SN65HVD235DR [TI]

3.3-V CAN TRANSCEIVERS; 3.3 -V CAN收发器
SN65HVD235DR
型号: SN65HVD235DR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3-V CAN TRANSCEIVERS
3.3 -V CAN收发器

文件: 总27页 (文件大小:346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
FEATURES  
DESCRIPTION  
D
D
D
D
D
D
D
D
D
Bus-Pin Fault Protection Exceeds 36 V  
The SN65HVD233, SN65HVD234, and SN65HVD235  
are used in applications employing the controller area  
network (CAN) serial communication physical layer in  
accordance with the ISO 11898 standard. As a CAN  
transceiver, each provides transmit and receive capability  
between the differential CAN bus and a CAN controller,  
with signaling rates up to 1 Mbps.  
Bus-Pin ESD Protection Exceeds 16-kV HBM  
GIFT/ICT Compliant (SN65HVD234)  
Compatible With ISO 11898  
(1)  
Signaling Rates up to 1 Mbps  
Extended –7-V to 12-V Common-Mode Range  
High-Input Impedance Allows for 120 Nodes  
LVTTL I/Os Are 5-V Tolerant  
Designed for operation in especially harsh environments,  
the devices feature cross-wire, overvoltage and loss of  
ground protection to 36 V, with overtemperature  
protection and common-mode transient protection of  
100 V. These devices operate over a –7-V to 12-V  
common-mode range with a maximum of 60 nodes on a  
Adjustable Driver Transition Times for  
Improved Signal Quality  
D
Unpowered Node Does Not Disturb the Bus  
bus.  
D
Low-Current Standby Mode . . . 200-µA  
Typical  
SN65HVD233  
FUNCTIONAL BLOCK DIAGRAM  
8
D
Low-Current Sleep Mode . . . 50-nA Typical  
(SN65HVD234)  
R
S
7
6
CANH  
CANL  
1
D
D
Thermal Shutdown Protection  
D
Power-Up / Down Glitch-Free Bus Inputs and  
Outputs  
4
5
R
− High Input Impedance With Low V  
CC  
LBK  
− Monolithic Output During Power Cycling  
SN65HVD234  
FUNCTIONAL BLOCK DIAGRAM  
D
D
D
Loopback for Diagnostic Functions Available  
(SN65HVD233)  
8
R
S
D
7
6
Loopback for Autobaud Function Available  
(SN65HVD235)  
CANH  
CANL  
1
5
4
DeviceNet Vendor ID #806  
EN  
R
APPLICATIONS  
SN65HVD235  
FUNCTIONAL BLOCK DIAGRAM  
D
CAN Data Bus  
D
Industrial Automation  
5
AB  
DeviceNetData Buses  
Smart Distributed Systems (SDS)  
8
R
S
7
6
CANH  
CANL  
1
D
D
D
D
SAE J1939 Standard Data Bus Interface  
NMEA 2000 Standard Data Bus Interface  
ISO 11783 Standard Data Bus Interface  
4
R
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
(1)  
The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).  
DeviceNet is a trademark of Open DeviceNet Vendor Association.  
Other trademarks are the property of their respective owners.  
ꢒꢏ ꢓ ꢆꢔ ꢌ ꢎꢑ ꢓꢁ ꢆ ꢍꢎꢍ ꢕꢖ ꢗꢘ ꢙ ꢚꢛ ꢜꢕꢘꢖ ꢕꢝ ꢞꢟ ꢙ ꢙ ꢠꢖꢜ ꢛꢝ ꢘꢗ ꢡꢟꢢ ꢣꢕꢞ ꢛꢜꢕ ꢘꢖ ꢤꢛ ꢜꢠꢊ ꢒꢙ ꢘꢤꢟ ꢞꢜꢝ  
ꢞ ꢘꢖ ꢗꢘꢙ ꢚ ꢜꢘ ꢝ ꢡꢠ ꢞ ꢕ ꢗꢕ ꢞ ꢛ ꢜꢕ ꢘꢖꢝ ꢡ ꢠꢙ ꢜꢥꢠ ꢜꢠ ꢙ ꢚꢝ ꢘꢗ ꢎꢠꢦ ꢛꢝ ꢑꢖꢝ ꢜꢙ ꢟꢚ ꢠꢖꢜ ꢝ ꢝꢜ ꢛꢖꢤ ꢛꢙ ꢤ ꢧ ꢛꢙ ꢙ ꢛ ꢖꢜꢨꢊ  
ꢒꢙ ꢘ ꢤꢟꢞ ꢜ ꢕꢘ ꢖ ꢡꢙ ꢘ ꢞ ꢠ ꢝ ꢝ ꢕꢖ ꢩ ꢤꢘ ꢠ ꢝ ꢖꢘꢜ ꢖꢠ ꢞꢠ ꢝꢝ ꢛꢙ ꢕꢣ ꢨ ꢕꢖꢞ ꢣꢟꢤ ꢠ ꢜꢠ ꢝꢜꢕ ꢖꢩ ꢘꢗ ꢛꢣ ꢣ ꢡꢛ ꢙ ꢛꢚ ꢠꢜꢠ ꢙ ꢝꢊ  
Copyright 2002−2003, Texas Instruments Incorporated  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
DESCRIPTION (Continued)  
If the common-mode range is restricted to the ISO-11898 Standard range of –2 V to 7 V, up to 120 nodes may be connected  
on a bus. These transceivers interface the single-ended CAN controller with the differential CAN bus found in industrial,  
building automation, and automotive applications.  
The RS, pin 8 of the SN65HVD233, SN65HVD234, and SN65HVD235 provides for three modes of operation: high-speed,  
slope control, or low-power standby mode. The high-speed mode of operation is selected by connecting pin 8 directly to  
ground, allowing the driver output transistors to switch on and off as fast as possible with no limitation on the rise and fall  
slope. The rise and fall slope can be adjusted by connecting a resistor to ground at pin 8, since the slope is proportional  
to the pin’s output current. Slope control is implemented with a resistor value of 10 kto achieve a slew rate of 15 V/us  
and a value of 100 kto achieve 2.0 V/µs slew rate. For more information about slope control, refer to the application  
information section.  
The SN65HVD233, SN65HVD234, and SN65HVD235 enter a low-current standby mode during which the driver is  
switched off and the receiver remains active if a high logic level is applied to pin 8. The local protocol controller reverses  
this low-current standby mode when it needs to transmit to the bus.  
A logic high on the loopback LBK pin 5 of the SN65HVD233 places the bus output and bus input in a high-impedance state.  
The remaining circuit remains active and available for driver to receiver loopback, self-diagnostic node functions without  
disturbing the bus.  
The SN65HVD234 enters an ultralow-current sleep mode in which both the driver and receiver circuits are deactivated if  
a low logic level is applied to EN pin 5. The device remains in this sleep mode until the circuit is reactivated by applying  
a high logic level to pin 5.  
The AB pin 5 of the SN65HVD235 implements a bus listen-only loopback feature which allows the local node controller  
to synchronize its baud rate with that of the CAN bus. In autobaud mode, the driver’s bus output is placed in a  
high-impedance state while the receiver’s bus input remains active. For more information on the autobaud mode, refer to  
the application information section.  
2
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during  
storage or handling to prevent electrostatic damage to the MOS gates.  
AVAILABLE OPTIONS  
SLOPE  
CONTROL  
DIAGNOSTIC  
LOOPBACK  
AUTOBAUD  
LOOPBACK  
PART NUMBER  
LOW POWER MODE  
SN65HVD233D  
SN65HVD234D  
SN65HVD235D  
200-µA standby mode  
200-µA standby mode or 50-nA sleep mode  
200-µA standby mode  
Adjustable  
Adjustable  
Adjustable  
Yes  
No  
No  
No  
No  
Yes  
(1)  
For the most current package and ordering information, see the Package Option Addendum at the end of this document,  
or see the TI web site at www.ti.com.  
ORDERING INFORMATION  
PACKAGE (D)  
SN65HVD233D  
MARKED AS  
VP233  
(1)  
SN65HVD233DR  
SN65HVD234D  
VP234  
VP235  
(1)  
SN65HVD234DR  
SN65HVD235D  
(1)  
SN65HVD235DR  
(1)  
R suffix indicated tape and reel  
POWER DISSIPATION RATINGS  
(1)  
DERATING FACTOR  
CIRCUIT  
T
A
25°C  
T
A
= 85°C POWER  
T = 125°C POWER  
A
PACKAGE  
BOARD  
POWER RATING  
ABOVE T = 25°C  
RATING  
255.7 mW  
461.5 mW  
RATING  
A
D
D
Low-K  
High-K  
596.6 mW  
5.7 mW/°C  
28.4 mW  
51.3 mW  
1076.9 mW  
10.3 mW/°C  
(1)  
This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
(1) (2)  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
PARAMETER  
VALUE  
Supply voltage range, V  
CC  
−0.3 V to 7 V  
−36 V to 36 V  
−100 V to 100 V  
−0.5 V to 7 V  
−10 mA to 10 mA  
16 kV  
Voltage range at any bus terminal (CANH or CANL)  
Voltage input range, transient pulse, CANH and CANL, through 100 (see Figure 7)  
Input voltage range, V (D, R, R , EN, LBK, AB)  
I
S
Receiver output current, I  
O
(3)  
(3)  
Electrostatic discharge  
Human Body Model  
CANH, CANL and GND  
All pins  
Human Body Model  
3 kV  
Electrostatic discharge  
(4)  
Charged-DeviceMode  
All pins  
1 kV  
Continuous total power dissipation  
Operating junction temperature, T  
See Dissipation Rating Table  
150°C  
J
(1)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
Tested in accordance with JEDEC Standard 22, Test Method A114−A.  
(2)  
(3)  
(4)  
Tested in accordance with JEDEC Standard 22, Test Method C101.  
3
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
MIN  
3
TYP  
MAX  
3.6  
12  
UNIT  
Supply voltage, V  
CC  
Voltage at any bus terminal (separately or common mode)  
−7  
2
High−level input voltage, V  
IH  
D, EN, AB, LBK  
D, EN, AB, LBK  
5.5  
0.8  
6
V
Low−level input voltage, V  
IL  
0
Differential input voltage, V  
ID  
−6  
0
Resistance from R to ground  
100  
5.5  
kΩ  
S
Input Voltage at R for standby, V  
I(Rs)  
0.75V  
CC  
V
S
Driver  
Receiver  
−50  
−10  
High−level output current, I  
mA  
mA  
OH  
Driver  
50  
10  
Low−level output current, I  
OL  
Receiver  
Operating junction temperature, T  
(1)  
HVD233, HVD234, HVD235  
HVD233, HVD234, HVD235  
150  
125  
°C  
°C  
J
Operating free−air temperature , T  
−40  
A
(1)  
Maximum free-air temperature operation is allowed as long as the device maximum junction temperature is not exceeded.  
DRIVER ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range unless otherwise noted  
(1)  
PARAMETER  
TEST CONDITIONS  
D at 0 V, R at 0 V, See Figures 1 and 2  
MIN TYP  
MAX  
UNIT  
CANH  
CANL  
CANH  
CANL  
2.45  
V
CC  
S
V
V
V
Bus output voltage (Dominant)  
V
O(D)  
0.5  
1.25  
2.3  
2.3  
2
Bus output voltage (Recessive)  
Differential output voltage (Dominant)  
Differential output voltage (Recessive)  
D at 3 V, R at 0 V, See Figures 1 and 2  
V
V
O
S
D at 0 V, R at 0 V, See Figures 1 and 2  
1.5  
1.2  
3
3
S
OD(D)  
D at 0 V, R at 0 V, See Figures 2 and 3  
2
S
D at 3 V, R at 0 V, See Figures 1 and 2  
−120  
−0.5  
12  
mV  
V
S
V
V
OD  
D at 3 V, R at 0 V, No Load  
S
0.05  
Peak-to-peak common-mode output voltage  
High-level input current; D, EN, LBK, AB  
Low-level input current; D, EN, LBK, AB  
See Figure 10  
D at 2 V  
1
V
OC(pp)  
I
I
−30  
−30  
30  
30  
µA  
µA  
IH  
D at 0.8 V  
IL  
V
V
V
V
= −7 V, CANL Open, See Figure 15  
= 12 V, CANL Open, See Figure 15  
= −7 V, CANH Open, See Figure 15  
= 12 V, CANH Open, See Figure 15  
−250  
CANH  
CANH  
CANL  
CANL  
1
I
Short−circuit output current  
Output capacitance  
mA  
OS  
−1  
250  
C
See receiver input capacitance  
at 0.75 V  
O
I
R
S
input current for standby  
R
−10  
µA  
µA  
IRs(s)  
S
CC  
Sleep  
EN at 0 V, D at V , R at 0 V or V  
0.05  
200  
2
CC CC  
S
R
at V , D at V , AB at 0 V, LBK at 0 V,  
S
CC  
CC  
CC  
Standby  
600  
EN at V  
I
Supply current  
D at 0 V, No Load, AB at 0 V, LBK at 0 V,  
at 0 V, EN at V  
CC  
Dominant  
Recessive  
6
6
R
S
CC  
mA  
D at V , No Load, AB at 0 V,  
CC  
LBK at 0 V, R at 0 V, EN at V  
S
CC  
(1)  
All typical values are at 25°C and with a 3.3 V supply.  
4
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
DRIVER SWITCHING CHARACTERISTICS  
over operating free-air temperature range unless otherwise noted  
PARAMETER  
(1)  
MIN TYP  
TEST CONDITIONS  
at 0 V, See Figure 4  
MAX  
85  
UNIT  
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
35  
70  
with 10 kto ground, See Figure 4  
with 100 kto ground, See Figure 4  
at 0 V, See Figure 4  
125  
870  
120  
180  
1200  
t
t
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
ns  
PLH  
PHL  
sk(p)  
500  
70  
with 10 kto ground, See Figure 4  
with 100 kto ground, See Figure 4  
at 0 V, See Figure 4  
130  
870  
35  
ns  
ns  
with 10 kto ground, See Figure 4  
with 100 kto ground, See Figure 4  
60  
Pulse skew (|t |)  
– t  
PHL PLH  
370  
t
t
t
t
t
t
t
t
Differential output signal rise time  
Differential output signal fall time  
Differential output signal rise time  
Differential output signal fall time  
Differential output signal rise time  
Differential output signal fall time  
Enable time from standby to dominant  
Enable time from sleep to dominant  
20  
20  
70  
70  
r
R
R
R
at 0 V, See Figure 4  
ns  
ns  
ns  
µs  
S
S
S
f
30  
135  
135  
1400  
1400  
1.5  
r
with 10 kto ground, See Figure 4  
with 100 kto ground, See Figure 4  
30  
f
350  
350  
r
f
0.6  
1
en(s)  
en(z)  
See Figures 8 and 9  
5
(1)  
All typical values are at 25°C and with a 3.3 V supply.  
RECEIVER ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range unless otherwise noted  
PARAMETER  
(1)  
MIN TYP  
TEST CONDITIONS  
MAX  
UNIT  
V
IT+  
V
IT−  
V
hys  
V
OH  
V
OL  
Positive-going input threshold voltage  
Negative-going input threshold voltage  
750  
900  
500  
2.4  
650  
100  
AB at 0 V, LBK at 0 V, EN at V , See Table 1  
CC  
mV  
Hysteresis voltage (VIT+ V  
High-level output voltage  
Low-level output voltage  
)
IT−  
I
= −4 mA, See Figure 6  
= 4 mA, See Figure 6  
O
V
I
0.4  
O
CANH or CANL at 12 V  
150  
200  
500  
CANH or CANL at 12 V,  
Other bus pin at 0 V,  
D at 3 V, AB at 0 V,  
600  
−150  
−130  
V
CC  
at 0 V  
I
I
Bus input current  
µA  
LBK at 0 V, R at 0 V,  
CANH or CANL at −7 V  
−610  
−450  
S
EN at V  
CC  
CANH or CANL at −7 V,  
V
CC  
at 0 V  
Pin-to-ground, V = 0.4 sin (4E6πt) + 0.5V,  
I
C
C
Input capacitance (CANH or CANL)  
Differential input capacitance  
40  
20  
I
D at 3 V, AB at 0 V, LBK at 0 V, EN at V  
CC  
pF  
Pin-to-pin, V = 0.4 sin (4E6πt) + 0.5V,  
I
ID  
D at 3 V, AB at 0 V, LBK at 0 V, EN at V  
CC  
CC  
R
R
Differential input resistance  
Input resistance (CANH or CANL)  
Sleep  
40  
20  
100  
50  
2
ID  
D at 3 V, AB at 0 V, LBK at 0 V, EN at V  
kΩ  
µA  
IN  
EN at 0 V, D at V , Rs at 0 V or V  
CC CC  
0.05  
200  
R
at V , D at V , AB at 0 V, LBK at 0 V,  
S
CC  
CC  
CC  
Standby  
600  
6
EN at V  
I
Supply current  
Dominant  
D at 0 V, No Load, R at 0 V, LBK at 0 V,  
AB at 0 V, EN at V  
CC  
CC  
S
mA  
D at V , No Load, R at 0 V, LBK at 0 V,  
CC  
S
Recessive  
6
AB at 0 V, EN at V  
CC  
(1)  
All typical values are at 25°C and with a 3.3 V supply.  
5
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
RECEIVER SWITCHING CHARACTERISTICS  
over operating free-air temperature range unless otherwise noted  
(1)  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
MAX  
60  
UNIT  
t
t
t
t
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
35  
35  
7
PLH  
PHL  
sk(p)  
r
60  
Pulse skew (|t |)  
− t  
See Figure 6  
ns  
PHL PLH  
Output signal rise time  
Output signal fall time  
2
5
5
2
f
(1)  
All typical values are at 25°C and with a 3.3 V supply.  
DEVICE SWITCHING CHARACTERISTICS  
over operating free-air temperature range unless otherwise noted  
(1)  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
HVD233 See Figure 12  
MAX  
12  
UNIT  
ns  
t
t
t
Loopback delay, driver input to receiver output  
Loopback delay, driver input to receiver output  
Loopback delay, bus input to receiver output  
7.5  
10  
35  
70  
(LBK)  
(AB1)  
(AB2)  
See Figure 13  
See Figure 14  
20  
ns  
HVD235  
60  
ns  
R
R
at 0 V, See Figure 11  
135  
S
with 10 kto ground,  
S
105  
190  
Total loop delay, driver input to receiver output, recessive to  
dominant  
See Figure 11  
t
ns  
ns  
(loop1)  
R
with 100 kto ground,  
S
535  
70  
1000  
135  
See Figure 11  
R
R
at 0 V, See Figure 11  
S
with 10 kto ground,  
S
105  
190  
Total loop delay, driver input to receiver output, dominant to  
recessive  
See Figure 11  
t
(loop2)  
R
with 100 kto ground,  
S
535  
1000  
See Figure 11  
(1)  
All typical values are at 25°C and with a 3.3 V supply.  
6
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
PARAMETER MEASUREMENT INFORMATION  
I
O(CANH)  
D
R
I
I
60 1%  
V
OD  
V
O(CANH)  
V
+ V  
2
O(CANH)  
O(CANL)  
I
IRs  
S
V
I
V
OC  
I
+
O(CANL)  
V
V
I(Rs)  
O(CANL)  
Figure 1. Driver Voltage, Current, and Test Definition  
Dominant  
3 V  
V
O(CANH)  
Recessive  
2.3 V  
1 V  
V
O(CANL)  
Figure 2. Bus Logic State Voltage Definitions  
330 1%  
CANH  
D
V
OD  
V
I
60 1%  
+
−7 V V  
TEST  
12 V  
R
S
_
CANL  
330 1%  
Figure 3. Driver V  
OD  
CANH  
CANL  
V
CC  
V
/2  
CC  
V /2  
CC  
C
= 50 pF 20%  
(see Note B)  
L
V
I
0 V  
V
D
V
O
t
t
PHL  
PLH  
R
= 60 1%  
L
V
I
R
S
O(D)  
+
90%  
10%  
0.9 V  
V
O
V
0.5 V  
I(Rs)  
(see Note A)  
V
O(R)  
t
r
t
f
NOTES:A. The input pulse is supplied by a generator having the following characteristics: Pulse repetition rate (PRR) 125 kHz, 50% duty cycle,  
t 6ns, t 6ns, Z = 50.  
L
r
C
f
O
B.  
includes fixture and instrumentation capacitance.  
Figure 4. Driver Test Circuit and Voltage Waveforms  
7
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
CANH  
R
I
O
V
V
I(CANH)  
ID  
V
+ V  
2
I(CANH  
I(CANL)  
V
IC  
=
V
O
CANL  
V
I(CANL)  
Figure 5. Receiver Voltage and Current Definitions  
2.9 V  
1.5 V  
CANH  
CANL  
2.2 V  
2.2 V  
V
I
R
I
O
V
I
t
t
PLH  
PHL  
C
L
= 50 pF 20%  
(see Note D)  
1.5 V  
V
V
V
O
OH  
(see Note C)  
90% 90%  
50%  
10%  
50%  
10%  
V
O
OL  
t
r
t
f
NOTES:C. The input pulse is supplied by a generator having the following characteristics: Pulse repetition rate (PRR) 125 kHz, 50% duty cycle,  
t 6ns, t 6ns, Z = 50.  
L
r
C
f
O
D.  
includes fixture and instrumentation capacitance.  
Figure 6. Receiver Test Circuit and Voltage Waveforms  
Table 1. Differential Input Voltage Threshold Test  
INPUT  
OUTPUT  
R
MEASURED  
|V  
V
V
|
ID  
CANH  
CANL  
−6.1 V  
12 V  
−1 V  
12 V  
−6.5 V  
12 V  
−7 V  
6 V  
−7 V  
L
L
L
L
900 mV  
900 mV  
6 V  
11.1 V  
−7 V  
6 V  
V
OL  
6 V  
−7 V  
11.5 V  
−1 V  
12 V  
open  
H
H
H
H
H
500 mV  
500 mV  
6 V  
6 V  
X
V
OH  
open  
CANH  
R
CANL  
100 Ω  
Pulse Generator  
15 µs Duration  
1% Duty Cycle  
D at 0 V or V  
CC  
Rs, AB, EN, LBK, at 0 V or V  
CC  
t , t 100 ns  
r
f
:
NOTE This test is conducted to test survivability only. Data stability at the R output is not specified.  
Figure 7. Test Circuit, Transient Over Voltage Test  
8
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
HVD234  
HVD233 or HVD235  
R
R
S
S
CANH  
CANH  
60 1%  
V
V
I
I
D
D
60 1%  
0 V  
0 V  
CC  
AB or LBK  
EN  
V
CANL  
CANL  
R
V
O
V
O
+
+
15 pF 20%  
15 pF 20%  
V
CC  
50%  
V
I
0 V  
V
V
OH  
50%  
V
O
OL  
t
en(s)  
:
NOTE All V input pulses are supplied by a generator having the following characteristics: t or t 6 ns, pulse repetition rate (PRR) = 125 kHz, 50%  
I
r
f
duty cycle.  
Figure 8. t  
Test Circuit and Voltage Waveforms  
en(s)  
HVD234  
R
S
V
CC  
CANH  
60 1%  
50%  
V
I
D
0 V  
0 V  
V
EN  
V
I
OH  
CANL  
50%  
V
O
R
V
OL  
t
V
O
en(z)  
+
15 pF 20%  
:
NOTE All V input pulses are supplied by a generator having the following characteristics:  
I
t or t 6 ns, pulse repetition rate (PRR) = 50 kHz, 50% duty cycle.  
r
f
Figure 9. t  
Test Circuit and Voltage Waveforms  
en(z)  
27 1%  
CANH  
CANL  
V
OC(PP)  
D
V
OC  
V
I
R
S
V
OC  
27 1%  
50 pF 20%  
:
NOTE All V input pulses are supplied by a generator having the following characteristics:  
I
t or t 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.  
r
f
Figure 10. V  
Test Circuit and Voltage Waveforms  
OC(pp)  
9
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
0, 10 k,  
DUT  
or 100 k5%  
R
S
CANH  
60 1%  
V
CC  
50%  
50%  
D
V
I
V
I
0 V  
LBK or AB  
HVD233/235  
EN  
t
t
(loop2)  
(loop1)  
CANL  
V
V
OH  
V
50%  
50%  
V
O
CC  
HVD234  
R
OL  
+
V
O
15 pF 20%  
:
NOTE All V input pulses are supplied by a generator having the following characteristics:  
I
t or t 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.  
r
f
Figure 11. t  
Test Circuit and Voltage Waveforms  
(loop)  
HVD233  
V
R
CC  
S
CANH  
50%  
50%  
V
I
+
D
0 V  
V
I
V
OD  
60 1%  
t
t
(LBK1)  
(LBK2)  
V
LBK  
R
OH  
OL  
V
CC  
CANL  
50%  
50%  
V
O
V
t
=t  
=t  
(LBK) (LBK1) (LBK2)  
V
2.3 V  
OD  
+
V
O
15 pF 20%  
:
NOTE All V input pulses are supplied by a generator having the following characteristics:  
I
t or t 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.  
r
f
Figure 12. t  
Test Circuit and Voltage Waveforms  
(LBK)  
HVD235  
V
2.3 V  
OD  
R
S
CANH  
V
CC  
+
V
D
50%  
50%  
60 1%  
V
I
V
I
OD  
0 V  
CANL  
t
t
(ABH)  
(ABL)  
AB  
R
V
V
OH  
V
CC  
50%  
50%  
V
O
OL  
t
= t  
= t  
(AB1) (ABH) (ABL)  
+
V
O
15 pF 20%  
:
NOTE All V input pulses are supplied by a generator having the following characteristics: t  
I
r
or t 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.  
f
Figure 13. t  
Test Circuit and Voltage Waveforms  
(AB1)  
10  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
HVD235  
R
S
CANH  
2.9 V  
2.2 V  
2.2 V  
V
I
D
V
CC  
60 1%  
V
I
1.5 V  
t
t
1.5 V  
(ABH)  
(ABL)  
CANL  
AB  
R
V
OH  
OL  
V
CC  
50%  
50%  
V
O
V
t
= t  
= t  
(AB2) (ABH) (ABL)  
+
V
O
15 pF 20%  
:
NOTE All V input pulses are supplied by a generator having the following characteristics:  
I
t or t 6 ns, pulse repetition rate (PRR) = 125 kHz, 50% duty cycle.  
r
f
Figure 14. t  
Test Circuit and Voltage Waveforms  
(AB2)  
I  
OS  
I
OS  
15 s  
CANH  
D
0 V  
0 V or V  
+
_
CC  
I
OS  
V
I
12 V  
CANL  
V
I
0 V  
0 V  
and  
10 µs  
V
I
−7 V  
Figure 15. I  
Test Circuit and Waveforms  
OS  
3.3 V  
T
V
= 25°C  
A
= 3.3 V  
CC  
R2 1%  
R1 1%  
CANH  
CANL  
+
ID  
R
V
V
ac  
R1 1%  
V
I
R2 1%  
The R Output State Does Not Change During  
Application of the Input Waveform.  
V
ID  
R1  
R2  
500 mV  
50 Ω  
50 Ω  
280 Ω  
130 Ω  
900 mV  
12 V  
−7 V  
V
I
:
NOTE All input pulses are supplied by a generator with f 1.5 MHz.  
Figure 16. Common-Mode Voltage Rejection  
11  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
DEVICE INFORMATION  
SN65HVD233D  
(Marked as VP233)  
(TOP VIEW)  
SN65HVD234D  
(Marked as VP234)  
(TOP VIEW)  
SN65HVD235D  
(Marked as VP235)  
(TOP VIEW)  
D
R
D
R
D
R
S
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
S
S
GND  
CANH  
CANL  
LBK  
GND  
CANH  
CANL  
EN  
GND  
CANH  
CANL  
AB  
V
V
V
CC  
R
CC  
R
CC  
R
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
D INPUT  
R
S
INPUT  
V
CANH INPUT  
V
CC  
CC  
V
CC  
110 kΩ  
45 kΩ  
9 kΩ  
100 kΩ  
1 kΩ  
INPUT  
INPUT  
40 V  
9 V  
9 kΩ  
+
_
INPUT  
CANL INPUT  
CANH and CANL OUTPUTS  
CC  
R OUTPUT  
V
V
CC  
V
CC  
110 kΩ  
45 kΩ  
9 kΩ  
5 Ω  
OUTPUT  
9 V  
INPUT  
40 V  
OUTPUT  
9 kΩ  
40 V  
EN INPUT  
LBK or AB INPUT  
V
CC  
V
CC  
1 kΩ  
1 kΩ  
INPUT  
INPUT  
100 kΩ  
100 kΩ  
9 V  
9 V  
12  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
Table 2. Thermal Characteristics  
PARAMETERS  
TEST CONDITIONS  
VALUE  
185  
UNIT  
(2)  
Low-K board, no air flow  
(1)  
Junction-to-ambient thermal resistance  
Θ
Θ
°C/W  
JA  
(3)  
High-K board, no air flow  
101  
(3  
Junction-to-board thermal resistance  
Junction-to-case thermal resistance  
High-K ) board, no air flow  
82.8  
26.5  
°C/W  
°C/W  
JB  
JC  
Θ
R
L
= 60 , R at 0 V, input to D a 1-MHz 50%  
S
P
Average power dissipation  
duty cycle square wave  
at 3.3 V, T = 25°C  
36.4  
170  
mW  
(AVG)  
V
CC  
A
T
Thermal shutdown junction temperature  
°C  
(SD)  
(1)  
(2)  
(3)  
See TI literature number SZZA003 for an explanation of this parameter.  
JESD51−3 low effective thermal conductivity test board for leaded surface mount packages.  
JESD51−7 high effective thermal conductivity test board for leaded surface mount packages.  
FUNCTION TABLES  
DRIVER (SN65HVD233 OR SN65HVD235)  
INPUTS  
OUTPUTS  
CANL  
D
X
L
LBK/AB  
R
S
CANH  
BUS STATE  
Recessive  
Dominant  
X
> 0.75 V  
Z
H
Z
Z
Z
L
Z
Z
CC  
L or open  
0.33 V  
0.33 V  
CC  
H or open  
X
H
Recessive  
Recessive  
X
CC  
RECEIVER (SN65HVD233)  
INPUTS  
OUTPUT  
BUS STATE  
V
ID  
= V  
−V  
0.9 V  
LBK  
D
R
L
(CANH) (CANL)  
Dominant  
V
L or open  
L or open  
L or open  
X
ID  
0.5 V or open  
Recessive  
V
H or open  
H
?
ID  
?
X
X
0.5 V < V < 0.9 V  
ID  
H or open  
X
X
L
L
H
H
H
RECEIVER (SN65HVD235)  
INPUTS  
OUTPUT  
BUS STATE  
Dominant  
Recessive  
?
V
ID  
= V  
−V  
0.9 V  
AB  
D
R
L
(CANH) (CANL)  
V
L or open  
X
ID  
0.5 V or open  
V
L or open  
H or open  
H
?
ID  
0.5 V < V < 0.9 V  
L or open  
H or open  
ID  
0.9 V  
Dominant  
Recessive  
Recessive  
?
V
H
H
H
H
X
H
L
L
ID  
V
V
0.5 V or open  
0.5 V or open  
H
L
ID  
ID  
0.5 V < V < 0.9 V  
ID  
L
L
13  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
DRIVER (SN65HVD234)  
INPUTS  
OUTPUTS  
D
L
EN  
R
CANH  
CANL  
Bus State  
Dominant  
Recessive  
Recessive  
Recessive  
Recessive  
S
H
0.33 V  
0.33 V  
X
H
Z
Z
Z
Z
L
Z
Z
Z
Z
CC  
H
X
CC  
Open  
X
X
X
> 0.75 V  
CC  
X
L or open  
X
RECEIVER (SN65HVD234)  
INPUTS  
OUTPUT  
Bus State  
Dominant  
Recessive  
?
V
ID  
= V  
−V  
0.9 V  
EN  
R
L
(CANH) (CANL)  
V
H
ID  
0.5 V or open  
V
ID  
H
H
H
?
0.5 V < V < 0.9 V  
ID  
X
X
L or open  
H
H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate  
14  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
TYPICAL CHARACTERISTICS  
RECESSIVE-TO-DOMINANT LOOP TIME  
DOMINANT-TO-RECESSIVE LOOP TIME  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
95  
90  
85  
80  
75  
90  
Rs, LBK, AB = 0 V  
EN = V  
Rs, LBK, AB = 0 V  
EN = V  
CC  
CC  
85  
80  
V
= 3 V  
CC  
V
CC  
= 3.6 V  
V
CC  
= 3.3 V  
V
CC  
= 3.6 V  
75  
70  
65  
V
CC  
= 3.3 V  
70  
65  
V
CC  
= 3 V  
60  
−40  
5
45  
80  
125  
−40  
5
45  
80  
125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 17  
Figure 18  
SUPPLY CURRENT  
vs  
DRIVER LOW-LEVEL OUTPUT CURRENT  
vs  
FREQUENCY  
LOW-LEVEL OUTPUT VOLTAGE  
20  
160  
140  
120  
100  
V
= 3.3 V,  
V
= 3.3 V,  
CC  
Rs, LBK, AB = 0 V,  
EN = V  
CC  
Rs, LBK, AB = 0 V,  
EN = V  
,
,
CC  
= 25°C  
CC  
= 25°C  
19  
18  
T
A
T
A
80  
60  
40  
20  
0
17  
16  
15  
1000  
200  
300  
500  
700  
0
1
2
3
4
f − Frequency − kbps  
V
OL  
− Low-Level Output Voltage − V  
Figure 19  
Figure 20  
15  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
DIFFERENTIAL OUTPUT VOLTAGE  
DRIVER HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
HIGH-LEVEL OUTPUT VOLTAGE  
2.2  
2
0.12  
0.1  
V
= 3.3 V,  
CC  
Rs, LBK, AB = 0 V,  
EN = V  
V
= 3.6 V  
= 3.3 V  
CC  
,
CC  
T
A
= 25°C  
V
CC  
1.8  
1.6  
1.4  
0.08  
V
= 3 V  
CC  
0.06  
0.04  
0.02  
0
R
L
= 60 Ω  
Rs, LBK, AB = 0 V  
EN = V  
1.2  
1
CC  
0
0.5  
V
1
1.5  
2
2.5  
3
3.5  
−40  
5
45  
80  
125  
− High-Level Output Voltage − V  
OH  
T
A
− Free-Air Temperature − °C  
Figure 21  
Figure 22  
RECEIVER LOW-TO-HIGH PROPAGATION DELAY  
RECEIVER HIGH-TO-LOW PROPAGATION DELAY  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
38  
45  
Rs, LBK, AB = 0 V  
Rs, LBK, AB = 0 V  
44  
43  
42  
41  
EN = V  
CC  
EN = V  
CC  
See Figure 6  
See Figure 6  
37  
36  
35  
34  
V
CC  
= 3.3 V  
V
CC  
= 3 V  
40  
39  
V
CC  
= 3 V  
V
CC  
= 3.3 V  
38  
37  
V
= 3.6 V  
CC  
33  
32  
V
CC  
= 3.6 V  
5
36  
35  
−40  
−40  
45  
80  
5
45  
80  
125  
125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 23  
Figure 24  
16  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
DRIVER LOW-TO-HIGH PROPAGATION DELAY  
DRIVER HIGH-TO-LOW PROPAGATION DELAY  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
55  
50  
45  
40  
35  
65  
Rs, LBK, AB = 0 V  
EN = V  
CC  
See Figure 4  
60  
55  
V
= 3 V  
CC  
V
CC  
= 3.3 V  
V
CC  
= 3 V  
50  
V
= 3.3 V  
CC  
45  
40  
V
= 3.6 V  
CC  
V
CC  
= 3.6 V  
Rs, LBK, AB = 0 V  
EN = V  
See Figure 4  
30  
25  
35  
30  
CC  
−40  
5
45 80  
−40  
125  
5
45  
80  
125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 25  
Figure 26  
DRIVER OUTPUT CURRENT  
vs  
SUPPLY VOLTAGE  
35  
30  
25  
20  
15  
10  
Rs, LBK, AB = 0 V,  
EN = V  
,
CC  
T
= 25°C  
= 60 Ω  
A
R
L
5
0
−5  
0
0.6  
1.2  
1.8  
2.4  
3
3.6  
V
− Supply Voltage − V  
CC  
Figure 27  
17  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
APPLICATION INFORMATION  
Diagnostic Loopback (SN65HVD233)  
The loopback (LBK) function of the HVD233 is enabled with a high-level input to pin 5. This forces the driver into a  
recessive state and redirects the data (D) input at pin 1 to the received-data output (R) at pin 4. This allows the host  
controller to input and read back a bit sequence to perform diagnostic routines without disturbing the CAN bus. A  
typical CAN bus application is displayed in Figure 28.  
If the LBK pin is not used it may be tied to ground (GND). However, it is pulled low internally (defaults to a low−level  
input) and may be left open if not in use.  
Autobaud Loopback (SN65HVD235)  
The autobaud feature of the HVD235 is implemented by placing a logic high on pin 5 (AB). In autobaud, the  
bus-transmit function of the transceiver is disabled, while the bus-receive function and all of the normal operating  
functions of the device remain intact. With the autobaud function engaged, normal bus activity can be monitored by  
the device. However, if an error frame is generated by the local CAN controller, it is not transmitted to the bus. Only  
the host microprocessor can detect the error frame.  
Autobaud detection is best suited to applications that have a known selection of baud rates. For example, a popular  
industrial application has optional settings of 125 kbps, 250 kbps, or 500 kbps. Once the logic high has been applied  
to pin 5 (AB) of the HVD235, assume a baud rate such as 125 kbps, then wait for a message to be transmitted by  
another node on the bus. If the wrong baud rate has been selected, an error message is generated by the host CAN  
controller. However, since the bus-transmit function of the device has been disabled, no other nodes receive the error  
message of the controller.  
This procedure makes use of the CAN controller’s status register indications of message received and error warning  
status to signal if the current baud rate is correct or not. The warning status indicates that the CAN chip error counters  
have been incremented. A message received status indicates that a good message has been received.  
If an error is generated, reset the CAN controller with another baud rate, and wait to receive another message. When  
an error-free message has been received, the correct baud rate has been detected. A logic low may now be applied  
to pin 5 (AB) of the HVD235, returning the bus-transmit normal operating function to the transceiver.  
Bus Lines −− 40 m max  
CANH  
Stub Lines −− 0.3 m max  
120  
120  
CANL  
5 V  
3.3 V  
Vcc  
3.3 V  
Vref  
Rs  
Vcc  
Rs  
Vref  
Rs  
Vcc  
µ
0.1  
SN65HVD251  
0.1  
µ
F
SN65HVD233  
0.1  
F
SN65HVD230  
µ
F
GND  
GND  
GND  
D
R
D
R
D
R
LBK  
CANTX  
CANRX  
CANTX  
CANRX  
CANTX  
CANRX  
GPIO  
TMS320LF243  
TMS320F2812  
TMS320LF2407A  
Sensor, Actuator, or Control  
Equipment  
Sensor, Actuator, or Control  
Equipment  
Sensor, Actuator, or Control  
Equipment  
Figure 28. Typical HVD233 Application  
Interoperability With 5-V CAN Systems  
ISO−11898 specifies the interface characteristics to a CAN bus with the purpose of insuring interchangeability among  
compatible transceivers. While the levels specified in the standard assume a 5-V supply, there is nothing in the  
standard that makes this a requirement. The SN65HVD233 is compatible with these requirements with a 3.3-V  
supply, assuring interoperability with 5-V supplied transceivers.  
Bus Cable  
The ISO 11898 Standard specifies a maximum bus length of 40 m and maximum stub length of 0.3 m with a maximum  
of 30 nodes. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes  
to a bus. A large number of nodes requires a transceiver with high input impedance such as the HVD233.  
18  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
The standard specifies the interconnect to be a single twisted-pair cable (shielded or unshielded) with 120-Ω  
characteristic impedance (ZO). Resistors equal to the characteristic impedance of the line terminate both ends of  
the cable to prevent signal reflections. Unterminated drop-lines (stubs) connecting nodes to the bus should be kept  
as short as possible to minimize signal reflections.  
Slope Control  
The rise and fall slope of the SN65HVD233, SN65HVD234, and SN65HVD235 driver output can be adjusted by  
connecting a resistor from the Rs (pin 8) to ground (GND), or to a low-level input voltage as shown in Figure 29.  
The slope of the driver output signal is proportional to the pin’s output current. This slope control is implemented with  
an external resistor value of 10 kto achieve a 15 V/µs slew rate, and up to 100 kto achieve a 2.0 V/µs slew  
rate as displayed in Figure 30. Typical driver output waveforms with slope control are displayed in Figure 31.  
10 kΩ  
to  
100 kΩ  
IOPF6  
Rs  
1
2
3
4
8
7
6
5
D
GND  
Vcc  
TMS320LF2407  
CANH  
CANL  
LBK  
R
Figure 29. Slope Control/Standby Connection to a DSP  
25  
20  
15  
10  
5
0
0
4.7 6.8 10 15 22 33 47 68 100  
Slope Control Resistance − kΩ  
Figure 30. HVD233 Driver Output Signal Slope vs Slope Control Resistance Value  
19  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢆꢇ  
ꢆꢇ  
ꢆꢇ  
www.ti.com  
SLLS557D − NOVEMBER 2002 REVISED JUNE 2005  
Rs = 0  
Rs = 10 k  
Rs = 100 k  
Figure 31. Typical SN65HVD233 250-kbps Output Pulse Waveforms With Slope Control  
Standby  
If a high−level input (> 0.75 VCC) is applied to Rs (pin 8), the circuit enters a low-current, listen only standby mode  
during which the driver is switched off and the receiver remains active. The local controller can reverse this low-power  
standby mode when the rising edge of a dominant state (bus differential voltage > 900 mV typical) occurs on the bus.  
20  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2006  
PACKAGING INFORMATION  
Orderable Device  
SN65HVD233D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD233DG4  
SN65HVD233DR  
SN65HVD233DRG4  
SN65HVD234D  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
D
D
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD234DG4  
SN65HVD234DR  
SN65HVD234DRG4  
SN65HVD235D  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD235DG4  
SN65HVD235DR  
SN65HVD235DRG4  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2006  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
TAPE AND REEL INFORMATION  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
Device  
Package Pins  
Site  
FMX  
FMX  
FMX  
Reel  
Diameter Width  
(mm)  
Reel  
A0 (mm)  
6.4  
B0 (mm)  
5.2  
K0 (mm)  
2.1  
P1  
W
Pin1  
(mm) (mm) Quadrant  
(mm)  
SN65HVD233DR  
SN65HVD234DR  
SN65HVD235DR  
D
D
D
8
8
8
330  
0
8
8
8
12 PKGORN  
T1TR-MS  
P
330  
330  
0
0
6.4  
5.2  
2.1  
12 PKGORN  
T1TR-MS  
P
6.4  
5.2  
2.1  
12 PKGORN  
T1TR-MS  
P
TAPE AND REEL BOX INFORMATION  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
SN65HVD233DR  
SN65HVD234DR  
SN65HVD235DR  
D
D
D
8
8
8
FMX  
FMX  
FMX  
342.9  
342.9  
342.9  
336.6  
336.6  
336.6  
20.6  
20.6  
20.6  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
Pack Materials-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

SN65HVD235DRG4

3.3V CAN with Standby Mode, Autobaud Loop-back 8-SOIC -40 to 125
TI

SN65HVD235QDRQ1

3.3V 汽车类 CAN 总线收发器 | D | 8 | -40 to 125
TI

SN65HVD23D

EXTENDED COMMON-MODE RS-485 TRANSCEIVERS
TI

SN65HVD23DG4

EXTENDED COMMON-MODE RS-485 TRANSCEIVERS
TI

SN65HVD23DR

EXTENDED COMMON-MODE RS-485 TRANSCEIVERS
TI

SN65HVD23DRG4

EXTENDED COMMON-MODE RS-485 TRANSCEIVERS
TI

SN65HVD23P

EXTENDED COMMON-MODE RS-485 TRANSCEIVERS
TI

SN65HVD23PE4

EXTENDED COMMON-MODE RS-485 TRANSCEIVERS
TI

SN65HVD23_10

Extended Common-Mode RS-485 Transceivers
TI

SN65HVD24

EXTENDED COMMON-MODE RS-485 TRANSCEIVERS
TI

SN65HVD24D

EXTENDED COMMON-MODE RS-485 TRANSCEIVERS
TI

SN65HVD24DG4

EXTENDED COMMON-MODE RS-485 TRANSCEIVERS
TI