SN65HVD33 [TI]

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS; 3.3V全双工RS - 485驱动器和接收
SN65HVD33
型号: SN65HVD33
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
3.3V全双工RS - 485驱动器和接收

驱动器
文件: 总21页 (文件大小:1438K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS  
Each driver and receiver has separate input and  
output pins for full-duplex bus communication  
designs. They are designed for balanced  
transmission lines and interoperation with ANSI  
TIA/EIA-485A, TIA/EIA-422-B, ITU-T v.11 and ISO  
8482:1993 standard-compliant devices.  
FEATURES  
1/8 Unit-Load Option Available (Up to 256  
Nodes on the Bus)  
Bus-Pin ESD Protection Exceeds 15 kV HBM  
Optional Driver Output Transition Times for  
Signaling Rates (1) of 1 Mbps, 5 Mbps and 25  
Mbps  
The SN65HVD30, SN65HVD31, SN65HVD32,  
SN65HVD36 and SN65HVD37 are fully enabled with  
no external enabling pins. The SN65HVD36 and  
Low-Current Standby Mode: < 1 µA  
SN65HVD37  
implement  
receiver  
equalization  
Glitch-Free Power-Up and Power-Down  
Protection for Hot-Plugging Applications  
technology for improved performance in long distance  
applications.  
5V Tolerant Inputs  
The SN65HVD33, SN65HVD34, SN65HVD35,  
SN65HVD38, and SN65HVD39 have active-high  
driver enables and active-low receiver enables. A  
very low, less than 1 µA, standby current can be  
achieved by disabling both the driver and receiver.  
The SN65HVD38 and SN65HVD39 implement  
receiver equalization technology for improved  
performance in long distance applications.  
Bus Idle, Open, and Short Circuit Failsafe  
Meets or exceeds the requirements of ANSI  
TIA/EIA-485-A and RS-422 Compatible  
5-V Devices available, SN65HVD50-59  
APPLICATIONS  
Utility Meters  
DTE/DCE Interfaces  
Industrial, Process, and Building Automation  
Point-of-Sale (POS) Terminals and Networks  
All devices are characterized for operation from -40°C  
to +85°C.  
The SN65HVD36 and SN65HVD38 implement  
receiver equalization technology for improved jitter  
performance on differential bus applications with data  
rates up to 20 Mbps at cable lengths up to 160  
meters.  
DESCRIPTION  
The SN65HVD3X devices are 3-state differential line  
drivers and differential-input line receivers that  
operate with 3.3-V power supply.  
The SN65HVD37 and SN65HVD39 implement  
receiver equalization technology for improved jitter  
performance on differential bus applications with data  
rates in the range of 1 to 5 Mbps at cable lengths up  
to 1000 meters.  
(1) The signaling rate of a line is the number of voltage  
transitions that are made per second expressed in the units  
bps (bits per second).  
IMPROVED REPLACEMENT FOR:  
Part Number  
Replace with  
xxx3491  
SN65HVD33:  
Better ESD protection (15kV vs 2kV or not specified) Higher Signaling  
Rate (25Mbps vs 20Mbps) Fractional Unit Load (64 Nodes vs 32)  
MAX3491E  
MAX3076E  
MAX3073E  
MAX3070E  
SN65HVD33:  
SN65HVD33:  
SN65HVD34:  
SN65HVD35:  
Higher Signaling Rate (25Mbps vs 12Mbps) Fractional Unit Load  
(64 Nodes vs 32)  
Higher Signaling Rate (25Mbps vs 16Mbps) Lower Standby Current  
(1 µA vs 10 µA)  
Higher Signaling Rate (5Mbps vs 500kbps) Lower Standby Current  
(1 µA vs 10 µA)  
Higher Signaling Rate (1Mbps vs 250kbps) Lower Standby Current  
(1 µA vs 10 µA)  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
UNLESS OTHERWISE NOTED this document contains  
Copyright © 2005, Texas Instruments Incorporated  
PRODUCTION DATA information current as of publication date.  
Products conform to specifications per the terms of Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated  
circuits be handled with appropriate precautions. Failure to observe proper handling and installation  
procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision  
integrated circuits may be more susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
SN65HVD30, SN65HVD31, SN65HVD32, SN65HVD36,  
SN65HVD37  
SN65HVD33, SN65HVD34, SN65HVD35, SN65HVD38,  
SN65HVD39  
D PACKAGE (TOP VIEW)  
NC  
R
V
V
A
B
Z
Y
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CC  
CC  
V
1
2
3
4
8
7
6
5
A
B
Z
Y
CC  
R
RE  
D
DE  
GND  
D
GND  
GND  
8
8
NC  
2
A
R
7
NC - No internal connection  
B
5
3
Y
D
6
Z
AVAILABLE OPTIONS  
SIGNALING  
RATE  
RECEIVER  
EQUALIZATION  
BASE  
PART NUMBER  
UNIT LOADS  
ENABLES  
SOIC MARKING  
25 Mbps  
5 Mbps  
1 Mbps  
25 Mbps  
5 Mbps  
1 Mbps  
25 Mbps  
5 Mbps  
25 Mbps  
5 Mbps  
1/2  
1/8  
1/8  
1/2  
1/8  
1/8  
1/2  
1/8  
1/2  
1/8  
No  
No  
No  
No  
SN65HVD30  
SN65HVD31  
SN65HVD32  
SN65HVD33  
SN65HVD34  
SN65HVD35  
SN65HVD36  
SN65HVD37  
SN65HVD38  
SN65HVD39  
PREVIEW  
PREVIEW  
PREVIEW  
65HVD33  
65HVD34  
65HVD35  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
2
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted(1)(2)  
UNIT  
VCC  
Supply voltage range, VCC  
–0.3 V to 6 V  
–9 V to 14 V  
–50 to 50 V  
-0.5 V to 7 V  
Internally limited  
11 mA  
Voltage range at any bus terminal (A, B, Y, Z)  
Voltage input, transient pulse through 100 . See Figure 12 (A, B, Y, Z)(3)  
Input voltage range (D, DE, RE)  
VI  
IO  
Continuous total power dissipation  
Output current (receiver output only, R)  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(3) This tests survivability only and the output state of the receiver is not specified.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range unless otherwise noted  
PARAMETER  
MIN NOM  
3.0  
–7(1)  
MAX UNIT  
VCC  
Supply voltage  
Voltage at any bus terminal (separately or common mode)  
3.6  
V
VI or  
VIC  
12  
1/tUI  
SN65HVD30, SN65HVD33, SN65HVD36, SN65HVD38  
25  
5
Signaling rate  
SN65HVD31, SN65HVD34, SN65HVD37, SN65HVD39  
SN65HVD32, SN65HVD35  
Mbps  
1
RL  
Differential load resistance  
High-level input voltage  
Low-level input voltage  
Differential input voltage  
54  
2
60  
VIH  
VIL  
VID  
D, DE, RE  
D, DE, RE  
VCC  
0.8  
12  
0
V
–12  
–60  
–8  
Driver  
IOH  
High-level output current  
mA  
Receiver  
Driver  
60  
8
IOL  
TA  
Low-level output current  
mA  
Receiver  
Ambient still-air temperature  
–40  
85  
°C  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
ELECTROSTATIC DISCHARGE PROTECTION  
PARAMETER  
TEST CONDITIONS  
Bus terminals and GND  
All pins  
MIN  
TYP(1)  
±16  
±4  
MAX  
UNIT  
Human body model  
Human body model(2)  
kV  
Charged-device-model(3)  
All pins  
±1  
(1) All typical values at 25°C with 3.3-V supply.  
(2) Tested in accordance with JEDEC Standard 22, Test Method A114-A.  
(3) Tested in accordance with JEDEC Standard 22, Test Method C101.  
3
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
DRIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
–1.5  
2.5  
TYP(1)  
MAX UNIT  
VI(K)  
Input clamp voltage  
II = –18 mA  
IO = 0  
VCC  
RL = 54 , See Figure 1  
(RS-485)  
RL = 100 , See Figure 1(2)  
(RS-422)  
1.5  
2.0  
2.0  
2.3  
|VOD(SS)  
|
Steady-state differential output voltage  
Change in magnitude of steady-state  
Vtest = –7 V to 12 V,  
See Figure 2  
1.5  
RL = 54 , See Figure 1  
|VOD(SS)  
|
–0.2  
0.2  
differential output voltage between states and Figure 2  
Differential Output Voltage overshoot  
and undershoot  
RL = 54 , CL = 50 pF,  
See Figure 5 and Figure 3  
V
VOD(RING)  
0.05 |VOD(SS)  
|
Peak-to-peak  
HVD30, HVD33,  
common-mode  
HVD36, HVD38  
output voltage  
VOC(PP)  
0.5  
See Figure 4  
HVD31, HVD34,  
HVD37, HVD39,  
HVD32, HVD35  
0.25  
Steady-state common-mode  
output voltage  
VOC(SS)  
1.6  
2.3  
0.05  
90  
See Figure 4  
Change in steady-state common-mode  
output voltage  
VOC(SS)  
–0.05  
VCC = 0 V, VZ or VY = 12 V,  
Other input at 0 V  
VCC = 0 V, VZ or VY = –7 V,  
Other input at 0 V  
–10  
High-impedance state  
output current  
HVD33, HVD34,  
HVD35, HVD38,  
HVD39  
VCC = 5 V or 0 V,  
DE = 0 V  
VZ or VY = 12 V  
IZ(Z) or IY(Z)  
µA  
90  
Other input  
at 0 V  
VCC = 5 V or 0 V,  
DE = 0 V  
–10  
VZ or VY = –7 V  
VZ or VY = –7 V  
VZ or VY = 12 V  
–250  
–250  
0
250  
250  
100  
Other input  
at 0 V  
IZ(S) or IY(S) Short Circuit output Current  
mA  
II  
Input current  
D, DE  
µA  
pF  
Differential output  
capacitance  
VOD = 0.4 sin (4E6πt) + 0.5 V,  
DE at 0 V  
C(OD)  
16  
(1) All typical values are at 25°C and with a 3.3-V supply.  
(2) VCC is 3.3 Vdc ± 5%  
4
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
HVD30, HVD33, HVD36, HVD38  
Propagation delay time,  
low-to-high-level output  
4
25  
10  
38  
175  
9
18  
65  
tPLH  
tPHL  
tr  
HVD31, HVD34, HVD37, HVD39  
HVD32, HVD35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
120  
4
305  
18  
HVD30, HVD33, HVD36, HVD38  
HVD31, HVD34, HVD37, HVD39  
HVD32, HVD35  
Propagation delay time,  
high-to-low-level output  
25  
38  
175  
5
65  
120  
2.5  
20  
305  
12  
HVD30, HVD33, HVD36, HVD38  
HVD31, HVD34, HVD37, HVD39  
HVD32, HVD35  
Differential output signal  
rise time  
RL = 54 , CL = 50 pF,  
See Figure 5  
37  
185  
5
60  
120  
2.5  
20  
300  
12  
HVD30, HVD33, HVD36, HVD38  
HVD31, HVD34, HVD37, HVD39  
HVD32, HVD35  
Differential output signal fall  
time  
tf  
35  
180  
60  
120  
300  
2
HVD30, HVD33, HVD36, HVD38  
HVD31, HVD34, HVD37, HVD39  
HVD32, HVD35  
tsk(p)  
tPZH1  
tPHZ  
tPZL1  
tPLZ  
tPZH2  
tPZL2  
Pulse skew (|tPHL - tPLH|)  
4
7
HVD33, HVD38  
45  
Propagation delay time,  
high-impedance-to-high-  
level output  
HVD34, HVD39  
235  
490  
25  
RL = 110 , RE at 0 V,  
D = 3 V and S1 = Y, or  
D = 0 V and S1 = Z  
See Figure 6  
HVD35  
HVD33, HVD38  
Propagation delay time,  
high-level-to-high-  
HVD34, HVD39  
65  
impedance output  
HVD35  
165  
35  
HVD33, HVD38  
Propagation delay time,  
high-impedance-to-low-level HVD34, HVD39  
190  
490  
30  
RL = 110 , RE at 0 V,  
D = 3 V and S1 = Z, or  
D = 0 V and S1 = Y  
See Figure 7  
output  
HVD35  
HVD33, HVD38  
Propagation delay time,  
low-level-to-high-impedance HVD34, HVD39  
120  
290  
output  
HVD35  
RL = 110 , RE at 3 V,  
D = 3 V and S1 = Y, or  
D = 0 V and S1 = Z  
See Figure 6  
Propagation delay time, standby-to-high-level output  
Propagation delay time, standby-to-low-level output  
4000  
4000  
RL = 110 , RE at 3 V,  
D = 3 V and S1 = Z, or  
D = 0 V and S1 = Y  
See Figure 7  
(1) All typical values are at 25°C and with a 3.3-V supply.  
5
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
Positive-going differential input  
threshold voltage  
VIT+  
VIT-  
IO = –8 mA  
IO = 8 mA  
–0.02  
V
Negative-going differential input  
threshold voltage  
–0.20  
Vhys  
VIK  
Hysteresis voltage (VIT+ - VIT-  
)
50  
mV  
V
Enable-input clamp voltage  
II = –18 mA  
–1.5  
2.4  
VID = 200 mV, IO = –8 mA, See Figure 8  
VID = –200 mV, IO = 8 mA, See Figure 8  
VO  
Output voltage  
V
0.4  
1
High-impedance-state output  
current  
IO(Z)  
VO = 0 or VCC, RE at VCC  
–1  
µA  
VA or VB = 12 V  
0.05  
0.06  
0.10  
0.10  
HVD31, HVD32,  
HVD34, HVD35,  
HVD37, HVD39  
VA or VB = 12 V, VCC = 0 V  
VA or VB = -7 V  
Other input  
at 0V  
mA  
mA  
–0.10  
–0.10  
–0.04  
–0.03  
0.20  
VA or VB = -7 V, VCC = 0 V  
VA or VB = 12 V  
Bus input  
current  
IA or IB  
0.35  
0.40  
VA or VB = 12 V, VCC = 0 V  
VA or VB = -7 V  
0.24  
HVD30, HVD33,  
HVD36, HVD38  
Other input  
at 0 V  
–0.35  
–0.25  
–60  
–0.18  
–0.13  
VA or VB = -7 V, VCC = 0 V  
VIH = 0.8 V or 2 V  
IIH  
Input current, RE  
µA  
pF  
CID  
Differential input capacitance  
HVD30, HVD31,  
VID = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
15  
6.4  
HVD32  
D at 0 V or VCC and No Load  
mA  
HVD36, HVD37  
HVD33  
7.9  
1.8  
2.2  
3.8  
RE at 0 V, D at 0 V or VCC, DE at 0 V,  
No load (Receiver enabled and  
driver disabled)  
HVD34, HVD35  
HVD38, HVD39  
mA  
µA  
HVD33, HVD34,  
HVD35, HVD38,  
HVD39  
RE at VCC, D at VCC, DE at 0 V,  
No load (Receiver disabled and  
driver disabled)  
0.022  
1
ICC  
Supply current  
HVD33  
2.1  
6.5  
3.5  
8.0  
1.8  
6.2  
2.5  
7.0  
RE at 0 V, D at 0 V or VCC, DE at VCC  
No load (Receiver enabled and  
driver enabled)  
,
HVD34, HVD35  
HVD38  
HVD39  
mA  
HVD33  
RE at VCC, D at 0 V or VCC, DE at VCC  
No load (Receiver disabled and  
driver enabled)  
HVD34, HVD35  
HVD38  
HVD39  
(1) All typical values are at 25°C and with a 3.3-V supply.  
6
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
HVD30, HVD33, HVD36, HVD38  
Propagation delay time,  
low-to-high-level output  
26  
45  
tPLH  
tPHL  
tsk(p)  
HVD31, HVD32, HVD34, HVD35,  
HVD37, HVD39  
47  
29  
49  
70  
45  
70  
HVD30, HVD33, HVD36, HVD38  
Propagation delay time,  
high-to-low-level output  
HVD31, HVD32, HVD34, HVD35,  
HVD37, HVD39  
VID = -1.5 V to 1.5 V,  
CL = 15 pF,  
See Figure 9  
HVD30, HVD33, HVD36, HVD37,  
HVD38, HVD39  
7
Pulse skew (|tPHL - tPLH|)  
HVD31, HVD34, HVD32, HVD35  
10  
ns  
5
tr  
Output signal rise time  
Output signal fall time  
tf  
6
20  
tPHZ  
tPZH1  
tPZH2  
tPLZ  
tPZL1  
tPZL2  
Output disable time from high level  
DE at 3 V  
DE at 0 V  
DE at 3 V  
DE at 0 V  
CL = 15 pF  
See Figure 10  
Output enable time to high level  
20  
Propagation delay time, standby-to-high-level output  
Output disable time from low level  
4000  
20  
CL = 15 pF  
See Figure 11  
Output enable time to low level  
20  
Propagation delay time, standby-to-low-level output  
4000  
(1) All typical values are at 25°C and with a 3.3-V supply  
RECEIVER EQUALIZATION CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
DEVICE  
MIN  
TYP(1)  
MAX  
UNIT  
0 m  
HVD36, HVD38  
HVD33(2)  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
100 m  
HVD36, HVD38  
HVD33(2)  
25 Mbps  
150 m  
200 m  
200 m  
250 m  
300 m  
500 m  
HVD36, HVD38  
HVD33(2)  
HVD36, HVD38  
HVD33(2)  
HVD36, HVD38  
HVD33(2)  
Pseudo-random NRZ  
Peak-to-peak  
tj(pp) eye-pattern  
jitter  
10 Mbps  
code with a bit pattern  
length o 216-1, Belden  
3105A cable  
HVD36, HVD38  
HVD33(2)  
ns  
HVD36, HVD38  
HVD34(2)  
5 Mbps  
3 Mbps  
1 Mbps  
HVD37, HVD39  
HVD33(2)  
HVD34(2)  
500 m  
HVD36, HVD38  
HVD37, HVD39  
HVD34(2)  
1000 m  
HVD37, HVD39  
(1) All typical values are at VCC = 5 V, and temperature = 25°C.  
(2) The HVD33 and the HVD34 do not have receiver equalization but are specified for comparison.  
7
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
DEVICE POWER DISSIPATION - PD  
TEST CONDITIONS  
DEVICE  
MIN  
TYP  
MAX  
UNIT  
RL = 60 , CL = 50 pF, Input to D a 50% duty  
cycle square wave at indicated signaling rate  
TA = 85°C  
HVD30, HVD36 (25 Mbps)  
HVD31, HVD37 (5 Mbps)  
HVD32 (1 Mbps)  
197  
213  
193  
197  
193  
248  
mW  
RL = 60 , CL = 50 pF, DE at VCC, RE at 0 V,  
Input to D a 50% duty cycle square wave at  
indicated signaling rate TA = 85°C  
HVD33, HVD38 (25 Mbps)  
HVD34, HVD39 (5 Mbps)  
HVD35 (1 Mbps)  
8
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
I
Y
DE  
I
I
Y
V
OD  
R
0 or 3 V  
L
Z
I
Z
V
I
V
Z
V
Y
Figure 1. Driver VOD Test Circuit and Voltage and Current Definitions  
375 ±1%  
V
CC  
DE  
Y
D
V
OD  
60 ±1%  
0 or 3 V  
+
7 V < V  
< 12 V  
(test)  
Z
_
375 ±1%  
Figure 2. Driver VOD With Common-Mode Loading Test Circuit  
V
OD(SS)  
V
OD(RING)  
0 V Differential  
V
OD(RING)  
-V  
OD(SS)  
Figure 3. VOD(RING) Waveform and Definitions  
VOD(RING) is measured at four points on the output waveform, corresponding to overshoot and undershoot from  
theVOD(H) and VOD(L) steady state values.  
V
Y
Y
V
CC  
27 ± 1%  
V
Z
DE  
Z
Y
D
V
OC(PP)  
V  
Input  
OC(SS)  
27 ± 1%  
V
OC  
Z
V
OC  
C
L
= 50 pF ±20%  
C
L
Includes Fixture and  
Instrumentation Capacitance  
Input: PRR = 500 kHz, 50% Duty Cycle,t <6ns, t <6ns, Z = 50  
r f O  
Figure 4. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
9
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION (continued)  
Y
»
W
Z
W
»
W
Figure 5. Driver Switching Test Circuit and Voltage Waveforms  
3 V  
D
S1  
Y
3 V  
0 V  
1.5 V  
Z
1.5 V  
Y
V
I
S1  
D
0 V  
V
0.5 V  
O
t
Z
PZH(1 & 2)  
V
OH  
DE  
R
= 110 W  
L
V
2.3 V  
O
C = 50 pF  
L
±1%  
~ 0 V  
Input  
Generator  
V
I
50 W  
±20%  
t
PHZ  
Generator: PRR = 500kHz, 50% Duty Cycle, t <6 ns, t < 6ns, Z = 50 W  
0
r
f
C
Includes Fixture and Instrumentation Capacitance  
L
Figure 6. Driver High-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms  
V
CC  
D
S1  
Z
3 V  
0 V  
R
L
= 110  
3 V  
Y
± 1%  
Y
V
I
1.5 V  
1.5 V  
S1  
D
V
O
0 V  
Z
t
t
PZL(1&2)  
PLZ  
DE  
V
CC  
C
L
= 50 pF ±20%  
Input  
V
I
50  
0.5 V  
Generator  
C
L
Includes Fixture  
V
O
2.3 V  
and Instrumentation  
Capacitance  
V
OL  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50  
r f o  
Figure 7. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms  
I
A
A
I
O
R
V
A
V
ID  
B
V
B
V
IC  
V
O
I
B
V
A
+ V  
B
RE  
2
I
I
V
I
Figure 8. Receiver Voltage and Current Definitions  
10  
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION (continued)  
A
3 V  
V
O
R
Input  
1.5 V  
1.5 V  
V
I
V
I
50  
Generator  
B
0 V  
1.5 V  
C = 15 pF  
L
t
t
PLH  
PHL  
±20%  
RE  
V
OH  
0 V  
90% 90%  
V
O
1.5 V  
10%  
1.5 V  
C
Includes Fixture and Instrumentation Capacitance  
L
10%  
V
OL  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50  
r f o  
t
t
r
f
Figure 9. Receiver Switching Test Circuit and Voltage Waveforms  
V
CC  
A
3 V  
1.5 V  
0 V  
V
A
S1  
1 kW ±1%  
V
R
O
V
1.5V  
1.5V  
I
B
C
= 15 pF  
B
0V  
L
RE  
±20%  
t
t
PHZ  
PZH(1 & 2)  
V
Input  
Generator  
OH  
50 W  
I
1.5 V  
0.5V  
~0 V  
V
C
Includes Fixture and  
O
L
Instrumentation Capacitance  
Generator: PRR = 500kHz, 50%, Duty Cycle, t <6 ns, t < 6ns, Z = 50 W  
r f 0  
Figure 10. Receiver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms  
V
CC  
A
3 V  
0 V  
A
S1  
1 k W ±1%  
V
R
O
V
1.5V  
1.5V  
I
B
1.5 V  
C
= 15 pF  
B
0V  
L
RE  
±20%  
t
PZL(1 & 2)  
t
PLZ  
V
Input  
Generator  
CC  
V
50 W  
I
1.5 V  
V
0.5V  
O
C
Includes Fixture  
L
V
and Instrumentation  
Capacitance  
OL  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t < 6ns, Z = 50 W  
r f 0  
Figure 11. Receiver Enable Time From Standby (Driver Disabled)  
0 V or 3 V  
A
DE  
Y
D
R
B
Z
100 W  
±1%  
100 W  
±1%  
RE  
Pulse Generator  
15 ms duration  
1% Duty Cycle  
t , t £ 100 ns  
0 V or 3 V  
+
+
-
-
r
f
Figure 12. Test Circuit, Transient Over Voltage Test  
11  
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
DEVICE INFORMATION  
LOW-POWER SHUTDOWN MODE  
When both the driver and receiver are disabled (DE low and RE high) the device is in shutdown mode. If the  
enable inputs are in this state for less than 60 ns, the device does not enter shutdown mode. This guards against  
inadvertently entering shutdown mode during driver/receiver enabling. Only when the enable inputs are held in  
this state for 300 ns or more, the device is assured to be in shutdown mode. In this low-power shutdown mode,  
most internal circuitry is powered down, and the supply current is typically less than 1 nA. When either the driver  
or the receiver is re-enabled, the internal circuitry becomes active.  
12  
A
2
R
11  
B
3
RE  
Low-Power  
Shutdown  
4
DE  
9
Y
5
D
10  
Z
Figure 13. Low-Power Shutdown Logic Diagram  
If only the driver is re-enabled (DE transitions to high) the driver outputs are driven according to the D input after  
the enable times given by tPZH2 and tPZL2 in the driver switching characteristics. If the D input is open when the  
driver is enabled, the driver outputs defaults to A high and B low, in accordance with the driver failsafe feature.  
If only the receiver is re-enabled (RE transitions to low) the receiver output is driven according to the state of the  
bus inputs (A and B) after the enable times given by tPZH2 and tPZL2 in the receiver switching characteristics. If  
there is no valid state on the bus the receiver responds as described in the failsafe operation section.  
If both the receiver and driver are re-enabled simultaneously, the receiver output is driven according to the state  
of the bus inputs (A and B) and the driver output is driven according to the D input. Note that the state of the  
active driver affects the inputs to the receiver. Therefore, the receiver outputs are valid as soon as the driver  
outputs are valid.  
12  
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
DEVICE INFORMATION (continued)  
FUNCTION TABLES  
SN65HVD33, SN65HVD34, SN65HVD35, SN65HVD38,  
SN65HVD39 DRIVER  
INPUTS  
OUTPUTS  
D
H
DE  
Y
H
L
Z
L
H
L
H
L or open  
H
H
Z
H
X
Z
L
Open  
SN65HVD33, SN65HVD34, SN65HVD35, SN65HVD38,  
SN65HVD39 RECEIVER  
DIFFERENTIAL INPUTS  
VID = VA - VB  
ENABLE  
RE  
OUTPUT  
R
V
ID –0.2 V  
L
L
?
–0.2 V < VID < –0.02 V  
–0.02 V VID  
X
L
L
H
Z
H
H
H
H or open  
Open Circuit  
Idle circuit  
L
L
L
Short Circuit, VA=VB  
SN65HVD30, SN65HVD31, SN65HVD32, SN65HVD36,  
SN65HVD37 DRIVER  
OUTPUTS  
INPUT  
D
Y
Z
H
L
H
L
L
L
H
H
Open  
SN65HVD30, SN65HVD31, SN65HVD32, SN65HVD36,  
SN65HVD37 RECEIVER  
DIFFERENTIAL INPUTS  
VID = VA - VB  
OUTPUT  
R
V
ID –0.2 V  
L
?
–0.2 V < VID < –0.02 V  
–0.02 V VID  
H
H
H
H
Open Circuit  
Idle circuit  
Short Circuit, VA=VB  
13  
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
RE Input  
D and DE Input  
VCC  
VCC  
130 kW  
470 W  
470 W  
Input  
Input  
9 V  
9 V  
125 kW  
A Input  
B Input  
VCC  
VCC  
R1  
R1  
22 V  
R3  
22 V  
R3  
Input  
Input  
R2  
22 V  
R2  
22 V  
R Output  
Y and Z Outputs  
VCC  
VCC  
16 V  
5 W  
Output  
Output  
16 V  
9 V  
R1/R2  
R3  
SN65HVD30, SN65HVD33, SN65HVD36, SN65HVD38  
9 kΩ  
45 kΩ  
180 kΩ  
SN65HVD31, SN65HVD32, SN65HVD34, SN65HVD35 SN65HVD37, 36 kΩ  
SN65HVD38, SN65HVD39  
14  
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
TYPICAL CHARACTERISTICS  
HD30, HD33 RMS Supply Current  
HD31, HD34 RMS Supply Current  
vs  
vs  
Signaling Rate  
Signaling Rate  
55  
60  
55  
50  
45  
40  
35  
30  
T
A
=25°C  
R
L
= 54 W  
T
A
=25°C  
R = 54 W  
L
RE = V  
C
= 50 pF  
RE = V  
C = 50 pF  
L
CC  
L
CC  
DE = V  
DE = V  
CC  
CC  
50  
45  
40  
35  
30  
V
= 3.3 V  
V
= 3.3 V  
CC  
CC  
0
5
10  
15  
20  
25  
0
1
2
3
4
5
Signaling Rate - Mbps  
Signaling Rate - Mbps  
Figure 14.  
Figure 15.  
HD32, HD35 RMS Supply Current  
vs  
Signaling Rate  
60  
55  
50  
45  
40  
35  
T
A
=25°C  
R = 54 W  
L
RE = V  
C = 50 pF  
L
CC  
DE = V  
CC  
V
= 3.3 V  
CC  
30  
0
0.2  
0.4  
0.6  
0.8  
1
Signaling Rate - Mbps  
Figure 16.  
15  
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
TYPICAL CHARACTERISTICS (continued)  
HVD30, HVD33  
Bus Input Current  
vs  
HVD31, HVD32, HVD34, HVD35  
Bus Input Current  
vs  
Input Voltage  
Input Voltage  
250  
60  
40  
20  
0
T
A
= 25°C  
T
A
= 25°C  
RE = 0 V  
RE = 0 V  
200  
150  
100  
50  
DE = 0 V  
DE = 0 V  
V
= 3.3 V  
V
= 3.3 V  
CC  
0
CC  
-50  
-20  
-40  
-60  
-100  
-150  
-200  
-7  
-4  
-1  
2
5
8
11  
14  
-7  
-4  
-1  
2
5
8
11  
14  
V - Bus Input Voltage - V  
I
V - Bus Input Voltage - V  
I
Figure 17.  
Figure 18.  
Driver Low-Level Output Current  
vs  
Driver High-Level Output Current  
vs  
Low-Level Output Voltage  
High-Level Output Voltage  
0.01  
-0.01  
-0.03  
-0.05  
-0.07  
-0.09  
-0.11  
-0.13  
0.14  
0.12  
0.1  
V
CC  
= 3.3 V  
V
= 3.3 V  
CC  
DE = V  
CC  
DE = V  
CC  
D = 0 V  
D = 0 V  
0.08  
0.06  
0.04  
0.02  
0
-0.02  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
V
- Low-Level Output Voltage - V  
V
- High-Level Output Voltage - V  
OL  
OH  
Figure 19.  
Figure 20.  
16  
SN65HVD30-SN65HVD35  
SN65HVD36-SN65HVD39  
www.ti.com  
SLLS665SEPTEMBER 2005  
TYPICAL CHARACTERISTICS (continued)  
Driver Differential Output Voltage  
Driver Output Current  
vs  
vs  
Free-Air Temperature  
Supply Voltage  
2.2  
40  
35  
30  
25  
20  
15  
10  
5
V
= 3.3 V  
CC  
T
A
= 25°C  
DE = V  
CC  
R
= 54 W  
L
D = V  
CC  
D = V  
CC  
DE = V  
2.1  
2.0  
1.9  
1.8  
CC  
V
= 3.3 V  
CC  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
-40  
-15  
10  
35  
60  
85  
V
Supply Voltage - V  
T
A
- Free Air Temperature - °C  
CC  
Figure 21.  
Figure 22.  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Sep-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
Drawing  
SN65HVD33D  
SN65HVD33DR  
SN65HVD34D  
SN65HVD34DR  
SN65HVD35D  
SN65HVD35DR  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
D
D
D
D
D
D
14  
14  
14  
14  
14  
14  
50  
2500  
50  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
50  
50  
2500  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
SN65HVD33D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD33DG4  
SN65HVD33DR  
SN65HVD33DRG4  
SN65HVD34D  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
D
D
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD34DG4  
SN65HVD34DR  
SN65HVD34DRG4  
SN65HVD35D  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD35DG4  
SN65HVD35DR  
SN65HVD35DRG4  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SN65HVD33-EP

增强型产品 3.3V 全双工 RS-485 驱动器和接收器
TI

SN65HVD33D

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD33DG4

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD33DR

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD33DRG4

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD33MDREP

3.3-V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD33MDREPG4

3.3-V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD33RHLR

带使能信号的 3V 全双工 RS-485 驱动器和接收器 | RHL | 20 | -40 to 85
TI

SN65HVD33RHLT

暂无描述
TI

SN65HVD34

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD34D

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD34DG4

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI