SN65HVD01 [TI]

具有 1.65V I/O 电源和可选数据速率的 3.3V RS-485 收发器;
SN65HVD01
型号: SN65HVD01
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.65V I/O 电源和可选数据速率的 3.3V RS-485 收发器

文件: 总31页 (文件大小:1479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
SN65HVD01  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
SN65HVD01 3.3V RS-485,具有灵活 I/O 电源和可选速度  
1 特性  
3 说明  
1
超过 TIA-485 标准的要求  
针对数据和使能信号的 1.65V 3.6V 电源  
SN65HVD01 是一款低功耗,250ksps 20Mbps 数  
据速率可选 RS-485 收发器,此收发器采用 1.65V 至  
3.6V 电源用于数据和使能信号,而针对总线信号采用  
一个 3.3V ± 10% 电源。 此器件被设计用于要求同  
步(并行收发器)信号时序的应用。 片上瞬态抑制保  
护此器件不受 IEC 61000 静电放电 (ESD) 和电快速瞬  
(EFT) 瞬态的影响而损坏。  
针对总线信号的 3V 3.6V 电源  
SLR 引脚可选数据速率:250ksps 20Mbps  
1/8 单位负载在一条总线上支持多达 256 个节点  
小型 3mm x 3mm 小外形尺寸无引线 (SON) 封装  
故障安全接收器(总线开路、总线短接、总线闲  
置)  
此器件组合有一个差分驱动器和一个差分接收器,这些  
器件被内部连接以形成一个适用于半双工(两线制总  
线)通信的总线端口。 此器件特有一个宽共模电压范  
围,这使得此器件适合于长线缆运行上的多点应用。  
SN65HVD01 采用极小型,3mm x 3mmSON 封  
装,运行温度范围 -40°C 125°C。  
运行温度范围:-40°C 125°C  
总线引脚保护大于:  
±15kV 人体模型 (HBM) 保护  
±16kV IEC61000-4-2 接触放电  
±16kV IEC61000-4-2 空气放电  
4kV IEC61000-4-4 快速瞬态突发  
器件信息  
2 应用范围  
订货编号  
封装  
封装尺寸  
SN65HVD01DRC  
SON (10)  
3mm x 3mm  
电信基础设施  
高速数据链路  
低压 µC 通信  
空白  
空白  
空白  
空白  
空白  
空白  
典型应用  
1.8V  
1.8V  
3.3V  
3.3V  
V
L
SLR  
V
V
SLR  
V
L
CC  
CC  
D
R
A
B
A
B
DE  
R
RE  
D
120Ÿ  
120Ÿ  
RE  
DE  
GND  
GND  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLLSEH0  
 
 
 
 
 
 
 
 
 
 
 
 
 
SN65HVD01  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 15  
8.4 Device Functional Modes........................................ 15  
Applications and Implementation ...................... 18  
9.1 Application Information............................................ 18  
9.2 Typical Application .................................................. 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings....................................................... 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Dissipation Ratings ................................................... 6  
6.6 Electrical Characteristics........................................... 7  
6.7 Switching Characteristics.......................................... 8  
6.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 11  
Detailed Description ............................................ 15  
9
10 Power Supply Recommendations ..................... 21  
11 Layout................................................................... 21  
11.1 Layout Guidelines ................................................. 21  
11.2 Layout Example .................................................... 21  
12 器件和文档支持 ..................................................... 22  
12.1 ....................................................................... 22  
12.2 静电放电警告......................................................... 22  
12.3 术语表 ................................................................... 22  
13 机械封装和可订购信息 .......................................... 22  
7
8
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision E (March 2014) to Revision F  
Page  
Changed Figure 22 image and CH3 scale from: 100 V/div To 2 V/div ................................................................................ 20  
Changed Figure 23 CH3 scale from: 100 V/div To 2 V/div .................................................................................................. 20  
Changes from Revision D (November 2013) to Revision E  
Page  
已将数据表更改为全新的 TI 标准格式..................................................................................................................................... 1  
已添加器件信息表 .................................................................................................................................................................. 1  
Added the Handling Ratings table.......................................................................................................................................... 5  
Added the Detailed Description section................................................................................................................................ 15  
Changed Figure 17............................................................................................................................................................... 17  
Added the Applications and Implementation section............................................................................................................ 18  
Deleted the Application Information section ......................................................................................................................... 18  
Added the Power Supply Recommendations....................................................................................................................... 21  
Added the Layout section .................................................................................................................................................... 21  
2
版权 © 2013–2014, Texas Instruments Incorporated  
 
SN65HVD01  
www.ti.com.cn  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
Changes from Revision C (November 2013) to Revision D  
Page  
已将特性从:小型 3mm x 3mm 超薄四方扁平无引线 (VQFN) 封装更改为:小型 3mm x 3mm 小外形尺寸无引线  
(SON) 封装 ............................................................................................................................................................................. 1  
已将特性从:总线引脚保护:更改为:总线引脚保护大...................................................................................................... 1  
已将特性从:15kV 更改为:±15kV HBM .................................................................................................................... 1  
已将特性从:15kV 更改为:±16kV 接触放...................................................................................................................... 1  
已将特性从:15kV 更改为:±16kV 空气放...................................................................................................................... 1  
已将说明文本从:3mm x 3mmVQFN 封装更改为:3mm x 3mmSON 封装 ................................................................... 1  
Changed the ABSOLUTE MAXIMUM RATINGS for IEC 61000-4-2 ESD (Air-Gap Discharge) From MAX = ±15 To:  
MAX = ±16.............................................................................................................................................................................. 5  
Changed the ABSOLUTE MAXIMUM RATINGS for IEC 61000-4-2 ESD (Contact Discharge) From MAX = ±15 To:  
MAX = ±16.............................................................................................................................................................................. 5  
Changed the Thermal Information table package From VQFN (DRC) To; SON (DRC)........................................................ 5  
Changes from Revision B (October 2013) to Revision C  
Page  
已更改 从产品预览改为生产数据 ............................................................................................................................................ 1  
Changes from Revision A (October 2013) to Revision B  
Page  
Added 8 Typical Characteristics curves ................................................................................................................................. 9  
Changes from Original (July 2013) to Revision A  
Page  
已将特性从:针对数据和使能信号的 1.8V 3.3V 电源更改为:针对数据和使能信号的 1.65V 3.6V 电源 ...................... 1  
已将特性从:针对总线信号的 3.3V 电源更改为:针对总线信号的 3V 3.6V 电源.............................................................. 1  
已将特性从:可选数据速率:250ksps 20Mbps 更改为:SLR 引脚可选数据速率:250ksps 20Mbps ......................... 1  
已更改应用范围列表 ............................................................................................................................................................... 1  
已更改说明.............................................................................................................................................................................. 1  
在典型应用电路中,已将:100Ω 电阻器更改为:120Ω 电阻器 ............................................................................................. 1  
Changed the ELECTRICAL CHARACTERISTICS table values ............................................................................................ 7  
Changed the SWITCHING CHARACTERISTICS table values .............................................................................................. 8  
Changed VCC and 3 V to VL in Figure 9 through Figure 16.................................................................................................. 11  
Changed Figure 17............................................................................................................................................................... 17  
Copyright © 2013–2014, Texas Instruments Incorporated  
3
SN65HVD01  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
www.ti.com.cn  
5 Pin Configuration and Functions  
DRC 10 PIN  
(TOP VIEW)  
V
R
DE 3  
1
2
10 V  
9 B  
8 A  
L
CC  
4
7 SLR  
6 GND  
RE  
D
5
Pin Functions  
NAME  
NO.  
1
I/O  
DESCRIPTION  
VL  
R
Logic Supply 1.65 V to 3.6 V supply for logic I/O signals R, RE, D, DE, and SLR)  
Digital Output Receive data output  
2
DE  
RE  
D
3
Digital Input Driver enable input  
4
Digital Input Receiver enable input  
5
Digital Input Transmission data input  
Reference  
GND  
6
Local device ground  
Potential  
SLR  
A
7
8
Digital Input Slew rate select: Low = 20 Mbps, High = 250 kbps. Defaults to 20 Mbps if SLR is left floating  
Bus I/O  
Bus I/O  
Digital bus I/O, A  
Digital bus I/O, B  
B
9
VCC  
10  
Bus Supply 3 V to 3.6 V supply for A and B bus lines  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
VALUE  
UNIT  
MIN  
–0.5  
–0.5  
–13  
MAX  
4
Control supply voltage, VL  
V
V
Bus supply voltage, VCC  
5.5  
16.5  
5.7  
100  
12  
Voltage range at A or B Inputs  
Input voltage range at any logic terminal  
Voltage input range, transient pulse, A and B, through 100Ω  
Receiver output current  
V
–0.3  
–100  
–12  
V
V
mA  
°C  
Junction temperature, TJ  
170  
Continuous total power dissipation  
See the Thermal Information table  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
4
Copyright © 2013–2014, Texas Instruments Incorporated  
SN65HVD01  
www.ti.com.cn  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
6.2 Handling Ratings  
MIN  
MAX  
150  
±15  
±16  
±16  
±4  
UNIT  
°C  
TSTG  
Storage temperature range  
–65  
IEC 60749-26 ESD (Human Body Model), bus terminals and GND  
IEC 61000-4-2 ESD (Air-Gap Discharge), bus terminals and GND  
IEC 61000-4-2 ESD (Contact Discharge), bus terminals and GND  
kV  
(1)  
kV  
kV  
IEC 61000-4-4 EFT (Fast transient or burst) bus terminals and GND  
kV  
VESD  
JEDEC Standard 22, Test Method A114 (Human Body Model), all  
terminals  
±8  
kV  
JEDEC Standard 22, Test Method C101 (Charged Device Model), all  
terminals  
±1.5  
kV  
(1) As stated in the IEC 61000-4-2 standard, contact discharge is the preferred transient protection test method. Although IEC air-gap  
testing is less repeatable than contact testing, air discharge protection levels are inferred from the contact discharge test results.  
6.3 Recommended Operating Conditions  
MIN  
1.65  
3
NOM  
MAX UNIT  
VL  
Control supply voltage  
3.6  
3.6  
12  
V
V
V
V
VCC  
VI  
Bus supply voltage  
3.3  
(1)  
Input voltage at any bus terminal (separately or common mode)  
–7  
VIH  
High-level input voltage (Driver, driver enable, receiver enable inputs, and slew rate  
select)  
0.7×VL  
VL  
VIL  
Low-level input voltage (Driver, driver enable, receiver enable inputs, and slew rate  
select)  
0
0.3×VL  
V
VID  
IO  
Differential input voltage  
–12  
–80  
–2  
12  
80  
2
V
Driver  
Output current  
mA  
mA  
Ω
Receiver  
RL  
CL  
Differential load resistance  
Differential load capacitance  
54  
60  
50  
pF  
SLR = '0'  
Signaling rate  
20 Mbps  
1/tUI  
SLR = '1'  
250  
125  
kbps  
°C  
(2)  
TA  
Operating free-air temperature Thermal Information  
–40  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
(2) Operation is specified for internal (junction) temperatures up to 150°C. Self-heating due to internal power dissipation should be  
considered for each application. Maximum junction temperature is internally limited by the thermal shut-down (TSD) circuit which  
disables the driver outputs when the junction temperature reaches 170°C.  
6.4 Thermal Information  
PARAMETER(1)  
Junction-to-Ambient Thermal Resistance  
Junction-to-Case(top) Thermal Resistance  
Junction-to-Board Thermal Resistance  
SON (DRC)  
41.4  
48.7  
18.8  
0.6  
UNIT  
ΘJA  
ΘJC(top)  
ΘJB  
°C/ W  
ΨJT  
Junction-to-Top characterization parameter  
Junction-to-Board characterization parameter  
Junction-to-Case(bottom) Thermal Resistance  
Thermal Shut-down junction temperature  
ΨJB  
19  
ΘJC(bottom)  
TTSD  
3.7  
170  
°C  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953  
Copyright © 2013–2014, Texas Instruments Incorporated  
5
 
SN65HVD01  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
www.ti.com.cn  
6.5 Dissipation Ratings  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
250 kbps  
125  
175  
165  
215  
200  
250  
RL = 300 Ω,  
CL = 50 pF (driver)  
Unterminated  
RS-422 load  
RS-485 load  
mW  
20 Mbps  
250 kbps  
20 Mbps  
250 kbps  
20 Mbps  
Power Dissipation driver and receiver  
enabled,  
RL = 100 Ω,  
CL = 50 pF (driver)  
PD  
VCC = VL = 3.6 V, TJ = 150°C,  
50% duty cycle square-wave signal at  
signaling rate  
mW  
mW  
RL = 54 Ω,  
CL = 50 pF (driver)  
6
Copyright © 2013–2014, Texas Instruments Incorporated  
SN65HVD01  
www.ti.com.cn  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
6.6 Electrical Characteristics  
over recommended operating range (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.5  
1.5  
2
TYP  
2
MAX  
UNIT  
RL = 60 Ω, 375 Ω on each output  
See Figure 9  
V
V
V
to –7 V to 12 V  
Driver differential output voltage  
magnitude  
|VOD  
|
RL = 54 Ω (RS-485)  
2
RL = 100 Ω (RS-422) TJ 0°C,  
VCC 3.2V  
Change in magnitude of driver  
differential output voltage  
Δ|VOD  
|
RL = 54 Ω, CL = 50 pF  
–50  
1
0
VCC/2  
0
50  
3
mV  
V
See Figure 10  
Steady-state common-mode output  
voltage  
VOC(SS)  
Change in differential driver output  
common-mode voltage  
ΔVOC  
Center of two 27-Ω load resistors  
–50  
50  
mV  
Peak-to-peak driver common-mode  
output voltage  
VOC(PP)  
COD  
500  
15  
mV  
pF  
Differential output capacitance  
Positive-going receiver differential  
input voltage threshold  
(1)  
VIT+  
See  
–60  
–20  
mV  
Negative-going receiver differential  
input voltage threshold  
(1)  
VIT–  
–200  
40  
–130  
70  
See  
mV  
mV  
Receiver differential input voltage  
threshold hysteresis  
VHYS  
(VIT+ – VIT–  
)
VL = 1.65 V, IOH = -2 mA  
VL = 3 V, IOH = -2 mA  
VL = 1.65 V, IOL = 2 mA  
VL = 3 V, IOL = 2 mA  
1.3  
2.8  
1.45  
2.9  
VOH  
Receiver high-level output voltage  
Receiver low-level output voltage  
V
V
0.2  
0.35  
0.2  
VOL  
0.1  
Driver input, driver enable, and  
receiver enable input current  
II  
IOZ  
IOS  
–2  
2
1
µA  
µA  
Receiver output high-impedance  
current  
VO = 0 V or VL, RE at VL  
–1  
Driver short-circuit output current  
–150  
150  
125  
mA  
µA  
µA  
µA  
µA  
VI = 12 V  
85  
–60  
750  
VL = 1.8 V,  
VCC = 3.3 V, DE at 0 V  
II  
Bus input current (disabled driver)  
VI = –7 V  
–100  
1100  
1000  
Driver and Receiver  
enabled  
DE=VL, RE =  
GND, No load  
TJ 85°C  
Driver enabled, receiver  
disabled  
DE=VCC, RE = VL, No load  
DE=GND, RE = GND, No load  
DE=GND, RE = VL, No load  
350  
650  
0.1  
650  
800  
5
µA  
µA  
µA  
ICC  
Supply current (quiescent)  
Supply current (dynamic)  
Driver disabled, receiver  
enabled  
Driver and receiver  
disabled  
See the Typical Characteristics section  
(1) Under any specific conditions, VIT+ is specified to be at least VHYS higher than VIT–  
.
Copyright © 2013–2014, Texas Instruments Incorporated  
7
SN65HVD01  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
www.ti.com.cn  
6.7 Switching Characteristics  
over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DRIVER, SLR = '1', 250 kbps, bit time 4 µs  
tr, tf  
Driver differential output rise/fall time  
Driver propagation delay  
0.4  
0.4  
0.8  
0.8  
1.2  
1.2  
0.2  
0.1  
1
µs  
µs  
µs  
µs  
µs  
µs  
tPHL, tPLH  
tSK(P)  
RL = 54 Ω, CL = 50 pF  
See Figure 11  
Driver pulse skew, |tPHL – tPLH  
|
tPHZ, tPLZ  
Driver disable time  
0.025  
0.6  
See Figure 12 and  
Figure 13  
Receiver enabled  
Receiver disabled  
tPZH, tPZL  
Driver enable time  
3.5  
8
DRIVER, SLR = '0', 20 Mbps, bit time 50 ns  
tr, tf  
Driver differential output rise/fall time  
Driver propagation delay  
5
6
10  
15  
15  
25  
4
ns  
ns  
ns  
ns  
ns  
µs  
RL = 54 Ω,  
CL = 50 pF  
tPHL, tPLH  
tSK(P)  
See Figure 11  
Driver pulse skew, |tPHL – tPLH  
|
tPHZ, tPLZ  
Driver disable time  
20  
14  
3
35  
30  
7
See Figure 12 and  
Figure 13  
Receiver enabled  
Receiver disabled  
tPZH, tPZL  
Driver enable time  
RECEIVER, SLR = 'X'  
tr, tf  
Receiver output rise/fall time  
5
15  
90  
15  
20  
80  
8
ns  
ns  
ns  
ns  
ns  
µs  
See Figure 14  
tPHL, tPLH  
tSK(P)  
Receiver propagation delay time  
Receiver pulse skew, |tPHL – tPLH  
Receiver disable time  
CL = 15 pF  
30  
60  
|
tPLZ, tPHZ  
10  
15  
3
Driver enabled  
Driver disabled  
See Figure 15  
See Figure 16  
tpZL(1), tPZH(1)  
tPZL(2), tPZH(2)  
Receiver enable time  
8
Copyright © 2013–2014, Texas Instruments Incorporated  
SN65HVD01  
www.ti.com.cn  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
6.8 Typical Characteristics  
3.5  
2.2  
2.15  
2.1  
3
60:ꢀ  
100:ꢀ  
2.5  
2
2.05  
2
1.5  
1
V
T
= V = 3.3V,  
L
V
T
= V = 3.3V,  
CC  
= 25oC,  
CC  
L
= 25oC,  
A
1.95  
1.9  
0.5  
0
A
See Figure 1  
DE = High  
0
10  
20  
30  
40  
50  
60  
70  
80  
-7  
-5  
-3  
-1  
1
3
5
7
9
11  
Driver Output Current (mA)  
Driver Common Mode Load Voltage (V)  
Figure 1. Differential Driver Output Voltage vs Driver Output  
Current  
Figure 2. Differential Driver Output Voltage vs Driver  
Common Mode Load Voltage  
20  
18  
16  
14  
12  
10  
8
845  
835  
825  
815  
805  
795  
785  
775  
V
T
= V = 3.3V,  
L
CC  
= 25oC,  
A
SLR = High  
6
V
T
= V = 3.3V,  
L
CC  
= 25oC,  
4
2
0
A
SLR = Low  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (oC)  
Temperature (oC)  
Figure 3. Transition Time vs Temperature  
Figure 4. Transition Time vs Temperature  
16  
14  
12  
10  
8
850  
845  
840  
835  
830  
825  
820  
815  
810  
805  
800  
V
T
= V = 3.3V,  
L
CC  
= 25oC,  
A
SLR = High  
6
V
T
= V = 3.3V,  
L
4
CC  
= 25oC,  
A
2
SLR = Low  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (oC)  
Temperature (oC)  
Figure 5. Propagation Delay vs Temperature  
Figure 6. Propagation Delay vs Temperature  
Copyright © 2013–2014, Texas Instruments Incorporated  
9
SN65HVD01  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
V
T
= V = 3.3V,  
L
V
T
= V = 3.3V,  
L
CC  
= 25oC,  
CC  
= 25oC,  
20  
10  
0
A
A
SLR = High,  
SLR = Low,  
R
= 54:ꢀ  
R
= 54:ꢀ  
L
L
0
5
10  
Signaling Rate (Mbps)  
15  
20  
0
50  
100  
150  
200  
250  
Signaling Rate (kbps)  
Figure 7. Supply Current vs Signaling Rate  
Figure 8. Supply Current vs Signaling Rate  
10  
Copyright © 2013–2014, Texas Instruments Incorporated  
SN65HVD01  
www.ti.com.cn  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
7 Parameter Measurement Information  
Input generator rate is 100 kbps, 50% duty cycle, rise and fall times less than 6 nsec.  
375 W ±1%  
VL  
DE  
A
B
D
VOD  
0 V or VL  
60 W ±1%  
+
_
–7 V < V(test) < 12 V  
375 W ±1%  
Figure 9. Measurement of Driver Differential Output Voltage with Common-Mode Load  
VL  
DE  
VA  
A
B
RL/2  
RL/2  
A
B
VB  
D
VOD  
0 V or VL  
VOC(PP)  
DVOC(SS)  
VOC  
CL  
VOC  
Figure 10. Measurement of Driver Differential and Common-Mode Output with RS-485 Load  
VL  
VL  
50%  
50%  
A
B
»
»
W
W
Figure 11. Measurement of Driver Differential Output Rise and Fall Times and Propagation Delays  
VL  
A
B
S1  
VO  
D
VI  
50%  
50%  
VL  
0 V  
DE  
0.5 V  
RL = 110 W  
± 1%  
CL = 50 pF ±20%  
tPZH  
VOH  
90%  
Input  
Generator  
CL Includes Fixture  
50 W  
VI  
and Instrumentation  
Capacitance  
VO  
50%  
» 0 V  
tPHZ  
D at VL to test non-inverting output, D at 0 V to test inverting output.  
Figure 12. Measurement of Driver Enable and Disable Times with Active High Output and Pull-Down  
Load  
Copyright © 2013–2014, Texas Instruments Incorporated  
11  
SN65HVD01  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
www.ti.com.cn  
Parameter Measurement Information (continued)  
VL  
RL = 110 W  
±1%  
» VL  
A
B
VI  
50%  
50%  
S1  
D
VO  
VL  
0 V  
tPZL  
tPLZ  
DE  
CL = 50 pF ±20%  
» 3 V  
Input  
Generator  
VI  
50 W  
CL Includes Fixture  
VO  
50%  
and Instrumentation  
Capacitance  
10%  
VOL  
D at 0V to test non-inverting output, D at VL to test inverting output.  
Figure 13. Measurement of Driver Enable and Disable Times with Active Low Output and Pull-Up Load  
VL  
A
VI  
50%  
50%  
VO  
R
Input  
Generator  
50 W  
0 V  
VI  
B
tPLH  
tPHL  
1.5 V  
0 V  
CL = 15 pF ±20%  
VOH  
RE  
90% 90%  
VO  
50%  
10%  
50%  
10%  
VOL  
CL Includes Fixture  
tr  
tf  
and Instrumentation  
Capacitance  
Figure 14. Measurement of Receiver Output Rise and Fall Times and Propagation Delays  
12  
Copyright © 2013–2014, Texas Instruments Incorporated  
SN65HVD01  
www.ti.com.cn  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
Parameter Measurement Information (continued)  
VL  
DE  
VL  
A
B
VO  
1 kW ± 1%  
CL = 15 pF ±20%  
R
D
0 V or VL  
S1  
RE  
CL Includes Fixture  
and Instrumentation  
Capacitance  
Input  
Generator  
50 W  
VI  
VL  
VI  
50%  
50%  
0 V  
tPZH(1)  
tPHZ  
VOH  
D at VL  
90%  
S1 to GND  
VO  
50%  
» 0 V  
tPZL(1)  
tPLZ  
VL  
D at 0 V  
S1 to VL  
VO  
50%  
10%  
VOL  
Figure 15. Measurement of Receiver Enable/Disable Times with Driver Enabled  
Copyright © 2013–2014, Texas Instruments Incorporated  
13  
SN65HVD01  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
www.ti.com.cn  
Parameter Measurement Information (continued)  
VL  
A
B
VO  
0 V or 1.5 V  
1.5 V or 0 V  
1 kW ± 1%  
CL = 15 pF ±20%  
R
S1  
RE  
CL Includes Fixture  
and Instrumentation  
Capacitance  
Input  
Generator  
50 W  
VI  
VL  
VI  
50%  
0 V  
tPZH(2)  
VOH  
A at 1.5 V  
B at 0 V  
S1 to GND  
VO  
50%  
GND  
VL  
tPZL(2)  
A at 0 V  
B at 1.5 V  
S1 to VL  
VO  
50%  
VOL  
Figure 16. Measurement of Receiver Enable Times with Driver Disabled  
14  
Copyright © 2013–2014, Texas Instruments Incorporated  
SN65HVD01  
www.ti.com.cn  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
8 Detailed Description  
8.1 Overview  
The SN65HVD01 is a low-power, half-duplex RS-485 transceiver whose maximum data rate can be set to either  
250 kbps or 20 Mbps via a selection terminal, SLR.  
The device possesses two power supply inputs, one for logic control functions, VL, and the other for the bus  
supply, VCC. VL can range from 1.65 V minimum up to 3.6 V maximum and allows for the direct interface to low-  
voltage FPGAs and micro controllers. VCC requires a supply between 3 V to 3.6 V to assure sufficient output  
drive capability across a wide common-mode range.  
8.2 Functional Block Diagram  
V
L
V
SLR CC  
D
DE  
R
A
B
RE  
GND  
8.3 Feature Description  
Internal ESD protection circuits protect the transceiver against Electrostatic discharges (ESD) according to  
IEC61000-4-2 of up to ±16 kV, and against electrical fast transients (EFT) according to IEC61000-4-4 of up to ±4  
kV.  
The SN65HVD01 provides internal biasing of the receiver input thresholds in combination with large input-  
threshold hysteresis. At a positive input threshold of VIT+ = –60 mV and an input hysteresis of VHYS = 70 mV,  
the receiver output remains logic high even in the presence of 130 mVPK differential noise without the need for  
external failsafe biasing resistors.  
Device operation is specified over a wide temperature range from –40°C to 125°C.  
8.4 Device Functional Modes  
When driver enable terminal, DE, is logic high, the differential outputs A and B follow the logic states at data  
input D. A logic high at D causes A to turn high and B to turn low. In this case the differential output voltage  
defined as VOD = VA – VB is positive. When D is low, the output states reverse, B turns high, A becomes low, and  
VOD is negative.  
When DE is low, both outputs turn high-impedance. In this condition, the logic state at D is irrelevant. The DE  
terminal has an internal pull-down resistor to ground, thus when left open the driver is disabled (high-impedance)  
by default. The D terminal has an internal pull-up resistor to VL, thus, when left open while the driver is enabled,  
output A turns high and B turns low.  
Table 1. Driver Function Table  
INPUT  
ENABLE  
OUTPUTS  
FUNCTION  
D
DE  
A
B
L
H
H
H
L
Actively drive bus High  
Actively drive bus Low  
L
X
H
L
H
Z
Z
L
Z
Z
H
Driver disabled  
X
OPEN  
H
Driver disabled by default  
Actively drive bus High by default  
OPEN  
Copyright © 2013–2014, Texas Instruments Incorporated  
15  
SN65HVD01  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
www.ti.com.cn  
When the receiver enable terminal, RE, is logic low, the receiver is enabled. When the differential input voltage  
defined as VID = VA – VB is positive and higher than the positive input threshold, VIT+, the receiver output, R,  
turns high. When VID is negative and less than the negative and lower than the negative input threshold, VIT-, the  
receiver output, R, turns low. If VID is between VIT+ and VIT- the output is indeterminate.  
When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID  
are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is  
disconnected from the bus (open-circuit), the bus lines are shorted (short-circuit), or the bus is not actively driven  
(idle bus).  
Table 2. Receiver Function Table  
DIFFERENTIAL INPUT  
VID = VA – VB  
VIT+ < VID  
ENABLE  
OUTPUT  
FUNCTION  
RE  
R
H
?
L
Receive valid bus High  
Indeterminate bus state  
Receive valid bus Low  
Receiver disabled  
VIT– < VID < VIT+  
VID < VIT–  
L
L
L
X
H
Z
Z
H
H
H
X
OPEN  
Receiver disabled by default  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
L
L
L
Connecting SLR to VL limits the maximum data rate to 250 kbps and increases the driver rise and fall times to  
800 ns. Connecting SLR to GND increases the upper data rate limit to 20 Mbps and reduces the driver rise and  
fall times to 10 ns.  
Table 3. SLR-Terminal Configuration  
SLR-INPUT  
VL  
DATA RATE  
250 kbps  
TYP tr / tf  
800 ns  
GND or OPEN  
20 Mbps  
10 ns  
16  
Copyright © 2013–2014, Texas Instruments Incorporated  
SN65HVD01  
www.ti.com.cn  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
8.4.1 Equivalent Input and Output Schematic Diagrams  
D and RE Inputs  
DE Input  
R Output  
Vcc  
Vcc  
Vcc  
100k  
1k  
1k  
1k  
D,RE  
DE  
R
100k  
9V  
9V  
9V  
Driver Outputs  
Vcc  
Receiver Inputs  
Vcc  
16V  
16V  
R1  
R2  
R3  
R2  
R3  
A
B
A
B
R
R1  
16V  
16V  
Figure 17. Equivalent Input and Output Schematic Diagrams  
Copyright © 2013–2014, Texas Instruments Incorporated  
17  
SN65HVD01  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
www.ti.com.cn  
9 Applications and Implementation  
9.1 Application Information  
The SN65HVD01 is a half-duplex RS-485 transceiver commonly used for asynchronous data transmissions. The  
driver and receiver enable terminals allow for the configuration of different operating modes.  
R
R
R
R
R
R
RE  
A
B
RE  
A
B
RE  
A
B
DE  
D
DE  
D
DE  
D
D
D
D
a) Independent driver and  
b) Combined enable signals for  
c) Receiver always on  
receiver enable signals  
use as directional control pin  
Figure 18. SN65HVD01 Transceiver Configurations  
Using independent enable lines provides the most flexible control as it allows for the driver and the receiver to be  
turned on and off individually. While this configuration requires two control lines, it allows for selective listening  
into the bus traffic, whether the driver is transmitting data or not.  
Combining the enable signals simplifies the interface to the controller by forming a single, direction-control signal.  
Thus, when the direction- control line is high, the transceiver is configured as a driver, while for a low the device  
operates as a receiver.  
Tying the receiver-enable to ground and controlling only the driver-enable input, also uses one control line only.  
In this configuration, a node not only receives the data from the bus but also the data it sends and thus can verify  
that the correct data have been transmitted.  
9.2 Typical Application  
An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. To eliminate line  
reflections, each cable end is terminated with a termination resistor, RT, whose value matches the characteristic  
impedance, Z0, of the cable. This method, known as parallel termination, allows for higher data rates over longer  
cable length.  
R
R
R
R
A
B
A
B
RE  
RE  
R
T
R
T
DE  
D
DE  
D
D
D
A
B
A
B
R
R
R
R
D
D
D
D
RE DE  
RE DE  
Figure 19. Typical RS-485 Network with SN65HVD01 Transceivers  
9.2.1 Design Requirements  
RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of  
applications with varying requirements, such as distance, data rate, and number of nodes.  
18  
Copyright © 2013–2014, Texas Instruments Incorporated  
SN65HVD01  
www.ti.com.cn  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
Typical Application (continued)  
9.2.1.1 Data Rate and Bus Length  
The maximum bus length is limited by the transmission line losses and the signal jitter at a given data rate.  
Because data reliability sharply decreases for a jitter of 10% or more of the baud period, Figure 20 shows the  
cable length versus data rate characteristic of a conventional RS-485 cable for signal jitter of 10%.  
10000  
1000  
100  
10  
0.1  
1 10  
Data Rate (Mbps)  
100  
Figure 20. Cable Length vs Data Rate  
9.2.1.2 Bus Loading  
The RS-485 standard specifies that a compliant driver must be able to drive 32 unit loads (UL), where 1 unit load  
represents a load impedance of approximately 12kΩ. Because the SN65HVD01 is a 1/8 UL transceiver, it is  
possible to connect up to 256 devices to the bus.  
9.2.2 Detailed Design Procedure  
In order to protect bus nodes against high-energy transients, the implementation of external transient protection  
devices is therefore necessary. Figure 21 suggests a protection circuit against 10 kV ESD, 4 kV EFT, and 1 kV  
surge transients.  
1.8V  
3.3V  
100nF  
100nF  
10k  
V
SLR  
HVD01  
GND  
V
CC  
L
R1  
R
RxD  
MCU/  
UART  
TVS  
RE  
DE  
D
A
B
DIR  
TxD  
R2  
10k  
Figure 21. Transient Protection Against ESD, EFT, and Surge Transients  
Copyright © 2013–2014, Texas Instruments Incorporated  
19  
 
 
SN65HVD01  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
www.ti.com.cn  
Typical Application (continued)  
Table 4. Recommended Materials  
Device  
XCVR  
R1,R2  
TVS  
Function  
Order Number  
3.3V, 250kbps RS-485 Transceiver  
10Ω, Pulse-Proof Thick-Film Resistor  
Bidirectional 400W Transient Suppressor  
SN65HVD01D  
CRCW0603010RJNEAHP  
CDSOT23-SM712  
9.2.3 Application Performance Curves  
2 V/div  
2 V/div  
CH1 - D  
CH1 - D  
2 V/div  
2 V/div  
CH2 - VOD  
CH2 - VOD  
2 V/div  
2 V/div  
CH3 - R  
CH3 - R  
Time = 25 ns/div  
Time = 2 ms/div  
VCC = 3.3 V  
VL = 1.8 V  
SLR = GND  
VCC = 3.3 V  
VL = 1.8 V  
SLR = VL  
Figure 22. VOD and R Transient Response - 20 Mbps  
Figure 23. VOD and R Transient Response - 250 kbps  
20  
Copyright © 2013–2014, Texas Instruments Incorporated  
SN65HVD01  
www.ti.com.cn  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
10 Power Supply Recommendations  
To assure reliable operation at all data rates and supply voltages, each supply should be buffered with a 100 nF  
ceramic capacitor located as close to the supply terminals as possible. Linear voltage regulators for the 1.8 V  
logic and 3.3 V bus supplies are TPS76318 and TPS76333 respectively.  
11 Layout  
On-chip IEC-ESD protection is good for laboratory and portable equipment but never sufficient for EFT and surge  
transients occurring in industrial environments. Therefore robust and reliable bus node design requires the use of  
external transient protection devices.  
Because ESD and EFT transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-  
frequency layout techniques must be applied during PCB design.  
In order for your PCB design to be successful start with the design of the protection circuit in mind.  
11.1 Layout Guidelines  
Place the protection circuitry close to the bus connector to prevent noise transients from penetrating your  
board.  
Use VCC and ground planes to provide low-inductance. Note that high-frequency currents follow the path of  
least inductance and not the path of least impedance.  
Design the protection components into the direction of the signal path. Do not force the transients currents to  
divert from the signal path to reach the protection device.  
Apply 100 nF to 220 nF bypass capacitors as close as possible to the VCC terminals of transceiver, UART,  
controller ICs on the board.  
Use at least two vias for VCC and ground connections of bypass capacitors and protection devices to  
minimize effective via-inductance.  
Use 1k to 10k pull-up/down resistors for enable lines to limit noise currents in theses lines during transient  
events.  
Insert pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified  
maximum voltage of the transceiver bus terminals. These resistors limit the residual clamping current into the  
transceiver and prevent it from latching up.  
While pure TVS protection is sufficient for surge transients up to 1kV, higher transients require metal-oxide  
varistors (MOVs) which reduce the transients to a few hundred volts of clamping voltage, and transient  
blocking units (TBUs) that limit transient current to less than 1 mA.  
11.2 Layout Example  
版权 © 2013–2014, Texas Instruments Incorporated  
21  
SN65HVD01  
ZHCSBS4F JULY 2013REVISED AUGUST 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 商标  
All trademarks are the property of their respective owners.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2013–2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65HVD01DRCR  
SN65HVD01DRCT  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
HVD01  
HVD01  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65HVD01DRCR  
SN65HVD01DRCT  
VSON  
VSON  
DRC  
DRC  
10  
10  
2500  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65HVD01DRCR  
SN65HVD01DRCT  
VSON  
VSON  
DRC  
DRC  
10  
10  
2500  
250  
335.0  
182.0  
335.0  
182.0  
25.0  
20.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN65HVD01DRCR

具有 1.65V I/O 电源和可选数据速率的 3.3V RS-485 收发器 | DRC | 10 | -40 to 125
TI

SN65HVD01DRCT

具有 1.65V I/O 电源和可选数据速率的 3.3V RS-485 收发器 | DRC | 10 | -40 to 125
TI

SN65HVD05

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN65HVD05D

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN65HVD05DG4

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN65HVD05DR

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN65HVD05DRG4

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN65HVD05P

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN65HVD05PE4

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN65HVD05_07

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN65HVD06

HIGH OUTPUT RS-485 TRANSCEIVERS
TI

SN65HVD06D

HIGH OUTPUT RS-485 TRANSCEIVERS
TI