SN65HVS881PWP [TI]

具有诊断功能的 34V、8 通道数字输入串行器 | PWP | 28 | -40 to 125;
SN65HVS881PWP
型号: SN65HVS881PWP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有诊断功能的 34V、8 通道数字输入串行器 | PWP | 28 | -40 to 125

驱动 光电二极管 接口集成电路 线路驱动器或接收器 驱动程序和接口
文件: 总22页 (文件大小:825K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65HVS881  
www.ti.com................................................................................................................................................................................................... SLAS642MARCH 2009  
INDUSTRIAL 8-DIGITAL-INPUT SERIALIZER WITH DIAGNOSTICS  
1
FEATURES  
Cascadable in Multiples of Eight Inputs  
SPI-Compatible Interface  
2
Eight Inputs  
High Input Voltage – up to 34 V  
Regulated 5-V Output for External Isolator  
Selectable Debounce Filters – 0 ms to 3 ms  
Flexible Input Current Limit: 0.2 to 5.2 mA  
Field Pins Protected to 15-kV HBM ESD  
APPLICATIONS  
Sensor Inputs for Industrial Automation and  
Process Control  
High Channel Count Digital Input Modules for  
PC and PLC Systems  
Decentralized I/O Modules  
Motion Control Systems  
Diagnostics:  
Parity Check  
Undervoltage Indication  
Overtemperature Indication  
Output Drivers for External Status LEDs  
DESCRIPTION  
The SN65HVS881 is an eight channel, digital-input serializer for high-channel density digital input modules in  
industrial automation. In combination with galvanic isolators the device completes the interface between the high  
voltage signals on the field-side and the low-voltage signals on the controller side. Input signals are  
current-limited and then validated by internal debounce filters.  
With the addition of a few external components, the input switching characteristics can be configured in  
accordance with IEC61131-2 for Type 1, 2 and 3 sensor switches.  
Upon the application of load and clock signals, input data is latched in parallel into the shift register and  
afterwards clocked out serially.  
Cascading of multiple devices is possible by connecting the serial output of the leading device with the serial  
input of the following device, enabling the design of high-channel count input modules. Multiple devices can be  
cascaded through a single serial port, reducing both the isolation channels and controller inputs required.  
Input status can be visually indicated via constant current LED outputs. The current limit on the inputs is set by a  
single external precision resistor. An integrated voltage regulator provides a 5V output to supply low-power  
isolators. An on-chip temperature sensor provides diagnostic information for graceful shutdown and system  
safety. An internal parity check for odd parity ensures trustworthy transmission of serial data to the system  
controller.  
The SN65HVS881 is available in a 28-pin PWP PowerPAD™ package, allowing for efficient heat dissipation. The  
device is characterized for operation at temperatures from –40°C to 125°C  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009, Texas Instruments Incorporated  
SN65HVS881  
SLAS642MARCH 2009................................................................................................................................................................................................... www.ti.com  
DB0  
DB1  
IP0  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
GND  
SIP  
Voltage  
Regulator  
2
VCC  
5V out  
3
LD  
Debounce Select  
DB0 : DB1  
2
RE0  
IP1  
4
CLK  
CE  
Serial Input  
5V  
8
5
Control Inputs  
LD, CE, CLK  
3
RE1  
IP2  
6
SOP  
IP7  
Field Inputs  
IP0 : IP7  
8
7
RE2  
IP3  
8
RE7  
IP6  
9
LED Outputs  
RE0 : RE7  
8
RE3  
IP4  
10  
11  
12  
13  
14  
RE6  
IP5  
RE4  
RLIM  
VCC  
RE5  
HOT  
5VOP  
I
REF Adj: RLIM  
Serial Output  
Field Ground  
FUNCTIONAL BLOCK DIAGRAM  
Voltage  
Regulator  
5VOP  
HOT  
Thermal  
Sensor  
VCC  
5V  
Supply  
Monitor  
GND  
RLIM  
DB0  
DB1  
SIP  
Adj. Current  
Thresholds  
Debounce  
Select  
RE0  
IP0  
Current  
Sense  
Debounce  
Filter  
&
LD  
Voltage  
Sense  
CE  
Channel 0  
CLK  
Parity  
Generator  
RE7  
IP7  
Channel 7  
SOP  
2
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVS881  
SN65HVS881  
www.ti.com................................................................................................................................................................................................... SLAS642MARCH 2009  
TERMINAL FUNCTIONS  
TERMINAL  
DESCRIPTION  
PIN NO.  
NAME  
1, 2  
DB0, DB1  
Debounce select inputs  
Input channel x  
3, 5, 7, 9,  
11, 18, 20, 22  
IPx  
4, 6, 8, 10,  
12, 17, 19, 21  
REx  
Return path x (LED drive)  
13  
14  
15  
16  
23  
24  
25  
26  
27  
28  
RLIM  
VCC  
Current limiting resistor  
Field supply voltage  
5VOP  
HOT  
SOP  
CE  
5-V output to supply low-power isolators  
Active low over-temperature indication  
Serial data output  
Clock enable input  
CLK  
LD  
Serial clock input  
Load pulse input  
SIP  
Serial data input  
GND  
Field ground  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): SN65HVS881  
SN65HVS881  
SLAS642MARCH 2009................................................................................................................................................................................................... www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
–0.3 to 36  
–0.5 to 36  
–0.5 to 6  
±8  
UNIT  
V
VCC  
VIPx  
VID  
IO  
Field power input  
Field digital inputs  
Voltage at any logic input  
Output current  
IPx  
V
DB0, DB1, CLK, SIP, CE, LD  
V
HOT, SOP  
All pins  
mA  
±4  
Human-Body Model(2)  
kV  
IPx, VCC  
All pins  
±15  
VESD  
Electrostatic discharge  
Charged-Device Model(3)  
Machine Model(4)  
±1  
kV  
V
All pins  
±100  
PTOT  
TJ  
Continuous total power dissipation See Thermal Characteristics Table  
Junction temperature  
170  
°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) JEDEC Standard 22, Method A114-A.  
(3) JEDEC Standard 22, Method C101  
(4) JEDEC Standard 22, Method A115-A  
THERMAL CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
θJA Junction-to-air thermal resistance  
High-K JEDEC thermal resistance model  
35  
°C/W  
Junction-to-board thermal  
resistance  
θJB  
15  
°C/W  
Junction-to-case thermal  
resistance  
θJC  
4.27  
°C/W  
mW  
IP0-IP7 = VCC = 34 V  
2970  
2600  
2020  
890  
ICC and IIP-LIM = worst case with  
RLIM = 25 k, ILOAD = 50 mA on 5VOP,  
RE0-RE7 = GND, fIP = 100 MHz  
IP0-IP7 = VCC = 30 V  
IP0-IP7 = VCC = 24 V  
IP0-IP7 = VCC = 12 V  
PD Device power dissipation  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM MAX UNIT  
VCC  
VIPL  
VIPH  
VIL  
Field supply voltage  
10  
0
34  
4
V
V
Field input low-state input voltage  
Field input high-state input voltage  
Logic low-state input voltage  
Logic high-state input voltage  
Current limiter resistor  
5.5  
0
34  
V
0.8  
5.5  
500  
1
V
VIH  
2.0  
17  
0
V
RLIM  
25  
kΩ  
Mbps  
(1)  
fIP  
Input data rate (each field input)  
VCC 34 V  
VCC 27 V  
VCC 18 V  
–40  
–40  
–40  
85  
TA  
Free-air temperature, see Thermal Characteristics  
105  
125  
150  
°C  
°C  
TJ  
Junction temperature  
(1) Maximum data rate corresponds to 0 ms debounce time, (DB0 = open, DB1 = GND), and RIN = 0 Ω  
4
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVS881  
SN65HVS881  
www.ti.com................................................................................................................................................................................................... SLAS642MARCH 2009  
ELECTRICAL CHARACTERISTICS  
Over full-range of recommended operating conditions, unless otherwise noted  
PARAMETER  
TERMINAL  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
FIELD INPUTS  
Low-level device input threshold  
voltage  
VTH–(IP)  
4.0  
4.3  
High-level device input threshold  
voltage  
IP0–IP7  
RLIM = 25 kΩ  
V
VTH+(IP)  
VHYS(IP)  
VTH–(IN)  
5.2  
0.9  
8.4  
5.5  
10  
18  
Device input hysteresis  
Low-level field input threshold  
voltage  
6
Measured at 18 V < VCC <30 V,  
field side of RIN = 1.2 k± 5%,  
High-level field input threshold  
voltage  
V
V
VTH+(IN)  
9.4  
1
RIN  
RLIM = 25 k, TA 85 °C  
VHYS(IN)  
VTH– (VCC)  
Field input hysteresis  
Low-level VCC-monitor threshold  
voltage  
15  
16.05  
High-level VCC-monitor threshold  
voltage  
VCC  
VTH+ (VCC)  
16.8  
VHYS (VCC)  
RIP  
VCC-monitor hysteresis  
Input resistance  
0.75  
0.63  
3.6  
0
IP0–IP7  
IP0–IP7  
3 V < VIPx < 6 V, RLIM = 25 k  
RLIM = 25 kΩ  
0.2  
1.1  
4
kΩ  
IIP-LIM  
Input current limit  
3.15  
mA  
DB0 = open, DB1 = GND  
DB0 = GND, DB1 = open  
DB0 = DB1 = open  
tDB  
Debounce times of input channels  
RE on-state current  
IP0–IP7  
1
ms  
3
IRE-on  
RE0–RE7  
RLIM = 25 k, REx = GND  
2.8  
3.15  
3.5  
8.7  
mA  
FIELD SUPPLY  
IP0 to IP7 = VCC, 5VOP = open,  
REX = GND, All logic inputs open  
ICC(VCC)  
Supply current, no load  
VCC  
mA  
5V REGULATED OUTPUT  
10V < VCC < 34V, no load  
10V < VCC < 34V, IL = 5mA  
10V < VCC < 34V, IL = 20mA,  
4.5  
4.5  
5
5
5.5  
5.5  
VO(5V)  
Linear regulator output voltage  
V
4.5  
4.5  
5
5.5  
5.5  
5VOP  
T
A 105°C  
10V < VCC < 34V, IL = 50 mA,  
A 85°C  
5
T
ILIM(5V)  
Linear regulator output current limit  
Linear regulation  
115  
mA  
ΔV5/ΔVCC  
5VOP, VCC 10V < VCC < 34V, IL = 5 mA  
2
mV/V  
LOGIC INPUT AND OUTPUTS  
VOL  
VOH  
Logic low-level output voltage  
IOL = 20 µA  
SOP, HOT  
0.4  
V
V
Logic high-level output voltage  
IOH = –20 µA  
4
DB0, DB1,  
SIP,  
IIL  
Logic input leakage current  
–50  
50  
µA  
LD, CE, CLK  
Over-temperature indication  
(internal)  
TOVER  
TSHDN  
HOT  
150  
170  
°C  
°C  
Shutdown temperature (internal)  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): SN65HVS881  
SN65HVS881  
SLAS642MARCH 2009................................................................................................................................................................................................... www.ti.com  
TIMING REQUIREMENTS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN TYP MAX  
UNIT  
ns  
tW1  
CLK pulse duration  
LD pulse duration  
See Figure 6  
See Figure 4  
See Figure 7  
See Figure 7  
See Figure 8  
See Figure 5  
See Figure 6  
4
6
4
2
4
2
tW2  
ns  
tSU1  
tH1  
SIP to CLK setup time  
SIP to CLK hold time  
ns  
ns  
tSU2  
tREC  
fCLK  
Falling edge to rising edge (CE to CLK) setup time  
LD to CLK recovery time  
ns  
ns  
Clock pulse frequency  
DC  
100  
MHz  
SWITCHING CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
10  
UNIT  
ns  
tPLH1, tPHL1  
tPLH2, tPHL2  
tr, tf  
CLK to SOP  
CL = 15 pF, see Figure 6  
CL = 15 pF, see Figure 4  
CL = 15 pF, see Figure 6  
LD to SOP  
14  
ns  
Rise and fall times  
5
ns  
6
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVS881  
SN65HVS881  
www.ti.com................................................................................................................................................................................................... SLAS642MARCH 2009  
INPUT CHARACTERISTICS  
30  
R
= 1.2 kW  
IN  
25  
20  
15  
10  
5
a) I  
b) I  
c) I  
= 2.5 mA (R  
= 36.1 kW)  
LIM  
IP-LIM  
IP-LIM  
IP-LIM  
a)  
b)  
c)  
= 3 mA (R  
= 30.1 kW)  
= 24.9 kW)  
LIM  
= 3.6 mA (R  
LIM  
Off  
On  
Field Input Thresholds  
2.5 3.5  
0
0
0.5  
1
1.5  
2
3
4
I
/mA  
IN  
Figure 1. Typical Input Characteristic  
102  
101.5  
101  
9.6  
V 24 = 24 V,  
= 24 V,  
V
TH+ (IN)  
V
IN  
9.4  
R
R
= 1.2 kW,  
IN  
= 24.9 kW  
LIM  
9.2  
9
100.5  
100  
99.5  
99  
8.8  
8.6  
V
TH- (IN)  
8.4  
8.2  
8
V 24 = 24 V,  
= 1.2 kW,  
R
98.5  
98  
IN  
R
= 24.9 kW  
LIM  
-45 -35 -25 -15 -5  
T
5 15 25 35 45 55 65 75 85 95  
- Free-Air Temperature - °C  
-45 -35 -25 -15 -5  
T
5 15 25 35 45 55 65 75 85 95  
- Free-Air Temperature - °C  
A
A
Figure 2. Typical Current Limiter Variation vs Ambient  
Temperature  
Figure 3. Typical Limiter Input Threshold Voltage Variation  
vs Ambient Temperature  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): SN65HVS881  
SN65HVS881  
SLAS642MARCH 2009................................................................................................................................................................................................... www.ti.com  
PARAMETER MEASUREMENT INFORMATION  
Waveforms  
For the complete serial interface timing, refer to Figure 21.  
t
W2  
LD  
LD  
t
REC  
t
t
PHL2  
PLH2  
CLK  
SOP  
Figure 4. Parallel – Load Mode  
Figure 5. Serial – Shift Mode  
1/f  
Valid  
CLK  
t
w1  
SIP  
CLK  
SOP  
t
t
H1  
SU1  
t
t
PHL1  
PLH1  
CLK  
t
r
t
f
Figure 6. Serial – Shift Mode  
Figure 7. Serial – Shift Mode  
CLK  
t
SU2  
CLK Inhibited  
CE  
Figure 8. Serial – Shift Clock Inhibit Mode  
8
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVS881  
SN65HVS881  
www.ti.com................................................................................................................................................................................................... SLAS642MARCH 2009  
VOLTAGE REGULATOR PERFORMANCE CHARACTERISTICS  
5
6
4
2
I
= 0 mA  
I
= 5 mA,  
LOAD  
LOAD  
= 27°C  
T
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
A
0
-2  
-4  
-6  
-8  
4.965  
4.960  
-10  
0
5
10  
V
15  
20  
- Input Voltage - V  
25  
30  
35  
-45 -35 -25 -15 -5  
T
5
15 25 35 45 55 65 75 85 95  
- Free-Air Temperature - °C  
A
IN  
Figure 9. Line Regulation  
Figure 10. Output Voltage vs Ambient Temperature  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
R
= 100 W  
LOAD  
25  
0
0
5
10  
V
15  
20  
30  
35  
- Input Voltage - V  
IN  
Figure 11. Output Voltage vs Input Voltage  
R
IN  
IPx  
I
IN  
V
SN65HVS881  
FGND  
TH(IP)  
V
TH(IN)  
Figure 12. On/Off Threshold Voltage Measurements  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): SN65HVS881  
SN65HVS881  
SLAS642MARCH 2009................................................................................................................................................................................................... www.ti.com  
DEVICE INFORMATION  
Digital Inputs  
V-Ref  
5V  
I
Mirror  
LIM  
n = 72  
I
IN  
IPx  
I
I
REF  
LIM  
Limiter  
= I  
R
LIM  
I
INmax LIM  
Figure 13. Digital Input Stage  
Each digital input operates as a controlled current sink limiting the input current to a maximum value of ILIM. The  
current limit is derived from the reference current via ILIM = n × IREF, and IREF is determined by IREF = VREF/RLIM  
Thus, changing the current limit requires the change of RLIM to a different value via: RLIM = n × VREF/ILIM  
.
.
While the device is specified for a current limit of 3.6 mA, (via RLIM = 25 k), it is easy to lower the current limit to  
further reduce the power consumption. For example, for a current limit of 2.5 mA simply calculate:  
90  
90  
R
=
=
= 36 kΩ  
LIM  
I
2.5 mA  
LIM  
Debounce Filter  
The HVS881 applies a simple analog/digital filtering technique to remove unintended signal transitions due to  
contact bounce or other mechanical effects. Any new input (either low or high) must be present for the duration  
of the selected debounce time to be latched into the shift register as a valid state.  
The logic signal levels at the control inputs, DB0 and DB1 of the internal Debounce-Select logic determine the  
different debounce times listed in the following truth table  
Table 1. Debounce Times  
DB1  
Open  
Open  
DB0  
Open  
GND  
FUNCTION  
3 ms delay  
1 ms delay  
0 ms delay  
(filter bypassed)  
GND  
GND  
Open  
GND  
Reserved  
10  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVS881  
SN65HVS881  
www.ti.com................................................................................................................................................................................................... SLAS642MARCH 2009  
5V  
IPx  
REF  
REx  
R
LIM  
FGND  
Figure 14. Equivalent Input Diagram  
Shift Register  
The conversion from parallel input- to serial output data is performed by an eight channel parallel-in serial-out  
shift register. Parallel-in access is provided by the internal inputs, PIP0–PIP7 that are enabled by a low level at  
the load input (LD). When clocked, the latched input data shift towards the serial output (SOP). The shift register  
also provides a clock-enable function.  
Clocking is accomplished by a low-to-high transition of the clock (CLK) input while LD is held high and the clock  
enable (CE) input is held low. Parallel loading is inhibited when /LD is held high. The parallel inputs to the  
register are enabled while LD is low independently of the levels of the CLK, CE, or serial (SIP) inputs.  
SIP  
SOP  
D
Q
S
D
Q
S
D
Q
S
D
Q
S
D
Q
S
D
Q
S
D
Q
S
CLK  
CE  
Logic  
CP  
R
CP  
R
CP  
R
CP  
R
CP  
R
CP  
R
CP  
R
LD  
PAR  
UVO  
HOT  
PIP 0  
PIP 1  
PIP 6  
PIP 7  
Figure 15. Shift Register Logic Structure  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): SN65HVS881  
SN65HVS881  
SLAS642MARCH 2009................................................................................................................................................................................................... www.ti.com  
Table 2. Function Table  
INPUTS  
FUNCTION  
LD  
L
CLK  
X
CE  
X
Parallel load  
No change  
Shift(1)  
H
X
H
H
L
(1) Shift = content of each internal register shifts towards serial outputs.  
Data at SIP is shifted into first register.  
Voltage Regulator  
The on-chip linear voltage regulator provides a 5V supply to the internal- and external-circuitry, such as digital  
isolators, with an output drive capability of 50 mA and a typical current limit of 115 mA. The regulator accepts  
input voltages from 30V down to 10V. Because the regulator output is intended to supply external digital isolator  
circuits proper output voltage decoupling is required. For best results connect a 1µF and a 0.1µF ceramic  
capacitor as close as possible to the 5VOP-output. For longer traces between the SN65HVS881 and isolators of  
the ISO72xx family use additional 0.1µF and 10pF capacitors next to the isolator supply pins. Make sure,  
however, that the total load capacitance does not exceed 4.7µF.  
For good stability the voltage regulator requires a minimum load current, IL-MIN. Ensure that under any operating  
condition the ratio of the minimum load current in mA to the total load capacitance in µF is larger than 1:  
I
1 mA  
1 µF  
L-MIN  
>
C
L
Temperature Sensor  
An on-chip temperature sensor monitors the device temperature and signals a fault condition if the internal  
temperature reaches 150°C. If the internal temperature exceeds this trip point, the HOT output switches to an  
active low state. If the internal temperature continues to rise, passing a second trip point at 170°C, all device  
outputs are put in a high-impedance state.  
A special condition occurs, however, when the chip temperature exceeds the second temperature trip point due  
to an output short. Then the output buffer becomes 3-state, thus separating the buffer from the external circuitry.  
An internal 100-kpull-down resistor, connecting the HOT pin to ground, is used as a cooling down resistor,  
which continues to provide a logic low level to the external circuitry.  
Parity Generator  
A parity bit is generated when one or more of the following conditions occur:  
a change in input status  
a change in Undervoltage status  
a change in Overtemperature status  
Upon the application of a load pulse the input status (IP0–IP7) and the diagnostic bits (HOT, UVO, and PAR) are  
loaded parallel into the serializer assuming the following format:  
Bit 11  
Bit 1  
PAR  
UVO  
HOT  
PIP0  
PIP1  
PIP2  
PIP3  
PIP4  
PIP5  
PIP6  
PIP7  
Figure 16. Sequence of Status Bits in Serializer  
12  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVS881  
SN65HVS881  
www.ti.com................................................................................................................................................................................................... SLAS642MARCH 2009  
APPLICATION INFORMATION  
System-Level EMC  
The SN65HVS881 is designed to operate reliably in harsh industrial environments. At a system level, the device  
is tested according to several international electromagnetic compatibility (EMC) standards. In addition to the  
device internal ESD structures, external protection circuitry, as shown in Figure 17, can be used to absorb as  
much energy from burst- and surge-transients as possible.  
R
1
V
= 24V  
V24  
SUP  
C
S
D
1
C
1
D
S
56 W, 1/3 W MELF Resistor  
R1  
D1  
C1  
33 V – 36 V fast Zener Diode, Z2SMB36  
10 µF, 60 V Ceramic Capacitor  
SN65HVS881  
FE  
0V  
FGND  
RIN 1.2 kW, 1/4 W MELF Resistor  
R
IN  
CIN 22 nF, 60 V Ceramic Capacitor  
IPx  
IP0 – IP7  
CS  
DS  
D2  
4.7 nF, 2 kV Polypropylene Capacitor  
C
IN  
39V Transient Voltage Suppressor: SM15T39CA  
Super Rectifier: BYM10-1000, or  
General Purpose rectifier: 1N4007  
0V  
FE  
FGND  
D
2
C
S
Figure 17. Typical EMC Protection Circuitry for Supply and Signal Inputs  
Input Channel Switching for IEC61131-2 PLC Applications  
The input stage of the SN65HVS881 is designed so that with a 24-V supply on VCC and an input resistor RIN  
=
1.2 k, the trip point for signaling an ON-condition is at 9.4 V at 3.6 mA. This trip point satisfies the switching  
requirements of IEC61131-2 type-1 and type-3 switches.  
Type 1  
Type 2  
Type 3  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
ON  
ON  
ON  
OFF  
OFF  
15  
OFF  
0
0
0
-3  
-3  
-3  
5
10  
/ mA  
15  
5
10  
5
10  
/ mA  
IN  
15  
20  
25  
30  
I
I
/ mA  
I
IN  
IN  
Figure 18. Switching Characteristics for IEC61131-2 Type 1, 2, and 3 Proximity Switches  
For a type-2 switch application two inputs are connected in parallel. The current limiters then add to a total  
maximum current of 7.2 mA. While the return-path (RE-pin), of one input might be used to drive an indicator  
LED, the RE-pin of the other input channel should be connected to ground (GND).  
Paralleling input channels reduces the number of available input channels from an octal Type 1 or Type 3 input  
to a quad Type 2 input device. Note, that in this configuration output data of an input channel is represented by  
two shift register bits.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): SN65HVS881  
 
SN65HVS881  
SLAS642MARCH 2009................................................................................................................................................................................................... www.ti.com  
R
IN  
R
IN  
IP0  
IP0  
C
C
IN  
IN  
RE 0  
RE0  
R
R
IN  
IN  
IP1  
IP1  
C
C
IN  
IN  
RE1  
RE1  
Figure 19. Paralleling Two Type 1 or Type 3 Inputs Into One Type 2 Input  
Digital Interface Timing  
The digital interface of the SN65HVS881 is SPI compatible and interfaces, isolated or non-isolated, to a wide  
variety of standard microcontrollers.  
SN65HVS881  
HOST  
SIP  
CONTROLLER  
ISO7241  
IP0  
IP7  
LD  
CE  
OUTA  
OUTB  
OUTC  
IND  
INA  
INB  
LOAD  
STE  
CLK  
SOP  
INC  
SCLK  
SOMI  
OUTD  
Figure 20. Simple Isolation of the Shift Register Interface  
Upon a low-level at the load input, /LD, the information of the field inputs and the diagnostic bits are latched into  
the shift register. Taking LD high again blocks the parallel inputs of the shift register from the field inputs. A  
low-level at the clock-enable input, CE, enables the clock signal, CLK, to serially shift the data to the serial  
output, SOP. Data is clocked at the rising edge of CLK. Thus after eleven consecutive clock cycles all data have  
been clocked out of the shift register and the information of the serial input, SIP, appears at the serial output,  
SOP.  
14  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVS881  
SN65HVS881  
www.ti.com................................................................................................................................................................................................... SLAS642MARCH 2009  
CLK  
CE  
SIP  
LD  
high  
PAR - PIP6  
PIP7  
don’t care  
IP7  
IP6 IP5 IP4 IP3 IP2 IP1 IP0  
HOT UVO PAR SIP  
SOP  
inhibit  
Serial shift  
Figure 21. Interface Timing for Parallel-Load and Serial-Shift Operation of the Shift Register  
Cascading for High Channel Count Input Modules  
Designing high-channel count modules requires cascading multiple SN65HVS881 devices. Simply connect the  
serial output (SOP) of a leading device with the serial input (SIP) of a following device without changing the  
processor interface.  
HOST  
CONTROLLER  
ISO7241  
4 x SN65HVS881  
OUTA  
OUTB  
OUTC  
IND  
INA  
INB  
LOAD  
STE  
INC  
SCLK  
SOMI  
OUTD  
SERIALIZER  
SERIALIZER  
SERIALIZER  
SERIALIZER  
Figure 22. Cascading Four SN65HVS881 for a 32-Channel Input Module  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): SN65HVS881  
SN65HVS881  
SLAS642MARCH 2009................................................................................................................................................................................................... www.ti.com  
Typical Digital Input Module Application  
SM15T39CA  
24 V  
5 V  
5 V-ISO  
0 V-ISO  
(Logic) 24V  
1
SM15T39A  
Isolated  
(Sensors) 24V  
4.7 nF  
2 kV  
2
DC / DC  
4.7 nF  
2 kV  
GND2  
GND1  
0V  
FE  
Power  
Supply  
4.7 nF  
2 kV  
56 W MELF  
Z2SMB36  
10mF  
60 V  
1N4007  
1
mF  
0.1mF  
SN65 HVS 881  
5VOP  
CHOK  
SIP  
V24  
IP0  
1.2 kW  
MELF  
ISO7242  
HOST  
CONTROLLER  
VCC2  
EN2  
VCC1  
22 nF  
S0  
VCC  
RE0  
EN1  
INA  
LOAD  
SCLK  
INT  
LD  
OUTA  
OUTB  
INC  
CLK  
CE  
INB  
1.2 kW  
MELF  
IP7  
OUTC  
OUTD  
GND1  
22 nF  
S7  
SOMI  
DGND  
SOP  
DB0  
DB1  
RE7  
IND  
RLIM  
FGND  
GND2  
24.9 kW  
Figure 23. Typical Digital Input Module Application  
16  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVS881  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
SN65HVS881PWPR  
HTSSOP PWP  
28  
2000  
330.0  
16.4  
6.9  
10.2  
1.8  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 28  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 33.0  
SN65HVS881PWPR  
2000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

SN65HVS881PWPR

具有诊断功能的 34V、8 通道数字输入串行器 | PWP | 28 | -40 to 125
TI

SN65HVS882

INDUSTRIAL 8-DIGITAL-INPUT SERIALIZER
TI

SN65HVS882PWP

INDUSTRIAL 8-DIGITAL-INPUT SERIALIZER
TI

SN65HVS882PWPG4

INDUSTRIAL 8-DIGITAL-INPUT SERIALIZER
TI

SN65HVS882PWPR

INDUSTRIAL 8-DIGITAL-INPUT SERIALIZER
TI

SN65HVS882PWPRG4

INDUSTRIAL 8-DIGITAL-INPUT SERIALIZER
TI

SN65HVS882_1

INDUSTRIAL 8-DIGITAL-INPUT SERIALIZER
TI

SN65HVS883

34V、8 通道数字输入串行器
TI

SN65HVS883PWP

34V、8 通道数字输入串行器 | PWP | 28 | -40 to 85
TI

SN65HVS883PWPR

34V、8 通道数字输入串行器 | PWP | 28 | -40 to 85
TI

SN65HVS885

34 V, Digital-Input Serializer for 5V Systems
TI

SN65HVS885PWP

34 V, Digital-Input Serializer for 5V Systems
TI