SM320C6457-HIREL [TI]

高可靠性产品 C6457 定点 DSP;
SM320C6457-HIREL
型号: SM320C6457-HIREL
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高可靠性产品 C6457 定点 DSP

文件: 总207页 (文件大小:1815K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
SM320C6457-HIREL 通信基础设施数字信号处理器  
1 器件概述  
1.1 特性  
1
专用集成电路 (ASIC) 等等)  
高性能定点数字信号处理器 (DSP) - SM320C6457-  
HIREL  
– 32MB 总可寻址外部存储空间  
– 1.18ns1ns 0.83ns 指令周期时间  
– 850MHz 1GHz 时钟速率  
– 8 32 位指令/周期  
– 8000MIPS/MMACS 9600MIPS/MMACS16  
位)  
• 32 DDR2 存储器控制器 (DDR2-667 SDRAM)  
• 4 串行 RapidIO® 链路(或 1 ),兼容  
v1.3  
– 1.25Gbps2.5Gbps3.125Gbps 三种链路速率  
消息传递,DirectIO 支持,错误管理扩展,拥塞  
控制  
扩展级外壳温度  
符合 IEEE 1149.6 标准的 I/O  
• EDMA3 控制器(64 个独立通道)  
• 32 /16 位主机端口接口 (HPI)  
• 2 1.8V McBSP  
-55ºC 100ºC (1GHz)  
• TMS320C64x+™DSP 内核  
专用 SPLOOP 指令  
紧凑型指令(16 位)  
• 10/100/1000 Mb/s 以太网 MAC (EMAC)  
符合 IEEE 802.3 标准  
指令集增强  
异常处理  
支持 SGMII,兼容 v1.8  
– 8 个独立的发送 (TX) 通道和 8 个独立的接收  
(RX) 通道  
• TMS320C64x+ 超级模块 L1/L2 存储器架构:  
– 256KB (32Kb) L1P 程序缓存 [直接映射]  
– 256KB (32Kb) L1D 数据缓存 [2 路组相连]  
• 2 64 位通用定时器  
– 16MB (2048Kb) L2 统一映射 Ram/缓存 [灵活分  
]  
可配置为 4 32 位定时器  
可配置为看门狗定时器模式  
• UTOPIA  
最高可配置为 1MB L2 缓存  
– 512KB (64Kb) L3 ROM  
时间戳计数器  
增强型 VCP2  
支持 694 个以上 7.95Kbps AMR 的语音通道  
可编程代码参数  
• 2 个增强型 Turbo 解码器协处理器(TCP2_A 和  
TCP2_B)  
– UTOPIA 2 级从 ATM 控制器  
– 8 位发送和接收操作,每个方向高达 50MHz  
用户定义的单元格式,高达 64 字节  
• 1 1.8V 内部集成电路 (I2C) 总线  
• 16 个通用 I/O (GPIO) 引脚  
系统锁相环 (PLL) PLL 控制器  
• DDR PLL,专用于 DDR2 存储器控制器  
支持高级事件触发 (AET)  
每个 TCP2 支持多达 8 2Mbps 3GPP (6 次迭  
代)  
可编程的 Turbo 代码和解码参数  
尾数法:小尾数法,大尾数法  
• 64 位外部存储器接口 (EMIFA)  
支持跟踪功能的器件  
支持 IP 安全保护功能  
• IEEE-1149.1 IEEE-1149.6 (JTAG™) 边界扫描兼  
可与异步存储器(SRAM、闪存和 EEPROM)以  
及同步存储器(SBSRAMZBT SRAM)无缝连  
• 688 引脚球栅阵列 (BGA) 封装(GMH 后  
缀),0.8mm 焊球间距  
支持连接标准同步器件和定制逻辑(现场可编程  
门阵列 (FPGA)、复杂可编程逻辑器件 (CPLD)、  
• 0.065µm/7 层铜金属工艺 (CMOS)  
• 3.3V1.8V1.1V (I/O)1.1V 1.2V(内部)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SPRS948  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
1.2 应用  
远端射频单元  
语音处理  
生物识别  
软件定义的无线电  
1.3 说明  
TMS320C64x+™ DSP(包括 SM320C6457-HIREL 器件)是 TMS320C6000™DSP 平台上的高性能定点  
DSP 系列产品。SM320C6457-HIREL 器件基于德州仪器 (TI) 开发的第 3 代高性能、高级 VelociTI™超长指  
令字 (VLIW) 架构,这使得该系列 DSP 非常适合 包括 视频和电信基础设施、成像/医疗以及无线基础设施  
(WI) 在内的各类应用。C64x+ 器件向上代码兼容属于 C6000™ DSP 平台的早期器件。  
基于 65nm 的工艺技术以及凭借高达 96 亿条指令每秒 (MIPS) [9600 16 MMAC 每周期] 的性能  
1.2GHz 时钟速率时),SM320C6457-HIREL 器件提供了一套应对高性能 DSP 编程挑战的经济高效型解  
决方案。SM320C6457-HIREL DSP 可以灵活地利用高速控制器以及阵列处理器的数值计算能力。  
C64x+ DSP 内核采用 8 个功能单元、2 个寄存器文件以及 2 个数据路径。与早期 C6000 器件一样,其中 2  
个功能单元为乘法器或 .M 单元。C64x 内核每个时钟周期执行 4 16 × 16 位乘法累加,相比之  
下,C64x+ .M 单元的乘法吞吐量可增加一倍。因此,C64x+ 内核每个周期可以执行 8 16 × 16 位  
MAC。采用 1.2GHz 时钟速率时,这意味着每秒可以执行 960016 MMAC。此外,C64x+ 内核上的每  
个乘法器每个时钟周期可以计算 1 32 × 32 MAC 4 8 × 8 MAC。  
SM320C6457-HIREL 器件含有串行 RapidIO®。该高带宽外设可为板上包含多个 DSP 的 应用 (例如,视  
频和电信基础设施以及医疗/成像)显著提升系统性能并降低系统成本。  
SM320C6457-HIREL DSP 集成有大量的片上存储器,构成一个第 2 级存储器系统。SM320C6457-HIREL  
器件上的 1 (L1) 程序存储器和数据存储器的大小均为 32KB。该存储器可以配置为映射 RAM、缓存或二  
者的某种组合。当配置为缓存时,L1 程序存储器 (L1P) 是一个直接映射缓存,而 L1 数据存储器 (L1D) 是一  
2 路组相连缓存。2 (L2) 存储器由程序空间和数据空间共享,大小为 2048KBL2 存储器也可以配置  
为映射 RAM、缓存或二者的某种组合。L2 可配置为高达 1MB 的缓存。此外,C64x+ 超级模块还具有 32  
位外设配置 (CFG) 端口、内部 DMA (IDMA) 控制器、具有复位/启动控制的系统组件、中断/异常控制、掉电  
控制以及用于时间戳的自由运行 32 位定时器。  
外设集包括:1 个内部集成电路总线模块 (I2C)2 个多通道缓冲串行端口 (McBSP)1 个用于异步传输模式  
(ATM) [UTOPIA 从器件] 端口的 8 位通用测试和运行 PHY 接口;2 64 位通用定时器(也可配置为 4  
32 位定时器);1 个用户可配置的 16 位或 32 位主机端口接口 (HPI16/HPI32)1 个支持可编程中断/事  
件生成模式的 16 引脚通用输入/输出端口 (GPIO)1 10/100/1000 以太网介质访问控制器 (EMAC)(可在  
SM320C6457-HIREL DSP 内核处理器和网络之间提供一个高效接口);1 个管理数据输入/输出 (MDIO) 模  
块(也属于 EMAC,可以连续轮询全部 32 MDIO 地址以枚举系统内的所有 PHY 器件);1 个可连接同  
步和异步外设的无缝外部存储器接口(64 EMIFA);以及 1 32 DDR2 SDRAM 接口。  
2
器件概述  
版权 © 2016, Texas Instruments Incorporated  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
1.4 说明 (续)  
SM320C6457-HIREL 器件具有 3 个高性能嵌入式协处理器 [1 个增强型维特比解码器协处理器 (VCP2) 2  
个增强型 Turbo 解码器协处理器(TCP2_A TCP2_B],可以显著加速片上的通道解码操作。VCP2 的  
运行速度为 CPU 时钟的三分之一,可以解码超过 694 7.95Kbps 自适应多速率 (AMR) [K = 9R = 1/3]  
语音通道。VCP2 支持约束长度 K = 5678 9,比率 R = 3/41/21/31/4 1/5 以及灵活的多  
项式,同时能够生成硬决策或软决策。每个运行速度为 CPU 时钟三分之一的 TCP2 可以解码多达 50 个  
384Kbps 8 2Mbps Turbo 编码通道(假设 6 次迭代)。TCP2 实现 max*log-map 算法,旨在支持第  
三代合作项目(3GPP 3GPP2)所需的全部多项式和比率,且支持完全可编程的帧长和 Turbo 交错。解  
码参数,例如迭代次数以及停止标准,也都可编程。VCP2/TCP2 CPU 之间通过 EDMA3 控制器进行通  
信。  
SM320C6457-HIREL 器件配有一套完整的开发工具,其中包括:新款 C 编译器、用于简化编程和调度过程  
的汇编优化器以及用于查看源代码执行的 Windows®调试器接口。  
器件信息(1)  
封装  
产品型号  
SM320C6457-HIREL  
(1) 更多信息请参见 7机械封装和可订购产品信息。  
封装尺寸  
23.00mm x 23.00mm  
FCBGA (688)  
版权 © 2016, Texas Instruments Incorporated  
器件概述  
3
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
1.5 功能方框图  
1-1 给出了 SM320C6457-HIREL 器件的功能框图。  
C6457  
32  
DDR2  
Mem Ctlr  
DDR2 SDRAM  
PLL2  
64  
EMIFA  
I/O Devices  
L1P SRAM/Cache Direct-Mapped  
32K Bytes  
TCP2_A  
TCP2_B  
VCP2  
L1P Memory Controller (Memory Protect/Bandwidth Mgmt)  
C64x+ DSP Core  
McBSP0  
McBSP1  
Control Registers  
SPLOOP Buffer  
Instruction Fetch  
16-/32-bit  
Instruction Dispatch  
L2  
Instruction  
Decode  
In-Circuit Emulation  
Data Path B  
Cache  
Memory  
2048K  
Bytes  
Serial Rapid  
I/O  
M
e
g
a
m
o
d
u
l
Data Path A  
HPI (32/16)  
UTOPIA  
A Register File  
A31−A16  
B Register File  
B31−B16  
A15−A0  
B15−B0  
e
.M1  
xx  
xx  
.M2  
xx  
xx  
.L1  
.S1  
.D1  
.D2  
.S2  
.L2  
EMAC  
10/100/1000  
SGMII  
MDIO  
L1D Memory Controller (Memory Protect/Bandwidth Mgmt)  
16  
GPIO16  
I2C  
L1D SRAM/Cache  
2-Way  
Set-Associative  
32K Bytes Total  
Timer1(A)  
HI  
EDMA 3.0  
L3 ROM  
LO  
Device  
Configuration  
Logic  
PLL1 and  
PLL1  
Timer0(A)  
Controller  
Secondary  
HI  
Switched Central  
Resource  
LO  
Boot Configuration  
1-1. 功能框图  
(A) 每个 TIMER 外设(TIMER1 TIMER0)均可配置为 1 64 位通用定时器、2 32 位通用定时器或者 1 个看门狗定时器。  
4
器件概述  
版权 © 2016, Texas Instruments Incorporated  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
内容  
1
器件概.................................................... 1  
4.8 Peripherals .......................................... 46  
Detailed Description.................................. 166  
5.1 Device Overview................................... 166  
5.2 CPU (DSP Core) Description ...................... 167  
5.3 C64x+ Megamodule ............................... 170  
5.4 Memory Map Summary............................ 185  
5.5 Device Configuration............................... 187  
5.6 System Interconnect ............................... 193  
5.7 Boot Modes ........................................ 198  
5.8 Rake Search Accelerator (RSA)................... 200  
器件和文档支......................................... 201  
6.1 器件命名规则....................................... 201  
6.2 工具与软件 ......................................... 201  
6.3 文档支持 ........................................... 202  
6.4 社区资源 ........................................... 203  
6.5 商标 ................................................ 204  
6.6 静电放电警告....................................... 204  
6.7 Glossary............................................ 204  
机械、封装和可订购信息 .............................. 205  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 2  
1.3 说明 ................................................... 2  
1.4 说明 (续........................................... 3  
1.5 功能方框图............................................ 4  
修订历史记录............................................... 6  
Terminal Configuration and Functions.............. 7  
3.1 Pin Diagram .......................................... 7  
3.2 Pin Attributes ......................................... 8  
3.3 Signal Descriptions.................................. 31  
Specifications ........................................... 37  
4.1 Absolute Maximum Ratings......................... 37  
4.2 ESD Ratings ........................................ 38  
4.3 Recommended Operating Conditions............... 38  
4.4 Electrical Characteristics............................ 39  
4.5 Thermal Resistance Characteristics ................ 39  
4.6 Timing and Switching Characteristics............... 40  
5
2
3
6
4
4.7  
Power Supply to Peripheral I/O Mapping ........... 44  
7
版权 © 2016, Texas Instruments Incorporated  
内容  
5
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注释  
7 2016  
*
最初发布。  
6
修订历史记录  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
3 Terminal Configuration and Functions  
3.1 Pin Diagram  
Figure 3-1 shows the ball locations for the 688-pin GMH package and is used in conjunction with Table 4-  
1 through Table 4-27 to locate signal names and ball grid numbers.  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21 23 25 27  
2
4
6
8 10 12 14 16 18 20 22 24 26 28  
Figure 3-1. GMH 688-Pin Ball Grid Array (BGA) Package  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
3.2 Pin Attributes  
Table 3-2 identifies the external signal names, the associated pin (ball) numbers along with the  
mechanical package designator, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal  
pullup/pulldown resistors, and a functional pin description. For more detailed information on device  
configuration, peripheral selection, multiplexed/shared pins, and pullup/pulldown resistors, see  
Section 5.5.  
Use the symbol definitions in Table 3-1 when reading Table 3-2.  
Table 3-1. I/O Functional Symbol Definitions  
FUNCTIONAL  
SYMBOL  
Table 3-2  
COLUMN HEADING  
DEFINITION  
Internal 100-µA pulldown or pullup is provided for this terminal. In most systems, a 1-kΩ  
resistor can be used to oppose the IPD/IPU. For more detailed information on pulldown/pullup  
resistors and situations in which external pulldown/pullup resistors are required, see  
Section 5.5.6.  
IPD or IPU  
IPD/IPU  
A
GND  
I
Analog signal  
Type  
Type  
Type  
Type  
Type  
Type  
Ground  
Input terminal  
O
Output terminal  
S
Supply voltage  
Z
Three-state terminal or high impedance  
Table 3-2. Pin Attributes  
BALL  
SIGNAL NAME  
NO.  
TYPE IPD/IPU DESCRIPTION  
CLOCK/PLL CONFIGURATIONS  
CORECLKN  
CORECLKP  
ALTCORECLK  
AH7  
AH6  
AF6  
I
I
Clock Input for PLL1 (differential).  
Clock Input for PLL1 (differential).  
Alternate Core Clock (single-ended) input to main PLL [vs. CORECLK(N|P)].  
Core Clock Select. Selects between CORECLK(N|P) and ALTCORECLK to the Main  
PLL.  
CORECLKSEL  
AE6  
When CORECLKSEL = 0, it selects the differential clock [CORECLK(N|P)].  
When CORECLKSEL = 1, it selects the single-ended clock [ALTCORECLK].  
SYSCLKOUT  
DDRREFCLKN  
DDRREFCLKP  
ALTDDRCLK  
AD7  
E6  
O/Z  
IPD  
SYSCLKOUT is the clock output at 1/10 (default rate) of the device speed.  
DDR Reference Clock Input to DDR PLL (differential).  
I
I
I
D6  
DDR Reference Clock Input to DDR PLL (differential).  
C6  
Alternate DDR Clock (single-ended) input to DDR PLL [vs. DDRREFCLK(N|P)].  
DDR Clock Select. Selects between DDRREFCLK(N|P) and ALTDDRCLK to the DDR  
PLL.  
DDRCLKSEL  
G6  
I
When DDRCLKSEL = 0, it selects the differential clock [DDRREFCLK(N|P)].  
When DDRCLKSEL = 1, it selects the single-ended clock [ALTDDRCLK].  
RIOSGMIICLKN  
RIOSGMIICLKP  
AG6  
AG7  
RapidIO/SGMII Reference Clock to drive the RapidIO and SGMII SerDes (differential).  
RapidIO/SGMII Reference Clock to drive the RapidIO and SGMII SerDes (differential).  
JTAG EMULATION  
TMS  
TDO  
TDI  
Y2  
I
IPU  
JTAG test-port mode select  
AF1  
AB1  
AH3  
AE2  
O/Z  
JTAG test-port data out  
I
I
I
IPU  
IPU  
IPD  
JTAG test-port data in  
TCK  
TRST  
JTAG test-port clock  
JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, see Section 4.8.19.3.1.  
8
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 3-2. Pin Attributes (continued)  
BALL  
NO.  
SIGNAL NAME  
EMU0(3)  
EMU1(3)  
EMU2  
TYPE IPD/IPU DESCRIPTION  
AD5  
AE5  
AH5  
AE4  
AH4  
AG4  
AF4  
AG2  
AG3  
AD4  
AE3  
AF2  
AE1  
AF3  
AC1  
AD1  
AD3  
AA1  
AC2  
Emulation pin 0  
Emulation pin 1  
Emulation pin 2  
Emulation pin 3  
Emulation pin 4  
Emulation pin 5  
Emulation pin 6  
Emulation pin 7  
Emulation pin 8  
Emulation pin 9  
Emulation pin 10  
Emulation pin 11  
Emulation pin 12  
Emulation pin 13  
Emulation pin 14  
Emulation pin 15  
Emulation pin 16  
Emulation pin 17  
Emulation pin 18  
EMU3  
EMU4  
EMU5  
EMU6  
EMU7  
EMU8  
EMU9  
I/O/Z  
IPU  
EMU10  
EMU11  
EMU12  
EMU13  
EMU14  
EMU15  
EMU16  
EMU17  
EMU18  
RESETS, INTERRUPTS, AND GENERAL-PURPOSE INPUT/OUTPUTS  
RESET  
NMI  
AH23  
AE19  
I
Device reset  
Nonmaskable interrupt, edge-driven (rising edge).  
NOTE: Any noise on the NMI pin may trigger an NMI interrupt. Therefore, if the NMI pin  
is not used, it is recommended that the NMI pin be grounded instead of relying on the  
IPD.  
I
IPD  
RESETSTAT  
POR  
AF23  
AG22  
F23  
D23  
C23  
D24  
C25  
A25  
C24  
B25  
F5  
O
I
Reset Status pin. The RESETSTAT pin indicates when the device is in reset  
Power on reset.  
GP15  
GP14  
GP13  
GP12  
GP11  
GP10  
GP09  
GP08  
GP07  
GP06  
GP05  
GP04  
GP03  
GP02  
GP01  
GP00  
General-purpose input/output (GPIO) pins (I/O/Z). GPIO[15:0] pins are multiplexed at  
power-on reset for configuration latching:  
GPIO[0] is mapped to LENDIAN  
GPIO[4:1] are mapped to BOOTMODE[3:0] (see Section 5.7)  
GPIO[8:5] are mapped to DEVNUM[3:0]  
GPIO[13:9] are mapped to CFGGP[4:0]  
GPIO[14] is mapped to HPIWIDTH  
I/O/Z  
IPD  
C5  
F6  
GPIO[15] is mapped to ECLKINSEL  
B5  
B4  
D5  
E5  
A5  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 3-2. Pin Attributes (continued)  
BALL  
SIGNAL NAME  
NO.  
TYPE IPD/IPU DESCRIPTION  
HOST PORT INTERFACE (HPI)  
HINT  
L4  
M5  
L6  
I/O/Z  
I/O/Z  
I/O/Z  
Host interrupt from DSP to host (O/Z)  
HCNTL1  
HCNTL0  
Host control -selects between control, address, or data registers (I) [default]  
Host control -selects between control, address, or data registers (I) [default]  
Host half-word select — first or second half-word (not necessarily high or low order).  
HHWIL  
L3  
I/O/Z  
For HPI16 bus width selection only] (I) [default]  
Host read or write select (I) [default]  
Host address strobe (I) [default]  
HR/W  
HAS  
K5  
M4  
M3  
L2  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
HCS  
Host chip select (I) [default]  
HDS1  
HDS2  
HRDY  
HD31  
HD30  
HD29  
HD28  
HD27  
HD26  
HD25  
HD24  
HD23  
HD22  
HD21  
HD20  
HD19  
HD18  
HD17  
HD16  
HD15  
HD14  
HD13  
HD12  
HD11  
HD10  
HD09  
HD08  
HD07  
HD06  
HD05  
HD04  
HD03  
HD02  
HD01  
HD00  
Host data strobe 1 (I) [default]  
L5  
Host data strobe 2 (I) [default]  
M6  
P3  
N6  
T5  
P6  
U5  
N1  
V2  
M1  
U6  
V1  
U1  
N2  
T1  
P2  
R1  
N3  
T2  
P4  
U2  
N4  
W1  
R5  
T3  
N5  
R4  
T6  
U4  
R6  
T4  
P5  
K6  
W2  
Host ready from DSP to host (O/Z) [default]  
I/O/Z  
Host-port data [31:16] pin (I/O/Z) [default]  
I/O/Z  
Host-port data [15:0] pin (I/O/Z) [default]  
10  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 3-2. Pin Attributes (continued)  
BALL  
NO.  
SIGNAL NAME  
ABA1  
TYPE IPD/IPU DESCRIPTION  
EMIFA (64-BIT) — CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY  
EMIFA bank address control (ABA[1:0]). Active-low bank selects for the 64-bit EMIFA.  
V24  
V25  
When interfacing to 16-bit Asynchronous devices, ABA1 carries bit 1 of the byte  
address.  
O/Z  
IPD  
IPU  
ABA0  
For an 8-bit Asynchronous interface, ABA[1:0] are used to carry bits 1 and 0 of the  
byte address.  
ACE5  
ACE4  
ACE3  
V26  
U27  
W25  
EMIFA memory space enables.  
Enabled by bits 28 through 31 of the word address  
Only one pin is asserted during any external data access  
O/Z  
NOTE  
The SM320C6457-HIREL device does not have ACE0  
and ACE1 pins.  
ACE2  
W26  
ABE06  
ABE05  
ABE04  
ABE03  
ABE02  
ABE01  
ABE00  
L25  
L28  
L27  
Y28  
W27  
Y24  
Y25  
EMIFA byte-enable control.  
Decoded from the low-order address bits. The number of address bits or byte  
enables used depends on the width of external memory.  
O/Z  
IPU  
Byte-write enables for most types of memory.  
EMIFA (64-BIT) — BUS ARBITRATION  
EMIFA hold-request-acknowledge to the host  
EMIFA hold request from the host  
EMIFA bus request output  
AHOLDA  
AHOLD  
N25  
R28  
L26  
O
I
IPU  
IPU  
IPU  
ABUSREQ  
O
EMIFA (64-BIT) — ASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL  
EMIFA external input clock. The EMIFA input clock (AECLKIN or SYSCLK7 clock) is  
selected at reset via the pullup/pulldown resistor on the GPIO[15] pin.  
AECLKIN  
N28  
I
IPD  
NOTE: AECLKIN is the default for the EMIFA input clock.  
EMIFA output clock [at EMIFA input clock (AECLKIN or SYSCLK7) frequency]  
Asynchronous memory write-enable/Programmable synchronous interface write-enable  
Asynchronous memory ready input  
AECLKOUT  
AAWE/ASWE  
AARDY  
V28  
AA24  
K28  
O/Z  
O/Z  
I
IPD  
IPU  
IPU  
IPU  
IPU  
AR/W  
W24  
AE25  
O/Z  
O/Z  
Asynchronous memory read/write  
AAOE/ASOE  
Asynchronous/Programmable synchronous memory output-enable  
Programmable synchronous address strobe or read-enable  
For programmable synchronous interface, the R_ENABLE field in the Chip Select x  
Configuration Register selects between ASADS and ASRE:  
ASADS/ASRE  
R25  
O/Z  
IPU  
If R_ENABLE = 0, then the ASADS/ASRE signal functions as the ASADS signal.  
If R_ENABLE = 1, then the ASADS/ASRE signal functions as the ASRE signal.  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 3-2. Pin Attributes (continued)  
BALL  
SIGNAL NAME  
NO.  
TYPE IPD/IPU DESCRIPTION  
EMIFA (64-BIT) — ADDRESS  
EMIFA external address (word address) (O/Z)  
EMIFA (64-BIT) — DATA  
AEA19  
AEA18  
AEA17  
AEA16  
AEA15  
AEA14  
AEA13  
AEA12  
AEA11  
AEA10  
AEA09  
AEA08  
AEA07  
AEA06  
AEA05  
AEA04  
AEA03  
AEA02  
AEA01  
AEA00  
P24  
M25  
M24  
P25  
P26  
T24  
R26  
N27  
T25  
N24  
M26  
R24  
N26  
T28  
U28  
R27  
T27  
T26  
U26  
U25  
O/Z  
IPD  
O/Z  
O/Z  
IPU  
IPD  
O/Z  
IPD  
AED63  
AED62  
AED61  
AED60  
AED59  
AED58  
AED57  
AED56  
AED55  
AED54  
AED53  
AED52  
AED51  
AED50  
AED49  
AED48  
AED47  
AED46  
AED45  
AED44  
AED43  
AED42  
AED41  
AED40  
AED39  
G24  
A26  
C26  
C27  
E26  
D27  
D25  
F26  
H24  
H25  
D26  
F27  
B27  
G26  
B26  
G27  
J24  
I/O/Z  
IPU  
EMIFA external data  
K25  
J25  
J26  
H26  
J27  
C28  
J28  
D28  
12  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 3-2. Pin Attributes (continued)  
BALL  
NO.  
SIGNAL NAME  
AED38  
AED37  
AED36  
AED35  
AED34  
AED33  
AED32  
AED31  
AED30  
AED29  
AED28  
AED27  
AED26  
AED25  
AED24  
AED23  
AED22  
AED21  
AED20  
AED19  
AED18  
AED17  
AED16  
AED15  
AED14  
AED13  
AED12  
AED11  
AED10  
AED09  
AED08  
AED07  
AED06  
AED05  
AED04  
AED03  
AED02  
AED01  
AED00  
TYPE IPD/IPU DESCRIPTION  
K24  
F28  
G25  
G28  
K27  
L24  
K26  
I/O/Z  
IPU  
EMIFA external data  
Y26  
AF28  
AA28  
AB26  
Y27  
AB25  
AA26  
AB24  
AA25  
AA27  
AC28  
AG27  
AE28  
AF27  
AD28  
AF26  
AE27  
AG25  
AC27  
AD26  
AC25  
AE26  
AF25  
AC26  
AD25  
AH26  
AH25  
AD27  
AF24  
AG26  
AE24  
AC24  
I/O/Z  
IPU  
EMIFA external data  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 3-2. Pin Attributes (continued)  
BALL  
SIGNAL NAME  
NO.  
TYPE IPD/IPU DESCRIPTION  
DDR2 MEMORY CONTROLLER  
DDRDQM0  
DDRDQM1  
DDRDQM2  
DDRDQM3  
DDRBA0  
DDRBA1  
DDRBA2  
DDRA00  
C10  
C7  
O/Z  
O/Z  
DDR2 EMIF Data Masks  
C19  
C22  
C14  
D14  
E14  
F17  
E17  
D17  
C17  
E16  
D16  
C16  
B16  
D15  
C15  
B15  
A15  
A14  
B14  
A13  
B13  
A17  
B17  
A12  
B12  
C11  
D11  
A10  
B10  
C9  
DDR Bank Address  
DDRA01  
DDRA02  
DDRA03  
DDRA04  
DDRA05  
DDRA06  
O/Z  
DDR2 EMIF Address Bus  
DDRA07  
DDRA08  
DDRA09  
DDRA10  
DDRA11  
DDRA12  
DDRA13  
DDRCLKOUTP0  
DDRCLKOUTN0  
DDRCLKOUTP1  
DDRCLKOUTN1  
DDRD00  
DDRD01  
DDRD02  
DDRD03  
DDRD04  
DDRD05  
DDRD06  
DDRD07  
DDRD08  
DDRD09  
DDRD10  
DDRD11  
DDRD12  
DDRD13  
DDRD14  
DDRD15  
DDRD16  
DDRD17  
DDRD18  
DDRD19  
DDRD20  
O/Z  
DDR2 EMIF Output Clocks to drive SDRAMs (one clock pair per SDRAM)  
D9  
C8  
D8  
E8  
O/Z  
DDR2 EMIF Data Bus  
F8  
B7  
A7  
B6  
A6  
B18  
A18  
C18  
D18  
A20  
14  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 3-2. Pin Attributes (continued)  
BALL  
NO.  
SIGNAL NAME  
DDRD21  
TYPE IPD/IPU DESCRIPTION  
B20  
C20  
D20  
A21  
B21  
C21  
D21  
A23  
B23  
A24  
B24  
E12  
D12  
E13  
C12  
D13  
E10  
D10  
E7  
DDRD22  
DDRD23  
DDRD24  
DDRD25  
DDRD26  
O/Z  
DDR2 EMIF Data Bus  
DDRD27  
DDRD28  
DDRD29  
DDRD30  
DDRD31  
DDRCAS  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
DDR2 EMIF Column Address Strobe  
DDR2 EMIF Row Address Strobe  
DDR2 EMIF Chip Enable  
DDRRAS  
DDRCE  
DDRWE  
DDR2 EMIF Write Enable  
DDRCKE  
DDR2 EMIF Clock Enable  
DDRDQS0P  
DDRDQS0N  
DDRDQS1P  
DDRDQS1N  
DDRDQS2P  
DDRDQS2N  
DDRDQS3P  
DDRDQS3N  
DDRRCVENIN0  
DDRRCVENOUT0  
DDRRCVENIN1  
DDRRCVENOUT1  
DDRODT  
D7  
I/O/Z  
DDR2 EMIF Data Strobe  
E19  
D19  
E22  
D22  
A9  
I
O/Z  
I
B9  
DDR2 EMIF Data Strobe Gate Input/Outputs to help meet DDR Timing  
E20  
F20  
E15  
A27  
C13  
O/Z  
O/Z  
I
DDR2 EMIF On Die Termination Outputs used to set termination on the SDRAMs  
DDR2 Slew rate control  
DDRSLRATE  
VREFSSTL  
A
Reference Voltage Input for SSTL18 buffers used by DDR2 EMIF (VDDS18_2  
)
TIMER 1  
TOUT1L  
TINP1L  
AF19  
AG19  
O/Z  
I
IPD  
IPD  
Timer 1 output pin for lower 32-bit counter  
Timer 1 input pin for lower 32-bit counter  
TIMER 0  
TOUT0L  
TINP0L  
AG20  
AH20  
O/Z  
I
IPD  
IPD  
Timer 0 output pin for lower 32-bit counter  
Timer 0 input pin for lower 32-bit counter  
INTER-INTEGRATED CIRCUIT (I2C)  
SCL  
SDA  
F24  
E24  
I/O/Z  
I/O/Z  
I2C clock. When the I2C module is used, use an external pullup resistor.  
I2C data. When I2C is used, ensure there is an external pullup resistor.  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 3-2. Pin Attributes (continued)  
BALL  
SIGNAL NAME  
NO.  
TYPE IPD/IPU DESCRIPTION  
MULTICHANNEL BUFFERED SERIAL PORT (McBSP)  
CLKS0  
CLKR0  
CLKX0  
DR0  
AA4  
Y5  
I
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
McBSP0 Module Clock  
I/O/Z  
I/O/Z  
I
McBSP0 Receive Clock  
McBSP0 Transmit Clock  
McBSP0 Receive Data  
AB3  
Y6  
DX0  
W6  
V4  
O/Z  
I/O/Z  
I/O/Z  
I
McBSP0 Transmit Data  
McBSP0 Receive Frame Sync  
McBSP0 Transmit Frame Sync  
McBSP1 Module Clock  
FSR0  
FSX0  
CLKS1  
CLKR1  
CLKX1  
DR1  
W4  
Y1  
Y4  
I/O/Z  
I/O/Z  
I
McBSP1 Receive Clock  
McBSP1 Transmit Clock  
McBSP1 Receive Data  
AA3  
W3  
Y3  
DX1  
O/Z  
I/O/Z  
I/O/Z  
McBSP1 Transmit Data  
McBSP1 Receive Frame Sync  
McBSP1 Transmit Frame Sync  
FSR1  
FSX1  
V5  
W5  
UNIVERSAL TEST AND OPERATIONS PHY INTERFACE for ASYNCHRONOUS TRANSFER MODE (ATM) [UTOPIA SLAVE]  
UTOPIA SLAVE (ATM CONTROLLER) — TRANSMIT INTERFACE  
UXCLK  
A4  
I
Source clock for UTOPIA transmit driven by Master ATM Controller.  
Transmit cell available status output signal from UTOPIA Slave.  
UXCLAV  
C3  
O/Z  
0 indicates a complete cell is NOT available for transmit  
1 indicates a complete cell is available for transmit  
UTOPIA transmit interface enable input signal. Asserted by the Master ATM Controller to  
indicate that the UTOPIA Slave should put out on the Transmit Data Bus the first byte of  
valid data and the UXSOC signal in the next clock cycle.  
UXENB  
UXSOC  
B3  
G4  
I
Transmit Start-of-Cell signal. This signal is output by the UTOPIA Slave on the rising  
edge of the UXCLK, indicating that the first valid byte of the cell is available on the 8-bit  
Transmit Data Bus (UXDATA[7:0]).  
O/Z  
UXADDR4  
UXADDR3  
UXADDR2  
UXADDR1  
UXADDR0  
UXDATA7  
UXDATA6  
UXDATA5  
UXDATA4  
UXDATA3  
UXDATA2  
UXDATA1  
UXDATA0  
J4  
H5  
K3  
J5  
UTOPIA transmit address pins (UXADDR[4:0]) (I) 5-bit Slave transmit address input pins  
driven by the Master ATM Controller to identify and select one of the Slave devices (up  
to 31 possible) in the ATM System.  
I
H4  
F3  
E4  
C4  
A3  
H3  
G3  
F4  
E3  
UTOPIA 8-bit transmit data bus (I/O/Z) Using the Transmit Data Bus, the UTOPIA Slave  
(on the rising edge of the UXCLK) transmits the 8-bit ATM cells to the Master ATM  
Controller.  
O/Z  
16  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
SIGNAL NAME  
ZHCSFA5 JULY 2016  
Table 3-2. Pin Attributes (continued)  
BALL  
NO.  
TYPE IPD/IPU DESCRIPTION  
UTOPIA SLAVE (ATM CONTROLLER) — RECEIVE INTERFACE  
URCLK  
C1  
B2  
I
Source clock for UTOPIA receive driven by Master ATM Controller.  
Receive cell available status output signal from UTOPIA Slave.  
URCLAV  
O/Z  
0 indicates NO space is available to receive a cell from Master ATM Controller.  
1 indicates space is available to receive a cell from Master ATM Controller.  
UTOPIA receive interface enable input signal. Asserted by the Master ATM Controller to  
indicate to the UTOPIA Slave to sample the Receive Data Bus (URDATA[7:0]) and  
URSOC signal in the next clock cycle or thereafter.  
URENB  
URSOC  
K4  
G2  
I
I
Receive Start-of-Cell signal. This signal is output by the Master ATM Controller to  
indicate to the UTOPIA Slave that the first valid byte of the cell is available to sample on  
the 8-bit Receive Data Bus (URDATA[7:0]).  
URADDR4  
URADDR3  
URADDR2  
URADDR1  
URADDR0  
URDATA7  
URDATA6  
URDATA5  
URDATA4  
URDATA3  
URDATA2  
URDATA1  
URDATA0  
K1  
K2  
J1  
UTOPIA receive address pins [URADDR[4:0] (I)]: 5-bit Slave receive address input pins  
driven by the Master ATM Controller to identify and select one of the Slave devices (up  
to 31 possible) in the ATM System.  
I
J3  
H2  
G1  
F2  
F1  
E2  
E1  
D2  
D1  
C2  
UTOPIA 8-bit Receive Data Bus (I/O/Z). Using the Receive Data Bus, the UTOPIA Slave  
(on the rising edge of the URCLK) can receive the 8-bit ATM cell data from the Master  
ATM Controller.  
I
SERIAL RAPIDIO (SRIO)  
RIORXN0  
RIORXP0  
RIORXN1  
RIORXP1  
RIORXN2  
RIORXP2  
RIORXN3  
RIORXP3  
RIOTXN0  
RIOTXP0  
RIOTXN1  
RIOTXP1  
RIOTXN2  
RIOTXP2  
RIOTXN3  
RIOTXP3  
AG8  
AG9  
AF11  
AF10  
AH13  
AH12  
AE13  
AE12  
AE9  
I
Serial RapidIO Receive Data (4 links)  
AE8  
AH9  
AH10  
AF13  
AF14  
AG13  
AG14  
O
Serial RapidIO Transmit data (4 links)  
ETHERNET MAC (EMAC) AND SGMII  
SGMIIRXN  
SGMIIRXP  
SGMIITXN  
SGMIITXP  
AF16  
AF17  
AH15  
AH14  
I
Ethernet MAC SGMII Receive Data  
O
Ethernet MAC SGMII Transmit Data  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 3-2. Pin Attributes (continued)  
BALL  
SIGNAL NAME  
NO.  
TYPE IPD/IPU DESCRIPTION  
MANAGEMENT DATA INPUT/OUTPUT (MDIO)  
MDIO  
AH19  
AH18  
I/O/Z  
O
IPU  
IPD  
MDIO Data  
MDCLK  
MDIO Clock  
VOLTAGE CONTROL TERMINALS  
PTV18  
A16  
A
PTV Compensation NMOS Reference Input. Install with 47-Ω, 5% resistor to GND  
SUPPLY VOLTAGE MONITOR TERMINALS  
1.1-V CVDD Supply Monitor  
CVDDMON  
U19  
U22  
G23  
A
A
A
DVDD33MON  
DVDD18MON  
3.3-V DVDD Supply Monitor  
1.8-V DVDD Supply Monitor  
SUPPLY VOLTAGE TERMINALS  
AE10  
AE16  
AC10  
AC12  
AC14  
AC16  
U13  
VDDR18  
S
S
1.8-V I/O supply voltage (SRIO/SGMII SerDes regulator supply).  
SRIO/SGMII analog supply:  
1.1-V I/O supply voltage  
Do not use core supply.  
VDDA11  
V12  
SRIO/SGMII SerDes digital supply:  
1.1-V I/O supply voltage  
V14  
VDDD11  
S
W11  
W13  
W15  
AD9  
Do not use core supply.  
AD11  
AD13  
AD15  
AD17  
AF9  
SRIO/SGMII SerDes termination supply:  
1.1-V I/O supply voltage  
VDDT11  
S
Do not use core supply.  
AF15  
AG11  
AH17  
AA6  
AB18  
AB20  
AB7  
AC19  
AC21  
AC3  
AC8  
DVDD18  
S
1.8-V I/O supply voltage  
AD18  
AD22  
AF18  
AG5  
AH1  
B11  
B19  
B22  
18  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
SIGNAL NAME  
ZHCSFA5 JULY 2016  
Table 3-2. Pin Attributes (continued)  
BALL  
NO.  
TYPE IPD/IPU DESCRIPTION  
B8  
E11  
E21  
E23  
E9  
F10  
F12  
F14  
F16  
F18  
G11  
G13  
G15  
G17  
G19  
G21  
G7  
DVDD18  
S
1.8-V I/O supply voltage  
G9  
J7  
V6  
Y7  
A1  
A28  
AA23  
AB22  
AB28  
AC23  
AD24  
AH24  
AH28  
D3  
E25  
E27  
H1  
DVDD33  
S
3.3-V I/O supply voltage  
H22  
H27  
J23  
K22  
L1  
L23  
L7  
M22  
M27  
N23  
N7  
P1  
P22  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 3-2. Pin Attributes (continued)  
BALL  
SIGNAL NAME  
NO.  
P27  
R23  
R3  
TYPE IPD/IPU DESCRIPTION  
R7  
T22  
U7  
DVDD33  
S
3.3-V I/O supply voltage  
V22  
V3  
W23  
Y22  
K10  
K12  
K14  
K16  
K18  
L11  
L13  
L15  
L17  
L19  
M10  
M12  
M14  
M16  
M18  
N11  
N13  
N15  
N17  
CVDD  
S
1.1-V core supply voltage  
20  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
SIGNAL NAME  
ZHCSFA5 JULY 2016  
Table 3-2. Pin Attributes (continued)  
BALL  
NO.  
TYPE IPD/IPU DESCRIPTION  
N19  
P10  
P12  
P14  
P16  
P18  
R11  
R13  
R15  
R17  
R19  
T12  
T14  
T16  
T18  
U11  
U15  
U17  
V10  
V16  
V18  
W17  
W19  
AC5  
F7  
CVDD  
S
1.1-V core supply voltage  
PLLV1  
PLLV2  
S
S
1.8-V PLL Supply  
1.8-V PLL Supply  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 3-2. Pin Attributes (continued)  
BALL  
SIGNAL NAME  
NO.  
TYPE IPD/IPU DESCRIPTION  
GROUND PINS  
A11  
A19  
A2  
A22  
A8  
AA2  
AA22  
AA7  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB19  
AB21  
AB23  
AB27  
AB6  
VSS  
GND  
Ground pins  
AB8  
AB9  
AC11  
AC13  
AC15  
AC17  
AC18  
AC20  
AC22  
AC9  
AD10  
AD12  
AD14  
AD16  
AD19  
AD2  
22  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
SIGNAL NAME  
ZHCSFA5 JULY 2016  
Table 3-2. Pin Attributes (continued)  
BALL  
NO.  
TYPE IPD/IPU DESCRIPTION  
AD23  
AD8  
AE11  
AE14  
AE15  
AE17  
AE18  
AF5  
AF8  
AG1  
AG10  
AG12  
AG15  
AG17  
AG18  
AG24  
AG28  
AH11  
AH16  
AH2  
AH27  
AH8  
B1  
VSS  
GND  
Ground pins  
B28  
D4  
E18  
E28  
F11  
F13  
F15  
F19  
F21  
F22  
F25  
F9  
G10  
G12  
G14  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 3-2. Pin Attributes (continued)  
BALL  
SIGNAL NAME  
NO.  
G16  
G18  
G20  
G22  
G8  
TYPE IPD/IPU DESCRIPTION  
H23  
H28  
H7  
J2  
J22  
K11  
K13  
K15  
K17  
K19  
K23  
K7  
L10  
L12  
L14  
L16  
L18  
L22  
M11  
M13  
M15  
M17  
M19  
M2  
VSS  
GND  
Ground pins  
M23  
M28  
M7  
N10  
N12  
N14  
N16  
N18  
N22  
24  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
SIGNAL NAME  
ZHCSFA5 JULY 2016  
Table 3-2. Pin Attributes (continued)  
BALL  
NO.  
TYPE IPD/IPU DESCRIPTION  
P11  
P13  
P15  
P17  
P19  
P23  
P28  
P7  
R12  
R14  
R16  
R18  
R2  
R22  
T11  
T13  
T15  
T17  
T19  
T23  
T7  
VSS  
GND  
Ground pins  
U10  
U12  
U14  
U16  
U18  
U23  
U24  
U3  
V11  
V13  
V15  
V17  
V19  
V23  
V27  
V7  
W10  
W12  
W14  
W16  
W18  
W22  
W7  
VSS  
GND  
Ground pins  
Y23  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
25  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 3-2. Pin Attributes (continued)  
BALL  
SIGNAL NAME  
NO.  
TYPE IPD/IPU DESCRIPTION  
RESERVED PINS  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Connect to GND  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Pullup to DVDD18 with 10-kΩ resistor.  
Reserved - Connected to CVDD  
Reserved - Connected to CVDD  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
Reserved - Unconnected  
RSV01  
RSV02  
RSV03  
RSV04  
RSV05  
RSV06  
RSV07  
RSV08  
RSV09  
RSV10  
RSV11  
RSV12  
RSV13  
RSV14  
RSV15  
RSV16  
RSV17  
RSV18  
RSV19  
RSV20  
RSV21  
RSV22  
RSV23  
RSV23  
RSV24  
RSV25  
RSV26  
RSV27  
RSV28  
RSV29  
AC4  
AB2  
I/O/Z  
I/O/Z  
I/O/Z  
O/Z  
O/Z  
A
IPU  
IPU  
IPU  
IPD  
IPD  
AB4  
AD20  
AD21  
AE20  
AE21  
AE7  
A
O
AF7  
O
H6  
O
J6  
O
AB5  
A
AA5  
A
AF20  
AF21  
AF12  
AG16  
AH21  
AG21  
AC6  
AC7  
AE23  
R10  
I/O/Z  
I/O/Z  
A
IPU  
IPU  
A
A
A
A
A
I
IPU  
S
T10  
S
AD6  
G5  
O/Z  
O/Z  
IPD  
IPD  
AE22  
AF22  
AG23  
AH22  
26  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
3.2.1 Pin Map  
Figure 3-2 through Figure 3-5 show the SM320C6457-HIREL pin assignments in four quadrants (A, B, C,  
and D).  
2
3
4
7
8
9
10  
11  
12  
13  
14  
1
5
6
VDDS18_1  
VSS  
VSS  
VSS  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
TCLK  
EMU4  
EMU2  
CORECLKP CORECLKN  
RIOTXN1  
RIOTXP1  
RIORXN1  
RIORXP1  
SGMIITXP  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
RIOSGMII  
CLKN  
RIOSGMII  
CLKP  
VDDS18_1  
VSS  
VSS  
VDDT  
VSS  
EMU7  
EMU8  
EMU13  
EMU10  
EMU5  
EMU6  
EMU3  
EMU9  
RSV01  
RSV03  
CLKS0  
CLKR1  
FSX0  
RIORXN0  
RIORXP0  
RIOTXN3  
RIOTXN2  
RIORXN3  
VDDT  
RIOTXP3  
ALTCORE  
CLK  
VSS  
VSS  
VDDT  
TDO  
EMU12  
EMU15  
EMU14  
TDI  
EMU11  
RSV09  
RSV08  
RIORXP1  
RIORXN1  
RSV16  
RIORXP3  
VSS  
RIOTXP2  
CORE  
CLKSEL  
VDDR4  
VSS  
VSS  
EMU1  
EMU0  
RIOTXP0  
RIOTXN0  
TRST  
SYSCLK  
OUT  
VSS  
VSS  
VDDT  
VSS  
VDDA  
VSS  
VDDT  
VSS  
VDDA  
VSS  
EMU16  
RSV24  
RSV20  
VSS  
VDDS18_1  
VDDS18_1  
VDDA18V1  
VSS  
VSS  
VDDA  
VSS  
EMU18  
RSV02  
VSS  
RSV21  
VDDS18_1  
VSS  
VSS  
VSS  
VSS  
VSS  
CLKX0  
CLKX1  
DX1  
RSV12  
RSV13  
CLKR0  
FSX1  
VDDS18_1  
VSS  
VDDS18_1  
VSS  
EMU17  
CLKS1  
HD11  
TMS  
HD00  
HD25  
HD13  
HD15  
DR0  
VSS  
VDDD  
VSS  
VDDD  
VSS  
VDDD  
VSS  
VDDD  
VSS  
W
DR1  
DX0  
W
VDDS18_1  
VDDS33  
VSS  
VDD  
VSS  
VSS  
V
HD22  
HD21  
HD19  
FSR0  
FSR1  
V
VDDS33  
VSS  
VDD  
VDDD  
VSS  
U
HD05  
HD27  
HD23  
HD06  
U
VSS  
VSS  
VDD  
VSS  
VDD  
T
HD09  
HD03  
HD29  
RSV23  
T
VSS  
VDDS33  
VDDS33  
VDD  
VSS  
VDD  
VSS  
R
HD17  
1
HD07  
4
HD10  
5
HD04  
6
RSV23  
10  
R
2
3
7
8
9
11  
12  
13  
14  
Figure 3-2. SM320C6457-HIREL Pin Map (Bottom View) [Quadrant A]  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
27  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
SGMIITXN  
AH  
VSS  
AED05  
VDDT  
MDCLK  
MDIO  
TINP0L  
RSV18  
RSV29  
RESET  
VDDS33_1  
AED06  
VSS  
VDDS33_1  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
VSS  
VSS  
AED14  
AED02  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
RSV17  
VSS  
TINP1L  
TOUT1L  
NMI  
TOUT0L  
RSV14  
RSV06  
RSV19  
RSV15  
RSV07  
POR  
RSV28  
AED20  
AED18  
AED15  
AED04  
AED13  
VSS  
VSS  
VSS  
RESETSTAT  
VDDT  
SGMIIRXN SGMIIRXP  
VDDS18_2  
RSV27  
AED03  
AED09  
AOE  
AED16  
AED10  
AED30  
AED19  
AED17  
AED21  
VDDS33_1  
VSS  
VSS  
VDDT  
VSS  
VSS  
RSV26  
RSV22  
AED01  
VDDR3  
VDDS18_2  
VDDS18_2  
VDDS33_1  
VDDT  
VSS  
VSS  
VSS  
RSV04  
RSV05  
AED07  
AED11  
AED26  
AED23  
AED12  
AED08  
VDDS18_2  
VSS  
VDDS33_1  
VSS  
AED00  
AED24  
ASDWE  
VDDS18_2  
VSS  
VDDS33_1  
VSS  
VSS  
VDDA  
VSS  
VSS  
VSS  
VDDS18_2  
VSS  
AED28  
AED25  
VSS  
VDDS18_2  
VSS  
VDDS33_1  
AED22  
AED27  
ABE02  
VSS  
AED29  
VSS  
VDDS33_1  
ABE01  
ARNW  
ABE00  
ACE3  
AED31  
ACE2  
ABE03  
ABE07  
VDDD  
VSS  
VDD  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VDD  
VDD  
VDDS33_1  
VSS  
W
W
VDDS33_1  
VSS  
VSS  
VSS  
ABA1  
ABA0  
ACE5  
AEA01  
AEA02  
AECLKOUT  
AEA05  
V
V
VDDMON  
VDD  
VSS  
VSS  
AEA00  
AEA11  
ACE4  
AEA03  
U
VDD33MON  
U
VSS  
VSS  
VSS  
AEA06  
AEA14  
T
VDDS33_1  
T
VDD  
VSS  
VDD  
VSS  
VDD  
VDDS33_1  
AEA08  
24  
AADS  
25  
AEA13  
26  
AEA04  
27  
AHOLD  
28  
R
VSS  
R
15  
16  
17  
18  
19  
20  
21  
22  
23  
Figure 3-3. TCI648F Pin Map (Bottom View) [Quadrant B]  
28  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VDDS33_1  
VDDS33_1  
VSS  
VDD  
VSS  
VDD  
VSS  
VSS  
VSS  
P
N
M
L
AEA19  
AEA16  
AEA15  
P
N
M
L
VDDS33_1  
VDD  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VDDS33_1  
VSS  
AECLKIN  
AEA10  
AEA17  
AED33  
AEA07  
AEA09  
AEA12  
AHOLDA  
AEA18  
VSS  
VDDS33_1  
VSS  
VDDS33_1  
ABUSREQ0  
ABE06  
AED46  
AED45  
AED54  
ABE04  
AED34  
AED42  
VDDS33_1  
ABE05  
AARDY  
AED40  
VSS  
VDDS33_1  
VSS  
VSS  
K
J
AED38  
AED47  
AED32  
AED44  
K
J
VSS  
VDDS33_1  
VDDS33_1  
VSS  
AED55  
AED43  
H
G
F
H
G
F
VDDS18  
VSS  
VDDS18  
VSS  
VDDS18  
VSS  
VDDS18  
VSS  
VDDS18  
VSS  
VDD18MON  
AED63  
SCL  
AED36  
AED50  
AED56  
AED59  
AED53  
AED61  
AED49  
AED48  
AED35  
AED37  
VSS  
DDRRCVEN  
OUT1  
VSS  
VDDS18  
VSS  
VSS  
VSS  
VSS  
DDRA00  
DDRA01  
DDRA02  
DDRA03  
GP15  
AED52  
DDRRCVEN  
IN1  
VDDS33_1  
VDDS33_1  
VDDS18  
VDDS18  
E
D
C
B
A
DDRODT  
DDRA08  
DDRA09  
DDRA10  
DDRA04  
DDRA05  
DDRA06  
DDRA07  
DDRDQS2P  
DDRDQS3P  
SDA  
E
D
C
B
A
DDRD19 DDRDQS2N DDRD23  
DDRD27 DDRDQS3N  
GP14  
GP13  
GP12  
GP09  
DDRD31  
AED57  
GP11  
AED58  
AED60  
AED51  
AED39  
AED41  
VSS  
DDRD18  
DDRD16  
DDRDQM2  
DDRD22  
DDRD21  
DDRD26  
DDRD25  
DDRDQM3  
DDRCLK  
OUT_N1  
VDDS18  
VDDS18  
DDRD29  
GP08  
DDRCLK  
OUT_P1  
VDDS33_1  
VSS  
VSS  
DDRA11  
15  
PTV18  
16  
DDRD17  
18  
DDRD20  
20  
DDRD24  
21  
DDRD28  
23  
DDRD30  
24  
GP10  
25  
AED62  
26  
DDRSLRATE  
27  
17  
19  
22  
28  
Figure 3-4. TCI648F Pin Map (Bottom View) [Quadrant C]  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
29  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
2
3
4
5
7
8
9
10  
11  
12  
13  
14  
1
6
VDD  
VSS  
VDD  
VSS  
VDD  
VDDS33  
HD28  
HD18  
VSS  
P
N
M
L
HD31  
HD14  
HD02  
P
N
M
L
VDDS33  
VSS  
VDD  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VDD  
HD26  
HD20  
HD16  
HCS  
HD12  
HAS  
HD08  
HCNTL1  
HDS2  
HD30  
HRDY  
VSS  
VSS  
HD24  
VDDS33  
VDDS33  
HHWIL  
HCNTL0  
HD01  
HDS1  
HINT  
VSS  
K
J
URADDR4 URADDR3 UXADDR2  
URENB  
HR/W  
K
J
VSS  
VDDS18  
URADDR2  
URADDR1 UXADDR4 UXADDR1  
RSV11  
VDDS33  
VSS  
H
G
F
URADDR0  
URSOC  
UXDATA3  
UXDATA2  
UXDATA7  
UXDATA0  
VDDS33  
UXADDR0 UXADDR3  
RSV10  
H
G
F
VDDS18  
VSS  
VDDS18  
VDDS18  
VSS  
VDDS18  
URDATA7  
URDATA5  
URDATA3  
URDATA1  
URCLK  
UXSOC  
UXDATA1  
UXDATA6  
VSS  
RSV25  
GP07  
GP01  
GP02  
GP06  
GP04  
DDRCLKSEL  
VSS  
VSS  
VDDA18V2  
VSS  
VDDS18  
VSS  
VDDS18  
VSS  
VDDS18  
URDATA6  
URDATA4  
URDATA2  
URDATA0  
URCLAV  
GP05  
DDRD11  
DDRREF  
CLKN  
VDDS18  
VDDS18  
E
D
C
B
A
DDRDQS1P DDRD10  
DDRDQS1N DDRD09  
DDRDQS0P  
DDRBA2  
DDRBA1  
DDRBA0  
DDRA13  
E
D
C
B
A
DDRCAS  
DDRRAS  
DDRWE  
DDRD01  
DDRCE  
DDRCKE  
VREFSSTL  
DDRREF  
CLKP  
DDRD07 DDRDQS0N DDRD03  
UXCLAV  
UXENB  
UXDATA5  
GP03  
ALTDDRCLK DDRDQM1  
DDRD08  
DDRD06  
DDRDQM0  
DDRD05  
DDRD02  
DDRRCVEN  
OUT0  
DDRCLK  
OUT_N0  
VSS  
VDDS18  
VDDS18  
DDRD14  
DDRD12  
DDRRCVEN  
IN0  
DDRCLK  
OUT_P0  
VDDS33  
VSS  
VSS  
VSS  
UXDATA4  
UXCLK  
GP00  
5
DDRD15  
DDRD13  
DDRD04  
10  
DDRD00  
12  
DDRA12  
14  
1
2
3
4
6
7
8
9
11  
13  
Figure 3-5. TCI648F Pin Map (Bottom View) [Quadrant D]  
30  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
3.3 Signal Descriptions  
Figure 3-6 shows the CPU and core peripheral signal groups.  
CORECLKP  
CORECLKN  
Clock/PLL1  
ALTCORECLK  
and  
RESETSTAT  
RESET  
NMI  
Reset and  
Interrupts  
CORECLKSEL  
SYSCLKOUT  
AVDD118  
PLL Controller  
POR  
DDRREFCLKP  
DDRREFCLKN  
ALTDDRCLK  
DDRCLKSEL  
Clock/PLL2  
AVDD218  
TMS  
TDO  
TDI  
TCK  
TRST  
Reserved  
RSV  
IEEE Standard  
1149.1  
(JTAG)  
EMU0  
EMU1  
Emulation  
EMU14  
EMU15  
EMU16  
EMU17  
EMU18  
Peripheral  
Enable/Disable  
Control/Status  
Figure 3-6. CPU and Peripheral Signals  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
31  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Figure 3-7 shows the timer peripheral I/O, the general purpose I/O, the Serial RapidIO, and the general  
purpose I/O reference clock, transmit, and receive signals.  
TOUTL0  
TINPL0  
TINPL1  
Timer 0  
Timer 1  
TOUTL1  
Timers (64-Bit)  
GP[7]  
GP[6]  
GP[5]  
GP[4]  
GP[15]  
GP[14]  
GP[13]  
GP[12]  
GP[11]  
GP[10]  
GP[9]  
GPIO  
GP[3]  
GP[2]  
GP[1]  
GP[0]  
GP[8]  
General-Purpose Input/Output (GPIO) Port  
RIOTXN0  
RIOTXP0  
RIOTXN1  
RIOTXP1  
RIOTXN2  
RIOTXP2  
RIOTXN3  
RIOTXP3  
RIOSGMIICLKN(A)  
RIOSGMIICLKP(A)  
Transmit  
Clock  
RIORXN0  
RIORXP0  
RIORXN1  
RIORXP1  
RIORXN2  
RIORXP2  
RIORXN3  
RIORXP3  
Receive  
RapidIO  
Figure 3-7. Timers/GPIO/RapidIO Peripheral Signals  
(A) Reference clock to drive RapidIO and SGMII.  
32  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Figure 3-8 shows the EMIFA and DDR2 peripheral interfaces.  
64  
Data  
AED[63:0]  
AECLKIN  
ACE5(A)  
ACE4(A)  
ACE3(A)  
AECLKOUT  
Memory Map  
Space Select  
ACE2(A)  
External  
Memory I/F  
Control  
20  
Address  
AEA[19:0]  
ASWE/AAWE  
AARDY  
ABE7  
ABE6  
AR/W  
AAOE/ASOE  
ASADS/ASRE  
ABE5  
ABE4  
ABE3  
ABE2  
Byte Enables  
ABE1  
ABE0  
AHOLD  
Bus  
AHOLDA  
ABUSREQ  
Arbitration  
Bank Address  
ABA[1:0]  
EMIFA (64-bit Data Bus)  
DDRCLKOUTP[1:0]  
DDRCLKOUTN[1:0]  
DDRCKE  
32  
DDRD[31:0]  
Data  
DDRCAS  
DDRRAS  
DDRWE  
Memory Map  
Address  
DDRCE  
DDRDQSP[3:0]  
DDRDQSN[3:0]  
External  
Memory  
Controller  
14  
DDRA[13:0]  
DDRRCVENIN[2:0]  
DDRRCVENOUT[2:0]  
DDRODT  
DDRDQM0  
DDRDQM1  
DDRDQM2  
DDRDQM3  
DDRSLRATE  
VREFSSTL  
Byte Enables  
DDRBA0  
DDRBA1  
DDRBA2  
Bank Address  
DDR2 Memory Controller (32-bit Data Bus)  
Figure 3-8. EMIFA and DDR2 Memory Controller Peripheral Signals  
(A) The EMIFA ACE0 and ACE1 are not functionally supported on SM320C6457-HIREL devices.  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
33  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Figure 3-9 shows the HPI, McBSP, and I2C peripheral signals.  
HPI(A)  
32  
(Host-Port Interface)  
HD[15:0]  
HD[31:16]  
Data  
HAS  
HR/W  
HCS  
HCNTL0  
HCNTL1  
Register Select  
Control  
HDS1  
HDS2  
HRDY  
Half-Word  
Select  
HHWIL  
(HPI16 ONLY)  
HINT  
McBSP1  
Transmit  
McBSP0  
Transmit  
CLKX0  
CLKX1  
FSX0  
DX0  
FSX1  
DX1  
CLKR0  
FSR0  
DR0  
CLKR1  
FSR1  
DR1  
Receive  
Clock  
Receive  
Clock  
CLKS0  
CLKS1  
McBSPs  
(Multichannel Buffered Serial Ports)  
SCL  
SDA  
I2C  
Figure 3-9. HPI/McBSP/I2C Peripheral Signals  
(A) When the HPI is enabled, the number of HPI pins used depends on the HPI configuration (HPI16 or HPI32).  
34  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Figure 3-10 shows the EMAC/MDIO (SGMII) peripheral signals.  
Ethernet MAC  
(EMAC)  
SGMIITXN  
SGMIITXP  
SGMII  
Transmit  
MDIO  
MDIO  
SGMIIRXN  
SGMIIRXP  
SGMII  
Receive  
MDCLK  
RIOSGMIICLKN(A)  
RIOSGMIICLKP(A)  
SGMII  
Clock  
Ethernet MAC (EMAC) and MDIO  
Figure 3-10. EMAC/MDIO (SGMII) Peripheral Signals  
(A) Reference clock to drive RapidIO and SGMII.  
Copyright © 2016, Texas Instruments Incorporated  
Terminal Configuration and Functions  
35  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Figure 3-11 shows the UTOPIA peripheral signals.  
UTOPIA (SL AVE)  
URDA TA7  
URDA TA6  
URDA TA5  
URDA TA4  
URDA TA3  
URDA TA2  
UXDATA7  
UXDATA6  
UXDATA5  
UXDATA4  
UXDATA3  
UXDATA2  
UXDATA1  
UXDATA0  
Receive  
Transmit  
URDA TA1  
URDA TA0  
UXENB  
URENB  
URADDR4  
UXADDR4  
UXADDR3  
UXADDR2  
UXADDR1  
UXADDR0  
UXCL AV  
UXSOC  
URADDR3  
URADDR2  
URADDR1  
URADDR0  
URCL AV  
URSOC  
Control/Status  
Control/Status  
Clock  
Clock  
URCLK  
UXCLK  
Figure 3-11. UTOPIA Peripheral Signals  
36  
Terminal Configuration and Functions  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4 Specifications  
4.1 Absolute Maximum Ratings  
Over operating junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
1.35  
2.45  
3.6  
UNIT  
CVDD  
DVDD18  
DVDD33  
0.49 ×  
DVDD18  
0.51 ×  
DVDD18  
VREFSSTL  
Supply voltage(2)  
V
VDD11, VDDD11, VDDT11  
VDDR18  
–0.3  
–0.3  
–0.3  
1.35  
2.45  
2.45  
AVDD118, AVDD218  
VSS ground  
0
DVDD18  
0.3  
+
LVCMOS (1.8 V)  
–0.3  
–0.3  
DVDD33  
0.3  
+
LVCMOS (3.3 V)  
DDR2  
I2C  
–0.3  
–0.3  
2.45  
2.45  
Input voltage, VI  
V
DVDD18  
0.3  
+
LVDS  
LJCB  
SerDes  
–0.3  
–0.3  
–0.3  
1.35  
DVDD11  
0.3  
+
+
+
DVDD18  
0.3  
LVCMOS (1.8 V)  
LVCMOS (3.3 V)  
–0.3  
–0.3  
DVDD33  
0.3  
Output voltage, VO  
V
DDR2  
I2C  
–0.3  
–0.3  
2.45  
2.45  
DVDD11  
0.3  
+
SerDes  
–0.3  
–55  
Operating case temperature,  
TC  
Extended  
1-GHz CPU  
100  
°C  
LVCMOS (1.8 V)  
LVCMOS (3.3 V)  
DDR2  
20%  
Overshoot/undershoot(3)  
overshoot/undershoot for  
20% of signal duty cycle  
V
I2C  
Storage temperature, Tstg  
–65  
150  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS  
.
(3) Overshoot/undershoot percentage relative to I/O operating values - for example the maximum overshoot value for 1.8-V LVCMOS  
signals is DVDD18 + 0.2 × DVDD18 and maximum undershoot value would be VSS - 0.2 × DVDD18  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
37  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM)(2)  
Charged-device model (CDM)(3)(4)  
±1000  
±500  
VESD  
ESD stress voltage(1)  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.  
(2) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP 155 states that 500V HBM allows  
safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary  
precautions are taken. Pins listed as 1000V may actually have higher performance.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP 157 states that 250V CDM allows safe  
manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance.  
(4) Based on JESD22-C101C (Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of  
Microelectronic Components), the C6457 device’s charged-device model (CDM) sensitivity classification is Class II (200 V to < 500 V).  
Specifically, DDR memory interface and SerDes pins conform to ±200-V level. All other pins conform to ±500 V.  
4.3 Recommended Operating Conditions  
MIN  
1.067  
NOM  
MAX UNIT  
850-MHz CPU  
1-GHz CPU  
1.1  
1.133  
V
CVDD  
Supply core voltage  
1.067  
1.1  
1.133  
DVDD18  
DVDD33  
VREFSSTL  
VDDR18  
VDDA11  
VDDD11  
VDDT11  
PLLV1  
PLLV2  
VSS  
1.8-V supply I/O voltage  
1.71  
1.8  
1.89  
3.465  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
3.3-V supply I/O voltage  
3.135  
3.3  
DDR2 reference voltage  
SRIO/SGMII SerDes regulator supply  
SRIO/SGMII SerDes analog supply  
SRIO/SGMII SerDes digital supply  
SRIO/SGMII SerDes termination supply  
PLL1 analog supply  
0.49 × DVDD18  
1.71  
0.5 × DVDD18  
0.51 × DVDD18  
1.89  
1.8  
1.1  
1.1  
1.1  
1.8  
1.8  
0
1.045  
1.155  
1.045  
1.155  
1.045  
1.155  
1.71  
1.89  
PLL2 analog supply  
1.71  
1.89  
Ground  
0
0
LVCMOS (1.8 V)  
0.65 × DVDD18  
2
LVCMOS (3.3 V)  
I2C  
VIH  
High-level input voltage  
0.7 × DVDD18  
DDR2 EMIF  
VREFSSTL  
+
DVDD18 + 0.3  
0.125  
LVCMOS (1.8 V)  
LVCMOS (3.3 V)  
DDR2 EMIF  
I2C  
0.35 × DVDD18  
0.8  
V
V
V
V
VIL  
Low-level input voltage  
-0.3  
–55  
VREFSSTL – 0.1  
0.3 × DVDD18  
Operating case  
temperature  
TC  
Extended  
1-GHz CPU  
100  
°C  
38  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.4 Electrical Characteristics  
over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)  
PARAMETER  
LVCMOS (1.8 V)  
TEST CONDITIONS(1)  
MIN  
DVDD18 – 0.45  
2.4  
TYP  
MAX UNIT  
IO = IOH  
LVCMOS (3.3 V)  
DDR2  
IO = -2 mA  
VOH High-level output voltage  
VOL Low-level output voltage  
V
1.4  
I2C  
0.1 × DVDD18  
LVCMOS (1.8 V)  
LVCMOS (3.3 V)  
DDR2  
IO = IOL  
0.45  
0.4  
IO = 2 mA  
V
0.4  
IO = 3 mA, pulled up to  
1.8 V  
I2C  
0.4  
No IPD/IPU  
–5  
50  
5
170  
-50  
1
LVCMOS (1.8 V)  
Internal pullup  
Internal pulldown  
No IPD/IPU  
100  
–170  
–1  
-100  
II(2)  
Input current [DC]  
µA  
LVCMOS (3.3 V)  
I2C  
Internal pullup  
Internal pulldown  
0.1 × DVDD18 V < VI <  
70  
150  
270  
–70  
–270  
–150  
–20  
20  
–8  
0.9 × DVDD18  
V
EMU[18:00], GPIO[15:0],  
TIMO[1:0]  
SYSCLKOUT, TDO, CLKR0,  
CLKX0, DX0, FSR0, FSX0,  
CLKR1, CLKX1, DX1, FSR1,  
FSX1, AECLKOUT  
–6  
High-level output current  
[DC]  
IOH  
mA  
RESETSTAT, MDIO, MDCLK  
DDR2  
–4  
4
LVCMOS (3.3 V), except  
AECLKOUT  
–4  
8
EMU[18:00], GPIO[15:0],  
TIM[1:0]  
SYSCLKOUT, TDO, CLKR0,  
CLKX0, DX0, FSR0, FSX0,  
CLKR1, CLKX1, DX1, FSR1,  
FSX1, AECLKOUT  
6
Low-level output current  
[DC]  
IOL  
mA  
µA  
RESETSTAT, MDIO, MDCLK  
DDR2  
4
–4  
LVCMOS (3.3 V), except  
AECLKOUT  
4
(3)  
IOZ  
LVCMOS (1.8 V)  
LVCMOS (3.3 V)  
–20  
–20  
20  
20  
Off-state output current  
[DC]  
(1) For test conditions shown as MIN, MAX, or TYP, use the appropriate value specified in the recommended operating conditions table.  
(2) II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II  
includes input leakage current and off-state (Hi-Z) output leakage current.  
(3) IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current.  
4.5 Thermal Resistance Characteristics  
Table 4-1 shows the thermal resistance characteristics for the PBGA - GMH mechanical package.  
Table 4-1. Thermal Resistance Characteristics GMH Package  
NO.  
1
°C/W  
1.53  
8.1  
RθJC  
RθJB  
Junction-to-case  
Junction-to-board  
2
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
39  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.6 Timing and Switching Characteristics  
4.6.1 Timing Parameters and Information  
This section describes the conditions used to capture the electrical data seen in this chapter.  
Data Manual Timing Reference Point  
Tester Terminal Electronics  
42 W  
3.5 nH  
Output Under Test  
Transmission Line  
Zo = 50 W  
(see Note A)  
Device Terminal  
(see Note B)  
4.0 pF  
1.85 pF  
Figure 4-1. Test Load Circuit for AC Timing Measurements  
(A) The data manual provides timing at the device terminal. For output timing analysis, the tester terminal electronics and its transmission  
line effects must be taken into account. A transmission line with a delay of 2 ns can be used to produce the desired transmission line effect.  
The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns) from the data sheet  
timings.  
(B) Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device terminal.  
The load capacitance value stated is only for characterization and measurement of AC timing signals. This  
load capacitance value does not indicate the maximum load the device is capable of driving.  
4.6.1.1 1.8-V Signal Transition Levels  
All input and output timing parameters are referenced to 0.9 V for both 0 and 1 logic levels.  
Vref = 0.9 V  
Figure 4-2. Input and Output Voltage Reference Levels for 1.8-V AC Timing Measurements  
All rise and fall transition timing parameters are reference to VIL MAX and VIH MIN for input clocks.  
Vref = VIH MIN (or VOH MIN)  
Figure 4-3. Rise and Fall Transition Time Voltage Reference Levels  
40  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.6.1.2 3.3-V Signal Transition Levels  
All input and output timing parameters are referenced to 1.5 V for both 0 and 1 logic levels.  
Vref = 1.5 V  
Figure 4-4. Input and Output Voltage Reference Levels for 3.3-V AC Timing Measurements  
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOL  
MAX and VOH MIN for output clocks.  
Vref = VIH MIN (or VOH MIN)  
Figure 4-5. Rise and Fall Transition Time Voltage Reference Levels  
4.6.1.3 3.3-V Signal Transition Rates  
All timings are tested with an input edge rate of 4 volts per nanosecond (4 V/ns).  
4.6.1.4 Timing Parameters and Board Routing Analysis  
The timing parameter values specified in this data sheet do not include delays by board routings. As a  
good board design practice, such delays must always be taken into account. Timing values may be  
adjusted by increasing/decreasing such delays. TI recommends using the available I/O buffer information  
specification (IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to  
attain accurate timing analysis for a given system, see the Using IBIS Models for Timing Analysis  
application report (SPRA839). If needed, external logic hardware such as buffers may be used to  
compensate any timing differences.  
For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external  
device and from the external device to the DSP. This round-trip delay tends to negatively impact the input  
setup time margin, but also tends to improve the input hold time margins (see Table 4-2 and Figure 4-6).  
Table 4-2. Board-Level Timing Example  
(see Figure 4-6)  
NO.  
1
DESCRIPTION  
Clock route delay  
2
Minimum DSP hold time  
3
Minimum DSP setup time  
External device hold time requirement  
External device setup time requirement  
Control signal route delay  
External device hold time  
External device access time  
DSP hold time requirement  
DSP setup time requirement  
Data route delay  
4
5
6
7
8
9
10  
11  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
41  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Figure 4-6 shows a general transfer between the DSP and an external device. The figure also shows  
board route delays and how they are perceived by the DSP and the external device  
AECLKOUT  
(Output from DSP)  
1
AECLKOUT  
(Input to External Device)  
2
3
Control Signals (A)  
(Output from DSP)  
4
5
6
Control Signals  
(Input to External Device)  
7
8
Data Signals (B)  
(Output from External Device)  
9
10  
11  
Data Signals (B)  
(Input to DSP)  
Figure 4-6. Board-Level Input/Output Timings  
(A) Control signals include data for writes.  
(B) Data signals are generated during reads from an external device.  
4.6.2 Power Supply Sequencing  
The following sections describe the proper power-supply sequencing and timing needed to properly power  
on the C6457 DSP. This section also describes proper power-supply decoupling methods.  
TI recommends the power-supply sequence shown in Figure 4-7 and described in Table 4-3. The figure  
shows that the 1.8-V I/O supply should be ramped first. This is followed by the scaled core supply and the  
fixed 1.1-V supplies which must ramp within 5 ms of each other. The 3.3-V I/O supply should ramp up last.  
Some TI power supply devices include features that facilitate power sequencing; for example, Auto-Track  
or Slow-Start/Enable features. For more information, visit www.ti.com/dsppower. See the TMS320TCI6468  
and TMS329C6457 DSPs Hardware Design Guide (SPRAAV7) for further details on proper power-supply  
sequencing.  
DVDD18  
VREFSSTL (DDR2)  
1
CVDD11  
DVDD11  
2
DVDD33  
3
POR  
Figure 4-7. Power Supply Sequence  
42  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-3. Timing Requirements for Power Supply Sequence  
NO.  
MIN  
MAX UNIT  
1
2
3
tsu(DVDD18-  
DVDD11)  
Setup Time, DVDD18 and VREFSSTL supplies stable before DVDD11 and CVDD11 supplies  
stable  
0.5  
200 ms  
tsu(DVDD11-  
DVDD33)  
Setup Time, DVDD11 and CVDD11 supplies stable before DVDD33 supply stable  
0.5  
200 ms  
µs  
th(DVDD33-POR)  
Hold time, POR low after DVDD33 supplies stable  
100  
4.6.2.1 Power-Supply Decoupling  
In order to properly decouple the supply planes from system noise, place as many capacitors (caps) as  
possible close to the DSP. These caps need to be close to the DSP, no more than 1.25 cm maximum  
distance to be effective. Physically smaller caps are better, such as 0402, but need to be evaluated from a  
yield/manufacturing point-of-view. Parasitic inductance limits the effectiveness of the decoupling  
capacitors, therefore physically smaller capacitors should be used while maintaining the largest available  
capacitance value. As with the selection of any component, verification of capacitor availability over the  
product's production lifetime should be considered.  
4.6.2.2 Power-Down Operation  
One of the power goals for the C6457 is to reduce power dissipation due to unused peripherals. There are  
different ways to power down peripherals on the device.  
After device reset, all peripherals on the C6457 device are in a disabled state and must be enabled by  
software before being used. It is possible to enable only the peripherals needed by the application while  
keeping the rest disabled. Note that peripherals in a disabled state are held in reset with their clocks  
gated. For more information on how to enable peripherals, see Section 5.5.2  
Peripherals used for booting, like I2C and HPI, are automatically enabled after device reset. It is possible  
to disable peripherals used for booting after the boot process is complete. This, too, results in gating of the  
clock(s) to the powered-down peripheral. Once a peripheral is powered-down, it must remain powered  
down until the next device reset.  
The C64x+ Megamodule also allows for software-driven power-down management for all of the C64x+  
megamodule components through its Power-Down Controller (PDC). The CPU can power-down part or  
the entire C64x+ megamodule through the power-down controller based on its own execution thread or in  
response to an external stimulus from a host or global controller. More information on the power-down  
features of the C64x+ Megamodule can be found in the TMS320C64x+ Megamodule Reference Guide  
(SPRU871).  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.7 Power Supply to Peripheral I/O Mapping  
over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)  
POWER SUPPLY  
I/O BUFFER TYPE  
ASSOCIATED PERIPHERAL  
CORECLK(P|N) PLL input buffers  
CVDD  
Supply core voltage  
LJCB  
DDRREFCLK(N|P) PLL input buffers  
RIOSGMIICLK(N|P) SERDES PLL input buffers  
ALTCORECLK PLL input buffer  
ALTDDRCLK PLL input buffer  
POR/RESET input buffers  
All GPIO peripheral I/O buffer  
LVCMOS (1.8 V)  
All McBSP0/McBSP1 peripheral I/O buffer  
All MDIO peripheral I/O buffer  
DVDD18  
1.8-V supply I/O voltage  
All Timer0/Timer1 peripheral I/O buffer  
NMI input buffers  
DDR2 (1.8V)  
All DDR2 memory controller peripheral I/O buffer  
All I2C peripheral I/O buffer  
Open-drain (1.8 V)  
All EMIFA peripheral I/O buffer  
ALL HPI peripheral I/O buffer  
DVDD33  
3.3-V supply I/O voltage  
LVCMOS (3.3 V)  
CML  
ALL UTOPIA peripheral I/O buffer  
SRIO/SGMII SerDes CML I/O buffer  
VDDA11  
SRIO/SGMII SerDes analog supply  
44  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.7.1 Reset Timing  
Table 4-4. Reset Timing Requirements(1)(2)  
(see Figure 4-8 and Figure 4-9)  
NO.  
MIN  
MAX UNIT  
1
th(SUPPLY-POR) Hold Time, POR low after supplies stable and input clocks valid  
1000  
ns  
tsu(RESETH-  
PORH)  
Setup Time, RESET high to POR high  
2
1000  
ns  
4
7
8
tw(RESET)  
Pulse Duration, RESET low  
24C  
12C  
12C  
ns  
ns  
ns  
ts(BOOT)  
th(BOOT)  
Setup time, boot mode and configuration pins valid before POR or RESET high  
Hold time, bootmode and configuration pins valid after POR or RESET high  
(1) If CORECLKSEL = 0, C = 1 ÷ CORECLK(N|P) frequency in ns.  
(2) If CORECLKSEL = 1, C = 1 ÷ ALTCORECLK frequency in ns.  
Table 4-5. Reset Switching Characteristics Over Recommended Operating Conditions  
(see Figure 4-8 and Figure 4-9)  
NO.  
3
PARAMETER  
MIN  
MAX UNIT  
td(PORH-RSTATH)  
Delay Time, POR high to RESETSTAT high  
Delay Time, RESET high to RESETSTAT high  
200  
5
µs  
µs  
5
td(RESETH-RSTATH)  
Table 4-6. Warm Reset Switching Characteristics Over Recommended Operating Conditions  
(see Figure 4-9 and Figure 4-10)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
9
tsu(PORH-RESETL)  
Setup time, POR high to RESET low  
1.34  
ns  
1
2
POR  
RESET  
3
RESETSTAT  
7
Boot and Device  
Configuration Pins  
8
Figure 4-8. Power-On Reset Timing  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
45  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
POR  
RESET  
4
5
RESETSTAT  
Figure 4-9. Warm Reset Timing — RESETSTAT Relative to RESET  
POR  
RESET  
9
Figure 4-10. Warm Reset Timing — Setup Time Between POR De-Asserted and RESET Asserted  
4.7.2 Clock and Control Signal Transition Behavior  
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic  
manner.  
4.8 Peripherals  
This section describes the various peripherals on the C6457 DSP. Peripheral specific information, timing  
diagrams, electrical specifications and register memory maps are described in this chapter.  
4.8.1 Enhanced Direct Memory Access (EDMA3) Controller  
The primary purpose of the EDMA3 is to service user-programmed data transfers between two memory-  
mapped slave endpoints on the device. The EDMA3 services software-driven paging transfers (e.g., data  
movement between external memory and internal memory), performs sorting or subframe extraction of  
various data structures, services event-driven peripherals such as a McBSP or the UTOPIA port, and  
offloads data transfers from the device CPU.  
The EDMA3 includes the following features:  
Fully orthogonal transfer description  
3 transfer dimensions:  
Array (multiple bytes)  
Frame (multiple arrays)  
Block (multiple frames)  
Single event can trigger transfer of array, frame, or entire block  
Independent indexes on source and destination  
Flexible transfer definition:  
Increment or FIFO transfer addressing modes  
Linking mechanism allows for ping-pong buffering, circular buffering, and repetitive/continuous  
transfers, all with no CPU intervention  
Chaining allows multiple transfers to execute with one event  
256 PaRAM entries  
Used to define transfer context for channels  
Each PaRAM entry can be used as a DMA entry, QDMA entry, or link entry  
46  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
64 DMA channels  
Manually triggered (CPU writes to channel controller register), external event triggered, and chain  
triggered (completion of one transfer triggers another)  
8 Quick DMA (QDMA) channels  
Used for software-driven transfers  
Triggered upon writing to a single PaRAM set entry  
6 transfer controllers and 6 event queues with programmable system-level priority  
Interrupt generation for transfer completion and error conditions  
Debug visibility  
Queue watermarking/threshold allows detection of maximum usage of event queues  
Error and status recording to facilitate debug  
Each of the transfer controllers has a direct connection to the switched central resource (SCR). Table 5-20  
lists the peripherals that can be accessed by the transfer controllers.  
4.8.1.1 EDMA3 Device-Specific Information  
The EDMA supports two addressing modes: constant addressing and increment addressing mode.  
Constant addressing mode is applicable to a very limited set of use cases; for most applications increment  
mode can be used. On the C6457 DSP, the EDMA can use constant addressing mode only with the  
Enhanced Viterbi-Decoder Coprocessor (VCP2) and the Enhanced Turbo Decoder Coprocessor (TCP2).  
Constant addressing mode is not supported by any other peripheral or internal memory in the C6457 DSP.  
Note that increment mode is supported by all C6457 peripherals, including VCP2 and TCP2. For more  
information on these two addressing modes, see the TMS320C6457 DSP Enhanced DMA (EDMA3)  
Controller User's Guide (SPRUGK6).  
A DSP interrupt must be generated at the end of an HPI boot operation to begin execution of the loaded  
application. Because the DSP interrupt generated by the HPI is mapped to the EDMA event DSP_EVT  
(DMA channel 0), it will get recorded in bit 0 of the EDMA Event Register (ER). This event must be  
cleared by software before triggering transfers on DMA channel 0. The EDMA3 on the C6457 DSP  
supports active memory protection, but it does not support proxied memory protection.  
4.8.1.2 EDMA3 Channel Synchronization Events  
The EDMA3 supports up to 64 DMA channels that can be used to service system peripherals and to move  
data between system memories. DMA channels can be triggered by synchronization events generated by  
system peripherals. Table 4-7 lists the source of the synchronization event associated with each of the  
DMA channels. On the C6457, the association of each synchronization event and DMA channel is fixed  
and cannot be reprogrammed.  
For more detailed information on the EDMA3 module and how EDMA3 events are enabled, captured,  
processed, prioritized, linked, chained, and cleared, etc., see theTMS320C6457 DSP Enhanced DMA  
(EDMA3) Controller User's Guide (SPRUGK6).  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
47  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-7. C6457 EDMA3 Channel Synchronization Events(1)  
EDMA CHANNEL  
EVENT NAME  
DSP_EVT  
TEVTLO0  
TEVTHI0  
-
EVENT DESCRIPTION  
0(2)  
HPI-to-DSP event  
1
Timer 0 Lower Counter Event  
Timer 0 High Counter Event  
None  
2
3 - 8  
9
ETBHFULLINT  
ETBFULLINT  
ETBACQINT  
XEVT0  
Embedded Trace Buffer (ETB) is half full  
Embedded Trace Buffer (ETB) is full  
Embedded Trace Buffer (ETB) acquisition is complete  
McBSP0 Transmit Event  
McBSP0 Receive Event  
McBSP1 Transmit Event  
McBSP1 Receive Event  
Timer 1 Lower Counter Event  
Timer 1 High Counter Event  
None  
10  
11  
12  
13  
REVT0  
14  
XEVT1  
15  
REVT1  
16  
TEVTLO1  
TEVTHI1  
-
17  
18  
19  
INTDST0  
INTDST1  
INTDST2  
INTDST3  
INTDST4  
INTDST5  
INTDST6  
-
RapidIO Interrupt 0  
RapidIO Interrupt 1  
RapidIO Interrupt 2  
RapidIO Interrupt 3  
RapidIO Interrupt 4  
RapidIO Interrupt 5  
RapidIO Interrupt 6  
None  
20  
21  
22  
23  
24  
25  
26 - 27  
28  
VCP2REVT  
VCP2XEVT  
TCP2AREVT  
TCP2AXEVT  
UREVT  
VCP2 Receive Event  
VCP2 Transmit Event  
TCP2_A Receive Event  
TCP2_A Transmit Event  
UTOPIA Receive Event  
TCP2_B Receive Event  
TCP2_B Transmit Event  
None  
29  
30  
31  
32  
33  
TCP2BREVT  
TCP2BXEVT  
-
34  
35 - 39  
40  
UXEVT  
UTOPIA Transmit Event  
None  
I2C Receive Event  
I2C Transmit Event  
None  
41 - 43  
44  
-
ICREVT  
ICXEVT  
-
45  
46 - 47  
48  
GPINT0  
GPINT1  
GPINT2  
GPINT3  
GPINT4  
GPINT5  
GPINT6  
GPINT7  
GPINT8  
GPIO event 0  
49  
GPIO event 1  
50  
GPIO event 2  
51  
GPIO event 3  
52  
GPIO event 4  
53  
GPIO event 5  
54  
GPIO event 6  
55  
GPIO event 7  
56  
GPIO event 8  
(1) In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate  
transfer completion events. For more detailed information on EDMA event-transfer chaining, see theTMS320C6457 DSP Enhanced  
DMA (EDMA3) Controller User's Guide (SPRUGK6).  
(2) HPI boot is terminated using a DSP interrupt. The DSP interrupt is registered in bit 0 (channel 0) of the EDMA Event Register (ER). This  
event must be cleared by software before triggering transfers on DMA channel 0.  
48  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-7. C6457 EDMA3 Channel Synchronization Events(1) (continued)  
EDMA CHANNEL  
EVENT NAME  
GPINT9  
EVENT DESCRIPTION  
57  
58  
59  
60  
61  
62  
63  
GPIO event 9  
GPIO event 10  
GPIO event 11  
GPIO event 12  
GPIO event 13  
GPIO event 14  
GPIO event 15  
GPINT10  
GPINT11  
GPINT12  
GPINT13  
GPINT14  
GPINT15  
4.8.1.3 EDMA3 Peripheral Register Description(s)  
Table 4-8. EDMA3 Registers  
HEX ADDRESS  
02A0 0000  
02A0 0004  
02A0 0008 - 02A0 00FC  
02A0 0100  
02A0 0104  
02A0 0108  
02A0 010C  
02A0 0110  
02A0 0114  
02A0 0118  
02A0 011C  
02A0 0120  
02A0 0124  
02A0 0128  
02A0 012C  
02A0 0130  
02A0 0134  
02A0 0138  
02A0 013C  
02A0 0140  
02A0 0144  
02A0 0148  
02A0 014C  
02A0 0150  
02A0 0154  
02A0 0158  
02A0 015C  
02A0 0160  
02A0 0164  
02A0 0168  
02A0 016C  
02A0 0170  
02A0 0174  
02A0 0178  
02A0 017C  
ACRONYM  
PID  
REGISTER NAME  
Peripheral ID Register  
CCCFG  
EDMA3CC Configuration Register  
Reserved  
-
DCHMAP0  
DCHMAP1  
DCHMAP2  
DCHMAP3  
DCHMAP4  
DCHMAP5  
DCHMAP6  
DCHMAP7  
DCHMAP8  
DCHMAP9  
DCHMAP10  
DCHMAP11  
DCHMAP12  
DCHMAP13  
DCHMAP14  
DCHMAP15  
DCHMAP16  
DCHMAP17  
DCHMAP18  
DCHMAP19  
DCHMAP20  
DCHMAP21  
DCHMAP22  
DCHMAP23  
DCHMAP24  
DCHMAP25  
DCHMAP26  
DCHMAP27  
DCHMAP28  
DCHMAP29  
DCHMAP30  
DCHMAP31  
DMA Channel 0 Mapping Register  
DMA Channel 1 Mapping Register  
DMA Channel 2 Mapping Register  
DMA Channel 3 Mapping Register  
DMA Channel 4 Mapping Register  
DMA Channel 5 Mapping Register  
DMA Channel 6 Mapping Register  
DMA Channel 7 Mapping Register  
DMA Channel 8 Mapping Register  
DMA Channel 9 Mapping Register  
DMA Channel 10 Mapping Register  
DMA Channel 11 Mapping Register  
DMA Channel 12 Mapping Register  
DMA Channel 13 Mapping Register  
DMA Channel 14 Mapping Register  
DMA Channel 15 Mapping Register  
DMA Channel 16 Mapping Register  
DMA Channel 17 Mapping Register  
DMA Channel 18 Mapping Register  
DMA Channel 19 Mapping Register  
DMA Channel 20 Mapping Register  
DMA Channel 21 Mapping Register  
DMA Channel 22 Mapping Register  
DMA Channel 23 Mapping Register  
DMA Channel 24 Mapping Register  
DMA Channel 25 Mapping Register  
DMA Channel 26 Mapping Register  
DMA Channel 27 Mapping Register  
DMA Channel 28 Mapping Register  
DMA Channel 29 Mapping Register  
DMA Channel 30 Mapping Register  
DMA Channel 31 Mapping Register  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
49  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
02A0 0180  
02A0 0184  
02A0 0188  
02A0 018C  
02A0 0190  
02A0 0194  
02A0 0198  
02A0 019C  
02A0 01A0  
02A0 01A4  
02A0 01A8  
02A0 01AC  
02A0 01B0  
02A0 01B4  
02A0 01B8  
02A0 01BC  
02A0 01C0  
02A0 01C4  
02A0 01C8  
02A0 01CC  
02A0 01D0  
02A0 01D4  
02A0 01D8  
02A0 01DC  
02A0 01E0  
02A0 01E4  
02A0 01E8  
02A0 01EC  
02A0 01F0  
02A0 01F4  
02A0 01F8  
02A0 01FC  
02A0 0200  
02A0 0204  
02A0 0208  
02A0 020C  
02A0 0210  
02A0 0214  
02A0 0218  
02A0 021C  
02A0 0220 - 02A0 023C  
02A0 0240  
02A0 0244  
02A0 0248  
02A0 024C  
02A0 0250  
02A0 0254  
ACRONYM  
REGISTER NAME  
DCHMAP32  
DCHMAP33  
DCHMAP34  
DCHMAP35  
DCHMAP36  
DCHMAP37  
DCHMAP38  
DCHMAP39  
DCHMAP40  
DCHMAP41  
DCHMAP42  
DCHMAP43  
DCHMAP44  
DCHMAP45  
DCHMAP46  
DCHMAP47  
DCHMAP48  
DCHMAP49  
DCHMAP50  
DCHMAP51  
DCHMAP52  
DCHMAP53  
DCHMAP54  
DCHMAP55  
DCHMAP56  
DCHMAP57  
DCHMAP58  
DCHMAP59  
DCHMAP60  
DCHMAP61  
DCHMAP62  
DCHMAP63  
QCHMAP0  
QCHMAP1  
QCHMAP2  
QCHMAP3  
QCHMAP4  
QCHMAP5  
QCHMAP6  
QCHMAP7  
-
DMA Channel 32 Mapping Register  
DMA Channel 33 Mapping Register  
DMA Channel 34 Mapping Register  
DMA Channel 35 Mapping Register  
DMA Channel 36 Mapping Register  
DMA Channel 37 Mapping Register  
DMA Channel 38 Mapping Register  
DMA Channel 39 Mapping Register  
DMA Channel 40 Mapping Register  
DMA Channel 41 Mapping Register  
DMA Channel 42 Mapping Register  
DMA Channel 43 Mapping Register  
DMA Channel 44 Mapping Register  
DMA Channel 45 Mapping Register  
DMA Channel 46 Mapping Register  
DMA Channel 47 Mapping Register  
DMA Channel 48 Mapping Register  
DMA Channel 49 Mapping Register  
DMA Channel 50 Mapping Register  
DMA Channel 51 Mapping Register  
DMA Channel 52 Mapping Register  
DMA Channel 53 Mapping Register  
DMA Channel 54 Mapping Register  
DMA Channel 55 Mapping Register  
DMA Channel 56 Mapping Register  
DMA Channel 57 Mapping Register  
DMA Channel 58 Mapping Register  
DMA Channel 59 Mapping Register  
DMA Channel 60 Mapping Register  
DMA Channel 61 Mapping Register  
DMA Channel 62 Mapping Register  
DMA Channel 63 Mapping Register  
QDMA Channel 0 Mapping Register  
QDMA Channel 1 Mapping Register  
QDMA Channel 2 Mapping Register  
QDMA Channel 3 Mapping Register  
QDMA Channel 4 Mapping Register  
QDMA Channel 5 Mapping Register  
QDMA Channel 6 Mapping Register  
QDMA Channel 7 Mapping Register  
Reserved  
DMAQNUM0  
DMAQNUM1  
DMAQNUM2  
DMAQNUM3  
DMAQNUM4  
DMAQNUM5  
DMA Queue Number Register 0  
DMA Queue Number Register 1  
DMA Queue Number Register 2  
DMA Queue Number Register 3  
DMA Queue Number Register 4  
DMA Queue Number Register 5  
50  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
02A0 0258  
02A0 025C  
02A0 0260  
02A0 0264 - 02A0 027C  
02A0 0280  
02A0 0284  
02A0 0288 - 02A0 02FC  
02A0 0300  
02A0 0304  
02A0 0308  
02A0 030C  
02A0 0310  
02A0 0314  
02A0 0318  
02A0 031C  
02A0 0320  
02A0 0324 - 02A0 033C  
02A0 0340  
02A0 0344  
02A0 0348  
02A0 034C  
02A0 0350  
02A0 0354  
02A0 0358  
02A0 035C  
02A0 0360  
02A0 0364  
02A0 0368  
02A0 036C  
02A0 0370  
02A0 0374  
02A0 0378  
02A0 037C  
02A0 0380  
02A0 0384  
02A0 0388  
02A0 038C  
02A0 0390  
02A0 0394  
02A0 0398  
02A0 039C  
02A0 0400  
02A0 0404  
02A0 0408  
02A0 040C  
02A0 0410  
02A0 0414  
DMAQNUM6  
DMAQNUM7  
QDMAQNUM  
-
DMA Queue Number Register 6  
DMA Queue Number Register 7  
QDMA Queue Number Register  
Reserved  
QUETCMAP  
QUEPRI  
-
Queue to TC Mapping Register  
Queue Priority Register  
Reserved  
EMR  
Event Missed Register  
EMRH  
Event Missed Register High  
Event Missed Clear Register  
Event Missed Clear Register High  
QDMA Event Missed Register  
QDMA Event Missed Clear Register  
EDMA3CC Error Register  
EDMA3CC Error Clear Register  
Error Evaluate Register  
EMCR  
EMCRH  
QEMR  
QEMCR  
CCERR  
CCERRCLR  
EEVAL  
-
Reserved  
DRAE0  
DRAEH0  
DRAE1  
DRAEH1  
DRAE2  
DRAEH2  
DRAE3  
DRAEH3  
DRAE4  
DRAEH4  
DRAE5  
DRAEH5  
DRAE6  
DRAEH6  
DRAE7  
DRAEH7  
QRAE0  
QRAE1  
QRAE2  
QRAE3  
QRAE4  
QRAE5  
QRAE6  
QRAE7  
Q0E0  
DMA Region Access Enable Register for Region 0  
DMA Region Access Enable Register High for Region 0  
DMA Region Access Enable Register for Region 1  
DMA Region Access Enable Register High for Region 1  
DMA Region Access Enable Register for Region 2  
DMA Region Access Enable Register High for Region 2  
DMA Region Access Enable Register for Region 3  
DMA Region Access Enable Register High for Region 3  
DMA Region Access Enable Register for Region 4  
DMA Region Access Enable Register High for Region 4  
DMA Region Access Enable Register for Region 5  
DMA Region Access Enable Register High for Region 5  
DMA Region Access Enable Register for Region 6  
DMA Region Access Enable Register High for Region 6  
DMA Region Access Enable Register for Region 7  
DMA Region Access Enable Register High for Region 7  
QDMA Region Access Enable Register for Region 0  
QDMA Region Access Enable Register for Region 1  
QDMA Region Access Enable Register for Region 2  
QDMA Region Access Enable Register for Region 3  
QDMA Region Access Enable Register for Region 4  
QDMA Region Access Enable Register for Region 5  
QDMA Region Access Enable Register for Region 6  
QDMA Region Access Enable Register for Region 7  
Event Queue 0 Entry Register 0  
Q0E1  
Event Queue 0 Entry Register 1  
Q0E2  
Event Queue 0 Entry Register 2  
Q0E3  
Event Queue 0 Entry Register 3  
Q0E4  
Event Queue 0 Entry Register 4  
Q0E5  
Event Queue 0 Entry Register 5  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
51  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
02A0 0418  
02A0 041C  
02A0 0420  
02A0 0424  
02A0 0428  
02A0 042C  
02A0 0430  
02A0 0434  
02A0 0438  
02A0 043C  
02A0 0440  
02A0 0444  
02A0 0448  
02A0 044C  
02A0 0450  
02A0 0454  
02A0 0458  
02A0 045C  
02A0 0460  
02A0 0464  
02A0 0468  
02A0 046C  
02A0 0470  
02A0 0474  
02A0 0478  
02A0 047C  
02A0 0480  
02A0 0484  
02A0 0488  
02A0 048C  
02A0 0490  
02A0 0494  
02A0 0498  
02A0 049C  
02A0 04A0  
02A0 04A4  
02A0 04A8  
02A0 04AC  
02A0 04B0  
02A0 04B4  
02A0 04B8  
02A0 04BC  
02A0 04C0  
02A0 04C4  
02A0 04C8  
02A0 04CC  
02A0 04D0  
ACRONYM  
REGISTER NAME  
Q0E6  
Q0E7  
Q0E8  
Q0E9  
Q0E10  
Q0E11  
Q0E12  
Q0E13  
Q0E14  
Q0E15  
Q1E0  
Q1E1  
Q1E2  
Q1E3  
Q1E4  
Q1E5  
Q1E6  
Q1E7  
Q1E8  
Q1E9  
Q1E10  
Q1E11  
Q1E12  
Q1E13  
Q1E14  
Q1E15  
Q2E0  
Q2E1  
Q2E2  
Q2E3  
Q2E4  
Q2E5  
Q2E6  
Q2E7  
Q2E8  
Q2E9  
Q2E10  
Q2E11  
Q2E12  
Q2E13  
Q2E14  
Q2E15  
Q3E0  
Q3E1  
Q3E2  
Q3E3  
Q3E4  
Event Queue 0 Entry Register 6  
Event Queue 0 Entry Register 7  
Event Queue 0 Entry Register 8  
Event Queue 0 Entry Register 9  
Event Queue 0 Entry Register 10  
Event Queue 0 Entry Register 11  
Event Queue 0 Entry Register 12  
Event Queue 0 Entry Register 13  
Event Queue 0 Entry Register 14  
Event Queue 0 Entry Register 15  
Event Queue 1 Entry Register 0  
Event Queue 1 Entry Register 1  
Event Queue 1 Entry Register 2  
Event Queue 1 Entry Register 3  
Event Queue 1 Entry Register 4  
Event Queue 1 Entry Register 5  
Event Queue 1 Entry Register 6  
Event Queue 1 Entry Register 7  
Event Queue 1 Entry Register 8  
Event Queue 1 Entry Register 9  
Event Queue 1 Entry Register 10  
Event Queue 1 Entry Register 11  
Event Queue 1 Entry Register 12  
Event Queue 1 Entry Register 13  
Event Queue 1 Entry Register 14  
Event Queue 1 Entry Register 15  
Event Queue 2 Entry Register 0  
Event Queue 2 Entry Register 1  
Event Queue 2 Entry Register 2  
Event Queue 2 Entry Register 3  
Event Queue 2 Entry Register 4  
Event Queue 2 Entry Register 5  
Event Queue 2 Entry Register 6  
Event Queue 2 Entry Register 7  
Event Queue 2 Entry Register 8  
Event Queue 2 Entry Register 9  
Event Queue 2 Entry Register 10  
Event Queue 2 Entry Register 11  
Event Queue 2 Entry Register 12  
Event Queue 2 Entry Register 13  
Event Queue 2 Entry Register 14  
Event Queue 2 Entry Register 15  
Event Queue 3 Entry Register 0  
Event Queue 3 Entry Register 1  
Event Queue 3 Entry Register 2  
Event Queue 3 Entry Register 3  
Event Queue 3 Entry Register 4  
52  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
02A0 04D4  
02A0 04D8  
Q3E5  
Q3E6  
Event Queue 3 Entry Register 5  
Event Queue 3 Entry Register 6  
Event Queue 3 Entry Register 7  
Event Queue 3 Entry Register 8  
Event Queue 3 Entry Register 9  
Event Queue 3 Entry Register 10  
Event Queue 3 Entry Register 11  
Event Queue 3 Entry Register 12  
Event Queue 3 Entry Register 13  
Event Queue 3 Entry Register 14  
Event Queue 3 Entry Register 15  
Event Queue 4 Entry Register 0  
Event Queue 4 Entry Register 1  
Event Queue 4 Entry Register 2  
Event Queue 4 Entry Register 3  
Event Queue 4 Entry Register 4  
Event Queue 4 Entry Register 5  
Event Queue 4 Entry Register 6  
Event Queue 4 Entry Register 7  
Event Queue 4 Entry Register 8  
Event Queue 4 Entry Register 9  
Event Queue 4 Entry Register 10  
Event Queue 4 Entry Register 11  
Event Queue 4 Entry Register 12  
Event Queue 4 Entry Register 13  
Event Queue 4 Entry Register 14  
Event Queue 4 Entry Register 15  
Reserved  
02A0 04DC  
02A0 04E0  
Q3E7  
Q3E8  
02A0 04E4  
Q3E9  
02A0 04E8  
Q3E10  
Q3E11  
Q3E12  
Q3E13  
Q3E14  
Q3E15  
Q4E0  
02A0 04EC  
02A0 04F0  
02A0 04F4  
02A0 04F8  
02A0 04FC  
02A0 0500  
02A0 0504  
Q4E1  
02A0 0508  
Q4E2  
02A0 050C  
Q4E3  
02A0 0510  
Q4E4  
02A0 0514  
Q4E5  
02A0 0518  
Q4E6  
02A0 051C  
Q4E7  
02A0 0520  
Q4E8  
02A0 0524  
Q4E9  
02A0 0528  
Q4E10  
Q4E11  
Q4E12  
Q4E13  
Q4E14  
Q4E15  
-
02A0 052C  
02A0 0530  
02A0 0534  
02A0 0538  
02A0 053C  
02A0 0540 - 02A0 05FC  
02A0 0600  
QSTAT0  
QSTAT1  
QSTAT2  
QSTAT3  
QSTAT4  
QSTAT5  
-
Queue Status Register 0  
02A0 0604  
Queue Status Register 1  
02A0 0608  
Queue Status Register 2  
02A0 060C  
Queue Status Register 3  
02A0 0610  
Queue Status Register 4  
02A0 0614  
Queue Status Register 5  
02A0 0618 - 02A0 061C  
02A0 0620  
Reserved  
QWMTHRA  
QWMTHRB  
-
Queue Watermark Threshold A Register  
Queue Watermark Threshold B Register  
Reserved  
02A0 0624  
02A0 0628 - 02A0 063C  
02A0 0640  
CCSTAT  
-
EDMA3CC Status Register  
02A0 0644 - 02A0 06FC  
02A0 0700 - 02A0 07FC  
02A0 0800  
Reserved  
-
Reserved  
MPFAR  
MPFSR  
MPFCR  
MPPAG  
MPPA0  
MPPA1  
Memory Protection Fault Address Register  
Memory Protection Fault Status Register  
Memory Protection Fault Command Register  
Memory Protection Page Attribute Register G  
Memory Protection Page Attribute Register 0  
Memory Protection Page Attribute Register 1  
02A0 0804  
02A0 0808  
02A0 080C  
02A0 0810  
02A0 0814  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
53  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
02A0 0818  
ACRONYM  
REGISTER NAME  
MPPA2  
MPPA3  
MPPA4  
MPPA5  
MPPA6  
MPPA7  
-
Memory Protection Page Attribute Register 2  
Memory Protection Page Attribute Register 3  
Memory Protection Page Attribute Register 4  
Memory Protection Page Attribute Register 5  
Memory Protection Page Attribute Register 6  
Memory Protection Page Attribute Register 7  
Reserved  
02A0 081C  
02A0 0820  
02A0 0824  
02A0 0828  
02A0 082C  
02A0 082C - 02A0 0FFC  
02A0 1000  
ER  
Event Register  
02A0 1004  
ERH  
Event Register High  
02A0 1008  
ECR  
Event Clear Register  
02A0 100C  
02A0 1010  
ECRH  
ESR  
Event Clear Register High  
Event Set Register  
02A0 1014  
ESRH  
CER  
Event Set Register High  
02A0 1018  
Chained Event Register  
02A0 101C  
02A0 1020  
CERH  
EER  
Chained Event Register High  
Event Enable Register  
02A0 1024  
EERH  
EECR  
EECRH  
EESR  
EESRH  
SER  
Event Enable Register High  
Event Enable Clear Register  
Event Enable Clear Register High  
Event Enable Set Register  
Event Enable Set Register High  
Secondary Event Register  
02A0 1028  
02A0 102C  
02A0 1030  
02A0 1034  
02A0 1038  
02A0 103C  
02A0 1040  
SERH  
SECR  
SECRH  
-
Secondary Event Register High  
Secondary Event Clear Register  
Secondary Event Clear Register High  
Reserved  
02A0 1044  
02A0 1048 - 02A0 104C  
02A0 1050  
IER  
Interrupt Enable Register  
02A0 1054  
IERH  
IECR  
IECRH  
IESR  
IESRH  
IPR  
Interrupt Enable High Register  
Interrupt Enable Clear Register  
Interrupt Enable Clear High Register  
Interrupt Enable Set Register  
Interrupt Enable Set High Register  
Interrupt Pending Register  
Interrupt Pending High Register  
Interrupt Clear Register  
02A0 1058  
02A0 105C  
02A0 1060  
02A0 1064  
02A0 1068  
02A0 106C  
02A0 1070  
IPRH  
ICR  
02A0 1074  
ICRH  
IEVAL  
-
Interrupt Clear High Register  
Interrupt Evaluate Register  
Reserved  
02A0 1078  
02A0 107C  
02A0 1080  
QER  
QDMA Event Register  
02A0 1084  
QEER  
QEECR  
QEESR  
QSER  
QSECR  
-
QDMA Event Enable Register  
QDMA Event Enable Clear Register  
QDMA Event Enable Set Register  
QDMA Secondary Event Register  
QDMA Secondary Event Clear Register  
Reserved  
02A0 1088  
02A0 108C  
02A0 1090  
02A0 1094  
02A0 1098 - 02A0 1FFF  
54  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
Shadow Region 0 Channel Registers  
Event Register  
02A0 2000  
02A0 2004  
02A0 2008  
02A0 200C  
02A0 2010  
02A0 2014  
02A0 2018  
02A0 201C  
02A0 2020  
02A0 2024  
02A0 2028  
02A0 202C  
02A0 2030  
02A0 2034  
02A0 2038  
02A0 203C  
02A0 2040  
02A0 2044  
02A0 2048 - 02A0 204C  
02A0 2050  
02A0 2054  
02A0 2058  
02A0 205C  
02A0 2060  
02A0 2064  
02A0 2068  
02A0 206C  
02A0 2070  
02A0 2074  
02A0 2078  
02A0 207C  
02A0 2080  
02A0 2084  
02A0 2088  
02A0 208C  
02A0 2090  
02A0 2094  
02A0 2098 - 02A0 21FF  
ER  
ERH  
Event Register High  
ECR  
Event Clear Register  
ECRH  
ESR  
Event Clear Register High  
Event Set Register  
ESRH  
CER  
Event Set Register High  
Chained Event Register  
CERH  
EER  
Chained Event Register High  
Event Enable Register  
EERH  
EECR  
EECRH  
EESR  
EESRH  
SER  
Event Enable Register High  
Event Enable Clear Register  
Event Enable Clear Register High  
Event Enable Set Register  
Event Enable Set Register High  
Secondary Event Register  
Secondary Event Register High  
Secondary Event Clear Register  
Secondary Event Clear Register High  
Reserved  
SERH  
SECR  
SECRH  
-
IER  
Interrupt Enable Register  
Interrupt Enable Register High  
Interrupt Enable Clear Register  
Interrupt Enable Clear Register High  
Interrupt Enable Set Register  
Interrupt Enable Set Register High  
Interrupt Pending Register  
Interrupt Pending Register High  
Interrupt Clear Register  
IERH  
IECR  
IECRH  
IESR  
IESRH  
IPR  
IPRH  
ICR  
ICRH  
IEVAL  
-
Interrupt Clear Register High  
Interrupt Evaluate Register  
Reserved  
QER  
QDMA Event Register  
QEER  
QEECR  
QEESR  
QSER  
QSECR  
-
QDMA Event Enable Register  
QDMA Event Enable Clear Register  
QDMA Event Enable Set Register  
QDMA Secondary Event Register  
QDMA Secondary Event Clear Register  
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
55  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
Shadow Region 1 Channel Registers  
Event Register  
02A0 2200  
02A0 2204  
02A0 2208  
02A0 220C  
02A0 2210  
02A0 2214  
02A0 2218  
02A0 221C  
02A0 2220  
02A0 2224  
02A0 2228  
02A0 222C  
02A0 2230  
02A0 2234  
02A0 2238  
02A0 223C  
02A0 2240  
02A0 2244  
02A0 2248 - 02A0 224C  
02A0 2250  
02A0 2254  
02A0 2258  
02A0 225C  
02A0 2260  
02A0 2264  
02A0 2268  
02A0 226C  
02A0 2270  
02A0 2274  
02A0 2278  
02A0 227C  
02A0 2280  
02A0 2284  
02A0 2288  
02A0 228C  
02A0 2290  
02A0 2294  
02A0 2298 - 02A0 23FF  
ER  
ERH  
Event Register High  
ECR  
Event Clear Register  
ECRH  
ESR  
Event Clear Register High  
Event Set Register  
ESRH  
CER  
Event Set Register High  
Chained Event Register  
CERH  
EER  
Event Enable Register  
Event Enable Register High  
Event Enable Clear Register  
Event Enable Clear Register High  
Event Enable Set Register  
Event Enable Set Register High  
Secondary Event Register  
Secondary Event Register High  
Secondary Event Clear Register  
Secondary Event Clear Register High  
Reserved  
EERH  
EECR  
EECRH  
EESR  
EESRH  
SER  
SERH  
SECR  
SECRH  
-
Interrupt Enable Register  
Interrupt Enable Register High  
Interrupt Enable Clear Register  
Interrupt Enable Clear Register High  
Interrupt Enable Set Register  
Interrupt Enable Set Register High  
Interrupt Pending Register  
Interrupt Pending Register High  
Interrupt Clear Register  
IER  
IERH  
IECR  
IECRH  
IESR  
IESRH  
IPR  
IPRH  
ICR  
Interrupt Clear Register High  
Interrupt Evaluate Register  
Reserved  
ICRH  
IEVAL  
-
QDMA Event Register  
QER  
QEER  
QEECR  
QEESR  
QSER  
QSECR  
-
QDMA Event Enable Register  
QDMA Event Enable Clear Register  
QDMA Event Enable Set Register  
QDMA Secondary Event Register  
QDMA Secondary Event Clear Register  
Reserved  
56  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
Shadow Region 2 Channel Registers  
Event Register  
02A0 2400  
02A0 2404  
02A0 2408  
02A0 240C  
02A0 2410  
02A0 2414  
02A0 2418  
02A0 241C  
02A0 2420  
02A0 2424  
02A0 2428  
02A0 242C  
02A0 2430  
02A0 2434  
02A0 2438  
02A0 243C  
02A0 2440  
02A0 2444  
02A0 2448 - 02A0 244C  
02A0 2450  
02A0 2454  
02A0 2458  
02A0 245C  
02A0 2460  
02A0 2464  
02A0 2468  
02A0 246C  
02A0 2470  
02A0 2474  
02A0 2478  
02A0 247C  
02A0 2480  
02A0 2484  
02A0 2488  
02A0 248C  
02A0 2490  
02A0 2494  
02A0 2498 - 02A0 25FF  
ER  
ERH  
Event Register High  
ECR  
Event Clear Register  
ECRH  
ESR  
Event Clear Register High  
Event Set Register  
ESRH  
CER  
Event Set Register High  
Chained Event Register  
CERH  
EER  
Chained Event Register High  
Event Enable Register  
EERH  
EECR  
EECRH  
EESR  
EESRH  
SER  
Event Enable Register High  
Event Enable Clear Register  
Event Enable Clear Register High  
Event Enable Set Register  
Event Enable Set Register High  
Secondary Event Register  
Secondary Event Register High  
Secondary Event Clear Register  
Secondary Event Clear Register High  
Reserved  
SERH  
SECR  
SECRH  
-
IER  
Interrupt Enable Register  
Interrupt Enable Register High  
Interrupt Enable Clear Register  
Interrupt Enable Clear Register High  
Interrupt Enable Set Register  
Interrupt Enable Set Register High  
Interrupt Pending Register  
Interrupt Pending Register High  
Interrupt Clear Register  
IERH  
IECR  
IECRH  
IESR  
IESRH  
IPR  
IPRH  
ICR  
ICRH  
IEVAL  
-
Interrupt Clear Register High  
Interrupt Evaluate Register  
Reserved  
QER  
QDMA Event Register  
QEER  
QEECR  
QEESR  
QSER  
QSECR  
-
QDMA Event Enable Register  
QDMA Event Enable Clear Register  
QDMA Event Enable Set Register  
QDMA Secondary Event Register  
QDMA Secondary Event Clear Register  
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
57  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
Shadow Region 3 Channel Registers  
Event Register  
02A0 2600  
02A0 2604  
02A0 2608  
02A0 260C  
02A0 2610  
02A0 2614  
02A0 2618  
02A0 261C  
02A0 2620  
02A0 2624  
02A0 2628  
02A0 262C  
02A0 2630  
02A0 2634  
02A0 2638  
02A0 263C  
02A0 2640  
02A0 2644  
02A0 2648 - 02A0 264C  
02A0 2650  
02A0 2654  
02A0 2658  
02A0 265C  
02A0 2660  
02A0 2664  
02A0 2668  
02A0 266C  
02A0 2670  
02A0 2674  
02A0 2678  
02A0 267C  
02A0 2680  
02A0 2684  
02A0 2688  
02A0 268C  
02A0 2690  
02A0 2694  
02A0 2698 - 02A0 27FF  
ER  
ERH  
Event Register High  
ECR  
Event Clear Register  
ECRH  
ESR  
Event Clear Register High  
Event Set Register  
ESRH  
CER  
Event Set Register High  
Chained Event Register  
CERH  
EER  
Chained Event Register High  
Event Enable Register  
EERH  
EECR  
EECRH  
EESR  
EESRH  
SER  
Event Enable Register High  
Event Enable Clear Register  
Event Enable Clear Register High  
Event Enable Set Register  
Event Enable Set Register High  
Secondary Event Register  
Secondary Event Register High  
Secondary Event Clear Register  
Secondary Event Clear Register High  
Reserved  
SERH  
SECR  
SECRH  
-
IER  
Interrupt Enable Register  
Interrupt Enable Register High  
Interrupt Enable Clear Register  
Interrupt Enable Clear Register High  
Interrupt Enable Set Register  
Interrupt Enable Set Register High  
Interrupt Pending Register  
Interrupt Pending Register High  
Interrupt Clear Register  
IERH  
IECR  
IECRH  
IESR  
IESRH  
IPR  
IPRH  
ICR  
ICRH  
IEVAL  
-
Interrupt Clear Register High  
Interrupt Evaluate Register  
Reserved  
QER  
QDMA Event Register  
QEER  
QEECR  
QEESR  
QSER  
QSECR  
-
QDMA Event Enable Register  
QDMA Event Enable Clear Register  
QDMA Event Enable Set Register  
QDMA Secondary Event Register  
QDMA Secondary Event Clear Register  
Reserved  
58  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
Shadow Region 4 Channel Registers  
Event Register  
02A0 2800  
02A0 2804  
02A0 2808  
02A0 280C  
02A0 2810  
02A0 2814  
02A0 2818  
02A0 281C  
02A0 2820  
02A0 2824  
02A0 2828  
02A0 282C  
02A0 2830  
02A0 2834  
02A0 2838  
02A0 283C  
02A0 2840  
02A0 2844  
02A0 2848 - 02A0 284C  
02A0 2850  
02A0 2854  
02A0 2858  
02A0 285C  
02A0 2860  
02A0 2864  
02A0 2868  
02A0 286C  
02A0 2870  
02A0 2874  
02A0 2878  
02A0 287C  
02A0 2880  
02A0 2884  
02A0 2888  
02A0 288C  
02A0 2890  
02A0 2894  
02A0 2898 - 02A0 29FF  
ER  
ERH  
Event Register High  
ECR  
Event Clear Register  
ECRH  
ESR  
Event Clear Register High  
Event Set Register  
ESRH  
CER  
Event Set Register High  
Chained Event Register  
CERH  
EER  
Chained Event Register High  
Event Enable Register  
EERH  
EECR  
EECRH  
EESR  
EESRH  
SER  
Event Enable Register High  
Event Enable Clear Register  
Event Enable Clear Register High  
Event Enable Set Register  
Event Enable Set Register High  
Secondary Event Register  
Secondary Event Register High  
Secondary Event Clear Register  
Secondary Event Clear Register High  
Reserved  
SERH  
SECR  
SECRH  
-
IER  
Interrupt Enable Register  
Interrupt Enable Register High  
Interrupt Enable Clear Register  
Interrupt Enable Clear Register High  
Interrupt Enable Set Register  
Interrupt Enable Set Register High  
Interrupt Pending Register  
Interrupt Pending Register High  
Interrupt Clear Register  
IERH  
IECR  
IECRH  
IESR  
IESRH  
IPR  
IPRH  
ICR  
ICRH  
IEVAL  
-
Interrupt Clear Register High  
Interrupt Evaluate Register  
Reserved  
QER  
QDMA Event Register  
QEER  
QEECR  
QEESR  
QSER  
QSECR  
-
QDMA Event Enable Register  
QDMA Event Enable Clear Register  
QDMA Event Enable Set Register  
QDMA Secondary Event Register  
QDMA Secondary Event Clear Register  
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
59  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
Shadow Region 5 Channel Registers  
Event Register  
02A0 2A00  
02A0 2A04  
02A0 2A08  
02A0 2A0C  
02A0 2A10  
02A0 2A14  
02A0 2A18  
02A0 2A1C  
02A0 2A20  
02A0 2A24  
02A0 2A28  
02A0 2A2C  
02A0 2A30  
02A0 2A34  
02A0 2A38  
02A0 2A3C  
02A0 2A40  
02A0 2A44  
02A0 2A48 - 02A0 2A4C  
02A0 2A50  
02A0 2A54  
02A0 2A58  
02A0 2A5C  
02A0 2A60  
02A0 2A64  
02A0 2A68  
02A0 2A6C  
02A0 2A70  
02A0 2A74  
02A0 2A78  
02A0 2A7C  
02A0 2A80  
02A0 2A84  
02A0 2A88  
02A0 2A8C  
02A0 2A90  
02A0 2A94  
02A0 2A98 - 02A0 2BFF  
ER  
ERH  
Event Register High  
ECR  
Event Clear Register  
ECRH  
ESR  
Event Clear Register High  
Event Set Register  
ESRH  
CER  
Event Set Register High  
Chained Event Register  
CERH  
EER  
Chained Event Register High  
Event Enable Register  
EERH  
EECR  
EECRH  
EESR  
EESRH  
SER  
Event Enable Register High  
Event Enable Clear Register  
Event Enable Clear Register High  
Event Enable Set Register  
Event Enable Set Register High  
Secondary Event Register  
Secondary Event Register High  
Secondary Event Clear Register  
Secondary Event Clear Register High  
Reserved  
SERH  
SECR  
SECRH  
-
IER  
Interrupt Enable Register  
Interrupt Enable Register High  
Interrupt Enable Clear Register  
Interrupt Enable Clear Register High  
Interrupt Enable Set Register  
Interrupt Enable Set Register High  
Interrupt Pending Register  
Interrupt Pending Register High  
Interrupt Clear Register  
IERH  
IECR  
IECRH  
IESR  
IESRH  
IPR  
IPRH  
ICR  
ICRH  
IEVAL  
-
Interrupt Clear Register High  
Interrupt Evaluate Register  
Reserved  
QER  
QDMA Event Register  
QEER  
QEECR  
QEESR  
QSER  
QSECR  
-
QDMA Event Enable Register  
QDMA Event Enable Clear Register  
QDMA Event Enable Set Register  
QDMA Secondary Event Register  
QDMA Secondary Event Clear Register  
Reserved  
60  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
Shadow Region 6 Channel Registers  
Event Register  
02A0 2C00  
02A0 2C04  
02A0 2C08  
02A0 2C0C  
02A0 2C10  
02A0 2C14  
02A0 2C18  
02A0 2C1C  
02A0 2C20  
02A0 2C24  
02A0 2C28  
02A0 2C2C  
02A0 2C30  
02A0 2C34  
02A0 2C38  
02A0 2C3C  
02A0 2C40  
02A0 2C44  
02A0 2C48 - 02A0 2C4C  
02A0 2C50  
02A0 2C54  
02A0 2C58  
02A0 2C5C  
02A0 2C60  
02A0 2C64  
02A0 2C68  
02A0 2C6C  
02A0 2C70  
02A0 2C74  
02A0 2C78  
02A0 2C7C  
02A0 2C80  
02A0 2C84  
02A0 2C88  
02A0 2C8C  
02A0 2C90  
02A0 2C94  
02A0 2C98 - 02A0 2DFF  
ER  
ERH  
Event Register High  
ECR  
Event Clear Register  
ECRH  
ESR  
Event Clear Register High  
Event Set Register  
ESRH  
CER  
Event Set Register High  
Chained Event Register  
CERH  
EER  
Chained Event Register High  
Event Enable Register  
EERH  
EECR  
EECRH  
EESR  
EESRH  
SER  
Event Enable Register High  
Event Enable Clear Register  
Event Enable Clear Register High  
Event Enable Set Register  
Event Enable Set Register High  
Secondary Event Register  
Secondary Event Register High  
Secondary Event Clear Register  
Secondary Event Clear Register High  
Reserved  
SERH  
SECR  
SECRH  
-
IER  
Interrupt Enable Register  
Interrupt Enable Register High  
Interrupt Enable Clear Register  
Interrupt Enable Clear Register High  
Interrupt Enable Set Register  
Interrupt Enable Set Register High  
Interrupt Pending Register  
Interrupt Pending Register High  
Interrupt Clear Register  
IERH  
IECR  
IECRH  
IESR  
IESRH  
IPR  
IPRH  
ICR  
ICRH  
IEVAL  
-
Interrupt Clear Register High  
Interrupt Evaluate Register  
Reserved  
QER  
QDMA Event Register  
QEER  
QEECR  
QEESR  
QSER  
QSECR  
-
QDMA Event Enable Register  
QDMA Event Enable Clear Register  
QDMA Event Enable Set Register  
QDMA Secondary Event Register  
QDMA Secondary Event Clear Register  
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
61  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-8. EDMA3 Registers (continued)  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
Shadow Region 7 Channel Registers  
Event Register  
02A0 2E00  
02A0 2E04  
02A0 2E08  
02A0 2E0C  
02A0 2E10  
02A0 2E14  
02A0 2E18  
02A0 2E1C  
02A0 2E20  
02A0 2E24  
02A0 2E28  
02A0 2E2C  
02A0 2E30  
02A0 2E34  
02A0 2E38  
02A0 2E3C  
02A0 2E40  
02A0 2E44  
02A0 2E48 - 02A0 2E4C  
02A0 2E50  
02A0 2E54  
02A0 2E58  
02A0 2E5C  
02A0 2E60  
02A0 2E64  
02A0 2E68  
02A0 2E6C  
02A0 2E70  
02A0 2E74  
02A0 2E78  
02A0 2E7C  
02A0 2E80  
02A0 2E84  
02A0 2E88  
02A0 2E8C  
02A0 2E90  
02A0 2E94  
02A0 2E98 - 02A0 2FFF  
ER  
ERH  
Event Register High  
ECR  
Event Clear Register  
ECRH  
ESR  
Event Clear Register High  
Event Set Register  
ESRH  
CER  
Event Set Register High  
Chained Event Register  
CERH  
EER  
Chained Event Register High  
Event Enable Register  
EERH  
EECR  
EECRH  
EESR  
EESRH  
SER  
Event Enable Register High  
Event Enable Clear Register  
Event Enable Clear Register High  
Event Enable Set Register  
Event Enable Set Register High  
Secondary Event Register  
Secondary Event Register High  
Secondary Event Clear Register  
Secondary Event Clear Register High  
Reserved  
SERH  
SECR  
SECRH  
-
IER  
Interrupt Enable Register  
Interrupt Enable Register High  
Interrupt Enable Clear Register  
Interrupt Enable Clear Register High  
Interrupt Enable Set Register  
Interrupt Enable Set Register High  
Interrupt Pending Register  
Interrupt Pending Register High  
Interrupt Clear Register  
IERH  
IECR  
IECRH  
IESR  
IESRH  
IPR  
IPRH  
ICR  
ICRH  
IEVAL  
-
Interrupt Clear Register High  
Interrupt Evaluate Register  
Reserved  
QER  
QDMA Event Register  
QEER  
QEECR  
QEESR  
QSER  
QSECR  
-
QDMA Event Enable Register  
QDMA Event Enable Clear Register  
QDMA Event Enable Set Register  
QDMA Secondary Event Register  
QDMA Secondary Event Clear Register  
Reserved  
62  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-9. EDMA3 Parameter RAM  
HEX ADDRESS RANGE  
02A0 4000 - 02A0 401F  
02A0 4020 - 02A0 403F  
02A0 4040 - 02A0 405F  
02A0 4060 - 02A0 407F  
02A0 4080 - 02A0 409F  
02A0 40A0 - 02A0 40BF  
02A0 40C0 - 02A0 40DF  
02A0 40E0 - 02A0 40FF  
02A0 4100 - 02A0 411F  
02A0 4120 - 02A0 413F  
...  
ACRONYM  
REGISTER NAME  
Parameter Set 0  
Parameter Set 1  
Parameter Set 2  
Parameter Set 3  
Parameter Set 4  
Parameter Set 5  
Parameter Set 6  
Parameter Set 7  
Parameter Set 8  
Parameter Set 9  
...  
-
-
-
-
-
-
-
-
-
-
02A0 47E0 - 02A0 47FF  
02A0 4800 - 02A0 481F  
02A0 4820 - 02A0 483F  
...  
-
-
-
Parameter Set 63  
Parameter Set 64  
Parameter Set 65  
...  
02A0 5FC0 - 02A0 5FDF  
02A0 5FE0 - 02A0 5FFF  
-
-
Parameter Set 254  
Parameter Set 255  
Table 4-10. EDMA3 Transfer Controller 0 Registers  
HEX ADDRESS RANGE  
02A2 0000  
ACRONYM  
PID  
REGISTER NAME  
Peripheral Identification Register  
EDMA3TC Configuration Register  
Reserved  
02A2 0004  
TCCFG  
-
02A2 0008 - 02A2 00FC  
02A2 0100  
TCSTAT  
-
EDMA3TC Channel Status Register  
Reserved  
02A2 0104 - 02A2 011C  
02A2 0120  
ERRSTAT  
ERREN  
ERRCLR  
ERRDET  
ERRCMD  
-
Error Register  
02A2 0124  
Error Enable Register  
02A2 0128  
Error Clear Register  
02A2 012C  
Error Details Register  
02A2 0130  
Error Interrupt Command Register  
Reserved  
02A2 0134 - 02A2 013C  
02A2 0140  
RDRATE  
-
Read Rate Register  
02A2 0144 - 02A2 023C  
02A2 0240  
Reserved  
SAOPT  
SASRC  
SACNT  
SADST  
SABIDX  
SAMPPRXY  
SACNTRLD  
SASRCBREF  
SADSTBREF  
-
Source Active Options Register  
Source Active Source Address Register  
Source Active Count Register  
Source Active Destination Address Register  
Source Active Source B-Index Register  
Source Active Memory Protection Proxy Register  
Source Active Count Reload Register  
Source Active Source Address B-Reference Register  
02A2 0244  
02A2 0248  
02A2 024C  
02A2 0250  
02A2 0254  
02A2 0258  
02A2 025C  
02A2 0260  
Source Active Destination Address B-Reference Register  
Reserved  
02A2 0264 - 02A2 027C  
02A2 0280  
DFCNTRLD  
DFSRCBREF  
DFDSTBREF  
-
Destination FIFO Set Count Reload  
02A2 0284  
Destination FIFO Set Destination Address B Reference Register  
Destination FIFO Set Destination Address B Reference Register  
Reserved  
02A2 0288  
02A2 028C - 02A2 02FC  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
63  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-10. EDMA3 Transfer Controller 0 Registers (continued)  
HEX ADDRESS RANGE  
02A2 0300  
ACRONYM  
DFOPT0  
DFSRC0  
DFCNT0  
DFDST0  
DFBIDX0  
DFMPPRXY0  
-
REGISTER NAME  
Destination FIFO Options Register 0  
Destination FIFO Source Address Register 0  
Destination FIFO Count Register 0  
Destination FIFO Destination Address Register 0  
Destination FIFO BIDX Register 0  
Destination FIFO Memory Protection Proxy Register 0  
Reserved  
02A2 0304  
02A2 0308  
02A2 030C  
02A2 0310  
02A2 0314  
02A2 0318 - 02A2 033C  
02A2 0340  
DFOPT1  
DFSRC1  
DFCNT1  
DFDST1  
DFBIDX1  
DFMPPRXY1  
-
Destination FIFO Options Register 1  
Destination FIFO Source Address Register 1  
Destination FIFO Count Register 1  
Destination FIFO Destination Address Register 1  
Destination FIFO BIDX Register 1  
Destination FIFO Memory Protection Proxy Register 1  
Reserved  
02A2 0344  
02A2 0348  
02A2 034C  
02A2 0350  
02A2 0354  
02A2 0358 - 02A2 037C  
02A2 0380  
DFOPT2  
DFSRC2  
DFCNT2  
DFDST2  
DFBIDX2  
DFMPPRXY2  
-
Destination FIFO Options Register 2  
Destination FIFO Source Address Register 2  
Destination FIFO Count Register 2  
Destination FIFO Destination Address Register 2  
Destination FIFO BIDX Register 2  
Destination FIFO Memory Protection Proxy Register 2  
Reserved  
02A2 0384  
02A2 0388  
02A2 038C  
02A2 0390  
02A2 0394  
02A2 0398 - 02A2 03BC  
02A2 03C0  
DFOPT3  
DFSRC3  
DFCNT3  
DFDST3  
DFBIDX3  
DFMPPRXY3  
-
Destination FIFO Options Register 3  
Destination FIFO Source Address Register 3  
Destination FIFO Count Register 3  
Destination FIFO Destination Address Register 3  
Destination FIFO BIDX Register 3  
Destination FIFO Memory Protection Proxy Register 3  
Reserved  
02A2 03C4  
02A2 03C8  
02A2 03CC  
02A2 03D0  
02A2 03D4  
02A2 03D8 - 02A2 7FFC  
Table 4-11. EDMA3 Transfer Controller 1 Registers  
HEX ADDRESS RANGE  
02A2 8000  
ACRONYM  
PID  
REGISTER NAME  
Peripheral Identification Register  
EDMA3TC Configuration Register  
Reserved  
02A2 8004  
TCCFG  
-
02A2 8008 - 02A2 80FC  
02A2 8100  
TCSTAT  
-
EDMA3TC Channel Status Register  
Reserved  
02A2 8104 - 02A2 811C  
02A2 8120  
ERRSTAT  
ERREN  
ERRCLR  
ERRDET  
ERRCMD  
-
Error Register  
02A2 8124  
Error Enable Register  
Error Clear Register  
02A2 8128  
02A2 812C  
Error Details Register  
Error Interrupt Command Register  
Reserved  
02A2 8130  
02A2 8134 - 02A2 813C  
02A2 8140  
RDRATE  
-
Read Rate Register  
02A2 8144 - 02A2 823C  
02A2 8240  
Reserved  
SAOPT  
SASRC  
SACNT  
Source Active Options Register  
Source Active Source Address Register  
Source Active Count Register  
02A2 8244  
02A2 8248  
64  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-11. EDMA3 Transfer Controller 1 Registers (continued)  
HEX ADDRESS RANGE  
02A2 824C  
ACRONYM  
SADST  
REGISTER NAME  
Source Active Destination Address Register  
Source Active Source B-Index Register  
Source Active Memory Protection Proxy Register  
Source Active Count Reload Register  
Source Active Source Address B-Reference Register  
02A2 8250  
SABIDX  
SAMPPRXY  
SACNTRLD  
SASRCBREF  
SADSTBREF  
-
02A2 8254  
02A2 8258  
02A2 825C  
02A2 8260  
Source Active Destination Address B-Reference Register  
Reserved  
02A2 8264 - 02A2 827C  
02A2 8280  
DFCNTRLD  
DFSRCBREF  
DFDSTBREF  
-
Destination FIFO Set Count Reload  
Destination FIFO Set Destination Address B Reference Register  
Destination FIFO Set Destination Address B Reference Register  
Reserved  
02A2 8284  
02A2 8288  
02A2 828C - 02A2 82FC  
02A2 8300  
DFOPT0  
DFSRC0  
DFCNT0  
DFDST0  
DFBIDX0  
DFM PPRXY0  
-
Destination FIFO Options Register 0  
Destination FIFO Source Address Register 0  
Destination FIFO Count Register 0  
Destination FIFO Destination Address Register 0  
Destination FIFO BIDX Register 0  
02A2 8304  
02A2 8308  
02A2 830C  
02A2 8310  
02A2 8314  
Destination FIFO Memory Protection Proxy Register 0  
Reserved  
02A2 8318 - 02A2 833C  
02A2 8340  
DFOPT1  
DFSRC1  
DFCNT1  
DFDST1  
DFBIDX1  
DFMPPRXY1  
-
Destination FIFO Options Register 1  
Destination FIFO Source Address Register 1  
Destination FIFO Count Register 1  
Destination FIFO Destination Address Register 1  
Destination FIFO BIDX Register 1  
02A2 8344  
02A2 8348  
02A2 834C  
02A2 8350  
02A2 8354  
Destination FIFO Memory Protection Proxy Register 1  
Reserved  
02A2 8358 - 02A2 837C  
02A2 8380  
DFOPT2  
DFSRC2  
DFCNT2  
DFDST2  
DFBIDX2  
DFMPPRXY2  
-
Destination FIFO Options Register 2  
Destination FIFO Source Address Register 2  
Destination FIFO Count Register 2  
Destination FIFO Destination Address Register 2  
Destination FIFO BIDX Register 2  
02A2 8384  
02A2 8388  
02A2 838C  
02A2 8390  
02A2 8394  
Destination FIFO Memory Protection Proxy Register 2  
Reserved  
02A2 8398 - 02A2 83BC  
02A2 83C0  
DFOPT3  
DFSRC3  
DFCNT3  
DFDST3  
DFBIDX3  
DFMPPRXY3  
-
Destination FIFO Options Register 3  
Destination FIFO Source Address Register 3  
Destination FIFO Count Register 3  
Destination FIFO Destination Address Register 3  
Destination FIFO BIDX Register 3  
02A2 83C4  
02A2 83C8  
02A2 83CC  
02A2 83D0  
02A2 83D4  
Destination FIFO Memory Protection Proxy Register 3  
Reserved  
02A2 83D8 - 02A2 FFFC  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
65  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-12. EDMA3 Transfer Controller 2 Registers  
HEX ADDRESS RANGE  
02A3 0000  
ACRONYM  
PID  
REGISTER NAME  
Peripheral Identification Register  
EDMA3TC Configuration Register  
Reserved  
02A3 0004  
TCCFG  
-
02A3 0008 - 02A3 00FC  
02A3 0100  
TCSTAT  
-
EDMA3TC Channel Status Register  
Reserved  
02A3 0104 - 02A3 011C  
02A3 0120  
ERRSTAT  
ERREN  
ERRCLR  
ERRDET  
ERRCMD  
-
Error Register  
02A3 0124  
Error Enable Register  
02A3 0128  
Error Clear Register  
02A3 012C  
Error Details Register  
02A3 0130  
Error Interrupt Command Register  
Reserved  
02A3 0134 - 02A3 013C  
02A3 0140  
RDRATE  
-
Read Rate Register  
02A3 0144 - 02A3 023C  
02A3 0240  
Reserved  
SAOPT  
SASRC  
SACNT  
SADST  
Source Active Options Register  
Source Active Source Address Register  
Source Active Count Register  
02A3 0244  
02A3 0248  
02A3 024C  
Source Active Destination Address Register  
Source Active Source B-Index Register  
Source Active Memory Protection Proxy Register  
Source Active Count Reload Register  
Source Active Source Address B-Reference Register  
Source Active Destination Address B-Reference Register  
Reserved  
02A3 0250  
SABIDX  
SAMPPRXY  
SACNTRLD  
SASRCBREF  
SADSTBREF  
-
02A3 0254  
02A3 0258  
02A3 025C  
02A3 0260  
02A3 0264 - 02A3 027C  
02A3 0280  
DFCNTRLD  
DFSRCBREF  
DFDSTBREF  
-
Destination FIFO Set Count Reload  
Destination FIFO Set Destination Address B Reference Register  
Destination FIFO Set Destination Address B Reference Register  
Reserved  
02A3 0284  
02A3 0288  
02A3 028C - 02A3 02FC  
02A3 0300  
DFOPT0  
DFSRC0  
DFCNT0  
DFDST0  
DFBIDX0  
DFMPPRXY0  
-
Destination FIFO Options Register 0  
Destination FIFO Source Address Register 0  
Destination FIFO Count Register 0  
Destination FIFO Destination Address Register 0  
Destination FIFO BIDX Register 0  
Destination FIFO Memory Protection Proxy Register 0  
Reserved  
02A3 0304  
02A3 0308  
02A3 030C  
02A3 0310  
02A3 0314  
02A3 0318 - 02A3 033C  
02A3 0340  
DFOPT1  
DFSRC1  
DFCNT1  
DFDST1  
DFBIDX1  
DFMPPRXY1  
-
Destination FIFO Options Register 1  
Destination FIFO Source Address Register 1  
Destination FIFO Count Register 1  
Destination FIFO Destination Address Register 1  
Destination FIFO BIDX Register 1  
Destination FIFO Memory Protection Proxy Register 1  
Reserved  
02A3 0344  
02A3 0348  
02A3 034C  
02A3 0350  
02A3 0354  
02A3 0358 - 02A3 037C  
02A3 0380  
DFOPT2  
DFSRC2  
DFCNT2  
DFDST2  
DFBIDX2  
DFMPPRXY2  
Destination FIFO Options Register 2  
Destination FIFO Source Address Register 2  
Destination FIFO Count Register 2  
Destination FIFO Destination Address Register 2  
Destination FIFO BIDX Register 2  
Destination FIFO Memory Protection Proxy Register 2  
02A3 0384  
02A3 0388  
02A3 038C  
02A3 0390  
02A3 0394  
66  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-12. EDMA3 Transfer Controller 2 Registers (continued)  
HEX ADDRESS RANGE  
02A3 0398 - 02A3 03BC  
02A3 03C0  
ACRONYM  
-
REGISTER NAME  
Reserved  
DFOPT3  
DFSRC3  
DFCNT3  
DFDST3  
DFBIDX3  
DFMPPRXY3  
-
Destination FIFO Options Register 3  
Destination FIFO Source Address Register 3  
Destination FIFO Count Register 3  
Destination FIFO Destination Address Register 3  
Destination FIFO BIDX Register 3  
Destination FIFO Memory Protection Proxy Register 3  
Reserved  
02A3 03C4  
02A3 03C8  
02A3 03CC  
02A3 03D0  
02A3 03D4  
02A3 03D8 - 02A3 7FFC  
Table 4-13. EDMA3 Transfer Controller 3 Registers  
HEX ADDRESS RANGE  
02A3 8000  
ACRONYM  
PID  
REGISTER NAME  
Peripheral Identification Register  
EDMA3TC Configuration Register  
Reserved  
02A3 8004  
TCCFG  
-
02A3 8008 - 02A3 80FC  
02A3 8100  
TCSTAT  
-
EDMA3TC Channel Status Register  
Reserved  
02A3 8104 - 02A3 811C  
02A3 8120  
ERRSTAT  
ERREN  
ERRCLR  
ERRDET  
ERRCMD  
-
Error Register  
02A3 8124  
Error Enable Register  
02A3 8128  
Error Clear Register  
02A3 812C  
Error Details Register  
02A3 8130  
Error Interrupt Command Register  
Reserved  
02A3 8134 - 02A3 813C  
02A3 8140  
RDRATE  
-
Read Rate Register  
02A3 8144 - 02A3 823C  
02A3 8240  
Reserved  
SAOPT  
SASRC  
SACNT  
SADST  
SABIDX  
SAMPPRXY  
SACNTRLD  
SASRCBREF  
SADSTBREF  
-
Source Active Options Register  
Source Active Source Address Register  
Source Active Count Register  
Source Active Destination Address Register  
Source Active Source B-Index Register  
Source Active Memory Protection Proxy Register  
Source Active Count Reload Register  
Source Active Source Address B-Reference Register  
02A3 8244  
02A3 8248  
02A3 824C  
02A3 8250  
02A3 8254  
02A3 8258  
02A3 825C  
02A3 8260  
Source Active Destination Address B-Reference Register  
Reserved  
02A3 8264 - 02A3 827C  
02A3 8280  
DFCNTRLD  
DFSRCBREF  
DFDSTBREF  
-
Destination FIFO Set Count Reload  
Destination FIFO Set Destination Address B Reference Register  
Destination FIFO Set Destination Address B Reference Register  
Reserved  
02A3 8284  
02A3 8288  
02A3 828C - 02A3 82FC  
02A3 8300  
DFOPT0  
DFSRC0  
DFCNT0  
DFDST0  
DFBIDX0  
DFMPPRXY0  
-
Destination FIFO Options Register 0  
Destination FIFO Source Address Register 0  
Destination FIFO Count Register 0  
02A3 8304  
02A3 8308  
02A3 830C  
Destination FIFO Destination Address Register 0  
Destination FIFO BIDX Register 0  
02A3 8310  
02A3 8314  
Destination FIFO Memory Protection Proxy Register 0  
Reserved  
02A3 8318 - 02A3 833C  
02A3 8340  
DFOPT1  
DFSRC1  
Destination FIFO Options Register 1  
Destination FIFO Source Address Register 1  
02A3 8344  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
67  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-13. EDMA3 Transfer Controller 3 Registers (continued)  
HEX ADDRESS RANGE  
02A3 8348  
ACRONYM  
DFCNT1  
DFDST1  
DFBIDX1  
DFMPPRXY1  
-
REGISTER NAME  
Destination FIFO Count Register 1  
Destination FIFO Destination Address Register 1  
Destination FIFO BIDX Register 1  
Destination FIFO Memory Protection Proxy Register 1  
Reserved  
02A3 834C  
02A3 8350  
02A3 8354  
02A3 8358 - 02A3 837C  
02A3 8380  
DFOPT2  
DFSRC2  
DFCNT2  
DFDST2  
DFBIDX2  
DFMPPRXY2  
-
Destination FIFO Options Register 2  
Destination FIFO Source Address Register 2  
Destination FIFO Count Register 2  
Destination FIFO Destination Address Register 2  
Destination FIFO BIDX Register 2  
Destination FIFO Memory Protection Proxy Register 2  
Reserved  
02A3 8384  
02A3 8388  
02A3 838C  
02A3 8390  
02A3 8394  
02A3 8398 - 02A3 83BC  
02A3 83C0  
DFOPT3  
DFSRC3  
DFCNT3  
DFDST3  
DFBIDX3  
DFMPPRXY3  
-
Destination FIFO Options Register 3  
Destination FIFO Source Address Register 3  
Destination FIFO Count Register 3  
Destination FIFO Destination Address Register 3  
Destination FIFO BIDX Register 3  
Destination FIFO Memory Protection Proxy Register 3  
Reserved  
02A3 83C4  
02A3 83C8  
02A3 83CC  
02A3 83D0  
02A3 83D4  
02A3 83D8 - 02A3 FFFC  
Table 4-14. EDMA3 Transfer Controller 4 Registers  
HEX ADDRESS RANGE  
02A4 0000  
ACRONYM  
PID  
REGISTER NAME  
Peripheral Identification Register  
EDMA3TC Configuration Register  
Reserved  
02A4 0004  
TCCFG  
-
02A4 0008 - 02A4 00FC  
02A4 0100  
TCSTAT  
-
EDMA3TC Channel Status Register  
Reserved  
02A4 0104 - 02A4 011C  
02A4 0120  
ERRSTAT  
ERREN  
ERRCLR  
ERRDET  
ERRCMD  
-
Error Register  
02A4 0124  
Error Enable Register  
02A4 0128  
Error Clear Register  
02A4 012C  
Error Details Register  
02A4 0130  
Error Interrupt Command Register  
Reserved  
02A4 0134 - 02A4 013C  
02A4 0140  
RDRATE  
-
Read Rate Register  
02A4 0144 - 02A4 023C  
02A4 0240  
Reserved  
SAOPT  
SASRC  
SACNT  
SADST  
SABIDX  
SAMPPRXY  
SACNTRLD  
SASRCBREF  
SADSTBREF  
-
Source Active Options Register  
Source Active Source Address Register  
Source Active Count Register  
Source Active Destination Address Register  
Source Active Source B-Index Register  
Source Active Memory Protection Proxy Register  
Source Active Count Reload Register  
Source Active Source Address B-Reference Register  
Source Active Destination Address B-Reference Register  
Reserved  
02A4 0244  
02A4 0248  
02A4 024C  
02A4 0250  
02A4 0254  
02A4 0258  
02A4 025C  
02A4 0260  
02A4 0264 - 02A4 027C  
02A4 0280  
DFCNTRLD  
DFSRCBREF  
Destination FIFO Set Count Reload  
Destination FIFO Set Destination Address B Reference Register  
02A4 0284  
68  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-14. EDMA3 Transfer Controller 4 Registers (continued)  
HEX ADDRESS RANGE  
02A4 0288  
ACRONYM  
DFDSTBREF  
-
REGISTER NAME  
Destination FIFO Set Destination Address B Reference Register  
Reserved  
02A4 028C - 02A4 02FC  
02A4 0300  
DFOPT0  
DFSRC0  
DFCNT0  
DFDST0  
DFBIDX0  
DFMPPRXY0  
-
Destination FIFO Options Register 0  
Destination FIFO Source Address Register 0  
Destination FIFO Count Register 0  
Destination FIFO Destination Address Register 0  
Destination FIFO BIDX Register 0  
02A4 0304  
02A4 0308  
02A4 030C  
02A4 0310  
02A4 0314  
Destination FIFO Memory Protection Proxy Register 0  
Reserved  
02A4 0318 - 02A4 033C  
02A4 0340  
DFOPT1  
DFSRC1  
DFCNT1  
DFDST1  
DFBIDX1  
DFMPPRXY1  
-
Destination FIFO Options Register 1  
Destination FIFO Source Address Register 1  
Destination FIFO Count Register 1  
Destination FIFO Destination Address Register 1  
Destination FIFO BIDX Register 1  
02A4 0344  
02A4 0348  
02A4 034C  
02A4 0350  
02A4 0354  
Destination FIFO Memory Protection Proxy Register 1  
Reserved  
02A4 0358 - 02A4 037C  
02A4 0380  
DFOPT2  
DFSRC2  
DFCNT2  
DFDST2  
DFBIDX2  
DFMPPRXY2  
-
Destination FIFO Options Register 2  
Destination FIFO Source Address Register 2  
Destination FIFO Count Register 2  
Destination FIFO Destination Address Register 2  
Destination FIFO BIDX Register 2  
02A4 0384  
02A4 0388  
02A4 038C  
02A4 0390  
02A4 0394  
Destination FIFO Memory Protection Proxy Register 2  
Reserved  
02A4 0398 - 02A4 03BC  
02A4 03C0  
DFOPT3  
DFSRC3  
DFCNT3  
DFDST3  
DFBIDX3  
DFMPPRXY3  
-
Destination FIFO Options Register 3  
Destination FIFO Source Address Register 3  
Destination FIFO Count Register 3  
Destination FIFO Destination Address Register 3  
Destination FIFO BIDX Register 3  
02A4 03C4  
02A4 03C8  
02A4 03CC  
02A4 03D0  
02A4 03D4  
Destination FIFO Memory Protection Proxy Register 3  
Reserved  
02A4 03D8 - 02A4 7FFC  
Table 4-15. EDMA3 Transfer Controller 5 Registers  
HEX ADDRESS RANGE  
02A4 8000  
ACRONYM  
PID  
REGISTER NAME  
Peripheral Identification Register  
EDMA3TC Configuration Register  
Reserved  
02A4 8004  
TCCFG  
-
02A4 8008 - 02A4 80FC  
02A4 8100  
TCSTAT  
-
EDMA3TC Channel Status Register  
Reserved  
02A4 8104 - 02A4 811C  
02A4 8120  
ERRSTAT  
ERREN  
ERRCLR  
ERRDET  
ERRCMD  
-
Error Register  
02A4 8124  
Error Enable Register  
Error Clear Register  
Error Details Register  
Error Interrupt Command Register  
Reserved  
02A4 8128  
02A4 812C  
02A4 8130  
02A4 8134 - 02A4 813C  
02A4 8140  
RDRATE  
-
Read Rate Register  
Reserved  
02A4 8144 - 02A4 823C  
02A4 8240  
SAOPT  
Source Active Options Register  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
69  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-15. EDMA3 Transfer Controller 5 Registers (continued)  
HEX ADDRESS RANGE  
02A4 8244  
ACRONYM  
SASRC  
REGISTER NAME  
Source Active Source Address Register  
Source Active Count Register  
02A4 8248  
SACNT  
02A4 824C  
SADST  
Source Active Destination Address Register  
Source Active Source B-Index Register  
Source Active Memory Protection Proxy Register  
Source Active Count Reload Register  
Source Active Source Address B-Reference Register  
Source Active Destination Address B-Reference Register  
Reserved  
02A4 8250  
SABIDX  
SAMPPRXY  
SACNTRLD  
SASRCBREF  
SADSTBREF  
-
02A4 8254  
02A4 8258  
02A4 825C  
02A4 8260  
02A4 8264 - 02A4 827C  
02A4 8280  
DFCNTRLD  
DFSRCBREF  
DFDSTBREF  
-
Destination FIFO Set Count Reload  
Destination FIFO Set Destination Address B Reference Register  
Destination FIFO Set Destination Address B Reference Register  
Reserved  
02A4 8284  
02A4 8288  
02A4 828C - 02A4 82FC  
02A4 8300  
DFOPT0  
DFSRC0  
DFCNT0  
DFDST0  
DFBIDX0  
DFMPPRXY0  
-
Destination FIFO Options Register 0  
Destination FIFO Source Address Register 0  
Destination FIFO Count Register 0  
Destination FIFO Destination Address Register 0  
Destination FIFO BIDX Register 0  
02A4 8304  
02A4 8308  
02A4 830C  
02A4 8310  
02A4 8314  
Destination FIFO Memory Protection Proxy Register 0  
Reserved  
02A4 8318 - 02A4 833C  
02A4 8340  
DFOPT1  
DFSRC1  
DFCNT1  
DFDST1  
DFBIDX1  
DFMPPRXY1  
-
Destination FIFO Options Register 1  
Destination FIFO Source Address Register 1  
Destination FIFO Count Register 1  
Destination FIFO Destination Address Register 1  
Destination FIFO BIDX Register 1  
02A4 8344  
02A4 8348  
02A4 834C  
02A4 8350  
02A4 8354  
Destination FIFO Memory Protection Proxy Register 1  
Reserved  
02A4 8358 - 02A4 837C  
02A4 8380  
DFOPT2  
DFSRC2  
DFCNT2  
DFDST2  
DFBIDX2  
DFMPPRXY2  
-
Destination FIFO Options Register 2  
Destination FIFO Source Address Register 2  
Destination FIFO Count Register 2  
Destination FIFO Destination Address Register 2  
Destination FIFO BIDX Register 2  
02A4 8384  
02A4 8388  
02A4 838C  
02A4 8390  
02A4 8394  
Destination FIFO Memory Protection Proxy Register 2  
Reserved  
02A4 8398 - 02A4 83BC  
02A4 83C0  
DFOPT3  
DFSRC3  
DFCNT3  
DFDST3  
DFBIDX3  
DFMPPRXY3  
-
Destination FIFO Options Register 3  
Destination FIFO Source Address Register 3  
Destination FIFO Count Register 3  
Destination FIFO Destination Address Register 3  
Destination FIFO BIDX Register 3  
02A4 83C4  
02A4 83C8  
02A4 83CC  
02A4 83D0  
02A4 83D4  
Destination FIFO Memory Protection Proxy Register 3  
Reserved  
02A4 83D8 - 02A4 FFFC  
70  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.2 Interrupts  
4.8.2.1 Interrupt Sources and Interrupt Controller  
The CPU interrupts on the C6457 device are configured through the C64x+ Megamodule Interrupt  
Controller. The interrupt controller allows for up to 128 system events to be programmed to any of the  
twelve CPU interrupt inputs (CPUINT4 - CPUINT15), the CPU exception input (EXCEP), or the advanced  
emulation logic. The 128 system events consist of both internally-generated events (within the  
megamodule) and chip-level events. Table 4-16 shows the mapping of system events. For more  
information on the Interrupt Controller, see the TMS320C64x+ Megamodule Reference Guide (SPRU871).  
Table 4-16. C6457 System Event Mapping  
EVENT NUMBER  
INTERRUPT EVENT  
EVT0  
DESCRIPTION  
0(1)  
1(1)  
2(1)  
3(1)  
4 - 8  
9(1)  
Output of event combiner 0 in interrupt controller, for events 1 - 31.  
Output of event combiner 1 in interrupt controller, for events 32 - 63.  
Output of event combiner 2 in interrupt controller, for events 64 - 95.  
Output of event combiner 3 in interrupt controller, for events 96 - 127.  
Reserved. These system events are not connected and, therefore, not used.  
EMU interrupt for:  
EVT1  
EVT2  
EVT3  
Reserved  
EMU_DTDMA  
Host scan access  
DTDMA transfer complete  
AET interrupt  
10  
11(1)  
12(1)  
13(1)  
14(1)  
15  
None  
EMU_RTDXRX  
EMU_RTDXTX  
IDMA0  
This system event is not connected and, therefore, not used.  
EMU real-time data exchange (RTDX) receive complete  
EMU RTDX transmit complete  
IDMA channel 0 interrupt  
IDMA1  
IDMA channel 1 interrupt  
DSPINT  
HPI-to-DSP interrupt  
16  
I2CINT  
I2C interrupt  
17  
MACINT  
Ethernet MAC interrupt  
18  
AEASYNCERR  
Reserved  
INTDST0  
EMIFA error interrupt  
19  
Reserved. This system event is not connected and, therefore, not used.  
RapidIO interrupt 0  
20  
21  
INTDST1  
RapidIO interrupt 1  
22  
INTDST2  
RapidIO interrupt 2  
23  
INTDST3  
RapidIO interrupt 3  
24  
EDMA3CC_GINT  
MACRXINT  
MACTXINT  
MACTHRESH  
INTDST4  
EDMA3 channel global completion interrupt  
Ethernet MAC receive interrupt  
Ethernet MAC transmit interrupt  
Ethernet MAC receive threshold interrupt  
RapidIO interrupt 4  
25  
26  
27  
28  
29  
INTDST5  
RapidIO interrupt 5  
30  
INTDST6  
RapidIO interrupt 6  
31  
Reserved  
VCP2_INT  
TCP2A_INT  
TCP2B_INT  
Reserved  
UINT  
Reserved. These system events are not connected and, therefore, not used.  
VCP2 error interrupt  
32  
33  
TCP2_A error interrupt  
34  
TCP2_B error interrupt  
35  
Reserved. These system events are not connected and, therefore, not used.  
UTOPIA interrupt  
36  
37 - 39  
Reserved  
Reserved. These system events are not connected and, therefore, not used.  
(1) This system event is generated from within the C64x+ megamodule.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
71  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-16. C6457 System Event Mapping (continued)  
EVENT NUMBER  
INTERRUPT EVENT  
RINT0  
DESCRIPTION  
40  
41  
McBSP0 receive interrupt  
McBSP0 transmit interrupt  
McBSP1 receive interrupt  
McBSP1 transmit interrupt  
Reserved. Do not use.  
GPIO interrupt  
XINT0  
42  
RINT1  
43  
XINT1  
44 - 50  
51  
Reserved  
GPINT0  
52  
GPINT1  
GPIO interrupt  
53  
GPINT2  
GPIO interrupt  
54  
GPINT3  
GPIO interrupt  
55  
GPINT4  
GPIO interrupt  
56  
GPINT5  
GPIO interrupt  
57  
GPINT6  
GPIO interrupt  
58  
GPINT7  
GPIO interrupt  
59  
GPINT8  
GPIO interrupt  
60  
GPINT9  
GPIO interrupt  
61  
GPINT10  
GPIO interrupt  
62  
GPINT11  
GPIO interrupt  
63  
GPINT12  
GPIO interrupt  
64  
GPINT13  
GPIO interrupt  
65  
GPINT14  
GPIO interrupt  
66  
GPINT15  
GPIO interrupt  
67  
TINTLO0  
Timer 0 lower counter interrupt  
Timer 0 higher counter interrupt  
Timer 1 lower counter interrupt  
Timer 1 higher counter interrupt  
EDMA3CC completion interrupt - Mask0  
EDMA3CC completion interrupt - Mask1  
EDMA3CC completion interrupt - Mask2  
EDMA3CC completion interrupt - Mask3  
EDMA3CC completion interrupt - Mask4  
EDMA3CC completion interrupt - Mask5  
EDMA3CC completion interrupt - Mask6  
EDMA3CC completion interrupt - Mask7  
EDMA3CC error interrupt  
68  
TINTHI0  
69  
TINTLO1  
70  
TINTHI1  
71  
EDMA3CC_INT0  
EDMA3CC_INT1  
EDMA3CC_INT2  
EDMA3CC_INT3  
EDMA3CC_INT4  
EDMA3CC_INT5  
EDMA3CC_INT6  
EDMA3CC_INT7  
EDMA3CC_ERRINT  
Reserved  
72  
73  
74  
75  
76  
77  
78  
79  
80  
Reserved. This system event is not connected and, therefore, not used.  
EDMA3TC0 error interrupt  
81  
EDMA3TC0_ERRINT  
EDMA3TC1_ERRINT  
EDMA3TC2_ERRINT  
EDMA3TC3_ERRINT  
EDMA3CC_AET  
EDMA3TC4_ERRINT  
EDMA3TC5_ERRINT  
Reserved  
82  
EDMA3TC1 error interrupt  
83  
EDMA3TC2 error interrupt  
84  
EDMA3TC3 error interrupt  
85  
EDMA3CC AET Event  
86  
EDMA3TC4 error interrupt  
87  
EDMA3TC5 error interrupt  
88 - 93  
94  
Reserved. These system events are not connected and, therefore, not used.  
Overflow condition occurred in ETB  
Underflow condition occurred in ETB  
Interrupt Controller dropped CPU interrupt event  
EMC invalid IDMA parameters  
ETBOVFLINT  
ETBUNFLINT  
INTERR  
95  
96(1)  
97(1)  
EMC_IDMAERR  
72  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-16. C6457 System Event Mapping (continued)  
EVENT NUMBER  
INTERRUPT EVENT  
Reserved  
DESCRIPTION  
98 - 99  
100(1)  
101(1)  
102 - 112  
113(1)  
114 - 115  
116(1)  
117(1)  
118(1)  
119(1)  
120(1)  
121(1)  
122(1)  
123(1)  
124(1)  
125(1)  
126(1)  
127(1)  
Reserved. These system events are not connected and, therefore, not used.  
EFI interrupt from side A  
EFIINTA  
EFIINTB  
EFI interrupt from side B  
Reserved  
Reserved. These system events are not connected and, therefore, not used.  
L1P single bit error detected during DMA read  
Reserved. These system events are not connected and, therefore, not used.  
L2 single bit error detected  
L1P_ED1  
Reserved  
L2_ED1  
L2_ED2  
L2 two bit error detected  
PDC_INT  
Powerdown sleep interrupt  
SYS_CMPA  
L1P_CMPA  
L1P_DMPA  
L1D_CMPA  
L1D_DMPA  
L2_CMPA  
L2_DMPA  
IDMA_CMPA  
IDMA_BUSERR  
CPU memory protection fault  
L1P CPU memory protection fault  
L1P DMA memory protection fault  
L1D CPU memory protection fault  
L1D DMA memory protection fault  
L2 CPU memory protection fault  
L2 DMA memory protection fault  
IDMA CPU memory protection fault  
IDMA bus error interrupt  
4.8.2.2 External Interrupts Electrical Data/Timing  
Table 4-17. Timing Requirements for External Interrupts(1)  
(see Figure 4-11)  
NO.  
MIN  
6P  
MAX UNIT  
1
2
tw(NMIL)  
tw(NMIH)  
Width of the NMI interrupt pulse low  
Width of the NMI interrupt pulse high  
ns  
ns  
6P  
(1) P = 1/CPU clock frequency in ns. For example, when running parts at 1000 MHz, use P = 1 ns.  
2
1
NMI  
Figure 4-11. NMI Interrupt Timing  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
73  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.3 Reset Controller  
The reset controller detects the different type of resets supported on the C6457 device and manages the  
distribution of those resets throughout the device.  
The C6457 device has several types of resets:  
Power-on reset  
Warm reset  
System reset  
CPU reset  
Table 4-18 explains further the types of reset, the reset initiator, and the effects of each reset on the  
device. For more information on the effects of each reset on the PLL controllers and their clocks, see  
Section 4.7.1.  
Table 4-18. Reset Types  
TYPE  
INITIATOR  
POR pin  
EFFECT(S)  
Resets the entire chip including the test and emulation logic. The device configuration pins are  
latched only during POR.  
Power-on Reset  
Resets everything except for the test and emulation logic and PLL2. The emulator stays alive  
during warm reset. The device configuration pins are not re-latched. DDR2 memory contents  
will be preserved if the user places the DDR2 SDRAM in “Self-Refresh” mode before starting a  
Warm Reset sequence.  
Warm Reset  
RESET pin  
Emulator  
System reset, by default, behaves as hard reset, but can be configured as soft reset if initiated  
by Serial RapidIO or PLLCTL. Emulator-initiated reset is always a hard reset.  
Serial RapidIO  
PLLCTL(1)  
Hard reset effects are the same as those of a warm reset.  
Soft reset means external memory contents can be maintained, it does not affect the clock  
logic, or the power control logic of the peripherals. See Section 4.8.3.3 for more details.  
System Reset  
A system reset does not reset the test and emulation circuitry. The device configuration pins are  
also not re-latched.  
CPU Local Reset  
Watchdog Timer  
CPU local reset.  
(1) All masters in the device have access to the PLLCTL registers.  
74  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.3.1 Power-on Reset (POR Pin)  
Power-on reset is initiated by the POR pin and is used to reset the entire device, including the test and  
emulation logic. Power-on reset is also referred to as a cold reset because the device usually goes  
through a power-up cycle. During power-up, the POR pin must be asserted (driven low) until the power  
supplies have reached their normal operating conditions. Note that a device power-up cycle is not required  
to initiate a power-on reset. For power-on reset, the main PLL controller comes up in bypass mode and  
the PLL is not enabled. Other resets do not affect the state of the PLL or the dividers in the PLL controller.  
For the secondary PLL, the PLL is enabled and always clocking when POR is not asserted.  
The following sequence must be followed during a power-on reset:  
1. Wait for all power supplies to reach normal operating conditions while keeping the POR pin asserted  
(driven low). While POR is asserted, all pins except RESETSTAT will be set to high-impedance. After  
the POR pin is de-asserted (driven high), all Z group pins, low group pins, and high group pins are set  
to their reset state and will remain at their reset state until otherwise configured by their respective  
peripheral. All peripherals that are power managed, are disabled after a Power-on Reset and must be  
enabled through the Device State Control registers (for more details, see Section 5.5.2).  
2. Clocks are reset, and they are propagated throughout the chip to reset any logic that was using reset  
synchronously. All logic is now reset and RESETSTAT will be driven low indicating that the device is in  
reset.  
3. POR must be held active until all supplies on the board are stable then for at least an additional 100 µs  
+ 2000 CLKIN2 cycles.  
4. The POR pin can now be de-asserted. Reset sampled pin values are latched at this point. PLL2 is  
taken out of reset and begins its locking sequence, and all power-on device initialization also begins.  
5. After device initialization is complete, the RESETSTAT pin is de-asserted (driven high). By this time,  
PLL2 has already completed its locking sequence and is outputting a valid clock. The system clocks of  
both PLL controllers are allowed to finish their current cycles and then paused for 10 cycles of their  
respective system reference clocks. After the pause, the system clocks are restarted at their default  
divide by settings.  
6. The device is now out of reset and device execution begins as dictated by the selected boot mode.  
NOTE  
To most of the device, reset is de-asserted only when the POR and RESET pins are both  
de-asserted (driven high). Therefore, in the sequence described above, if the RESET pin is  
held low past the low period of the POR pin, most of the device will remain in reset. The  
RESET pin should not be tied together with the POR pin.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
75  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.3.2 Warm Reset (RESET Pin)  
A warm reset will reset everything on the device except the PLLs, PLL controller, test, and emulation logic.  
POR should also remain de-asserted during this time.  
The following sequence must be followed during a warm reset:  
1. The RESET pin is pulled active low for a minimum of 24 CLKIN1 cycles. During this time the RESET  
signal is able to propagate to all modules (except those specifically mentioned above). All I/O are Hi-Z  
for modules affected by RESET, to prevent off-chip contention during the warm reset.  
2. Once all logic is reset, RESETSTAT is driven active to denote that the device is in reset.  
3. The RESET pin can now be released. A minimal device initialization begins to occur. Note that  
configuration pins are not re-latched and clocking is unaffected within the device.  
4. After device initialization is complete, the RESETSTAT pin is de-asserted (driven high).  
NOTE  
The POR pin should be held inactive (high) throughout the warm reset sequence. Otherwise,  
if POR is activated (brought low), the minimum POR pulse width must be met. The RESET  
pin should not be tied together with the POR pin.  
NOTE  
The DDR2 SDRAM contents will also be preserved if the user places the SDRAM into Self-  
Refresh mode before starting a Warm Reset sequence. Please see theTMS320C6457 DSP  
DDR2 Memory Controller User’s Guide (SPRUGK5).  
4.8.3.3 System Reset  
In a System Reset, test and emulation logic are unaffected. The device configuration pins are also not re-  
latched. System reset can be initiated by the emulator or Serial RapidIO or by the PLLCTL:  
Emulator Initiated System Reset: The emulator initiated System Reset is always a Hard Reset. The  
effects of a Hard Reset are the same as a Warm Reset (defined in Section 4.8.3.2).  
Serial RapidIO Initiated System Reset: The Serial Rapid IO initiated System Reset can be  
configured by the RSTCFG register (see Section 4.8.3.6.3) as a Soft Reset or Hard Reset. For more  
information on the Serial RapidIO initiated system reset, see Section 4.2 of the TMS320C6457 DSP  
Serial RapidIO (SRIO) User's Guide (SPRUGK4).  
PLLCTL Initiated System Reset: The PLLCTL module can initiate a System Reset using the  
RSTCTRL register; see Section 4.8.3.6.2. The PLLCTL initiated System Reset can be configured by  
the RSTCFG register (see Section 4.8.3.6.3) as a Soft Reset or Hard Reset.  
In the case of a Soft Reset, the clock logic or the power control logic of the peripherals are not affected,  
and, therefore, the enabled/disabled state of the peripherals is not affected. The following external  
memory contents are maintained during a soft reset:  
DDR2 Memory Controller: The DDR2 Memory Controller registers are not reset. In addition, the  
DDR2 SDRAM memory content is retained if the user places the DDR2 SDRAM in self-refresh mode  
before invoking the soft reset.  
EMIFA: The contents of the memory connected to the EMIFA are retained. The EMIFA registers are  
not reset.  
76  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
During a soft reset, the following happens:  
1. The RESETSTAT pin goes low to indicate an internal reset is being generated. The reset is allowed to  
propagate through the system. Internal system clocks are not affected. PLLs also remain locked.  
2. After device initialization is complete, the RESETSTAT pin is deasserted (driven high). In addition, the  
PLL controllers pause their system clocks for about 10 cycles.  
At this point:  
The state of the peripherals before the soft reset is not changed. For example, if McBSP0 was  
in the enabled state before soft reset, it will remain in the enabled state after soft reset.  
The I/O pins are controlled as dictated by the DEVSTAT register.  
The DDR2 Memory Controller and EMIFA registers retain their previous values. Only the DDR2  
Memory Controller and EMIFA state machines are reset by the soft reset.  
The PLL controllers are operating in the mode prior to soft reset. System clocks are unaffected.  
The boot sequence is started after the system clocks are restarted. Since the configuration pins (including  
the BOOTMODE[3:0] pins) are not latched with a System Reset, the previous values, as shown in the  
DEVSTAT register, are used to select the boot mode.  
4.8.3.4 CPU Reset  
Timer1 can provide a local CPU reset if it is set up in watchdog mode.  
4.8.3.5 Reset Priority  
If any of the above reset sources occur simultaneously, the PLLCTL processes only the highest priority  
reset request. The reset request priorities are as follows (high to low):  
Power-on reset  
Warm reset and system reset  
4.8.3.6 Reset Controller Register  
There are three reset controller registers: Reset Type Status (RSTYPE) register (029A 00E4), Software  
Reset Control (RSTCTRL) register (029A 00E8), and Reset Configuration (RSTCFG) register (029A  
00EC). All three registers fall in the same memory range as the PLL1 Controller registers [029A 0000 -  
029A 0170] (see Table 4-24).  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
77  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.3.6.1 Reset Type Status Register  
The reset type status (RSTYPE) register latches the cause of the last reset. If multiple reset sources occur  
simultaneously, this register latches the highest priority reset source. The Reset Type Status register is  
shown in Figure 4-12 and described in Table 4-19.  
Figure 4-12. Reset Type Status Register (RSTYPE) (Address - 029A 00E4h)  
31  
15  
30  
29  
13  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Reserved  
EMU-  
RST  
Reserved  
R-0  
14  
R-0  
R-0  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved  
SRIOR  
ST  
Reserved  
PLLCTR WRST POR  
LRST  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4-19. Reset Type Status Register (RSTYPE) Field Descriptions  
Bit  
31:29  
28  
Acronym  
Reserved  
EMU-RST  
Description  
Reserved. Read only. Always reads as 0. Writes have no effect.  
System reset initiated by emulator.  
0 = Not the last reset to occur.  
1 = The last reset to occur.  
27:9  
8
Reserved  
SRIORST  
Reserved. Read only. Always reads as 0. Writes have no effect.  
System reset initiated by SRIO.  
0 = Not the last reset to occur.  
1 = The last reset to occur.  
7:3  
2
Reserved  
Reserved. Read only. Always reads as 0. Writes have no effect.  
PLLCTLRST  
System reset initiated by PLLCTL.  
0 = Not the last reset to occur.  
1 = The last reset to occur.  
1
0
WRST  
POR  
Warm reset.  
0 = Warm reset was not the last reset to occur.  
1 = Warm reset was the last reset to occur.  
Power-on reset.  
0 = Power-on reset was not the last reset to occur.  
1 = Power-on reset was the last reset to occur.  
78  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.3.6.2 Software Reset Control Register  
This register contains a key that enables writes to the MSB of this register and the RSTCFG register. The  
key value is 0x5A69. A valid key will be stored as 0x000C, any other key value is invalid. When the  
RSTCTRL or the RSTCFG is written, the key is invalidated. Every write must be set up with a valid key.  
The Software Reset Control register (RSTCTRL) is shown in Figure 4-13 and described in Table 4-20.  
Figure 4-13. Software Reset Control Register (RSTCTRL) (Hex Address - 029A 00E8h)  
31  
15  
30  
14  
29  
13  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Reserved  
R-0x0000  
SWRST(1)  
R/W-0x  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
KEY  
R/W-0x0003  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) Writes are conditional based on valid key.  
Table 4-20. Software Reset Control Register Field Descriptions  
Bit  
31:17  
16  
Acronym  
Reserved  
SWRST  
Description  
Reserved.  
Software reset  
0 = Reset  
1 = Not reset  
KEY  
15:0  
Key used to enable writes to RSTCTRL and RSTCFG.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
79  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.3.6.3 Reset Configuration Register  
This register is used to configure the type of system resets initiated by the SRIO module or a PLL  
controller; i.e., a hard reset or a soft reset. By default, both the system resets will be hard resets. The  
Reset Configuration register (RSTCFG) is shown in Figure 4-14 and described in Table 4-21.  
Figure 4-14. Reset Configuration Register (RSTCFG) (Address - 029A 00ECh)  
31  
15  
30  
29  
28  
27  
11  
26  
10  
25  
9
24  
Reserved  
R-0x2000  
23  
22  
21  
5
20  
4
19  
3
18  
2
17  
1
16  
14  
13  
12  
8
7
6
0
Reserved  
PLLCTL  
RSTTY  
PE  
R/W-0(1)  
Reserved  
R-0x000  
SRIOR  
STTY  
PE  
R-0x000  
R/W-  
0x0(1)  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) Writes are conditional based on valid key. For details, see Section 4.8.3.6.2.  
Table 4-21. Reset Configuration Register (RSTCFG) Field Descriptions  
Bit  
31:14  
13  
Acronym  
Description  
Reserved  
Reserved.  
PLLCTLRSTTYPE  
PLL controller initiates a software driven reset of type:  
0 = Hard reset (default)  
1 = Soft reset  
12:1  
0
Reserved  
Reserved.  
SRIORSTTYPE  
SRIO module initiates a reset of type:  
0 = Hard Reset (default)  
1 = Soft Reset  
4.8.4 PLL1 and PLL1 Controller  
This section provides a description of the PLL1 controller. For details on the operation of the PLL  
controller module, see the TMS320C6457 DSP Software-Programmable Phase-Locked Loop (PLL)  
Controller User's Guide (SPRUGL3).  
NOTE  
The PLL1 controller registers can be accessed by any master in the device.  
The main PLL is controlled by the standard PLL controller. The PLL controller manages the clock ratios,  
alignment, and gating for the system clocks to the device. Figure 4-15 shows a block diagram of the PLL  
controller. The following paragraphs define the clocks and PLL controller parameters.  
80  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
6484  
Main PLL Controller  
Main PLL  
/1  
xM  
SYSREFCLK  
CORECLK(N|P)  
ALTCORECLK  
C64x+  
Megamodule  
CORECLKSEL  
/2  
/x  
SYSCLK2  
SYSCLK3  
To L2 and L2  
PDCL  
DVDD18  
EMI  
Filter  
C1  
PLLV1  
C2  
/3  
/6  
/y  
/z  
560 pF  
0.01 µF  
SYSCLK4 (chip_clk3)  
SYSCLK5 (chip_clk6)  
SYSCLK6 (mcbsp_clks)  
SYSCLK7 (emifa_mclk)  
To Switch Fabric,  
Peripherals,  
Accelerators  
/p  
/1  
SYSCLK8 (slow_sysclk)  
SYSCLK9 (rsa_clk)  
Figure 4-15. PLL1 and PLL1 Controller  
The inputs, multiply factor within the PLL, and post-division for each of the chip-level clocks from the PLL  
output. The PLL controller also controls reset propagation through the chip, clock alignment, and test  
points. The PLL controller monitors the PLL status and provides an output signal indicating when the PLL  
is locked.  
PLL1 power is supplied externally via the PLL1 power-supply pin (PLLV1). An external EMI filter circuit  
must be added to PLLV1, as shown in Figure 4-15. The 1.8-V supply of the EMI filter must be from the  
same 1.8-V power plane supplying the I/O power-supply pin, DVDD18. TI requires EMI filter manufacturer  
Murata, part number NFM18CC222R1C3 or NFM18CC223R1C3.  
All PLL external components (C1, C2, and the EMI Filter) must be placed as close to the C64x+ DSP  
device as possible. For the best performance, TI recommends that all the PLL external components be on  
a single side of the board without jumpers, switches, or components other than those shown. For reduced  
PLL jitter, maximize the spacing between switching signal traces and the PLL external components (C1,  
C2, and the EMI Filter).  
The minimum CORECLK rise and fall times should also be observed. For the input clock timing  
requirements, see Section 4.8.4.4.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
81  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
CAUTION  
The PLL controller module as described in the TMS320C6457 DSP Software-  
Programmable Phase-Locked Loop (PLL) Controller User's Guide (SPRUGL3)  
includes a superset of features, some of which are not supported on the C6457  
DSP. The following sections describe the registers that are supported; it should  
be assumed that any registers not included in these sections is not supported  
by the C6457 DSP. Furthermore, only the bits within the registers described  
here are supported. Avoid writing to any reserved memory location or changing  
the value of reserved bits.  
4.8.4.1 PLL1 Controller Device-Specific Information  
4.8.4.1.1 Internal Clocks and Maximum Operating Frequencies  
The main PLL, used to drive the core, the switch fabric, and a majority of the peripheral clocks (all but the  
DDR2 clock) requires a PLL controller to manage the various clock divisions, gating, and synchronization.  
The main PLL controller has several SYSCLK outputs that are listed below, along with the clock  
description. Each SYSCLK has a corresponding divider that divides down the output clock of the PLL.  
Note that dividers are not programmable unless explicitly mentioned in the description below.  
SYSREFCLK: Full-rate clock (GEM_CLK1) for C64x+ megamodule.  
SYSCLK2: 1/2-rate clock (GEM_L2_CLK) used to clock the L2 and L2 powerdown controller.  
SYSCLK3: 1/x-rate clock (GEM_TRACE_CLK) for emulation and trace logic of the DSP. The default  
rate for this clock is 1/3. This is programmable from /1 to /32, where this clock does not violate the  
maximum clock rate of 333 MHz. The data rate on the trace pins are 1/2 of this clock.  
SYSCLK4: 1/3-rate clock (CHIP_CLK3) for the switched central resources (SCRs), EDMA3, VCP2,  
TCP2_A, TCP2_B, SRIO, as well as the data bus interfaces of the EMIFA and DDR2 memory  
controller.  
SYSCLK5: 1/6-rate clock (CHIP_CLK6) for other peripherals (PLL controller, PSC, L3 ROM, McBSPs,  
Timer64s, EMAC, HPI, UTOPIA, I2C, and GPIO).  
SYSCLK6: 1/y-rate clock (CHIP_CLKS) for an optional McBSP CLKS module input to drive the clock  
generator. The default for this clock is 1/10. This is programmable from /6 to /32, where this clock does  
not violate the maximum clock rate of 100 MHz. This clock is also output to the SYSCLKOUT pin.  
SYSCLK7: 1/z-rate clock (EMIF_MCLK) for an optional internal clock for EMIFA. The default for this  
clock is 1/10. This is programmable from /6 to /32, where this clock does not violate the maximum  
clock rate of 166 MHz. The data rate at the pins must not violate 100 MHz.  
SYSCLK8: 1/p-rate clock (SLOW_SYSCLK). The default for this clock is 1/10. This is programmable  
from /10 to /32.  
NOTE  
In case any of the other programmable SYSCLKs are set slower than 1/10 rate, then  
SYSCLK8 (SLOW_SYSCLK) needs to be programmed to either match, or be slower than,  
the slowest SYSCLK in the system.  
Note that there is a minimum and maximum operating frequency for CORECLK(N|P), ALTCORECLK,  
SYSREFCLK, SYSCLK3, SYSCLK6, and SYSCLK7. The PLL1 controller must not be configured to  
exceed any of these constraints (certain combinations of external core clock input, internal dividers, and  
PLL multiply ratios might not be supported). For the PLL clocks input and output frequency ranges, see  
Table 4-22.  
82  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-22. Timing Requirements for Reset  
CLOCK SIGNAL  
MIN  
50  
MAX UNIT  
61.44 MHz  
61.44 MHz  
1200 MHz  
333 MHz  
100 MHz  
166 MHz  
CORECLK(N|P)  
ALTCORECLK  
SYSREFCLK  
SYSCLK3  
50  
400  
SYSCLK6  
SYSCLK7  
4.8.4.1.2 PLL1 Controller Operating Modes  
The PLL1 controller has two modes of operation: bypass mode and PLL mode. The mode of operation is  
determined by the PLLEN bit of the PLL control register (PLLCTL). In PLL mode, SYSREFCLK is  
generated from the device input clock CORECLK(N|P) using the divider POSTDIV and the PLL multiplier  
PLLM. In bypass mode, CORECLK(N|P) is fed directly to SYSREFCLK.  
All hosts (HPI, etc.) must hold off accesses to the DSP while the frequency of its internal clocks is  
changing. A mechanism must be in place such that the DSP notifies the host when the PLL configuration  
has completed.  
4.8.4.1.3 PLL1 Stabilization, Lock, and Reset Times  
The PLL stabilization time is the amount of time that must be allotted for the internal PLL regulators to  
become stable after device powerup. The PLL should not be operated until this stabilization time has  
expired.  
The PLL reset time is the amount of wait time needed when resetting the PLL (writing PLLRST = 1), in  
order for the PLL to properly reset, before bringing the PLL out of reset (writing PLLRST = 0). For the  
PLL1 reset time value, see Table 4-23.  
The PLL lock time is the amount of time needed from when the PLL is taken out of reset (PLLRST = 1  
with PLLEN = 0) to when to when the PLL controller can be switched to PLL mode (PLLEN = 1). The  
PLL1 lock time is given in Table 4-23.  
Table 4-23. PLL1 Stabilization, Lock, and Reset Times  
MIN  
TYP  
MAX  
UNIT  
PLL stabilization time  
PLL lock time  
100  
µs  
2000 × C(1)  
PLL reset time  
1000  
ns  
(1) C = CORECLK(N|P) cycle time in ns.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
83  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.4.2 PLL1 Controller Memory Map  
The memory map of the PLL1 controller is shown in Table 4-24. Note that only registers documented here  
are accessible on the C6457. Other addresses in the PLL1 controller memory map should not be  
modified.  
Table 4-24. PLL1 Controller Registers (Including Reset Controller)  
HEX ADDRESS RANGE  
029A 0000 - 029A 00E3  
029A 00E4  
ACRONYM  
REGISTER NAME  
Reserved  
-
RSTYPE  
Reset Type Status Register (Reset Controller)  
Software Reset Control Register  
Reset Configuration Register  
Reserved  
029A 00E8  
RSTCTRL  
029A 00EC  
RSTCFG  
029A 00F0 - 029A 00FF  
029A 0100  
-
PLLCTL  
PLL Control Register  
Reserved  
029A 0104  
-
029A 0108  
-
Reserved  
029A 010C  
-
Reserved  
029A 0110  
PLLM  
PLL Multiplier Control Register  
Reserved  
029A 0114  
-
029A 0118  
-
Reserved  
029A 011C  
-
Reserved  
029A 0120  
PLLDIV3  
PLL Controller Divider 3 Register  
Reserved  
029A 0124  
-
029A 0128  
POSTDIV  
PLL Post-Divider Register  
Reserved  
029A 012C  
-
029A 0130  
-
Reserved  
029A 0134  
-
Reserved  
029A 0138  
PLLCMD  
PLL Controller Command Register  
PLL Controller Status Register  
PLL Controller Clock Align Control Register  
PLLDIV Ratio Change Status Register  
Reserved  
029A 013C  
PLLSTAT  
029A 0140  
ALNCTL  
029A 0144  
DCHANGE  
029A 0148  
-
029A 014C  
-
Reserved  
029A 0150  
SYSTAT  
SYSCLK Status Register  
Reserved  
029A 0154  
-
029A 0158  
-
Reserved  
029A 015C  
-
Reserved  
029A 0160 - 029A 0164  
029A 0168  
-
Reserved  
PLLDIV6  
PLLDIV7  
PLLDIV8  
-
PLL Controller Divider 6 Register  
PLL Controller Divider 7 Register  
PLL Controller Divider 8 Register  
Reserved  
029A 016C  
029A 0170  
029A 0174 - 029B FFFF  
84  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.4.3 PLL1 Controller Registers  
This section provides a description of the PLL1 controller registers. For details on the operation of the PLL  
controller module, see theTMS320C6457 DSP Software-Programmable Phase-Locked Loop (PLL)  
Controller User's Guide (SPRUGL3).  
NOTE  
The PLL1 controller registers can be accessed by any master in the device.  
CAUTION  
Not all of the registers documented in the TMS320C6457 DSP Software-  
Programmable Phase-Locked Loop (PLL) Controller User's Guide (SPRUGL3)  
are supported on the C6457. Only those registers documented in this section  
are supported. Furthermore, only the bits within the registers described here  
are supported. Avoid writing to any reserved memory location or changing the  
value of reserved bits.  
4.8.4.3.1 PLL1 Control Register  
The PLL1control register (PLLCTL) is shown in Figure 4-16 and described in Table 4-25.  
Figure 4-16. PLL1 Control Register (PLLCTL) (Address - 029A 0100h)  
31  
15  
30  
14  
29  
13  
28  
27  
26  
10  
25  
9
24  
Reserved  
R-0  
23  
22  
21  
20  
19  
18  
17  
1
16  
0
12  
11  
8
7
6
5
4
3
2
Reserved  
Rsvd  
Rsvd  
Reserved  
R/W-0  
PLL  
RST  
Rsvd  
PLLP PLLEN  
WRDN  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
R/W-0  
R-1  
R/W-1  
R-0  
R/W-0 R/W-0  
Table 4-25. PLL1 Control Register (PLLCTL) Field Descriptions  
Bit  
31:8  
7
Acronym  
Reserved  
Reserved  
Reserved  
Reserved  
PLLRST  
Description  
Reserved. Read only. Always reads as 0. Writes have no effect.  
Reserved. Writes to this register must keep this bit as 0.  
Reserved. Read only. Always reads as 1. Writes have no effect.  
Reserved. Writes to this register must keep this bit as 0.  
PLL reset bit  
6
5:4  
3
0 = PLL reset is released  
1 = PLL reset is asserted  
2
1
Reserved  
Reserved. Read only. Always reads as 0. Writes have no effect.  
PLL power-down mode select bit  
PLLPWRDN  
0 = PLL is operational  
1 = PLL is placed in power-down state, i.e., all analog circuitry in the PLL is turned-off  
0
PLLEN  
PLL enable bit  
0 = Bypass mode. Divider POSTDIV and PLL are bypassed. All the system clocks (SYSCLKn) are divided  
down directly from input reference clock.  
1 = PLL mode. Divider POSTDIV and PLL are not bypassed. PLL output path is enabled. All the system  
clocks (SYSCLKn) are divided down from PLL output.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
85  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.4.3.2 PLL Multiplier Control Register  
The PLL multiplier control register (PLLM) is shown in Figure 4-17 and described in Table 4-26. The PLLM  
register defines the input reference clock frequency multiplier in conjunction with the PLL divider ratio bits  
(RATIO) in the PLL controller post-divider register (POSTDIV).  
Figure 4-17. PLL Multiplier Control Register (PLLM) (Address - 029A 0110h)  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
25  
9
24  
Reserved  
R-0  
23  
22  
6
21  
5
20  
4
19  
3
18  
17  
1
16  
0
10  
Reserved  
R-0  
8
7
2
PLLM  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4-26. PLL Multiplier Control Register (PLLM) Field Descriptions  
Bit  
31:5  
4:0  
Acronym Description  
Reserved Reserved. Read only. Always reads as 0. Writes have no effect.  
PLLM  
PLL multiplier bits. Defines the frequency multiplier of the input reference clock in conjunction with the PLL divider  
ratio bits  
(RATIO) in POSTDIV.  
000000 = × 1  
000001 = × 2  
000010 = × 3  
000011 = × 4  
000100 = × 5  
000101 = × 6  
000110 = × 7  
000111 = × 8  
001000 = × 9  
001001 = × 10  
001010 = × 11  
001011 = × 12  
001100 = × 13  
001101 = × 14  
001110 = × 15  
001111 = × 16  
010000 = × 17  
010001 = × 18  
010010 = × 19  
010011 = × 20  
010100 = × 21  
010101 = × 22  
010110 = × 23  
010111 = × 24  
011000 = × 25  
011001 = × 26  
011010 = × 27  
011011 = × 28  
011100 = × 29  
011101 = × 30  
011110 = × 31  
011111 = × 32  
100000 = × 33  
100001 = × 34  
100010 = × 35  
100011 = × 36  
100100 = × 37  
100101 = × 38  
100110 = × 39  
100111 = × 40  
101000 = × 41  
101001 = × 42  
101010 = × 43  
101011 = × 44  
101100 = × 45  
101101 = × 46  
101110 = × 47  
101111 = × 48  
110000 = × 49  
110001 = × 50  
110010 = × 51  
110011 = × 52  
110100 = × 53  
110101 = × 54  
110110 = × 55  
110111 = × 56  
111000 = × 57  
111001 = × 58  
111010 = × 59  
111011 = × 60  
111100 = × 61  
111101 = × 62  
111110 = × 63  
111111 = × 64  
86  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.4.3.3 PLL Post-Divider Control Register  
The PLL post-divider control register (POSTDIV) is shown in Figure 4-18 and described in Table 4-27.  
Figure 4-18. PLL Post-Divider Control Register (POSTDIV) (Address - 029A 0128)  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
25  
24  
Reserved  
R-0  
23  
22  
6
21  
5
20  
4
19  
3
18  
17  
1
16  
0
10  
9
8
7
2
POST  
DEN  
Reserved  
R-0  
RATIO  
R/W-1  
R/W-2h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4-27. PLL Post-Divider Control Register (POSTDIV) Field Descriptions  
Bit  
31:16  
15  
Acronym  
Reserved  
POSTDEN  
Description  
Reserved. Read only. Always reads as 0. Writes have no effect.  
Post-divider enable bit.  
0 = Post-divider is disabled. No clock output.  
1 = Post-divider is enabled.  
14:5  
4:0  
Reserved  
RATIO  
Reserved. Read only. Always reads as 0. Writes have no effect.  
0 through 1Fh are divider ratio bits:  
0 = ÷ 1. Divide frequency by 1.  
1h = ÷ 2. Divide frequency by 2.  
2h = ÷ 3. Divide frequency by 3.  
3h through 1Fh = Reserved, do not use.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
87  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.4.3.4 PLL Controller Divider 3 Register  
The PLL controller divider 3 register (PLLDIV3) is shown in Figure 4-19 and described in Table 4-28.  
Figure 4-19. PLL Controller Divider 3 Register (PLLDIV3) (Address - 029A 015Ch)  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
Reserved  
R-0  
23  
22  
6
21  
5
20  
4
19  
3
18  
17  
1
16  
0
15  
8
7
2
D3EN  
R/W-1  
Reserved  
R-0  
RATIO  
R/W-2h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4-28. PLL Controller Divider 3 Register (PLLDIV3) Field Descriptions  
Bit  
31:16  
15  
Acronym  
Reserved  
D3EN  
Description  
Reserved. Read only. Always reads as 0. Writes have no effect.  
Divider 3 enable bit.  
0 = Divider 3 is disabled. No clock output.  
1 = Divider 3 is enabled.  
14:5  
4:0  
Reserved  
RATIO  
Reserved. Read only. Always reads as 0. Writes have no effect.  
0 through 1Fh are divider ratio bits:  
0 = ÷ 1. Divide frequency by 1.  
1h = ÷ 2. Divide frequency by 2.  
2h = ÷ 3. Divide frequency by 3.  
3h = ÷ 4. Divide frequency by 4.  
4h through 1Fh = ÷ 5 to ÷ 32. Divide frequency by 5 to divide frequency by 32.  
88  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.4.3.5 PLL Controller Divider 6 Register  
The PLL controller divider 6 register (PLLDIV6) is shown in Figure 4-20 and described in Table 4-29.  
Figure 4-20. PLL Controller Divider 6 Register (PLLDIV6) Address - 029A 0168)  
31  
30  
29  
13  
28  
12  
27  
11  
26  
25  
24  
Reserved  
R-0  
23  
22  
6
21  
5
20  
4
19  
3
18  
17  
1
16  
0
15  
14  
10  
9
8
7
2
D6EN  
R/W-1  
Reserved  
RATIO  
R-0  
R/W-  
9h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4-29. PLL Controller Divider 6 Register (PLLDIV6) Field Descriptions  
Bit  
31:16  
15  
Acronym  
Reserved  
D6EN  
Description  
Reserved. Read only. Always reads as 0. Writes have no effect.  
Divider 6 enable bit.  
0 = Divider 6 is disabled. No clock output.  
1 = Divider 6 is enabled.  
14:5  
4:0  
Reserved  
RATIO  
Reserved. Read only. Always reads as 0. Writes have no effect.  
0 through 1Fh are divider ratio bits:  
0 = ÷ 1. Divide frequency by 1.  
1h = ÷ 2. Divide frequency by 2.  
2h = ÷ 3. Divide frequency by 3.  
3h = ÷ 4. Divide frequency by 4.  
4h through 1Fh = ÷ 5 to ÷ 32. Divide frequency by 5 to divide frequency by 32.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
89  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.4.3.6 PLL Controller Divider 7 Register  
The PLL controller divider 7 register (PLLDIV7) is shown in Figure 4-21 and described in Table 4-30.  
Figure 4-21. PLL Controller Divider 7 Register (PLLDIV7) (Address - 029A 016Ch)  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
Reserved  
R-0  
23  
22  
6
21  
5
20  
4
19  
3
18  
17  
1
16  
0
15  
8
7
2
D7EN  
R/W-1  
Reserved  
R-0  
RATIO  
R/W-9h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4-30. PLL Controller Divider 7 Register (PLLDIV7) Field Descriptions  
Bit  
31:16  
15  
Acronym  
Reserved  
D7EN  
Description  
Reserved. Read only. Always reads as 0. Writes have no effect.  
Divider 7 enable bit.  
0 = Divider 6 is disabled. No clock output.  
1 = Divider 6 is enabled.  
14:5  
4:0  
Reserved  
RATIO  
Reserved. Read only. Always reads as 0. Writes have no effect.  
0 through 1Fh are divider ratio bits:  
0 = ÷ 1. Divide frequency by 1.  
1h = ÷ 2. Divide frequency by 2.  
2h = ÷ 3. Divide frequency by 3.  
3h = ÷ 4. Divide frequency by 4.  
4h through 1Fh = ÷ 5 to ÷ 32. Divide frequency by 5 to divide frequency by 32.  
90  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.4.3.7 PLL Controller Divider 8 Register  
The PLL controller divider 8 register (PLLDIV7) is shown in Figure 4-22 and described in Table 4-31.  
Figure 4-22. PLL Controller Divider 8 Register (PLLDIV8) (Address - 029A 0170)  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
Reserved  
R-0  
23  
22  
6
21  
5
20  
4
19  
3
18  
17  
1
16  
0
15  
8
7
2
D8EN  
R/W-1  
Reserved  
R-0  
RATIO  
R/W-9h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4-31. PLL Controller Divider 8 Register (PLLDIV8) Field Descriptions  
Bit  
31:16  
15  
Acronym  
Reserved  
D8EN  
Description  
Reserved. Read only. Always reads as 0. Writes have no effect.  
Divider 8 enable bit.  
0 = Divider 6 is disabled. No clock output.  
1 = Divider 6 is enabled.  
14:5  
4:0  
Reserved  
RATIO  
Reserved. Read only. Always reads as 0. Writes have no effect.  
0 through 1Fh are divider ratio bits:  
0 = ÷ 1. Divide frequency by 1.  
1h = ÷ 2. Divide frequency by 2.  
2h = ÷ 3. Divide frequency by 3.  
3h = ÷ 4. Divide frequency by 4.  
4h through 1Fh = ÷ 5 to ÷ 32. Divide frequency by 5 to divide frequency by 32.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
91  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.4.3.8 PLL Controller Command Register  
The PLL controller command register (PLLCMD) contains the command bit for GO operation. PLLCMD is  
shown in Figure 4-23 and described in Table 4-32.  
Figure 4-23. PLL Controller Command Register (PLLCMD) (Address - 029A 0138h)  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
Reserved  
R-0  
23  
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
8
7
0
Reserved  
GOSE  
T
R-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4-32. PLL Controller Command Register (PLLCMD) Field Descriptions  
Bit  
31:2  
1
Acronym  
Reserved  
Reserved  
GOSET  
Description  
Reserved. Read only. Always reads as 0. Writes have no effect.  
Reserved. Read only. Always reads as 0. Writes have no effect.  
0
GO operation command for SYSCLK rate change and phase alignment. Before setting this bit to 1 to initiate a  
GO operation, check the GOSTAT bit in the PLLSTAT register to ensure all previous GO operations have  
completed.  
0 = No effect. Write of 0 clears bit to 0.  
1 = Initiates GO operation. Write of 1 initiates GO operation. Once set, GOSET remains set but further writes  
of 1 can initiate the GO operation.  
92  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.4.3.9 PLL Controller Status Register  
The PLL controller status register (PLLSTAT) shows the PLL controller status. PLLSTAT is shown in  
Figure 4-24 and described in Table 4-33.  
Figure 4-24. PLL Controller Status Register (PLLSTAT) (Address - 029A 013C)  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
Reserved  
R-0  
23  
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
8
7
0
Reserved  
GOST  
AT  
R-0  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4-33. PLL Controller Status Register (PLLSTAT) Field Descriptions  
Bit  
31:1  
0
Acronym  
Reserved  
GOSTAT  
Description  
Reserved. Read only. Always reads as 0. Writes have no effect.  
GO operation status.  
0 = GO operation is not in progress. SYSCLK divide ratios are not being changed.  
1 = GO operation is in progress. SYSCLK divide ratios are being changed.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
93  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.4.3.10 PLL Controller Clock Align Control Register  
The PLL controller clock align control register (ALNCTL) is shown in Figure 4-25 and described in Table 4-  
34.  
Figure 4-25. PLL Controller Clock Align Control Register (ALNCTL) (Address - 029A 0140)  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
25  
9
24  
Reserved  
R-0  
23  
22  
6
21  
5
20  
19  
18  
2
17  
16  
0
10  
Reserved  
R-0  
8
7
4
3
1
ALN5 ALN4  
R-1 R-1  
Reserved  
R-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4-34. PLL Controller Clock Align Control Register (ALNCTL) Field Descriptions  
Bit  
31:5  
4:3  
Acronym  
Description  
Reserved  
Reserved. Read only. Always reads as 0. Writes have no effect.  
SYSCLKn alignment. Do not change the default values of these fields.  
ALNn  
0 = Do not align SYSCLKn to other SYSCLKs during GO operation. If SYSn in DCHANGE is set to 1,  
SYSCLKn switches to the new ratio immediately after the GOSET bit in PLLCMD is set.  
1 = Align SYSCLKn to other SYSCLKs selected in ALNCTL when the GOSET bit in PLLCMD is set. The  
SYSCLKn ratio is set to the ratio programmed in the RATIO bit in PLLDIVn  
2:0  
Reserved  
Reserved. Read only. Always reads as 0. Writes have no effect.  
94  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.4.3.11 PLLDIV Ratio Change Status Register  
Whenever a different ratio is written to the PLLDIVn registers, the PLLCTL flags the change in the PLLDIV  
ratio change status registers (DCHANGE). During the GO operation, the PLL controller will change the  
divide ratio of only the SYSCLKs with the bit set in DCHANGE. Note that changed clocks will be  
automatically aligned to other clocks. The PLLDIV divider ratio change status register is shown in  
Figure 4-26 and described in Table 4-35.  
Figure 4-26. PLLDIV Divider Ratio Change Status Register (DCHANGE) (Address - 029A 0144)  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
25  
9
24  
Reserved  
R-0  
23  
22  
6
21  
5
20  
19  
18  
2
17  
16  
0
10  
Reserved  
R-0  
8
7
4
3
1
SYS5 SYS4  
R-0 R-0  
Reserved  
R-0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4-35. PLLDIV Divider Ratio Change Status Register (DCHANGE) Field Descriptions  
Bit  
31:5  
4
Acronym  
Description  
Reserved  
SYS5  
Reserved. Read only. Always reads as 0. Writes have no effect.  
Identifies when the SYSCLK5 divide ratio has been modified.  
0 = SYSCLK5 ratio has not been modified. When GOSET is set, SYSCLK5 will not be affected.  
1 = SYSCLK5 ratio has been modified. When GOSET is set, SYSCLK5 will change to the new ratio.  
3
SYS4  
Identifies when the SYSCLK4 divide ratio has been modified.  
0 = SYSCLK4 ratio has not been modified. When GOSET is set, SYSCLK4 will not be affected.  
1 = SYSCLK4 ratio has been modified. When GOSET is set, SYSCLK4 will change to the new ratio.  
2:0  
Reserved  
Reserved. Read only. Always reads as 0. Writes have no effect.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
95  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.4.3.12 SYSCLK Status Register  
The SYSCLK status register (SYSTAT) shows the status of the system clocks (SYSCLKn). SYSTAT is  
shown in Figure 4-27 and described in Table 4-36.  
Figure 4-27. SYSCLK Status Register (SYSTAT) (Address - 029A 0150)  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
25  
9
24  
Reserved  
R-0  
23  
22  
6
21  
5
20  
19  
18  
17  
16  
10  
8
7
4
3
2
1
0
Reserved  
SYS5 SYS4 SYS3 SYS2  
Rsvd  
ON  
ON  
ON  
ON  
R-0  
R-1  
R-1  
R-1  
R-1  
R-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4-36. SYSCLK Status Register (SYSTAT) Field Descriptions  
Bit  
31:4  
4:1  
Acronym  
Reserved  
SYSnON  
Description  
Reserved. Read only. Always reads as 0. Writes have no effect.  
SYSCLKn on status.  
0 = SYSCLKn is gated.  
1 = SYSCLKn is on.  
0:  
Reserved  
Reserved. Read only. Always reads as 1. Writes have no effect.  
96  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.4.4 PLL1 Controller Input and Output Electrical Data/Timing  
Table 4-37. CORECLK(N|P) and ALTCORECLK Timing Requirements(1)  
NO.  
MIN  
MAX UNIT  
CORECLK(N|P) and ALTCORECLK  
1
2
3
4
5
tc(SYSCLK)  
tw(SYSCLKH)  
tw(SYSCLKL)  
tt(SYSCLK)  
tj(SYSCLK)  
Cycle time, CORECLK(N|P) or ALTCORECLK  
Pulse duration, CORECLK(N|P) or ALTCORECLK high  
Pulse duration, CORECLK(N|P) or ALTCORECLK low  
Transition time, CORECLK(N|P) or ALTCORECLK  
Period Jitter (peak-to-peak), CORECLK(N|P) or ALTCORECLK  
SYSCLKOUT  
16.27  
0.45 x C1  
0.45 x C1  
50  
20.00 ns  
ns  
ns  
1300 ps  
100 ps  
1
2
3
4
tc(CKO)  
Cycle time, SYSCLKOUT  
10 x C1  
32 x C1 ns  
tw(CKOH)  
tw(CKOL)  
tt(CKO)  
Pulse duration, SYSCLKOUT high  
4 x C1 - 0.7 32 x C1 + 0.7 ns  
4 x C1 - 0.7 32 x C1 + 0.7 ns  
1.0 ns  
Pulse duration, SYSCLKOUT low  
Transition time, SYSCLKOUT  
(1) If CORECLKSEL = 0, C1 = CORECLK(N|P) cycle time in ns. If CORECLKSEL = 1, C1 = ALTCORECLK cycle time in ns.  
1
5
4
2
CORECLK(N|P)  
3
4
Figure 4-28. CORECLK(N|P) and ALTCORECLK Timing  
4.8.5 PLL2  
The secondary PLL generates interface clocks for the DDR2 memory controller. Using the DDRCLKSEL  
pin the user can select the input source of PLL2 as either the DDRREFCLK or the ALTDDRCLK clock  
reference sources.  
When coming out of power-on reset, PLL2 is enabled and initialized.  
As shown in Figure 4-29, the PLL2 multiplier is fixed at a ×10 multiplier rate followed by a fixed /2 divider  
resulting in an effective x5 multiplier going to the DDR2PHY and attached DDR2 memory.  
DDR PLL  
PLLOUT  
DDR2  
PHY  
by 2  
÷
DDRREFCLK(N|P)  
ALTDDRCLK  
x10  
DDRCLKSEL  
PLLV2  
EMI  
DVDD18  
Filter  
C1  
C2  
560 pF  
0.01 µF  
Figure 4-29. PLL2 Block Diagram  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
97  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
PLL2 power is supplied externally via the PLL2 power supply (PLLV2). An external PLL filter circuit must  
be added to PLLV2 as shown in Figure 4-29. The 1.8-V supply for the EMI filter must be from the same  
1.8-V power plane supplying the I/O power-supply pin, DVDD18. TI requires EMI filter manufacturer Murata  
NFM18CC222R1C3 or NFM18CC223R1C3. For more information on the external PLL filter or the EMI  
filter, see the TMS320TCI6484 and TMS320C6457 DSPs Hardware Design Guide (SPRAAV7).  
All PLL external components (capacitors and the EMI filter) should be placed as close to the C64x+ DSP  
device as possible. For the best performance, TI requires that all the PLL external components be on a  
single side of the board without jumpers, switches, or components other than the ones shown. For  
reduced PLL jitter, maximize the spacing between switching signal traces and the PLL external  
components (capacitors and the EMI filter). The minimum CLKIN2 rise and fall times should also be  
observed.  
4.8.5.1 PLL2 Device-Specific Information  
4.8.5.1.1 Internal Clocks and Maximum Operating Frequencies  
As shown in Figure 4-29, the output of PLL2, PLLOUT, is divided by 2 and directly fed to the DDR2  
memory controller. This clock is used by the DDR2 memory controller to generate DDR2CLKOUT(N|P)0  
and DDR2CLKOUT(N|P)1. Note that, internally, the data bus interface of the DDR2 memory controller is  
clocked by SYSCLK4 and PLL1 controller.  
Note that there is a minimum and maximum operating frequency for DDRREFCLK and associated  
DDR2CLKOUT(N|P)0 and DDR2CLKOUT(N|P)1. For the PLL clocks input and output frequency ranges,  
see Table 4-38.  
Table 4-38. PLL2 Clock Frequency Ranges  
SIGNAL  
MIN  
40  
MAX UNIT  
66.67 MHz  
333 MHz  
DDRREFCLK (PLLEN = 1)  
DDR2CLKOUT0(P|N) and DDR2CLKOUT1(P|N)  
200  
4.8.5.1.2 PLL2 Operating Modes  
Unlike the PLL1 which can operate in by-pass and PLL mode, the PLL2 only operates in PLL mode. In  
PLL mode, DDR2CLKOUT0(P|N) and DDR2CLKOUT1 (P|N) are generated by an effective x5 multiplier  
consisting of the PLL2 fixed x10 multiplier followed by a /2 divider.  
The PLL2 is affected by power-on reset. During power-on resets, the internal clocks of the PLL2 are  
affected as described in Section 4.8.3.  
PLL2 is unlocked only during the power-up sequence (see Section 4.8.3) and is locked by the time the  
RESETSTAT pin goes high. It does not lose lock during any of the other reset  
4.8.5.2 PLL2 Input Clock Electrical Data/Timing  
Table 4-39. Timing Requirements for DDRREFCLK(N|P) and ALTDDRCLK(1)  
(see Figure 4-30)  
NO.  
1
MIN  
15.00  
MAX UNIT  
25.00 ns  
tc(CLKIN2)  
tw(CLKIN2H)  
tw(CLKIN2L)  
tt(CLKIN2)  
Cycle time, DDRREFCLK(N|P) or ALTDDRCLK  
2
Pulse duration, DDRREFCLK(N|P) or ALTDDRCLK high  
Pulse duration, DDRREFCLK(N|P) or ALTDDRCLK low  
Transition time, DDRREFCLK(N|P) or ALTDDRCLK  
Period jitter (peak-to-peak), DDRREFCLK(N|P) or ALTDDRCLK  
0.45 × C2  
0.45 × C2  
50  
0.55 × C2 ns  
0.55 × C2 ns  
1300 ps  
3
4
5
tJ(CLKIN2)  
0.02 ×  
tc(CLKIN2)  
(1) If DDRCLKSEL = 0, C2 = DDRREFCLK(N|P) cycle time in ns. If DDRCLKSEL = 1, C2 = ALTDDRCLK cycle time in ns.  
98  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
1
5
4
2
DDRREFCLK(N|P)  
3
4
Figure 4-30. DDRREFCLK(N|P) Timing  
4.8.6 DDR2 Memory Controller  
The 32-bit DDR2 Memory Controller bus of the C6457 is used to interface to JESD79-2B standard-  
compliant DDR2 SDRAM devices. The DDR2 external bus interfaces only to DDR2 SDRAM devices; it  
does not share the bus with any other types of peripherals. The decoupling of DDR2 memories from other  
devices both simplifies board design and provides I/O concurrency from a second external memory  
interface, EMIFA.  
The internal data bus clock frequency and DDR2 bus clock frequency directly affect the maximum  
throughput of the DDR2 bus. The clock frequency of the DDR2 bus is equal to the CLKIN2 frequency  
multiplied by 10. The internal data bus clock frequency of the DDR2 Memory Controller is fixed at a divide-  
by-three ratio of the CPU frequency. The maximum DDR2 throughput is determined by the smaller of the  
two bus frequencies. The DDR2 bus is designed to sustain a throughput of up to 2.67 Gbyte/sec at a 667-  
MHz data rate (333-MHz clock rate) as long as data requests are pending in the DDR2 Memory  
Controller.  
4.8.6.1 DDR2 Memory Controller Device-Specific Information  
The approach to specifying interface timing for the DDR2 memory bus is different than on other interfaces  
such as EMIF, McBSP, and HPI. For these other interfaces, the device timing was specified in terms of  
data manual specifications and I/O buffer information specification (IBIS) models.  
For the C6457 DDR2 memory bus, the approach is to specify compatible DDR2 devices and provide the  
printed circuit board (PCB) solution and guidelines directly to the user. Texas Instruments (TI) has  
performed the simulation and system characterization to ensure all DDR2 interface timings in this solution  
are met. The complete DDR2 system solution is documented in the TMS320C6457 DDR2 Implementation  
Guidelines application report (SPRAB21).  
TI supports only designs that follow the board design guidelines outlined in the application report.  
The DDR2 memory controller on the C6457 device supports the following memory topologies:  
A 32-bit wide configuration interfacing to two 16-bit wide DDR2 SDRAM devices.  
A 16-bit wide configuration interfacing to a single 16-bit wide DDR2 SDRAM device.  
A race condition may exist when certain masters write data to the DDR2 memory controller. For example,  
if master A passes a software message via a buffer in external memory and does not wait for indication  
that the write completes, when master B attempts to read the software message, then the master B read  
may bypass the master A write and, thus, master B may read stale data and, therefore, receive an  
incorrect message.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
99  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Some master peripherals (e.g., EDMA3 transfer controllers) will always wait for the write to complete  
before signaling an interrupt to the system, thus avoiding this race condition. For masters that do not have  
a hardware specification of write-read ordering, it may be necessary to specify data ordering via software.  
If master A does not wait for indication that a write is complete, it must perform the following workaround:  
1. Perform the required write.  
2. Perform a dummy write to the DDR2 memory controller module ID and revision register.  
3. Perform a dummy read to the DDR2 memory controller module ID and revision register.  
4. Indicate to master B that the data is ready to be read after completion of the read in step 3. The  
completion of the read in step 3 ensures that the previous write was done.  
4.8.6.2 DDR2 Memory Controller Peripheral Register Description(s)  
Table 4-40. DDR2 Memory Controller Registers  
HEX ADDRESS RANGE  
7800 0000  
ACRONYM  
REGISTER NAME  
MIDR  
DDR2 Memory Controller Module and Revision Register  
DDR2 Memory Controller Status Register  
DDR2 Memory Controller SDRAM Configuration Register  
DDR2 Memory Controller SDRAM Refresh Control Register  
DDR2 Memory Controller SDRAM Timing 1 Register  
DDR2 Memory Controller SDRAM Timing 2 Register  
Reserved  
7800 0004  
DMCSTAT  
7800 0008  
SDCFG  
7800 000C  
SDRFC  
7800 0010  
SDTIM1  
7800 0014  
SDTIM2  
7800 0018  
-
7800 0020  
BPRIO  
DDR2 Memory Controller Burst Priority Register  
Reserved  
7800 0024 - 7800 004C  
7800 0050 - 7800 0078  
7800 007C - 7800 00BC  
7800 00C0 - 7800 00E0  
7800 00E4  
-
-
Reserved  
-
Reserved  
-
Reserved  
DMCCTL  
-
DDR2 Memory Controller Control Register  
Reserved  
7800 00E8 - 7FFF FFFF  
4.8.6.3 DDR2 Memory Controller Electrical Data/Timing  
The TMS320C6457 DDR2 Implementation Guidelines application report (SPRAB21) specifies a complete  
DDR2 interface solution for the C6457 as well as a list of compatible DDR2 devices. TI has performed the  
simulation and system characterization to ensure all DDR2 interface timings in this solution are met;  
therefore, no electrical data/timing information is supplied here for this interface.  
NOTE  
TI supports only designs that follow the board design guidelines outlined in the application  
report.  
100  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.7 External Memory Interface A (EMIFA)  
The EMIFA can interface to a variety of external devices or ASICs, including:  
Pipelined and flow-through synchronous-burst SRAM (SBSRAM)  
ZBT (zero bus turnaround) SRAM and late write SRAM  
Synchronous FIFOs  
Asynchronous memory, including SRAM, ROM, and Flash  
For more information about the EMIF peripheral, see the TMS320C6457 DSP External Memory Interface  
(EMIF) User's Guide (SPRUGK2).  
4.8.7.1 EMIFA Device-Specific Information  
Timing analysis must be done to verify all AC timings are met. TI recommends using I/O buffer information  
specification (IBIS) to analyze all AC timings.  
To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS  
Models for Timing Analysis application report (SPRA839).  
To maintain signal integrity, serial termination resistors should be inserted into all EMIF output signal lines  
(for the EMIF output signals, see Table 3-2).  
A race condition may exist when certain masters write data to the EMIFA. For example, if master A  
passes a software message via a buffer in external memory and does not wait for indication that the write  
completes, when master B attempts to read the software message, then the master B read may bypass  
the master A write and, thus, master B may read stale data and, therefore, receive an incorrect message.  
Some master peripherals (e.g., EDMA3 transfer controllers) will always wait for the write to complete  
before signaling an interrupt to the system, thus avoiding this race condition. For masters that do not have  
a hardware specification of write-read ordering, it may be necessary to specify data ordering via software.  
If master A does not wait for indication that a write is complete, it must perform the following workaround:  
1. Perform the required write.  
2. Perform a dummy write to the EMIFA module ID and revision register.  
3. Perform a dummy read to the EMIFA module ID and revision register.  
4. Indicate to master B that the data is ready to be read after completion of the read in step 3. The  
completion of the read in step 3 ensures that the previous write was done.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
101  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.7.2 EMIFA Peripheral Register Description(s)  
Table 4-41. EMIFA Registers  
HEX ADDRESS RANGE  
7000 0000  
ACRONYM  
REGISTER NAME  
MIDR  
Module ID and Revision Register  
Status Register  
7000 0004  
STAT  
7000 0008  
-
Reserved  
7000 000C - 7000 001C  
7000 0020  
-
Reserved  
BURST_PRIO  
Burst Priority Register  
Reserved  
7000 0024 - 7000 004C  
7000 0050 - 7000 007C  
7000 0080  
-
-
CE2CFG  
CE3CFG  
CE4CFG  
CE5CFG  
-
Reserved  
EMIFA CE2 Configuration Register  
EMIFA CE3 Configuration Register  
EMIFA CE4 Configuration Register  
EMIFA CE5 Configuration Register  
Reserved  
7000 0084  
7000 0088  
7000 008C  
7000 0090 - 7000 009C  
7000 00A0  
AWCC  
-
EMIFA Async Wait Cycle Configuration Register  
Reserved  
7000 00A4 - 7000 00BC  
7000 00C0  
INTRAW  
INTMSK  
INTMSKSET  
INTMSKCLR  
-
EMIFA Interrupt RAW Register  
EMIFA Interrupt Masked Register  
EMIFA Interrupt Mask Set Register  
EMIFA Interrupt Mask Clear Register  
Reserved  
7000 00C4  
7000 00C8  
7000 00CC  
7000 00D0 - 7000 00DC  
7000 00E0 - 77FF FFFF  
-
Reserved  
4.8.7.3 EMIFA Electrical Data/Timing  
This section describes the electrical timing for the EMIFA peripheral.  
4.8.7.3.1 AECLKIN and AECLKOUT Timing  
Table 4-42. EMIFA AECLKIN Timing Requirements(1)(2)  
(see Figure 4-31)  
NO.  
MIN  
10(3)  
2.7  
MAX UNIT  
1
2
3
4
5
tc(EKI)  
tw(EKIH)  
tw(EKIL)  
tt(EKI)  
Cycle time, AECLKIN  
40 ns  
ns  
Pulse duration, AECLKIN high  
Pulse duration, AECLKIN low  
Transition time, AECLKIN  
Period Jitter, AECLKIN  
2.7  
ns  
2
ns  
tj(EKI)  
0.02E(4) ns  
(1) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.  
(2) E = the EMIF input clock (AECLKIN or SYSCLK7) period in ns for EMIFA.  
(3) Minimum AECLKIN cycle times must be met, even when AECLKIN is generated by an internal clock source. Minimum AECLKIN times  
are based on internal logic speed; the maximum usable speed of the EMIF may be lower due to AC timing requirements.  
(4) This timing applies only when AECLKIN is used for EMIFA.  
102  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
1
5
4
2
AECLKIN  
3
4
Figure 4-31. EMIFA AECLKIN Timing  
Table 4-43. EMIFA AECLKOUT Switching Characteristics(1)(2)(3)(4)  
(see Figure 4-32)  
NO.  
PARAMETER  
MIN  
E - 0.7  
MAX UNIT  
E + 0.7 ns  
1
2
3
4
5
6
tc(EKO)  
Cycle time, AECLKOUT  
tw(EKOH)  
tw(EKOL)  
Pulse duration, AECLKOUT high  
Pulse duration, AECLKOUT low  
Transition time, AECLKOUT  
EH - 0.7  
EL - 0.7  
EH + 0.7 ns  
EL + 0.7 ns  
tt(EKO)  
1
8
8
ns  
ns  
ns  
td(EKIH-EKOH)  
td(EKIL-EKOL)  
Delay time, AECLKIN high to AECLKOUT high  
Delay time, AECLKIN low to AECLKOUT low  
1
1
(1) Over Recommended Operating Conditions.  
(2) E = the EMIF input clock (AECLKIN or SYSCLK7) period in ns for EMIFA.  
(3) The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.  
(4) EH is the high period of E (EMIF input clock period) in ns and EL is the low period of E (EMIF input clock period) in ns for EMIFA.  
AECLKIN  
1
6
4
5
2
3
4
AECLKOUT1  
Figure 4-32. EMIFA AECLKOUT Timing  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
103  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.7.3.2 Asynchronous Memory Timing  
This section describes the asynchronous EMIFA Read, Write, EM_WAIT Read and EM_WAIT Write timing  
requirements and switching characteristics.  
Table 4-44. EMIFA Asynchronous Memory Read Switching Characteristics(1)(2)  
(see Figure 4-33)  
NO.  
PARAMETER  
MIN  
(RS + RST + RH (RS + RST + RH  
+ 3) × E - 1 + 3) × E + 1  
(RS + RST + RH (RS + RST + RH  
MAX UNIT  
EMIF read cycle time when ew = 0. Meaning not in extended wait  
mode  
ns  
ns  
3
tc(ACEL-read)  
EMIF read cycle time when ew = 1. Meaning extended wait mode  
enabled  
+ 3) × E - 1  
+ 3) × E + 1  
Output setup time from ACEn low to AAOE/ASOE low. SS = 0, not in  
select strobe mode  
tosu(ACEL-  
AAOEL)  
4
5
(RS+1) × E-1.5  
ns  
ns  
Output setup time from ACEn low to AAOE/ASOE low. SS = 1, in  
select strobe mode  
Output hold time from AAOE/ASOE high to ACEn high. SS = 0, not in  
select strobe mode  
toh(AAOEH-  
ACEH)  
(RS+1) × E-1.9  
Output hold time from AAOE/ASOE high to ACEn high. SS = 1, in  
select strobe mode  
6
7
tosu(ABAV-  
AAOEL)  
Output setup time from ABA valid to AAOE/ASOE low  
(RS+1) × E-1.5  
(RS+1) × E-1.9  
ns  
ns  
Output hold time from AAOE/ASOE high to BA invalid  
toh(AAOEH-  
ABAV)  
8
9
tosu(AEAV-OEL) Output setup time from AEA valid to AAOE/ASOE low  
(RS+1) × E-1.5  
(RS+1) × E-1.9  
ns  
ns  
toh(AAOEH-  
Output hold time from AAOE/ASOE high to AEA invalid  
AEAV)  
AAOE/ASOE active time low, when ew = 0, extended wait mode is  
disabled  
10 tw(AAOEL)  
(RST+1) × E - 6  
(RST+1) × E + 6 ns  
AAOE/ASOE active time low, when ew = 1, extended wait mode is  
enabled  
(1) E = the EMIF input clock (AECLKIN or SYSCLK7) period in ns for EMIFA.  
(2) RS, RST, RH, WS, WST, WH, and TA are all based on the memory mapped register values. This means that the actual value listed  
here is the value in EMIF cycles - 1.  
Example: For read setup of 1 EMIF cycle, RS = 0.  
Table 4-45. EMIFA Asynchronous Memory Read Timing Requirements  
(see Figure 4-33)  
NO.  
MIN  
MAX UNIT  
12 tsu(AEDV-  
Input setup time from AED valid to AAOE/ASOE high  
6.5  
ns  
AAOEH)  
13 th(AAOEH-AEDV) Input hold time from AAOE/ASOE high to AED invalid  
0
ns  
104  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
1
3
ACE[5:2]  
AR/W  
ABA[1:0]  
AEA[19:0]  
4
6
8
5
7
9
10  
AAOE  
12  
13  
AED[63:0]  
AAWE  
Figure 4-33. EMIFA Asynchronous Memory Read Timing  
Table 4-46. EMIFA Asynchronous Memory Write Timing Requirements(1)(2)  
(see Figure 4-34)  
NO.  
MIN  
MAX UNIT  
(WS + WST  
WH + TA + 4) + WH + TA + ns  
EMIF write cycle time when ew = 0, extended wait mode  
(WS + WST +  
15 tc(ACEL-write)  
EMIF write cycle time when ew = 1, extended wait mode is enabled.  
× E - 1  
4) × E + 1  
Output setup time from ACEn low to ASWE/AAWE low. SS = 0, not in select  
strobe mode  
tosu(ACEL-  
AAWEL)  
(WS+1) × E-  
1.7  
16  
ns  
ns  
Output setup time from ACEn low to ASWE/AAWE low. SS = 1, in select  
strobe mode  
Output hold time from ASWE/AAWE high to ACEn high. SS = 0, not in select  
strobe mode  
toh(AAWEH-  
ACEH)  
(WS+1) × E-  
1.8  
17  
Output hold time from ASWE/AAWE high to ACEn high. SS = 1, in select  
strobe mode  
Output setup time from AR/W valid to ASWE/AAWE low  
Output hold time from ASWE/AAWE high to AR/W invalid  
Output setup time from BA valid to ASWE/AAWE low  
Output hold time from ASWE/AAWE high to ABA invalid  
Output setup time from AEA valid to ASWE/AAWE low  
Output hold time from ASWE/AAWE high to AEA invalid  
(WS+1) × E-  
1.7  
18 tosu(WV-AAWEL)  
19 toh(AAWEH-WIV)  
tosu(ABAV-  
ns  
ns  
ns  
ns  
ns  
ns  
(WS+1) × E-  
1.8  
(WS+1) × E-  
1.7  
20  
21  
22  
23  
AAWEL)  
toh(AAWEH-  
ABAIV)  
(WS+1) × E-  
1.8  
tosu(AEAV-  
AAWEL)  
(WS+1) × E-  
1.7  
toh(AAWEH-  
AEAIV)  
(WS+1) × E-  
1.8  
ASWE/AAWE active time low, when ew = 0. Extended wait mode is disabled.  
ASWE/AAWE active time low, when ew = 1. Extended wait mode is enabled.  
Output setup time from AED valid to ASWE/AAWE low  
(WST+1) × E -  
5.8  
24 tw(AAWEL)  
ns  
tosu(AEDV-  
(WS+1) × E-  
5.0  
26  
27  
ns  
ns  
AAWEL)  
toh(AAWEH-  
Output hold time from ASWE/AAWE high to AED invalid  
(WS+1) × E-  
2.5  
AEDIV)  
(1) E = the EMIF input clock (AECLKIN or SYSCLK7) period in ns for EMIFA.  
(2) RS, RST, RH, WS, WST, WH, and TA are all based on the memory mapped register values. This means that the actual value listed  
here is the value in EMIF cycles - 1.  
Example: For read setup of 1 EMIF cycle, RS = 0.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
105  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
1
15  
ACE[5:2]  
AR/W  
ABA[1:0]  
AEA[19:0]  
16  
18  
20  
22  
17  
19  
21  
23  
24  
AAWE  
26  
27  
AED[63:0]  
AAOE  
Figure 4-34. EMIFA Asynchronous Memory Write Timing  
Table 4-47. EMIFA EM_Wait Read Timing Requirements(1)  
(see Figure 4-35)  
NO.  
MIN  
MAX UNIT  
2E  
2
tw(AARDY)  
Pulse duration, AARDY assertion and deassertion minimum time  
Setup time, AARDY asserted before AAOE high  
14 td(AARDY-AAOEH)  
4E + 6  
(1) E = the EMIF input clock (AECLKIN or SYSCLK7) period in ns for EMIFA.  
Table 4-48. EMIFA EM_Wait Read Switching Characteristics(1)  
(see Figure 4-35)  
NO.  
PARAMETER  
MIN  
MAX UNIT  
11 td(AARDYH-AAOEH)  
Delay time from AARDY deasserted to AAOE/ASOE high  
4E + 6  
(1) E = the EMIF input clock (AECLKIN or SYSCLK7) period in ns for EMIFA.  
Setup  
Strobe  
Extended Due to EM_WAIT  
Strobe  
Hold  
ACE[5:2]  
ABA[1:0]  
AEA[19:0]  
AED[63:0]  
AAOE  
14  
11  
2
2
Deasserted  
Asserted  
AARDY  
Figure 4-35. EMIFA EM_Wait Read Timing  
106  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-49. EMIFA EM_Wait Write Timing Requirements  
(see Figure 4-36)  
NO.  
MIN  
Pulse duration, AARDY assertion and deassertion minimum time  
Delay time from AARDY deasserted to ASWE/AAWE high  
MAX  
UNIT  
2
tw(AARDY)  
2E  
25 td(AARDYH-  
AAWEH)  
4E + 6.0  
4E + 6.0  
28 tsu(AARDY-  
AAWEH)  
Setup time, AARDY asserted before ASWE/AAWE high  
Setup  
Strobe  
Extended Due to EM_WAIT  
Strobe  
Hold  
ACE[5:2]  
ABA[1:0]  
AEA[19:0]  
AED[63:0]  
AAWE  
28  
25  
2
2
Deasserted  
Asserted  
AARDY  
Figure 4-36. EMIFA EM_Wait Write Timing  
4.8.7.3.3 Programmable Synchronous Interface Timing  
This section describes the synchronous EMIFA Read and Write timing requirements.  
The following parameters are programmable via the EMIFA CE Configuration registers (CEnCFG) (see  
Table 4-51) and via the EMIFA Chip Select n Configuration Register (CESECn):  
Read latency (R_LTNCY): 1-, 2-, or 3-cycle read latency  
Write latency (W_LTNCY): 0-, 1-, 2-, or 3-cycle write latency  
ACEx assertion length (CE_EXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes  
inactive after the final command has been issued (CE_EXT = 0). For synchronous FIFO interface,  
ACEx is active when ASOE is active (CE_EXT = 1).  
Function of ASADS/ASRE (R_ENABLE): For standard SBSRAM or ZBT SRAM interface,  
ASADS/ASRE acts as ASADS with deselect cycles (R_ENABLE = 0). For FIFO interface,  
ASADS/ASRE acts as SRE with NO deselect cycles (R_ENABLE = 1).  
Figure 4-37, Figure 4-38, and Figure 4-39 are given as examples diagrams depicting some of the  
programmable options.  
In Figure 4-37, R_LTNCY = 2, CE_EXT = 0, R_ENABLE = 0, and SSEL = 1.  
In Figure 4-38, W_LTNCY = 0, CE_EXT = 0, R_ENABLE = 0, and SSEL = 1.  
In Figure 4-39, W_LTNCY = 1, CE_EXT = 0, R_ENABLE = 0, and SSEL = 1.  
Table 4-50. Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module  
(see Figure 4-37)  
NO.  
6
MIN  
2
MAX UNIT  
tsu(EDV-EKOH)  
th(EKOH-EDV)  
Setup time, read AEDx valid before AECLKOUT high  
Hold time, read AEDx valid after AECLKOUT high  
ns  
ns  
7
1.5  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
107  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-51. Switching Characteristics for Programmable Synchronous Interface Cycles for EMIFA  
Module(1)  
(see Figure 4-37, Figure 4-38, and Figure 4-39)  
NO.  
1
PARAMETER  
MIN  
MAX UNIT  
4.9 ns  
4.9 ns  
ns  
td(EKOH-CEV)  
td(EKOH-BEV)  
td(EKOH-BEIV)  
td(EKOH-EAV)  
td(EKOH-EAIV)  
td(EKOH-ADSV)  
td(EKOH-OEV)  
Delay time, AECLKOUT high to ACEx valid  
Delay time, AECLKOUT high to ABEx valid  
Delay time, AECLKOUT high to ABEx invalid  
Delay time, AECLKOUT high to AEAx valid  
Delay time, AECLKOUT high to AEAx invalid  
Delay time, AECLKOUT high to ASADS/ASRE valid  
Delay time, AECLKOUT high to ASOE valid  
Delay time, AECLKOUT high to AEDx valid  
Delay time, AECLKOUT high to AEDx invalid  
Delay time, AECLKOUT high to ASWE valid  
1.3  
2
3
1.3  
4
4.9 ns  
ns  
5
1.3  
1.3  
1.3  
8
4.9 ns  
4.9 ns  
5.2 ns  
ns  
9
10 td(EKOH-EDV)  
11 td(EKOH-EDIV)  
12 td(EKOH-WEV)  
1.3  
1.3  
4.9 ns  
(1) Over recommended operating conditions.  
READ latency = 2  
AECLKOUT  
1
2
1
3
5
ACEx  
ABE[7:0]  
BE1  
BE2  
BE3  
BE4  
4
AEA[19:0]/ABA[1:0]  
AED[63:0]  
EA1  
EA2  
EA3  
EA4  
7
6
Q1  
Q2  
Q3  
Q4  
8
9
8
(B)  
ASADS/ASRE  
9
(B)  
AAOE/ASOE  
(B)  
AAWE/ASWE  
Figure 4-37. EMIFA Programmable Synchronous Interface Read Timing (With Read Latency = 2)(A)  
(A) In this figure R_LTNCY = 2, CE_EXT = 0, R_ENABLE = 0, and SSEL = 1.  
(B) AAOE/ASOE, and AAWE/ASWE operate as ASOE, and ASWE, respectively, during programmable synchronous interface accesses.  
108  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Write Latency = 1  
AECLKOUT  
1
1
3
ACEx  
2
BE1  
BE2  
EA2  
BE3  
EA3  
Q2  
BE4  
ABE[7:0]  
5
4
AEA[19:0]/ABA[1:0]  
AED[63:0]  
EA1  
10  
EA4  
Q3  
10  
11  
8
Q1  
Q4  
8
(B)  
ASADS/ASRE  
(B)  
AAOE/ASOE  
12  
12  
(B)  
AAWE/ASWE  
Figure 4-38. EMIFA Programmable Synchronous Interface Write Timing (With Write Latency = 0)(A)  
(A) In this figure W_LTNCY = 0, CE_EXT = 0, R_ENABLE = 0, and SSEL = 1.  
(B) AAOE/ASOE, and AAWE/ASWE operate as ASOE, and ASWE, respectively, during programmable synchronous interface accesses.  
Write Latency = 1  
AECLKOUT  
1
1
3
ACEx  
2
BE1  
BE2  
EA2  
BE3  
EA3  
Q2  
BE4  
EA4  
Q3  
ABE[7:0]  
5
4
AEA[19:0]/ABA[1:0]  
AED[63:0]  
EA1  
10  
10  
11  
8
Q1  
Q4  
8
(B)  
ASADS/ASRE  
(B)  
AAOE/ASOE  
12  
12  
(B)  
AAWE/ASWE  
Figure 4-39. EMIFA Programmable Synchronous Interface Write Timing (With Write Latency = 1)(A)  
(A) In this figure W_LTNCY = 1, CE_EXT = 0, R_ENABLE = 0, and SSEL = 1.  
(B) AAOE/ASOE, and AAWE/ASWE operate as ASOE, and ASWE, respectively, during programmable synchronous interface accesses.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
109  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.8 I2C Peripheral  
The inter-integrated circuit (I2C) module provides an interface between a C64x+ DSP and other devices  
compliant with Philips Semiconductors Inter-IC bus (I2C bus) specification version 2.1 and connected by  
way of an I2C bus. External components attached to this 2-wire serial bus can transmit/receive up to 8-bit  
data to/from the DSP through the I2C module.  
4.8.8.1 I2C Device-Specific Information  
The C6457 device includes an I2C peripheral module. NOTE: when using the I2C module, ensure there  
are external pullup resistors on the SDA and SCL pins.  
The I2C modules on the C6457 may be used by the DSP to control local peripheral ICs (DACs, ADCs,  
etc.) or may be used to communicate with other controllers in a system or to implement a user interface.  
The I2C port supports:  
Compatible with Philips I2C specification revision 2.1 (January 2000)  
Fast mode up to 400 Kbps (no fail-safe I/O buffers)  
Noise filter to remove noise 50 ns or less  
7-bit and 10-bit device addressing modes  
Multi-master (transmit/receive) and slave (transmit/receive) functionality  
Events: DMA, interrupt, or polling  
Slew-rate limited open-drain output buffers  
Figure 4-40 shows a block diagram of the I2C module.  
110  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
I2C Module  
Clock  
Prescale  
Peripheral Clock  
(CPU/6)  
I2CPSC  
Control  
Bit Clock  
Generator  
Own  
Address  
I2COAR  
I2CSAR  
I2CMDR  
I2CCNT  
I2CEMDR  
SCL  
Noise  
Filter  
I2C Clock  
I2CCLKH  
I2CCLKL  
Slave  
Address  
Mode  
Data  
Count  
Transmit  
I2CXSR  
Transmit  
Shift  
Extended  
Mode  
Transmit  
Buffer  
I2CDXR  
SDA  
Interrupt/DMA  
I2CIMR  
Noise  
Filter  
I2C Data  
Interrupt  
Mask/Status  
Receive  
I2CDRR  
Receive  
Buffer  
Interrupt  
Status  
I2CSTR  
Interrupt  
Vector  
I2CRSR  
I2CIVR  
Receive  
Shift  
Shading denotes control/status registers.  
Figure 4-40. I2C Module Block Diagram  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
111  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.8.2 I2C Peripheral Register Description(s)  
Table 4-52. I2C Registers  
HEX ADDRESS RANGE  
02B0 4000  
ACRONYM  
ICOAR  
ICIMR  
ICSTR  
ICCLKL  
ICCLKH  
ICCNT  
ICDRR  
ICSAR  
ICDXR  
ICMDR  
ICIVR  
ICEMDR  
ICPSC  
ICPID1  
ICPID2  
-
REGISTER NAME  
I2C own address register  
I2C interrupt mask/status register  
I2C interrupt status register  
I2C clock low-time divider register  
I2C clock high-time divider register  
I2C data count register  
02B0 4004  
02B0 4008  
02B0 400C  
02B0 4010  
02B0 4014  
02B0 4018  
I2C data receive register  
02B0 401C  
I2C slave address register  
I2C data transmit register  
I2C mode register  
I2C interrupt vector register  
I2C extended mode register  
I2C prescaler register  
I2C peripheral identification register 1 [Value: 0x0000 0105]  
I2C peripheral identification register 2 [Value: 0x0000 0005]  
Reserved  
02B0 4020  
02B0 4024  
02B0 4028  
02B0 402C  
02B0 4030  
02B0 4034  
02B0 4038  
02B0 403C - 02B0 405C  
02B0 4060 - 02B3 407F  
02B0 4080 - 02B3 FFFF  
-
Reserved  
-
Reserved  
112  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.8.3 I2C Electrical Data/Timing  
4.8.8.3.1 Inter-Integrated Circuits (I2C) Timing  
Table 4-53. I2C Timing Requirements(1)  
(see Figure 4-41)  
STANDARD MODE  
FAST MODE  
NO.  
MIN  
MAX  
MIN  
MAX UNIT  
1
2
tc(SCL)  
Cycle time, SCL  
10  
2.5  
us  
Setup time, SCL high before SDA low (for a repeated START  
condition)  
tsu(SCLH-SDAL)  
4.7  
4
0.6  
0.6  
us  
us  
3
Hold time, SCL low after SDA low (for a START and a  
repeated START condition)  
th(SDAL-SCLL)  
4
5
6
7
8
tw(SCLL)  
tw(SCLH)  
Pulse duration, SCL low  
Pulse duration, SCL high  
4.7  
4
1.3  
0.6  
100(2)  
0(3)  
us  
us  
ns  
tsu(SDAV-SCLH) Setup time, SDA valid before SCL high  
th(SCLL-SDAV)  
Hold time, SDA valid after SCL low (For I2C bus devices)  
250  
0(3)  
3.45  
0.9(4)  
us  
Pulse duration, SDA high between STOP and START  
conditions  
tw(SDAH)  
4.7  
1.3  
us  
9
Rise time, SDA  
Rise time, SCL  
Fall time, SDA  
Fall time, SCL  
20 +  
0.1Cb  
tr(SDA)  
tr(SCL)  
tf(SDA)  
tf(SCL)  
1000  
1000  
300  
300  
300  
300  
300  
ns  
ns  
ns  
ns  
(5)  
10  
11  
12  
20 +  
(5)  
0.1Cb  
20 +  
(5)  
0.1Cb  
20 +  
300  
(5)  
0.1Cb  
13 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition)  
4
0.6  
0
us  
ns  
pF  
14 tw(SP)  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
(5)  
15 Cb  
400  
400  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down  
(2) A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH) 250 ns must then  
be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch  
the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH) = 1000 + 250 = 1250 ns  
(according to the Standard-mode I2C-Bus Specification) before the SCL line is released.  
(3) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the  
undefined region of the falling edge of SCL.  
(4) The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal.  
(5) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.  
11  
9
SDA  
SCL  
6
8
14  
4
13  
5
10  
1
12  
3
2
7
3
Stop  
Start  
Repeated  
Start  
Stop  
Figure 4-41. I2C Receive Timing  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
113  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-54. I2C Switching Characteristics(1)  
(see Figure 4-42)  
STANDARD MODE  
FAST MODE  
UNIT  
NO.  
PARAMETER  
Cycle time, SCL  
MIN  
MAX  
MIN  
MAX  
S
16 tc(SCL)  
10  
2.5  
ms  
Setup time, SCL high to SDA low (for a repeated START  
condition)  
17 tsu(SCLH-SDAL)  
4.7  
4
0.6  
0.6  
ms  
ms  
Hold time, SDA low after SCL low (for a START and a  
repeated START condition)  
18 th(SDAL-SCLL)  
19 tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
ms  
ms  
ns  
20 tw(SCLH)  
Pulse duration, SCL high  
21 td(SDAV-SDLH)  
22 tv(SDLL-SDAV)  
Delay time, SDA valid to SCL high  
Valid time, SDA valid after SCL low (For I2C bus devices)  
250  
0
0.9 ms  
Pulse duration, SDA high between STOP and START  
conditions  
23 tw(SDAH)  
4.7  
1.3  
ms  
(1)  
24 tr(SDA)  
25 tr(SCL)  
26 tf(SDA)  
27 tf(SCL)  
Rise time, SDA  
Rise time, SCL  
Fall time, SDA  
Fall time, SCL  
1000  
1000  
300  
20 + 0.1Cb  
300 ns  
300 ns  
300 ns  
300 ns  
ms  
(1)  
(1)  
(1)  
20 + 0.1Cb  
20 + 0.1Cb  
20 + 0.1Cb  
300  
28 td(SCLH-SDAH) Delay time, SCL high to SDA high (for STOP condition)  
29 Cp  
Capacitance for each I2C pin  
4
0.6  
10  
10 pF  
(1) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.  
26  
24  
SDA  
21  
23  
19  
28  
20  
25  
SCL  
16  
27  
18  
17  
22  
18  
Stop  
Start  
Repeated  
Start  
Stop  
Figure 4-42. I2C Transmit Timing  
114  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.9 Host-Port Interface (HPI) Peripheral  
4.8.9.1 HPI Device-Specific Information  
The C6457 device includes a user-configurable 16-bit or 32-bit Host-port interface (HPI16/HPI32). The  
HPIWIDTH pin allows the user configuration of the HPI as a 16-bit or 32-bit peripheral.  
Table 4-55. HPIWIDTH Selection  
CONFIGURATION PIN SETTING  
HPIWIDTH  
PERIPHERAL FUNCTION SELECTED  
HPI DATA LOWER  
HPI DATA UPPER  
Hi-Z  
0 (default is HPI16 mode)  
1 (HPI32 mode)  
Enabled  
Enabled  
Enabled  
Software handshaking via the HRDY bit of the Host Port Control Register (HPIC) is not supported on the  
C6457.  
An HPI boot is terminated using a DSP interrupt. The DSP interrupt is registered in bit 0 (channel 0) of the  
EDMA Event Register (ER). This event must be cleared by software before triggering transfers on DMA  
channel 0.  
4.8.9.2 HPI Peripheral Register Description(s)  
Table 4-56. HPI Control Registers  
HEX ADDRESS  
RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
0288 0000  
-
Reserved  
The CPU has read/write access to the  
HPI power and emulation management register PWREMU_MGMT register; the Host does not  
have any access to this register.  
PWREMU  
_MGMT  
0288 0004  
0288 0008 -  
0288 0024  
-
Reserved  
0288 0028  
0288 002C  
-
-
Reserved  
Reserved  
The Host and the CPU have read/write  
0288 0030  
HPIC  
HPI control register  
access to the HPIC register.(1)  
HPIA  
The Host has read/write access to the HPIA  
registers. The CPU has only read access to  
the HPIA registers.  
0288 0034  
0288 0038  
(HPIAW)(2)  
HPI address register (Write)  
HPIA (HPIAR)(2) HPI address register (Read)  
0288 000C -  
028B 007F  
-
-
Reserved  
Reserved  
0288 0080 -  
028B FFFF  
(1) The CPU can write 1 to the HINT bit to generate an interrupt to the host and it can write 1 to the DSPINT bit to clear/acknowledge an  
interrupt from the host.  
(2) There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that  
HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the  
perspective of the host. The CPU can access HPIAW and HPIAR independently. For details about the HPIA registers and their modes,  
see the TMS320C6457 DSP Host Port Interface (HPI) User's Guide (SPRUGK7).  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
115  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.9.3 HPI Electrical Data/Timing  
Table 4-57. Host-Port Interface Timing Requirements(1)(2)  
(see Table 4-58 and see Figure 4-43, Figure 4-44, Figure 4-45, Figure 4-46, Figure 4-47, Figure 4-48, Figure 4-49, and  
Figure 4-50)  
NO.  
MIN  
5
MAX UNIT  
9
tsu(HASL-HSTBL)  
Setup time, HAS low before HSTROBE low  
Hold time, HAS low after HSTROBE low  
Setup time, select signals(3) valid before HAS low  
Hold time, select signals(3) valid after HAS low  
Pulse duration, HSTROBE low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10 th(HSTBL-HASL)  
11 tsu(SELV-HASL)  
12 th(HASL-SELV)  
13 tw(HSTBL)  
2
5
5
15  
2M  
5
14 tw(HSTBH)  
Pulse duration, HSTROBE high between consecutive accesses  
Setup time, select signals(3) valid before HSTROBE low  
Hold time, select signals(3) valid after HSTROBE low  
Setup time, host data valid before HSTROBE high  
Hold time, host data valid after HSTROBE high  
Setup time, HCS low before HSTROBE low  
15 tsu(SELV-HSTBL)  
16 th(HSTBL-SELV)  
17 tsu(HDV-HSTBH)  
18 th(HSTBH-HDV)  
37 tsu(HCSL-HSTBL)  
5
5
1
0
Hold time, HSTROBE low after HRDY low. HSTROBE should not be  
inactivated until HRDY is active (low); otherwise, HPI writes will not  
complete properly.  
38 th(HRDYL-HSTBL)  
1.1  
ns  
(1) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(2) M = SYSCLK5 period = 6 ÷ CPU clock frequency in ns. For example, when running parts at 1000 MHz, use M = 6 ns.  
(3) Select signals include: HCNTL[1:0] and HR/W. For HPI16 mode only, select signals also include HHWIL.  
Table 4-58. Host-Port Interface Switching Characteristics(1)(2)  
(see Table 4-57 and see Figure 4-43, Figure 4-44, Figure 4-45, Figure 4-46, Figure 4-47, Figure 4-48, Figure 4-49, and  
Figure 4-50)  
NO. PARAMETER  
MIN  
MAX UNIT  
Case 1. HPIC or HPIA read  
1
15  
Case 2. HPID read with no auto-increment(3)  
9 × M + 20  
Delay time, HSTROBE low to DSP  
data valid  
Case 3. HPID read with auto-increment and  
read FIFO initially empty(3)  
1
td(HSTBL-HDV)  
ns  
9 × M + 20  
Case 4. HPID read with auto-increment and  
data previously prefetched into the read FIFO  
1
15  
4
tdis(HSTBH-  
HDV)  
2
3
4
Disable time, HD high-impedance from HSTROBE high  
1
3
ns  
ten(HSTBL-HD) Enable time, HD driven from HSTROBE low  
15 ns  
12 ns  
td(HSTBL-  
HRDYH)  
Delay time, HSTROBE low to HRDY high  
td(HSTBH-  
HRDYH)  
5
6
Delay time, HSTROBE high to HRDY high  
12 ns  
Case 1. HPID read with no auto-increment(3)  
10 × M + 20  
td(HSTBL-  
HRDYL)  
Delay time, HSTROBE low to HRDY  
low  
ns  
Case 2. HPID read with auto-increment and  
read FIFO initially empty(3)  
10 × M + 20  
td(HDV-  
HRDYL)  
7
Delay time, HD valid to HRDY low  
0
ns  
ns  
Case 1. HPIA write(3)  
Case 2. HPID write with no auto-increment(3)  
5 × M + 20  
5 × M + 20  
td(HSTBH-  
HRDYL)  
Delay time, HSTROBE high to  
HRDY low  
34  
td(HSTBL-  
HRDYL)  
35  
36  
Delay time, HSTROBE low to HRDY low for HPIA write and FIFO not empty(3)  
40 × M + 20 ns  
12 ns  
td(HASL-  
HRDYH)  
Delay time, HAS low to HRDY high  
(1) M = SYSCLK5 period = 6 ÷ CPU clock frequency in ns. For example, when running parts at 1000 MHz, use M = 6 ns.  
(2) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(3) Assumes the HPI is accessing L2/L1 memory and no other master is accessing the same memory location.  
116  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
HCS  
HAS  
HCNTL[1:0]  
HR/W  
HHWIL  
13  
16  
13  
16  
15  
15  
37  
37  
14  
(A)  
HSTROBE  
3
3
1
1
2
2
HD[15:0]  
38  
4
7
6
(B)  
HRDY  
Figure 4-43. HPI16 Read Timing (HAS Not Used, Tied High)  
(A) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(B) Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and  
the state of the FIFO, transitions on HRDY may or may not occur. For more detailed information on the HPI peripheral, see the  
TMS320C6457 DSP Host Port Interface (HPI) User's Guide (SPRUGK7).  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
117  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
HCS  
HAS  
12  
11  
12  
11  
HCNTL[1:0]  
12  
11  
12  
11  
HR/W  
12  
11  
12  
11  
HHWIL  
10  
9
10  
9
37  
13  
13  
37  
14  
(A)  
HSTROBE  
1
3
1
3
2
2
HD[15:0]  
7
38  
36  
6
(B)  
HRDY  
Figure 4-44. HPI16 Read Timing (HAS Used)  
(A) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(B) Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and  
the state of the FIFO, transitions on HRDY may or may not occur. For more detailed information on the HPI peripheral, see the  
TMS320C6457 DSP Host Port Interface (HPI) User's Guide (SPRUGK7).  
118  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
HCS  
HAS  
HCNTL[1:0]  
HR/W  
HHWIL  
16  
13  
16  
15  
13  
37  
15  
37  
14  
(A)  
HSTROBE  
18  
18  
17  
17  
HD[15:0]  
34  
38  
4
34  
5
35  
5
(B)  
HRDY  
Figure 4-45. HPI16 Write Timing (HAS Not Used, Tied High)  
(A) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(B) Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and  
the state of the FIFO, transitions on HRDY may or may not occur. For more detailed information on the HPI peripheral, see the  
TMS320C6457 DSP Host Port Interface (HPI) User's Guide (SPRUGK7).  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
119  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
HCS  
HAS  
12  
11  
12  
11  
HCNTL[1:0]  
12  
11  
12  
11  
HR/W  
12  
11  
12  
11  
14  
HHWIL  
9
10  
10  
9
37  
37  
13  
(A)  
HSTROBE  
13  
18  
18  
17  
17  
HD[15:0]  
34  
35  
34  
5
36  
5
38  
(B)  
HRDY  
Figure 4-46. HPI16 Write Timing (HAS Used)  
(A) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(B) Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and  
the state of the FIFO, transitions on HRDY may or may not occur. For more detailed information on the HPI peripheral, see the  
TMS320C6457 DSP Host Port Interface (HPI) User's Guide (SPRUGK7).  
120  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
HAS (input)  
16  
15  
HCNTL[1:0] (input)  
HR/W (input)  
13  
(A)  
HSTROBE (input)  
37  
HCS (input)  
1
2
3
HD[31:0] (output)  
38  
7
6
4
(B)  
HRDY (output)  
Figure 4-47. HPI32 Read Timing (HAS Not Used, Tied High)  
(A) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(B) Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and  
the state of the FIFO, transitions on HRDY may or may not occur. For more detailed information on the HPI peripheral, see the  
TMS320C6457 DSP Host Port Interface (HPI) User's Guide (SPRUGK7).  
(C) The timing tw(HSTBH), HSTROBE high pulse duration, must be met between consecutive HPI accesses in HPI32 mode.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
121  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
10  
HAS (input)  
12  
11  
HCNTL[1:0] (input)  
HR/W (input)  
9
13  
(A)  
HSTROBE (input)  
37  
HCS (input)  
1
2
3
HD[31:0] (output)  
7
38  
6
36  
(B)  
HRDY (output)  
Figure 4-48. HPI32 Read Timing (HAS Used)  
(A) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(B) Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and  
the state of the FIFO, transitions on HRDY may or may not occur. For more detailed information on the HPI peripheral, see the  
TMS320C6457 DSP Host Port Interface (HPI) User's Guide (SPRUGK7).  
(C) The timing tw(HSTBH), HSTROBE high pulse duration, must be met between consecutive HPI accesses in HPI32 mode.  
122  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
HAS (input)  
16  
15  
HCNTL[1:0]  
(input)  
HR/W (input)  
13  
(A)  
HSTROBE  
(input)  
37  
HCS (input)  
18  
17  
HD[31:0] (input)  
38  
34  
35  
5
4
(B)  
HRDY (output)  
Figure 4-49. HPI32 Write Timing (HAS Not Used, Tied High)  
(A) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(B) Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and  
the state of the FIFO, transitions on HRDY may or may not occur. For more detailed information on the HPI peripheral, see the  
TMS320C6457 DSP Host Port Interface (HPI) User's Guide (SPRUGK7).  
(C) The timing tw(HSTBH), HSTROBE high pulse duration, must be met between consecutive HPI accesses in HPI32 mode.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
123  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
10  
HAS (input)  
12  
11  
HCNTL[1:0]  
(input)  
HR/W (input)  
9
13  
(A)  
HSTROBE  
(input)  
37  
HCS (input)  
18  
17  
HD[31:0] (input)  
35  
34  
38  
36  
5
(B)  
HRDY (output)  
Figure 4-50. HPI32 Write Timing (HAS Used)  
(A) HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
(B) Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and  
the state of the FIFO, transitions on HRDY may or may not occur. For more detailed information on the HPI peripheral, see the  
TMS320C6457 DSP Host Port Interface (HPI) User's Guide (SPRUGK7).  
(C) The timing tw(HSTBH), HSTROBE high pulse duration, must be met between consecutive HPI accesses in HPI32 mode.  
124  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.10 Multichannel Buffered Serial Port (McBSP)  
The McBSP provides these functions:  
Full-duplex communication  
Double-buffered data registers, which allow a continuous data stream  
Independent framing and clocking for receive and transmit  
Direct interface to industry-standard codecs, analog interface chips (AICs), and other serially  
connected analog-to-digital (A/D) and digital-to-analog (D/A) devices  
External shift clock or an internal, programmable frequency shift clock for data transfer  
For more detailed information on the McBSP peripheral, see the TMS320C6457 DSP Multichannel  
Buffered Serial Port (McBSP) Reference Guide (SPRUGK8).  
4.8.10.1 McBSP Device-Specific Information  
The CLKS signal for MCBSP0 and MCBSP1 can be sourced from an external pin or by the PLL1  
controller; for details, see Section 4.8.4. If the clock from the PLL1 controller is used, the clock is shared  
between the two McBSPs.  
4.8.10.1.1 McBSP Peripheral Register Description(s)  
Table 4-59. McBSP 0 Registers  
HEX ADDRESS RANGE  
028C 0000  
ACRONYM  
DRR0  
REGISTER NAME  
McBSP0 Data Receive Register via Configuration Bus(1)  
McBSP0 Data Receive Register via EDMA3 Bus  
McBSP0 Data Transmit Register via Configuration Bus  
McBSP0 Data Transmit Register via EDMA Bus  
McBSP0 Serial Port Control Register  
3000 0000  
DRR0  
028C 0004  
DXR0  
3000 0010  
DXR0  
028C 0008  
SPCR0  
RCR0  
028C 000C  
028C 0010  
McBSP0 Receive Control Register  
XCR0  
McBSP0 Transmit Control Register  
028C 0014  
SRGR0  
MCR0  
McBSP0 Sample Rate Generator register  
028C 0018  
McBSP0 Multichannel Control Register  
028C 001C  
028C 0020  
RCERE00  
XCERE00  
PCR0  
McBSP0 Enhanced Receive Channel Enable Register 0 Partition A/B  
McBSP0 Enhanced Transmit Channel Enable Register 0 Partition A/B  
McBSP0 Pin Control Register  
028C 0024  
028C 0028  
RCERE10  
XCERE10  
RCERE20  
XCERE20  
RCERE30  
XCERE30  
-
McBSP0 Enhanced Receive Channel Enable Register 1 Partition C/D  
McBSP0 Enhanced Transmit Channel Enable Register 1 Partition C/D  
McBSP0 Enhanced Receive Channel Enable Register 2 Partition E/F  
McBSP0 Enhanced Transmit Channel Enable Register 2 Partition E/F  
McBSP0 Enhanced Receive Channel Enable Register 3 Partition G/H  
McBSP0 Enhanced Transmit Channel Enable Register 3 Partition G/H  
Reserved  
028C 002C  
028C 0030  
028C 0034  
028C 0038  
028C 003C  
028C 0040 - 028F FFFF  
(1) The CPU and EDMA3 controller can only read the register, they cannot write to it.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
125  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-60. McBSP 1 Registers  
HEX ADDRESS RANGE  
0290 0000  
ACRONYM  
REGISTER NAME  
DRR1  
DRR1  
McBSP1 Data Receive Register via Configuration Bus(1)  
McBSP1 Data Receive Register via EDMA bus  
McBSP1 Data Transmit Register via configuration bus  
McBSP1 Data Transmit Register via EDMA bus  
McBSP1 serial port control register  
3400 0000  
0290 0004  
DXR1  
3400 0010  
DXR1  
0290 0008  
SPCR1  
RCR1  
0290 000C  
0290 0010  
McBSP1 Receive Control Register  
XCR1  
McBSP1 Transmit Control Register  
0290 0014  
SRGR1  
MCR1  
McBSP1 sample rate generator register  
McBSP1 multichannel control register  
0290 0018  
0290 001C  
0290 0020  
RCERE01  
XCERE01  
PCR1  
McBSP1 Enhanced Receive Channel Enable Register 0 Partition A/B  
McBSP1 Enhanced Transmit Channel Enable Register 0 Partition A/B  
McBSP1 Pin Control Register  
0290 0024  
0290 0028  
RCERE11  
XCERE11  
RCERE21  
XCERE21  
RCERE31  
XCERE31  
-
McBSP1 Enhanced Receive Channel Enable Register 1 Partition C/D  
McBSP1 Enhanced Transmit Channel Enable Register 1 Partition C/D  
McBSP1 Enhanced Receive Channel Enable Register 2 Partition E/F  
McBSP1 Enhanced Transmit Channel Enable Register 2 Partition E/F  
McBSP1 Enhanced Receive Channel Enable Register 3 Partition G/H  
McBSP1 Enhanced Transmit Channel Enable Register 3 Partition G/H  
Reserved  
0290 002C  
0290 0030  
0290 0034  
0290 0038  
0290 003C  
0290 0040 - 0293 FFFF  
4.8.10.2 McBSP Electrical Data/Timing  
Table 4-61. McBSP Timing Requirements(1)  
(see Figure 4-51)  
NO.  
MIN  
MAX UNIT  
2
3
tc(CKRX)  
tw(CKRX)  
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
10P(2)  
0.5tc(CKRX) - 1(2)  
ns  
ns  
Pulse duration, CLKR/X high or CLKR/X low  
9
1.3  
6
5
6
7
8
tsu(FRH-CKRL)  
th(CKRL-FRH)  
tsu(DRV-CKRL)  
th(CKRL-DRV)  
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
3
8
0.9  
3
Hold time, DR valid after CLKR low  
3.1  
9
10 tsu(FXH-CKXL)  
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
1.3  
6
11 th(CKXL-FXH)  
3
(1) P = 1/SYSREFCLK frequency in ns. For example, when running parts at 1000 MHz, use P = 1 ns.  
(2) This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.  
126  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-62. Switching Characteristics for McBSP(1)(2)(3)  
(see Figure 4-51)  
NO. PARAMETER  
MIN  
1.4  
MAX UNIT  
Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS  
input.(4)  
1
2
3
4
td(CKSH-CKRXH)  
tc(CKRX)  
10 ns  
ns  
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
10P(5) (6) (7)  
0.5tc(CKRX)  
-
tw(CKRX)  
Pulse duration, CLKR/X high or CLKR/X low  
Delay time, CLKR high to internal FSR valid  
ns  
1
td(CKRH-FRV)  
CLKR int  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
FSX int  
-2.1  
-1.7  
1.7  
-3.9  
2
3
3
9
4
9
4
9
ns  
ns  
9
td(CKXH-FXV)  
Delay time, CLKX high to internal FSX valid  
12 tdis(CKXH-DXHZ) Disable time, DX Hi-Z following last data bit from CLKX high  
ns  
ns  
13 td(CKXH-DXV)  
Delay time, CLKX high to DX valid  
-3.9  
2
-2.3 + D1(8) 5.6 +  
D2(8)  
1.9 + D1(8) 9 + D2(8)  
Delay time, FSX high to DX valid applies ONLY when in data  
delay 0 (XDATDLY = 00b) mode  
14 td(FXH-DXV)  
ns  
FSX ext  
(1) Over recommended operating conditions.  
(2) CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also  
inverted.  
(3) Minimum delay times also represent minimum output hold times.  
(4) The CLKS signal is shared by both McBSP0 and McBSP1 on this device.  
(5) Minimum CLKR ÷ X cycle times must be met, even when CLKR ÷ X is generated by an internal clock source. Minimum CLKR ÷ X cycle  
times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements  
(6) P = 1/SYSREFCLK frequency in ns. For example, when running parts at 1000 MHz, use P = 1 ns.  
(7) Use whichever value is greater  
(8) Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.  
if DXENA = 0, then D1 = D2 = 0  
if DXENA = 1, then D1 = 4P, D2 = 8P  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
127  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
CLKS(A)  
1
2
3
3
4
CLKR  
FSR (int)  
FSR (ext)  
DR  
4
5
6
7
8
Bit(n-1)  
(n-2)  
(n-3)  
2
3
3
CLKX  
9
FSX (int)  
11  
10  
FSX (ext)  
FSX (XDATDLY=00b)  
13(B)  
14  
13(B)  
Bit(n-1)  
12  
(n-2)  
(n-3)  
DX  
Bit 0  
Figure 4-51. McBSP Timing  
(A) The CLKS signal is shared by both McBSP0 and McBSP1 on this device.  
(B) Parameter No. 13 applies to the first data bit only when XDATDLY 0.  
Table 4-63. Timing Requirements for FSR When GSYNC = 1  
(see Figure 4-52)  
NO.  
MIN  
MAX UNIT  
1
2
tsu(FRH-CKSH)  
th(CKSH-FRH)  
Setup time, FSR high before CLKS high  
Hold time, FSR high after CLKS high  
4
4
ns  
ns  
CLKS  
1
2
FSR external  
CLKR/X  
(no need to resync)  
CLKR/X  
(needs resync)  
Figure 4-52. FSR Timing When GSYNC = 1  
128  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-64. SPI Timing Requirements as Master or Slave: CLKSTP = 10b, CLKXP = 0(1)(2)  
(see Figure 4-53)  
MASTER  
SLAVE  
NO.  
MIN  
12  
4
MAX  
MIN  
2-12P  
5+24P  
MAX UNIT  
4
5
tsu(DRV-CKXL)  
th(CKXL-DRV)  
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
ns  
ns  
(1) For all SPI Slave modes, CLKG is programmed as 1/6 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(2) P = 1/SYSREFCLK frequency in ns. For example, when running parts at 1000 MHz, use P = 1 ns.  
Table 4-65. SPI Switching Characteristics as Master or Slave: CLKSTP = 10b, CLKXP = 0(1)(2)(3)(4)(5)  
(see Figure 4-53)  
MASTER  
MIN  
T-2  
SLAVE  
MIN  
NO.  
PARAMETERS  
MAX  
T+3  
L+3  
4
MAX UNIT  
1
2
3
td(CKXL-FXH)  
td(FXL-CKXH)  
td(CKXH-DXV)  
Delay time, FSX high after CLKX low  
Delay time, CLKX high after FSX low  
Delay time, CLKX high to DX valid  
ns  
ns  
L-3  
-2  
12P+2.8  
24P+17  
ns  
Disable time, DX high impedance following last data bit  
from CLKX low  
6
tdis(CKXL-DXHZ)  
L-2  
L+3  
ns  
Disable time, DX high impedance following last data bit  
from FSX high  
7
8
tdis(FXH-DXHZ)  
td(FXL-DXV)  
4P+3  
12P+17  
18P+17  
ns  
ns  
Delay time, FSX low to DX valid  
8P+1.8  
(1) P = 1/SYSREFCLK frequency in ns. For example, when running parts at 1000 MHz, use P = 1 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/6 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(3) S = Sample rate generator input clock = 6P if CLKSM = 1  
S = Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
H = (CLKGDV + 1)/2 * S if CLKGDV is odd  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
L = (CLKGDV + 1)/2 * S if CLKGDV is odd  
(4) FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input  
on FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP  
(5) FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master  
clock (CLKX).  
CLKX  
1
2
8
FSX  
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-4)  
Figure 4-53. SPI Timing as Master or Slave: CLKSTP = 10b, CLKXP = 0  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
129  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-66. SPI Timing Requirements as Master or Slave: CLKSTP = 10b, CLKXP = 1(1)(2)  
(see Figure 4-54)  
MASTER  
SLAVE  
MIN  
NO.  
MIN  
12  
4
MAX  
MAX UNIT  
4
5
tsu(DRV-CKXH)  
th(CKXH-DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2-12P  
5+24P  
ns  
ns  
(1) P = 1/SYSREFCLK frequency in ns. For example, when running parts at 1000 MHz, use P = 1 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/6 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 4-67. SPI Switching Characteristics as Master or Slave: CLKSTP = 10b, CLKXP = 1(1)(2)(3)(4)(5)  
(see Figure 4-54)  
MASTER  
MIN  
SLAVE  
MIN  
NO.  
PARAMETER  
MAX  
T+3  
MAX UNIT  
1
2
td(CKXH-FXH)  
td(FXL-CKXL)  
Delay time, FSX high after CLKX high  
Delay time, CLKX low after FSX low  
Delay time, CLKX low to DX valid  
T-2  
ns  
ns  
H-3  
H+3  
12P +  
2.8  
3
6
td(CKXL-DXV)  
-2  
4
24P + 17  
ns  
ns  
Disable time, DX high impedance following last data bit  
from CLKX high  
tdis(CKXH-DXHZ)  
H-2  
H+3  
Disable time, DX high impedance following last data bit  
from FSX high  
7
8
tdis(FXH-DXHZ)  
td(FXL-DXV)  
4P+3  
8P+2  
12P+17  
18P+17  
ns  
ns  
Delay time, FSX low to DX valid  
(1) P = 1/SYSREFCLK frequency in ns. For example, when running parts at 1000 MHz, use P = 1 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/6 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(3) S = Sample rate generator input clock = 6P if CLKSM = 1  
S = Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
H = (CLKGDV + 1)/2 * S if CLKGDV is odd  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
L = (CLKGDV + 1)/2 * S if CLKGDV is odd  
(4) FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input  
on FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP  
(5) FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master  
clock (CLKX).  
CLKX  
1
2
8
FSX  
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 4-54. SPI Timing as Master or Slave: CLKSTP = 10b, CLKXP = 1  
130  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-68. SPI Timing Requirements as Master or Slave: CLKSTP = 11b, CLKXP = 0(1)(2)  
(see Figure 4-55)  
MASTER  
SLAVE  
NO.  
MIN  
12  
4
MAX  
MIN  
2-12P  
5+24P  
MAX UNIT  
4
5
tsu(DRV-CKXH)  
th(CKXH-DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
ns  
ns  
(1) P = 1/SYSREFCLK frequency in ns. For example, when running parts at 1000 MHz, use P = 1 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/6 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 4-69. SPI Switching Characteristics as Master or Slave: CLKSTP = 11b, CLKXP = 0(1)(2)(3)(4)(5)  
(see Figure 4-55)  
MASTER  
MIN  
L-2  
SLAVE  
MIN  
NO.  
PARAMETER  
MAX  
L+3  
T+3  
4
MAX UNIT  
1
2
3
td(CKXL-FXH)  
td(FXL-CKXH)  
td(CKXL-DXV)  
Delay time, FSX high after CLKX low  
Delay time, CLKX high after FSX low  
Delay time, CLKX low to DX valid  
ns  
ns  
T-3  
-2  
12P+2.8  
12P+3  
24P+17  
ns  
Disable time, DX high impedance following last data bit  
from CLKX low  
6
7
tdis(CKXL-DXHZ)  
tdis(FXL-DXHZ)  
-2  
4
20P+17  
18P+17  
ns  
Disable time, DX high impedance following last data bit  
from FSX low  
H-2  
H+4  
8P+2  
ns  
(1) P = 1/SYSREFCLK frequency in ns. For example, when running parts at 1000 MHz, use P = 1 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/6 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(3) S = Sample rate generator input clock = 6P if CLKSM = 1  
S = Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
H = (CLKGDV + 1)/2 * S if CLKGDV is odd  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
L = (CLKGDV + 1)/2 * S if CLKGDV is odd  
(4) FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input  
on FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP  
(5) FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master  
clock (CLKX).  
CLKX  
1
2
7
FSX  
DX  
6
3
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
DR  
Bit 0  
(n-2)  
(n-4)  
Figure 4-55. SPI Timing as Master or Slave: CLKSTP = 11b, CLKXP = 0  
Table 4-70. SPI Timing Requirements as Master or Slave: CLKSTP = 11b, CLKXP = 1(1)(2)  
(see Figure 4-56)  
MASTER  
SLAVE  
MIN  
NO.  
MIN  
12  
4
MAX  
MAX UNIT  
4
5
tsu(DRV-CKXH)  
th(CKXH-DRV)  
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2-12P  
5+24P  
ns  
ns  
(1) P = 1/SYSREFCLK frequency in ns. For example, when running parts at 1000 MHz, use P = 1 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/6 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
131  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-71. SPI Switching Characteristics as Master or Slave: CLKSTP = 11b, CLKXP = 1(1)(2)(3)(4)(5)  
(see Figure 4-56)  
MASTER  
MIN  
SLAVE  
MIN  
NO.  
PARAMETER  
MAX  
H+3  
T+3  
4
MAX UNIT  
1
2
3
td(CKXH-FXL)  
td(FXL-CKXL)  
td(CKXH-DXV)  
Delay time, FSX low after CLKX high  
Delay time, CLKX low after FSX low  
Delay time, CLKX high to DX valid  
H-2  
ns  
ns  
T-3  
-2  
12P+2.8  
12P+3  
24P+17  
ns  
Disable time, DX high impedance following last data bit  
from CLKX high  
6
7
tdis(CKXH-DXHZ)  
tdis(FXL-DXHZ)  
-2  
4
20P+17  
18P+17  
ns  
Disable time, DX high impedance following last data bit  
from FSX low  
L-2  
L+4  
8P+2  
ns  
(1) P = 1/SYSREFCLK frequency in ns. For example, when running parts at 1000 MHz, use P = 1 ns.  
(2) For all SPI Slave modes, CLKG is programmed as 1/6 of the CPU clock by setting CLKSM = CLKGDV = 1.  
(3) S = Sample rate generator input clock = 6P if CLKSM = 1  
S = Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even; H = (CLKGDV + 1)/2 * S if CLKGDV is odd  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
L = (CLKGDV + 1)/2 * S if CLKGDV is odd  
(4) FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input  
on FSX and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP  
(5) FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master  
clock (CLKX).  
CLKX  
1
2
FSX  
DX  
7
6
3
Bit 0  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
DR  
(n-2)  
(n-3)  
(n-4)  
Figure 4-56. SPI Timing as Master or Slave: CLKSTP = 11b, CLKXP = 1  
4.8.11 Ethernet MAC (EMAC)  
The Ethernet Media Access Controller (EMAC) module provides an efficient interface between the C6457  
DSP core processor and the networked community. The EMAC supports 10Base-T (10 Mbits/second  
[Mbps]), and 100BaseTX (100 Mbps), in half- or full-duplex mode, and 1000BaseT (1000 Mbps) in full-  
duplex mode, with hardware flow control and quality-of-service (QOS) support.  
The EMAC module conforms to the IEEE 802.3-2002 standard, describing the Carrier Sense Multiple  
Access with Collision Detection (CSMA/CD) Access Method and Physical Layer specifications. The IEEE  
802.3 standard has also been adopted by ISO/IEC and re-designated as ISO/IEC 8802-3:2000(E).  
Deviation from this standard, the EMAC module does not use the Transmit Coding Error signal MTXER.  
Instead of driving the error pin when an underflow condition occurs on a transmitted frame, the EMAC will  
intentionally generate an incorrect checksum by inverting the frame CRC, so that the transmitted frame  
will be detected as an error by the network.  
The EMAC control module is the main interface between the device core processor, the MDIO module,  
and the EMAC module. The relationship between these three components is shown in Figure 4-57. The  
EMAC control module contains the necessary components to allow the EMAC to make efficient use of  
device memory, plus it controls device interrupts. The EMAC control module incorporates 8K-bytes of  
internal RAM to hold EMAC buffer descriptors.  
132  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Interrupt  
Controller  
DMA Memory  
Transfer Controller  
Configuration Bus  
Peripheral Bus  
EMAC Control Module  
EMAC/MDIO  
Interrupt  
EMAC Module  
MDIO Module  
MDIO Bus  
Ethernet Bus  
Figure 4-57. EMAC, MDIO, and EMAC Control Modules  
For more detailed information on the EMAC/MDIO, see the TMS320C6457 DSP EMAC/MDIO Module  
Reference Guide (SPRUGK9).  
4.8.11.1 EMAC Device-Specific Information  
The EMAC module on the device supports Serial Gigabit Media Independent Interface (SGMII). The  
SGMII interface conforms to version 1.8 of the industry standard specification.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
133  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.11.2 EMAC Peripheral Register Description(s)  
The memory maps of the EMAC are shown in Table 4-72 through Table 4-77.  
Table 4-72. Ethernet MAC (EMAC) Control Registers  
HEX ADDRESS  
02C8 0000  
ACRONYM  
TXIDVER  
REGISTER NAME  
Transmit Identification and Version Register  
Transmit Control Register  
02C8 0004  
TXCONTROL  
TXTEARDOWN  
-
02C8 0008  
Transmit Teardown register  
02C8 000F  
Reserved  
02C8 0010  
RXIDVER  
Receive Identification and Version Register  
Receive Control Register  
02C8 0014  
RXCONTROL  
RXTEARDOWN  
-
02C8 0018  
Receive Teardown Register  
02C8 001C  
Reserved  
02C8 0020 - 02C8 007C  
02C8 0080  
-
Reserved  
TXINTSTATRAW  
TXINTSTATMASKED  
TXINTMASKSET  
TXINTMASKCLEAR  
MACINVECTOR  
MACEOIVECTOR  
-
Transmit Interrupt Status (Unmasked) Register  
Transmit Interrupt Status (Masked) Register  
Transmit Interrupt Mask Set Register  
Transmit Interrupt Mask Clear Register  
MAC Input Vector Register  
02C8 0084  
02C8 0088  
02C8 008C  
02C8 0090  
02C8 0094  
MAC End of Interrupt Vector Register  
Reserved  
02C8 0098 - 02C8 019C  
02C8 00A0  
RXINTSTATRAW  
RXINTSTATMASKED  
RXINTMASKSET  
RXINTMASKCLEAR  
MACINTSTATRAW  
MACINTSTATMASKED  
MACINTMASKSET  
MACINTMASKCLEAR  
-
Receive Interrupt Status (Unmasked) Register  
Receive Interrupt Status (Masked) Register  
Receive Interrupt Mask Set Register  
Receive Interrupt Mask Clear Register  
MAC Interrupt Status (Unmasked) Register  
MAC Interrupt Status (Masked) Register  
MAC Interrupt Mask Set Register  
MAC Interrupt Mask Clear Register  
Reserved  
02C8 00A4  
02C8 00A8  
02C8 00AC  
02C8 00B0  
02C8 00B4  
02C8 00B8  
02C8 00BC  
02C8 00C0 - 02C8 00FC  
02C8 0100  
RXMBPENABLE  
RXUNICASTSET  
RXUNICASTCLEAR  
RXMAXLEN  
Receive Multicast/Broadcast/Promiscuous Channel Enable Register  
Receive Unicast Enable Set Register  
Receive Unicast Clear Register  
02C8 0104  
02C8 0108  
02C8 010C  
Receive Maximum Length Register  
02C8 0110  
RXBUFFEROFFSET  
Receive Buffer Offset Register  
02C8 0114  
RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register  
02C8 0118 - 02C8 011C  
02C8 0120  
-
Reserved  
RX0FLOWTHRESH  
RX1FLOWTHRESH  
RX2FLOWTHRESH  
RX3FLOWTHRESH  
RX4FLOWTHRESH  
RX5FLOWTHRESH  
RX6FLOWTHRESH  
RX7FLOWTHRESH  
RX0FREEBUFFER  
RX1FREEBUFFER  
RX2FREEBUFFER  
RX3FREEBUFFER  
Receive Channel 0 Flow Control Threshold Register  
Receive Channel 1 Flow Control Threshold Register  
Receive Channel 2 Flow Control Threshold Register  
Receive Channel 3 Flow Control Threshold Register  
Receive Channel 4 Flow Control Threshold Register  
Receive Channel 5 Flow Control Threshold Register  
Receive Channel 6 Flow Control Threshold Register  
Receive Channel 7 Flow Control Threshold Register  
Receive Channel 0 Free Buffer Count Register  
Receive Channel 1 Free Buffer Count Register  
Receive Channel 2 Free Buffer Count Register  
Receive Channel 3 Free Buffer Count Register  
02C8 0124  
02C8 0128  
02C8 012C  
02C8 0130  
02C8 0134  
02C8 0138  
02C8 013C  
02C8 0140  
02C8 0144  
02C8 0148  
02C8 014C  
134  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-72. Ethernet MAC (EMAC) Control Registers (continued)  
HEX ADDRESS  
ACRONYM  
RX4FREEBUFFER  
RX5FREEBUFFER  
RX6FREEBUFFER  
RX7FREEBUFFER  
MACCONTROL  
MACSTATUS  
EMCONTROL  
FIFOCONTROL  
MACCONFIG  
SOFTRESET  
MACSRCADDRLO  
MACSRCADDRHI  
MACHASH1  
MACHASH2  
BOFFTEST  
TPACETEST  
RXPAUSE  
TXPAUSE  
-
REGISTER NAME  
02C8 0150  
02C8 0154  
Receive Channel 4 Free Buffer Count Register  
Receive Channel 5 Free Buffer Count Register  
Receive Channel 6 Free Buffer Count Register  
Receive Channel 7 Free Buffer Count Register  
MAC Control Register  
02C8 0158  
02C8 015C  
02C8 0160  
02C8 0164  
MAC Status Register  
02C8 0168  
Emulation Control Register  
02C8 016C  
02C8 0170  
FIFO Control Register  
MAC Configuration Register  
Soft Reset Register  
02C8 074  
02C8 01D0  
02C8 01D4  
02C8 01D8  
02C8 01DC  
02C8 01E0  
02C8 01E4  
02C8 01E8  
02C8 01EC  
02C8 0300 - 02C8 03FC  
02C8 0400 - 02C8 04FC  
02C8 0500  
MAC Source Address Low Bytes Register  
MAC Source Address High Bytes Register  
MAC Hash Address Register 1  
MAC Hash Address Register 2  
Back Off Test Register  
Transmit Pacing Algorithm Test Register  
Receive Pause Timer Register  
Transmit Pause Timer Register  
Reserved  
-
Reserved  
MACADDRLO  
MACADDRHI  
MACINDEX  
-
MAC Address Low Bytes Register (used in Receive Address Matching)  
MAC Address High Bytes Register (used in Receive Address Matching)  
MAC Index Register  
02C8 0504  
02C8 0508  
02C8 050C - 02C8 05FC  
02C8 0600  
Reserved  
TX0HDP  
Transmit Channel 0 DMA Head Descriptor Pointer Register  
Transmit Channel 1 DMA Head Descriptor Pointer Register  
Transmit Channel 2 DMA Head Descriptor Pointer Register  
Transmit Channel 3 DMA Head Descriptor Pointer Register  
Transmit Channel 4 DMA Head Descriptor Pointer Register  
Transmit Channel 5 DMA Head Descriptor Pointer Register  
Transmit Channel 6 DMA Head Descriptor Pointer Register  
Transmit Channel 7 DMA Head Descriptor Pointer Register  
Receive Channel 0 DMA Head Descriptor Pointer Register  
Receive t Channel 1 DMA Head Descriptor Pointer Register  
Receive Channel 2 DMA Head Descriptor Pointer Register  
Receive t Channel 3 DMA Head Descriptor Pointer Register  
Receive Channel 4 DMA Head Descriptor Pointer Register  
Receive t Channel 5 DMA Head Descriptor Pointer Register  
Receive Channel 6 DMA Head Descriptor Pointer Register  
Receive t Channel 7 DMA Head Descriptor Pointer Register  
Transmit Channel 0 Completion Pointer (Interrupt Acknowledge) Register  
Transmit Channel 1 Completion Pointer (Interrupt Acknowledge) Register  
Transmit Channel 2 Completion Pointer (Interrupt Acknowledge) Register  
Transmit Channel 3 Completion Pointer (Interrupt Acknowledge) Register  
Transmit Channel 4 Completion Pointer (Interrupt Acknowledge) Register  
Transmit Channel 5 Completion Pointer (Interrupt Acknowledge) Register  
Transmit Channel 6 Completion Pointer (Interrupt Acknowledge) Register  
02C8 0604  
TX1HDP  
02C8 0608  
TX2HDP  
02C8 060C  
02C8 0610  
TX3HDP  
TX4HDP  
02C8 0614  
TX5HDP  
02C8 0618  
TX6HDP  
02C8 061C  
02C8 0620  
TX7HDP  
RX0HDP  
02C8 0624  
RX1HDP  
02C8 0628  
RX2HDP  
02C8 062C  
02C8 0630  
RX3HDP  
RX4HDP  
02C8 0634  
RX5HDP  
02C8 0638  
RX6HDP  
02C8 063C  
02C8 0640  
RX7HDP  
TX0CP  
02C8 0644  
TX1CP  
02C8 0648  
TX2CP  
02C8 064C  
02C8 0650  
TX3CP  
TX4CP  
02C8 0654  
TX5CP  
02C8 0658  
TX6CP  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
Submit Documentation Feedback  
135  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-72. Ethernet MAC (EMAC) Control Registers (continued)  
HEX ADDRESS  
02C8 065C  
ACRONYM  
TX7CP  
RX0CP  
RX1CP  
RX2CP  
RX3CP  
RX4CP  
RX5CP  
RX6CP  
RX7CP  
-
REGISTER NAME  
Transmit Channel 7 Completion Pointer (Interrupt Acknowledge) Register  
Receive Channel 0 Completion Pointer (Interrupt Acknowledge) Register  
Receive Channel 1 Completion Pointer (Interrupt Acknowledge) Register  
Receive Channel 2 Completion Pointer (Interrupt Acknowledge) Register  
Receive Channel 3 Completion Pointer (Interrupt Acknowledge) Register  
Receive Channel 4 Completion Pointer (Interrupt Acknowledge) Register  
Receive Channel 5 Completion Pointer (Interrupt Acknowledge) Register  
Receive Channel 6 Completion Pointer (Interrupt Acknowledge) Register  
Receive Channel 7 Completion Pointer (Interrupt Acknowledge) Register  
Reserved  
02C8 0660  
02C8 0664  
02C8 0668  
02C8 066C  
02C8 0670  
02C8 0674  
02C8 0678  
02C8 067C  
02C8 0680 - 02C8 06FC  
02C8 0700 - 02C8 077C  
02C8 0780 - 02C8 0FFF  
-
Reserved  
-
Reserved  
Table 4-73. EMAC Statistics Registers  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
02C8 0200  
RXGOODFRAMES  
Good Receive Frames Register  
Broadcast Receive Frames Register (Total number of Good Broadcast Frames  
Receive)  
02C8 0204  
RXBCASTFRAMES  
Multicast Receive Frames Register (Total number of Good Multicast Frames  
Received)  
02C8 0208  
02C8 020C  
02C8 0210  
RXMCASTFRAMES  
RXPAUSEFRAMES  
RXCRCERRORS  
Pause Receive Frames Register  
Receive CRC Errors Register (Total number of Frames Received with CRC  
Errors)  
Receive Alignment/Code Errors register (Total number of frames received with  
alignment/code errors)  
02C8 0214  
RXALIGNCODEERRORS  
Receive Oversized Frames Register (Total number of Oversized Frames  
Received)  
02C8 0218  
02C8 021C  
02C8 0220  
RXOVERSIZED  
RXJABBER  
Receive Jabber Frames Register (Total number of Jabber Frames Received)  
Receive Undersized Frames Register (Total number of Undersized Frames  
Received)  
RXUNDERSIZED  
02C8 0224  
02C8 0228  
02C8 022C  
RXFRAGMENTS  
RXFILTERED  
Receive Frame Fragments Register  
Filtered Receive Frames Register  
Received QOS Filtered Frames Register  
RXQOSFILTERERED  
Receive Octet Frames Register (Total number of Received Bytes in Good  
Frames)  
02C8 0230  
RXOCTETS  
02C8 0234  
02C8 0238  
02C8 023C  
02C8 0240  
02C8 0244  
02C8 0248  
02C8 024C  
02C8 0250  
02C8 0254  
02C8 0258  
02C8 025C  
02C8 0260  
02C8 0264  
02C8 0268  
TXGOODFRAMES  
TXBCASTFRAMES  
TXMCASTFRAMES  
TXPAUSEFRAMES  
TXDEFERED  
Good Transmit Frames Register (Total number of Good Frames Transmitted)  
Broadcast Transmit Frames Register  
Multicast Transmit Frames Register  
Pause Transmit Frames Register  
Deferred Transmit Frames Register  
TXCOLLISION  
Transmit Collision Frames Register  
TXSINGLECOLL  
TXMULTICOLL  
TXEXCESSIVECOLL  
TXLATECOLL  
Transmit Single Collision Frames Register  
Transmit Multiple Collision Frames Register  
Transmit Excessive Collision Frames Register  
Transmit Late Collision Frames Register  
Transmit Under Run Error Register  
TXUNDERRUN  
TXCARRIERSENSE  
TXOCTETS  
Transmit Carrier Sense Errors Register  
Transmit Octet Frames Register  
FRAME64  
Transmit and Receive 64 Octet Frames Register  
136  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-73. EMAC Statistics Registers (continued)  
HEX ADDRESS  
ACRONYM  
FRAME65T127  
FRAME128T255  
FRAME256T511  
FRAME512T1023  
FRAME1024TUP  
NETOCTETS  
REGISTER NAME  
02C8 026C  
02C8 0270  
Transmit and Receive 65 to 127 Octet Frames Register  
Transmit and Receive 128 to 255 Octet Frames Register  
Transmit and Receive 256 to 511 Octet Frames Register  
Transmit and Receive 512 to 1023 Octet Frames Register  
Transmit and Receive 1024 to 1518 Octet Frames Register  
Network Octet Frames Register  
02C8 0274  
02C8 0278  
02C8 027C  
02C8 0280  
02C8 0284  
RXSOFOVERRUNS  
RXMOFOVERRUNS  
RXDMAOVERRUNS  
-
Receive FIFO or DMA Start of Frame Overruns Register  
Receive FIFO or DMA Middle of Frame Overruns Register  
Receive DMA Start of Frame and Middle of Frame Overruns Register  
Reserved  
02C8 0288  
02C8 028C  
02C8 0290 - 02C8 02FC  
Table 4-74. EMAC Descriptor Memory  
HEX ADDRESS  
ACRONYM  
REGISTER NAME  
02E0 0000 - 02E0 3FFF  
-
EMAC Descriptor Memory  
Table 4-75. SGMII Control Registers  
HEX ADDRESS  
02C4 0000  
ACRONYM  
REGISTER NAME  
IDVER  
Identification and Version register  
Software Reset Register  
Control Register  
02C4 0004  
SOFT_RESET  
02C4 0010  
CONTROL  
02C4 0014  
STATUS  
Status Register  
02C4 0018  
MR_ADV_ABILITY  
Advertised Ability Register  
Reserved  
02C4 001C  
-
02C4 0020  
MR_LP_ADV_ABILITY  
Link Partner Advertised Ability Register  
Reserved  
02C4 0024  
-
02C4 0030  
TX_CFG  
RX_CFG  
AUX_CFG  
-
Transmit Configuration Register  
Receive Configuration Register  
Auxiliary Configuration Register  
Reserved  
02C4 0034  
02C4 0038  
02C4 0040 - 02C4 0048  
Table 4-76. EMIC Control Registers  
HEX ADDRESS  
02C8 1000  
02C8 1004  
02C8 1008  
02C8 100C  
02C8 1010  
02C8 1014  
02C8 1018  
02C8 101C  
02C8 1040  
02C8 1044  
02C8 1048  
02C8 104C  
02C8 1070  
02C8 1074  
ACRONYM  
REGISTER NAME  
IDVER  
SOFT_RESET  
EM_CONTROL  
INT_CONTROL  
C_RX_THRESH_EN  
C_RX_EN  
Identification and Version register  
Software Reset Register  
Emulation Control Register  
Interrupt Control Register  
Receive Threshold Interrupt Enable Register  
Receive Interrupt Enable Register  
Transmit Interrupt Enable Register  
Misc Interrupt Enable Register  
C_TX_EN  
C_MISC_EN  
C_RX_THRESH_STAT  
C_RX_STAT  
Receive Threshold Masked Interrupt Status Register  
Receive Interrupt Masked Interrupt Status Register  
Transmit Interrupt Masked Interrupt Status Register  
Misc Interrupt Masked Interrupt Status Register  
Receive Interrupts Per Millisecond  
Transmit Interrupts Per Millisecond  
C_TX_STAT  
C_MISC_STAT  
C_RX_IMAX  
C_TX_IMAX  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
137  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.11.3 EMAC Electrical Data/Timing (SGMII)  
The TMS320TCI6484 and TMS320C6457 DSPs Hardware Design Guide application report (SPRAAV7)  
specifies a complete EMAC and SGMII interface solutions for the C6457 as well as a list of compatible  
EMAC and SGMII devices. TI has performed the simulation and system characterization to ensure all  
EMAC and SGMII interface timings in this solution are met; therefore, no electrical data/timing information  
is supplied here for this interface.  
NOTE  
TI supports only designs that follow the board design guidelines outlined in the application  
report.  
4.8.12 Management Data Input/Output (MDIO)  
The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to  
interrogate and controls up to 32 Ethernet PHY(s) connected to the device, using a shared two-wire bus.  
Application software uses the MDIO module to configure the auto-negotiation parameters of each PHY  
attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC  
module for correct operation. The module is designed to allow almost transparent operation of the MDIO  
interface, with very little maintenance from the core processor.  
The EMAC control module is the main interface between the device core processor, the MDIO module,  
and the EMAC module. The relationship between these three components is shown in Figure 4-57.  
For more detailed information on the EMAC/MDIO, see the TMS320C6457 DSP EMAC/MDIO Module  
Reference Guide (SPRUGK9).  
4.8.12.1 MDIO Peripheral Register Description(s)  
The memory map of the MDIO is shown in Table 4-77.  
Table 4-77. MDIO Registers  
HEX ADDRESS  
02C8 1800  
ACRONYM  
VERSION  
REGISTER NAME  
MDIO Version Register  
02C8 1804  
CONTROL  
MDIO Control Register  
02C8 1808  
ALIVE  
MDIO PHY Alive Status Register  
MDIO PHY Link Status Register  
02C8 180C  
LINK  
02C8 1810  
LINKINTRAW  
LINKINTMASKED  
-
MDIO link Status Change Interrupt (unmasked) Register  
MDIO link Status Change Interrupt (masked) Register  
Reserved  
02C8 1814  
02C8 1818 - 02C8 181C  
02C8 1820  
USERINTRAW  
USERINTMASKED  
USERINTMASKSET  
USERINTMASKCLEAR  
-
MDIO User Command Complete Interrupt (Unmasked) Register  
MDIO User Command Complete Interrupt (Masked) Register  
MDIO User Command Complete Interrupt Mask Set Register  
MDIO User Command Complete Interrupt Mask Clear Register  
Reserved  
02C8 1824  
02C8 1828  
02C8 182C  
02C8 1830 - 02C8 187C  
02C8 1880  
USERACCESS0  
USERPHYSEL0  
USERACCESS1  
USERPHYSEL1  
-
MDIO User Access Register 0  
02C8 1884  
MDIO User PHY Select Register 0  
MDIO User Access Register 1  
02C8 1888  
02C8 188C  
MDIO User PHY Select Register 1  
Reserved  
02C8 1890 - 02C8 1FFF  
138  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.12.2 MDIO Electrical Data/Timing  
Table 4-78. MDIO Input Timing Requirements  
(see Figure 4-58)  
NO.  
MIN  
400  
180  
180  
MAX UNIT  
1
tc(MDCLK)  
2a tw(MDCLKH)  
2b tw(MDCLKL)  
Cycle time, MDCLK  
ns  
ns  
ns  
Pulse duration, MDCLK high  
Pulse duration, MDCLK low  
Transition time, MDCLK  
3
4
5
tt(MDCLK)  
5
ns  
ns  
ns  
tsu(MDIO-MDCLKH) Setup time, MDIO data input valid before MDCLK high  
10  
10  
th(MDCLKH-MDIO)  
Hold time, MDIO data input valid after MDCLK high  
1
MDCLK  
4
5
MDIO  
(input)  
Figure 4-58. MDIO Input Timing  
Table 4-79. MDIO Output Switching Characteristics(1)  
(see Figure 4-59)  
NO. PARAMETER  
MIN  
MAX UNIT  
7
td(MDCLKL-MDIO) Delay time, MDCLK low to MDIO data output valid  
100  
ns  
(1) Over recommended operating conditions.  
1
MDCLK  
7
MDIO  
(input)  
Figure 4-59. MDIO Output Timing  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
139  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.13 Timers  
The timers can be used to: time events, count events, generate pulses, interrupt the CPU, and send  
synchronization events to the EDMA3 channel controller.  
4.8.13.1 Timers Device-Specific Information  
The C6457 device has two general-purpose timers, Timer0 and Timer1, each of which can be configured  
as a general-purpose timer or as a watchdog timer. When configured as a general-purpose timer, each  
timer can be programmed as a 64-bit timer or as two separate 32-bit timers.  
Each timer is made up of two 32-bit counters: a high counter and a low counter. The timer pins, TINPLx  
and TOUTLx are connected to the low counter. The high counter does not have any external device pins.  
4.8.13.1.1 Timer Watchdog Select  
As mentioned previously, the timers can operate in watchdog mode. When in watchdog mode, the event  
output from Timer1 can optionally reset the CPU. In order for the event to trigger the reset when this  
operation is desired, the Timer1 watchdog reset selection register (WDRSTSEL) should be set to 1. The  
WDRSTSEL register is shown in Figure 4-60 and described in Table 4-80.  
Figure 4-60. Timer1 Watchdog Reset Selection Register (WDRSTSEL) (Address - 0288 0920h)  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
25  
24  
Reserved  
R- 0000 0000 0000 0000 0000 0000 0000 000  
23  
22  
21  
20  
4
19  
3
18  
2
17  
1
16  
10  
9
8
7
6
5
0
Reserved  
WDRS  
TSEL  
R- 0000 0000 0000 0000 0000 0000 0000 000  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
R/W-0  
Table 4-80. Timer1 Watchdog Reset Selection Register (WDRSTSEL) Field Descriptions  
Bit  
31:1  
0
Acronym  
Description  
Reserved  
Reserved.  
WRDSTSEL  
Reset Select for Watchdog Timer1  
0 = TOUT1L does not cause a reset to the C64x+ megamodule (default)  
1 = TOUT1L causes a reset to the C64x+ megamodule  
140  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.13.2 Timers Peripheral Register Description(s)  
Table 4-81. Timer 0 Registers  
HEX ADDRESS RANGE  
0294 0000  
ACRONYM  
REGISTER NAME  
-
Reserved  
0294 0004  
EMUMGT_CLKSPD0  
Timer 0 Emulation Management/Clock Speed Register  
Reserved  
0294 0008  
-
-
0294 000C  
Reserved  
0294 0010  
CNTLO0  
CNTHI0  
PRDLO0  
PRDHI0  
TCR0  
TGCR0  
WDTCR0  
-
Timer 0 Counter Register Low  
Timer 0 Counter Register High  
Timer 0 Period Register Low  
Timer 0 Period Register High  
Timer 0 Control Register  
Timer 0 Global Control Register  
Timer 0 Watchdog Timer Control Register  
Reserved  
0294 0014  
0294 0018  
0294 001C  
0294 0020  
0294 0024  
0294 0028  
0294 002C  
0294 0030  
-
Reserved  
0294 0034 - 0297 FFFF  
-
Reserved  
Table 4-82. Timer 1 Registers  
HEX ADDRESS RANGE  
0298 0000  
ACRONYM  
REGISTER NAME  
-
Reserved  
0298 0004  
EMUMGT_CLKSPD1  
Timer 1 Emulation Management/Clock Speed Register  
Reserved  
0298 0008  
-
-
0298 000C  
Reserved  
0298 0010  
CNTLO1  
CNTHI1  
PRDLO1  
PRDHI1  
TCR1  
TGCR1  
WDTCR1  
-
Timer 1 Counter Register Low  
Timer 1 Counter Register High  
Timer 1 Period Register Low  
Timer 1 Period Register High  
Timer 1 Control Register  
Timer 1 Global Control Register  
Timer 1 Watchdog Timer Control Register  
Reserved  
0298 0014  
0298 0018  
0298 001C  
0298 0020  
0298 0024  
0298 0028  
0298 002C  
0298 0030  
-
Reserved  
0298 0034 - 0299 FFFF  
-
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
141  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.13.3 Timers Electrical Data/Timing  
The below tables and figures describe the timing requirements and switching characteristics of both the  
Timer0 and Timer1 peripherals.  
Table 4-83. Timer Input Timing Requirements(1)  
(see Figure 4-61)  
NO.  
1
MIN  
12C  
12C  
MAX UNIT  
tw(TIMIH)  
tw(TIMIL)  
Pulse duration, TIMI high  
Pulse duration, TIMI low  
ns  
ns  
2
(1) If CORECLKSEL = 0, C = 1/CORECLK(NIP) frequency in ns. If CORECLKSEL = 1, C = 1/ALTCORECLK frequency in ns.  
Table 4-84. Timer Output Switching Characteristics(1)(2)  
(see Figure 4-61)  
NO.  
3
PARAMETER  
MIN  
12C - 3  
12C - 3  
MAX UNIT  
tw(TIMOH)  
tw(TIMOL)  
Pulse duration, TIMO high  
Pulse duration, TIMO low  
ns  
ns  
4
(1) Over recommended operating conditions.  
(2) If CORECLKSEL = 0, C = 1/CORECLK(NIP) frequency in ns. If CORECLKSEL = 1, C = 1/ALTCORECLK frequency in ns.  
2
1
TIMIx  
4
3
TIMOx  
Figure 4-61. Timer Timing  
142  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.14 Enhanced Viterbi-Decoder Coprocessor (VCP2)  
4.8.14.1 VCP2 Device-Specific Information  
The C6457 device has a high-performance embedded Viterbi-Decoder Coprocessor (VCP2) that  
significantly speeds up channel-decoding operations on-chip. The VCP2, operating at CPU clock divided-  
by-3, can decode more than 694 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels.  
The VCP2 supports constraint lengths K = 5, 6, 7, 8, and 9, rates R = 3/4, 1/2, 1/3, 1/4, and 1/5, and  
flexible polynomials, while generating hard decisions or soft decisions. Communications between the  
VCP2 and the CPU are carried out through the EDMA3 controller.  
The VCP2 supports:  
Unlimited frame sizes  
Code rates 3/4, 1/2, 1/3, 1/4, and 1/5  
Constraint lengths 5, 6, 7, 8, and 9  
Programmable encoder polynomials  
Programmable reliability and convergence lengths  
Hard and soft decoded decisions  
Tail and convergent modes  
Yamamoto logic  
Tail biting logic  
Various input and output FIFO lengths  
For more detailed information on the VCP2, see the TMS320C6457 DSP Viterbi-Decoder Coprocessor 2  
(VCP2) Reference Guide (SPRUGK0).  
4.8.14.2 VCP2 Peripheral Register Description  
Table 4-85. VCP2 Registers  
EDMA BUS HEX ADDRESS  
RANGE  
CONFIGURATION BUS HEX ADDRESS  
RANGE  
ACRONYM  
VCPIC0  
VCPIC1  
VCPIC2  
VCPIC3  
VCPIC4  
VCPIC5  
-
REGISTER NAME  
5800 0000  
5800 0004  
-
-
-
-
-
-
VCP2 Input Configuration Register 0  
VCP2 Input Configuration Register 1  
VCP2 Input Configuration Register 2  
VCP2 Input Configuration Register 3  
VCP2 Input Configuration Register 4  
VCP2 Input Configuration Register 5  
Reserved  
5800 0008  
5800 000C  
5800 0010  
5800 0014  
5800 0018 - 5800 0044  
5800 0048  
-
-
VCPOUT0  
VCPOUT1  
-
VCP2 Output Register 0  
5800 004C  
VCP2 Output Register 1  
5800 0050 - 5800 007C  
Reserved  
VCP2 Branch Metrics Write FIFO  
Register  
5800 0080  
N/A  
VCPWBM  
5800 0084 - 5800 009C  
-
Reserved  
5800 00C0  
N/A  
N/A  
VCPRDECS  
VCPPID  
VCPEXE  
VCPEND  
VCPSTAT0  
VCPSTAT1  
VCPERR  
-
VCP2 Decisions Read FIFO Register  
VCP2 Peripheral ID Register  
VCP2 Execution Register  
VCP2 Endian Mode Register  
VCP2 Status Register 0  
VCP2 Status Register 1  
VCP2 Error Register  
02B8 0000  
02B8 0018  
02B8 0020  
02B8 0040  
02B8 0044  
02B8 0050  
-
N/A  
N/A  
N/A  
N/A  
N/A  
-
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
143  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-85. VCP2 Registers (continued)  
EDMA BUS HEX ADDRESS  
RANGE  
CONFIGURATION BUS HEX ADDRESS  
RANGE  
ACRONYM  
VCPEMU  
-
REGISTER NAME  
N/A  
02B8 0060  
VCP2 Emulation Control Register  
Reserved  
N/A  
02B8 0064 - 02B9 FFFF  
5800 1000  
5800 2000  
5800 3000  
5800 6000  
5800 F000  
-
-
-
-
-
BM  
Branch Metrics  
SM  
State Metric  
TBHD  
TBSD  
IO  
Traceback Hard Decision  
Traceback Soft Decision  
Decoded Bits  
4.8.15 Enhanced Turbo Decoder Coprocessor (TCP2)  
4.8.15.1 TCP2 Device-Specific Information  
The C6457 device has two high-performance embedded Turbo-Decoder Coprocessors (TCP2_A and  
TCP2_B) that significantly speed up channel-decoding operations on-chip. Each TCP2, operating at CPU  
clock divided-by-3, can decode up to fifty 384-Kbps or eight 2-Mbps turbo-encoded channels (assuming 6  
iterations). The TCP2 implements the max * log-map algorithm and is designed to support all polynomials  
and rates required by Third-Generation Partnership Projects (3GPP and 3GPP2), with fully programmable  
frame length and turbo interleaver. Decoding parameters such as the number of iterations and stopping  
criteria are also programmable. Communications between the TCP2 and the CPU are carried out through  
the EDMA3 controller.  
Each TCP2 supports:  
Parallel concatenated convolutional turbo decoding using the MAP algorithm  
All turbo code rates greater than or equal to 1/5  
3GPP and CDMA2000 turbo encoder trellis  
3GPP and CDMA2000 block sizes in standalone mode  
Larger block sizes in shared processing mode  
Both max log MAP and log MAP decoding  
Sliding windows algorithm with variable reliability and prolog lengths  
The prolog reduction algorithm  
Execution of a minimum and maximum number of iterations  
The SNR stopping criteria algorithm  
The CRC stopping criteria algorithm  
For more detailed information on the TCP2, see the TMS320C6457 DSP Turbo-Decoder Coprocessor 2  
(TCP2) Reference Guide (SPRUGK1).  
144  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-86. TCP2_A Registers  
EDMA BUS HEX ADDRESS  
CONFIGURATION BUS HEX ADDRESS  
RANGE  
RANGE  
ACRONYM  
REGISTER NAME  
5000 0000  
5000 0004  
5000 0008  
5000 000C  
5000 0010  
5000 0014  
5000 0018  
5000 001C  
5000 0020  
5000 0024  
5000 0028  
5000 002C  
5000 0030  
5000 0034  
5000 0038  
5000 003C  
5000 0040  
5000 0044  
5000 0048  
5001 0000  
5003 0000  
5004 0000  
5005 0000  
5006 0000  
5007 0000  
5008 0000  
5009 0000  
500A 0000  
500B 0000  
-
TCPIC0  
TCPIC1  
TCPIC2  
TCPIC3  
TCPIC4  
TCPIC5  
TCPIC6  
TCPIC7  
TCPIC8  
TCPIC9  
TCPIC10  
TCPIC11  
TCPIC12  
TCPIC13  
TCPIC14  
TCPIC15  
TCPOUT0  
TCPOUT1  
TCPOUT2  
X0  
TCP2 Input Configuration Register 0  
TCP2 Input Configuration Register 1  
TCP2 Input Configuration Register 2  
TCP2 Input Configuration Register 3  
TCP2 Input Configuration Register 4  
TCP2 Input Configuration Register 5  
TCP2 Input Configuration Register 6  
TCP2 Input Configuration Register 7  
TCP2 Input Configuration Register 8  
TCP2 Input Configuration Register 9  
TCP2 Input Configuration Register 10  
TCP2 Input Configuration Register 11  
TCP2 Input Configuration Register 12  
TCP2 Input Configuration Register 13  
TCP2 Input Configuration Register 14  
TCP2 Input Configuration Register 15  
TCP2 Output Parameters Register 0  
TCP2 Output Parameters Register 1  
TCP2 Output Parameters Register 2  
TCP2 Data/Sys and Parity Memory  
TCP2 Extrinsic Mem 0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N/A  
N/A  
W0  
N/A  
W1  
TCP2 Extrinsic Mem 1  
N/A  
N/A  
I0  
TCP2 Interleaver Memory  
O0  
TCP2 Output/Decision Memory  
TCP2 Scratch Pad Memory  
N/A  
S0  
N/A  
T0  
TCP2 Beta State Memory  
N/A  
C0  
TCP2 CRC Memory  
N/A  
B0  
TCP2 Beta Prolog Memory  
N/A  
A0  
TCP2 Alpha Prolog Memory  
02BA 0000  
02BA 004C  
02BA 0050  
02BA 0060  
02BA 0068  
02BA 0070  
02BA 0074 - 02BA 00FF  
TCPPID  
TCPEXE  
TCPEND  
TCPERR  
TCPSTAT  
TCPEMU  
-
TCP2 Peripheral Identification Register  
TCP2 Execute Register  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
TCP2 Endianness Register  
TCP2 Error Register  
TCP2 Status Register  
TCP2 Emulation Register  
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
145  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-87. TCP2_B Registers  
EDMA BUS HEX ADDRESS  
RANGE  
CONFIGURATION BUS HEX ADDRESS  
RANGE  
ACRONYM  
REGISTER NAME  
5010 0000  
5010 0004  
5010 0008  
5010 000C  
5010 0010  
5010 0014  
5010 0018  
5010 001C  
5010 0020  
5010 0024  
5010 0028  
5010 002C  
5010 0030  
5010 0034  
5010 0038  
5010 003C  
5010 0040  
5010 0044  
5010 0048  
5011 0000  
5013 0000  
5014 0000  
5015 0000  
5016 0000  
5017 0000  
5018 0000  
5019 0000  
501A 0000  
501B 0000  
-
TCPIC0  
TCPIC1  
TCPIC2  
TCPIC3  
TCPIC4  
TCPIC5  
TCPIC6  
TCPIC7  
TCPIC8  
TCPIC9  
TCPIC10  
TCPIC11  
TCPIC12  
TCPIC13  
TCPIC14  
TCPIC15  
TCPOUT0  
TCPOUT1  
TCPOUT2  
X0  
TCP2 Input Configuration Register 0  
TCP2 Input Configuration Register 1  
TCP2 Input Configuration Register 2  
TCP2 Input Configuration Register 3  
TCP2 Input Configuration Register 4  
TCP2 Input Configuration Register 5  
TCP2 Input Configuration Register 6  
TCP2 Input Configuration Register 7  
TCP2 Input Configuration Register 8  
TCP2 Input Configuration Register 9  
TCP2 Input Configuration Register 10  
TCP2 Input Configuration Register 11  
TCP2 Input Configuration Register 12  
TCP2 Input Configuration Register 13  
TCP2 Input Configuration Register 14  
TCP2 Input Configuration Register 15  
TCP2 Output Parameters Register 0  
TCP2 Output Parameters Register 1  
TCP2 Output Parameters Register 2  
TCP2 Data/Sys and Parity Memory  
TCP2 Extrinsic Mem 0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N/A  
N/A  
W0  
N/A  
W1  
TCP2 Extrinsic Mem 1  
N/A  
N/A  
I0  
TCP2 Interleaver Memory  
O0  
TCP2 Output/Decision Memory  
TCP2 Scratch Pad Memory  
N/A  
S0  
N/A  
T0  
TCP2 Beta State Memory  
N/A  
C0  
TCP2 CRC Memory  
N/A  
B0  
TCP2 Beta Prolog Memory  
N/A  
A0  
TCP2 Alpha Prolog Memory  
02BA 0100  
02BA 014C  
02BA 0150  
02BA 0160  
02BA 0168  
02BA 0170  
02BA 0174 - 02BB FFFF  
TCPPID  
TCPEXE  
TCPEND  
TCPERR  
TCPSTAT  
TCPEMU  
-
TCP2 Peripheral Identification Register  
TCP2 Execute Register  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
TCP2 Endianness Register  
TCP2 Error Register  
TCP2 Status Register  
TCP2 Emulation Register  
Reserved  
146  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.16 UTOPIA  
4.8.16.1 UTOPIA Device-Specific Information  
The Universal Test and Operations PHY Interface for ATM (UTOPIA) peripheral is a 50 MHz, 8-Bit Slave-  
only interface. The UTOPIA is more simplistic than the Ethernet MAC, in that the UTOPIA is serviced  
directly by the EDMA3 controller. The UTOPIA peripheral contains two, two-cell FIFOs, one for transmit  
and one for receive, with which to buffer up data sent/received across the pins. There is a transmit and a  
receive event to the EDMA3 channel controller to enable servicing.  
For more detailed information on the UTOPIA peripheral, see the TMS320C6457 DSP Universal Test and  
Operations PHY Interface for ATM 2 (UTOPIA2) (SPRUGL1).  
4.8.16.2 UTOPIA Peripheral Register Description(s)  
Table 4-88. UTOPIA Registers  
HEX ADDRESS RANGE  
02B4 0000  
ACRONYM  
REGISTER NAME  
UTOPIA Control Register  
Reserved  
UCR  
02B4 0004  
-
02B4 0008  
-
Reserved  
02B4 000C  
-
Reserved  
02B4 0010  
-
Reserved  
02B4 0014  
CDR  
EIER  
EIPR  
-
Clock Detect Register  
Error Interrupt Enable Register  
Error Interrupt Pending Register  
Reserved  
02B4 0018  
02B4 001C  
02B4 0020 - 02B4 01FF  
02B4 0200 - 02B7 FFFF  
-
Reserved  
Table 4-89. UTOPIA Data Queues (Receive and Transmit) Registers  
HEX ADDRESS RANGE  
3D00 0000 - 3D00 007F  
3D00 0080 - 3D00 03FF  
3D00 0400 - 3D00 047F  
3D00 0480 - 3D00 07FF  
ACRONYM  
REGISTER NAME  
URQ  
UTOPIA Receive (RX) Data Queue  
Reserved  
-
UXQ  
-
UTOPIA Transmit (TX) Data Queue  
Reserved  
4.8.16.3 UTOPIA Electrical Data/Timing  
Table 4-90. UXCLK Timing Requirements(1)  
(see Figure 4-62)  
NO.  
MIN  
20  
MAX UNIT  
ns  
1
2
3
4
tc(UXCK)  
tw(UXCKH)  
tw(UXCKL)  
tt(UXCK)  
Cycle time, UXCLK  
Pulse duration, UXCLK high  
Pulse duration, UXCLK low  
Transition time, UXCLK  
0.4tc(UXCK)  
0.4tc(UXCK)  
0.6tc(UXCK) ns  
0.6tc(UXCK) ns  
2
ns  
(1) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
147  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
1
4
2
UXCLK  
3
4
Figure 4-62. UXCLK Timing  
Table 4-91. URCLK Timing Requirements(1)  
(see Figure 4-63)  
NO.  
MIN  
MAX UNIT  
ns  
1
2
3
4
tc(URCK)  
tw(URCKH)  
tw(URCKL)  
tt(URCK)  
Cycle time, URCLK  
20  
Pulse duration, URCLK high  
Pulse duration, URCLK low  
Transition time, URCLK  
0.4tc(URCK)  
0.4tc(URCK)  
0.6tc(URCK) ns  
0.6tc(URCK) ns  
2
ns  
(1) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.  
1
4
2
URCLK  
3
4
Figure 4-63. URCLK Timing  
Table 4-92. UTOPIA Slave Transmit Timing Requirements  
(see Figure 4-64)  
NO.  
MIN  
4
MAX UNIT  
2
3
8
9
tsu(UXAV-UXCH)  
th(UXCH-UXAV)  
Setup time, UXADDR valid before UXCLK high  
Hold time, UXADDR valid after UXCLK high  
ns  
ns  
ns  
ns  
1
tsu(UXENBL-UXCH) Setup time, UXENB low before UXCLK high  
th(UXCH-UXENBL) Hold time, UXENB low after UXCLK high  
4
1
Table 4-93. UTOPIA Slave Transmit Cycles Switching Characteristics(1)  
(see Figure 4-64)  
No.  
Parameter  
Min  
2
Max Unit  
12 ns  
1
4
5
6
td(UXCH-UXDV)  
Delay time, UXCLK high to UXDATA valid  
td(UXCH-UXCLAV)  
td(UXCH-UXCLAVL)  
Delay time, UXCLK high to UXCLAV driven active value  
Delay time, UXCLK high to UXCLAV driven inactive low  
2
12 ns  
2
12 ns  
td(UXCH-UXCLAVHZ) Delay time, UXCLK high to UXCLAV going Hi-Z  
9
18.5 ns  
tw(UXCLAVL-  
UXCLAVHZ)  
7
Pulse duration (low), UXCLAV low to UXCLAV Hi-Z  
2
2
ns  
10 td(UXCH-UXSV)  
Delay time, UXCLK high to UXSOC valid  
12 ns  
(1) Over recommended operating conditions.  
148  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
UXCLK  
1
3
P45  
P46  
N
P47  
P48  
H1  
UXDATA[7:0]  
2
0 x1F  
UXADDR[4:0]  
0x1F  
N
N
0x1F  
N + 1  
7
0x1F  
6
4
5
N
8
UXCLAV  
UXENB  
UXSOC  
9
10  
Figure 4-64. UTOPIA Slave Transmit Timing(A)  
(A) The UTOPIA slave module has signals that are middle-level signals indicating a high-impedance state (i.e., the UXCLAV and UXSOC  
signals).  
Table 4-94. UTOPIA Slave Receive Timing Requirements  
(see Figure 4-65)  
NO.  
1
MIN  
4
MAX UNIT  
tsu(URDV-URCH)  
th(URCH-URDV)  
tsu(URAV-URCH)  
th(URCH-URAV)  
Setup time, URDATA valid before URCLK high  
Hold time, URDATA valid after URCLK high  
Setup time, URADDR valid before URCLK high  
Hold time, URADDR valid after URCLK high  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
1
3
4
4
1
9
tsu(URENBL-URCH) Setup time, URENB low before URCLK high  
4
10 th(URCH-URENBL)  
11 tsu(URSH-URCH)  
12 th(URCH-URSH)  
Hold time, URENB low after URCLK high  
Setup time, URSOC high before URCLK high  
Hold time, URSOC high after URCLK high  
1
4
1
Table 4-95. Switching Characteristics for UTOPIA Slave Receive Cycles(1)  
(see Figure 4-65)  
NO.  
PARAMETER  
MIN  
3
MAX UNIT  
12 ns  
12 ns  
18.5 ns  
ns  
5
6
7
td(URCH-URCLAV)  
td(URCH-URCLAVL)  
Delay time, URCLK high to URCLAV driven active value  
Delay time, URCLK high to URCLAV driven inactive low  
3
td(URCH-URCLAVHZ) Delay time, URCLK high to URCLAV going Hi-Z  
9
tw(URCLAVL-  
URCLAVHZ)  
Pulse duration (low), URCLAV low to URCLAV Hi-Z  
8
3
(1) Over recommended operating conditions.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
149  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
URCLK  
URDATA[7:0]  
URADDR[4:0]  
2
1
P48  
H1  
H2  
H3  
4
5
3
N
0x1F  
N+1  
0x1F  
N+2  
8
0x1F  
7
6
URCLAV  
URENB  
URSOC  
N
N+1  
N+2  
10  
9
11  
12  
Figure 4-65. UTOPIA Slave Receive Timing(A)  
(A) The UTOPIA slave module has signals that are middle-level signals indicating a high-impedance state (i.e., the URCLAV and URSOC  
signals).  
4.8.17 Serial RapidIO (SRIO) Port  
The SRIO port on the C6457 device is a high-performance, low pin-count interconnect aimed for  
embedded markets. The use of the RapidIO interconnect in a baseband board design can create a  
homogeneous interconnect environment, providing even more connectivity and control among the  
components. RapidIO is based on the memory and device addressing concepts of processor buses where  
the transaction processing is managed completely by hardware. This enables the RapidIO interconnect to  
lower the system cost by providing lower latency, reduced overhead of packet data processing, and higher  
system bandwidth, all of which are key for wireless interfaces. The RapidIO interconnect offers very low  
pin-count interfaces with scalable system bandwidth based on 10-Gigabit per second (Gbps) bidirectional  
links.  
The PHY part of the RIO consists of the physical layer and includes the input and output buffers (each  
serial link consists of a differential pair), the 8-bit/10-bit encoder/decoder, the PLL clock recovery, and the  
parallel-to-serial/serial-to-parallel converters.  
The C6457 device supports four 1× or one 4× Serial RapidIO links. The RapidIO interface should be  
designed to operate at a data rate of 3.125 Gbps per differential pair. This equals 12.5 raw GBaud/s for  
the 4× RapidIO port, or approximately 9 Gbps data throughput rate.  
150  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.17.1 Serial RapidIO Device-Specific Information  
The approach to specifying interface timing for the SRIO Port is different than on other interfaces such as  
EMIFA, HPI, and McBSP. For these other interfaces, the device timing was specified in terms of data  
manual specifications and I/O buffer information specification (IBIS) models.  
For the C6457 SRIO Port, Texas Instruments (TI) provides a printed circuit board (PCB) solution showing  
two DSPs connected via a 4× SRIO link directly to the user. TI has performed the simulation and system  
characterization to ensure all SRIO interface timings in this solution are met. The complete SRIO system  
solution is documented in the TMS320TCI6484 and TMS320C6457 SerDes Implementation Guidelines  
application report (SPRAAY1).  
NOTE  
TI supports only designs that follow the board design guidelines outlined in the application  
report.  
The Serial RapidIO peripheral is a master peripheral in the C6457 DSP. It conforms to the RapidIO™  
Interconnect Specification, Part VI: Physical Layer 1×/4× LP-Serial Specification, Revision 1.3.  
4.8.17.2 Serial RapidIO Peripheral Register Description(s)  
Table 4-96. RapidIO Control Registers  
HEX ADDRESS RANGE  
02D0 0000  
ACRONYM  
RIO_PID  
REGISTER NAME  
Peripheral Identification Register  
Peripheral Control Register  
Reserved  
02D0 0004  
RIO_PCR  
02D0 0008 - 02D0 001C  
02D0 0020  
-
RIO_PER_SET_CNTL0  
RIO_PER_SET_CNTL1  
-
Peripheral Settings Control Register 0  
Peripheral Settings Control Register 1  
Reserved  
02D0 0024  
02D0 0028 - 02D0 002C  
02D0 0030  
RIO_GBL_EN  
RIO_GBL_EN_STAT  
RIO_BLK0_EN  
RIO_BLK0_EN_STAT  
RIO_BLK1_EN  
RIO_BLK1_EN_STAT  
BLK2_EN  
Peripheral Global Enable Register  
Peripheral Global Enable Status  
Block Enable 0  
02D0 0034  
02D0 0038  
02D0 003C  
02D0 0040  
Block Enable Status 0  
Block Enable 1  
02D0 0044  
Block Enable Status 1  
Block Enable 2  
02D0 0048  
02D0 004C  
02D0 0050  
BLK2_EN_STAT  
BLK3_EN  
Block Enable Status 2  
Block Enable 3  
02D0 0054  
BLK3_EN_STAT  
BLK4_EN  
Block Enable Status 3  
Block Enable 4  
02D0 0058  
02D0 005C  
02D0 0060  
BLK4_EN_STAT  
BLK5_EN  
Block Enable Status 4  
Block Enable 5  
02D0 0064  
BLK5_EN_STAT  
BLK6_EN  
Block Enable Status 5  
Block Enable 6  
02D0 0068  
02D0 006C  
02D0 0070  
BLK6_EN_STAT  
BLK7_EN  
Block Enable Status 6  
Block Enable 7  
02D0 0074  
BLK7_EN_STAT  
BLK8_EN  
Block Enable Status 7  
Block Enable 8  
02D0 0078  
02D0 007C  
02D0 0080  
BLK8_EN_STAT  
DEVICEID_REG1  
DEVICEID_REG2  
DEVICEID_REG3  
Block Enable Status 8  
RapidIO DEVICEID1 Register  
RapidIO DEVICEID2 Register  
RapidIO DEVICEID3 Register  
02D0 0084  
02D0 0088  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
151  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-96. RapidIO Control Registers (continued)  
HEX ADDRESS RANGE  
02D0 008C  
02D0 0090  
02D0 0094  
02D0 0098  
02D0 009C  
02D0 00A0  
02D0 00A4  
02D0 00A8  
02D0 00AC  
02D0 00B0 - 02D0 00FC  
02D0 0100  
02D0 0104  
02D0 0108  
02D0 010C  
02D0 0110  
02D0 0114  
02D0 0118  
02D0 011C  
02D0 0120  
02D0 0124  
02D0 0128  
02D0 012C  
02D0 0130 - 02D0 01FC  
02D0 0200  
02D0 0204  
02D0 0208  
02D0 020C  
02D0 0210  
02D0 0214  
02D0 0218  
02D0 021C  
02D0 0220  
02D0 0224  
02D0 0228  
02D0 022C  
02D0 0230  
02D0 0234  
02D0 0238  
02D0 023C  
02D0 0240  
02D0 0244  
02D0 0248  
02D0 024c  
ACRONYM  
REGISTER NAME  
DEVICEID_REG4  
RapidIO DEVICEID4 Register  
PF_16B_CNTL0  
Packet Forwarding Register 0 for 16-bit Device IDs  
Packet Forwarding Register 0 for 8-bit Device IDs  
Packet Forwarding Register 1 for 16-bit Device IDs  
Packet Forwarding Register 1 for 8-bit Device IDs  
Packet Forwarding Register 2 for 16-bit Device IDs  
Packet Forwarding Register 2 for 8-bit Device IDs  
Packet Forwarding Register 3 for 16-bit Device IDs  
Packet Forwarding Register 3 for 8-bit Device IDs  
Reserved  
PF_8B_CNTL0  
PF_16B_CNTL1  
PF_8B_CNTL1  
PF_16B_CNTL2  
PF_8B_CNTL2  
PF_16B_CNTL3  
PF_8B_CNTL3  
-
SERDES_CFGRX0_CNTL  
SerDes Receive Channel Configuration Register 0  
SerDes Receive Channel Configuration Register 1  
SerDes Receive Channel Configuration Register 2  
SerDes Receive Channel Configuration Register 3  
SerDes Transmit Channel Configuration Register 0  
SerDes Transmit Channel Configuration Register 1  
SerDes Transmit Channel Configuration Register 2  
SerDes Transmit Channel Configuration Register 3  
SerDes Macro Configuration Register 0  
SerDes Macro Configuration Register 1  
SerDes Macro Configuration Register 2  
SerDes Macro Configuration Register 3  
Reserved  
SERDES_CFGRX1_CNTL  
SERDES_CFGRX2_CNTL  
SERDES_CFGRX3_CNTL  
SERDES_CFGTX0_CNTL  
SERDES_CFGTX1_CNTL  
SERDES_CFGTX2_CNTL  
SERDES_CFGTX3_CNTL  
SERDES_CFG0_CNTL  
SERDES_CFG1_CNTL  
SERDES_CFG2_CNTL  
SERDES_CFG3_CNTL  
-
DOORBELL0_ICSR  
DOORBELL Interrupt Condition Status Register 0  
Reserved  
-
DOORBELL0_ICCR  
DOORBELL Interrupt Condition Clear Register 0  
Reserved  
-
DOORBELL1_ICSR  
DOORBELL Interrupt Condition Status Register 1  
Reserved  
-
DOORBELL1_ICCR  
DOORBELL Interrupt Condition Clear Register 1  
Reserved  
-
DOORBELL2_ICSR  
DOORBELL Interrupt Condition Status Register 2  
Reserved  
-
DOORBELL2_ICCR  
DOORBELL Interrupt Condition Clear Register 2  
Reserved  
-
DOORBELL3_ICSR  
DOORBELL Interrupt Condition Status Register 3  
Reserved  
-
DOORBELL3_ICCR  
DOORBELL Interrupt Condition Clear Register 3  
Reserved  
-
RX_CPPI_ICSR  
RX CPPI Interrupt Condition Status Register  
Reserved  
-
RX_CPPI_ICCR  
RX CPPI Interrupt Condition Clear Register  
Reserved  
-
02D0 0250  
02D0 0254  
02D0 0258  
02D0 025C  
TX_CPPI_ICSR  
TX CPPI Interrupt Condition Status Register  
Reserved  
-
TX_CPPI_ICCR  
-
TX CPPI Interrupt Condition Clear Register  
Reserved  
152  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-96. RapidIO Control Registers (continued)  
HEX ADDRESS RANGE  
02D0 0260  
ACRONYM  
LSU_ICSR  
REGISTER NAME  
LSU Interrupt Condition Status Register  
Reserved  
02D0 0264  
-
02D0 0268  
LSU_ICCR  
LSU Interrupt Condition Clear Register  
Reserved  
02D0 026C  
-
02D0 0270  
ERR_RST_EVNT_ICSR  
-
Error, Reset, and Special Event Interrupt Condition Status Register  
Reserved  
02D0 0274  
02D0 0278  
ERR_RST_EVNT_ICCR  
-
Error, Reset, and Special Event Interrupt Condition Clear Register  
Reserved  
02D0 027C  
02D0 0280  
DOORBELL0_ICRR  
DOORBELL0_ICRR2  
-
DOORBELL0 Interrupt Condition Routing Register  
DOORBELL 0 Interrupt Condition Routing Register 2  
Reserved  
02D0 0284  
02D0 0288 - 02D0 028C  
02D0 0290  
DOORBELL1_ICRR  
DOORBELL1_ICRR2  
-
DOORBELL1 Interrupt Condition Routing Register  
DOORBELL 1 Interrupt Condition Routing Register 2  
Reserved  
02D0 0294  
02D0 0298 - 02D0 029C  
02D0 02A0  
DOORBELL2_ICRR  
DOORBELL2_ICRR2  
-
DOORBELL2 Interrupt Condition Routing Register  
DOORBELL 2 Interrupt Condition Routing Register 2  
Reserved  
02D0 02A4  
02D0 02A8 - 02D0 02AC  
02D0 02B0  
DOORBELL3_ICRR  
DOORBELL3_ICRR2  
-
DOORBELL3 Interrupt Condition Routing Register  
DOORBELL 3 Interrupt Condition Routing Register 2  
Reserved  
02D0 02B4  
02D0 02B8 - 02D0 02BC  
02D0 02C0  
RX_CPPI_ICRR  
RX_CPPI_ICRR2  
-
Receive CPPI Interrupt Condition Routing Register  
Receive CPPI Interrupt Condition Routing Register 2  
Reserved  
02D0 02C4  
02D0 02C8 - 02D0 02CC  
02D0 02D0  
TX_CPPI_ICRR  
TX_CPPI_ICRR2  
-
Transmit CPPI Interrupt Condition Routing Register  
Transmit CPPI Interrupt Condition Routing Register 2  
Reserved  
02D0 02D4  
02D0 02D8 - 02D0 02DC  
02D0 02E0  
LSU_ICRR0  
LSU Interrupt Condition Routing Register 0  
LSU Interrupt Condition Routing Register 1  
LSU Interrupt Condition Routing Register 2  
LSU Interrupt Condition Routing Register 3  
Error, Reset, and Special Event Interrupt Condition Routing Register  
Error, Reset, and Special Event Interrupt Condition Routing Register 2  
Error, Reset, and Special Event Interrupt Condition Routing Register 3  
Reserved  
02D0 02E4  
LSU_ICRR1  
02D0 02E8  
LSU_ICRR2  
02D0 02EC  
LSU_ICRR3  
02D0 02F0  
ERR_RST_EVNT_ICRR  
ERR_RST_EVNT_ICRR2  
ERR_RST_EVNT_ICRR3  
-
02D0 02F4  
02D0 02F8  
02D0 02FC  
02D0 0300  
INTDST0_DECODE  
INTDST1_DECODE  
INTDST2_DECODE  
INTDST3_DECODE  
INTDST4_DECODE  
INTDST5_DECODE  
INTDST6_DECODE  
INTDST7_DECODE  
INTDST0_RATE_CNTL  
INTDST1_RATE_CNTL  
INTDST2_RATE_CNTL  
INTDST3_RATE_CNTL  
INTDST4_RATE_CNTL  
INTDST Interrupt Status Decode Register 0  
INTDST Interrupt Status Decode Register 1  
INTDST Interrupt Status Decode Register 2  
INTDST Interrupt Status Decode Register 3  
INTDST Interrupt Status Decode Register 4  
INTDST Interrupt Status Decode Register 5  
INTDST Interrupt Status Decode Register 6  
INTDST Interrupt Status Decode Register 7  
INTDST Interrupt Rate Control Register 0  
INTDST Interrupt Rate Control Register 1  
INTDST Interrupt Rate Control Register 2  
INTDST Interrupt Rate Control Register 3  
INTDST Interrupt Rate Control Register 4  
02D0 0304  
02D0 0308  
02D0 030C  
02D0 0310  
02D0 0314  
02D0 0318  
02D0 031C  
02D0 0320  
02D0 0324  
02D0 0328  
02D0 032C  
02D0 0330  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
153  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-96. RapidIO Control Registers (continued)  
HEX ADDRESS RANGE  
02D0 0334  
02D0 0338  
02D0 033C  
02D0 0340 - 02D0 03FC  
02D0 0400  
02D0 0404  
02D0 0408  
02D0 040C  
02D0 0410  
02D0 0414  
02D0 0418  
02D0 041C  
02D0 0420  
02D0 0424  
02D0 0428  
02D0 042C  
02D0 0430  
02D0 0434  
02D0 0438  
02D0 043C  
02D0 0440  
02D0 0444  
02D0 0448  
02D0 044C  
02D0 0450  
02D0 0454  
02D0 0458  
02D0 045C  
02D0 0460  
02D0 0464  
02D0 0468  
02D0 046C  
02D0 0470  
02D0 0474  
02D0 0478  
02D0 047C  
02D0 0480 - 02D0 04FC  
02D0 0500  
02D0 0504  
02D0 0508  
02D0 050C  
02D0 0510  
02D0 0514  
02D0 0518  
02D0 051C  
02D0 0520  
02D0 0524  
ACRONYM  
INTDST5_RATE_CNTL  
INTDST6_RATE_CNTL  
INTDST7_RATE_CNTL  
-
REGISTER NAME  
INTDST Interrupt Rate Control Register 5  
INTDST Interrupt Rate Control Register 6  
INTDST Interrupt Rate Control Register 7  
Reserved  
LSU1_REG0  
LSU1 Control Register 0  
LSU1_REG1  
LSU1 Control Register 1  
LSU1_REG2  
LSU1 Control Register 2  
LSU1_REG3  
LSU1 Control Register 3  
LSU1_REG4  
LSU1 Control Register 4  
LSU1_REG5  
LSU1 Control Register 5  
LSU1_REG6  
LSU1 Control Register 6  
LSU1_FLOW_MASKS1  
LSU2_REG0  
LSU1 Congestion Control Flow Mask Register  
LSU2 Control Register 0  
LSU2_REG1  
LSU2 Control Register 1  
LSU2_REG2  
LSU2 Control Register 2  
LSU2_REG3  
LSU2 Control Register 3  
LSU2_REG4  
LSU2 Control Register 4  
LSU2_REG5  
LSU2 Control Register 5  
LSU2_REG6  
LSU2 Control Register 6  
LSU2_FLOW_MASKS2  
LSU3_REG0  
LSU2 Congestion Control Flow Mask Register  
LSU3 Control Register 0  
LSU3_REG1  
LSU3 Control Register 1  
LSU3_REG2  
LSU3 Control Register 2  
LSU3_REG3  
LSU3 Control Register 3  
LSU3_REG4  
LSU3 Control Register 4  
LSU3_REG5  
LSU3 Control Register 5  
LSU3_REG6  
LSU3 Control Register 6  
LSU3_FLOW_MASKS3  
LSU4_REG0  
LSU3 Congestion Control Flow Mask Register  
LSU4 Control Register 0  
LSU4_REG1  
LSU4 Control Register 1  
LSU4_REG2  
LSU4 Control Register 2  
LSU4_REG3  
LSU4 Control Register 3  
LSU4_REG4  
LSU4 Control Register 4  
LSU4_REG5  
LSU4 Control Register 5  
LSU4_REG6  
LSU4 Control Register 6  
LSU4_FLOW_MASKS4  
-
LSU4 Congestion Control Flow Mask Register  
Reserved  
QUEUE0_TXDMA_HDP  
QUEUE1_TXDMA_HDP  
QUEUE2_TXDMA_HDP  
QUEUE3_TXDMA_HDP  
QUEUE4_TXDMA_HDP  
QUEUE5_TXDMA_HDP  
QUEUE6_TXDMA_HDP  
QUEUE7_TXDMA_HDP  
QUEUE8_TXDMA_HDP  
QUEUE9_TXDMA_HDP  
Queue Transmit DMA Head Descriptor Pointer Register 0  
Queue Transmit DMA Head Descriptor Pointer Register 1  
Queue Transmit DMA Head Descriptor Pointer Register 2  
Queue Transmit DMA Head Descriptor Pointer Register 3  
Queue Transmit DMA Head Descriptor Pointer Register 4  
Queue Transmit DMA Head Descriptor Pointer Register 5  
Queue Transmit DMA Head Descriptor Pointer Register 6  
Queue Transmit DMA Head Descriptor Pointer Register 7  
Queue Transmit DMA Head Descriptor Pointer Register 8  
Queue Transmit DMA Head Descriptor Pointer Register 9  
154  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-96. RapidIO Control Registers (continued)  
HEX ADDRESS RANGE  
02D0 0528  
ACRONYM  
REGISTER NAME  
QUEUE10_TXDMA_HDP  
QUEUE11_TXDMA_HDP  
QUEUE12_TXDMA_HDP  
QUEUE13_TXDMA_HDP  
QUEUE14_TXDMA_HDP  
QUEUE15_TXDMA_HDP  
-
Queue Transmit DMA Head Descriptor Pointer Register 10  
Queue Transmit DMA Head Descriptor Pointer Register 11  
Queue Transmit DMA Head Descriptor Pointer Register 12  
Queue Transmit DMA Head Descriptor Pointer Register 13  
Queue Transmit DMA Head Descriptor Pointer Register 14  
Queue Transmit DMA Head Descriptor Pointer Register 15  
Reserved  
02D0 052C  
02D0 0530  
02D0 0534  
02D0 0538  
02D0 053C  
02D0 0540 - 02D0 057C  
02D0 0580  
QUEUE0_TXDMA_CP  
QUEUE1_TXDMA_CP  
QUEUE2_TXDMA_CP  
QUEUE3_TXDMA_CP  
QUEUE4_TXDMA_CP  
QUEUE5_TXDMA_CP  
QUEUE6_TXDMA_CP  
QUEUE7_TXDMA_CP  
QUEUE8_TXDMA_CP  
QUEUE9_TXDMA_CP  
QUEUE10_TXDMA_CP  
QUEUE11_TXDMA_CP  
QUEUE12_TXDMA_CP  
QUEUE13_TXDMA_CP  
QUEUE14_TXDMA_CP  
QUEUE15_TXDMA_CP  
-
Queue Transmit DMA Completion Pointer Register 0  
Queue Transmit DMA Completion Pointer Register 1  
Queue Transmit DMA Completion Pointer Register 2  
Queue Transmit DMA Completion Pointer Register 3  
Queue Transmit DMA Completion Pointer Register 4  
Queue Transmit DMA Completion Pointer Register 5  
Queue Transmit DMA Completion Pointer Register 6  
Queue Transmit DMA Completion Pointer Register 7  
Queue Transmit DMA Completion Pointer Register 8  
Queue Transmit DMA Completion Pointer Register 9  
Queue Transmit DMA Completion Pointer Register 10  
Queue Transmit DMA Completion Pointer Register 11  
Queue Transmit DMA Completion Pointer Register 12  
Queue Transmit DMA Completion Pointer Register 13  
Queue Transmit DMA Completion Pointer Register 14  
Queue Transmit DMA Completion Pointer Register 15  
Reserved  
02D0 0584  
02D0 0588  
02D0 058C  
02D0 0590  
02D0 0594  
02D0 0598  
02D0 059C  
02D0 05A0  
02D0 05A4  
02D0 05A8  
02D0 05AC  
02D0 05B0  
02D0 05B4  
02D0 05B8  
02D0 05BC  
02D0 05D0 - 02D0 05FC  
02D0 0600  
QUEUE0_RXDMA_HDP  
QUEUE1_RXDMA_HDP  
QUEUE2_RXDMA_HDP  
QUEUE3_RXDMA_HDP  
QUEUE4_RXDMA_HDP  
QUEUE5_RXDMA_HDP  
QUEUE6_RXDMA_HDP  
QUEUE7_RXDMA_HDP  
QUEUE8_RXDMA_HDP  
QUEUE9_RXDMA_HDP  
QUEUE10_RXDMA_HDP  
QUEUE11_RXDMA_HDP  
QUEUE12_RXDMA_HDP  
QUEUE13_RXDMA_HDP  
QUEUE14_RXDMA_HDP  
QUEUE15_RXDMA_HDP  
-
Queue Receive DMA Head Descriptor Pointer Register 0  
Queue Receive DMA Head Descriptor Pointer Register 1  
Queue Receive DMA Head Descriptor Pointer Register 2  
Queue Receive DMA Head Descriptor Pointer Register 3  
Queue Receive DMA Head Descriptor Pointer Register 4  
Queue Receive DMA Head Descriptor Pointer Register 5  
Queue Receive DMA Head Descriptor Pointer Register 6  
Queue Receive DMA Head Descriptor Pointer Register 7  
Queue Receive DMA Head Descriptor Pointer Register 8  
Queue Receive DMA Head Descriptor Pointer Register 9  
Queue Receive DMA Head Descriptor Pointer Register 10  
Queue Receive DMA Head Descriptor Pointer Register 11  
Queue Receive DMA Head Descriptor Pointer Register 12  
Queue Receive DMA Head Descriptor Pointer Register 13  
Queue Receive DMA Head Descriptor Pointer Register 14  
Queue Receive DMA Head Descriptor Pointer Register 15  
Reserved  
02D0 0604  
02D0 0608  
02D0 060C  
02D0 0610  
02D0 0614  
02D0 0618  
02D0 061C  
02D0 0620  
02D0 0624  
02D0 0628  
02D0 062C  
02D0 0630  
02D0 0634  
02D0 0638  
02D0 063C  
02D0 0640 - 02D0 067C  
02D0 0680  
QUEUE0_RXDMA_CP  
QUEUE1_RXDMA_CP  
QUEUE2_RXDMA_CP  
QUEUE3_RXDMA_CP  
QUEUE4_RXDMA_CP  
QUEUE5_RXDMA_CP  
Queue Receive DMA Completion Pointer Register 0  
Queue Receive DMA Completion Pointer Register 1  
Queue Receive DMA Completion Pointer Register 2  
Queue Receive DMA Completion Pointer Register 3  
Queue Receive DMA Completion Pointer Register 4  
Queue Receive DMA Completion Pointer Register 5  
02D0 0684  
02D0 0688  
02D0 068C  
02D0 0690  
02D0 0694  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
155  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-96. RapidIO Control Registers (continued)  
HEX ADDRESS RANGE  
02D0 0698  
ACRONYM  
QUEUE6_RXDMA_CP  
QUEUE7_RXDMA_CP  
QUEUE8_RXDMA_CP  
QUEUE9_RXDMA_CP  
QUEUE10_RXDMA_CP  
QUEUE11_RXDMA_CP  
QUEUE12_RXDMA_CP  
QUEUE13_RXDMA_CP  
QUEUE14_RXDMA_CP  
QUEUE15_RXDMA_CP  
-
REGISTER NAME  
Queue Receive DMA Completion Pointer Register 6  
Queue Receive DMA Completion Pointer Register 7  
Queue Receive DMA Completion Pointer Register 8  
Queue Receive DMA Completion Pointer Register 9  
Queue Receive DMA Completion Pointer Register 10  
Queue Receive DMA Completion Pointer Register 11  
Queue Receive DMA Completion Pointer Register 12  
Queue Receive DMA Completion Pointer Register 13  
Queue Receive DMA Completion Pointer Register 14  
Queue Receive DMA Completion Pointer Register 15  
Reserved  
02D0 069C  
02D0 06A0  
02D0 06A4  
02D0 06A8  
02D0 06AC  
02D0 06B0  
02D0 06B4  
02D0 06B8  
02D0 06BC  
02D0 06C0 - 02D0 006FC  
02D0 0700  
TX_QUEUE_TEAR_DOWN  
TX_CPPI_FLOW_MASKS0  
TX_CPPI_FLOW_MASKS1  
TX_CPPI_FLOW_MASKS2  
TX_CPPI_FLOW_MASKS3  
TX_CPPI_FLOW_MASKS4  
TX_CPPI_FLOW_MASKS5  
TX_CPPI_FLOW_MASKS6  
TX_CPPI_FLOW_MASKS7  
-
Transmit Queue Teardown Register  
02D0 0704  
Transmit CPPI Supported Flow Mask Register 0  
Transmit CPPI Supported Flow Mask Register 1  
Transmit CPPI Supported Flow Mask Register 2  
Transmit CPPI Supported Flow Mask Register 3  
Transmit CPPI Supported Flow Mask Register 4  
Transmit CPPI Supported Flow Mask Register 5  
Transmit CPPI Supported Flow Mask Register 6  
Transmit CPPI Supported Flow Mask Register 7  
Reserved  
02D0 0708  
02D0 070C  
02D0 0710  
02D0 0714  
02D0 0718  
02D0 071C  
02D0 0720  
02D0 0724 - 02D0 073C  
02D0 0740  
RX_QUEUE_TEAR_DOWN  
RX_CPPI_CNTL  
Receive Queue Teardown Register  
02D0 0744  
Receive CPPI Control Register  
02D0 0748 - 02D0 07DC  
02D0 07E0  
-
Reserved  
TX_QUEUE_CNTL0  
TX_QUEUE_CNTL1  
TX_QUEUE_CNTL2  
TX_QUEUE_CNTL3  
-
Transmit CPPI Weighted Round Robin Control Register 0  
Transmit CPPI Weighted Round Robin Control Register 1  
Transmit CPPI Weighted Round Robin Control Register 2  
Transmit CPPI Weighted Round Robin Control Register 3  
Reserved  
02D0 07E4  
02D0 07E8  
02D0 07EC  
02D0 07F0 - 02D0 07FC  
02D0 0800  
RXU_MAP_L0  
Mailbox-to-Queue Mapping Register L0  
Mailbox-to-Queue Mapping Register H0  
Mailbox-to-Queue Mapping Register L1  
Mailbox-to-Queue Mapping Register H1  
Mailbox-to-Queue Mapping Register L2  
Mailbox-to-Queue Mapping Register H2  
Mailbox-to-Queue Mapping Register L3  
Mailbox-to-Queue Mapping Register H3  
Mailbox-to-Queue Mapping Register L4  
Mailbox-to-Queue Mapping Register H4  
Mailbox-to-Queue Mapping Register L5  
Mailbox-to-Queue Mapping Register H5  
Mailbox-to-Queue Mapping Register L6  
Mailbox-to-Queue Mapping Register H6  
Mailbox-to-Queue Mapping Register L7  
Mailbox-to-Queue Mapping Register H7  
Mailbox-to-Queue Mapping Register L8  
Mailbox-to-Queue Mapping Register H8  
02D0 0804  
RXU_MAP_H0  
02D0 0808  
RXU_MAP_L1  
02D0 080C  
RXU_MAP_H1  
02D0 0810  
RXU_MAP_L2  
02D0 0814  
RXU_MAP_H2  
02D0 0818  
RXU_MAP_L3  
02D0 081C  
RXU_MAP_H3  
02D0 0820  
RXU_MAP_L4  
02D0 0824  
RXU_MAP_H4  
02D0 0828  
RXU_MAP_L5  
02D0 082C  
RXU_MAP_H5  
02D0 0830  
RXU_MAP_L6  
02D0 0834  
RXU_MAP_H6  
02D0 0838  
RXU_MAP_L7  
02D0 083C  
RXU_MAP_H7  
02D0 0840  
RXU_MAP_L8  
02D0 0844  
RXU_MAP_H8  
156  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-96. RapidIO Control Registers (continued)  
HEX ADDRESS RANGE  
02D0 0848  
02D0 084C  
02D0 0850  
02D0 0854  
02D0 0858  
02D0 085C  
02D0 0860  
02D0 0864  
02D0 0868  
02D0 086C  
02D0 0870  
02D0 0874  
02D0 0878  
02D0 087C  
02D0 0880  
02D0 0884  
02D0 0888  
02D0 088C  
02D0 0890  
02D0 0894  
02D0 0898  
02D0 089C  
02D0 08A0  
02D0 08A4  
02D0 08A8  
02D0 08AC  
02D0 08B0  
02D0 08B4  
02D0 08B8  
02D0 08BC  
02D0 08C0  
02D0 08C4  
02D0 08C8  
02D0 08CC  
02D0 08D0  
02D0 08D4  
02D0 08D8  
02D0 08DC  
02D0 08E0  
02D0 08E4  
02D0 08E8  
02D0 08EC  
02D0 08F0  
02D0 08F4  
02D0 08F8  
02D0 08FC  
02D0 0900  
ACRONYM  
REGISTER NAME  
RXU_MAP_L9  
RXU_MAP_H9  
RXU_MAP_L10  
RXU_MAP_H10  
RXU_MAP_L11  
RXU_MAP_H11  
RXU_MAP_L12  
RXU_MAP_H12  
RXU_MAP_L13  
RXU_MAP_H13  
RXU_MAP_L14  
RXU_MAP_H14  
RXU_MAP_L15  
RXU_MAP_H15  
RXU_MAP_L16  
RXU_MAP_H16  
RXU_MAP_L17  
RXU_MAP_H17  
RXU_MAP_L18  
RXU_MAP_H18  
RXU_MAP_L19  
RXU_MAP_H19  
RXU_MAP_L20  
RXU_MAP_H20  
RXU_MAP_L21  
RXU_MAP_H21  
RXU_MAP_L22  
RXU_MAP_H22  
RXU_MAP_L23  
RXU_MAP_H23  
RXU_MAP_L24  
RXU_MAP_H24  
RXU_MAP_L25  
RXU_MAP_H25  
RXU_MAP_L26  
RXU_MAP_H26  
RXU_MAP_L27  
RXU_MAP_H27  
RXU_MAP_L28  
RXU_MAP_H28  
RXU_MAP_L29  
RXU_MAP_H29  
RXU_MAP_L30  
RXU_MAP_H30  
RXU_MAP_L31  
RXU_MAP_H31  
FLOW_CNTL0  
Mailbox-to-Queue Mapping Register L9  
Mailbox-to-Queue Mapping Register H9  
Mailbox-to-Queue Mapping Register L10  
Mailbox-to-Queue Mapping Register H10  
Mailbox-to-Queue Mapping Register L11  
Mailbox-to-Queue Mapping Register H11  
Mailbox-to-Queue Mapping Register L12  
Mailbox-to-Queue Mapping Register H12  
Mailbox-to-Queue Mapping Register L13  
Mailbox-to-Queue Mapping Register H13  
Mailbox-to-Queue Mapping Register L14  
Mailbox-to-Queue Mapping Register H14  
Mailbox-to-Queue Mapping Register L15  
Mailbox-to-Queue Mapping Register H15  
Mailbox-to-Queue Mapping Register L16  
Mailbox-to-Queue Mapping Register H16  
Mailbox-to-Queue Mapping Register L17  
Mailbox-to-Queue Mapping Register H17  
Mailbox-to-Queue Mapping Register L18  
Mailbox-to-Queue Mapping Register H18  
Mailbox-to-Queue Mapping Register L19  
Mailbox-to-Queue Mapping Register H19  
Mailbox-to-Queue Mapping Register L20  
Mailbox-to-Queue Mapping Register H20  
Mailbox-to-Queue Mapping Register L21  
Mailbox-to-Queue Mapping Register H21  
Mailbox-to-Queue Mapping Register L22  
Mailbox-to-Queue Mapping Register H22  
Mailbox-to-Queue Mapping Register L23  
Mailbox-to-Queue Mapping Register H23  
Mailbox-to-Queue Mapping Register L24  
Mailbox-to-Queue Mapping Register H24  
Mailbox-to-Queue Mapping Register L25  
Mailbox-to-Queue Mapping Register H25  
Mailbox-to-Queue Mapping Register L26  
Mailbox-to-Queue Mapping Register H26  
Mailbox-to-Queue Mapping Register L27  
Mailbox-to-Queue Mapping Register H27  
Mailbox-to-Queue Mapping Register L28  
Mailbox-to-Queue Mapping Register H28  
Mailbox-to-Queue Mapping Register L29  
Mailbox-to-Queue Mapping Register H29  
Mailbox-to-Queue Mapping Register L30  
Mailbox-to-Queue Mapping Register H30  
Mailbox-to-Queue Mapping Register L31  
Mailbox-to-Queue Mapping Register H31  
Flow Control Table Entry Register 0  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
157  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-96. RapidIO Control Registers (continued)  
HEX ADDRESS RANGE  
02D0 0904  
ACRONYM  
FLOW_CNTL1  
FLOW_CNTL2  
FLOW_CNTL3  
FLOW_CNTL4  
FLOW_CNTL5  
FLOW_CNTL6  
FLOW_CNTL7  
FLOW_CNTL8  
FLOW_CNTL9  
FLOW_CNTL10  
FLOW_CNTL11  
FLOW_CNTL12  
FLOW_CNTL13  
FLOW_CNTL14  
FLOW_CNTL15  
-
REGISTER NAME  
Flow Control Table Entry Register 1  
Flow Control Table Entry Register 2  
Flow Control Table Entry Register 3  
Flow Control Table Entry Register 4  
Flow Control Table Entry Register 5  
Flow Control Table Entry Register 6  
Flow Control Table Entry Register 7  
Flow Control Table Entry Register 8  
Flow Control Table Entry Register 9  
Flow Control Table Entry Register 10  
Flow Control Table Entry Register 11  
Flow Control Table Entry Register 12  
Flow Control Table Entry Register 13  
Flow Control Table Entry Register 14  
Flow Control Table Entry Register 15  
Reserved  
02D0 0908  
02D0 090C  
02D0 0910  
02D0 0914  
02D0 0918  
02D0 091C  
02D0 0920  
02D0 0924  
02D0 0928  
02D0 092C  
02D0 0930  
02D0 0934  
02D0 0938  
02D0 093C  
02D0 0940 - 02D0 09FC  
RapidIO Peripheral-Specific Registers  
02D0 1000  
02D0 1004  
DEV_ID  
Device Identity CAR  
DEV_INFO  
Device Information CAR  
Assembly Identity CAR  
Assembly Information CAR  
Processing Element Features CAR  
Reserved  
02D0 1008  
ASBLY_ID  
02D0 100C  
ASBLY_INFO  
02D0 1010  
PE_FEAT  
02D0 1014  
-
02D0 1018  
SRC_OP  
Source Operations CAR  
Destination Operations CAR  
Reserved  
02D0 101C  
DEST_OP  
02D0 1020 - 02D0 1048  
02D0 104C  
-
PE_LL_CTL  
Processing Element Logical Layer Control CSR  
Reserved  
02D0 1050 - 02D0 1054  
02D0 1058  
-
LCL_CFG_HBAR  
LCL_CFG_BAR  
BASE_ID  
Local Configuration Space Base Address 0 CSR  
Local Configuration Space Base Address 1 CSR  
Base Device ID CSR  
02D0 105C  
02D0 1060  
02D0 1064  
-
Reserved  
02D0 1068  
HOST_BASE_ID_LOCK  
COMP_TAG  
-
Host Base Device ID Lock CSR  
Component Tag CSR  
02D0 106C  
02D0 1070 - 02D0 10FC  
Reserved  
RapidIO Extended Features -LP Serial Registers  
02D0 1100  
02D0 1104 - 02D0 1118  
02D0 1120  
SP_MB_HEAD  
-
1×/4× LP Serial Port Maintenance Block Header  
Reserved  
SP_LT_CTL  
SP_RT_CTL  
-
Port Link Time-Out Control CSR  
Port Response Time-Out Control CSR  
Reserved  
02D0 1124  
02D0 1128 - 02D0 1138  
02D0 113C  
SP_GEN_CTL  
SP0_LM_REQ  
SP0_LM_RESP  
SP0_ACKID_STAT  
-
Port General Control CSR  
02D0 1140  
Port 0 Link Maintenance Request CSR  
Port 0 Link Maintenance Response CSR  
Port 0 Local Acknowledge ID Status CSR  
Reserved  
02D0 1144  
02D0 1148  
02D0 114C - 02D0 1154  
02D0 1158  
SP0_ERR_STAT  
Port 0 Error and Status CSR  
158  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-96. RapidIO Control Registers (continued)  
HEX ADDRESS RANGE  
02D0 115C  
ACRONYM  
SP0_CTL  
REGISTER NAME  
Port 0 Control CSR  
02D0 1160  
SP1_LM_REQ  
SP1_LM_RESP  
SP1_ACKID_STAT  
-
Port 1 Link Maintenance Request CSR  
Port 1 Link Maintenance Response CSR  
Port 1 Local Acknowledge ID Status CSR  
Reserved  
02D0 1164  
02D0 1168  
02D0 116C - 02D0 1174  
02D0 1178  
SP1_ERR_STAT  
SP1_CTL  
Port 1 Error and Status CSR  
Port 1 Control CSR  
02D0 117C  
02D0 1180  
SP2_LM_REQ  
SP2_LM_RESP  
SP2_ACKID_STAT  
-
Port 2 Link Maintenance Request CSR  
Port 2 Link Maintenance Response CSR  
Port 2 Local Acknowledge ID Status CSR  
Reserved  
02D0 1184  
02D0 1188  
02D0 118C - 02D0 1194  
02D0 1198  
SP2_ERR_STAT  
SP2_CTL  
Port 2 Error and Status CSR  
Port 2 Control CSR  
02D0 119C  
02D0 11A0  
SP3_LM_REQ  
SP3_LM_RESP  
SP3_ACKID_STAT  
-
Port 3 Link Maintenance Request CSR  
Port 3 Link Maintenance Response CSR  
Port 3 Local Acknowledge ID Status CSR  
Reserved  
02D0 11A4  
02D0 11A8  
02D0 11AC - 02D0 11B4  
02D0 11B8  
SP3_ERR_STAT  
SP3_CTL  
Port 3 Error and Status CSR  
Port 3 Control CSR  
02D0 11BC  
02D0 11C0 -02D0 1FFC  
-
Reserved  
RapidIO Extended Feature -Error Management Registers  
02D0 2000  
02D0 2004  
ERR_RPT_BH  
-
Error Reporting Block Header  
Reserved  
02D0 2008  
ERR_DET  
ERR_EN  
Logical/Transport Layer Error Detect CSR  
Logical/Transport Layer Error Enable CSR  
02D0 200C  
02D0 2010  
H_ADDR_CAPT  
ADDR_CAPT  
ID_CAPT  
CTRL_CAPT  
-
Logical/Transport Layer High Address Capture CSR  
Logical/Transport Layer Address Capture CSR  
Logical/Transport Layer Device ID Capture CSR  
Logical/Transport Layer Control Capture CSR  
Reserved  
02D0 2014  
02D0 2018  
02D0 201C  
02D0 2020 - 02D0 2024  
02D0 2028  
PW_TGT_ID  
-
Port-Write Target Device ID CSR  
Reserved  
02D0 202C - 02D0 203C  
02D0 2040  
SP0_ERR_DET  
SP0_RATE_EN  
Port 0 Error Detect CSR  
02D0 2044  
Port 0 Error Enable CSR  
02D0 2048  
SP0_ERR_ATTR_CAPT_DBG0 Port 0 Attributes Error Capture CSR 0  
02D0 204C  
SP0_ERR_CAPT_DBG1  
SP0_ERR_CAPT_DBG2  
SP0_ERR_CAPT_DBG3  
SP0_ERR_CAPT_DBG4  
-
Port 0 Packet/Control Symbol Error Capture CSR 1  
02D0 2050  
Port 0 Packet/Control Symbol Error Capture CSR 2  
Port 0 Packet/Control Symbol Error Capture CSR 3  
Port 0 Packet/Control Symbol Error Capture CSR 4  
Reserved  
02D0 2054  
02D0 2058  
02D0 205C - 02D0 2064  
02D0 2068  
SP0_ERR_RATE  
SP0_ERR_THRESH  
-
Port 0 Error Rate CSR 0  
02D0 206C  
Port 0 Error Rate Threshold CSR  
Reserved  
02D0 2070 - 02D0 207C  
02D0 2080  
SP1_ERR_DET  
SP1_RATE_EN  
Port 1 Error Detect CSR  
02D0 2084  
Port 1 Error Enable CSR  
02D0 2088  
SP1_ERR_ATTR_CAPT_DBG0 Port 1 Attributes Error Capture CSR 0  
SP1_ERR_CAPT_DBG1 Port 1 Packet/Control Symbol Error Capture CSR 1  
02D0 208C  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
159  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 4-96. RapidIO Control Registers (continued)  
HEX ADDRESS RANGE  
02D0 2090  
ACRONYM  
SP1_ERR_CAPT_DBG2  
SP1_ERR_CAPT_DBG3  
SP1_ERR_CAPT_DBG4  
-
REGISTER NAME  
Port 1 Packet/Control Symbol Error Capture CSR 2  
Port 1 Packet/Control Symbol Error Capture CSR 3  
Port 1 Packet/Control Symbol Error Capture CSR 4  
Reserved  
02D0 2094  
02D0 2098  
02D0 209C - 02D0 20A4  
02D0 20A8  
SP1_ERR_RATE  
SP1_ERR_THRESH  
-
Port 1 Error Rate CSR  
02D0 20AC  
Port 1 Error Rate Threshold CSR  
Reserved  
02D0 20B0 - 02D0 20BC  
02D0 20C0  
SP2_ERR_DET  
SP2_RATE_EN  
Port 2 Error Detect CSR  
02D0 20C4  
Port 2 Error Enable CSR  
02D0 20C8  
SP2_ERR_ATTR_CAPT_DBG0 Port 2 Attributes Error Capture CSR 0  
02D0 20CC  
SP2_ERR_CAPT_DBG1  
SP2_ERR_CAPT_DBG2  
SP2_ERR_CAPT_DBG3  
SP2_ERR_CAPT_DBG4  
-
Port 2 Packet/Control Symbol Error Capture CSR 1  
02D0 20D0  
Port 2 Packet/Control Symbol Error Capture CSR 2  
Port 2 Packet/Control Symbol Error Capture CSR 3  
Port 2 Packet/Control Symbol Error Capture CSR 4  
Reserved  
02D0 20D4  
02D0 20D8  
02D0 20DC - 02D0 20E4  
02D0 20E8  
SP2_ERR_RATE  
SP2_ERR_THRESH  
-
Port 2 Error Rate CSR  
02D0 20EC  
Port 2 Error Rate Threshold CSR  
Reserved  
02D0 20F0 - 02D0 20FC  
02D0 2100  
SP3_ERR_DET  
SP3_RATE_EN  
Port 3 Error Detect CSR  
02D0 2104  
Port 3 Error Enable CSR  
02D0 2108  
SP3_ERR_ATTR_CAPT_DBG0 Port 3 Attributes Error Capture CSR 0  
02D0 210C  
SP3_ERR_CAPT_DBG1  
SP3_ERR_CAPT_DBG2  
SP3_ERR_CAPT_DBG3  
SP3_ERR_CAPT_DBG4  
-
Port 3 Packet/Control Symbol Error Capture CSR 1  
02D0 2110  
Port 3 Packet/Control Symbol Error Capture CSR 2  
Port 3 Packet/Control Symbol Error Capture CSR 3  
Port 3 Packet/Control Symbol Error Capture CSR 4  
Reserved  
02D0 2114  
02D0 2118  
02D0 211C - 02D0 2124  
02D0 2128  
SP3_ERR_RATE  
SP3_ERR_THRESH  
-
Port 3 Error Rate CSR  
02D0 212C  
Port 3 Error Rate Threshold CSR  
Reserved  
02D0 2130 -02D1 0FFC  
Implementation Registers  
02D1 1000 - 02D1 1FFC  
02D1 2000  
-
Reserved  
SP_IP_DISCOVERY_TIMER Port IP Discovery Timer in 4x mode  
02D1 2004  
SP_IP_MODE  
IP_PRESCAL  
-
Port IP Mode CSR  
02D1 2008  
Port IP Prescaler Register  
Reserved  
02D1 200C  
02D1 2010  
SP_IP_PW_IN_CAPT0  
SP_IP_PW_IN_CAPT1  
SP_IP_PW_IN_CAPT2  
SP_IP_PW_IN_CAPT3  
-
Port-Write-In Capture CSR Register 0  
Port-Write-In Capture CSR Register 1  
Port-Write-In Capture CSR Register 2  
Port-Write-In Capture CSR Register 3  
Reserved  
02D1 2014  
02D1 2018  
02D1 201C  
02D1 2020 - 02D1 3FFC  
02D1 4000  
SP0_RST_OPT  
SP0_CTL_INDEP  
SP0_SILENCE_TIMER  
SP0_MULT_EVNT_CS  
-
Port 0 Reset Option CSR  
02D1 4004  
Port 0 Control Independent Register  
Port 0 Silence Timer Register  
Port 0 Multicast-Event Control Symbol Request Register  
Reserved  
02D1 4008  
02D1 400C  
02D1 4010  
02D1 4014  
SP0_CS_TX  
Port 0 Control Symbol Transmit Register  
Reserved  
02D1 4018 - 02D1 40FC  
-
160  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 4-96. RapidIO Control Registers (continued)  
HEX ADDRESS RANGE  
02D1 4100  
ACRONYM  
SP1_RST_OPT  
SP1_CTL_INDEP  
SP1_SILENCE_TIMER  
SP1_MULT_EVNT_CS  
-
REGISTER NAME  
Port 1 Reset Option CSR  
Port 1 Control Independent Register  
Port 1 Silence Timer Register  
02D1 4104  
02D1 4108  
02D1 410C  
Port 1 Multicast-Event Control Symbol Request Register  
Reserved  
02D1 4110  
02D1 4114  
SP1_CS_TX  
-
Port 1 Control Symbol Transmit Register  
Reserved  
02D1 4118 - 02D1 41FC  
02D1 4200  
SP2_RST_OPT  
SP2_CTL_INDEP  
SP2_SILENCE_TIMER  
SP2_MULT_EVNT_CS  
SP2_CS_TX  
-
Port 2 Reset Option CSR  
02D1 4204  
Port 2 Control Independent Register  
Port 2 Silence Timer Register  
Port 2 Multicast-Event Control Symbol Request Register  
Port 2 Control Symbol Transmit Register  
Reserved  
02D1 4208  
02D1 420C  
02D1 4214  
02D1 4218 - 02D1 42FC  
02D1 4300  
SP3_RST_OPT  
SP3_CTL_INDEP  
SP3_SILENCE_TIMER  
SP3_MULT_EVNT_CS  
-
Port 3 Reset Option CSR  
02D1 4304  
Port 3 Control Independent Register  
Port 3 Silence Timer Register  
Port 3 Multicast-Event Control Symbol Request Register  
Reserved  
02D1 4308  
02D1 430C  
02D1 4310  
02D1 4314  
SP3_CS_TX  
-
Port 3 Control Symbol Transmit Register  
Reserved  
02D1 4318 - 02D2 0FFF  
02D2 1000 - 02DF FFFF  
-
Reserved  
4.8.17.3 Serial RapidIO Electrical Data/Timing  
The TMS320TCI6484 and TMS320C6457 SerDes Implementation Guidelines application report  
(SPRAAY1) specifies a complete printed circuit board (PCB) solution for the C6457 as well as a list of  
compatible SRIO devices showing two DSPs connected via a 4× SRIO link. TI has performed the  
simulation and system characterization to ensure all SRIO interface timings in this solution are met;  
therefore, no electrical data/timing information is supplied here for this interface.  
NOTE  
TI supports only designs that follow the board design guidelines outlined in the application  
report.  
Serial RapidIO is electrically compliant with the RapidIO™ Interconnect Specification, Part VI: Physical  
Layer 1×/4× LP-Serial Specification, Revision 1.3.  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
161  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.18 General-Purpose Input/Output (GPIO)  
4.8.18.1 GPIO Device-Specific Information  
On the C6457, the GPIO peripheral pins GP[15:0] are also used to latch configuration pins. For more  
detailed information on device/peripheral configuration and the C6457 device pin muxing, see Section 5.5.  
4.8.18.2 GPIO Peripheral Register Description(s)  
Table 4-97. GPIO Registers  
HEX ADDRESS RANGE  
02B0 0008  
ACRONYM  
REGISTER NAME  
BINTEN  
GPIO interrupt per bank enable register  
Reserved  
02B0 000C  
-
02B0 0010  
DIR  
GPIO Direction Register  
GPIO Output Data register  
GPIO Set Data register  
02B0 0014  
OUT_DATA  
SET_DATA  
CLR_DATA  
IN_DATA  
SET_RIS_TRIG  
CLR_RIS_TRIG  
SET_FAL_TRIG  
CLR_FAL_TRIG  
-
02B0 0018  
02B0 001C  
GPIO Clear Data Register  
GPIO Input Data Register  
GPIO Set Rising Edge Interrupt Register  
GPIO Clear Rising Edge Interrupt Register  
GPIO Set Falling Edge Interrupt Register  
GPIO Clear Falling Edge Interrupt Register  
Reserved  
02B0 0020  
02B0 0024  
02B0 0028  
02B0 002C  
02B0 0030  
02B0 008C  
02B0 0090 - 02B0 00FF  
02B0 0100 - 02B0 3FFF  
-
Reserved  
-
Reserved  
4.8.18.3 GPIO Electrical Data/Timing  
Table 4-98. GPIO Input Timing Requirements(1)  
(see Figure 4-66)  
NO.  
MIN  
12C  
12C  
MAX UNIT  
1
2
tw(GPOH)  
tw(GPOL)  
Pulse duration, GPOx high  
Pulse duration, GPOx low  
ns  
ns  
(1) If CORECLKSEL = 0, C = 1 ÷ CORECLK(NIP) frequency, in ns. If CORECLKSEL = 1, C = 1 ÷ ALTCORECLK frequency, in ns.  
Table 4-99. GPIO Output Switching Characteristics(1)(2)  
(see Figure 4-66)  
NO. PARAMETER  
MIN  
12C - 3  
12C - 3  
MAX UNIT  
1
2
tw(GPOH)  
tw(GPOL)  
Pulse duration, GPOx high  
Pulse duration, GPOx low  
ns  
ns  
(1) Over recommended operating conditions.  
(2) If CORECLKSEL = 0, C = 1 ÷ CORECLK(NIP) frequency, in ns. If CORECLKSEL = 1, C = 1 ÷ ALTCORECLK frequency, in ns.  
2
1
GPIx  
4
3
GPOx  
Figure 4-66. GPIO Timing  
162  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.19 Emulation Features and Capability  
4.8.19.1 Advanced Event Triggering (AET)  
The C6457 device supports Advanced Event Triggering (AET). This capability can be used to debug  
complex problems as well as understand performance characteristics of user applications. AET provides  
the following capabilities:  
Hardware Program Breakpoints: specify addresses or address ranges that can generate events such  
as halting the processor or triggering the trace capture.  
Data Watchpoints: specify data variable addresses, address ranges, or data values that can generate  
events such as halting the processor or triggering the trace capture.  
Counters: count the occurrence of an event or cycles for performance monitoring.  
State Sequencing: allows combinations of hardware program breakpoints and data watchpoints to  
precisely generate events for complex sequences.  
For more information on AET, see the following documents:  
Using Advanced Event Triggering to Find and Fix Intermittent Real-Time Bugs application report  
(SPRA753)  
Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded  
Microprocessor Systems application report (SPRA387)  
4.8.19.2 Trace  
The C6457 device supports Trace. Trace is a debug technology that provides a detailed, historical  
account of application code execution, timing, and data accesses. Trace collects, compresses, and  
exports debug information for analysis. Trace works in real-time and does not impact the execution of the  
system.  
For more information on board design guidelines for Trace Advanced Emulation, see the 60-Pin Emulation  
Header Technical Reference (SPRU655).  
4.8.19.2.1 Trace Electrical Data/Timing  
(1)  
Table 4-100. Switching Characteristics for Trace  
(see Figure 4-67)  
NO. PARAMETER  
MIN  
2.4  
1.5  
2.4  
1.5  
MAX UNIT  
1
1
2
2
tw(DPnH)  
Pulse duration, DPn/EMUn high  
ns  
ns  
ns  
ns  
tw(DPnH)90%  
tw(DPnL)  
Pulse duration, DPn/EMUn high detected at 90% Voh  
Pulse duration, DPn/EMUn low  
tw(DPnL)10%  
Pulse duration, DPn/EMUn low detected at 10% Voh  
Output skew time, time delay difference between DPn/EMUn pins  
configured as trace  
3
tsko(DPn)  
-500  
500 ps  
(1) Over recommended operating conditions.  
A
tPLH  
tPHL  
1
2
B
C
3
Figure 4-67. Trace Timing  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
163  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
4.8.19.3 IEEE 1149.1 JTAG  
The JTAG interface is used to support boundary scan and emulation of the device. The boundary scan  
supported allows for an asynchronous TRST and only the 5 baseline JTAG signals (e.g., no EMU[1:0])  
required for boundary scan. Most interfaces on the device follow the Boundary Scan Test Specification  
(IEEE1149.1), while all of the SerDes (SRIO and SGMII) support the AC-coupled net test defined in AC-  
Coupled Net Test Specification (IEEE1149.6).  
It is expected that all compliant devices are connected through the same JTAG interface, in daisy-chain  
fashion, in accordance with the specification. The JTAG interface uses 1.8-V LVCMOS buffers, compliant  
with the Power Supply Voltage and Interface Standard for Nonterminated Digital Integrated Circuit  
Specification (EAI/JESD8-5).  
4.8.19.3.1 IEEE 1149.1 JTAG Compatibility Statement  
For maximum reliability, the C6457 DSP includes an internal pulldown (IPD) on the TRST pin to ensure  
that TRST will always be asserted upon power up and the DSP's internal emulation logic will always be  
properly initialized when this pin is not routed out. JTAG controllers from Texas Instruments actively drive  
TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of  
an external pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the  
DSP after powerup and externally drive TRST high before attempting any emulation or boundary scan  
operations.  
4.8.19.3.2 JTAG Electrical Data/Timing  
Table 4-101. JTAG Test Port Timing Requirements  
(see Figure 4-68)  
NO.  
1
MIN  
10  
2
MAX UNIT  
tc(TCK)  
Cycle time, TCK  
20 ns  
ns  
3
tsu(TDIV-TCKH)  
th(TCKH-TDIV)  
Setup time, TDI/TMS/TRST valid before TCK high  
Hold time, TDI/TMS/TRST valid after TCK high  
4
5
ns  
Table 4-102. JTAG Test Port Switching Characteristics(1)  
(see Figure 4-68)  
NO. PARAMETER  
MIN  
MAX UNIT  
2
td(TCKL-TDOV)  
Delay time, TCK low to TDO valid  
0.25 x tc(TCK) ns  
(1) Over recommended operating conditions.  
1
TCK  
TDO  
2
2
4
3
TDI/TMS/TRST  
Figure 4-68. JTAG Test-Port Timing  
164  
Specifications  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
4.8.19.3.3 HS-RTDX Electrical Data/Timing  
Table 4-103. Timing Requirements for HS-RTDX  
(see Figure 4-69)  
NO.  
MIN  
MAX UNIT  
1
2
3
tc(TCK)  
Cycle time, TCK  
20  
1.5  
1.5  
ns  
ns  
ns  
tsu(TDIV-TCKH)  
th(TCKH-TDIV)  
Setup time, EMUn valid before TCK high  
Hold time, EMUn valid after TCK high  
Table 4-104. Switching Characteristics for HS-RTDX(1)  
(see Figure 4-69)  
NO. PARAMETER  
MIN  
MAX UNIT  
4
td(TCKL-TDOV)  
Delay time, TCK high to EMUn valid  
3
16.5 ns  
(1) Over recommended operating conditions.  
1
TCK  
4
2
3
EMU[n]  
Figure 4-69. HS-RTDX Timing  
Copyright © 2016, Texas Instruments Incorporated  
Specifications  
165  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
5 Detailed Description  
5.1 Device Overview  
Table 5-1 provides an overview of the SM320C6457-HIREL DSP. The table shows significant features of  
the SM320C6457-HIREL device, including the capacity of on-chip RAM, the peripherals, the CPU  
frequency, and the package and pin count.  
Table 5-1. Characteristics of the SM320C6457-HIREL Processor  
HARDWARE FEATURES  
SM320C6457-HIREL  
EMIFA (64-bit bus width) (clock source = AECLKIN or SYSCLK7)  
1
1
DDR2 Memory Controller (32-bit bus width) [1.8 V I/O] (clock source =  
DDRREFCLKN|P)  
EDMA3 (64 independent channels) [CPU/3 clock rate]  
High-speed 1×/4× Serial RapidIO Port (4 lanes)  
I2C  
1
1
1
HPI (32-or 16-bit user selectable)  
1 (HPI16 or HPI32)  
Peripherals  
McBSPs (internal or external clock source up to 100 Mbps)  
UTOPIA (8-bit mode, 50-MHz, slave-only)  
10/100/1000 Ethernet MAC (EMAC)  
Management Data Input/Output (MDIO)  
2
1
1
1
64-Bit Timers (configurable) (internal clock source = CPU/6 clock  
frequency)  
2 64-bit or 4 32-bit  
General-Purpose Input/Output Port (GPIO)  
VCP2 (clock source = CPU/3 clock frequency)  
TCP2 (clock source = CPU/3 clock frequency)  
Size (Bytes)  
16  
1
Decoder  
Coprocessors  
2
2176K  
32KB L1 Program Memory Controller  
[SRAM/Cache] 32KB L1 Data Memory  
Controller [SRAM/Cache] 2048KB L2 Unified  
Memory/Cache 64KB L3 ROM  
On-Chip Memory  
Organization  
C64x+  
Megamodule  
Revision ID  
Megamodule Revision ID Register (address location: 0181 2000h)  
See Section 5.3.6  
JTAG BSDL_ID  
Frequency  
JTAGID register (address location: 0288 0818h)  
MHz  
See Section 5.5.5  
850 and 1000 (1 GHz)  
1.18 ns, 1 ns, and 0.83 ns (0.85- and 1-GHz  
CPU)  
Cycle Time  
Voltage  
ns  
850-MHz  
CPU  
1.1 V  
Core (V)  
1-GHz CPU  
1.1 V  
850-MHz  
CPU  
1.1 V, 1.8 V, and 3.3 V  
I/O (V)  
1-GHz CPU  
1.1 V, 1.8 V, and 3.3 V  
Bypass (×1), (×4 to ×32)  
PLL1 and PLL1  
Controller  
CLKIN1 frequency multiplier  
Options  
PLL2  
DDR2 Clock  
23 mm × 23 mm  
µm  
×10  
BGA Package  
688-Pin Flip-Chip Plastic BGA (GMH)  
0.065 µm  
Process  
Technology  
Product Status  
Production Data (PD)  
PD  
Device Part  
Numbers  
SM320C6457CGMHS  
(For more details on the C64x+™ DSP part numbering, see 6-1)  
166  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
5.2 CPU (DSP Core) Description  
The C64x+ Central Processing Unit (CPU) consists of eight functional units, two register files, and two  
data paths as shown in Figure 2-1. The two general-purpose register files (A and B) each contain 32 32-  
bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data  
address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-  
bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in  
register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the  
next upper register (which is always an odd-numbered register).  
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one  
instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units  
perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from  
memory to the register file and store results from the register file into memory.  
The C64x+ CPU extends the performance of the C64x core through enhancements and new features.  
Each C64x+ .M unit can perform one of the following each clock cycle: one 32 × 32 bit multiply, two 16 ×  
16 bit multiplies, two 16 × 32 bit multiplies, four 8 × 8 bit multiplies, four 8 × 8 bit multiplies with add  
operations, and four 16 × 16 multiplies with add/subtract capabilities (including a complex multiply). There  
is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms  
such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes  
four 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex  
multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-  
bit imaginary values. The 32 × 32 bit multiply instructions provide the extended precision necessary for  
audio and other high-precision algorithms on a variety of signed and unsigned 32-bit data types.  
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a  
pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data  
performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.  
The C64x+ core enhances the .S unit in several ways. In the C64x core, dual 16-bit MIN2 and MAX2  
comparisons were only available on the .L units. On the C64x+ core they are also available on the .S unit  
which increases the performance of algorithms that do searching and sorting. Finally, to increase data  
packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit  
and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack  
instructions return parallel results to output precision including saturation support.  
Other new features include:  
SPLOOP — A small instruction buffer in the CPU that aids in creation of software pipelining loops  
where multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size  
associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.  
Compact Instructions — The native instruction size for the C6000 devices is 32 bits. Many common  
instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C64x+  
compiler can restrict the code to use certain registers in the register file. This compression is  
performed by the code generation tools.  
Instruction Set Enhancements — As noted above, there are new instructions such as 32-bit  
multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field  
multiplication.  
Exception Handling — Intended to aid the programmer in isolating bugs. The C64x+ CPU is able to  
detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and  
from system events (such as a watchdog time expiration).  
Privilege — Defines user and supervisor modes of operation, allowing the operating system to give a  
basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with  
read, write, and execute permissions.  
Time-Stamp Counter — Primarily targeted for Real-Time Operating System (RTOS) robustness, a  
free-running time-stamp counter is implemented in the CPU, which is not sensitive to system stalls.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
167  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
For more details on the C64x+ CPU and its enhancements over the C64x architecture, see the following  
documents:  
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732)  
TMS320C64x+ DSP Cache User's Guide (SPRU862)  
TMS320C64x+ Megamodule Reference Guide (SPRU871)  
TMS320C64x to TMS320C64x+ CPU Migration Guide (SPRAA84)  
Figure 5-1 shows the DSP core functional units and data paths.  
168  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Figure 2-1  
TMS320C64x+ CPU (DSP Core) Data Paths  
Even  
register  
file A  
src1  
src2  
Odd  
register  
file A  
(A0, A2,  
A4...A30)  
(A1, A3,  
A5...A31)  
.L1  
odd dst  
even dst  
long src  
(D)  
8
32 MSB  
32 LSB  
ST1b  
ST1a  
8
long src  
even dst  
odd dst  
src1  
(D)  
Data path A  
.S1  
src2  
32  
32  
(A)  
(B)  
dst2  
dst1  
src1  
.M1  
src2  
(C)  
32 MSB  
32 LSB  
LD1b  
LD1a  
dst  
src1  
src2  
.D1  
DA1  
2x  
1x  
Even  
register  
file B  
Odd  
register  
file B  
src2  
DA2  
.D2  
(B0, B2,  
B4...B30)  
src1  
dst  
(B1, B3,  
B5...B31)  
32 LSB  
LD2a  
LD2b  
32 MSB  
src2  
(C)  
.M2  
src1  
dst2  
32  
32  
(B)  
(A)  
dst1  
src2  
src1  
.S2  
odd dst  
even dst  
long src  
(D)  
Data path B  
8
32 MSB  
32 LSB  
ST2a  
ST2b  
8
long src  
even dst  
(D)  
odd dst  
src2  
.L2  
src1  
Control Register  
Figure 5-1. TMS320C64x+ CPU (DSP Core) Data Paths  
(A) On .M unit, dst2 is 32 MSB. ____(B) On .M unit, dst1 is 32 LSB. ____(C) On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit,  
src2 is 64 bits. (D) On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
169  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
5.3 C64x+ Megamodule  
The C64x+ Megamodule consists of several components:  
The C64x+ CPU and associated C64x+ Megamodule core  
Level-one and level-two memories (L1P, L1D, L2)  
Interrupt controller  
Power-down controller  
External memory controller  
A dedicated power/sleep controller (LPSC)  
The C64x+ Megamodule also provides support for memory protection and bandwidth management (for  
resources local to the C64x+ Megamodule). Figure 5-2 shows a block diagram of the C64x+ Megamodule.  
32KB L1P  
Memory Controller (PMC) With  
Memory Protect/Bandwidth Mgmt  
C64x+ DSP Core  
Instruction Fetch  
16-/32-bit Instruction Dispatch  
Control Registers  
L2 Cache/  
SRAM  
2048KB  
In-Circuit Emulation  
Boot  
Controller  
Instruction Decode  
Data Path A  
A Register File  
Data Path B  
B Register File  
PLLC  
LPSC  
GPSC  
A31-A16  
A15-A0  
B31-B16  
B15-B0  
DMA Switch  
Fabric  
.M1  
.L1 .S1 xx .D1  
xx  
.M2  
.D2 xx .S2 .L2  
xx  
Data Memory Controller (DMC) With  
Memory Protect/Bandwidth Mgmt  
CFG Switch  
Fabric  
32KB L1D  
Figure 5-2. 64x+ Megamodule Block Diagram  
For more detailed information on the TMS320C64x+ megamodule on the C6457 device, see the  
TMS320C64x+ Megamodule Reference Guide (SPRU871).  
170  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
5.3.1 Memory Architecture  
The C6457 device contains a 2048KB level-2 memory (L2), a 32KB level-1 program memory (L1P), and a  
32KB level-1 data memory (L1D). All memory on the C6457 has a unique location in the memory map  
(see Table 5-14).  
After device reset, L1P and L1D cache are configured as all cache, by default. The L1P and L1D cache  
can be reconfigured via software through the L1PMODE field of the L1P Configuration Register  
(L1PMODE) and the L1DMODE field of the L1D Configuration Register (L1DCFG) of the C64x+  
Megamodule. L1D is a two-way set-associative cache, while L1P is a direct-mapped cache.  
The on-chip bootloader changes the reset configuration for L1P and L1D. For more information, see the  
TMS320C6457 Bootloader User's Guide (SPRUGL5).  
For more information on the operation L1 and L2 caches, see the TMS320C64x+ DSP Cache User's  
Guide (SPRU862).  
5.3.1.1 L1P Memory  
The L1P memory configuration for the C6457 device is as follows:  
Region 0 size is 0K bytes (disabled)  
Region 1 size is 32K bytes with no wait states  
Figure 5-3 shows the available SRAM/cache configurations for L1P.  
L1P mode bits  
Block base  
address  
000  
001  
010  
011  
100  
L1P memory  
16K bytes  
00E0 0000h  
1/2  
SRAM  
3/4  
SRAM  
7/8  
SRAM  
direct  
mapped  
cache  
All  
SRAM  
00E0 4000h  
00E0 6000h  
8K bytes  
direct  
mapped  
cache  
4K bytes  
4K bytes  
direct  
mapped  
cache  
00E0 7000h  
00E0 8000h  
dm  
cache  
Figure 5-3. C6457 L1P Memory Configurations  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
171  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
5.3.1.2 L1D Memory  
The L1D memory configuration for the C6457 device is as follows:  
Region 0 size is 0K bytes (disabled)  
Region 1 size is 32K bytes with no wait states  
Figure 5-4 shows the available SRAM/cache configurations for L1D.  
L1D mode bits  
Block base  
address  
000  
001  
010  
011  
100  
L1D memory  
16K bytes  
00F0 0000h  
1/2  
SRAM  
3/4  
SRAM  
7/8  
SRAM  
All  
SRAM  
2-way  
cache  
00F0 4000h  
00F0 6000h  
8K bytes  
2-way  
cache  
4K bytes  
4K bytes  
2-way  
cache  
00F0 7000h  
00F0 8000h  
2-way  
cache  
Figure 5-4. C6457 L1D Memory Configurations  
172  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
5.3.1.3 L2 Memory  
The L2 memory configuration for the C6457 device is as follows:  
Memory size is 2048KB  
Starting address is 0080 0000h  
L2 memory can be configured as all SRAM or as part 4-way set-associative cache. The amount of L2  
memory that is configured as cache is controlled through the L2MODE field of the L2 Configuration  
Register (L2CFG) of the C64x+ Megamodule. Figure 5-5 shows the available SRAM/cache configurations  
for L2. By default, L2 is configured as all SRAM after device reset.  
L2 mode bits  
011  
Block base  
address  
000  
001  
010  
100  
101  
110  
L2 memory  
0080 0000h  
1/2  
SRAM  
1024K bytes  
3/4  
SRAM  
7/8  
SRAM  
0090 0000h  
15/16  
SRAM  
31/32  
SRAM  
63/64  
SRAM  
ALL  
SRAM  
512K bytes  
0098 0000h  
009C 0000h  
4-way  
cache  
256K bytes  
4-way  
cache  
128K bytes  
64K bytes  
4-way  
cache  
009E 0000h  
009F 0000h  
4-way  
cache  
32K bytes  
32K bytes  
4-way  
cache  
009F 8000h  
009F FFFFh  
4-way  
cache  
Figure 5-5. C6457 L2 Memory Configurations  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
173  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
5.3.1.4 L3 Memory  
The L3 ROM on the device is 64KB. The contents of the ROM are divided into two partitions. The first is  
the ROM bootloader with the primary purpose of containing software to boot the device. There is no  
requirement to block accesses from this portion to the ROM. The second partition is the secure portion of  
ROM, which has a secure kernel that is necessary for support of security features on the device. The  
secure portion of ROM cannot be accessed both on secure, and non-secure parts. Only secure  
supervisors should have access.  
Emulation accesses follows the same rules of the secure portion of the ROM. Emulation can access the  
non-secure portion of the ROM, but cannot read the secure portion of the ROM.  
5.3.2 Memory Protection  
Memory protection allows an operating system to define who or what is authorized to access L1D, L1P,  
and L2 memory. To accomplish this, the L1D, L1P, and L2 memories are divided into pages. There are 16  
pages of L1P (2KB each), 16 pages of L1D (2KB each), and 64 pages of L2 (32KB each). The L1D, L1P,  
and L2 memory controllers in the C64x+ Megamodule are equipped with a set of registers that specify the  
permissions for each memory page.  
Each page may be assigned with fully orthogonal user and supervisor read, write, and execute  
permissions. In addition, a page may be marked as either (or both) locally accessible or globally  
accessible. A local access is a direct CPU access to L1D, L1P, and L2, while a global access is initiated  
by a DMA (either IDMA or the EDMA3) or by other system masters. Note that EDMA or IDMA transfers  
programmed by the CPU count as global accesses. On a secure device, pages can be restricted to secure  
access only (default) or opened up for public, non-secure access.  
The CPU and each of the system masters on the device are all assigned a privilege ID (see Table 5-2). It  
is only possible to specify whether memory pages are locally or globally accessible.  
Table 5-2. Available Memory Page Protection Scheme With Privilege ID  
PRIVID MODULE  
DESCRIPTION  
0
1
2
3
4
5
C64x+ Megamodule  
Reserved  
Reserved  
EMAC  
RapidIO and RapidIO CPPI  
HPI  
The AID0 and LOCAL bits of the memory protection page attribute registers specify the memory page  
protection scheme, see Table 5-3.  
Table 5-3. Available Memory Page Protection Schemes  
AID0 BIT  
LOCAL BIT DESCRIPTION  
0
0
0
1
No access to memory page is permitted.  
Only direct access by CPU is permitted.  
Only accesses by system masters and IDMA are permitted (includes EDMA and IDMA accesses initiated by  
the CPU).  
1
1
0
1
All accesses permitted  
174  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Faults are handled by software in an interrupt (or an exception, programmable within the C64x+  
megamodule interrupt controller) service routine. A CPU or DMA access to a page without the proper  
permissions will:  
Block the access — reads return zero, writes are ignored  
Capture the initiator in a status register — ID, address, and access type are stored  
Signal event to CPU interrupt controller  
The software is responsible for taking corrective action to respond to the event and resetting the error  
status in the memory controller. For more information on memory protection for L1D, L1P, and L2, see the  
TMS320C64x+ Megamodule Reference Guide (SPRU871).  
5.3.3 Bandwidth Management  
When multiple requestors contend for a single C64x+ Megamodule resource, the conflict is resolved by  
granting access to the highest priority requestor. The following four resources are managed by the  
Bandwidth Management control hardware:  
Level 1 Program (L1P) SRAM/Cache  
Level 1 Data (L1D) SRAM/Cache  
Level 2 (L2) SRAM/Cache  
Memory-mapped registers configuration bus  
The priority level for operations initiated within the C64x+ Megamodule are declared through registers in  
the C64x+ Megamodule. These operations are:  
CPU-initiated transfers  
User-programmed cache coherency operations  
IDMA-initiated transfers  
The priority level for operations initiated outside the C64x+ Megamodule by system peripherals is declared  
through the Priority Allocation Register (PRI_ALLOC), see Section 5.6.4. System peripherals with no fields  
in PRI_ALLOC have their own registers to program their priorities.  
More information on the bandwidth management features of the C64x+ Megamodule can be found in the  
TMS320C64x+ Megamodule Reference Guide (SPRU871).  
5.3.4 Power-Down Control  
The C64x+ Megamodule supports the ability to power-down various parts of the C64x+ Megamodule. The  
power-down controller (PDC) of the C64x+ Megamodule can be used to power down L1P, the cache  
control hardware, the CPU, and the entire C64x+ Megamodule. These power-down features can be used  
to design systems for lower overall system power requirements.  
NOTE  
The C6457 does not support power-down modes for the L2 memory at this time.  
More information on the power-down features of the C64x+ Megamodule can be found in the  
TMS320C64x+ Megamodule Reference Guide (SPRU871).  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
175  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
5.3.5 Megamodule Resets  
Table 5-4 shows the reset types supported on the C6457 device and they affect the resetting of the  
Megamodule, either both globally or just locally.  
Table 5-4. Megamodule Reset (Global or Local)  
RESET TYPE  
Power-On Reset  
Warm Reset  
System Reset  
CPU Reset  
GLOBAL MEGAMODULE RESET  
LOCAL MEGAMODULE RESET  
Y
Y
Y
N
Y
Y
Y
Y
For more detailed information on the global and local Megamodule resets, see the TMS320C64x+  
Megamodule Reference Guide (SPRU871). And for more detailed information on device resets, see  
Section 4.8.3.  
5.3.6 Megamodule Revision  
The version and revision of the C64x+ Megamodule can be read from the Megamodule Revision ID  
Register (MM_REVID) located at address 0181 2000h. The MM_REVID register is shown in Figure 5-6  
and described in Table 5-5. The C64x+ Megamodule revision is dependant on the silicon revision being  
used.  
Figure 5-6. Megamodule Revision ID Register (MM_REVID) (Address - 0181 2000h)(1)  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
23  
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
VERSION  
R-5h  
8
7
REVISION  
R-n  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current.  
Table 5-5. Megamodule Revision ID Register (MM_REVID) Field Descriptions  
Bit  
Acronym  
Value  
Description  
31:16 VERSION  
5h  
Version of the C64x+ Megamodule implemented on the device. This field is always read  
as 5h.  
15:0  
REVISION  
-
Revision of the C64x+ Megamodule version implemented on the device.  
176  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
5.3.7 C64x+ Megamodule Register Descriptions  
Table 5-6. Megamodule Interrupt Registers  
HEX ADDRESS RANGE  
0180 0000  
ACRONYM  
EVTFLAG0  
EVTFLAG1  
EVTFLAG2  
EVTFLAG3  
-
REGISTER NAME  
Event Flag Register 0 (Events [31:0])  
Event Flag Register 1  
Event Flag Register 2  
Event Flag Register 3  
Reserved  
0180 0004  
0180 0008  
0180 000C  
0180 0010 - 0180 001C  
0180 0020  
EVTSET0  
EVTSET1  
EVTSET2  
EVTSET3  
-
Event Set Register 0 (Events [31:0])  
Event Set Register 1  
Event Set Register 2  
Event Set Register 3  
Reserved  
0180 0024  
0180 0028  
0180 002C  
0180 0030 - 0180 003C  
0180 0040  
EVTCLR0  
EVTCLR1  
EVTCLR2  
EVTCLR3  
-
Event Clear Register 0 (Events [31:0])  
Event Clear Register 1  
Event Clear Register 2  
Event Clear Register 3  
Reserved  
0180 0044  
0180 0048  
0180 004C  
0180 0050 - 0180 007C  
0180 0080  
EVTMASK0  
EVTMASK1  
EVTMASK2  
EVTMASK3  
-
Event Mask Register 0 (Events [31:0])  
Event Mask Register 1  
Event Mask Register 2  
Event Mask Register 3  
Reserved  
0180 0084  
0180 0088  
0180 008C  
0180 0090 - 0180 009C  
0180 00A0  
MEVTFLAG0  
MEVTFLAG1  
MEVTFLAG2  
MEVTFLAG3  
-
Masked Event Flag Status Register 0 (Events [31:0])  
Masked Event Flag Status Register 1  
Masked Event Flag Status Register 2  
Masked Event Flag Status Register 3  
Reserved  
0180 00A4  
0180 00A8  
0180 00AC  
0180 00B0 - 0180 00BC  
0180 00C0  
EXPMASK0  
EXPMASK1  
EXPMASK2  
EXPMASK3  
-
Exception Mask Register 0 (Events [31:0])  
Exception Mask Register 1  
Exception Mask Register 2  
Exception Mask Register 3  
Reserved  
0180 00C4  
0180 00C8  
0180 00CC  
0180 00D0 - 0180 00DC  
0180 00E0  
MEXPFLAG0  
MEXPFLAG1  
MEXPFLAG2  
MEXPFLAG3  
-
Masked Exception Flag Register 0  
Masked Exception Flag Register 1  
Masked Exception Flag Register 2  
Masked Exception Flag Register 3  
Reserved  
0180 00E4  
0180 00E8  
0180 00EC  
0180 00F0 - 0180 00FC  
0180 0100  
-
Reserved  
0180 0104  
INTMUX1  
INTMUX2  
INTMUX3  
-
Interrupt Multiplexor Register 1  
Interrupt Multiplexor Register 2  
Interrupt Multiplexor Register 3  
Reserved  
0180 0108  
0180 010C  
0180 0110 - 0180 013C  
0180 0140  
AEGMUX0  
AEGMUX1  
-
Advanced Event Generator Mux Register 0  
Advanced Event Generator Mux Register 1  
Reserved  
0180 0144  
0180 0148 - 0180 017C  
0180 0180  
INTXSTAT  
INTXCLR  
Interrupt Exception Status Register  
Interrupt Exception Clear Register  
0180 0184  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
177  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 5-6. Megamodule Interrupt Registers (continued)  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
Dropped Interrupt Mask Register  
Reserved  
0180 0188  
0180 0188 - 0180 01BC  
0180 01C0  
INTDMASK  
-
EVTASRT  
-
Event Asserting Register  
Reserved  
0180 01C4 - 0180 FFFF  
Table 5-7. Megamodule Powerdown Control Registers  
HEX ADDRESS RANGE  
0181 0000  
ACRONYM  
PDCCMD  
-
REGISTER NAME  
Power-down controller command register  
Reserved  
0181 0004 - 0181 1FFF  
Table 5-8. Megamodule Revision Register  
HEX ADDRESS RANGE  
0181 2000  
ACRONYM  
MM_REVID  
-
REGISTER NAME  
Megamodule Revision ID Register  
Reserved  
0181 2004 - 0181 2FFF  
Table 5-9. Megamodule IDMA Registers  
HEX ADDRESS RANGE  
0182 0000  
ACRONYM  
IDMA0STAT  
IDMA0MASK  
IMDA0SRC  
IDMA0DST  
IDMA0CNT  
-
REGISTER NAME  
IDMA Channel 0 Status Register  
IDMA Channel 0 Mask Register  
IDMA Channel 0 Source Address Register  
IDMA Channel 0 Destination Address Register  
IDMA Channel 0 Count Register  
Reserved  
0182 0004  
0182 0008  
0182 000C  
0182 0010  
0182 0014 - 0182 00FC  
0182 0100  
IDMA1STAT  
-
IDMA Channel 1 Status Register  
Reserved  
0182 0104  
0182 0108  
IMDA1SRC  
IDMA1DST  
IDMA1CNT  
-
IDMA Channel 1 Source Address Register  
IDMA Channel 1 Destination Address Register  
IDMA Channel 1 Count Register  
Reserved  
0182 010C  
0182 0110  
0182 0114 - 0182 017C  
0182 0180  
-
Reserved  
0182 0184 - 0182 01FF  
-
Reserved  
178  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 5-10. Megamodule Cache Configuration Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
L2 Cache Configuration Register  
Reserved  
0184 0000  
0184 0004 - 0184 001F  
0184 0020  
L2CFG  
-
L1PCFG  
L1P Configuration Register  
L1P Cache Control Register  
Reserved  
0184 0024  
L1PCC  
0184 0028 - 0184 003F  
0184 0040  
-
L1DCFG  
L1D Configuration Register  
L1D Cache Control Register  
Reserved  
0184 0044  
L1DCC  
0184 0048 - 0184 0FFF  
0184 1000 - 0184 104F  
0184 1050 - 0184 3FFF  
0184 4000  
-
-
See Table 5-13  
-
Reserved  
L2WBAR  
L2WWC  
-
L2 Writeback Base Address Register — for Block Writebacks  
L2 Writeback Word Count Register  
Reserved  
0184 4004  
0184 4008 - 0184 400C  
0184 4010  
L2WIBAR  
L2 Writeback and Invalidate Base Address Register — for Block  
Writebacks  
0184 4014  
0184 4018  
L2WIWC  
L2IBAR  
L2IWC  
L1PIBAR  
L1PIWC  
L1DWIBAR  
L1DWIWC  
-
L2 Writeback and Invalidate word count register  
L2 Invalidate Base Address Register  
L2 Invalidate Word Count Register  
L1P Invalidate Base Address Register  
L1P Invalidate Word Count Register  
L1D Writeback and Invalidate Base Address Register  
L1D Writeback and Invalidate Word Count Register  
Reserved  
0184 401C  
0184 4020  
0184 4024  
0184 4030  
0184 4034  
0184 4038  
0184 4040  
L1DWBAR  
L1DWWC  
L1DIBAR  
L1DIWC  
-
L1D Writeback Base Address Register — for Block Writebacks  
L1D Writeback Word Count Register  
L1D Invalidate Base Address Register  
L1D Invalidate Word Count Register  
Reserved  
0184 4044  
0184 4048  
0184 404C  
0184 4050 - 0184 4FFF  
0184 5000  
L2WB  
L2 Global Writeback Register  
L2 Global Writeback and Invalidate Register  
L2 Global Invalidate Register  
Reserved  
0184 5004  
L2WBINV  
L2INV  
0184 5008  
0184 500C - 0184 5024  
0184 5028  
-
L1PINV  
-
L1P Global Invalidate Register  
Reserved  
0184 502C - 0184 503C  
0184 5040  
L1DWB  
L1DWBINV  
L1DINV  
-
L1D Global Writeback Register  
L1D Global Writeback and Invalidate Register  
L1D Global Invalidate Register  
Reserved  
0184 5044  
0184 5048  
0184 504C - 0184 5FFF  
0184 6000 - 0184 640F  
0184 6410 - 0184 7FFF  
0184 8000 - 0184 81FC  
0184 8200 - 0184 823C  
0184 8240 - 0184 827C  
0184 8280  
-
See Table 5-11  
-
Reserved  
MAR0 to MAR127  
Reserved  
MAR128 to MAR143 Reserved  
MAR144 to MAR159 Reserved  
MAR160  
MAR161  
MAR162  
MAR163  
Controls EMIFA CE2 Range A000 0000 - A0FF FFFF  
0184 8284  
Controls EMIFA CE2 Range A100 0000 - A1FF FFFF  
Controls EMIFA CE2 Range A200 0000 - A2FF FFFF  
Controls EMIFA CE2 Range A300 0000 - A3FF FFFF  
0184 8288  
0184 828C  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
179  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 5-10. Megamodule Cache Configuration Registers (continued)  
HEX ADDRESS RANGE  
ACRONYM  
MAR164  
MAR165  
MAR166  
MAR167  
MAR168  
MAR169  
MAR170  
MAR171  
MAR172  
MAR173  
MAR174  
MAR175  
MAR176  
MAR177  
MAR178  
MAR179  
MAR180  
MAR181  
MAR182  
MAR183  
MAR184  
MAR185  
MAR186  
MAR187  
MAR188  
MAR189  
MAR190  
MAR191  
MAR192  
MAR193  
MAR194  
MAR195  
MAR196  
MAR197  
MAR198  
MAR199  
MAR200  
MAR201  
MAR202  
MAR203  
MAR204  
MAR205  
MAR206  
MAR207  
MAR208  
MAR209  
MAR210  
REGISTER NAME  
0184 8290  
0184 8294  
0184 8298  
0184 829C  
0184 82A0  
0184 82A4  
0184 82A8  
0184 82AC  
0184 82B0  
0184 82B4  
0184 82B8  
0184 82BC  
0184 82C0  
0184 82C4  
0184 82C8  
0184 82CC  
0184 82D0  
0184 82D4  
0184 82D8  
0184 82DC  
0184 82E0  
0184 82E4  
0184 82E8  
0184 82EC  
0184 82F0  
0184 82F4  
0184 82F8  
0184 82FC  
0184 8300  
0184 8304  
0184 8308  
0184 830C  
0184 8310  
0184 8314  
0184 8318  
0184 831C  
0184 8320  
0184 8324  
0184 8328  
0184 832C  
0184 8330  
0184 8334  
0184 8338  
0184 833C  
0184 8340  
0184 8344  
0184 8348  
Controls EMIFA CE2 Range A400 0000 - A4FF FFFF  
Controls EMIFA CE2 Range A500 0000 - A5FF FFFF  
Controls EMIFA CE2 Range A600 0000 - A6FF FFFF  
Controls EMIFA CE2 Range A700 0000 - A7FF FFFF  
Controls EMIFA CE2 Range A800 0000 - A8FF FFFF  
Controls EMIFA CE2 Range A900 0000 - A9FF FFFF  
Controls EMIFA CE2 Range AA00 0000 - AAFF FFFF  
Controls EMIFA CE2 Range AB00 0000 - ABFF FFFF  
Controls EMIFA CE2 Range AC00 0000 - ACFF FFFF  
Controls EMIFA CE2 Range AD00 0000 - ADFF FFFF  
Controls EMIFA CE2 Range AE00 0000 - AEFF FFFF  
Controls EMIFA CE2 Range AF00 0000 - AFFF FFFF  
Controls EMIFA CE3 Range B000 0000 - B0FF FFFF  
Controls EMIFA CE3 Range B100 0000 - B1FF FFFF  
Controls EMIFA CE3 Range B200 0000 - B2FF FFFF  
Controls EMIFA CE3 Range B300 0000 - B3FF FFFF  
Controls EMIFA CE3 Range B400 0000 - B4FF FFFF  
Controls EMIFA CE3 Range B500 0000 - B5FF FFFF  
Controls EMIFA CE3 Range B600 0000 - B6FF FFFF  
Controls EMIFA CE3 Range B700 0000 - B7FF FFFF  
Controls EMIFA CE3 Range B800 0000 - B8FF FFFF  
Controls EMIFA CE3 Range B900 0000 - B9FF FFFF  
Controls EMIFA CE3 Range BA00 0000 - BAFF FFFF  
Controls EMIFA CE3 Range BB00 0000 - BBFF FFFF  
Controls EMIFA CE3 Range BC00 0000 - BCFF FFFF  
Controls EMIFA CE3 Range BD00 0000 - BDFF FFFF  
Controls EMIFA CE3 Range BE00 0000 - BEFF FFFF  
Controls EMIFA CE3 Range BF00 0000 - BFFF FFFF  
Controls EMIFA CE4 Range C000 0000 - C0FF FFFF  
Controls EMIFA CE4 Range C100 0000 - C1FF FFFF  
Controls EMIFA CE4 Range C200 0000 - C2FF FFFF  
Controls EMIFA CE4 Range C300 0000 - C3FF FFFF  
Controls EMIFA CE4 Range C400 0000 - C4FF FFFF  
Controls EMIFA CE4 Range C500 0000 - C5FF FFFF  
Controls EMIFA CE4 Range C600 0000 - C6FF FFFF  
Controls EMIFA CE4 Range C700 0000 - C7FF FFFF  
Controls EMIFA CE4 Range C800 0000 - C8FF FFFF  
Controls EMIFA CE4 Range C900 0000 - C9FF FFFF  
Controls EMIFA CE4 Range CA00 0000 - CAFF FFFF  
Controls EMIFA CE4 Range CB00 0000 - CBFF FFFF  
Controls EMIFA CE4 Range CC00 0000 - CCFF FFFF  
Controls EMIFA CE4 Range CD00 0000 - CDFF FFFF  
Controls EMIFA CE4 Range CE00 0000 - CEFF FFFF  
Controls EMIFA CE4 Range CF00 0000 - CFFF FFFF  
Controls EMIFA CE5 Range D000 0000 - D0FF FFFF  
Controls EMIFA CE5 Range D100 0000 - D1FF FFFF  
Controls EMIFA CE5 Range D200 0000 - D2FF FFFF  
180  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 5-10. Megamodule Cache Configuration Registers (continued)  
HEX ADDRESS RANGE  
ACRONYM  
MAR211  
MAR212  
MAR213  
MAR214  
MAR215  
MAR216  
MAR217  
MAR218  
MAR219  
MAR220  
MAR221  
MAR222  
MAR223  
MAR224  
MAR225  
MAR226  
MAR227  
MAR228  
MAR229  
MAR230  
MAR231  
MAR232  
MAR233  
MAR234  
MAR235  
MAR236  
MAR237  
MAR238  
MAR239  
REGISTER NAME  
0184 834C  
0184 8350  
0184 8354  
0184 8358  
0184 835C  
0184 8360  
0184 8364  
0184 8368  
0184 836C  
0184 8370  
0184 8374  
0184 8378  
0184 837C  
0184 8380  
0184 8384  
0184 8388  
0184 838C  
0184 8390  
0184 8394  
0184 8398  
0184 839C  
0184 83A0  
0184 83A4  
0184 83A8  
0184 83AC  
0184 83B0  
0184 83B4  
0184 83B8  
0184 83BC  
0184 83C0 - 0184 83FC  
Controls EMIFA CE5 Range D300 0000 - D3FF FFFF  
Controls EMIFA CE5 Range D400 0000 - D4FF FFFF  
Controls EMIFA CE5 Range D500 0000 - D5FF FFFF  
Controls EMIFA CE5 Range D600 0000 - D6FF FFFF  
Controls EMIFA CE5 Range D700 0000 - D7FF FFFF  
Controls EMIFA CE5 Range D800 0000 - D8FF FFFF  
Controls EMIFA CE5 Range D900 0000 - D9FF FFFF  
Controls EMIFA CE5 Range DA00 0000 - DAFF FFFF  
Controls EMIFA CE5 Range DB00 0000 - DBFF FFFF  
Controls EMIFA CE5 Range DC00 0000 - DCFF FFFF  
Controls EMIFA CE5 Range DD00 0000 - DDFF FFFF  
Controls EMIFA CE5 Range DE00 0000 - DEFF FFFF  
Controls EMIFA CE5 Range DF00 0000 - DFFF FFFF  
Controls DDR2 CE0 Range E000 0000 - E0FF FFFF  
Controls DDR2 CE0 Range E100 0000 - E1FF FFFF  
Controls DDR2 CE0 Range E200 0000 - E2FF FFFF  
Controls DDR2 CE0 Range E300 0000 - E3FF FFFF  
Controls DDR2 CE0 Range E400 0000 - E4FF FFFF  
Controls DDR2 CE0 Range E500 0000 - E5FF FFFF  
Controls DDR2 CE0 Range E600 0000 - E6FF FFFF  
Controls DDR2 CE0 Range E700 0000 - E7FF FFFF  
Controls DDR2 CE0 Range E800 0000 - E8FF FFFF  
Controls DDR2 CE0 Range E900 0000 - E9FF FFFF  
Controls DDR2 CE0 Range EA00 0000 - EAFF FFFF  
Controls DDR2 CE0 Range EB00 0000 - EBFF FFFF  
Controls DDR2 CE0 Range EC00 0000 - ECFF FFFF  
Controls DDR2 CE0 Range ED00 0000 - EDFF FFFF  
Controls DDR2 CE0 Range EE00 0000 - EEFF FFFF  
Controls DDR2 CE0 Range EF00 0000 - EFFF FFFF  
MAR240 to MAR255 Reserved  
Table 5-11. Megamodule Error Detection Correct Registers  
HEX ADDRESS RANGE  
0184 6000  
ACRONYM  
-
REGISTER NAME  
Reserved  
0184 6004  
L2EDSTAT  
L2EDCMD  
L2EDADDR  
L2EDEN0  
L2EDEN1  
L2EDCPEC  
L2EDNPEC  
-
L2 Error Detection Status Register  
L2 Error Detection Command Register  
L2 Error Detection Address Register  
L2 Error Detection Enable Map 0 Register  
L2 Error Detection Enable Map 1 Register  
L2 Error Detection — Correctable Parity Error Count Register  
L2 Error Detection — Non-Correctable Parity Error Count Register  
Reserved  
0184 6008  
0184 600C  
0184 6010  
0184 6014  
0184 6018  
0184 601C  
0184 6020 - 0184 6400  
0184 6404  
L1PEDSTAT  
L1PEDCMD  
L1PEDADDR  
L1P Error Detection Status Register  
L1P Error Detection Command Register  
L1P Error Detection Address Register  
0184 6408  
0184 640C  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
181  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 5-12. Megamodule L1/L2 Memory Protection Registers  
HEX ADDRESS RANGE  
ACRONYM  
L2MPFAR  
L2MPFSR  
L2MPFCR  
-
REGISTER NAME  
0184 A000  
0184 A004  
L2 memory protection fault address register  
L2 memory protection fault status register  
L2 memory protection fault command register  
Reserved  
0184 A008  
0184 A00C - 0184 A0FF  
0184 A100  
L2MPLK0  
L2MPLK1  
L2MPLK2  
L2MPLK3  
L2MPLKCMD  
L2MPLKSTAT  
-
L2 memory protection lock key bits [31:0]  
L2 memory protection lock key bits [63:32]  
L2 memory protection lock key bits [95:64]  
L2 memory protection lock key bits [127:96]  
L2 memory protection lock key command register  
L2 memory protection lock key status register  
Reserved  
0184 A104  
0184 A108  
0184 A10C  
0184 A110  
0184 A114  
0184 A118 - 0184 A1FF  
0184 A200  
L2MPPA0  
L2MPPA1  
L2MPPA2  
L2MPPA3  
L2MPPA4  
L2MPPA5  
L2MPPA6  
L2MPPA7  
L2MPPA8  
L2MPPA9  
L2MPPA10  
L2MPPA11  
L2MPPA12  
L2MPPA13  
L2MPPA14  
L2MPPA15  
L2MPPA16  
L2MPPA17  
L2MPPA18  
L2MPPA19  
L2MPPA20  
L2MPPA21  
L2MPPA22  
L2MPPA23  
L2MPPA24  
L2MPPA25  
L2MPPA26  
L2MPPA27  
L2MPPA28  
L2MPPA29  
L2MPPA30  
L2MPPA31  
-
L2 memory protection page attribute register 0  
L2 memory protection page attribute register 1  
L2 memory protection page attribute register 2  
L2 memory protection page attribute register 3  
L2 memory protection page attribute register 4  
L2 memory protection page attribute register 5  
L2 memory protection page attribute register 6  
L2 memory protection page attribute register 7  
L2 memory protection page attribute register 8  
L2 memory protection page attribute register 9  
L2 memory protection page attribute register 10  
L2 memory protection page attribute register 11  
L2 memory protection page attribute register 12  
L2 memory protection page attribute register 13  
L2 memory protection page attribute register 14  
L2 memory protection page attribute register 15  
L2 memory protection page attribute register 16  
L2 memory protection page attribute register 17  
L2 memory protection page attribute register 18  
L2 memory protection page attribute register 19  
L2 memory protection page attribute register 20  
L2 memory protection page attribute register 21  
L2 memory protection page attribute register 22  
L2 memory protection page attribute register 23  
L2 memory protection page attribute register 24  
L2 memory protection page attribute register 25  
L2 memory protection page attribute register 26  
L2 memory protection page attribute register 27  
L2 memory protection page attribute register 28  
L2 memory protection page attribute register 29  
L2 memory protection page attribute register 30  
L2 memory protection page attribute register 31  
Reserved  
0184 A204  
0184 A208  
0184 A20C  
0184 A210  
0184 A214  
0184 A218  
0184 A21C  
0184 A220  
0184 A224  
0184 A228  
0184 A22C  
0184 A230  
0184 A234  
0184 A238  
0184 A23C  
0184 A240  
0184 A244  
0184 A248  
0184 A24C  
0184 A250  
0184 A254  
0184 A258  
0184 A25C  
0184 A260  
0184 A264  
0184 A268  
0184 A26C  
0184 A270  
0184 A274  
0184 A278  
0184 A27C  
0184 A280 - 0184 A2FC(1)  
0184 0300 - 0184 A3FF  
0184 A400  
-
Reserved  
L1PMPFAR  
L1 program (L1P) memory protection fault address register  
(1) Please see the TMS320TCI6484 and TMS320C6457 DSPs Hardware Design Guide (SPRAAV7) for more information about individual  
peripheral I/O.  
182  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 5-12. Megamodule L1/L2 Memory Protection Registers (continued)  
HEX ADDRESS RANGE  
ACRONYM  
L1PMPFSR  
L1PMPFCR  
-
REGISTER NAME  
0184 A404  
0184 A408  
L1P memory protection fault status register  
L1P memory protection fault command register  
Reserved  
0184 A40C - 0184 A4FF  
0184 A500  
L1PMPLK0  
L1PMPLK1  
L1PMPLK2  
L1PMPLK3  
L1PMPLKCMD  
L1PMPLKSTAT  
-
L1P memory protection lock key bits [31:0]  
L1P memory protection lock key bits [63:32]  
L1P memory protection lock key bits [95:64]  
L1P memory protection lock key bits [127:96]  
0184 A504  
0184 A508  
0184 A50C  
0184 A510  
L1P memory protection lock key command register  
L1P memory protection lock key status register  
Reserved  
0184 A514  
0184 A518 - 0184 A5FF  
0184 A600 - 0184 A63C(2)  
0184 A640  
-
Reserved  
L1PMPPA16  
L1PMPPA17  
L1PMPPA18  
L1PMPPA19  
L1PMPPA20  
L1PMPPA21  
L1PMPPA22  
L1PMPPA23  
L1PMPPA24  
L1PMPPA25  
L1PMPPA26  
L1PMPPA27  
L1PMPPA28  
L1PMPPA29  
L1PMPPA30  
L1PMPPA31  
-
L1P memory protection page attribute register 16  
L1P memory protection page attribute register 17  
L1P memory protection page attribute register 18  
L1P memory protection page attribute register 19  
L1P memory protection page attribute register 20  
L1P memory protection page attribute register 21  
L1P memory protection page attribute register 22  
L1P memory protection page attribute register 23  
L1P memory protection page attribute register 24  
L1P memory protection page attribute register 25  
L1P memory protection page attribute register 26  
L1P memory protection page attribute register 27  
L1P memory protection page attribute register 28  
L1P memory protection page attribute register 29  
L1P memory protection page attribute register 30  
L1P memory protection page attribute register 31  
Reserved  
0184 A644  
0184 A648  
0184 A64C  
0184 A650  
0184 A654  
0184 A658  
0184 A65C  
0184 A660  
0184 A664  
0184 A668  
0184 A66C  
0184 A670  
0184 A674  
0184 A678  
0184 A67C  
0184 A680 - 0184 ABFF  
0184 AC00  
L1DMPFAR  
L1DMPFSR  
L1DMPFCR  
-
L1 data (L1D) memory protection fault address register  
L1D memory protection fault status register  
L1D memory protection fault command register  
Reserved  
0184 AC04  
0184 AC08  
0184 AC0C - 0184 ACFF  
0184 AD00  
L1DMPLK0  
L1DMPLK1  
L1DMPLK2  
L1DMPLK3  
L1DMPLKCMD  
L1DMPLKSTAT  
-
L1D memory protection lock key bits [31:0]  
L1D memory protection lock key bits [63:32]  
L1D memory protection lock key bits [95:64]  
L1D memory protection lock key bits [127:96]  
L1D memory protection lock key command register  
L1D memory protection lock key status register  
Reserved  
0184 AD04  
0184 AD08  
0184 AD0C  
0184 AD10  
0184 AD14  
0184 AD18 - 0184 ADFF  
0184 AE00 - 0184 AE3C(3)  
0184 AE40  
-
Reserved  
L1DMPPA16  
L1DMPPA17  
L1DMPPA18  
L1DMPPA19  
L1D memory protection page attribute register 16  
L1D memory protection page attribute register 17  
L1D memory protection page attribute register 18  
L1D memory protection page attribute register 19  
0184 AE44  
0184 AE48  
0184 AE4C  
(2) These addresses correspond to the L1P memory protection page attribute registers 0-15 (L1PMPPA0 - L1PMPPA15) of the C64x+  
Megamodule. These registers are not supported for the C6457 device.  
(3) These addresses correspond to the L1D memory protection page attribute registers 0-15 (L1DMPPA0 - L1DMPPA15) of the C64x+  
Megamodule. These registers are not supported for the C6457 device.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
183  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 5-12. Megamodule L1/L2 Memory Protection Registers (continued)  
HEX ADDRESS RANGE  
ACRONYM  
L1DMPPA20  
L1DMPPA21  
L1DMPPA22  
L1DMPPA23  
L1DMPPA24  
L1DMPPA25  
L1DMPPA26  
L1DMPPA27  
L1DMPPA28  
L1DMPPA29  
L1DMPPA30  
L1DMPPA31  
-
REGISTER NAME  
0184 AE50  
0184 AE54  
L1D memory protection page attribute register 20  
L1D memory protection page attribute register 21  
L1D memory protection page attribute register 22  
L1D memory protection page attribute register 23  
L1D memory protection page attribute register 24  
L1D memory protection page attribute register 25  
L1D memory protection page attribute register 26  
L1D memory protection page attribute register 27  
L1D memory protection page attribute register 28  
L1D memory protection page attribute register 29  
L1D memory protection page attribute register 30  
L1D memory protection page attribute register 31  
Reserved  
0184 AE58  
0184 AE5C  
0184 AE60  
0184 AE64  
0184 AE68  
0184 AE6C  
0184 AE70  
0184 AE74  
0184 AE78  
0184 AE7C  
0184 AE80 - 0185 FFFF  
Table 5-13. CPU Megamodule Bandwidth Management Registers  
HEX ADDRESS RANGE  
0182 0200  
ACRONYM  
EMCCPUARBE  
EMCIDMAARBE  
EMCSDMAARBE  
EMCMDMAARBE  
-
REGISTER NAME  
EMC CPU Arbitration Control Register  
EMC IDMA Arbitration Control Register  
EMC Slave DMA Arbitration Control Register  
EMC Master DMA Arbitration Control Register  
Reserved  
0182 0204  
0182 0208  
0182 020C  
0182 0210 - 0182 02FF  
0184 1000  
L2DCPUARBU  
L2DIDMAARBU  
L2DSDMAARBU  
L2DUCARBU  
-
L2D CPU Arbitration Control Register  
L2D IDMA Arbitration Control Register  
L2D Slave DMA Arbitration Control Register  
L2D User Coherence Arbitration Control Register  
Reserved  
0184 1004  
0184 1008  
0184 100C  
0184 1010 - 0184 103F  
0184 1040  
L1DCPUARBD  
L1DIDMAARBD  
L1DSDMAARBD  
L1DUCARBD  
L1D CPU Arbitration Control Register  
L1D IDMA Arbitration Control Register  
L1D Slave DMA Arbitration Control Register  
L1D User Coherence Arbitration Control Register  
0184 1044  
0184 1048  
0184 104C  
184  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
5.4 Memory Map Summary  
Table 5-14 shows the memory map address ranges of the SM320C6457-HIREL device. The external  
memory configuration register address ranges in the SM320C6457-HIREL device begin at the hex  
address location 0x7000 0000 for EMIFA and hex address location 0x7800 0000 for DDR2 Memory  
Controller.  
Table 5-14. SM320C6457-HIREL Memory Map Summary  
MEMORY BLOCK DESCRIPTION  
BLOCK SIZE (BYTES)  
HEX ADDRESS RANGE  
0000 0000 - 007F FFFF  
0080 0000 - 009F FFFF  
00A0 0000 - 00DF FFFF  
00E0 0000 - 00E0 7FFF  
00E0 8000 - 00EF FFFF  
00F0 0000 - 00F0 7FFF  
00F0 8000 - 00FF FFFF  
0100 0000 - 017F FFFF  
0180 0000 - 01BF FFFF  
01C0 0000 - 0287 FFFF  
0288 0000 - 0288 00FF  
0288 0100 - 0288 07FF  
0288 0800 - 0288 0BFF  
0288 0C00 - 028B FFFF  
028C 0000 - 028C 00FF  
028C 0100 - 028F FFFF  
0290 0000 - 0290 00FF  
0290 0100 - 0293 FFFF  
0294 0000 - 0294 007F  
0294 0080 - 0297 FFFF  
0298 0000 - 0298 007F  
0298 0080 - 0299 FFFF  
029A 0000 - 029A 01FF  
029A 0200 - 029F FFFF  
02A0 0000 - 02A0 7FFF  
02A0 8000 - 02A1 FFFF  
02A2 0000 - 02A2 03FF  
02A2 0400 - 02A2 7FFF  
02A2 8000 - 02A2 83FF  
02A2 8400 - 02A2 FFFF  
02A3 0000 - 02A3 03FF  
02A3 0400 - 02A3 7FFF  
02A3 8000 - 02A3 83FF  
02A3 8400 - 02A3 FFFF  
02A4 0000 - 02A4 03FF  
02A4 0400 - 02A4 7FFF  
02A4 8000 - 02A4 83FF  
02A4 8400 - 02AB FFFF  
02AC 0000 - 02AC 0FFF  
02AC 1000 - 02AC FFFF  
02AD 0000 - 02AD 1FFF  
Reserved  
8M  
2M  
L2 SRAM  
Reserved  
4M  
L1P SRAM  
32K  
Reserved  
1M - 32K  
32K  
L1D SRAM  
Reserved  
1M -32K  
8M  
Reserved  
C64x+ Megamodule Registers  
Reserved  
4M  
12.5M  
256  
HPI Control Registers  
Reserved  
2K - 256  
1K  
Chip-Level Registers  
Reserved  
253K  
256  
McBSP 0 Registers  
Reserved  
256K - 256  
256  
McBSP 1 Registers  
Reserved  
256K - 256  
128  
Timer 0 Registers  
Reserved  
256K - 128  
128  
Timer 1 Registers  
Reserved  
128K - 128  
512  
PLL Controller (including Reset Controller) Registers  
Reserved  
384K - 512  
32K  
EDMA3 Channel Controller Registers  
Reserved  
96K  
EDMA3 Transfer Controller 0 Registers  
Reserved  
1K  
31K  
EDMA3 Transfer Controller 1 Registers  
Reserved  
1K  
31K  
EDMA3 Transfer Controller 2 Registers  
Reserved  
1K  
31K  
EDMA3 Transfer Controller 3 Registers  
Reserved  
1K  
31K  
EDMA3 Transfer Controller 4 Registers  
Reserved  
1K  
31K  
EDMA3 Transfer Controller 5 Registers  
Reserved  
1K  
479K  
4K  
Power / Sleep Controller (PSC)  
Reserved  
60K  
Embedded Trace Buffer (ETB)  
8K  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
185  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 5-14. SM320C6457-HIREL Memory Map Summary (continued)  
MEMORY BLOCK DESCRIPTION  
Reserved  
BLOCK SIZE (BYTES)  
184K  
HEX ADDRESS RANGE  
02AD 2000 - 02AF FFFF  
02B0 0000 - 02B0 00FF  
02B0 0100 - 02B0 3FFF  
02B0 4000 - 02B0 407F  
02B0 4080 - 02B3 FFFF  
02B4 0000 - 02B4 01FF  
02B4 0200 - 02B7 FFFF  
02B8 0000 - 02B8 00FF  
02B8 0100 - 02B9 FFFF  
02BA 0000 - 02BA 00FF  
02BA 0100 - 02BA 01FF  
02BA 0200 - 02C3 FFFF  
02C4 0000 - 02C4 00FF  
02C4 0100 - 02C7 FFFF  
02C8 0000 - 02C8 07FF  
02C8 0800 - 02C8 0FFF  
02C8 1000 - 02C8 10FF  
02C8 1100 - 02C8 17FF  
02C8 1800 - 02C8 18FF  
02C8 1900 - 02C8 1FFF  
02C8 2000 - 02C8 3FFF  
02C8 4000 - 02CF FFFF  
02D0 0000 - 02D2 0FFF  
02D2 1000 - 02DF FFFF  
02E0 0000 - 02E0 3FFF  
02E0 4000 - 02EF FFFF  
02F0 0000 - 02FF FFFF  
0300 0000 - 0FFF FFFF  
1000 0000 - 2FFF FFFF  
3000 0000 - 3000 00FF  
3000 0100 - 33FF FFFF  
3400 0000 - 3400 00FF  
3400 0100 - 3BFF FFFF  
3C00 0000 - 3C00 FFFF  
3C01 0000 - 3CFF FFFF  
3D00 0000 - 3D00 007F  
3D00 0080 - 3D00 03FF  
3D00 0400 - 3D00 047F  
3D00 0480 - 4FFF FFFF  
5000 0000 - 500F FFFF  
5010 0000 - 501F FFFF  
5020 0000 - 57FF FFFF  
5800 0000 - 5800 FFFF  
5801 0000 - 6FFF FFFF  
7000 0000 - 7000 00FF  
7000 0100 - 77FF FFFF  
7800 0000 - 7800 00FF  
GPIO Registers  
Reserved  
256  
16K - 256  
128  
I2C Data and Control Registers  
Reserved  
240K - 128  
512  
UTOPIA Control Registers  
Reserved  
256K - 512  
256  
VCP2 Control Registers  
Reserved  
128K - 256  
256  
TCP2_A Control Registers  
TCP2_B Control Registers  
Reserved  
256  
640K - 512  
256  
SGMII Control  
Reserved  
256K - 256  
2K  
EMAC Control  
Reserved  
2K  
EMAC Interrupt Controller  
Reserved  
256  
2K - 256  
256  
MDIO Control Registers  
Reserved  
2K - 256  
8K  
EMAC Descriptor Memory  
Reserved  
496K  
RapidIO Control Registers  
Reserved  
132K  
892K  
RapidIO Descriptor Memory  
Reserved  
16K  
1M - 16K  
1M  
Reserved  
Reserved  
208M  
Reserved  
512M  
McBSP 0 Data  
256  
Reserved  
64M - 256  
256  
McBSP 1 Data  
Reserved  
128M - 256  
64K  
L3 ROM  
Reserved  
16M - 64K  
128  
UTOPIA Receive (RX) Data  
Reserved  
896  
UTOPIA Transmit (TX) Data  
Reserved  
128  
304M - 1152  
1M  
TCP2_A Data  
TCP2_B Data  
1M  
Reserved  
126M  
VCP2 Data  
64K  
Reserved  
384M - 64K  
256  
EMIFA (EMIF64) Configuration Registers  
Reserved  
128M - 256  
256  
DDR2 EMIF Configuration Registers  
186  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 5-14. SM320C6457-HIREL Memory Map Summary (continued)  
MEMORY BLOCK DESCRIPTION  
Reserved  
BLOCK SIZE (BYTES)  
HEX ADDRESS RANGE  
128M - 256  
512M  
7800 0100 - 7FFF FFFF  
8000 0000 - 9FFF FFFF  
A000 0000 - A07F FFFF  
A080 0000 - AFFF FFFF  
B000 0000 - B07F FFFF  
B080 0000 - BFFF FFFF  
C000 0000 - C07F FFFF  
C080 0000 - CFFF FFFF  
D000 0000 - D07F FFFF  
D080 0000 - DFFF FFFF  
E000 0000 - FFFF FFFF  
Reserved  
EMIFA CE2 Data -SBSRAM/Async  
Reserved  
8M  
256M - 8M  
8M  
EMIFA CE3 Data -SBSRAM/Async  
Reserved  
256M - 8M  
8M  
EMIFA CE4 Data -SBSRAM/Async  
Reserved  
256M - 8M  
8M  
EMIFA CE5 Data -SBSRAM/Async  
Reserved  
256M - 8M  
512M  
DDR2 EMIF CE0 Data  
5.5 Device Configuration  
On the C6457 device, certain device configurations like boot mode and endianess, are selected at device  
power-on reset. The status of the peripherals (enabled/disabled) is determined after device power-on  
reset. By default, the peripherals on the C6457 device are disabled and need to be enabled by software  
before being used.  
5.5.1 Device Configuration at Device Reset  
Table 5-15 describes the C6457 device configuration pins. The logic level is latched at power-on reset to  
determine the device configuration. The logic level on the device configuration pins can be set by using  
external pullup/pulldown resistors or by using some control device (e.g., FPGA/CPLD) to intelligently drive  
these pins. When using a control device, care should be taken to ensure there is no contention on the  
lines when the device is out of reset. The device configuration pins are sampled during power-on reset  
and are driven after the reset is removed. To avoid contention, the control device must stop driving the  
device configuration pins of the DSP.  
NOTE  
If a configuration pin must be routed out from the device and it is not driven (Hi-Z state), the  
internal pullup/pulldown (IPU/IPD) resistor should not be relied upon. TI recommends the use  
of an external pullup/pulldown resistor. For more detailed information on pullup/pulldown  
resistors and situations in which external pullup/pulldown resistors are required, see  
Section 5.5.6.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
187  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Table 5-15. C6457 Device Configuration Pins  
CONFIGURATION  
PIN  
NO.  
IPD/IPU(1)  
FUNCTIONAL DESCRIPTION  
Device Endian mode (LENDIAN)  
GPIO[0]  
A5  
IPU  
0 = Device operates in Big Endian mode.  
1 = Device operates in Little Endian mode (default).  
GPIO[4:1]  
Boot Mode Selection (BOOTMODE [3:0])  
[B5, B4, D5,  
E5]  
IPD  
IPD  
IPD  
These pins select the boot mode for the device. For more information on the boot  
modes, see Section 5.7.2.  
GPIO[8:5]  
[B25, F5, C5,  
F6]  
Device Number (DEVNUM[3:0])  
GPIO[13:9]  
Configuration General-Purpose Inputs (CFGGP[4:0])  
[C23, D24,  
C25, A25,  
C24]  
The value of these pins is latched to the Device Status Register following power-  
on reset and is used by the software.  
GPIO[14]  
GPIO[15]  
HPI peripheral bus width select (HPIWIDTH)  
0 = HPI operates in HPI16 mode (default).  
HPI bus is 16-bits wide; HD[15:0] pins are used and the remaining HD[31:16] pins  
are reserved pins in the Hi-Z state.  
D23  
F23  
IPD  
IPD  
1 = HPI operates in HPI32 mode.  
HPI bus is 32 bits wide; HD[31:0] pins are used.  
EMIFA input clock source select (ECLKINSEL).  
0 = ECLKIN (default mode)  
1 = SYSCLK7 (CPU/x) Clock Rate.  
The SYSCLK7 clock rate is software selectable via the Software PLL1 Controller.  
By default, SYSCLK7 is selected as CPU ÷ 10 clock rate.  
CORECLKSEL  
DDRCLKSEL  
Core Clock Select  
AE6  
G6  
0 = CORECLK(N|P) is the input to main PLL.  
1 = ALTCORECLK is used as the input to main PLL.  
DDR Clock Select  
0 = DDRREFCLK(N|P) is the input to DDR PLL.  
1 = ALTDDRCLK is used as the input to DDR PLL.  
(1) All voltage values are with respect to VSS  
.
5.5.2 Peripheral Selection After Device Reset  
Several of the peripherals on the C6457 are controlled by the Power Sleep Controller (PSC). By default,  
the SRIO, TCP2_A, TCP2_B, and VCP are held in reset and clock-gated. The memories in these modules  
are also in a low-leakage sleep mode. Software is required to turn these memories on. Then, the software  
enables the modules (turns on clocks and de-asserts reset) before these modules can be used.  
In addition, the EMIFA, HPI, and UTOPIA come up clock-gated and held in reset. Memories in these  
modules are already enabled. Software is required to enable these modules before they are used as well.  
If one of the above modules is used in the selected ROM boot mode, the ROM code will automatically  
enable the module.  
All other modules come up enabled by default and there is no special software sequence to enable. For  
more detailed information on the PSC usage, see the TMS320C6457 DSP Power/Sleep Controller PSC  
User's Guide (SPRUGL4).  
188  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
5.5.3 Device State Control Registers  
The C6457 device has a set of registers that are used to control the status of its peripherals. These  
registers are shown in Table 5-16 and described in the next sections.  
Table 5-16. Device State Control Registers(1)  
HEX ADDRESS RANGE  
ACRONYM  
DESCRIPTION  
Parameters for DSP device ID. Also referred to as JTAG or BSDL ID. These are readable by  
the configuration bus and can be accessed via the JTAG and the CPU.  
0288 0818  
JTAGID  
0288 081C  
0288 0820  
-
Reserved  
DEVSTAT  
-
Stores parameters latched from configuration pins  
Reserved  
0288 0824 - 0288 0837  
Two successive key writes are required to get write access to any of the device state control  
registers. KICK0 is the first key register. The written data must be 0x83E70B13 to unlock it  
and it must be written before the KICK1 register. Writing any other value will lock the device  
state control registers.  
0288 0838  
KICK0  
KICK1  
KICK1 is the second key register to be unlocked in order to get write access to any of the  
device state control registers. The written data must be 0x95A4F1E0 to unlock it and it must  
be written after the KICK0 register. Writing any other value will lock the device state control  
registers.  
0288 083C  
0288 0840  
DSP_BOOT  
_ADDR  
DSP boot address  
0288 0844 - 0288 090F  
0288 0910  
-
Reserved  
DEVCFG  
MACID1  
MACID2  
-
Parameters set through software for device configuration  
EFUSE derived MAC address for C6457  
EFUSE derived MAC address for C6457  
Reserved  
0288 0914  
0288 0918  
0288 0922 - 0288 091B  
0288 091C  
PRI_ALLOC  
WDRSTSEL  
Sets priority for Master peripherals  
Reset select for Watchdog (Timer1)  
0288 0920  
(1) Writes are conditional based on valid keys written to both the KICK0 and KICK1 registers.  
5.5.4 Device Status Register Description  
The device status register depicts the device configuration selected upon power-on reset. Once set, these  
bits will remain set until a power-on reset. For the actual register bit names and their associated bit field  
descriptions, see Figure 5-7 and Table 5-18.  
Table 5-17 shows the parameters that are set through software to configure different components on the  
device. The configuration is done through the device configuration DEVCFG register, which is one-time  
writeable through software. The register is reset on all hard resets and is locked after the first write.  
Table 5-17. Device Configuration Register Fields  
FIELD  
RESET  
DESCRIPTION  
SETTINGS  
Device Configuration 1 Register Fields  
CLKS0  
0b  
McBSP0 CLKS Select  
0 = CLKS0 device pin  
1 = chip_clks from Main.PLL  
CLKS1  
0b  
McBSP1 CLKS Select  
0 = CLKS1 device pin  
1 = chip_clks from Main.PLL  
SYSCLKOUTEN  
1b  
SYSCLKOUT Enable  
0 = No clock output  
1 = Clock output enabled  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
189  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Figure 5-7. Device Configuration Status Register (DEVSTAT) (HEX ADDRESS - 0288 0820h)(1)  
31  
15  
30  
29  
28  
27  
26  
25  
24  
Reserved  
R-0  
23  
22  
21  
20  
19  
18  
17  
16  
14  
13  
12  
11  
CFGGP  
R-n  
10  
9
8
7
6
5
4
3
2
1
0
ECLKI HPIWI  
NSEL  
LENDI  
AN  
DEVNUM  
R
BOOTMODE  
R
DTH  
0
0
R-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) For test conditions shown as MIN, MAX, or TYP, use the appropriate value specified in the recommended operating conditions table.  
Table 5-18. Device Configuration Status Register Field Descriptions  
Bit  
Acronym  
Description  
31:16 Reserved  
Reserved. Read only, writes have no effect.  
15  
ECLKINSEL  
HPIWIDTH  
CFGGP[4:0]  
EMIFA input clock select — shows the status of what clock mode is enabled or disabled for EMIFA.  
0 = ECLKIN (default mode)  
1 = SYSCLK7 (CPU ÷ x) Clock Rate. The SYSCLK7 clock rate is software selectable via the PLL1  
Controller. By default, SYSCLK7 is selected as CPU ÷ 10 clock rate.  
14  
HPI bus width control bit — shows the status of whether the HPI bus operates in 32-bit mode or in 16-bit  
mode.  
0 = HPI operates in 16-bit mode. (default)  
1 = HPI operates in 32-bit mode  
13:9  
Used as general-purpose inputs for configuration purposes. These pins are latched at power-on reset. These  
values can be used by software routines for boot operations.  
8:5  
4:1  
DEVNUM[3:0]  
Device number.  
BOOTMODE[3:0]  
Determines the boot method for the device. For more information on bootmode, see Section 5.7.2.  
0000 = No Boot  
0001 = I2C Master Boot (Slave Address 0x50)  
0010 = I2C Master Boot (Slave Address 0x51)  
0011 = I2C Slave Boot  
0100 = HPI Boot  
0101 = EMIFA Boot  
0110 = EMAC Master Boot  
0111 = EMAC Slave Boot  
1000 = EMAC Forced Mode Boot  
1001 = Reserved  
1010 = RapidIO Boot (Configuration 0)  
1011 = RapidIO Boot (Configuration 1)  
1100 = RapidIO Boot (Configuration 2)  
1101 = RapidIO Boot (Configuration 3)  
111x = Reserved  
0
LENDIAN  
Device Endian mode (LENDIAN) — Shows the status of whether the system is operating in Big Endian mode  
or Little Endian mode (default).  
0 = System is operating in Big Endian mode  
1 = System is operating in Little Endian mode (default)  
190  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
5.5.5 JTAG ID (JTAGID) Register Description  
The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the  
C6457 device, the JTAG ID register resides at address location 0x0288 0818. For the actual register bit  
names and their associated bit field descriptions, see Figure 5-8 and Table 5-19.  
Figure 5-8. JTAG ID (JTAGID) Register (HEX ADDRESS - 0288 0818h)(1)  
31  
15  
30  
VARIANT  
R-0000  
14 13  
29  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
22  
21  
20  
4
19  
3
18  
2
17  
1
16  
PART NUMBER (16-bit)  
7
6
5
0
PART NUMBER (Continued)  
R-0000 0000 1001 0110b  
MANUFACTURER  
0000 0010 111b  
LSB  
R-1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) All SerDes I/Os comply with the XAUI Electrical Specification, IEEE 802.3ae-2002.  
Table 5-19. JTAG ID (JTAGID) Register Field Descriptions  
Bit  
Acronym  
Value  
Description  
31:28 VARIANT  
0000  
Variant (4-Bit) value. The value of this field depends on the silicon revision  
being used.  
27:12 PART NUMBER  
0000 0000 1001 0110b  
0000 0010 111b  
1b  
Part Number for boundary scan  
Manufacturer  
11:1  
0
MANUFACTURER  
LSB  
This bit is read as a 1 for C6457  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
191  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
5.5.6 Pullup/Pulldown Resistors  
Proper board design should ensure that input pins to the C6457 device always be at a valid logic level and  
not floating. This may be achieved via pullup/pulldown resistors. The C6457 device features internal pullup  
(IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for  
external pullup/pulldown resistors.  
An external pullup/pulldown resistor needs to be used in the following situations:  
Device Configuration Pins: If the pin is both routed out and are not driven (in Hi-Z state), an external  
pullup/pulldown resistor must be used, even if the IPU/IPD matches the desired value/state.  
Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external  
pullup/pulldown resistor to pull the signal to the opposite rail.  
For the device configuration pins (listed in Table 5-15), if they are both routed out and are not driven (in  
Hi-Z state), it is strongly recommended that an external pullup/pulldown resistor be implemented.  
Although, internal pullup/pulldown resistors exist on these pins and they may match the desired  
configuration value, providing external connectivity can help ensure that valid logic levels are latched on  
these device configuration pins. In addition, applying external pullup/pulldown resistors on the device  
configuration pins adds convenience to the user in debugging and flexibility in switching operating modes.  
Tips for choosing an external pullup/pulldown resistor:  
Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure  
to include the leakage currents of all the devices connected to the net, as well as any internal pullup or  
pulldown resistors.  
Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of  
all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all  
inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of  
the limiting device; which, by definition, have margin to the VIL and VIH levels.  
Select a pullup/pulldown resistor with the largest possible value that can still ensure that the net will  
reach the target pulled value when maximum current from all devices on the net is flowing through the  
resistor. The current to be considered includes leakage current plus, any other internal and external  
pullup/pulldown resistors on the net.  
For bidirectional nets, there is an additional consideration that sets a lower limit on the resistance value  
of the external resistor. Verify that the resistance is small enough that the weakest output buffer can  
drive the net to the opposite logic level (including margin).  
Remember to include tolerances when selecting the resistor value.  
For pullup resistors, also remember to include tolerances on the DVDD rail.  
For most systems:  
A 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should  
confirm this resistor value is correct for their specific application.  
A 20-kΩ resistor can be used to compliment the IPU/IPD on the device configuration pins while  
meeting the above criteria. Users should confirm this resistor value is correct for their specific  
application.  
For more detailed information on input current (II), and the low-level/high-level input voltages (VIL and VIH)  
for the C6457 device, see Section 4.4.  
To determine which pins on the C6457 device include internal pullup/pulldown resistors, see Table 3-2.  
5.6 System Interconnect  
192  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
On the C6457 device, the C64x+ Megamodule, the EDMA3 transfer controllers, and the system  
peripherals are interconnected through two switch fabrics. The switch fabrics allow for low-latency,  
concurrent data transfers between master peripherals and slave peripherals; for example, through a  
switch fabric the CPU can send data to the Viterbi co-processor (VCP2) without affecting a data transfer  
between the HPI and the DDR2 memory controller. The switch fabrics also allow for seamless arbitration  
between the system masters when accessing system slaves.  
5.6.1 Internal Buses, Bridges, and Switch Fabrics  
Two types of buses exist in the C6457 device: data buses and configuration buses. Some C6457  
peripherals have both a data bus and a configuration bus interface, while others only have one type of  
interface. Furthermore, the bus interface width and speed varies from peripheral to peripheral.  
Configuration buses are mainly used to access the register space of a peripheral and the data buses are  
used mainly for data transfers. However, in some cases, the configuration bus is also used to transfer  
data. For example, data is transferred to the VCP2 and TCP2 via their configuration bus. Similarly, the  
data bus can also be used to access the register space of a peripheral. For example, the EMIFA and  
DDR2 memory controller registers are accessed through their data bus interface.  
The C64x+ Megamodule, the EDMA3 traffic controllers, and the various system peripherals can be  
classified into two categories: masters and slaves.  
Masters are capable of initiating read and write transfers in the system and do not rely on the EDMA3 for  
their data transfers. Slaves on the other hand rely on the EDMA3 to perform transfers to and from them.  
Examples of masters include the EDMA3 traffic controllers, SRIO, EMAC, and HPI. Examples of slaves  
include the McBSP, UTOPIA, and I2C.  
The C6457 device contains two switch fabrics through which masters and slaves communicate. The data  
switch fabric, known as the data switched central resource (SCR), is a high-throughput interconnect  
mainly used to move data across the system (for more information, see Section 5.6.2). The data SCR  
connects masters to slaves via 128-bit data buses running at a SYSCLK4 frequency (SYSCLK4 is  
generated from PLL controller). Peripherals that have a 128-bit data bus interface running at this speed  
can connect directly to the data SCR; other peripherals require a bridge.  
The configuration switch fabric, also known as the configuration switch central resource (SCR), is mainly  
used by the C64x+ Megamodule to access peripheral registers (for more information, see Section 5.6.3).  
The configuration SCR connects C64x+ Megamodule to slaves via 32-bit configuration buses running at a  
SYSCLK4 frequency (SYSCLK4 is generated from PLL controller). As with the data SCR, some  
peripherals require the use of a bridge to interface to the configuration SCR. Note that the data SCR also  
connects to the configuration SCR.  
Bridges perform a variety of functions:  
Conversion between configuration bus and data bus.  
Width conversion between peripheral bus width and SCR bus width.  
Frequency conversion between peripheral bus frequency and SCR bus frequency.  
For example, the EMIFA requires a bridge to convert its 64-bit data bus interface into a 128-bit interface  
so that it can connect to the data SCR. In the case of the TCP2 and VCP2, a bridge is required to connect  
the data SCR to the 64-bit configuration bus interface.  
Note that some peripherals can be accessed through the data SCR and also through the configuration  
SCR.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
193  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
5.6.2 Data Switch Fabric Connections  
Figure 5-9 shows the connection between slaves and masters through the data switched central resource  
(SCR). Masters are shown on the left and slaves on the right. The data SCR connects masters to slaves  
via 128-bit data buses running at a SYSCLK4 frequency. SYSCLK4 is supplied by the PLL controller and  
is fixed at a frequency equal to the CPU frequency divided by 3.  
Configuration Bus  
Data Bus  
EDMA3 Channel  
Controller  
Events  
SLAVE  
Data SCR  
32  
MASTER  
S
S
S
S
TCP2_A  
VCP2  
128  
32  
Bridge  
M
128  
M0  
M1  
M2  
M3  
M4  
M5  
S0  
32  
32  
32  
128  
128  
S1  
S2  
S3  
S4  
S5  
128  
128  
M
M
Bridge  
Bridge  
TCP2_B  
EDMA3  
Transfer  
128  
128  
128  
Controllers  
CFG  
SCR  
32  
32  
S
S
McBSP0  
McBSP1  
128-bit  
128  
32  
M
Bridge  
32  
32  
128  
128  
EMAC  
HPI  
M
M
Bridge  
S
32  
32  
L3 ROM  
UTOPIA  
S
S
Bridge  
128  
128  
M
M
M
M
Bridge  
DDR2  
Memory  
Controller  
32  
128  
Serial RapidIO  
(Descriptor)  
M
M
M
S
S
S
S
S
S
Bridge  
Serial  
RapidIO  
(Data)  
128  
128  
64  
128  
128  
Bridge  
EMIFA  
Megamodule  
Megamodule  
Figure 5-9. Data Switched Central Resource Block Diagram  
194  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Masters are shown on the left and slaves on the right. The data SCR connects masters to slaves via 128-  
bit data buses running at a SYSCLK4 frequency. SYSCLK4 is supplied by the PLL controller and is fixed  
at a frequency equal to the CPU frequency divided by 3.  
Some peripherals and the C64x+ Megamodule have both slave and master ports. Note that each EDMA3  
transfer controller has an independent connection to the data SCR.  
The Serial RapidIO (SRIO) peripheral has two connections to the data SCR. The first connection is used  
when descriptors are being fetched from system memory. The other connection is used for all other data  
transfers.  
Note that masters can access the configuration SCR through the data SCR. The configuration SCR is  
described in Section 5.6.3.  
Not all masters on the C6457 DSP may connect to all slaves. Allowed connections are summarized in  
Table 5-20.  
Table 5-20. SCR Connection Matrix  
CONFIGURATION  
SCR  
DDR2 MEMORY  
CONTROLLER  
VCP2  
Y
TCP2_A  
TCP2_B  
McBSPs  
L3 ROM  
UTOPIA  
EMIFA  
MEGAMODULE  
TC0  
Y
N
N
N
N
N
N
N
N
Y
Y
Y
N
N
N
N
N
N
N
Y
N
Y
Y
N
N
N
N
N
N
Y
N
Y
Y
N
N
N
N
N
N
Y
N
N
Y
Y
N
N
N
N
N
Y
N
N
Y
Y
Y
Y
N
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
TC1  
N
TC2  
N
TC3  
N
TC4  
N
TC5  
N
EMAC  
HPI  
N
N
SRIO(1)  
N
MEGAMODULE  
Y
(1) Applies to both descriptor and data accesses by the SRIO peripheral.  
5.6.3 Configuration Switch Fabric  
Figure 5-10 shows the connection between the C64x+ Megamodule and the configuration switched central  
resource (SCR). The configuration SCR is mainly used by the C64x+ Megamodule to access peripheral  
registers. The data SCR also has a connection to the configuration SCR which allows masters to access  
most peripheral registers. The only registers not accessible by the data SCR through the configuration  
SCR are the device configuration registers and the PLL controller registers; these can only be accessed  
by the C64x+ Megamodule.  
The configuration SCR uses 32-bit configuration buses running at SYSCLK4 frequency. SYSCLK4 is  
supplied by the PLL controller and is fixed at a frequency equal to the CPU frequency divided by 3.  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
195  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
Configuration Bus  
Data Bus  
32  
32  
CFG SCR  
TCP2_A  
S
32  
MUX  
M
TCP2_B  
VCP2  
S
S
32  
M
M
M
32  
S
S
ETB  
32  
32  
32  
32  
Bridge  
McBSPs (x2)  
S
S
GPIO  
32  
S
UTOPIA  
32  
32  
GPSC  
32  
S
S
I2C  
HPI  
S
Timers (x2)  
32  
32-bit  
32  
32  
M
Bridge  
MUX  
EMAC  
MDIO  
32  
S
S
Megamodule  
S
S
M
M
CP-GMAC  
32  
Ethernet  
CPPI  
S
32  
Data SCR  
S
S
CP-SGMII  
SERDES  
32  
PLL  
S
Controller(A)  
Device  
Configuration  
32  
32  
S
Registers(A)  
S
S
S
Serial RapidIO  
(Data)  
32  
M
MUX  
32  
32  
Serial RapidIO  
(Descriptor)  
EDMA3 CC  
32  
S
S
S
EDMA3 TC0  
EDMA3 TC2  
32  
32  
S
S
EDMA3 TC1  
32  
32  
32  
M
Bridge  
MUX  
EDMA3 TC3  
32  
EDMA3 TC4  
Note A: Only accessible by  
the C64x+ Megamodule  
32  
S
EDMA3 TC5  
Figure 5-10. Configuration Switched Central Resource (SCR) Block Diagram  
196  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
5.6.4 Bus Priorities  
On the C6457 device, bus priority is programmable for each master. The register bit fields and default  
priority levels for C6457 bus masters are shown in Table 5-21.  
Table 5-21. C6457 Default Bus Master Priorities  
BUS MASTER  
EDMA3TC0  
DEFAULT PRIORITY LEVEL  
PRIORITY CONTROL  
0
0
0
0
0
0
1
0
1
2
7
QUEPRI.PRIQ0 (EDMA3 register)  
QUEPRI.PRIQ1 (EDMA3 register)  
QUEPRI.PRIQ2 (EDMA3 register)  
QUEPRI.PRIQ3 (EDMA3 register)  
QUEPRI.PRIQ4 (EDMA3 register)  
QUEPRI.PRIQ5 (EDMA3 register)  
PRI_ALLOC.EMAC  
EDMA3TC1  
EDMA3TC2  
EDMA3TC3  
EDMA3TC4  
EDMA3TC5  
EMAC  
SRIO (Data Access)  
SRIO (Descriptor Access)  
HPI  
PER_SET_CNTL.CBA_TRANS_PRI (SRIO register)  
PRI_ALLOC.SRIO_CPPI  
PRI_ALLOC.HOST  
C64x+ Megamodule (MDMA port)  
MDMAARBE.PRI (C64x+ Megamodule Register)  
Copyright © 2016, Texas Instruments Incorporated  
Detailed Description  
197  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
The priority levels should be tuned to obtain the best system performance for a particular application.  
Lower values indicate higher priorities. For some masters, the priority values are programmed at the  
system level by configuring the PRI_ALLOC register. Details on the PRI_ALLOC register are shown in  
Figure 5-11 and Table 5-22. The C64x+ megamodule, SRIO, and EDMA masters contain registers that  
control their own priority values.  
Figure 5-11. Priority Allocation Register (PRI_ALLOC) (0x0288 091C)(1)  
31  
15  
30  
14  
29  
13  
28  
27  
11  
26  
10  
25  
24  
Reserved  
R-0000 0000 0000 0000  
23  
22  
21  
5
20  
19  
3
18  
2
17  
16  
0
12  
9
8
7
6
4
1
Reserved  
R-0000 000  
HPI  
SRIO_CPPI  
R/W-001  
EMAC  
R/W-001  
R/W-010  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
(1) II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II  
includes input leakage current and off-state (Hi-Z) output leakage current.  
Table 5-22. Priority Allocation Register (PRI_ALLOC) Field Descriptions  
Bit  
Acronym  
Value  
Description  
31:16 Reserved  
0000 0000 0000 0000 Reserved.  
15:9  
8:6  
Reserved  
HOST  
0000 000  
010  
Reserved.  
Priority of the HPI peripheral.  
5:3  
SRIO_CPPI  
001  
Priority of the Serial RapidIO when accessing descriptors from system memory. This  
priority is set in the peripheral, itself.  
2:0  
EMAC  
001  
Priority of the EMAC peripheral.  
The priority is enforced when several masters in the system are vying for the same endpoint. Note that the  
configuration SCR port on the data SCR is considered a single endpoint meaning priority will be enforced  
when multiple masters try to access the configuration SCR. Priority is also enforced on the configuration  
SCR side when a master (through the data SCR) tries to access the same endpoint as the C64x+  
megamodule.  
In the PRI_ALLOC register, the HOST field applies to the priority of the HPI peripheral. The EMAC fields  
specify the priority of the EMAC peripheral. The SRIO_CPPI field is used to specify the priority of the  
Serial RapidIO when accessing descriptors from system memory. The priority for Serial RapidIO data  
accesses is set in the peripheral itself.  
5.7 Boot Modes  
The device supports several boot processes, which leverage the internal boot ROM. Most boot processes  
are software driven, using the BOOTMODE[3:0] device configuration inputs to determine the software  
configuration that must be completed. From a hardware perspective, there are two possible boot modes:  
Public ROM Boot - C64x+ Megamodule is released from reset and begins executing from the L3  
ROM base address. After performing the boot process (e.g., from I2C ROM, Ethernet, or RapidIO), the  
C64x+ Megamodule then begins execution from the L2 RAM base address.  
Secure ROM Boot - On secure devices, the C64x+ Megamodule is released from reset and begin  
executing from secure ROM. Software in the secure ROM will free up internal RAM pages, after which  
the C64x+ Megamodule initiates the boot process. The C64x+ Megamodule performs any  
authentication and decryption required on the bootloaded image prior to beginning execution.  
The boot process performed by the C64x+ Megamodule in public ROM boot and secure ROM boot are  
determined by the BOOTMODE[3:0] value in the DEVSTAT register. The C64x+ Megamodule reads this  
value, and then executes the associated boot process in software. Table 5-23 shows the supported boot  
modes.  
198  
Detailed Description  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SM320C6457-HIREL  
 
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
Table 5-23. SM320C6457-HIREL Supported Boot Modes  
MODE NAME  
No Boot  
I2C Master Boot A  
BOOTMODE[3:0] DESCRIPTION  
0000b  
0001b  
No Boot  
Slave I2C address is 0x50. The C64x+ Megamodule configures I2C, acts as a master to the  
I2C bus and copies data from an I2C EEPROM or a device acting as an I2C slave to the DSP  
using a predefined boot table format. The destination address and length are contained within  
the boot table.  
I2C Master Boot B  
I2C Slave Boot  
0010b  
0011b  
Similar to I2C boot A except the slave I2C address is 0x51.  
The C64x+ Megamodule configures I2C and acts as a slave and will accept data and code  
section packets through the I2C interface. It is required that an I2C master is present in the  
system.  
HPI Boot  
0100b  
0101b  
0110b  
0111b  
1000b  
Host boot.  
EMIFA Boot  
External memory boot from ACE3 space (0xB0000000 address).  
EMAC Master Boot  
EMAC Slave Boot  
TI Ethernet Boot. The C64x+ Megamodule configures EMAC and EDMA, if required, and  
brings the code image into the internal on-chip memory via the protocol defined by the boot  
method (EMAC bootloader).  
EMAC Forced-Mode  
Boot  
Reserved  
1001b  
1010b  
Reserved  
RapidIO Boot  
(Config 0)  
RapidIO Boot  
(Config 1)  
1011b  
1100b  
1101b  
The C64x+ Megamodule configures the SRIO and an external host loads the application via  
SRIO peripheral, using directIO protocol. A doorbell interrupt is used to indicate that the code  
has been loaded. For more details on the RapidIO configurations, see Table 5-24.  
RapidIO Boot  
(Config 2)  
RapidIO Boot  
(Config 3)  
The C64x+ Megamodule configures Serial RapidIO, EMAC, and EDMA, if required, and brings the code  
image into the internal on-chip memory via the protocol defined by the boot method (SRIO EMAC  
bootloader).  
Table 5-24. Serial RapidIO (SRIO) Supported Boot Modes  
SRIO BOOT MODE  
SERDES CLOCK  
125 MHz  
LINK RATE  
1.25 Gbps  
3.125 Gbps  
1.25 Gbps  
3.125 Gbps  
SRIO BOOT CONFIGURATION  
Four 1× SRIO links  
One 4× SRIO link  
Bootmode 10 - Config 0  
Bootmode 11 - Config 1  
Bootmode 12 - Config 2  
Bootmode 13 - Config 3  
125 MHz  
156.25 MHz  
156.25 MHz  
One 4× SRIO link  
One 4× SRIO link  
All the other BOOTMODE[3:0] modes are reserved.  
5.7.1 Second-Level Bootloaders  
Any of the boot modes can be used to download a second-level bootloader. A second-level bootloader  
allows for any level of customization to current boot methods as well as the definition of a completely  
customized boot.  
5.7.2 Boot Sequence  
The boot sequence is a process by which the DSP's internal memory is loaded with program and data  
sections. The DSP's internal registers are programmed with predetermined values. The boot sequence is  
started automatically after each power-on reset, warm reset, and system reset. A local reset to an  
individual C64x+ Megamodule should not affect the state of the hardware boot controller on the device.  
For more details on the initiators of the resets, see Section 4.8.3.  
版权 © 2016, Texas Instruments Incorporated  
Detailed Description  
199  
提交文档反馈意见  
产品主页链接: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
The SM320C6457-HIREL supports several boot processes begins execution at the ROM base address,  
which contains the bootloader code necessary to support various device boot modes. The boot processes  
are software driven; using the BOOTMODE[3:0] device configuration inputs to determine the software  
configuration that must be completed.  
5.8 Rake Search Accelerator (RSA)  
On the C6457 device, there are two Rake Search Accelerators (RSAs). These RSAs are connected  
directly to the C64x+ CPU. The RSA is an extension of the C64x+ CPU. The CPU performs send/receive  
to the RSAs via the .L and .S functional units.  
200  
Detailed Description  
版权 © 2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
6 器件和文档支持  
6.1 器件命名规则  
为了指出产品开发周期的阶段,TI 为所有数字信号处理 (DSP) 器件和支持工具的部件号指定了前缀。每个  
DSP 商用系列成员产品具有以下三个前缀中的一个:TMXTMP、或 TMS(例  
如,TMX320C6457GMH)。德州仪器 (TI) 建议为其支持的工具使用三个可能前缀指示符中的两个:TMDX  
TMDS。这些前缀代表了产品开发的发展阶段,即从工程原型 (TMX/TMDX) 直到完全合格的生产器件/工  
(TMS/TMDS)。  
器件开发进化流程:  
TMX:试验器件不一定代表最终器件的电气技术规格  
TMP:最终的芯片模型符合器件的电气技术规格,但是未经完整的质量和可靠性验证  
TMS:完全合格的生产器件  
支持工具开发发展流程:  
TMDX:还未经德州仪器 (TI) 完整内部质量测试的开发支持产品。  
TMDS:完全合格的开发支持产品  
TMX TMP 器件和 TMDX 开发支持工具在供货时附带如下免责条款:  
开发的产品用于内部评估用途。”  
TMS 器件和 TMDS 开发支持工具已进行完全特性描述,并且器件的质量和可靠性已经完全论证。TI 的标准  
保修证书适用。  
预测显示原型器件(TMX 或者 TMP)的故障率大于标准生产器件。由于它们的预计的最终使用故障率仍未  
定义,德州仪器 (TI) 建议不要将这些器件用于任何生产系统。只有合格的生产器件将被使用。  
TI 器件的命名规则也包括一个带有器件系列名称的后缀。这个后缀表示封装类型(例如,GMH),温度范  
围(例如,空白是默认温度范围),并以兆赫为单位的器件速度范围(例如,空白是  
[1GHz])。  
1000MHz  
6-1 提供了解读任一 TMS320C64x+™ DSP 系列产品完整器件名称的图例。  
要获取采用 GMH 封装类型的 C6457 的部件号以及更多订购信息,请访问 TI 网站 www.ti.com 或者联系您  
TI 销售代表。  
SM  
320  
C6457  
(
)
(
)
(
)
GMH  
PREFIX  
DEVICE SPEED RANGE  
Blank = 1 GHz  
TMX = Experimental device  
TMS = Qualified device  
TEMPERATURE RANGE  
1 GHz: A = –55°C to +100°C  
DEVICE FAMILY  
320 = TMS320 DSP family  
DEVICE  
C64x+ DSP: C6457  
PACKAGE TYPE(A)  
GMH = 688-pin plastic BGA, with Pb-ed solder balls  
SILICON REVISION  
D = Silicon Rev 1.4  
6-1. TMS320C64x+™ DSP 器件命名规则(包括 C6457 DSP)  
(A) BGA = 球栅阵列  
6.2 工具与软件  
为了方便客户 基于 C6457 器件开发自己的特性和软件,德州仪器 (TI) 针对 TMS320C6000™ DSP 平台提  
供了大量的开发工具,其中包括评估处理器性能、生成代码、开发算法工具、以及完全集成和调试软件及硬  
件模块的工具。工具支持文档以电子文档形式提供,包含在 Code Composer Studio™集成开发环境 (IDE)  
中。  
版权 © 2016, Texas Instruments Incorporated  
器件和文档支持  
201  
提交文档反馈意见  
产品主页链接: SM320C6457-HIREL  
 
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
下列产品支持开发基于 C6000™ DSP 的 应用:  
软件开发工具:  
Code Composer Studio™ 集成开发环境 (IDE),其中包括编辑器、C/C++/汇编代码生成工具、调试  
工具以及其他开发工具。  
可扩展实时基础软件 (DSP/BIOS™),提供支持所有 DSP 应用所需的基本运行时目标软件。  
硬件开发工具:  
扩展开发系统 (XDS™) 仿真器(支持 C6000™ DSP 多处理器系统调试)  
EVM(评估模块)  
6.3 文档支持  
6-1 中列出的文档介绍了 C6457 通信基础设施数字信号处理器。www.ti.com.cn 网站上提供了这些文档的  
副本。提示:请在 www.ti.com 上的搜索框中输入文献编号。  
可从 C6000 DSP 产品文件夹 (www.ti.com/c6000) 中获取介绍 C6457、相关外设及其他技术材料的最新文  
档。  
6-1. 相关文档  
TI 文献编号  
说明  
SPRU732  
TMS320C64x/C64x+ DSP CPU 和指令集参考指南. 介绍 TMS320C6000 DSP 系列的 TMS320C64x 和  
TMS320C64x+ 数字信号处理器 (DSP) CPU 架构、管线、指令集和中断。C64x/C64x+ DSP 产品包括 C6000  
DSP 平台中的定点器件。C64x+ DSP C64x DSP 的增强版,增加了功能并扩展了指令集。  
SPRU871  
SPRAA84  
SPRU889  
SPRU925  
SPRU725  
TMS320C64x+ 超级模块参考指南》。介绍 TMS320C64x+ 数字信号处理器 (DSP) 超级模块。针对内部直接存  
储器访问 (IDMA) 控制器、中断控制器、掉电控制器、存储器保护、带宽管理以及存储器和缓存进行讨论。  
TMS320C64x TMS320C64x+ CPU 迁移指南. 介绍从德州仪器 TMS320C64x 数字信号处理器 (DSP) 至  
TMS320C64x+ DSP 的迁移。该文档旨在指出这两种内核的差异,并不涉及相同的器件功能。  
《高速 DSP 系统设计参考指南》。提供应对高速 DSP 系统设计诸多挑战的相关建议。这些建议信息针对 C5000  
C6000 DSP 平台的 DSP 音频、视频及通信系统。  
TMS320TCI648x DSP 外部存储器接口 (EMIF) 用户指南. 该文档介绍 TMS320TCI648x DSP 系列数字信号处理器  
(DSP) 的外部存储器接口 (EMIF) 的操作。  
TMS320TCI648x DSP 通用输入/输出 (GPIO) 用户指南》。该文档介绍 TMS320TCI648x DSP 系列数字信号处  
理器 (DSP) 的通用输入/输出 (GPIO) 外设。GPIO 外设提供专用的通用引脚,可以配置为输入或输出。当配置为输  
入时,可以通过读取内部寄存器的状态检测输入的状态。当配置为输出时,可以写入内部寄存器以控制输出引脚上  
驱动的状态。  
SPRU874  
SPRUE11  
SPRU806  
TMS320TCI648x DSP 主机端口接口 (HPI) 用户指南》。该文档介绍 TMS320TCI648x 数字信号处理器 (DSP)  
的主机端口接口 (HPI)。借助 HPI,外部主机处理器(主机)能够使用一个 16 (HPI16) 32 (HPI32) 接口直  
接访问 DSP 资源(包括内部和外部存储器)。  
TMS320TCI648x DSP 内部集成电路 (I2C) 模块用户指南》。 该文档介绍 TMS320TCI648x 数字信号处理器  
(DSP) 的内部集成电路 (I2C) 模块。I2C TMS320TCI648x 器件与符合 Philips Semiconductors 内部 IC 总线 (I2C  
总线) 规范版本 2.1 并通过 I2C 总线连接的其他器件之间提供一个接口。该文档假定读者熟悉 I2C 总线规范。  
TMS320TCI648x DSP 软件可编程锁相环 (PLL) 控制器 UG。该文档介绍 TMS320TCI648x 数字信号处理器  
(DSP) 的软件可编程锁相环 (PLL) 控制器的操作。PLL 控制器利用可通过软件配置的倍频器和分频器从内部修改输  
入信号,既灵活又方便。生成的时钟输出传递给 TMS320TCI648x DSP 内核、外设以及 TMS320TCI648x DSP 内  
的其他模块。  
SPRU818  
SPRUE10  
TMS320TCI648x DSP 64 位定时器用户指南》。该文档简要介绍 TMS320TCI648x DSP 64 位定时器。该定  
时器可配置为一个通用 64 位定时器、双通用 32 位定时器或者一个看门狗定时器。当配置为双 32 位定时器时,这  
两半部分可以搭配使用(链接模式),也可以彼此独立使用(非链接模式)。  
TMS320TCI648x DSP Turbo 解码器协处理器 2 (TCP2) 参考指南》。第三代 (3G) 移动通信标准中的高比特率  
数据通道的通道编码要求对 turbo 编码的数据进行解码。一些 TMS320C6000™ DSP 系列数字信号处理器 (DSP)  
Turbo 解码器协处理器 (TCP) 设计用于按照 IS2000 3GPP 无线标准执行该操作。本文档介绍 TCP 的操作和  
编程。  
SPRUE09  
SPRUFC4  
TMS320TCI648x DSP 维特比解码器协处理器 2 (VCP2) 参考指南》。 第三代 (3G) 移动通信标准中的语音和低  
比特率数据通道的通道编码要求对卷积编码数据进行解码。TMS320TCI648x 器件的维特比解码器协处理器 2  
(VCP2) 设计用于按照 IS2000 3GPP 无线标准进行维特比解码。VCP2 协处理器设计用于针对 2G 3G 无线  
系统执行前向纠错。VCP2 协处理器与德州仪器 (TI) DSP 组合使用可以提供一个成本非常低的高效协同解决方  
案。VCP2 可以支持 1941 12.2Kbps A 3G 语音通道运行在 333MHz 下。本文档介绍 VCP2 的操作和编程。  
TMS320TCI6484 DSP 以太网介质访问控制器 (EMAC)/管理数据输入输出 (MDIO) 用户指南》。该文档给出了  
TMS320TCI6487/8 器件集成的 以太网介质访问控制器 (EMAC) 和物理层 (PHY) 器件管理数据输入输出 (MDIO)  
模块的功能描述。其中包括 EMAC MDIO 模块的特性,架构和操作的相关讨论,与外部的连接方式 以及 寄存  
器说明。  
202  
器件和文档支持  
版权 © 2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: SM320C6457-HIREL  
 
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
6-1. 相关文档 (continued)  
TI 文献编号  
说明  
SPRUGK5  
TMS320C6457 DSP DDR2 存储器控制器用户指南》。该文档介绍 TMS320C6457 数字信号处理器 (DSP) 的  
DDR2 存储器控制器。  
SPRUGK6  
SPRUGK2  
SPRUGL2  
TMS320C6457 DSP 增强型 DMA (EDMA3) 控制器用户指南》。该文档介绍 TMS320C6457 器件上的增强型  
DMA (EDMA3) 控制器。  
TMS320C6457 DSP 外部存储器接口 (EMIF) 用户指南》。该文档介绍 TMS320C6457 DSP 系列数字信号处理  
(DSP) 的外部存储器接口 (EMIF) 的操作。  
TMS320C6457 DSP 通用输入/输出 (GPIO) 用户指南》。该文档介绍 TMS320C6457 DSP 系列数字信号处理器  
(DSP) 的通用输入/输出 (GPIO) 外设。GPIO 外设提供专用的通用引脚,可以配置为输入或输出。当配置为输入  
时,可以通过读取内部寄存器的状态检测输入的状态。当配置为输出时,可以写入内部寄存器以控制输出引脚上驱  
动的状态。  
SPRUGK7  
SPRUGK3  
TMS320C6457 DSP 主机端口接口 (HPI) 用户指南》。该文档介绍 TMS320C6457 数字信号处理器 (DSP) 的主  
机端口接口 (HPI)。借助 HPI,外部主机处理器(主机)能够使用一个 16 (HPI16) 32 (HPI32) 接口直接访  
DSP 资源(包括内部和外部存储器)。  
TMS320C6457 DSP 内部集成电路 (I2C) 模块用户指南》。 该文档介绍 TMS320C6457 数字信号处理器 (DSP)  
的内部集成电路 (I2C) 模块。I2C TMS320C6457 器件与符合 Philips Semiconductors 内部 IC 总线 (I2C 总线)  
规范版本 2.1 并通过 I2C 总线连接的其他器件之间提供一个接口。该文档假定读者熟悉 I2C 总线规范。  
SPRUGK4  
SPRUGL3  
TMS320C6457 串行 RapidIO (SRIO) 用户指南》。该文档介绍 TMS320C6457 器件的 RapidIO (SRIO)。  
TMS320C6457 DSP 软件可编程锁相环 (PLL) 控制器 UG。该文档介绍 TMS320C6457 数字信号处理器  
(DSP) 的软件可编程锁相环 (PLL) 控制器的操作。PLL 控制器利用可通过软件配置的倍频器和分频器从内部修改输  
入信号,既灵活又方便。生成的时钟输出传递给 TMS320C6457 DSP 内核、外设以及 TMS320C6457 DSP 内的  
其他模块。  
SPRUGL0  
SPRUGK1  
TMS320C6457 DSP 64 位定时器用户指南》。该文档简要介绍 TMS320C6457 DSP 64 位定时器。该定时器  
可配置为一个通用 64 位定时器、双通用 32 位定时器或者一个看门狗定时器。当配置为双 32 位定时器时,这两半  
部分可以搭配使用(链接模式),也可以彼此独立使用(非链接模式)。  
TMS320C6457 DSP Turbo 解码器协处理器 2 (TCP2) 参考指南》。第三代 (3G) 移动通信标准中的高比特率数  
据通道的通道编码要求对 turbo 编码的数据进行解码。一些 TMS320C6000™ DSP 系列数字信号处理器 (DSP) 的  
Turbo 解码器协处理器 (TCP) 设计用于按照 IS2000 3GPP 无线标准执行该操作。本文档介绍 TCP 的操作和编  
程。  
SPRUGL1  
SPRUGK0  
TMS320C6457 DSP ATM 2 通用测试和运行 PHY 接口 (UTOPIA2) 用户指南》。该文档介绍 TMS320C6000™  
DSP 系列 TMS320C6457 数字信号处理器 (DSP) 中用于异步传输模式 (ATM) 2 的通用测试和运行 PHY 接口  
(UTOPIA2)。  
TMS320C6457 DSP 维特比解码器协处理器 2 (VCP2) 参考指南》。 第三代 (3G) 移动通信标准中的语音和低比  
特率数据通道的通道编码要求对卷积编码数据进行解码。TMS320C6457 器件的维特比解码器协处理器 2 (VCP2)  
设计用于按照 IS2000 3GPP 无线标准进行维特比解码。VCP2 协处理器设计用于针对 2G 3G 无线系统执行  
前向纠错。VCP2 协处理器与德州仪器 (TI) DSP 组合使用可以提供一个成本非常低的高效协同解决方案。VCP2  
可以支持 1941 12.2Kbps A 3G 语音通道运行在 333MHz 下。本文档介绍 VCP2 的操作和编程。  
SPRUGK9  
TMS320C6457 DSP 以太网介质访问控制器 (EMAC)/管理数据输入输出 (MDIO) 用户指南》。该文档给出了  
TMS320C6457 器件集成的 以太网介质访问控制器 (EMAC) 和物理层 (PHY) 器件管理数据输入输出 (MDIO) 模块  
的功能描述。其中包括 EMAC MDIO 模块的特性,架构和操作的相关讨论,与外部的连接方式 以及 寄存器说  
明。  
SPRUGK8  
SPRUGL4  
SPRUGL5  
TMS320C6457 DSP 多通道缓冲串行端口 (McBSP) 参考指南》。 该文档介绍 TMS320C6000™ DSP 系列数字  
信号处理器 (DSP) 的多通道缓冲串行端口 (McBSP) 的操作。  
TMS320C6457 DSP 电源/休眠控制器 (PSC) 用户指南》。 该文档介绍 TMS320C6457 器件的电源/休眠控制器  
(PSC) 的使用。  
TMS320C6457 DSP 自举程序用户指南》。本文档介绍 TMS320C6457 数字信号处理器 (DSP) 随附的 片上自  
举程序的特性。  
6.3.1 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me)  
注册后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史  
记录。  
6.4 社区资源  
下列链接提供到 TI 社区资源的连接。 链接的内容由各个分销商按照原样提供。 这些内容并不构成 TI 技术  
规范和标准且不一定反映 TI 的观点;请见 TI 使用条款。  
TI E2E™ 在线社区 TI 工程师对工程师 (E2E) 社区。 此社区的创建目的是为了促进工程师之间协作。 在  
e2e.ti.com 中,您可以咨询问题、共享知识、探索思路,在同领域工程师的帮助下解决问题。  
版权 © 2016, Texas Instruments Incorporated  
器件和文档支持  
203  
提交文档反馈意见  
产品主页链接: SM320C6457-HIREL  
SM320C6457-HIREL  
ZHCSFA5 JULY 2016  
www.ti.com.cn  
德州仪器 (TI) 嵌入式处理器维基网站 德州仪器 (TI) 嵌入式处理器维基网站。 此网站的建立是为了帮助开发  
人员从德州仪器 (TI) 嵌入式处理器入门并且也为了促进与这些器件相关的硬件和软件的总体  
知识的创新和增长。  
6.5 商标  
TMS320C64x+, TMS320C6000, VelociTI, Code Composer Studio, E2E are trademarks of Texas  
Instruments.  
Windows is a registered trademark of Microsoft Corporation.  
All other trademarks are the property of their respective owners.  
6.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
6.7 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
204  
器件和文档支持  
版权 © 2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: SM320C6457-HIREL  
SM320C6457-HIREL  
www.ti.com.cn  
ZHCSFA5 JULY 2016  
7 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知  
且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
机械、封装和可订购信息  
205  
提交文档反馈意见  
产品主页链接: SM320C6457-HIREL  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SM320C6457CGMHS  
ACTIVE  
FCBGA  
GMH  
688  
60  
Non-RoHS  
& Green  
SNPB  
Level-4-220C-72 HR  
-55 to 100  
SM320C6457CGMH  
@2007 TI  
Samples  
A1GHZ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SM320C6457CGMHS

高可靠性产品 C6457 定点 DSP | GMH | 688 | -55 to 100
TI

SM320C6472-HIREL

SM320C6472 Fixed-Point Digital Signal Processor
TI

SM320C6472EGTZA6

SM320C6472 Fixed-Point Digital Signal Processor
TI

SM320C6678-HIREL

高可靠性产品高性能 8 核 C6678 定点和浮点 DSP
TI

SM320C6678ACYPW

高可靠性产品高性能 8 核 C6678 定点和浮点 DSP | CYP | 841 | -55 to 115
TI

SM320C6701

FLOATING - POINT DIGITAL SIGNAL PROCESSOR
TI

SM320C6701-EP

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI

SM320C6701GJCA12EP

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI

SM320C6701GLPS16

FLOATING - POINT DIGITAL SIGNAL PROCESSOR
TI

SM320C6701GLPW14

FLOATING - POINT DIGITAL SIGNAL PROCESSOR
TI

SM320C6701S14

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI

SM320C6701S16

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI