SN65HVD10QDR [TI]

3.3-V RS-485 TRANSCEIVERS; 3.3 V RS - 485收发器
SN65HVD10QDR
型号: SN65HVD10QDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3-V RS-485 TRANSCEIVERS
3.3 V RS - 485收发器

文件: 总28页 (文件大小:908K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
3.3-V RS-485 TRANSCEIVERS  
Check for Samples: SN65HVD10, SN65HVD10Q, SN75HVD10, SN65HVD11, SN65HVD11Q, SN75HVD11, SN65HVD12, SN75HVD12  
1
FEATURES  
DESCRIPTION  
The SN65HVD10, SN75HVD10, SN65HVD11,  
Operates With a 3.3-V Supply  
SN75HVD11,  
combine  
SN65HVD12,  
3-state differential line driver and  
and  
SN75HVD12  
Bus-Pin ESD Protection Exceeds 16 kV HBM  
a
1/8 Unit-Load Option Available (Up to 256  
Nodes on the Bus)  
differential input line receiver that operate with a  
single 3.3-V power supply. They are designed for  
balanced transmission lines and meet or exceed  
ANSI standard TIA/EIA-485-A and ISO 8482:1993.  
These differential bus transceivers are monolithic  
integrated circuits designed for bidirectional data  
communication on multipoint bus-transmission lines.  
The drivers and receivers have active-high and  
active-low enables respectively, that can be externally  
connected together to function as direction control.  
Very low device standby supply current can be  
achieved by disabling the driver and the receiver.  
Optional Driver Output Transition Times for  
(1)  
Signaling Rates of 1 Mbps, 10 Mbps, and  
32 Mbps  
Meets or Exceeds the Requirements of ANSI  
TIA/EIA-485-A  
Bus-Pin Short Circuit Protection From –7 V to  
12 V  
Low-Current Standby Mode . . . 1 µA Typical  
Open-Circuit, Idle-Bus, and Shorted-Bus  
Failsafe Receiver  
The driver differential outputs and receiver differential  
inputs connect internally to form a differential input/  
output (I/O) bus port that is designed to offer  
minimum loading to the bus whenever the driver is  
disabled or VCC = 0. These parts feature wide positive  
and negative common-mode voltage ranges, making  
them suitable for party-line applications.  
Thermal Shutdown Protection  
Glitch-Free Power-Up and Power-Down  
Protection for Hot-Plugging Applications  
SN75176 Footprint  
APPLICATIONS  
D OR P PACKAGE  
(TOP VIEW)  
Digital Motor Control  
Utility Meters  
R
RE  
DE  
D
VCC  
B
1
2
3
4
8
7
6
5
Chassis-to-Chassis Interconnects  
Electronic Security Stations  
Industrial Process Control  
Building Automation  
A
GND  
Point-of-Sale (POS) Terminals and Networks  
1
2
R
RE  
3
4
DE  
D
6
A
(1) The signaling rate of a line is the number of voltage  
transitions that are made per second expressed in the units  
bps (bits per second).  
7
B
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
PACKAGE  
SIGNALING  
RATE  
UNIT LOADS  
TA  
SOIC MARKING  
SOIC(1)  
PDIP  
32 Mbps  
10 Mbps  
1 Mbps  
1/2  
1/8  
1/8  
1/2  
1/8  
1/8  
1/2  
1/8  
SN65HVD10D  
SN65HVD11D  
SN65HVD12D  
SN75HVD10D  
SN75HVD11D  
SN75HVD12D  
SN65HVD10QD  
SN65HVD11QD  
SN65HVD10P  
SN65HVD11P  
SN65HVD12P  
SN75HVD10P  
SN75HVD11P  
SN75HVD12P  
SN65HVD10QP  
SN65HVD11QP  
VP10  
VP11  
–40°C to 85°C  
VP12  
32 Mbps  
10 Mbps  
1 Mbps  
VN10  
VN11  
VN12  
VP10Q  
VP11Q  
–0°C to 70°C  
32 Mbps  
10 Mbps  
–40°C to 125°C  
(1) The D package is available taped and reeled. Add an R suffix to the part number (i.e., SN75HVD11DR).  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1) (2)  
UNIT  
VCC Supply voltage range  
–0.3 V to 6 V  
–9 V to 14 V  
–0.5 V to VCC + 0.5 V  
–50 V to 50 V  
–11 mA to 11 mA  
±16 kV  
Voltage range at A or B  
Input voltage range at D, DE, R or RE  
Voltage input range, transient pulse, A and B, through 100 , see Figure 11  
IO  
Receiver output current  
A, B, and GND  
All pins  
Human body model(3)  
Electrostatic  
discharge  
±4 kV  
Charged-device model(4)  
All pins charge  
±1 kV  
Continuous total power dissipation  
Electrical Fast Transient/Burst(5)  
Junction temperature  
See Dissipation Rating Table  
±4 kV  
A, B, and GND  
TJ  
170°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A and IEC 60749-26.  
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.  
(5) Tested in accordance with IEC 61000-4-4.  
PACKAGE DISSIPATION RATINGS  
PACKAGE  
T
A 25°C  
DERATING FACTOR(1)  
ABOVE TA = 25°C  
TA = 70°C  
POWER RATING  
TA = 85°C  
POWER RATING  
TA = 125°C  
POWER RATING  
POWER RATING  
D(2)  
D(3)  
P
597 mW  
4.97 mW/°C  
8.26 mW/°C  
10.75 mW/°C  
373 mW  
620 mW  
806 mW  
298 mW  
496 mW  
645 mW  
100 mW  
165 mW  
215 mW  
990 mW  
1290 mW  
(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
(2) Tested in accordance with the Low-K thermal metric definitions of EIA/JESD51-3.  
(3) Tested in accordance with the High-K thermal metric definitions of EIA/JESD51-7.  
2
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range unless otherwise noted  
MIN  
3
7(1)  
NOM  
MAX  
3.6  
12  
UNIT  
VCC  
Supply voltage  
VI or VIC Voltage at any bus terminal (separately or common mode)  
VIH  
VIL  
VID  
High-level input voltage  
Low-level input voltage  
Differential input voltage  
D, DE, RE  
D, DE, RE  
Figure 7  
Driver  
2
VCC  
0.8  
12  
V
0
–12  
–60  
–8  
IOH  
High-level output current  
Low-level output current  
mA  
mA  
Receiver  
Driver  
60  
8
IOL  
Receiver  
RL  
CL  
Differential load resistance  
Differential load capacitance  
54  
60  
50  
pF  
HVD10  
HVD11  
HVD12  
32  
10  
Signaling rate  
Mbps  
°C  
1
(2)  
TJ  
Junction temperature  
145  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
(2) See thermal characteristics table for information regarding this specification.  
DRIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
Input clamp voltage  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
VIK  
II = –18 mA  
IO = 0  
–1.5  
2
V
VCC  
|VOD  
|
Differential output voltage(2)  
RL = 54 , See Figure 1  
1.5  
1.5  
V
Vtest = –7 V to 12 V, See Figure 2  
Change in magnitude of differential output  
voltage  
Δ|VOD  
|
See Figure 1 and Figure 2  
–0.2  
0.2  
V
VOC(PP)  
VOC(SS)  
Peak-to-peak common-mode output voltage  
Steady-state common-mode output voltage  
400  
mV  
V
1.4  
2.5  
See Figure 3  
Change in steady-state common-mode output  
voltage  
–0.0  
5
ΔVOC(SS)  
0.05  
V
IOZ  
High-impedance output current  
See receiver input currents  
D
–100  
0
0
100  
250  
II  
Input current  
DE  
μA  
IOS  
Short-circuit output current  
–7 V VO 12 V  
–250  
mA  
pF  
C(OD)  
Differential output capacitance  
VOD = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
16  
9
RE at VCC  
D & DE at VCC,  
No load  
,
Receiver disabled and  
driver enabled  
15.5  
5
mA  
RE at VCC  
,
D at VCC  
,
Receiver disabled and  
ICC  
Supply current  
1
9
μA  
DE at 0 V,  
No load  
driver disabled (standby)  
RE at 0 V,  
D & DE at VCC  
No load  
Receiver enabled and  
driver enabled  
,
15.5  
mA  
(1) All typical values are at 25°C and with a 3.3-V supply.  
(2) For TA > 85°C, VCC is ±5%.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
www.ti.com  
DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
HVD10  
5
18  
135  
5
8.5  
25  
16  
tPLH  
tPHL  
tr  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time  
Differential output signal fall time  
Pulse skew (|tPHL – tPLH|)  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
40  
300  
16  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
200  
8.5  
25  
18  
135  
3
40  
200  
4.5  
20  
300  
10  
RL = 54 , CL = 50 pF,  
See Figure 4  
10  
100  
3
30  
170  
4.5  
20  
300  
10  
tf  
10  
100  
30  
170  
300  
1.5  
2.5  
7
tsk(p)  
tsk(pp)  
tPZH  
tPHZ  
tPZL  
tPLZ  
6
(2)  
Part-to-part skew  
11  
100  
31  
Propagation delay time, high-impedance-to-high-  
level output  
55  
300  
25  
RL = 110 , RE at 0 V,  
See Figure 5  
Propagation delay time, high-level-to-high-  
impedance output  
55  
300  
26  
Propagation delay time, high-impedance-to-low-  
level output  
55  
300  
26  
RL = 110 , RE at 0 V,  
See Figure 6  
Propagation delay time, low-level-to-high-  
impedance output  
75  
400  
RL = 110 , RE at 3 V,  
See Figure 5  
tPZH  
tPZL  
Propagation delay time, standby-to-high-level output  
Propagation delay time, standby-to-low-level output  
6
6
μs  
μs  
RL = 110 , RE at 3 V,  
See Figure 6  
(1) All typical values are at 25°C and with a 3.3-V supply.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
4
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
–0.065 –0.01  
MAX UNIT  
VIT+  
VIT–  
Positive-going input threshold voltage IO = –8 mA  
V
Negative-going input threshold  
IO = 8 mA  
–0.2  
–0.1  
35  
voltage  
Vhys  
VIK  
Hysteresis voltage (VIT+ - VIT-  
Enable-input clamp voltage  
High-level output voltage  
Low-level output voltage  
)
mV  
V
II = –18 mA  
–1.5  
2.4  
VOH  
VOL  
IOZ  
VID = 200 mV,  
VID = –200 mV,  
IOH = –8 mA,  
IOL = 8 mA,  
RE at VCC  
See Figure 7  
See Figure 7  
V
0.4  
1
V
High-impedance-state output current VO = 0 or VCC  
VA or VB = 12 V  
–1  
μA  
0.05  
0.06  
0.11  
0.13  
VA or VB = 12 V, VCC = 0 V  
VA or VB = –7 V  
HVD11, HVD12,  
Other input at 0 V  
mA  
mA  
–0.1  
–0.05  
–0.04  
0.2  
VA or VB = –7 V, VCC = 0 V  
VA or VB = 12 V  
–0.05  
II  
Bus input current  
0.5  
0.5  
VA or VB = 12 V, VCC = 0 V  
VA or VB = –7 V  
0.25  
HVD10,  
Other input at 0 V  
–0.4  
–0.4  
–30  
–30  
–0.2  
VA or VB = –7 V, VCC = 0 V  
VIH = 2 V  
–0.15  
IIH  
High-level input current, RE  
Low-level input current, RE  
Differential input capacitance  
0
0
μA  
μA  
pF  
IIL  
VIL = 0.8 V  
CID  
VID = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
15  
4
RE at 0 V,  
D & DE at 0 V,  
No load  
Receiver enabled and driver  
disabled  
8
5
mA  
RE at VCC  
,
D at VCC  
DE at 0 V,  
No load  
,
Receiver disabled and driver  
disabled (standby)  
ICC  
Supply current  
1
9
μA  
RE at 0 V,  
D & DE at VCC  
No load  
Receiver enabled and driver  
enabled  
,
15.5  
mA  
(1) All typical values are at 25°C and with a 3.3-V supply.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
 
 
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
www.ti.com  
RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
tPLH  
tPHL  
Propagation delay time, low-to-high-level output HVD10  
Propagation delay time, high-to-low-level output HVD10  
12.5  
12.5  
20  
20  
25  
ns  
25  
HVD11  
Propagation delay time, low-to-high-level output  
HVD12  
tPLH  
tPHL  
30  
30  
55  
55  
70  
70  
ns  
ns  
VID = –1.5 V to 1.5 V,  
CL = 15 pF,  
See Figure 8  
HVD11  
Propagation delay time, high-to-low-level output  
HVD12  
HVD10  
1.5  
4
tsk(p)  
Pulse skew (|tPHL – tPLH|)  
Part-to-part skew  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
ns  
4
8
(2)  
tsk(pp)  
15  
15  
5
ns  
ns  
tr  
tf  
Output signal rise time  
1
1
2
2
CL = 15 pF,  
See Figure 8  
Output signal fall time  
5
(1)  
tPZH  
tPZL  
tPHZ  
tPLZ  
tPZH  
tPZL  
Output enable time to high level  
Output enable time to low level  
Output disable time from high level  
Output disable time from low level  
15  
15  
20  
15  
6
(1)  
CL = 15 pF, DE at 3 V,  
See Figure 9  
ns  
(2)  
(2)  
Propagation delay time, standby-to-high-level output  
Propagation delay time, standby-to-low-level output  
CL = 15 pF, DE at 0,  
See Figure 10  
μs  
6
(1) All typical values are at 25°C and with a 3.3-V supply  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
THERMAL CHARACTERISTICS  
over operating free-air temperature range unless otherwise noted  
(1)  
PARAMETER  
TEST CONDITIONS  
HighK board(3), No airflow  
No airflow(4)  
MIN  
TYP  
121  
93  
MAX  
UNIT  
D pkg  
P pkg  
D pkg  
P pkg  
D pkg  
P pkg  
Junctiontoambient thermal  
θJA  
θJB  
θJC  
resistance(2)  
HighK board  
67  
Junctiontoboard thermal  
resistance  
°C/W  
(4)  
See  
57  
41  
Junctiontocase thermal  
resistance  
55  
HVD10  
(32 Mbps)  
198  
250  
176  
161  
RL= 60 , CL = 50 pF,  
DE at VCC, RE at 0 V,  
Input to D a 50% duty cycle square  
wave at indicated signaling rate  
HVD11  
(10 Mbps)  
141  
133  
PD  
Device power dissipation  
Ambient air temperature  
mW  
°C  
HVD12  
(500 kbps)  
HighK board, No airflow  
No airflow(4)  
D pkg  
P pkg  
–40  
–40  
116  
123  
TA  
TJSD Thermal shutdown junction temperature  
165  
(1) See Application Information section for an explanation of these parameters.  
(2) The intent of θJA specification is solely for a thermal performance comparison of one package to another in a standardized environment.  
This methodology is not meant to and will not predict the performance of a package in an application-specific environment.  
(3) JSD517, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.  
(4) JESD5110, Test Boards for Through-Hole Perimeter Leaded Package Thermal Measurements.  
6
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
PARAMETER MEASUREMENT INFORMATION  
375 ±1%  
V
CC  
V
CC  
I
I
DE  
OA  
I
I
DE  
A
B
A
B
D
V
OD  
54 ±1%  
0 or 3 V  
V
OD  
60 ±1%  
0 or 3 V  
+
_
−7 V < V  
< 12 V  
OB  
(test)  
V
I
375 ±1%  
V
OB  
V
OA  
Figure 1. Driver VOD Test Circuit and Voltage and  
Current Definitions  
Figure 2. Driver VOD With Common-Mode Loading  
Test Circuit  
V
A
B
A
V
CC  
27 Ω ± 1%  
27 Ω ± 1%  
V
B
DE  
A
B
D
V
OC(PP)  
V  
Input  
OC(SS)  
V
OC  
V
C
L
= 50 pF ±20%  
OC  
C
L
Includes Fixture and  
Instrumentation Capacitance  
Input: PRR = 500 kHz, 50% Duty Cycle,t <6ns, t <6ns, Z = 50 Ω  
r
f
O
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
3 V  
V
CC  
1.5 V  
1.5 V  
V
I
DE  
C = 50 pF ±20%  
L
A
B
V
OD  
D
t
t
PHL  
C Includes Fixture  
PLH  
L
and Instrumentation  
Capacitance  
2 V  
Input  
Generator  
R = 54 Ω  
± 1%  
90%  
90%  
L
V
I
50 Ω  
0 V  
10%  
0 V  
10%  
V
OD  
–2 V  
t
r
t
f
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
Figure 4. Driver Switching Test Circuit and Voltage Waveforms  
3 V  
0 V  
A
S1  
D
V
O
V
1.5 V  
1.5 V  
I
3 V  
B
C
DE  
0.5 V  
R
L
= 110 Ω  
= 50 pF ±20%  
t
L
PZH  
Input  
Generator  
± 1%  
V
OH  
V
I
C
Includes Fixture  
50 Ω  
L
and Instrumentation  
Capacitance  
V
O
2.3 V  
0 V  
t
PHZ  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
Figure 5. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
3 V  
R
± 1%  
= 110 Ω  
L
3 V  
A
V
I
1.5 V  
1.5 V  
S1  
D
V
O
3 V  
0 V  
B
C
t
t
PLZ  
PZL  
DE  
50 Ω  
3 V  
= 50 pF ±20%  
Input  
Generator  
L
V
I
0.5 V  
C
Includes Fixture  
L
V
O
2.3 V  
and Instrumentation  
Capacitance  
V
OL  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
Figure 6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms  
I
A
A
B
I
O
R
V
A
V
I
ID  
V
B
V
IC  
V
O
B
V
A
+ V  
2
B
Figure 7. Receiver Voltage and Current Definitions  
A
V
O
R
Input  
Generator  
V
I
50  
B
1.5 V  
0 V  
C = 15 pF ±20%  
L
RE  
C Includes Fixture  
L
and Instrumentation  
Capacitance  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
3 V  
1.5 V  
1.5 V  
V
I
0 V  
t
t
PHL  
PLH  
V
V
OH  
90% 90%  
V
O
1.5 V  
10%  
1.5 V  
10%  
OL  
t
r
t
f
Figure 8. Receiver Switching Test Circuit and Voltage Waveforms  
8
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
PARAMETER MEASUREMENT INFORMATION (continued)  
3 V  
DE  
3 V  
A
B
A
1 k± 1%  
= 15 pF ±20%  
R
V
O
D
S1  
B
0 V or 3 V  
C
C
L
RE  
Includes Fixture  
and Instrumentation  
Capacitance  
L
Input  
Generator  
V
I
50 Ω  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
3 V  
V
I
1.5 V  
1.5 V  
0 V  
V
t
t
PHZ  
PZH(1)  
OH  
D at 3 V  
S1 to B  
V
OH  
–0.5 V  
1.5 V  
V
O
0 V  
t
t
PLZ  
PZL(1)  
3 V  
D at 0 V  
S1 to A  
1.5 V  
V
O
V
OL  
+0.5 V  
V
OL  
Figure 9. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
3 V  
A
B
A
1 k± 1%  
= 15 pF ±20%  
0 V or 1.5 V  
1.5 V or 0 V  
R
V
O
S1  
B
C
C
L
RE  
Includes Fixture  
and Instrumentation  
Capacitance  
L
Input  
Generator  
V
I
50 Ω  
Generator: PRR = 100 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
3 V  
1.5 V  
V
I
0 V  
V
t
PZH(2)  
OH  
A at 1.5 V  
B at 0 V  
S1 to B  
1.5 V  
V
O
GND  
t
PZL(2)  
3 V  
A at 0 V  
B at 1.5 V  
S1 to A  
1.5 V  
V
O
V
OL  
Figure 10. Receiver Enable Time From Standby (Driver Disabled)  
0 V or 3 V  
RE  
A
R
B
100  
± 1%  
Pulse Generator,  
15 µs Duration,  
1% Duty Cycle  
D
+
_
t , t 100 ns  
r
f
DE  
3 V or 0 V  
:
NOTE This test is conducted to test survivability only. Data stability at the R output is not specified.  
Figure 11. Test Circuit, Transient Over Voltage Test  
10  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
PARAMETER MEASUREMENT INFORMATION (continued)  
FUNCTION TABLES  
Table 1. DRIVER(1)  
OUTPUTS  
INPUT  
D
ENABLE  
A
B
DE  
H
L
H
H
L
L
H
Z
L
H
X
L
Z
H
Open  
H
(1) H = high level; L = low level; Z = high impedance; X = irrelevant; ? =  
indeterminate  
Table 2. RECEIVER(1)  
DIFFERENTIAL INPUTS  
VID = VA – VB  
ENABLE  
RE  
OUTPUT  
R
VID –0.2 V  
–0.2 V < VID < –0.01 V  
0.01 V VID  
X
L
L
L
H
L
L
L
?
H
Z
H
H
Open Circuit  
Short circuit  
(1) H = high level; L = low level; Z = high impedance; X = irrelevant; ? =  
indeterminate  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
www.ti.com  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
D and RE Inputs  
DE Input  
V
CC  
V
CC  
100 k  
1 kΩ  
1 kΩ  
Input  
Input  
100 kΩ  
9 V  
9 V  
A Input  
B Input  
V
CC  
V
CC  
16 V  
16 V  
R3  
R1  
R1  
R3  
R2  
Input  
Input  
R2  
16 V  
16 V  
A and B Outputs  
R Output  
V
CC  
V
CC  
16 V  
5 Ω  
Output  
9 V  
Output  
16 V  
R1/R2  
9 kΩ  
R3  
45 kΩ  
180 kΩ  
180 kΩ  
SN65HVD10  
SN65HVD11  
SN65HVD12  
36 kΩ  
36 kΩ  
12  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
TYPICAL CHARACTERISTICS  
HVD10  
RMS SUPPLY CURRENT  
vs  
HVD11  
RMS SUPPLY CURRENT  
vs  
SIGNALING RATE  
SIGNALING RATE  
70  
70  
T
= 25°C  
R = 54 Ω  
L
C = 50 pF  
L
A
T
= 25°C  
R = 54 Ω  
L
A
V
CC  
= 3.6 V  
RE at V  
DE at V  
CC  
CC  
RE at V  
DE at V  
C
L
= 50 pF  
CC  
CC  
V
CC  
= 3.6 V  
60  
50  
60  
50  
V
CC  
= 3 V  
V
CC  
= 3 V  
V
CC  
= 3.3 V  
V
= 3.3 V  
40  
30  
40  
30  
CC  
0
2.5  
5
7.5  
10  
0
5
10  
15  
20  
25  
30  
35  
40  
Signaling Rate − Mbps  
Signaling Rate − Mbps  
Figure 12.  
Figure 13.  
HVD12  
HVD10  
RMS SUPPLY CURRENT  
vs  
BUS INPUT CURRENT  
vs  
SIGNALING RATE  
BUS INPUT VOLTAGE  
70  
300  
250  
200  
T
= 25°C  
R = 54 Ω  
L
C = 50 pF  
L
A
T
A
= 25°C  
RE at V  
DE at V  
CC  
CC  
DE at 0 V  
V
CC  
= 3.6 V  
60  
50  
V
CC  
= 0 V  
150  
100  
50  
V
= 3.3 V  
CC  
V
= 3 V  
CC  
V
CC  
= 3.3 V  
0
−50  
40  
30  
−100  
−150  
−200  
100  
400  
700  
1000  
76−5 −4−32−1 0 1 2 3 4 5 6 7 8 9 1011 12  
Signaling Rate − kbps  
V − Bus Input Voltage − V  
I
Figure 14.  
Figure 15.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
HVD11 OR HVD12  
BUS INPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT CURRENT  
vs  
DRIVER HIGH-LEVEL OUTPUT VOLTAGE  
BUS INPUT VOLTAGE  
150  
100  
50  
90  
80  
70  
60  
50  
40  
T
= 25°C  
T
= 25°C  
A
A
DE at 0 V  
DE at V  
D at V  
V
CC  
CC  
= 3.3 V  
CC  
V
CC  
= 0 V  
30  
20  
0
10  
0
−50  
−100  
−150  
−200  
V
CC  
= 3.3 V  
−10  
−20  
−30  
−40  
−50  
−60  
−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 1011 12  
−4  
−2  
0
2
4
6
V
OH  
− Driver High-Level Output Voltage − V  
V − Bus Input Voltage − V  
I
Figure 16.  
Figure 17.  
LOW-LEVEL OUTPUT CURRENT  
vs  
DRIVER LOW-LEVEL OUTPUT VOLTAGE  
DRIVER DIFFERENTIAL OUTPUT  
vs  
FREE-AIR TEMPERATURE  
200  
180  
160  
140  
120  
100  
2.5  
T
= 25°C  
V
= 3.3 V  
A
CC  
2.4  
2.3  
DE at V  
DE at V  
D at V  
CC  
CC  
D at 0 V  
= 3.3 V  
CC  
V
CC  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
80  
60  
40  
20  
0
−20  
1.5  
−40  
−15  
T
10  
35  
60  
85  
−4  
−2  
0
2
4
6
8
− Free-Air Temperature − °C  
V
− Driver Low-Level Output Voltage − V  
A
OL  
Figure 18.  
Figure 19.  
14  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
TYPICAL CHARACTERISTICS (continued)  
ENABLE TIME  
vs  
DRIVER OUTPUT CURRENT  
vs  
COMMON-MODE VOLTAGE  
(SEE Figure 22)  
SUPPLY VOLTAGE  
600  
500  
400  
−40  
T
= 25°C  
A
DE at V  
D at V  
R = 54 Ω  
CC  
−35  
−30  
−25  
−20  
−15  
−10  
CC  
L
HVD12  
HVD11  
300  
200  
HVD10  
100  
0
−5  
0
-7  
-2  
3
8
13  
0
0.50  
1
1.50  
2
2.50  
3
3.50  
V
CC  
− Supply Voltage − V  
V
− Common-Mode Voltage − V  
(TEST)  
Figure 20.  
Figure 21.  
375 W ± 1%  
Y
-7 V < V(TEST) < 12 V  
D
60 W  
± 1%  
VOD  
0 or 3 V  
Z
DE  
50 W  
375 W ± 1%  
Input  
V
Generator  
50%  
tpZH(diff)  
VOD (high)  
1.5 V  
0 V  
tpZL(diff)  
-1.5 V  
VOD (low)  
Figure 22. Driver Enable Time From DE to VOD  
The time tPZL(x) is the measure from DE to VOD(x). VOD is valid when it is greater than 1.5 V.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
15  
 
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
www.ti.com  
APPLICATION INFORMATION  
R
T
R
T
Stub  
Device  
HVD10  
HVD11  
HVD12  
Number of Devices on Bus  
64  
256  
256  
:
NOTE The line should be terminated at both ends with its characteristic impedance (R = Z ). Stub lengths off the main line  
T
O
should be kept as short as possible.  
Figure 23. Typical Application Circuit  
Driver Input  
Driver Output  
Receiver Input  
Receiver Output  
Figure 24. HVD12 Input and Output Through 2000 Feet of Cable  
An example application for the HVD12 is illustrated in Figure 23. Two HVD12 transceivers are used to  
communicate data through a 2000 foot (600 m) length of Commscope 5524 category 5e+ twisted pair cable. The  
bus is terminated at each end by a 100-resistor, matching the cable characteristic impedance. Figure 24  
illustrates operation at a signaling rate of 250 kbps.  
LOW-POWER STANDBY MODE  
When both the driver and receiver are disabled (DE low and RE high) the device is in standby mode. If the  
enable inputs are in this state for less than 60 ns, the device does not enter standby mode. This guards against  
inadvertently entering standby mode during driver/receiver enabling. Only when the enable inputs are held in this  
state for 300 ns or more, the device is assured to be in standby mode. In this low-power standby mode, most  
internal circuitry is powered down, and the supply current is typically less than 1 nA. When either the driver or the  
receiver is re-enabled, the internal circuitry becomes active.  
16  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
 
 
 
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
THERMAL CHARACTERISTICS OF IC PACKAGES  
θJA (Junction-to-Ambient Thermal Resistance) is defined as the difference in junction temperature to ambient  
temperature divided by the operating power.  
θJA is not a constant and is a strong function of:  
the PCB design (50% variation)  
altitude (20% variation)  
device power (5% variation)  
θJA can be used to compare the thermal performance of packages if the specific test conditions are defined and  
used. Standardized testing includes specification of PCB construction, test chamber volume, sensor locations,  
and the thermal characteristics of holding fixtures. θJA is often misused when it is used to calculate junction  
temperatures for other installations.  
TI uses two test PCBs as defined by JEDEC specifications. The low-k board gives average in-use condition  
thermal performance, and it consists of a single copper trace layer 25 mm long and 2-oz thick. The high-k board  
gives best case in-use condition, and it consists of two 1-oz buried power planes with a single copper trace layer  
25 mm long and 2-oz thick. A 4% to 50% difference in θJA can be measured between these two test cards.  
θJC (Junction-to-Case Thermal Resistance) is defined as difference in junction temperature to case divided by  
the operating power. It is measured by putting the mounted package up against a copper block cold plate to  
force heat to flow from die, through the mold compound into the copper block.  
θJC is a useful thermal characteristic when a heatsink is applied to package. It is not a useful characteristic to  
predict junction temperature because it provides pessimistic numbers if the case temperature is measured in a  
nonstandard system and junction temperatures are backed out. It can be used with θJB in 1-dimensional thermal  
simulation of a package system.  
θJB (Junction-to-Board Thermal Resistance) is defined as the difference in the junction temperature and the  
PCB temperature at the center of the package (closest to the die) when the PCB is clamped in a cold-plate  
structure. θJB is only defined for the high-k test card.  
θJB provides an overall thermal resistance between the die and the PCB. It includes a bit of the PCB thermal  
resistance (especially for BGAs with thermal balls) and can be used for simple 1-dimensional network analysis of  
package system, see Figure 25.  
Figure 25. Thermal Resistance  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
 
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
SLLS505M FEBRUARY 2002REVISED JULY 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision J (February 2009) to Revision K  
Page  
Added new section 'LOW-POWER STANDBY MODE', in the Application Information section ......................................... 16  
Changes from Revision K (September 2011) to Revision L  
Page  
Added TYP = –0.65 V to VIT+ ................................................................................................................................................ 5  
Added TYP = –0.1 V to VIT– .................................................................................................................................................. 5  
Changes from Revision L (July 2013) to Revision M  
Page  
Changed the VIT+ TYP value From: –0.65 V To: –0.065 V ................................................................................................... 5  
18  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: SN65HVD10 SN65HVD10Q SN75HVD10 SN65HVD11 SN65HVD11Q SN75HVD11  
SN65HVD12 SN75HVD12  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jul-2013  
PACKAGING INFORMATION  
Orderable Device  
SN65HVD10D  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
VP10  
VP10  
VP10  
VP10  
SN65HVD10DG4  
SN65HVD10DR  
SN65HVD10DRG4  
SN65HVD10P  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
D
P
P
D
D
D
D
D
D
D
D
P
P
D
75  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Pb-Free  
(RoHS)  
65HVD10  
65HVD10  
VP10Q  
VP10Q  
VP10Q  
VP10Q  
VP11  
SN65HVD10PE4  
SN65HVD10QD  
SN65HVD10QDG4  
SN65HVD10QDR  
SN65HVD10QDRG4  
SN65HVD11D  
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
75  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
SN65HVD11DG4  
SN65HVD11DR  
SN65HVD11DRG4  
SN65HVD11P  
75  
Green (RoHS  
& no Sb/Br)  
VP11  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
VP11  
Green (RoHS  
& no Sb/Br)  
VP11  
Pb-Free  
(RoHS)  
65HVD11  
65HVD11  
VP11Q  
SN65HVD11PE4  
SN65HVD11QD  
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jul-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
SN65HVD11QDG4  
SN65HVD11QDR  
ACTIVE  
SOIC  
SOIC  
D
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
VP11Q  
ACTIVE  
D
2500  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
-40 to 125  
VP11Q  
SN65HVD11QDRG4  
SN65HVD12D  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 85  
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
VP12  
SN65HVD12DG4  
SN65HVD12DR  
SN65HVD12DRG4  
SN65HVD12P  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
D
D
D
P
P
D
D
D
D
P
P
D
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
VP12  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
VP12  
Green (RoHS  
& no Sb/Br)  
VP12  
Pb-Free  
(RoHS)  
65HVD12  
65HVD12  
VN10  
SN65HVD12PE4  
SN75HVD10D  
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
SN75HVD10DG4  
SN75HVD10DR  
SN75HVD10DRG4  
SN75HVD10P  
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
VN10  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
VN10  
Green (RoHS  
& no Sb/Br)  
0 to 70  
VN10  
Pb-Free  
(RoHS)  
0 to 70  
75HVD10  
75HVD10  
VN11  
SN75HVD10PE4  
SN75HVD11D  
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
SN75HVD11DG4  
SN75HVD11DR  
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
VN11  
2500  
Green (RoHS  
& no Sb/Br)  
0 to 70  
VN11  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jul-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
SN75HVD11DRG4  
SN75HVD12D  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
8
8
8
8
8
8
8
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
VN11  
VN12  
VN12  
VN12  
VN12  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
D
D
P
P
75  
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
SN75HVD12DG4  
SN75HVD12DR  
SN75HVD12DRG4  
SN75HVD12P  
Green (RoHS  
& no Sb/Br)  
0 to 70  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Green (RoHS  
& no Sb/Br)  
0 to 70  
Pb-Free  
(RoHS)  
0 to 70  
75HVD12  
75HVD12  
SN75HVD12PE4  
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jul-2013  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN65HVD10, SN65HVD11, SN65HVD12 :  
Enhanced Product: SN65HVD10-EP, SN65HVD12-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jul-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65HVD10DR  
SN65HVD10QDR  
SN65HVD11DR  
SN65HVD11QDR  
SN65HVD12DR  
SN75HVD10DR  
SN75HVD11DR  
SN75HVD12DR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
8
8
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jul-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65HVD10DR  
SN65HVD10QDR  
SN65HVD11DR  
SN65HVD11QDR  
SN65HVD12DR  
SN75HVD10DR  
SN75HVD11DR  
SN75HVD12DR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
8
8
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
340.5  
340.5  
340.5  
340.5  
340.5  
340.5  
340.5  
340.5  
338.1  
338.1  
338.1  
338.1  
338.1  
338.1  
338.1  
338.1  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

SN65HVD10QDREP

3.3 V RS-485 TRANSCEIVERS
TI

SN65HVD10QDRG4

3.3-V RS-485 TRANSCEIVERS
TI

SN65HVD10QP

3.3V RS 485 TRANSCEIVERS
TI

SN65HVD10QPE4

IC LINE TRANSCEIVER, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8, Line Driver or Receiver
TI

SN65HVD10_08

3.3-V RS-485 TRANSCEIVERS
TI

SN65HVD11

3.3V RS 485 TRANSCEIVERS
TI

SN65HVD11-EP

3.3 V RS-485 TRANSCEIVERS
TI

SN65HVD11-HT

3.3-V RS-485 TRANSCEIVER
TI

SN65HVD11-HT_15

3.3-V RS-485 Transceiver
TI

SN65HVD1176

PROFIBUS RS-485 TRANSCEIVERS
TI

SN65HVD1176D

PROFIBUS RS-485 TRANSCEIVERS
TI

SN65HVD1176DG4

PROFIBUS RS-485 收发器 | D | 8 | -40 to 85
TI