x devices include a serial communications interface (SCI1) module. The SCI1 module supports  
digital communications between the TMS370 devices and other asynchronous peripherals and uses the  
standard non-return-to-zero (NRZ) format. The SCI1’s receiver and transmitter are double buffered, and each  
has its own separate enable and interrupt bits. Both can be operated independently or simultaneously in the  
full-duplex mode. To ensure data integrity, the SCI1 checks received data for break detection, parity, overrun,  
and framing errors. The speed of bit rate (baud) is programmable to over 65,000 different speeds through a  
16-bit baud-select register.  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 1 (SCI1) module (continued)  
Features of the SCI1 module include:  
Three external pins:  
SCITXD: SCI transmit output pin or general-purpose bidirectional I/O pin  
SCIRXD: SCI receive input pin or general-purpose bidirectional I/O pin  
SCICLK: SCI bidirectional serial clock pin, or general-purpose bidirectional I/O pin  
Two communications modes: asynchronous and isosynchronous  
Baud rate: 64K different programmable rates  
Asynchronous mode: 3 bps to 156K bps at 5-MHz SYSCLK  
SYSCLK  
(BAUD REG 1) 32  
ASYNCHRONOUS BAUD  
Isosynchronous mode: 39 bps to 2.5M bps at 5-MHz SYSCLK  
SYSCLK  
(BAUD REG 1)  
ISOSYNCHRONOUS BAUD  
2
Data-word format  
One start bit  
Data-word length programmable from one to eight bits  
Optional even/odd/no parity bit  
One or two stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: Idle-line and address bit  
Half or full-duplex operation  
Double-buffered receive and transmit functions  
Interrupt driven or polled algorithms with status flags accomplish transmitter and receiver operations.  
Transmitter: TXRDY flag (transmitter buffer register is ready to receive another character) and TX  
EMPTY flag (transmitter shift register is empty)  
Receiver: RXRDY flag (receive buffer register ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR monitoring four interrupt conditions  
Separate enable bits for transmitter and receiver interrupts  
NRZ (non-return-to-zero) format  
Eleven SCI1 module control registers are located in control register frame beginning at address P050h.  
Isosynchronous = Isochronous  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 1 (SCI1) module (continued)  
The SCI1 module control registers are illustrated in Table 20.  
Table 20. SCI1 Module Control Register Memory Map  
PF  
P050 STOP BITS  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
EVEN/ODD  
PARITY  
PARITY  
ENABLE  
ASYNC/  
ISOSYNC  
ADDRESS/  
IDLE WUP  
SCI CHAR2 SCI CHAR1 SCI CHAR0 SCICCR  
SCI SW  
RESET  
P051  
P052  
P053  
P054  
P055  
CLOCK  
BAUDC  
BAUD4  
TXWAKE  
BAUDB  
BAUD3  
SLEEP  
BAUDA  
BAUD2  
TXENA  
BAUD9  
BAUD1  
RXENA  
BAUD8  
SCICTL  
BAUDF  
(MSB)  
BAUDE  
BAUD6  
TX EMPTY  
RXRDY  
BAUDD  
BAUD5  
BAUD MSB  
BAUD LSB  
TXCTL  
BAUD0  
(LSB)  
BAUD7  
TXRDY  
SCI TX  
INT ENA  
RX  
ERROR  
SCI RX  
INT ENA  
BRKDT  
FE  
OE  
PE  
RXWAKE  
RXCTL  
P056  
P057  
P058  
Reserved  
RXDT7  
TXDT7  
RXDT6  
TXDT6  
RXDT5  
TXDT5  
RXDT4  
RXDT3  
RXDT2  
TXDT2  
RXDT1  
TXDT1  
RXDT0  
TXDT0  
RXBUF  
TXBUF  
Reserved  
P059  
P05A  
P05B  
P05C  
TXDT4  
TXDT3  
Reserved  
SCICLK  
DATA IN  
SCICLK  
SCICLK  
SCICLK  
DATA DIR  
P05D  
P05E  
SCIPC1  
SCIPC2  
SCIPRI  
DATA OUT FUNCTION  
SCIRXD SCIRXD  
DATA OUT FUNCTION  
SCITXD  
DATA IN  
SCITXD  
DATA OUT FUNCTION  
SCITXD  
SCITXD  
DATA DIR  
SCIRXD  
DATA IN  
SCIRXD  
DATA DIR  
SCITX  
PRIORITY  
SCIRX  
PRIORITY  
SCI  
ESPEN  
P05F SCI STEST  
The SCI1 module block diagram is illustrated in Figure 15.  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 1 (SCI1) module (continued)  
TXBUF.7–0  
TXWAKE  
SCICTL.3  
Frame Format and Mode  
SCI TX Interrupt  
SCITX PRIORITY  
Transmit Data  
Buffer Reg.  
PARITY  
EVEN/ODD ENABLE  
1
0
1
SCIPRI.6  
SCI TX INT ENA  
TXRDY  
TXCTL.7  
Level 1 INT  
Level 2 INT  
SCICCR.6 SCICCR.5  
WUT  
TXCTL.0  
8
TX EMPTY  
TXCTL.6  
SCIPC2.7–4  
SCITXD  
TXENA  
SCITXD  
TXSHF Reg.  
BAUD MSB. 7–0  
SCICTL.1  
Baud Rate  
MSbyte Reg.  
CLOCK  
SCIPC1.3–0  
SCICLK  
SYSCLK  
SCICTL.4  
BAUD LSB. 7–0  
Baud Rate  
LSbyte Reg.  
SCIPC2.3–0  
SCIRXD  
SCIRXD  
RXSHF Reg.  
RXWAKE  
RXCTL.1  
SCIRX PRIORITY  
SCI RX Interrupt  
RXENA  
0
1
SCIPRI.5  
SCI RX INT ENA  
RXCTL.0  
RXRDY  
RXCTL.6  
Level 1 INT  
Level 2 INT  
RX ERROR  
SCICTL.0  
8
RXCTL.4–2  
FE OE PE  
RXCTL.7  
ERR  
BRKDT  
Receive Data  
Buffer Reg.  
RXCTL.5  
RXBUF.7–0  
Figure 15. SCI1 Block Diagram  
analog-to-digital converter 1 (ADC1) module  
The analog-to-digital (ADC1) converter module is an 8-bit, successive approximation converter with internal  
sample-and-hold circuitry. The module has eight multiplexed analog input channels that allow the processor to  
convert the voltage levels from up to eight different sources. The ADC1 module features include the following:  
Minimum conversion time: 32.8 µs at 5-MHz SYSCLK  
Ten external pins:  
Eight analog input channels (AN0–AN7), any of which can be software configured as digital inputs  
(E0E7) if not needed as analog channels  
AN1AN7 also can be configured as positive-input voltage reference.  
V
V
: ADC1 module high-voltage reference input  
CC3  
: ADC1 module low-voltage reference input  
SS3  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 1 (ADC1) module (continued)  
The ADDATA register, which contains the digital result of the last ADC1 conversion  
ADC1 operations can be accomplished through either interrupt driven or polled algorithms.  
Six ADC1 module control registers are located in the control register frame beginning at address 1070h.  
The ADC1 module control registers are illustrated in Table 21.  
Table 21. ADC1 Module Control Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
CONVERT  
START  
SAMPLE  
START  
REF VOLT  
SELECT2  
REF VOLT  
SELECT1  
REF VOLT  
SELECT0  
AD INPUT  
SELECT2  
AD INPUT  
SELECT1  
AD INPUT  
SELECT0  
P070  
ADCTL  
AD INT  
FLAG  
AD INT  
ENA  
P071  
P072  
AD READY  
ADSTAT  
ADDATA  
A-to-D Conversion Data Register  
Reserved  
P073  
to  
P07C  
P07D  
P07E  
Port E Data Input Register  
Port E Input Enable Register  
ADIN  
ADENA  
AD  
PRIORITY  
P07F AD STEST  
AD ESPEN  
ADPRI  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 1 (ADC1) module (continued)  
The ADC1 module block diagram is illustrated in Figure 16.  
Port E Input  
Port E Data  
ENA 0  
AN 0  
ADENA.0  
SAMPLE  
START  
CONVERT  
START  
ADIN.0  
2
1
0
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
ADCTL.2–0  
ADCTL.6  
ADCTL.7  
Port E Input  
ENA 1  
Port E Data  
AN 1  
AD INPUT SELECT  
ADENA.1  
ADIN.1  
Port E Input  
ENA 2  
Port E Data  
AN 2  
ADENA.2  
ADIN.2  
Port E Input  
ENA 3  
Port E Data  
AN 3  
ADENA.3  
ADIN.3  
ADC1  
Port E Input  
ENA 4  
Port E Data  
AN 4  
ADENA.4  
ADIN.4  
ADDATA.7–0  
Port E Input  
ENA 5  
Port E Data  
AN 5  
A-to-D  
Conversion  
ADENA.5  
ADIN.5  
Data Register  
Port E Input  
ENA 6  
AD READY  
ADSTAT.2  
Port E Data  
AN 6  
ADENA.6  
ADIN.6  
5
4
3
AD PRIORITY  
ADCTL.5–3  
Port E Input  
ENA 7  
Port E Data  
AN 7  
0
1
Level 1 INT  
Level 2 INT  
ADPRI.6  
REF VOLTS SELECT  
ADENA.7  
ADIN.7  
V
AD INT FLAG  
ADSTAT.1  
CC3  
V
SS3  
ADSTAT.0  
AD INT ENA  
Figure 16. ADC1 Block Diagram  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
instruction set overview  
Table 22 provides an opcode-to-instruction cross-reference of all 73 instructions and 274 opcodes of the  
‘370Cx6x instruction set. The numbers at the top of this table represent the most significant nibble of the opcode  
while the numbers at the left side of the table represent the least significant nibble. The instruction of these two  
opcode nibbles contains the mnemonic, operands, and byte/cycle particular to that opcode.  
For example, the opcode B5h points to the CLR A instruction. This instruction contains one byte and executes  
in eight SYSCLK cycles.  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
Table 22. TMS370 Family Opcode/Instruction Map  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JMP  
#ra  
2/7  
INCW  
#ra,Rd  
3/11  
MOV  
Ps,A  
2/8  
CLRC /  
TST A  
1/9  
MOV  
A,B  
1/9  
MOV  
A,Rd  
2/7  
TRAP  
15  
1/14  
LDST  
n
2/6  
0
1
2
3
4
5
JN  
ra  
2/5  
MOV  
A,Pd  
2/8  
MOV  
B,Pd  
2/8  
MOV  
Rs,Pd  
3/10  
MOV  
Ps,B  
2/7  
MOV  
B,Rd  
2/7  
TRAP  
14  
1/14  
MOV  
#ra[SP],A  
2/7  
JZ  
ra  
2/5  
MOV  
Rs,A  
2/7  
MOV  
#n,A  
2/6  
MOV  
Rs,B  
2/7  
MOV  
Rs,Rd  
3/9  
MOV  
#n,B  
2/6  
MOV  
B,A  
1/8  
MOV  
#n,Rd  
3/8  
MOV  
Ps,Rd  
3/10  
DEC  
A
1/8  
DEC  
B
1/8  
DEC  
Rd  
2/6  
TRAP  
13  
1/14  
MOV  
A,*ra[SP]  
2/7  
JC  
ra  
2/5  
AND  
Rs,A  
2/7  
AND  
#n,A  
2/6  
AND  
Rs,B  
2/7  
AND  
Rs,Rd  
3/9  
AND  
#n,B  
2/6  
AND  
B,A  
1/8  
AND  
#n,Rd  
3/8  
AND  
A,Pd  
2/9  
AND  
B,Pd  
2/9  
AND  
#n,Pd  
3/10  
INC  
A
1/8  
INC  
B
1/8  
INC  
Rd  
2/6  
TRAP  
12  
1/14  
CMP  
*n[SP],A  
2/8  
JP  
ra  
2/5  
OR  
Rs,A  
2/7  
OR  
#n,A  
2/6  
OR  
Rs,B  
2/7  
OR  
Rs,Rd  
3/9  
OR  
#n,B  
2/6  
OR  
B,A  
1/8  
OR  
#n,Rd  
3/8  
OR  
A,Pd  
2/9  
OR  
B,Pd  
2/9  
OR  
#n,Pd  
3/10  
INV  
A
1/8  
INV  
B
1/8  
INV  
Rd  
2/6  
TRAP  
11  
1/14  
extend  
inst,2  
opcodes  
JPZ  
ra  
2/5  
XOR  
Rs,A  
2/7  
XOR  
#n,A  
2/6  
XOR  
Rs,B  
2/7  
XOR  
Rs,Rd  
3/9  
XOR  
#n,B  
2/6  
XOR  
B,A  
1/8  
XOR  
#n,Rd  
3/8  
XOR  
A,Pd  
2/9  
XOR  
B,Pd  
2/9  
XOR  
#n,Pd  
3/10  
CLR  
A
1/8  
CLR  
B
1/8  
CLR  
Rn  
2/6  
TRAP  
10  
1/14  
L
S
N
JNZ  
ra  
2/5  
BTJO  
Rs,A,ra  
3/9  
BTJO  
#n,A,ra  
3/8  
BTJO  
Rs,B,ra  
3/9  
BTJO  
Rs,Rd,ra  
4/11  
BTJO  
#n,B,ra  
3/8  
BTJO  
B,A,ra  
2/10  
BTJO  
#n,Rd,ra  
4/10  
BTJO  
A,Pd,ra  
3/11  
BTJO  
B,Pd,ra  
3/10  
BTJO  
#n,Pd,ra  
4/11  
XCHB  
A
1/10  
XCHB A /  
TST B  
1/10  
XCHB  
Rn  
2/8  
TRAP  
9
1/14  
IDLE  
1/6  
6
JNC  
ra  
2/5  
BTJZ  
Rs.,A,ra  
3/9  
BTJZ  
#n,A,ra  
3/8  
BTJZ  
Rs,B,ra  
3/9  
BTJZ  
Rs,Rd,ra  
4/11  
BTJZ  
#n,B,ra  
3/8  
BTJZ  
B,A,ra  
2/10  
BTJZ  
#n,Rd,ra  
4/10  
BTJZ  
A,Pd,ra  
3/10  
BTJZ  
B,Pd,ra  
3/10  
BTJZ  
#n,Pd,ra  
4/11  
SWAP  
A
1/11  
SWAP  
B
1/11  
SWAP  
Rn  
2/9  
TRAP  
8
1/14  
MOV  
#n,Pd  
3/10  
7
8
JV  
ra  
2/5  
ADD  
Rs,A  
2/7  
ADD  
#n,A  
2/6  
ADD  
Rs,B  
2/7  
ADD  
Rs,Rd  
3/9  
ADD  
#n,B  
2/6  
ADD  
B,A  
1/8  
ADD  
#n,Rd  
3/8  
MOVW  
#16,Rd  
4/13  
MOVW  
Rs,Rd  
3/12  
MOVW  
#16[B],Rpd  
4/15  
PUSH  
A
1/9  
PUSH  
B
1/9  
PUSH  
Rd  
2/7  
TRAP  
7
1/14  
SETC  
1/7  
JL  
ra  
2/5  
ADC  
Rs,A  
2/7  
ADC  
#n,A  
2/6  
ADC  
Rs,B  
2/7  
ADC  
Rs,Rd  
3/9  
ADC  
#n,B  
2/6  
ADC  
B,A  
1/8  
ADC  
#n,Rd  
3/8  
JMPL  
lab  
3/9  
JMPL  
*Rp  
2/8  
JMPL  
*lab[B]  
3/11  
POP  
A
1/9  
POP  
B
1/9  
POP  
Rd  
2/7  
TRAP  
6
1/14  
RTS  
9
A
B
1/9  
JLE  
ra  
2/5  
SUB  
Rs,A  
2/7  
SUB  
#n,A  
2/6  
SUB  
Rs,B  
2/7  
SUB  
Rs,Rd  
3/9  
SUB  
#n,B  
2/6  
SUB  
B,A  
1/8  
SUB  
#n,Rd  
3/8  
MOV  
& lab,A  
3/10  
MOV  
*Rp,A  
2/9  
MOV  
*lab[B],A  
3/12  
DJNZ  
A,#ra  
2/10  
DJNZ  
B,#ra  
2/10  
DJNZ  
Rd,#ra  
3/8  
TRAP  
5
1/14  
RTI  
1/12  
JHS  
ra  
2/5  
SBB  
Rs,A  
2/7  
SBB  
#n,A  
2/6  
SBB  
Rs,B  
2/7  
SBB  
Rs,Rd  
3/9  
SBB  
#n,B  
2/6  
SBB  
B,A  
1/8  
SBB  
#n,Rd  
3/8  
MOV  
A, & lab  
3/10  
MOV  
A, *Rp  
2/9  
MOV  
A,*lab[B]  
3/12  
COMPL  
A
1/8  
COMPL  
B
1/8  
COMPL  
Rd  
2/6  
TRAP  
4
1/14  
PUSH  
ST  
1/8  
All conditional jumps (opcodes 010F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ  
instructions have a relative address as the last operand.  
Table 22. TMS370 Family Opcode/Instruction Map (Continued)  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JNV  
ra  
2/5  
MPY  
Rs,A  
2/46  
MPY  
#n,A  
2/45  
MPY  
Rs,B  
2/46  
MPY  
Rs,Rd  
3/48  
MPY  
#n,B  
2/45  
MPY  
B,A  
1/47  
MPY  
#n,Rs  
3/47  
BR  
lab  
3/9  
BR  
*Rp  
2/8  
BR  
*lab[B]  
3/11  
RR  
A
1/8  
RR  
B
1/8  
RR  
Rd  
2/6  
TRAP  
3
1/14  
POP  
ST  
1/8  
C
D
E
F
JGE  
ra  
2/5  
CMP  
Rs,A  
2/7  
CMP  
#n,A  
2/6  
CMP  
Rs,B  
2/7  
CMP  
Rs,Rd  
3/9  
CMP  
#n,B  
2/6  
CMP  
B,A  
1/8  
CMP  
#n,Rd  
3/8  
CMP  
& lab,A  
3/11  
CMP  
*Rp,A  
2/10  
CMP  
*lab[B],A  
3/13  
RRC  
A
1/8  
RRC  
B
1/8  
RRC  
Rd  
2/6  
TRAP  
2
1/14  
LDSP  
L
S
N
1/7  
JG  
ra  
2/5  
DAC  
Rs,A  
2/9  
DAC  
#n,A  
2/8  
DAC  
Rs,B  
2/9  
DAC  
Rs,Rd  
3/11  
DAC  
#n,B  
2/8  
DAC  
B,A  
1/10  
DAC  
#n,Rd  
3/10  
CALL  
lab  
3/13  
CALL  
*Rp  
2/12  
CALL  
*lab[B]  
3/15  
RL  
A
1/8  
RL  
B
1/8  
RL  
Rd  
2/6  
TRAP  
1
1/14  
STSP  
1/8  
JLO  
ra  
2/5  
DSB  
Rs,A  
2/9  
DSB  
#n,A  
2/8  
DSB  
Rs,B  
2/9  
DSB  
Rs,Rd  
3/11  
DSB  
#n,B  
2/8  
DSB  
B,A  
1/10  
DSB  
#n,Rd  
3/10  
CALLR  
lab  
3/15  
CALLR  
*Rp  
2/14  
CALLR  
*lab[B]  
3/17  
RLC  
A
1/8  
RLC  
B
1/8  
RLC  
Rd  
2/6  
TRAP  
0
1/14  
NOP  
1/7  
MOVW  
*n[Rn]  
4/15  
DIV  
Rn.A  
3/14-63  
Second byte of two-byte instructions (F4xx):  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
8
9
JMPL  
*n[Rn]  
4/16  
Legend:  
MOV  
*n[Rn],A  
4/17  
A
B
C
D
E
F
*
&
#
=
=
=
Indirect addressing operand prefix  
Direct addressing operand prefix  
immediate operand  
MOV  
A,*n[Rn]  
4/16  
#16 = immediate 16-bit number  
lab  
n
Pd  
Pn  
Ps  
ra  
Rd  
Rn  
Rp  
=
=
=
=
=
=
=
=
=
16-label  
immediate 8-bit number  
Peripheral register containing destination type  
Peripheral register  
Peripheral register containing source byte  
Relative address  
Register containing destination type  
Register file  
Register pair  
BR  
*n[Rn]  
4/16  
CMP  
*n[Rn],A  
4/18  
CALL  
*n[Rn]  
4/20  
Rpd= Destination register pair  
Rps = Source Register pair  
Rs  
= Register containing source byte  
CALLR  
*n[Rn]  
4/22  
All conditional jumps (opcodes 010F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ  
instructions have a relative address as the last operand.  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
development system support  
The TMS370 family development support tools include an assembler, a C compiler, a linker, compact  
development tool, and an EEPROM/UVEPROM programmer.  
Assembler/linker (Part No. TMDS3740850–02 for PC)  
Provides extensive macro capability  
Allows high-speed operation  
Includes format conversion utilities for popular formats  
ANSI C Compiler (Part No. TMDS3740855–02 for PC, Part No. TMDS3740555–09 for HP700 , Sun-3  
or Sun-4 )  
Generates assembly code for the TMS370 that can be inspected easily  
Improves code execution speed and reduces code size with optional optimizer pass  
Enables the user to directly reference the TMS370 port registers by using a naming convention  
Provides flexibility in specifying the storage for data objects  
Interfaces C functions and assembly functions easily  
Includes assembler and linker  
CDT370 (compact development tool) Timer real-time in-circuit emulation  
Base (Part No. EDSCDT37T – for PC, requires cable)  
Cable for 68-pin PLCC (Part No. EDSTRG68PLCC)  
Provides EEPROM and EPROM programming support  
Allows inspection and modification of memory locations  
Uploads/downloads program and data memory  
Executes programs and software routines  
Includes 1024 samples trace buffer  
Includes single-step executable instructions  
Uses software breakpoints to halt program execution at selected address  
Microcontroller programmer  
Base (Part No. TMDS3760500A – for PC, requires programmer head)  
Single unit head for 68-pin PLCC (Part No. TMDS3780510A)  
PC-based, window/function-key-orienteduserinterfaceforeaseofuseandrapidlearningenvironment  
Starter Kit (Part No. TMDS37000 – for PC)  
Includes TMS370 Assembler diskette and documentation  
Includes TMS370 Simulator  
Includes programming adapter board and programming software  
Not included – to be supplied by the user:  
HP700 is a trademark of Hewlett-Packard Company.  
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
development system support (continued)  
+ 5 V power supply  
ZIF sockets  
9-pin RS232 cable  
device numbering conventions  
Figure 17 illustrates the numbering and symbol nomenclature for the TMS370Cx6x family.  
TMS 370 C  
0
6
7
A FN L  
Prefix: TMS = Standard prefix for fully qualified devices  
SE = System evaluator (window EPROM) that is used for  
prototyping purpose.  
Family: 370 = TMS370 8-Bit Microcontroller Family  
Technology:  
C = CMOS  
Program Memory Types:  
0 = Mask ROM  
7 = EPROM  
Device Type:  
6 = x6x device containing the following modules:  
– Timer 1  
– Timer 2A  
– Timer 2B  
– Serial Peripheral Interface  
– Serial Communications Interface (SCI1)  
– Analog-to-Digital Converter (ADC1)  
Memory Size:  
7 = 24K Bytes  
8 = 32K Bytes  
9 = 48K Bytes  
Temperature Ranges:  
A = 40°C to  
L = 0°C to  
85°C  
70°C  
T = 40°C to 105°C  
Packages:  
FN = Plastic Leaded Chip Carrier  
FZ = Ceramic Leaded Chip Carrier  
ROM and EPROM Option:  
A = For ROM device, the watchdog timer can be configured  
as one of the three different mask options:  
– A standard watchdog  
– A hard watchdog  
– A simple watchdog  
The clock can be either:  
– Divide-by-4 clock  
– Divide-by-1 (PLL) clock  
The low-power modes can be either:  
– Enabled  
– Disabled  
A = For EPROM device, a standard watchdog, a divide-by-  
4 clock, and low-power modes are enabled  
Figure 17. TMS370Cx6x Family Nomenclature  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
device part numbers  
Table 23listsallthex6xdevicesavailable. Thedevicepartnumbernomenclatureisdesignedtoassistordering.  
Upon ordering, the customer must specify not only the device part number, but also the clock and watchdog  
timer options desired. Remember that each device can have only one of the possible three watchdog timer  
options and one of the two clock options. The options to be specified pertain solely to orders involving ROM  
devices.  
Table 23. Device Part Numbers  
DEVICE PART NUMBERS  
FOR 68 PINS  
TMS370C067AFNA  
TMS370C067AFNL  
TMS370C067AFNT  
TMS370C068AFNA  
TMS370C068AFNL  
TMS370C068AFNT  
TMS370C069AFNA  
TMS370C069AFNL  
TMS370C069AFNT  
TMS370C768AFNT  
TMS370C769AFNT  
SE370C768AFZT  
SE370C769AFZT  
System evaluators are for use only in prototype environment and  
their reliability has not been characterized.  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
new code release form  
Figure 18 shows a sample of the new code release form.  
NEW CODE RELEASE FORM  
TEXAS INSTRUMENTS  
DATE:  
TMS370 MICROCONTROLLER PRODUCTS  
To release a new customer algorithm to TI incorporated into a TMS370 family microcontroller, complete this form and submit with the following information:  
1. A ROM description in object form on Floppy Disk, Modem XFR, or EPROM (Verification file will be returned via same media)  
2. An attached specification if not using TI standard specification as incorporated in TI’s applicable device data book.  
Company Name:  
Street Address:  
Street Address:  
City:  
Contact Mr./Ms.:  
Phone: (  
)
Ext.:  
State  
Zip  
Customer Purchase Order Number:  
Customer Print Number *Yes:  
No:  
*If Yes: Customermust provide ”print” to TI w/NCRF for approvalbefore ROM  
code processing starts.  
#
Customer Part Number:  
Customer Application:  
(Std. spec to be followed)  
TMS370 Device:  
TI Customer ROM Number:  
(provided by Texas Instruments)  
CONTACT OPTIONS FOR THE ’A’ VERSION TMS370 MICROCONTROLLERS  
OSCILLATOR FREQUENCY  
Low Power Modes  
[] Enabled  
[] Disabled  
Watchdog counter  
[] Standard  
[] Hard Enabled  
[] Simple Counter  
Clock Type  
[] Standard (/4)  
[] PLL (/1)  
MIN  
TYP  
MAX  
[] External Drive (CLKIN)  
[] Crystal  
[] Ceramic Resonator  
NOTE:  
Non ’A’ version ROM devices of the TMS370 microcontrollers will have the  
“Low-powermodesEnabled”, “Divide-by-4Clock, andStandardWatchdog  
options. See the TMS370 Family User’s Guide (literature number SPNU127)  
or the TMS370 Family Data Manual (literature number SPNS014B).  
[] Supply Voltage MIN:  
(std range: 4.5V to 5.5V)  
MAX:  
TEMPERATURE RANGE  
PACKAGE TYPE  
[] ’L’:  
[] ’A’:  
[] ’T’:  
0° to 70°C (standard)  
–40° to 85°C  
–40° to 105°C  
[] ’N’ 28-pin PDIP  
[] “FN” 28-pin PLCC  
[] “N” 40-pin PDIP  
[] “FN” 44-pin PLCC  
[] “FN” 68-pin PLCC  
[] “NM” 64-pin PSDIP  
[] “NJ” 40-pin PSDIP (formerly known as N2)  
SYMBOLIZATION  
BUS EXPANSION  
[] TI standard symbolization  
[] YES  
[] NO  
[] TI standard w/customer part number  
[] Customer symbolization  
(per attached spec, subject to approval)  
NON-STANDARD SPECIFICATIONS:  
ALL NON-STANDARDS SPECIFICATIONS MUST BE APPROVED BY THE TI ENGINEERING STAFF: If the customer requires expedited production material  
(i.e., product which must be started in process prior to prototype approval and full production release) and non-standard spec issues are not resolved to the  
satisfaction of both the customer and TI in time for a scheduled shipment, the specification parameters in question will be processed/tested to the standard  
TI spec. Any such devices which are shipped without conformance to a mutually approved spec, will be identified by a ’P’ in the symbolization preceding the  
TI part number.  
RELEASE AUTHORIZATION:  
This document, including any referenced attachments, is and will be the controlling document for all orders placed for this TI custom device. Any changes must  
be in writing and mutually agreed to by both the customer and TI. The prototype cycletime commences when this document is signed off and the verification  
code is approved by the customer.  
1. Customer:  
Date:  
2. TI: Field Sales:  
Marketing:  
Prod. Eng.:  
Proto. Release:  
Figure 18. Sample New Code Release Form  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Table 24 is a collection of all the peripheral file frames using the ’Cx6x, (provided for a quick reference).  
Table 24. Peripheral File Frame Compilation  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
System Configuration Registers  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
P011  
P012  
SCCR0  
SCCR1  
SCCR2  
AUTOWAIT  
DISABLE  
MEMORY  
DISABLE  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P013  
P014  
Reserved  
BUSY  
VPPS  
W0  
EXE  
EPCTLH  
P015  
to  
P016  
Reserved  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
P018  
P019  
INT1  
INT2  
INT2  
FLAG  
INT2  
PIN DATA  
INT2  
INT2  
INT2  
POLARITY  
INT2  
PRIORITY  
INT2  
ENABLE  
DATA DIR  
DATA OUT  
INT3  
FLAG  
INT3  
PIN DATA  
INT3  
INT3  
INT3  
POLARITY  
INT3  
PRIORITY  
INT3  
ENABLE  
INT3  
DATA DIR  
DATA OUT  
P01A  
P01B  
P01C  
P01D  
P01E  
P01F  
BUSY  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
EXE  
DEECTL  
Reserved  
VPPS  
VPPS  
EPCTLM  
EPCTLL  
Reserved  
W0  
Reserved  
Digital Port Control Registers  
Reserved  
P020  
P021  
P022  
P023  
P024  
P025  
P026  
P027  
P028  
P029  
P02A  
P02B  
P02C  
P02D  
P02E  
P02F  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2  
Port A Data  
Port A Direction  
Reserved  
BPORT1  
BPORT2  
BDATA  
BDIR  
Port B Control Register 2  
Port B Data  
Port B Direction  
Reserved  
CPORT1  
CPORT2  
CDATA  
CDIR  
Port C Control Register 2  
Port C Data  
Port C Direction  
Port D Control Register 1  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Control Register 2  
Port D Data  
Port D Direction  
To configure pin D3 as SYSCLK, set port D control register 2 = 08h.  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Table 24. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
SPI Module Control Memory Map  
SPI SW  
RESET  
CLOCK  
POLARITY  
SPI BIT  
RATE2  
SPI BIT  
RATE1  
SPI BIT  
RATE0  
SPI  
CHAR2  
SPI  
CHAR1  
SPI  
CHAR0  
P030  
P031  
SPICCR  
SPICTL  
RECEIVER  
OVERRUN  
SPI INT  
FLAG  
MASTER/  
SLAVE  
SPI INT  
ENA  
TALK  
P032  
to  
Reserved  
P036  
P037  
P038  
P039  
RCVD7  
SDAT7  
RCVD6  
SDAT6  
RCVD5  
SDAT5  
RCVD4  
SDAT4  
RCVD3  
RCVD2  
SDAT2  
RCVD1  
SDAT1  
RCVD0  
SDAT0  
SPIBUF  
SPIDAT  
Reserved  
SDAT3  
P03A  
to  
Reserved  
P03C  
SPICLK  
DATA IN  
SPICLK  
DATA OUT  
SPICLK  
FUNCTION  
SPICLK  
DATA DIR  
P03D  
P03E  
P03F  
SPIPC1  
SPIPC2  
SPIPRI  
SPISIMO  
DATA IN  
SPISIMO  
DATA OUT  
SPISIMO  
FUNCTION  
SPISIMO  
DATA DIR  
SPISOMI  
DATA IN  
SPISOMI  
DATA OUT  
SPISOMI  
FUNCTION  
SPISOMI  
DATA DIR  
SPI  
STEST  
SPI  
PRIORITY  
SPI  
ESPEN  
Timer 1 Module Register Memory Map  
Modes: Dual-Compare and Capture/Compare  
P040 Bit 15  
P041 Bit 7  
P042 Bit 15  
P043 Bit 7  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 15  
T1 Counter MSbyte  
T1 Counter LSbyte  
Bit 8 T1CNTR  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Watchdog Counter MSbyte  
Watchdog Counter LSbyte  
Watchdog Reset Key  
Bit 8 T1C  
Bit 0  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Bit 0 WDRST  
WD  
INPUT  
SELECT2  
WD  
INPUT  
SELECT1  
WD  
INPUT  
SELECT0  
T1  
INPUT  
SELECT2  
T1  
INPUT  
SELECT1  
WD OVRFL  
TAP SEL  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
WD OVRFL  
WD OVRFL  
INT ENA  
WD OVRFL  
INT FLAG  
T1 OVRFL  
INT ENA  
T1 OVRFL  
INT FLAG  
T1 SW  
RESET  
RST ENA  
Mode: Dual-Compare  
T1EDGE  
INT FLAG  
T1C2  
INT FLAG  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
T1  
T1C1  
OUT ENA  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
MODE = 0  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
T1CTL3  
INT FLAG  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard  
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT  
SELECT2 bits are ignored.  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Table 24. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Modes: Dual-Compare and Capture/Compare  
T1  
T1C1  
OUT ENA  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
P04C  
P04D  
P04E  
P04F  
T1CTL4  
T1PC1  
T1PC2  
T1PRI  
MODE = 1  
T1EVT  
DATA IN  
T1EVT  
DATA OUT  
T1EVT  
FUNCTION  
T1EVT DATA  
DIR  
T1PWM  
DATA IN  
T1PWM  
DATA OUT  
T1PWM  
FUNCTION  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA OUT  
T1IC/CR  
FUNCTION  
T1IC/CR  
DATA DIR  
T1  
T1 STEST  
PRIORITY  
Serial Communications Interface 1 Memory Map  
EVEN/ODD  
PARITY  
PARITY  
ENABLE  
ASYNC/  
ISOSYNC  
ADDRESS/  
IDLE WUP  
P050 STOP BITS  
SCI CHAR2  
SLEEP  
BAUDA  
BAUD2  
SCI CHAR1  
TXENA  
BAUD9  
BAUD1  
SCI CHAR0 SCICCR  
SCI SW  
RESET  
P051  
P052  
P053  
P054  
P055  
CLOCK  
BAUDC  
BAUD4  
TXWAKE  
BAUDB  
BAUD3  
RXENA  
BAUD8  
SCICTL  
BAUDF  
(MSB)  
BAUDE  
BAUD6  
TX EMPTY  
RXRDY  
BAUDD  
BAUD5  
BAUD MSB  
BAUD LSB  
TXCTL  
BAUD0  
(LSB)  
BAUD7  
TXRDY  
SCI TX  
INT ENA  
RX  
ERROR  
SCI RX  
INT ENA  
BRKDT  
FE  
OE  
PE  
RXWAKE  
RXCTL  
P056  
P057  
P058  
P059  
Reserved  
RXDT7  
TXDT7  
RXDT6  
TXDT6  
RXDT5  
TXDT5  
RXDT4  
RXDT3  
RXDT2  
TXDT2  
RXDT1  
TXDT1  
RXDT0  
TXDT0  
RXBUF  
TXBUF  
Reserved  
TXDT3  
TXDT4  
P05A  
P05B  
P05C  
Reserved  
SCICLK  
DATA IN  
SCICLK  
DATA OUT  
SCICLK  
FUNCTION  
SCICLK  
DATA DIR  
P05D  
P05E  
SCIPC1  
SCIPC2  
SCIPRI  
SCITXD  
DATA IN  
SCITXD  
DATA OUT  
SCITXD  
FUNCTION  
SCITXD  
DATA DIR  
SCIRXD  
DATA IN  
SCIRXD  
DATA OUT  
SCIRXD  
FUNCTION  
SCIRXD  
DATA DIR  
SCITX  
PRIORITY  
SCIRX  
PRIORITY  
SCI  
ESPEN  
P05F SCI STEST  
Timer 2A Control Registers Memory Map  
Modes: Dual-Compare and Dual-Capture  
P060 Bit 15  
T2A Counter MSbyte  
T2A Counter LSbyte  
Bit 8  
T2ACNTR  
T2AC  
P061 Bit 7  
P062 Bit 15  
P063 Bit 7  
P064 Bit 15  
P065 Bit 7  
P066 Bit 15  
P067 Bit 7  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Capture Register 2 MSbyte  
Capture Register 2 LSbyte  
T2ACC  
T2AIC  
T2A  
INPUT  
SELECT1  
T2A OVRFL  
INT ENA  
T2A OVRFL  
INT FLAG  
T2A INPUT  
SELECT0  
T2A SW  
RESET  
P06A  
T2ACTL1  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Table 24. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Mode: Dual-Compare  
T2AEDGE1  
INT FLAG  
T2AC2  
INT FLAG  
T2AC1  
INT FLAG  
T2AEDGE1  
INT ENA  
T2AC2  
INT ENA  
T2AC1  
INT ENA  
P06B  
P06C  
T2ACTL2  
T2ACTL3  
T2A  
MODE = 0  
T2AC1  
OUT ENA  
T2AC2  
OUT ENA  
T2AC1  
RST ENA  
T2AEDGE1 T2AEDGE1 T2AEDGE1 T2AEDGE1  
OUT ENA  
POLARITY  
RST ENA  
DET ENA  
Mode: Dual-Capture  
T2AEDGE1  
INT FLAG  
T2AEDGE2  
INT FLAG  
T2AC1  
INT FLAG  
T2AEDGE1 T2AEDGE2  
INT ENA INT ENA  
T2AC1  
INT ENA  
P06B  
P06C  
T2ACTL2  
T2ACTL3  
T2A  
MODE = 1  
T2AC1  
RST ENA  
T2AEDGE2 T2AEDGE1 T2AEDGE2 T2AEDGE1  
POLARITY  
POLARITY  
DET ENA  
DET ENA  
Modes: Dual-Compare and Dual-Capture  
T2AEVT  
DATA IN  
T2AEVT  
DATA OUT  
T2AEVT  
FUNCTION  
T2AEVT  
DATA DIR  
P06D  
P06E  
P06F  
T2APC1  
T2APC2  
T2APRI  
T2AIC2/PWM T2AIC2/PWM T2AIC2/PWM T2AIC2/PWM T2AIC1/CR T2AIC1/CR  
T2AIC1/CR T2AIC1/CR  
FUNCTION  
DATA IN  
DATA OUT  
FUNCTION  
DATA DIR  
DATA IN  
DATA OUT  
DATA DIR  
T2A  
PRIORITY  
T2A STEST  
Analog-To-Digital Converter 1 Control Registers  
CONVERT  
START  
SAMPLE  
START  
REF VOLT  
SELECT2  
REF VOLT  
SELECT1  
REF VOLT  
SELECT0  
AD INPUT  
SELECT2  
AD INPUT  
SELECT1  
AD INPUT  
SELECT0  
P070  
ADCTL  
AD INT  
FLAG  
AD INT  
ENA  
P071  
AD READY  
ADSTAT  
ADDATA  
P072  
A-to-D Conversion Data Register  
Reserved  
P073  
to  
P07C  
P07D  
P07E  
Port E Data Input Register  
Port E Input Enable Register  
ADIN  
ADENA  
AD  
PRIORITY  
P07F  
AD STEST  
AD ESPEN  
ADPRI  
Timer 2B Control Registers Memory Map  
Modes: Dual-Compare and Dual-Capture  
P080 BIT 15  
P081 BIT 7  
P082 BIT 15  
P083 BIT 7  
P084 BIT 15  
P085 BIT 7  
P086 BIT 15  
P087 BIT 7  
T2B Counter MSbyte  
T2B Counter LSbyte  
BIT 8  
BIT 0  
BIT 8  
BIT 0  
BIT 8  
BIT 0  
BIT 8  
BIT 0  
T2BCNTR  
T2BC  
Compare Register MSbyte  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Capture Register 2 MSbyte  
Capture Register 2 LSbyte  
T2BCC  
T2BIC  
T2B  
T2B OVRFL  
OVRFL INT  
INT ENA  
T2B INPUT  
SELECT1  
T2B INPUT  
SELECT0  
T2B SW  
RESET  
P08A  
T2BCTL1  
FLAG  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Table 24. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Mode: Dual-Compare  
T2BEDGE1  
INT FLAG  
T2BC2  
INT FLAG  
T2BC1  
INT FLAG  
T2BEDGE1  
INT ENA  
T2BC2  
INT ENA  
T2BC1  
INT ENA  
P08B  
P08C  
T2BCTL2  
T2BCTL3  
T2B  
MODE = 0  
T2BC1  
OUT ENA  
T2BC2  
OUT ENA  
T2BC1  
RST ENA  
T2BEDGE1 T2BEDGE1 T2BEDGE1 T2BEDGE1  
OUT ENA  
POLARITY  
RST ENA  
DET ENA  
Mode: Dual-Capture  
T2BEDGE1  
INT FLAG  
T2BEDGE2  
INT FLAG  
T2BC1  
INT FLAG  
T2BEDGE1 T2BEDGE2  
INT ENA INT ENA  
T2BC1  
INT ENA  
P08B  
P08C  
T2BCTL2  
T2BCTL3  
T2B  
MODE = 1  
T2BC1  
RST ENA  
T2BEDGE2 T2BEDGE1 T2BEDGE2 T2BEDGE1  
POLARITY  
POLARITY  
DET ENA  
DET ENA  
Modes: Dual-Compare and Dual-Capture  
T2BEVT  
DATA IN  
T2BEVT  
DATA OUT  
T2BEVT  
FUNCTION  
T2BEVT  
DATA DIR  
P08D  
P08E  
P08F  
T2BPC1  
T2BPC2  
T2BPRI  
T2BIC2/PWM T2BIC2/PWM T2BIC2/PWM T2BIC2/PWM T2BIC1/CR T2BIC1/CR  
T2BIC1/CR T2BIC1/CR  
FUNCTION  
DATA IN  
DATA OUT  
FUNCTION  
DATA DIR  
DATA IN  
DATA OUT  
DATA DIR  
T2B  
PRIORITY  
T2B STEST  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range ,V  
, V  
, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
CC1 CC2 CC3  
Input voltage range, All pins except MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
Input clamp current, I (V < 0 or V > V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
(V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
O O CC1  
IK  
I
I
CC1)  
Output clamp current, I  
OK  
Continuous output current per buffer, I (V = 0 to V )(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
O
O
CC1  
Maximum I  
current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 mA  
CC  
Maximum I current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 170 mA  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W  
SS  
Operating free-air temperature range, T L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A:  
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C  
T version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 105°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
V
CC1  
= V  
CC  
NOTE 1: Electrical characteristics are specified with all output buffers loaded with the specified I current. Exceeding the specified I current  
O
O
in any buffer can affect the levels on other buffers.  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
recommended operating conditions  
MIN  
4.5  
NOM  
MAX  
5.5  
5.5  
5.5  
5.5  
0.3  
0.3  
0.8  
0.3  
UNIT  
Supply voltage (see Note 2)  
5
V
V
CC1  
RAM data-retention supply voltage (see Note 3)  
DigitalI/Osupplyvoltage(seeNote2)  
Analog supply voltage (see Note 2)  
Digital I/O supply ground  
3
V
CC2  
V
CC3  
V
SS2  
V
SS3  
4.5  
5
5
0
0
V
4.5  
– 0.3  
– 0.3  
V
V
V
V
Analog supply ground  
All pins except MC  
V
SS1  
SS1  
V
IL  
Low-level input voltage  
MC, normal operation  
V
All pins except MC, XTAL2/CLKIN, and  
RESET  
2
V
CC1  
MC (non-WPO mode)  
XTAL2/CLKIN  
V
0.3  
V
V
+0.3  
V
High-level input voltage  
CC1  
CC1  
V
IH  
0.8 V  
0.7 V  
V
CC1  
CC1  
CC1  
RESET  
V
CC1  
13  
EEPROM write protect override (WPO)  
11.7  
12  
EPROM programming voltage (V  
Microprocessor  
Microcomputer  
L version  
)
13  
13.2  
13.5  
MC (mode control) voltage  
(see Note 4)  
PP  
V
MC  
V
V
CC1  
0.3  
+0.3  
CC1  
0.3  
V
SS1  
0
70  
85  
T
A
Operating free-air temperature  
A version  
– 40  
– 40  
°C  
T version  
105  
NOTES: 2. Unless otherwise noted, all voltage values are with respect to V  
.
SS1  
3. RESET must be activated externally when V  
or SYSCLK is out of the recommended operating range.  
4. The basic microcomputer and microprocessor operating modes are selected by the voltage level applied to the dedicated MC pin  
CC1  
two system-clock cycles (t ) before RESET goes inactive (high). The WPO mode can be selected anytime that a sufficient voltage  
c
is present on MC.  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
= 1.4 mA  
MIN  
TYP  
MAX  
UNIT  
V
V
Low-level output voltage  
I
I
I
0.4  
V
OL  
OL  
OH  
OH  
= 50 µA  
0.9V  
CC1  
High-level output voltage  
Input current  
V
OH  
= 2 mA  
2.4  
0 V < V 0.3 V  
10  
50  
I
0.3 V < V < V  
0.3 V  
I
CC1  
µA  
MC  
V
V
–0.3 V V V  
+0.3 V  
CC1  
10  
CC1  
I
I
I
+ 0.3 V < V 13 V  
650  
50  
CC1  
I
12 V V 13 V  
(See Note 6)  
mA  
µA  
I
I/O pins  
0 V V V  
± 10  
I
CC1  
I
I
Low-level output current  
High-level output current  
V
OL  
V
OH  
V
OH  
= 0.4 V  
1.4  
– 50  
– 2  
mA  
µA  
OL  
= 0.9 V  
= 2.4 V  
CC1  
OH  
mA  
TMS370Cx67A  
TMS370Cx68A  
SYSCLK = 5 MHz  
SYSCLK = 3 MHz  
See Notes 7 and 8  
35  
56  
mA  
TMS370Cx67A  
TMS370Cx68A  
Supply current  
See Notes 7 and 8  
See Notes 5 and 7  
See Notes 7 and 8  
25  
46  
13  
36  
55  
18  
mA  
mA  
(operating mode)  
OSC POWER bit = 0  
(see Note 9)  
TMS370Cx69A SYSCLK = 3 MHz  
TMS370Cx67A  
SYSCLK = 0.5 MHz  
TMS370Cx68A  
mA  
mA  
I
CC  
TMS370Cx69A SYSCLK = 0.5 MHz  
SYSCLK = 5 MHz  
See Notes 5 and 7  
See Notes 7 and 8  
See Notes 7 and 8  
See Notes 7 and 8  
See Notes 7 and 8  
See Notes 7 and 8  
22  
12  
8
28  
17  
11  
3.5  
8.6  
3
Supply current (STANDBY mode)  
OSC POWER bit = 0  
(see Note 10)  
SYSCLK = 3 MHz  
SYSCLK = 0.5 MHz  
SYSCLK = 3 MHz  
SYSCLK = 0.5 MHz  
2.5  
6
Supply current (STANDBY mode)  
OSC POWER bit = 1 (see Note 11)  
mA  
2
Supply current (HALT mode)  
XTAL2/CLKIN < 0.2 V See Note 7  
2
30  
µA  
NOTES: 5. ’x69 operates up to 3 MHz SYSCLK. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and  
fall times less than 10 ns.  
6. Input current I  
is a maximum of 50 mA only when programming EPROM.  
PP  
7. Single chip mode, ports configured as inputs or outputs with no load. All inputs 0.2 V or V  
– 0.2V.  
CC1  
8. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and fall times less than 10 ns. Current  
can be higher with a crystal oscillator. At 5 MHz SYSCLK, this extra current = 0.01 mA x (total load capacitance + crystal capacitance  
in pF).  
9. Maximum operating current for TMS370Cx6x = 10 (SYSCLK) + 5.8 mA.  
10. Maximum standby current for TMS370Cx6x = 3 (SYSCLK) + 2 mA. (OSC POWER bit = 0).  
11. Maximum standby current for TMS370Cx6x = 2.24 (SYSCLK) + 1.9 mA. (OSC POWER bit = 1, only valid up to 3 MHz SYSCLK).  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
XTAL2/CLKIN  
XTAL1  
XTAL2/CLKIN  
XTAL1  
C3  
C1  
(see Note B)  
C2  
(see Note B)  
Crystal/Ceramic  
Resonator  
(see Note A)  
External  
Clock Signal  
(see Note B)  
NOTES: A. The crystal/ceramic resonator frequency is four times the reciprocal of the system clock period.  
B. The values of C1 and C2 typically are 15 pF and the value of C3 is typically 50pF. See the manufacturer’s recommendations for  
ceramic resonators.  
Figure 19. Recommended Crystal/Clock Connections (See Note A)  
Load Voltage  
1.2 kΩ  
V
O
20 pF  
Case 1: V = V  
= 2.4 V; Load Voltage = 0 V  
= 0.4 V; Load Voltage = 2.1 V  
O
OH  
OL  
Case 2: V = V  
O
NOTE A: All measurements are made with the pin loading as shown unless otherwise noted. All measurements are made with XTAL2/CLKIN  
driven by an external square wave signal with a 50% duty cycle and rise and fall times less than 10 ns unless otherwise stated.  
Figure 20. Typical Output Load Circuit  
V
CC  
V
CC  
Pin Data  
300 Ω  
30 Ω  
6 kΩ  
Output  
Enable  
I/O  
INT 1  
20 Ω  
20 Ω  
GND  
GND  
Figure 21. Typlcal Buffer Circuitry  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
timing parameter symbology  
Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
A
Address  
Array  
RXD  
S
SCIRXD  
Slave mode  
SYSCLK  
SCICLK  
SPISIMO  
SPISOMI  
SPICLK  
SCITXD  
Write  
AR  
B
Byte  
SC  
CI  
D
XTAL2/CLKIN  
Data  
SCC  
SIMO  
SOMI  
SPC  
TXD  
W
E
EDS  
FE  
IE  
M
Final  
Initial  
Master mode  
Program  
Read  
PGM  
R
WT  
WAIT  
Lowercase subscripts and their meanings are:  
c
d
f
cycle time (period)  
delay time  
r
rise time  
su  
v
setup time  
fall time  
valid time  
h
hold time  
w
pulse duration (width)  
The following additional letters are used with these meanings:  
H
L
High  
Low  
V
Z
Valid  
High impedance  
All timings are measured between high and low measurement points as indicated in Figure 22 and Figure 23.  
0.8 V  
V (High)  
2 V (High)  
CC  
0.8 V (Low)  
0.8 V (Low)  
Figure 22. XTAL2/CLKIN Measurement Points  
Figure 23. General Measurement Points  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
external clocking requirements for clock divided by 4 (see Figure 24)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 12)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
20  
w(Cl)  
2
t
30  
30  
100  
20  
5
ns  
r(Cl)  
3
t
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
t
Delay time, XTAL2/CLKIN rise to SYSCLK fall  
Crystal operating frequency  
ns  
d(CIH-SCL)  
§
CLKIN  
2
MHz  
MHz  
SYSCLK  
System clock  
0.5  
§
For V and V , refer to recommended operating conditions table.  
SYSCLK = CLKIN/4  
’x69A operates up to 12 MHz CLKIN  
’x69A operates up to 3 MHz SYSCLK  
IL  
IH  
NOTE 12: This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or a  
low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
2
3
4
SYSCLK  
Figure 24. External Clock Divide-by-4  
external clocking requirements for clock divided by 1 (PLL) (see Figure 25)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 12)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
20  
w(Cl)  
2
t
30  
30  
100  
5
ns  
r(Cl)  
3
t
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
t
Delay time, XTAL2/CLKIN rise to SYSCLK rise  
Crystal operating frequency  
ns  
d(CIH-SCH)  
#
CLKIN  
2
2
MHz  
MHz  
||  
System clock  
SYSCLK  
5
#
||  
For V and V , refer to recommended operating conditions table.  
IL IH  
’x69A operates up to 3 MHz SYSCLK  
’x69A operates up to 3 MHz CLKIN (for divide-by-1 clock option)  
SYSCLK = CLKIN/1  
NOTE 12: This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or a  
low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
2
3
4
SYSCLK  
Figure 25. External Clock Divide-by-1  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
general purpose output signal switching time requirements (see Figure 26)  
MIN NOM  
MAX  
UNIT  
ns  
t
t
Rise time  
Fall time  
30  
30  
r
ns  
f
t
r
t
f
Figure 26. Signal Switching Timing  
recommended EEPROM timing requirements for programming  
MIN  
MAX  
UNIT  
t
t
Pulse duration, programming signal to ensure valid data is stored (byte mode)  
Pulse duration, programming signal to ensure valid data is stored (array mode)  
10  
20  
ms  
ms  
w(PGM)B  
w(PGM)AR  
recommended EPROM operating conditions for programming  
MIN NOM  
MAX  
6
UNIT  
V
V
V
Supply voltage  
4.75  
13  
5.5  
13.2  
30  
CC1  
Supply voltage at MC pin  
13.5  
50  
5
V
PP  
I
Supply current at MC pin during programming (V  
= 13 V)  
mA  
PP  
PP  
Divide-by-4  
Divide-by-1  
0.5  
2
SYSCLK  
System clock  
MHz  
5
recommended EPROM timing requirements for programming  
MIN NOM  
0.40 0.50  
MAX  
UNIT  
t
Pulse duration, programming signal (see Note 13)  
3
ms  
w(EPGM)  
NOTE 13: Programming pulse is active when both EXE (EPCTL.0) and V  
(EPCTL.6) are set.  
PPS  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
switching characteristics and timing requirements for external read and write (see Figure 27 and  
Figure 28)  
NO.  
PARAMETER  
MIN  
200  
200  
MAX  
2000  
500  
UNIT  
Divide-by-4 clock  
Divide-by-1 PLL  
5
t
c
Cycle time, SYSCLK (system clock)  
ns  
6
7
t
t
Pulse duration, SYSCLK low  
Pulse duration, SYSCLK high  
0.5t –25  
0.5t  
c
ns  
ns  
w(SCL)  
c
0.5t  
0.5t +20  
c
w(SCH)  
c
Delay time, SYSCLK low to address R/W and OCF  
valid  
8
t
0.25t +75  
ns  
d(SCL-A)  
c
Valid time, address to EDS, CSE1, CSH1, and CSPF  
low  
9
t
t
t
t
t
0.5t –90  
ns  
ns  
ns  
ns  
ns  
v(A)  
c
0.75t –80  
c
10  
11  
12  
13  
Setup time, write data time to EDS high  
su(D)  
Hold time, address, R/W and OCF from EDS, CSE1,  
CSH1 and CSPF high  
0.5t –60  
h(EH-A)  
h(EH-D)W  
d(DZ-EL)  
c
Hold time, write data time from EDS high  
0.75t +15  
c
Delay time, data bus high impedance to EDS low (read  
cycle)  
0.25t –35  
c
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
t
t
t
t
t
t
t
t
t
t
Delay time, EDS high to data bus enable (read cycle)  
Delay time, EDS low to read data valid  
1.25t –40  
c
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(EH-D)  
t –95  
d(EL-DV)R  
h(EH-D)R  
su(WT-SCH)  
h(SCH-WT)  
d(EL-WTV)  
w
c
Hold time, read time from EDS high  
0
§
Setup time, WAIT time to SYSCLK high  
Hold time, WAIT time from SYSCLK high  
Delay time, EDS low to WAIT valid  
0.25t +70  
c
0
0.5t –60  
c
t +40  
c
Pulse duration, EDS, CSE1, CSH1 and CSPF low  
Delay time, address valid to read data valid  
Delay time, address valid to WAIT valid  
Delay time, address valid to EDS high (end of write)  
t –80  
c
1.5t –115  
d(AV-DV)R  
d(AV-WTV)  
d(AV-EH)  
c
t –115  
c
1.5t –85  
c
§
t = system-clock cycle time = 1/SYSCLK  
If wait states, PFWait, or the autowait feature is used, add t to this value for each wait state invoked.  
If the autowait feature is enabled, the WAIT input can assume a “don’t care” condition until the third cycle of the access. The WAIT signal must  
be synchronized with the high pulse of the SYSCLK signal while still conforming to the minimum set-up time.  
c
c
62  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
7
5
8
6
SYSCLK  
ADDRESS  
11  
20  
EDS, CSE1, CSH1, CSPF  
14  
9
21  
13  
16  
15  
Read Data Read Data  
Valid Disable  
370 Drives  
Data  
370 Drives Data  
Read Data Drive  
DATA  
WAIT  
19  
22  
17  
18  
R/W  
OCF  
Figure 27. External-Read Timing  
63  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
7
5
6
SYSCLK  
8
ADDRESS  
11  
EDS, CSE1, CSH1, CSPF  
20  
9
10  
23  
12  
DATA  
19  
22  
17  
18  
WAIT  
R/W  
Figure 28. External-Write Timing  
64  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
SCI1 isosynchronous-mode timing characteristics and requirements for internal clock  
(see Note 14 and Figure 29)  
NO.  
24  
25  
26  
27  
28  
29  
30  
MIN  
2t  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
Cycle time, SCICLK  
131072t  
c
c(SCC)  
c
Pulse duration, SCICLK low  
t
c
t
c
– 45  
– 45  
0.5t  
0.5t  
+45  
+45  
ns  
w(SCCL)  
c(SCC)  
Pulse duration, SCICLK high  
ns  
w(SCCH)  
c(SCC)  
60  
Delay time, SCITXD valid after SCICLK low  
Valid time, SCITXD data valid after SCICLK high  
Setup time, SCIRXD to SCICLK high  
Valid time, SCIRXD data valid after SCICLK high  
– 50  
ns  
d(SCCL-TXDV)  
v(SCCH-TXD)  
su(RXD-SCCH)  
v(SCCH-RXD)  
t
– 50  
ns  
w(SCCH)  
0.25 t + 145  
c
ns  
0
ns  
NOTE 14: t = system-clock cycle time = 1/SYSCLK  
c
24  
26  
25  
SCICLK  
28  
27  
Data Valid  
SCITXD  
29  
30  
Data Valid  
SCIRXD  
Figure 29. SCI1 Isosynchronous-Mode Timing for Internal Clock  
65  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
SCI1 isosynchronous-mode timing characteristics and requirements for external clock  
(see Note 14 and Figure 30)  
NO.  
31  
32  
33  
34  
35  
36  
37  
MIN  
10t  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
Cycle time, SCICLK  
c(SCC)  
c
Pulse duration, SCICLK low  
4.25t + 120  
ns  
w(SCCL)  
c
Pulse duration, SCICLK high  
t
c
+ 120  
ns  
w(SCCH)  
Delay time, SCITXD valid after SCICLK low  
Valid time, SCITXD data valid after SCICLK high  
Setup time, SCIRXD to SCICLK high  
Valid time, SCIRXD data after SCICLK high  
4.25t + 145  
ns  
d(SCCL-TXDV)  
v(SCCH-TXD)  
su(SIMO-SCCH)  
v(SCCH-RXD)  
c
t
ns  
w(SCCH)  
40  
ns  
2t  
c
ns  
NOTE 14: t = system-clock cycle time = 1/SYSCLK  
c
31  
33  
32  
SCICLK  
35  
34  
Data Valid  
SCITXD  
36  
37  
Data Valid  
SCIRXD  
Figure 30. SCI1 Isosynchronous-Mode Timing for External Clock  
66  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
SPI-master mode external timing characteristics and requirements (see Note 14 and Figure 31)  
NO.  
38  
MIN  
2t  
MAX  
256t  
UNIT  
ns  
t
t
t
t
Cycle time, SPICLK  
c(SPC)M  
c
c
39  
Pulse duration, SPICLK low  
t
– 45  
– 55  
0.5t  
0.5t  
+45  
+45  
ns  
w(SPCL)M  
c
c
c(SPC)  
40  
Pulse duration, SPICLK high  
t
ns  
w(SPCH)M  
c(SPC)  
50  
41  
Delay time, SPISIMO valid after SPICLK low (polarity = 1)  
– 65  
ns  
d(SPCL-SIMOV)M  
Valid time, SPISIMO data valid after SPICLK high  
(polarity =1)  
42  
43  
44  
t
t
t
t
– 50  
ns  
ns  
ns  
v(SPCH-SIMO)M  
su(SOMI-SPCH)M  
v(SPCH-SOMI)M  
w(SPCH)  
Setup time, SPISOMI to SPICLK high (polarity = 1)  
0.25 t + 150  
c
Valid time, SPISOMI data valid after SPICLK high  
(polarity = 1)  
0
NOTE 14: t = system-clock cycle time = 1/SYSCLK  
c
38  
40  
39  
SPICLK  
41  
42  
Data Valid  
SPISIMO  
43  
44  
Data Valid  
SPISOMI  
NOTE A: The diagram shows polarity = 1. SPICLK is inverted when polarity = 0.  
Figure 31. SPI-Master External Timing  
67  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
SPI-slave mode external timing characteristics and requirements (see Note 14 and Figure 32)  
NO.  
45  
46  
47  
48  
49  
50  
51  
MIN  
8t  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
Cycle time, SPICLK  
c(SPC)S  
c
Pulse duration, SPICLK low  
4t – 45 0.5t  
c
+45  
+45  
ns  
w(SPCL)S  
c(SPC)S  
Pulse duration, SPICLK high  
4t – 45 0.5t  
c
ns  
w(SPCH)S  
c(SPC)S  
Delay time, SPISOMI valid after SPICLK low (polarity = 1)  
Valid time, SPISOMI data valid after SPICLK high (polarity =1)  
Setup time, SPISIMO to SPICLK high (polarity = 1)  
Valid time, SPISIMO data after SPICLK high (polarity = 1)  
3.25t + 130  
ns  
d(SPCL-SOMIV)S  
v(SPCH-SOMI)S  
su(SIMO-SPCH)S  
v(SPCH-SIMO)S  
c
t
ns  
w(SPCH)S  
0
ns  
3t + 100  
c
ns  
NOTE 14: t = system-clock cycle time = 1/SYSCLK  
c
45  
47  
46  
SPICLK  
48  
49  
Data Valid  
SPISIMO  
50  
51  
Data Valid  
SPISOMI  
NOTE A: The diagram shows polarity = 1. SPICLK is inverted when polarity = 0.  
Figure 32. SPI-Slave External Timing  
68  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 1 (ADC1)  
The ADC1 converter has a separate power bus for its analog circuitry. These pins are referred to as V  
and  
CC3  
V
. The purpose is to enhance ADC1 performance by preventing digital switching noise of the logic circuitry  
SS3  
that can be present on V  
given with respect to V  
and V  
from coupling into the ADC1 analog stage. All ADC1 specifications are  
SS1  
CC1  
unless otherwise noted.  
SS3  
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-bits (256 values)  
Monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yes  
Output conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00h to FFh (00 for VI V  
Conversion time (excluding sample time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 t  
; FF for VI V  
SS3  
ref)  
c
recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
4.5  
5
5.5  
V
V
Analog supply voltage  
Analog ground  
V
CC3  
V
–0.3  
CC1  
V
+0.3  
CC1  
V
–0.3  
SS1  
V
+0.3  
SS1  
V
V
V
SS3  
V
ref  
Non-V  
CC3  
reference  
2.5  
V
V
+ 0.1  
CC3  
CC3  
Analog input for conversion  
V
V
ref  
SS3  
V
ref  
must be stable, within ± 1/2 LSB of the required resolution, during the entire conversion time.  
operating characteristics over recommended ranges operating conditions  
PARAMETER  
MIN  
MAX  
±1.5  
±0.9  
2
UNIT  
LSB  
LSB  
mA  
µA  
Absolute accuracy  
V
V
= 5.5 V  
= 5.5 V  
V
= 5.1 V  
= 5.1 V  
CC3  
rerf  
‡§  
Differential/integral linearity error  
V
rerf  
CC3  
Converting  
I
I
Analog supply current  
CC3  
Nonconverting  
5
Input current, AN0AN7  
0 V V 5.5 V  
2
µA  
I
I
I
input charge current  
1
mA  
kΩ  
ref  
SYSCLK 3 MHz  
24  
10  
Z
Source impedance of V  
ref  
ref  
3 MHz < SYSCLK 5 MHz  
kΩ  
§
Absolute resolution = 20 mV. At V = 5 V, this is one LSB. As V decreases, LSB size decreases. Therefore, the absolute accuracy and  
differential/integral linearity errors in terms of LSBs increase.  
Excluding quantization error of 1/2 LSB  
ref  
ref  
69  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 1 (ADC1) (continued)  
The ADC1 module allows complete freedom in design of the sources for the analog inputs. The period of the  
sample time is user-defined so that the high-impedance can be accommodated without penalty to the  
low-impedance sources. The sample period begins when the SAMPLE START bit of the ADC1 control register  
(ADCTL.6) is set to 1. The end of the signal sample period occurs when the conversion bit (CONVERT START,  
ADCTL.7) is set to 1. After a hold time, the converter will reset the SAMPLE START and CONVERT START bits,  
signaling that a conversion has started and that the analog signal can be removed.  
analog timing requirements  
MIN  
MAX  
UNIT  
ns  
t
t
t
Setup time, analog to sample command  
0
su(S)  
h(AN)  
w(S)  
Hold time, analog input from start of conversion  
Pulse duration, sample time per kilohm of source impedance  
18t  
ns  
c
1
µs/kΩ  
The value given is valid for a signal with a source impedance > 1 k. If the source impedance is < 1k, use a minimum sampling time of 1µs.  
Analog Stable  
Analog In  
t
su(S)  
Sample Start  
Convert Start  
t
h(AN)  
t
w(S)  
Figure 33. Analog Timing  
Table 25 is designed to aid the user in referencing a device part number to a mechanical drawing. The table  
shows a cross-reference of the device part number to the TMS370 generic package name and the associated  
mechanical drawing by drawing number and name.  
Table 25. TMS370Cx6x Family Package Type and Mechanical Cross-Reference  
PKG TYPE  
(mil pin spacing)  
PKG TYPE NO. AND  
MECHANICAL NAME  
TMS370 GENERIC NAME  
DEVICE PART NUMBERS  
TMS370C067AFNA  
TMS370C067AFNL  
TMS370C067AFNT  
TMS370C068AFNA  
TMS370C068AFNL  
TMS370C068AFNT  
TMS370C069AFNA  
TMS370C069AFNL  
TMS370C069AFNT  
TMS370C768AFNT  
TMS370C769AFNT  
FN – 68 pin  
(50-mil pin spacing)  
PLASTIC LEADED CHIP CARRIER  
(PLCC)  
FN(S-PQCC-J**) PLASTIC J-LEADED  
CHIP CARRIER  
FZ – 68 pin  
(50-mil pin spacing)  
CERAMIC LEADED CHIP CARRIER  
(CLCC)  
FZ(S-CQCC-J**) J-LEADED CERAMIC  
CHIP CARRIER  
SE370C768AFZT  
SE370C769AFZT  
70  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.007 (0,18)  
0.050 (1,27)  
9
13  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
71  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx6x  
8-BIT MICROCONTROLLER  
SPNS033C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
FZ (S-CQCC-J**)  
J-LEADED CERAMIC CHIP CARRIER  
28 LEAD SHOWN  
0.040 (1,02)  
45°  
Seating Plane  
0.180 (4,57)  
0.155 (3,94)  
0.140 (3,55)  
A
B
1
0.120 (3,05)  
26  
4
25  
5
0.050 (1,27)  
C
(at Seating  
Plane)  
A
B
0.032 (0,81)  
0.026 (0,66)  
0.020 (0,51)  
0.014 (0,36)  
19  
11  
18  
12  
0.025 (0,64) R TYP  
0.040 (1,02) MIN  
0.120 (3,05)  
0.090 (2,29)  
A
B
C
JEDEC  
NO. OF  
PINS**  
OUTLINE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
0.485  
0.495  
0.430  
0.455  
0.410  
0.430  
MO-087AA  
MO-087AB  
MO-087AC  
MO-087AD  
28  
44  
52  
68  
(12,32)  
(12,57)  
(10,92)  
(11,56)  
(10,41)  
(10,92)  
0.685  
0.695  
0.630  
0.655  
0.610  
0.630  
(17,40)  
(17,65)  
(16,00)  
(16,64)  
(15,49)  
(16,00)  
0.785  
0.795  
0.730  
0.765  
0.680  
0.740  
(19,94)  
(20,19)  
(18,54)  
(19,43)  
(17,28)  
(18,79)  
0.985  
0.995  
0.930  
0.955  
0.910  
0.930  
(25,02)  
(25,27)  
(23,62)  
(24,26)  
(23,11)  
(23,62)  
4040219/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
72  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SE370C769AYYZ

TMS370 MICROCONTROLLER FAMILY DATA BOOK
TI

SE370C777A

8-BIT MICROCONTROLLER
TI

SE370C777AFZA

8-BIT, UVPROM, MICROCONTROLLER, CQCC68
TI

SE370C777AFZL

8-BIT, UVPROM, MICROCONTROLLER, CQCC68
TI

SE370C777AFZT

8-BIT MICROCONTROLLER
TI

SE370C777AJNA

8-BIT, UVPROM, MICROCONTROLLER, CDIP64
TI

SE370C777AJNL

8-BIT, UVPROM, MICROCONTROLLER, CDIP64
TI

SE370C777AJNT

8-BIT, UVPROM, 5MHz, MICROCONTROLLER, CDIP64, WINDOWED, CERAMIC, DIP-64
TI

SE370C777AYYZ

TMS370 MICROCONTROLLER FAMILY DATA BOOK
TI

SE370C792

8-BIT MICROCONTROLLER
TI

SE370C792YYZ

TMS370 MICROCONTROLLER FAMILY DATA BOOK
TI

SE38

64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP