SN65HVD09DGG [TI]

9ch - RS-485 / RS-422 Transceiver 56-TSSOP -40 to 85;
SN65HVD09DGG
型号: SN65HVD09DGG
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

9ch - RS-485 / RS-422 Transceiver 56-TSSOP -40 to 85

文件: 总25页 (文件大小:607K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65HVD09  
www.ti.com ............................................................................................................................................................................................ SLLS941DECEMBER 2008  
9-CHANNEL RS-422 / RS-485 TRANSCEIVER  
Each of the nine half-duplex channels of the HVD09  
is designed to operate with either RS-422 or RS-485  
communication networks.  
1
FEATURES  
Designed to Operate at up to 20 Million Data  
Transfers per Second on Each RS-422/RS-485  
Channel  
The SN65HVD09 is characterized for operation over  
an ambient air temperature range of –40°C to 85°C.  
SN65HVD09 Packaged in Thin Shrink  
Small-Outline Package with 0.5-mm Pin Pitch  
SN65HVD09 DGG  
(TOP VIEW)  
ESD Protection on Bus Pins Exceeds 12kV  
Low Disabled Supply Current 8 mA Typ  
Thermal Shutdown Protection  
GND  
BSR  
GRE  
CDE2  
CDE1  
CDE0  
9B+  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
2
3
Positive- and Negative-Current Limiting  
Power-Up/Down Glitch Protection  
4
1A  
1DE/RE  
2A  
9B-  
5
6
8B+  
8B-  
7B+  
7B-  
6B+  
6B-  
VCC  
7
2DE/RE  
3A  
DESCRIPTION  
8
The SN65HVD09 is a 9-channel RS-422 / RS-485  
transceiver suitable for industrial applications. It offers  
improved switching performance, a small package,  
and high ESD protection. The precise skew limits  
ensures that the propagation delay times, not only  
from channel-to-channel but from device-to-device,  
are closely matched for the tight skew budgets  
associated with high-speed parallel data buses.  
9
3DE/RE  
4A  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
4DE/RE  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
GND  
VCC  
Patented thermal enhancements are used in the thin  
shrink, small-outline package (TSSOP), allowing  
operation over the industrial temperature range. The  
TSSOP package offers very small board area  
requirements while reducing the package height to  
1 mm. This provides more board area and allows  
component mounting to both sides of the printed  
circuit boards for low-profile, space-restricted  
applications such as small form-factor hard disk  
drives.  
5B+  
5B-  
5A  
5DE/RE  
6A  
6DE/RE  
7A  
4B+  
4B-  
3B+  
3B-  
2B+  
2B-  
1B+  
1B-  
7DE/RE  
8A  
8DE/RE  
9A  
9DE/RE  
The HVD09 can withstand electrostatic discharges  
exceeding 12 kV using the human-body model, and  
600 V using the machine model on the RS-485 I/O  
terminals. This provides protection from the noise that  
can be coupled into external cables. The other  
terminals of the device can withstand discharges  
exceeding 4 kV and 400 V respectively.  
Terminals 13 through 17, and 40 through 44 are  
connected together to the package lead frame  
and signal ground.  
9 Differential  
RS-422/RS-485  
I/O Channels  
Configuration and  
Control Logic  
HVD09  
9 Single-ended TTL  
I/O Channels  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2008, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN65HVD09  
SLLS941DECEMBER 2008............................................................................................................................................................................................ www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
PIN FUNCTIONS  
PIN  
LOGIC  
LEVEL  
I/O  
TERMINATION  
DESCRIPTION  
NAME  
NO.  
4,6,8,10,  
19,21,23,  
25,27  
1A to 9A  
TTL  
I/O  
Pullup  
1A to 9A carry data to and from the communication controller.  
29,31,33,  
35,37,.46  
,
1B– to 9B–  
RS-485  
I/O  
Pulldown  
1B– to 9B– are the inverted data signals of the balanced pair to/from the bus.  
1B+ to 9B+ are the noninverted data signals of the balanced pair to/from the bus.  
48,50,52  
30,32,34,  
1B+ to 9B+ 36,38,47,  
49,51,53  
RS-485  
TTL  
I/O  
Pullup  
Pullup  
BSR is the bit significant response. BSR disables receivers 1 through 8 and enables  
wired-OR drivers when BSR and DE/RE and CDE1 or CDE2 are high. Channel 9 is  
placed in a high-impedance state with BSR high.  
BSR  
2
Input  
CDE0 is the common driver enable 0. Its input signal enables all drivers when CDE0 and  
1DE/RE – 9DE/RE are high.  
CDE0  
CDE1  
54  
55  
TTL  
TTL  
Input  
Input  
Pulldown  
Pulldown  
CDE1 is the common driver enable 1. Its input signal enables drivers 1 to 4 when CDE1 is  
high and BSR is low.  
CDE2 is the common driver enable 2. When CDE2 is high and BSR is low, drivers 5 to 8  
are enabled.  
CDE2  
CRE  
56  
3
TTL  
TTL  
Input  
Input  
Pulldown  
Pullup  
CRE is the common receiver enable. When high, CRE disables receiver channels 5 to 9.  
5,7,9,11,  
20,22,24,  
26,28  
1DE/RE–9DE/RE are direction controls that transmit data to the bus when it and CDE0  
are high. Data is received from the bus when 1DE/RE–9DE/RE and CRE and BSR are  
low and CDE1 and CDE2 are low.  
1DE/RE to  
9DE/RE  
TTL  
Input  
Pullup  
1,13,14,  
15,16,17,  
40,41,42,  
43,44  
GND is the circuit ground. All GND terminals except terminal 1 are physically tied to the  
die pad for improved thermal conductivity.(1)  
GND  
VCC  
NA  
NA  
Power  
Power  
NA  
NA  
12,18,39,  
45  
Supply voltage  
(1) Terminal 1 must be connected to signal ground for proper operation.  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
www.ti.com ............................................................................................................................................................................................ SLLS941DECEMBER 2008  
LOGIC DIAGRAM (POSITIVE LOGIC)  
54  
CDE0  
55  
CDE1  
2
BSR  
30  
1B+  
1B−  
4
1A  
29  
5
1DE/RE  
6
7
8
32  
31  
34  
2B+  
2B−  
3B+  
3B−  
4B+  
4B−  
2A  
2DE/RE  
3A  
Channel 2  
Channel 3  
Channel 4  
9
33  
36  
35  
3DE/RE  
4A  
10  
11  
4DE/RE  
56  
CDE2  
3
CRE  
5A  
38  
37  
5B+  
5B−  
19  
20  
5DE/RE  
21  
22  
23  
47  
46  
49  
48  
6B+  
6B−  
7B+  
6A  
6DE/RE  
7A  
Channel 6  
Channel 7  
Channel 8  
24  
25  
26  
7B−  
8B+  
7DE/RE  
8A  
51  
50  
8DE/RE  
8B−  
2
3
54  
53  
52  
BSR  
BSR  
CRE  
CDE0  
9B+  
9B−  
27  
28  
9A  
9DE/RE  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
SLLS941DECEMBER 2008............................................................................................................................................................................................ www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
VALUE  
UNIT  
V
VCC Supply voltage range(2)  
Bus voltage range  
–0.3 to 6  
–10 to 15  
V
Data I/O and control (A side) voltage range  
–0.3 to VCC +0.5  
V
IO  
Receiver output current  
±40  
mA  
kV  
V
B side and GND, Class 3, A(3)  
B side and GND, Class 3, B(3)  
All terminals, Class 3, A  
12  
400  
Electrostatic discharge  
4
400  
kV  
V
All terminals, Class 3, B  
(4)  
Continuous total power dissipation  
Internally Limited  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.r  
(2) All voltage values are with respect to the GND terminals.  
(3) This absolute maximum rating is tested in accordance with MIL-PRF-38535, Method 3015.7.  
(4) The maximum operating junction temperature is internally limited. Use the Dissipation Rating Table to operate below this temperature.  
DISSIPATION RATINGS  
OPERATING FACTOR(1)  
ABOVE TA = 25°C  
TA = 70°C  
POWER RATING  
TA = 85°C  
POWER RATING  
PACKAGE  
TA 25°C  
DGG  
2500 mW  
20 mW/°C  
1600 mW  
1300 mW  
(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
PACKAGE THERMAL CHARACTERISTICS  
MIN  
NOM  
MAX  
UNIT  
Junction-to-ambient thermal  
resistance  
DGG, board-mounted, no air flow  
50  
θJA  
°C/W  
θJC  
Junction-to-case thermal resistance DGG  
Thermal shutdown temperature  
27  
°C/W  
°C  
TSD  
165  
RECOMMENDED OPERATING CONDITIONS  
MIN  
4.75  
2
NOM  
MAX  
UNIT  
V
VCC  
Supply voltage  
5
5.25  
VIH  
High-level input voltage  
V
Except nB+, nB–(1)  
VIL  
Low-level input voltage  
0.8  
12  
60  
8
V
VO, VI, or VIC  
Voltage at any bus terminal (separately or common-mode)  
nB+ or nB–  
Driver  
–7  
–60  
–8  
V
mA  
mA  
°C  
IO  
Output current  
Receiver  
TA  
Ambient temperature  
SN65HVD09  
–40  
85  
(1) n = 1 - 9  
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
www.ti.com ............................................................................................................................................................................................ SLLS941DECEMBER 2008  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
SN65HVD09  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP(1)  
1.6  
1.4  
1.5  
4.5  
3
MAX  
RS-422 load,  
RL = 100  
RL = 54 Ω  
1
See Figure 1  
Driver differential output voltage  
magnitude  
|VOD  
|
RS-485 load,  
V
Pull-Up Pull-Down Load  
See Figure 2  
See Figure 4  
See Figure 2  
See Figure 4  
See Figure 2  
1
4
A side, IOH = –8 mA, VID = 200 mV,  
V
V
V
V
VOH  
High-level output voltage  
Low-level output voltage  
B side,  
A side, IOH = 8 mA, VID = –200 mV,  
B side,  
0.6  
1
0.8  
0.2  
VOL  
VIT+  
Receiver positive-going differential  
input threshold voltages  
IOH = –8 mA,  
IOL = 8 mA,  
See Figure 4  
SeeFigure 4  
V
V
VIT–  
Vhys  
Receiver negativegoing differential  
input threshold voltage  
–0.2  
24  
Receiver input hysteresis  
VCC = 5 V,  
TA = 25°C  
45  
mV  
(VIT+ – VIT–  
)
VIH = 12 V  
VIH = 12 V  
VIH = –7 V  
VIH = –7 V  
VCC = 5 V,  
VCC = 0,  
1
1
mA  
mA  
mA  
mA  
µA  
II  
Bus input current  
Other input at 0 V  
VCC = 5 V,  
VCC = 0,  
–0.8  
–0.8  
–100  
–0.4  
–0.3  
nA, BSR, DE/RE, and CRE,  
CDE0, CDE1, and CDE2,  
nA, BSR, DE/RE, and CRE,  
CDE1, CDE1, and CDE2,  
nB+ or nB–  
VIH = 2 V  
VIH = 2V  
IIH  
High-level input current  
100  
µA  
VIL = 0.8 V  
VIL = 0.8 V  
–100  
µA  
IIL  
Low-level input current  
100  
µA  
IOS  
IOZ  
Short circuit output current  
±260  
mA  
nA  
See IIH and IIL  
See III  
High-impedance-state output  
current  
nB+ or nB–  
Disabled  
10  
60  
45  
25  
ICC  
Supply current  
All drivers enabled, no load  
All receivers enabled, no load  
nB+ or nB– to GND  
Receiver  
mA  
CO  
Output capacitance  
18  
40  
pF  
pF  
(2)  
Cpd  
Power dissipation capacitance  
Driver  
100  
(1) All typical values are at VCC = 5 V, TA = 25°C.  
(2) Cpd determines the no-load dynamic supply current consumption, IS = CPD × VCC × f + ICC  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
SLLS941DECEMBER 2008............................................................................................................................................................................................ www.ti.com  
DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
SN65HVD09  
MIN TYP(1) MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
tpd  
Propagation delay time, tPHL or tPLH (see Figure 2 and Figure 3)  
2.5  
13.5  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsk(p)  
tf  
Pulse skew, |tPHL – tPLH  
|
Fall time  
S1 to B, See Figure 3  
See Figure 3  
4
8
tr  
Rise time  
ten  
Enable time, control inputs to active output  
50  
tdis  
tPHZ  
tPLZ  
tPZH  
tPZL  
Disable time, control inputs to high-impedance output  
Propagation delay time, high-level to high-impedance output  
Propagation delay time, low-level to high-impedance output  
Propagation delay time, high-impedance to high-level output  
Propagation delay time, high-impedance to low-level output  
100  
17 100  
25 100  
See Figure 6 and  
Figure 7  
17  
17  
50  
50  
(1) All typical values are at VCC = 5 V, TA = 25°C.  
RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
SN65HVD09  
MIN TYP(1) MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
tpd  
Propagation delay time, tPHL or tPLH (see Figure 2 and Figure 3)  
8.5  
14.5  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
tsk(lim)  
tsk(p)  
tt  
Skew limit, maximum tpd – minimum tpd  
Pulse skew, |tPHL – tPLH  
|
0.6  
2
4
Transition time (tr or tf)  
See Figure 5  
ten  
Enable time, control inputs to active output  
50  
60  
60  
50  
50  
50  
tdis  
Disable time, control inputs to high-impedance output  
Propagation delay time, high-level to high-impedance output  
Propagation delay time, low-level to high-impedance output  
Propagation delay time, high-impedance to high-level output  
Propagation delay time, high-impedance to low-level output  
tPHZ  
tPLZ  
tPZH  
tPZL  
See Figure 8 and  
Figure 9  
(1) All typical values are at VCC = 5 V, TA = 25°C.  
(2) This parameter is applicable at one VCC and operating temperature within the recommended operating conditions and to any two  
devices.  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
www.ti.com ............................................................................................................................................................................................ SLLS941DECEMBER 2008  
PARAMETER MEASUREMENT INFORMATION  
R /2  
L
B+  
A
Input  
VOC  
B-  
CL = 50 pF ±20%  
R /2  
L
CL Includes Fixture and  
Instrumentation Capacitance  
Figure 1. Driver Test Circuit, RS-422 and RS-485 Loading  
5 V  
165 Ω  
PU  
S1  
PD  
B+  
I
I
O
15 pF  
I
I
165 Ω  
375 Ω  
375 Ω  
A
V
OD  
Input  
(see Note A)  
75 Ω  
V
O
V
I
O
B−  
S2  
V
O
15 pF  
CDEO and DE/RE are at 2 V, BSR is at 0.8V, and all others are open.  
All nine drivers are enabled, similarly loaded, and switching.  
Figure 2. Driver Test Circuit, Pull-Up and Pull-Down Loading‡  
3 V  
Input  
1.5 V  
1.5 V  
0 V  
t
t
PHL  
PLH  
V
V
OD(H)  
90%  
90%  
Output, V  
0V  
10%  
0V  
10%  
OD  
S1 to PU or PD  
OD(L)  
t
r
t
f
Figure 3. Driver Delay and Transition Time Test Waveforms  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
SLLS941DECEMBER 2008............................................................................................................................................................................................ www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
Input B+  
Generator  
50 Ω  
(see Note A)  
I
O
V
ID  
Output  
Input B−  
Generator  
V
O
C
= 15 pF  
L
50 Ω  
(see Note A)  
CDEO, CDE1, CDE2, BSR, CRE, and DE/RE at 0.8 V  
All nine receivers are enabled and switching.  
Figure 4. Receiver Propagation Delay and Transition Time Test Circuit  
A. All input pulses are supplied by a generator having the following characteristics: tr 6 ns, tf 6 ns, PRR 1 MHz,  
duty cycle = 50%, ZO = 50 .  
B. All resistances are in and ±5%, unless otherwise indicated.  
C. All capacitances are in pF and ±10%, unless otherwise indicated.  
D. All indicated voltages are ±10 mV.  
3 V  
0 V  
Input B−  
Input B+  
1.5 V  
1.5 V  
t
t
PHL  
PLH  
V
V
OH  
90%  
90%  
Output  
1.4 V  
10%  
1.4 V  
10%  
OL  
t
r
t
f
Figure 5. Receiver Delay and Transition Time Waveforms  
4.5 V  
165  
PU  
S1  
PD  
B+  
50 pF  
75 Ω  
165 Ω  
375 Ω  
375 Ω  
A
V
OD  
0 V or 3 V  
B−  
S2  
DE/RE  
50 pF  
See Table 1  
Input  
Includes probe and jig capacitance in two places.  
Figure 6. Driver Enable and Disable Time Test Circuit  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
www.ti.com ............................................................................................................................................................................................ SLLS941DECEMBER 2008  
Table 1. Enabling for Driver Enable and Disable Time  
DRIVER  
BSR  
H
CDE0  
CDE1  
CDE2  
CRE  
X
1–8  
9
H
H
L
L
L
H
H
H
3 V  
0 V  
Input, DE/RE  
1.5 V  
1.5 V  
t
t
PHZ  
PZH  
V
OD(H)  
A at 3V  
0 V  
0 V  
Output, V  
Output, V  
OD  
OD  
S1 to PD  
1 V  
1 V  
t
t
PLZ  
PZL  
A at 0V  
0 V  
0 V  
S1 to PU  
V
OD(L)  
Figure 7. Driver Enable Time Waveforms  
NOTES: A. All input pulses are supplied by a generator having the following characteristics: tr 6 ns, tf 6 ns, PRR 1 MHz,  
duty cycle = 50%, ZO = 50 .  
B. All resistances are in and ±5%, unless otherwise indicated.  
C. All capacitances are in pF and ±10%, unless otherwise indicated.  
D. All indicated voltages are ±10 mV.  
V
T
620 Ω  
Output  
B+  
A
0 V or 3 V  
Input  
DE/RE  
3 V or 0 V  
40 pF  
B−  
CDEO is high, CDE1, CDE2, BSR, and CRE are low,  
all others are open.  
Includes probe and jig capacitance.  
Figure 8. Receiver Enable and Disable Time Test Circuit  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
SLLS941DECEMBER 2008............................................................................................................................................................................................ www.ti.com  
3 V  
Input  
1.4 V  
1.4 V  
0 V  
t
t
PZL  
PLZ  
B+ at 0 V  
B− at 3 V  
1.4 V  
1.4 V  
Output  
V
T
= V  
CC  
V
OD  
Indeterminate  
t
t
PZH  
PHZ  
B+ at 3 V  
B− at 0 V  
1.4 V  
1.4 V  
Output  
V
T
= 0  
Indeterminate  
V
OD  
Figure 9. Receiver Enable and Disable Time Waveforms  
NOTES: A.  
All input pulses are supplied by a generator having the following characteristics: tr 6 ns, tf 6 ns, PRR 1 MHz,  
duty cycle = 50%, ZO = 50 .  
B.  
C.  
D.  
All resistances are in and ±5%, unless otherwise indicated.  
All capacitances are in pF and ±10%, unless otherwise indicated.  
All indicated voltages are ±10 mV.  
10  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
www.ti.com ............................................................................................................................................................................................ SLLS941DECEMBER 2008  
TYPICAL CHARACTERISTICS  
AVERAGE SUPPLY CURRENT  
LOGIC INPUT CURRENT  
vs  
vs  
FREQUENCY  
INPUT VOLTAGE  
30  
25  
250  
200  
150  
100  
A, DE/RE,CRE,BSR  
20  
15  
10  
9 Drivers  
50  
0
−5  
0
9 Receivers  
0
1
2
3
4
5
0.001  
0.01  
0.1  
1
10  
100  
V − Input Voltage − V  
I
f − Frequency − MHz  
Figure 10.  
Figure 11.  
BUS  
INPUT CURRENT  
vs  
DRIVER  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
INPUT VOLTAGE  
LOW-LEVEL OUTPUT CURRENT  
15  
10  
2.5  
2
1.5  
1
5
0
0.5  
0
−5  
10  
0
10 20 30 40 50 60 70 80 90 100  
20 15 10 5  
0
5
10  
15  
20  
I
− Low-Level Output Current − mA  
V − Input Voltage − V  
I
OL  
Figure 12.  
Figure 13.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
SLLS941DECEMBER 2008............................................................................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
DRIVER  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
DRIVER  
DIFFERENTIAL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
TEMPERATURE  
4
3.5  
3
1.9  
1.8  
1.7  
R
= 100 W  
L
PU/PD Load  
1.6  
1.5  
1.4  
1.3  
1.2  
2.5  
2
R
= 54 W  
L
1.5  
1
0.5  
0
1.1  
1
-40  
-20  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
100  
Temperature - °C  
I
− High-Level Output Current − mA  
OH  
Figure 14.  
Figure 15.  
RECEIVER  
PROPAGATION DELAY TIME  
vs  
DRIVER  
PROPAGATION DELAY TIME  
vs  
TEMPERATURE  
TEMPERATURE  
13  
12  
11  
13  
12.5  
12  
t
PHL  
t
PHL  
11.5  
10  
9
t
11  
10.5  
10  
PLH  
8
t
PLH  
7
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Temperature - °C  
Temperature - °C  
Figure 16.  
Figure 17.  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
www.ti.com ............................................................................................................................................................................................ SLLS941DECEMBER 2008  
TYPICAL CHARACTERISTICS (continued)  
DRIVER  
OUTPUT CURRENT  
vs  
SUPPLY VOLTAGE  
100  
T
A
= 25°C  
80  
60  
40  
20  
0
I
OH  
20  
40  
60  
80  
I
OL  
0
1
2
3
4
5
6
V
CC  
− Supply Voltage − V  
Figure 18.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
SLLS941DECEMBER 2008............................................................................................................................................................................................ www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
SCHEMATICS OF INPUTS AND OUTPUTS  
DE/RE, CRE, BSR, AND  
A Inputs  
CDE0, CDE1, AND CDE2 Inputs  
V
CC  
V
CC  
100 k  
1 kΩ  
1 kΩ  
Input  
Input  
100 kΩ  
8 V  
8 V  
B+ Input  
B− Input  
V
CC  
V
CC  
100 kΩ  
18 kΩ  
2 kΩ  
2 kΩ  
16 V  
16 V  
18 kΩ  
Input  
Input  
100 kΩ  
4 kΩ  
4 kΩ  
16 V  
16 V  
B+ AND BOutputs  
V
CC  
A Output  
V
CC  
2 kΩ  
16 V  
Output  
40 Ω  
Output  
18 kΩ  
8 V  
4 kΩ  
16 V  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
www.ti.com ............................................................................................................................................................................................ SLLS941DECEMBER 2008  
APPLICATION INFORMATION  
FUNCTION TABLES  
RECEIVER  
DRIVER  
B+  
B−  
B+  
B−  
A
A
INPUTS  
OUTPUT  
A
OUTPUTS  
INPUT  
1
1
B+  
B−  
A
B+  
B−  
L
H
L
L
L
L
H
L
H
H
H
H
TRANSCEIVER  
DRIVER WITH ENABLE  
B+  
B−  
A
B+  
A
B−  
DE/RE  
DE/RE  
INPUTS  
OUTPUTS  
INPUTS  
OUTPUTS  
1
1
B−  
DE/RE  
A
B+  
B−  
B−  
DE/RE  
A
B+  
A
B+  
L
L
Z
Z
L
Z
Z
H
L
L
L
L
H
H
L
L
H
L
H
L
L
H
L
L
H
H
H
H
H
H
H
H
WIRED-OR DRIVER  
TWO-ENABLE INPUT DRIVER  
B+  
B−  
A
A
B+  
B−  
DE/RE  
OUTPUTS  
INPUTS  
DE/RE  
OUTPUTS  
INPUT  
A
B−  
B+  
B−  
A
B+  
L
Z
Z
L
L
L
Z
H
L
Z
L
H
L
H
H
L
H
L
H
H
H
H
NOTE: H = high level, L = low level, X = irrelevant, Z = high impedance (off)  
(1) An H in this column represents a voltage of 200 mV or higher than the other bus input. An L represents a voltage of  
200 mV or lower than the other bus input. Any voltage less than 200 mV results in an indeterminate receiver output.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
SLLS941DECEMBER 2008............................................................................................................................................................................................ www.ti.com  
V
CC  
V
CC  
1
1
620 Ω  
620 Ω  
nA  
Connector  
nB+  
nB−  
Connector  
nB+  
nB−  
+
+
nA  
I/O  
EN  
I/O  
EN  
nDE/RE  
nDE/RE  
(a) ACTIVE-HIGH BIDIRECTIONAL I/O  
WITH SEPARATE ENABLE  
(b) ACTIVE-LOW BIDIRECTIONAL I/O  
WITH SEPARATE ENABLE  
V
CC  
V
CC  
V
CC  
1
620 Ω  
Connector  
1
Connector  
620 Ω  
1
620 Ω  
nB+  
nB−  
I
nB+  
nB−  
+
+
nA  
nA  
2
O
I
EN  
O
nDE/RE  
nDE/RE  
(d) SEPARATE ACTIVE-HIGH INPUT, OUTPUT,  
AND ENABLE  
(c) WIRED-OR DRIVER AND ACTIVE-HIGH INPUT  
V
CC  
V
CC  
1
Connector  
1
620 Ω  
620 Ω  
Connector  
nB+  
nB−  
nB+  
nB−  
+
I
2
nA  
+
nA  
I
O
O
EN  
nDE/RE  
nDE/RE  
620 Ω  
(f) WIRED-OR DRIVER AND ACTIVE-LOW INPUT  
(e) SEPARATE ACTIVE-LOW INPUT AND  
OUTPUT AND ACTIVE-HIGH ENABLE  
1: When 0 is open drain  
2: Must be open-drain or 3-state output  
(1) When 0 is open drain  
(2) Must be open-drain or 3-state output  
NOTE: The BSR, CRE, A, and DE/RE inputs have internal pullup resistors. CDE0, CDE1, and CDE2 have internal pulldown  
resistors.  
Figure 19. Typical Transceiver Connections  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
www.ti.com ............................................................................................................................................................................................ SLLS941DECEMBER 2008  
CHANNEL LOGIC CONFIGURATIONS WITH CONTROL INPUT LOGIC  
The following logic diagrams show the positive-logic representation for all combinations of control inputs. The  
control inputs are from MSB to LSB; the BSR, CDE0, CDE1, CDE2, and CRE bit values are shown below the  
diagrams. Channel 1 is at the top of the logic diagrams; channel 9 is at the bottom of the logic diagrams.  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Figure 19. 00000  
Figure 20. 00001  
Figure 21. 00010  
Figure 22. 00011  
Figure 23. 00100  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
SLLS941DECEMBER 2008............................................................................................................................................................................................ www.ti.com  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Figure 24. 00101  
Figure 25. 00110  
Figure 26. 00111  
Figure 28. 01001  
Figure 27. 01000  
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
www.ti.com ............................................................................................................................................................................................ SLLS941DECEMBER 2008  
Figure 32. 01101  
Figure 33. 01110  
Figure 29. 01010  
Figure 30. 01011  
Figure 31. 01100  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
SLLS941DECEMBER 2008............................................................................................................................................................................................ www.ti.com  
V
V
CC  
CC  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
V
V
CC  
CC  
CC  
CC  
CC  
CC  
V
CC  
Hi-Z  
Hi-Z  
V
V
Hi-Z  
Hi-Z  
V
CC  
V
V
Hi-Z  
V
CC  
Figure 35.  
10000  
and 10001  
Figure 34. 01111  
V
CC  
Hi-Z  
V
CC  
Hi-Z  
Hi-Z  
V
CC  
Hi-Z  
Hi-Z  
Hi-Z  
V
Figure 36. 10010  
and 10011  
Figure 37. 10100  
and 10101  
CC  
V
CC  
Hi-Z  
Figure 38. 10110  
and 10111  
20  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s) :SN65HVD09  
SN65HVD09  
www.ti.com ............................................................................................................................................................................................ SLLS941DECEMBER 2008  
Hi-Z  
Figure 39. 11000  
and 11001  
Hi-Z  
Hi-Z  
Figure 40. 11010  
and 11011  
Figure 41. 11100  
and 11101  
Hi-Z  
Figure 42. 11110  
and 11111  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s) :SN65HVD09  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Dec-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
SN65HVD09DGGR  
TSSOP  
DGG  
56  
2000  
330.0  
24.4  
8.6  
15.6  
1.8  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Dec-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP DGG 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 41.0  
SN65HVD09DGGR  
2000  
Pack Materials-Page 2  
MECHANICAL DATA  
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998  
DGG (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PINS SHOWN  
0,27  
0,17  
M
0,08  
0,50  
48  
25  
6,20  
6,00  
8,30  
7,90  
0,15 NOM  
Gage Plane  
0,25  
1
24  
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
48  
56  
64  
DIM  
A MAX  
12,60  
12,40  
14,10  
13,90  
17,10  
16,90  
A MIN  
4040078/F 12/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

SN65HVD09DGGR

9-CHANNEL RS-422 / RS-485 TRANSCEIVER
TI

SN65HVD09IDGGREP

9-CHANNEL RS-422 / RS-485 TRANSCEIVER
TI

SN65HVD10

3.3V RS 485 TRANSCEIVERS
TI

SN65HVD10-EP

3.3 V RS-485 TRANSCEIVERS
TI

SN65HVD10-EP_14

3.3 V RS-485 TRANSCEIVERS
TI

SN65HVD100

IO-LINK PHY for Device Nodes
TI

SN65HVD101

IO-LINK PHY for Device Nodes
TI

SN65HVD101RGBR

用于器件节点的 IO-Link PHY | RGB | 20 | -40 to 105
TI

SN65HVD101RGBT

用于器件节点的 IO-Link PHY | RGB | 20 | -40 to 105
TI

SN65HVD101RTJ

IO-LINK PHY for Device Nodes
TI

SN65HVD102

Check for Samples: SN65HVD101, SN65HVD102
TI

SN65HVD102RGBR

用于器件节点的 IO-Link PHY | RGB | 20 | -40 to 105
TI