SN65HVS883PWP [TI]

34V、8 通道数字输入串行器 | PWP | 28 | -40 to 85;
SN65HVS883PWP
型号: SN65HVS883PWP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

34V、8 通道数字输入串行器 | PWP | 28 | -40 to 85

文件: 总28页 (文件大小:1346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
SN65HVS883  
ZHCSFI0 SEPTEMBER 2016  
SN65HVS883 24V、八通道数字输入串行器  
1 特性  
施加负载和时钟信号时,输入数据将被并行锁存到移位  
寄存器中,然后经过一个后置隔离器随时钟串行移出至  
串行 PLC 输入。  
1
八个传感器输入  
输入电压最高达 34V  
可选去抖动滤波器  
0ms 3ms  
通过将前面器件的串行输出连接到后面器件的串行输  
入,可以将多个 SN65HVS883 级联在一起,从而实现  
高通道数输入模块的设计。输入状态通过 3mA 恒流  
LED 输出来显示。为设置内部基准电流,需要外接一  
个精密电阻。集成的稳压器提供 5V 输出电压,为低功  
耗隔离器供电。内部电源电压监视器提供芯片正常  
(CHOK) 指示。  
可调节电流限制  
0.2mA 5.2mA  
现场输入和电源线路  
具有 15kV 人体模型 (HBM) 保护  
用于外部状态 LED 的输出驱动器  
支持多路输入级联(输入数为 8 的倍数)  
SPI 兼容的接口  
SN65HVS883 采用散热增强型 28 引脚 PWP  
PowerPAD™封装。该器件的额定工作温度范围为  
–40°C 85°C。  
用于外部数字隔离器的 5V 稳压输出  
低电源电压指示灯  
器件信息(1)  
2 应用  
器件型号  
封装  
封装尺寸(标称值)  
用于工业自动化和过程控制的传感器输入  
SN65HVS883  
HTSSOP (28)  
9.70 mm x 4.40 mm  
符合 IEC61131-2 标准 1 类、2 类或 3 类的开  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
符合 EN60947-5-2 标准的接近开关  
简化的 I/O 结构  
用于 PC 和可编程逻辑控制器 (PLC) 系统的高通道  
数数字输入模块  
Voltage  
24 V In  
5 V Out  
分立式 I/O 模块  
Regulator  
2
Debounce Select  
DB0:DB1  
Serial Input  
5 V  
3 说明  
3
Control Inputs  
LD, CE, CLK  
SN65HVS883 是一款用于工业自动化 PC PLC 系  
统中高通道数的数字输入模块的 24V、八通道数字输  
入串行器。与电流隔离器配合使用时,此器件可将现场  
侧的 24V 传感器输出连接到控制侧的低压控制器输  
入。输入信号由符合 EN60947-5-2 标准的 2 线和 3 线  
接近开关提供  
Field Inputs  
IP0:IP7  
8
8
8
LED Outputs  
RE0:RE7  
I
Adj: R  
LIM  
Field Ground  
Serial Output  
REF  
并进行电流限制,然后由内部去抖动滤波器进行验证。  
输入开关特性符合 IEC61131-2 标准关于 1 类、2 类和  
3 类传感器开关的特性描述。  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASEE6  
 
 
 
 
SN65HVS883  
ZHCSFI0 SEPTEMBER 2016  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Application ................................................. 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions...................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics.......................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Switching Characteristics.......................................... 6  
6.8 Typical Input Characteristics..................................... 7  
9
10 Power Supply Recommendations ..................... 21  
11 Layout................................................................... 21  
11.1 Layout Guidelines ................................................. 21  
11.2 Layout Example .................................................... 21  
12 器件和文档支持 ..................................................... 22  
12.1 Third-Party Products Disclaimer ........................... 22  
12.2 接收文档更新通知 ................................................. 22  
12.3 社区资源................................................................ 22  
12.4 ....................................................................... 22  
12.5 静电放电警告......................................................... 22  
12.6 Glossary................................................................ 22  
13 机械、封装和可订购信息....................................... 22  
6.9 Typical Voltage Regulator Performance  
Characteristics ........................................................... 8  
7
8
Parameter Measurement Information .................. 9  
7.1 Waveforms................................................................ 9  
7.2 Signal Conventions ................................................... 9  
Detailed Description ............................................ 10  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注释  
2016 9 月  
*
首次发布。  
2
Copyright © 2016, Texas Instruments Incorporated  
 
SN65HVS883  
www.ti.com.cn  
ZHCSFI0 SEPTEMBER 2016  
5 Pin Configuration and Functions  
PWP Package  
28 Pin (HTSSOP) With Exposed Thermal Pad  
Top View  
DB0  
DB1  
IP0  
1
28  
27  
26  
25  
24  
23  
FGND  
SIP  
2
3
LD  
RE0  
IP1  
4
CLK  
CE  
5
RE1  
IP2  
6
SOP  
IP7  
7
22  
Thermal  
Pad  
RE2  
IP3  
8
21  
20  
19  
18  
17  
16  
15  
RE7  
IP6  
9
RE3  
IP4  
10  
11  
12  
13  
14  
RE6  
IP5  
RE4  
RLIM  
V24  
RE5  
CHOK  
5VOP  
Not to scale  
Pin Functions  
PIN  
DESCRIPTION  
PIN NO.  
1, 2  
NAME  
DB0, DB1  
Debounce select inputs  
Input channel x  
3, 5, 7, 9,  
11, 18, 20, 22  
IPx  
4, 6, 8, 10,  
12, 17, 19, 21  
REx  
Return path x (LED drive)  
13  
14  
15  
16  
23  
24  
25  
26  
27  
28  
RLIM  
V24  
Current limiting resistor  
24 VDC field supply  
5VOP  
CHOK  
SOP  
CE  
5 V output to supply low-power isolators  
Chip okay indicator output  
Serial data output  
Clock enable input  
CLK  
LD  
Serial clock input  
Load pulse input  
SIP  
Serial data input  
FGND  
Field ground  
Copyright © 2016, Texas Instruments Incorporated  
3
SN65HVS883  
ZHCSFI0 SEPTEMBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.5  
MAX  
UNIT  
V
V24  
VIPx  
VID  
IO  
Field power input  
V24  
36  
36  
6
Field digital inputs  
IPx  
V
Voltage at any logic input  
Output current  
DB0, DB1, CLK, SIP, CE, LD  
CHOK, SOP  
V
±8  
mA  
PTOT  
TJ  
Continuous total power dissipation  
Junction temperature  
See Thermal Information table  
170  
°C  
6.2 ESD Ratings  
VALUE  
±4000  
UNIT  
All pins  
IPx,V24  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-  
001(1)  
±15000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification  
JESD22-C101(2)  
Machine Mode(3)  
All pins  
All pins  
±1000  
±100  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC Standard 22, Method A115-A.  
6.3 Recommended Operating Conditions  
MIN  
10  
0
TYP  
MAX  
34  
UNIT  
V24  
VIPL  
VIPH  
VIL  
Field supply voltage  
24  
V
V
Field input low-state input voltage(1)  
Field input high-state input voltage(1)  
Logic low-state input voltage  
Logic high-state input voltage  
Current limiter resistor  
4
10  
0
34  
V
0.8  
5.5  
500  
1
V
VIH  
RLIM  
fIP  
2
V
17  
0
25  
k  
Mbps  
°C  
°C  
Input data rate(2)  
TJ  
150  
85  
TA  
–40  
(1) Field input voltages correspond to an input resistor of RIN = 1.2 kΩ  
(2) Maximum data rate corresponds to 0 ms debounce time, (DB0 = open, DB1 = FGND), and RIN = 0 Ω  
6.4 Thermal Information  
SN65HVS883  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
28 PINS  
35  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
4.27  
15  
ILOAD = 50 mA, RIN = 0, IPO–IP7 = V24 = 30 V,  
PD  
Device power dissipation  
RE7 = FGND, fCLK = 100 MHz,  
2591  
mW  
IIP-LIM and ICC = worst case with RLIM = 25 kΩ  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016, Texas Instruments Incorporated  
 
 
 
SN65HVS883  
www.ti.com.cn  
ZHCSFI0 SEPTEMBER 2016  
6.5 Electrical Characteristics  
all voltages measured against FGND unless otherwise stated, see Figure 12  
SYMBOL  
VTH–(IP)  
VTH+(IP)  
VHYS(IP)  
VTH–(IN)  
VTH+(IN)  
VHYS(IN)  
PARAMETER  
Low-level device input threshold voltage  
High-level device input threshold voltage  
Device input hysteresis  
PIN  
TEST CONDITIONS  
MIN  
TYP  
4.3  
5.2  
0.9  
8.4  
9.4  
1
MAX UNIT  
4
V
18 V< V24 < 34 V,  
RIN = 0 ,  
RLIM = 25 kΩ  
5.5  
10  
V
V
V
V
V
V
V
V
IP0–IP7  
Low-level field input threshold voltage  
High-level field input threshold voltage  
Field input hysteresis  
6
18 V < V24 < 34 V,  
RIN = 1.2 k± 5%,  
RLIM = 25 kΩ  
measured at  
field side of RIN  
VTH–(V24) Low-level V24-monitor threshold voltage  
VTH+(V24) High-level V24-monitor threshold voltage  
VHYS(V24) V24-monitor hysteresis  
15 16.05  
16.8  
V24  
18  
0.75  
3 V < VIPx < 6 V,  
RIN = 1.2 k± 5%,  
RLIM = 25 kΩ  
RIP  
Input resistance  
1.4  
1.83  
3.6  
2.3  
kΩ  
IP0–IP7  
10 V < VIPx < 34 V,  
RLIM = 25 kΩ  
IIP-LIM  
Input current limit  
3.15  
4
mA  
VOL  
VOH  
Logic low-level output voltage  
Logic high-level output voltage  
IOL = 20 μA  
0.4  
V
V
SOP, CHOK  
IOH = –20 μA  
4
DB0, DB1, SIP,  
LD, CE, CLK  
IIL  
Logic input leakage current  
RE on-state current  
–50  
50  
μA  
RLIM = 25 k,  
REX = FGND  
IRE-on  
RE0–RE7  
2.8  
3.15  
3.5  
mA  
IP0 to IP7 = V24,  
5VOP = open,  
REX = FGND,  
ICC(V24)  
Supply current  
V24  
8.7  
mA  
V
All logic inputs open  
18 V < V24 < 34 V,  
no load  
4.5  
4.5  
5
5.5  
5.5  
VO(5V)  
Linear regulator output voltage  
5VOP  
18 V < V24 < 34 V,  
IL = 50 mA  
5
ILIM(5V)  
Linear regulator output current limit  
115  
mA  
18 V < V24 < 34 V,  
IL = 5 mA  
ΔV5/ΔV24 Line regulation  
5VOP, V24  
IP0–IP7  
2
mV/V  
DB0 = open,  
DB1 = FGND  
0
tDB  
Debounce times of input channels  
DB0 = FGND,  
DB1 = open  
ms  
ms  
1
3
1
DB0 = DB1 = open  
Voltage monitor debounce time after V24 < 15  
V (CHOK turns low)  
tDB-HL  
V24, CHOK  
Voltage monitor debounce time after V24 > 18  
V (CHOK turns high)  
tDB-LH  
TSHDN  
6
ms  
°C  
Shutdown temperature  
170  
Copyright © 2016, Texas Instruments Incorporated  
5
SN65HVS883  
ZHCSFI0 SEPTEMBER 2016  
www.ti.com.cn  
6.6 Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
SYMBOL  
tW1  
PARAMETER  
MIN  
4
TYP  
MAX UNIT  
CLK pulse width  
See Figure 9  
See Figure 7  
See Figure 10  
See Figure 10  
See Figure 11  
See Figure 8  
See Figure 9  
ns  
ns  
ns  
ns  
ns  
ns  
tW2  
LD pulse width  
6
tSU1  
tH1  
SIP to CLK setup time  
SIP to CLK hold time  
4
2
tSU2  
tREC  
fCLK  
Falling edge to rising edge (CE to CLK) setup time  
LD to CLK recovery time  
4
2
Clock pulse frequency (50% duty cycle)  
DC  
100  
MHz  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
SYMBOL  
tPLH1, tPHL1  
tPLH2, tPHL2  
tr, tf  
PARAMETER  
CLK to SOP  
TEST CONDITIONS  
CL = 15 pF, see Figure 9  
CL = 15 pF, see Figure 7  
CL = 15 pF, see Figure 9  
MIN  
TYP  
MAX  
UNIT  
ns  
10  
14  
5
LD to SOP  
ns  
Rise and fall times  
ns  
6
Copyright © 2016, Texas Instruments Incorporated  
SN65HVS883  
www.ti.com.cn  
ZHCSFI0 SEPTEMBER 2016  
6.8 Typical Input Characteristics  
30  
25  
20  
15  
10  
5
a)  
b)  
c)  
Off  
On  
Field Input Thresholds  
0
0
0.5  
1.0  
1.5  
2.0  
I
2.5  
(mA)  
3.0  
3.5  
4.0  
IN  
RIN = 1.2 kΩ  
a) IIP-LIM = 2.5 mA (RLIM = 36.1 kΩ)  
b) IIP-LIM = 3.0 mA (RLIM = 30.1 kΩ)  
c) IIP-LIM = 3.6 mA (RLIM = 24.9 kΩ)  
Figure 1. Typical Input Characteristics  
102.0  
101.5  
101.0  
100.5  
100.0  
99.5  
9.6  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
V
TH+(IN)  
99.0  
V
TH–(IN)  
98.5  
98.0  
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95  
(ºC)  
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95  
(ºC)  
T
A
T
A
V24 = 24 V  
VIN = 24 V  
RIN = 1.2 kΩ  
V24 = 24 V  
RIN = 1.2 kΩ  
RLIM = 24.9 kΩ  
RLIM = 24.9 kΩ  
Figure 2. Typical Current Limiter Variation vs Ambient  
Temperature  
Figure 3. Typical Limiter Threshold Voltage Variation vs  
Ambient Temperature  
Copyright © 2016, Texas Instruments Incorporated  
7
SN65HVS883  
ZHCSFI0 SEPTEMBER 2016  
www.ti.com.cn  
6.9 Typical Voltage Regulator Performance Characteristics  
6
5.000  
4
2
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
4.965  
4.960  
0
2  
4  
6  
8  
10  
0
5
10  
15  
V
20  
(V)  
25  
30  
35  
45 35 25 15 5  
5
15 25 35 45 55 65 75 85 95  
T
(°C)  
A
IN  
ILOAD = 0 mA  
ILOAD = 5 mA  
TA = 27°C  
Figure 5. Output Voltage vs Ambient Temperature  
Figure 4. Line Regulation  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
V
(V)  
IN  
RLOAD = 100 Ω  
Figure 6. Output Voltage vs Input Voltage  
8
Copyright © 2016, Texas Instruments Incorporated  
SN65HVS883  
www.ti.com.cn  
ZHCSFI0 SEPTEMBER 2016  
7 Parameter Measurement Information  
7.1 Waveforms  
For the complete serial interface timing, refer to Figure 21.  
tw2  
LD  
LD  
tREC  
tPLH2  
tPHL2  
CLK  
SOP  
Figure 7. Parallel – Load Mode  
Figure 8. Serial – Shift Mode  
valid  
1/fCLK  
t
w1  
SIP  
CLK  
tSU 1  
tH1  
t
PHL1  
t
PLH1  
CLK  
SOP  
t
r
Figure 9. Serial – Shift Mode  
Figure 10. Serial – Shift Mode  
CLK  
tSU2  
CE  
CLK inhibited  
Figure 11. Serial – Shift Clock Inhibit Mode  
7.2 Signal Conventions  
R
IN  
IPx  
I
IN  
SN65HVS883  
V
V
TH(IN)  
TH(IP)  
FGND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 12. On/Off Threshold Voltage Measurements  
Copyright © 2016, Texas Instruments Incorporated  
9
SN65HVS883  
ZHCSFI0 SEPTEMBER 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN65HVS883 is an 8 channel, digital input serializer which operates from a 24 V supply and accepts digital  
inputs of up to 34 V on the 8 channels (IP0-IP7). The device provides a serially shifted digital output with reduced  
voltage ranges of 0-5 V for applications in industrial and building automation systems. The SN65HVS883 meets  
JEDEC standards for ESD protection (refer to ESD Ratings), and is SPI compatible for interfacing with standard  
microcontrollers. The serializer operates in 2 fundamental modes: Load Mode and Shift mode. In Load mode,  
information from the field inputs is allowed to latch into the shift register. In Shift mode, the information stored in  
the parallel shift register can be serially shifted to the serial output (SOP). A detailed description of the functional  
modes is available in the Device Functional Modes section.  
8.2 Functional Block Diagram  
Voltage  
Regulator  
5VOP  
V24  
5V  
Supply  
CHOK  
Monitor  
FGND  
DB0  
DB1  
Adj. Current  
Thresholds  
Debounce  
Select  
RLIM  
SIP  
RE0  
IP0  
Current  
Sense  
Debounce  
Filter  
&
LD  
Voltage  
Sense  
CE  
Channel 0  
CLK  
RE7  
IP7  
Channel 7  
SOP  
Copyright © 2016, Texas Instruments Incorporated  
10  
Copyright © 2016, Texas Instruments Incorporated  
SN65HVS883  
www.ti.com.cn  
ZHCSFI0 SEPTEMBER 2016  
8.3 Feature Description  
8.3.1 Digital Inputs  
Each digital input operates as a controlled current sink limiting the input current to a maximum value of ILIM. The  
current limit is derived from the reference current via ILIM = n × IREF, and IREF is determined by IREF = VREF/RLIM  
Thus, changing the current limit requires the change of RLIM to a different value via: RLIM = n × VREF/ILIM  
.
.
Inserting the actual values for n and VREF gives: RLIM = 90 V / ILIM  
.
While the device is specified for a current limit of 3.6 mA, (via RLIM = 25 k), it is easy to lower the current limit  
to further reduce the power consumption. For example, for a current limit of 2.5 mA simply calculate:  
90 V  
90 V  
RLIM  
=
=
= 36 kΩ  
ILIM  
2.5 mA  
(1)  
1.25 V  
REF  
5 V  
I
Mirror  
LIM  
n = 72  
I
IN  
IPx  
I
I
REF  
LIM  
Limiter  
= I  
R
LIM  
I
INmax  
LIM  
Figure 13. Digital Input Stage  
8.3.2 Debounce Filter  
The HVS883 applies a simple analog/digital filtering technique to remove unintended signal transitions due to  
contact bounce or other mechanical effects. Any new input (either low or high) must be present for the duration  
of the selected debounce time to be latched into the shift register as a valid state.  
The logic signal levels at the control inputs, DB0 and DB1 of the internal Debounce-Select logic determine the  
different debounce times listed in the following truth table.  
Table 1. Debounce Times  
DB1  
Open  
Open  
DB0  
Open  
FGND  
FUNCTION  
3 ms delay  
1 ms delay  
0 ms delay  
(Filter bypassed)  
FGND  
FGND  
Open  
FGND  
Reserved  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
 
SN65HVS883  
ZHCSFI0 SEPTEMBER 2016  
www.ti.com.cn  
5 V  
IPx  
REF  
REx  
R
LIM  
FGND  
Figure 14. Equivalent Input Diagram  
8.3.3 Shift Register  
The conversion from parallel input to serial output data is performed by an eight-channel, parallel-in serial-out  
shift register. Parallel-in access is provided by the internal inputs, PIP0–PIP7, that are enabled by a low level at  
the load input (LD). When clocked, the latched input data shift towards the serial output (SOP). The shift register  
also provides a clock-enable function.  
Clocking is accomplished by a low-to-high transition of the clock (CLK) input while LD is held high and the clock  
enable (CE) input is held low for all registers in the shift register except the last register which is latched by a  
high-to-low transition. Parallel loading is inhibited when LD is held high. The parallel inputs to the register are  
enabled while LD is low independently of the levels of the CLK, CE, or serial (SIP) inputs.  
SIP  
SOP  
D
D
D
D
D
D
D
D
D
Q
S
Q
S
Q
S
Q
S
Q
S
Q
S
Q
S
Q
Q
S
CLK  
CE  
Logic  
CP  
R
CP  
R
CP  
R
CP  
R
CP  
R
CP  
R
CP  
R
CP  
CP  
R
LD  
PIP 0  
PIP 1  
PIP 2  
PIP 3  
PIP 4  
PIP 5  
PIP 6  
PIP 7  
Figure 15. Shift Register Logic Structure  
12  
Copyright © 2016, Texas Instruments Incorporated  
SN65HVS883  
www.ti.com.cn  
ZHCSFI0 SEPTEMBER 2016  
Table 2. Function Table  
INPUTS  
FUNCTION  
LD  
L
CLK  
CE  
X
X
X
Parallel load  
No change  
Shift(1)  
H
H
L
H
H
L
Shift(2)  
(1) Shift = content of each internal register, except the last register, shifts towards serial output.  
(2) Shift = content of the last register shifts towards serial output.  
8.3.4 Voltage Regulator  
The on-chip linear voltage regulator provides a 5 V supply to the internal- and external circuitry, such as digital  
isolators, with an output drive capability of 50 mA and a typical current limit of 115 mA. The regulator accepts  
input voltages from 34 V down to 10 V. Because the regulator output is intended to supply external digital isolator  
circuits proper output voltage decoupling is required. For best results connect a 1 μF and a 0.1 μF ceramic  
capacitor as close as possible to the 5VOP-output. For longer traces between the SN65HVS883 and isolators of  
the ISO72xx family use additional 0.1 μF and 10 pF capacitors next to the isolator supply pins. Make sure,  
however, that the total load capacitance does not exceed 4.7 μF.  
For good stability the voltage regulator requires a minimum load current, IL-MIN. Ensure that under any operating  
condition the ratio of the minimum load current in mA to the total load capacitance in μF is larger than 1:  
I
1 mA  
1 µF  
L-MIN  
>
C
L
(2)  
8.3.5 Supply Voltage Monitor  
The integrated supply voltage monitor senses the supply voltage of the SN65HVS883 at the V24-pin. If this  
voltage drops below 15 V but stays within the regulator’s operating range, i.e., 15 V > V24 > 10 V, the output  
CHOK goes low 1 ms later. When the supply voltage returns to 24 V, the CHOK output turns logic high after  
6 ms. Should the supply voltage drop below 10 V, the device ceases operation. Upon the supply returning to  
above 18 V, the CHOK output turns high again after 6 ms.  
18 V  
18 V  
15 V  
15 V  
10 V  
V24 < 10 V  
V24  
15 V > V24 > 10 V  
1 ms  
debounce  
time starts  
1 ms  
debounce  
time starts  
t
t
DB-LH  
t
DB-LH  
DB-HL  
Circuit ceases  
operation  
CHOK  
Figure 16. CHOK Output Timing as a Function of Supply Voltage Drop at V24  
Copyright © 2016, Texas Instruments Incorporated  
13  
SN65HVS883  
ZHCSFI0 SEPTEMBER 2016  
www.ti.com.cn  
8.4 Device Functional Modes  
The 2 functional modes of operation are Load mode and Shift mode.  
Load mode enables information from the field inputs to latch into the shift register. To enter load mode, the LD  
pin must be held low, and the device remains in load mode regardless of the CLK, CE, or serial (SIP) input  
levels. A high level at the LD pin switches the device into Shift mode.  
When the device is in Shift mode, a low level at the CE pin causes the data stored in all registers of the parallel  
shift register except for the last register, to be serially shifted toward the serial output (SOP) on the rising edge of  
CLK. The final register in the shift register will be shifted toward the serial output (SOP) on the falling edge of  
CLK. A high level at the CE pin inhibits the serial shifting, which is demonstrated in Figure 21. After 8  
consecutive CLK cycles, the serial output (SOP) remains at the level of the serial input (SIP) which is internally  
pulled to logic high. A logic high at the CE pin is required to signify the end of the serial data output. For of a  
daisy chained configuration, the serial output (SOP) of the SN65HVS883 can be connected to the serial input  
(SIP) of a following device, and additional clock cycles are required to shift the additional data out of the chain.  
The number of consecutive clock cycles will equal 8 times the number of devices in the chain. See Figure 22 for  
an example of a cascaded chain of 4x SN65HVS883.  
14  
Copyright © 2016, Texas Instruments Incorporated  
SN65HVS883  
www.ti.com.cn  
ZHCSFI0 SEPTEMBER 2016  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 System-Level EMC  
The SN65HVS883 must operate reliably in harsh industrial environments. At a system level, the device is tested  
according to several international electromagnetic compatibility (EMC) standards.  
In addition to the device internal ESD structures, external protection circuitry, such as the one in Figure 17, can  
be used to absorb as much energy from burst- and surge-transients as possible.  
C
C
R
D
RP  
S
V
SUP  
= 24 V  
V24  
D
D
Z
C
TS  
C
C
C
C
HV  
C
B
SN65HVS883  
R
IN  
INx  
IP0 – IP7  
FGND  
C
IN  
0 V  
C
HV  
FE  
Copyright © 2016, Texas Instruments Incorporated  
Figure 17. Typical EMC Protection Circuitry for Supply and Signal Inputs  
Table 3. Components  
DESIGNATOR  
DESCRIPTION  
DTS  
39 V Transient Voltage Suppressor: SM15T39CA  
Super Rectifier: BYM10-1000,  
or General Purpose rectifier: 1N4007  
DRP  
DZ  
RS  
33 V – 36 V fast Zener Diode, Z2SMB36  
56 Ω, 1/3 W MELF Resistor  
RIN  
CIN  
CHV  
CC  
1.2 kΩ, 1/4 W MELF Resistor  
22 nF, 60 V Ceramic Capacitor  
4.7 nF, 2 kV Ceramic Capacitor  
n x 220 nF, 60 V Ceramic Capacitors  
1 µF - 10 µF, 60 V Ceramic Capacitor  
CB  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
SN65HVS883  
ZHCSFI0 SEPTEMBER 2016  
www.ti.com.cn  
9.1.2 Input Channel Switching Characteristics  
The input stage of the SN65HVS883 is so designed, that for an input resistor RIN = 1.2 kΩ the trip point for  
signalling an ON-condition is at 9.4 V at 3.6 mA. This trip point satisfies the switching requirements of IEC61131-  
2 Type 1 and Type 3 switches.  
Type 1  
Type 2  
Type 3  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
ON  
ON  
ON  
OFF  
10  
OFF  
15  
OFF  
0
3-  
0
–3  
0
–3  
5
15  
5
10  
20  
(mA)  
25  
30  
5
10  
(mA)  
15  
0
0
0
I
(mA)  
I
IN  
I
IN  
IN  
Figure 18. Switching Characteristics for IEC61131-2 Type 1, 2, and 3 Proximity Switches  
For a Type 2 switch application, two inputs are connected in parallel. The current limiters then add to a total  
maximum current of 7.2 mA. While the return-path (RE-pin), of one input might be used to drive an indicator  
LED, the RE-pin of the other input channel should be connected to ground (FGND).  
Paralleling input channels reduces the number of available input channels from an octal Type 1 or Type 3 input  
to a quad Type 2 input device. Note, that in this configuration output data of an input channel is represented by  
two shift register bits.  
R
R
IN  
IN  
IN0  
IN0  
IP0  
IP0  
C
C
IN  
IN  
RE0  
RE0  
R
R
IN  
IN  
IN1  
IP1  
IP1  
C
C
IN  
IN  
RE1  
RE1  
Figure 19. Paralleling Two Type 1 or Type 3 Inputs Into One Type 2 Input  
16  
Copyright © 2016, Texas Instruments Incorporated  
SN65HVS883  
www.ti.com.cn  
ZHCSFI0 SEPTEMBER 2016  
9.1.3 Digital Interface Timing  
The digital interface of the SN65HVS883 is SPI compatible and interfaces, isolated or non-isolated, to a wide  
variety of standard micro controllers.  
SN65HVS883  
HOST  
SIP  
ISO7241  
CONTROLLER  
IP0  
IP7  
LD  
CE  
OUTA  
OUTB  
OUTC  
IND  
INA  
INB  
LOAD  
STE  
CLK  
SOP  
INC  
SCLK  
SOMI  
OUTD  
Figure 20. Simple Isolation of the Shift Register Interface  
Upon a low-level at the load input, LD, the information of the field inputs, IP0 to IP7 is latched into the shift  
register. Taking LD high again blocks the parallel inputs of the shift register from the field inputs. A low-level at  
the clock-enable input, CE, enables the clock signal, CLK, to serially shift the data to the serial output, SOP. Data  
is clocked into the shift register at the rising edge of CLK and out of the shift register on the falling edge of CLK.  
Thus after eight consecutive clock cycles all field input data have been clocked out of the shift register and the  
information of the serial input, SIP, appears at the serial output, SOP.  
The CE signal should only be transitioned low while the CLK signal is low which ensures that a rising edge of  
CLK occurs before a falling edge of CLK. This shifts the data into and through the shift register up until the final  
register before the first bit that was loaded into the final register is shifted out the serial output, SOP. If a falling  
edge of CLK is seen first following the transition of CE to low, the final register outputs the first bit, IP0, on the  
serial output, SOP, before shifting the rest of the bits through the shift register. The previous value of the second  
to last register prior to the LD event will then be shifted into the final register on the next rising CLK edge and  
output on the serial output, SOP, before the next valid bit, IP1, is output on the serial output, SOP. This appears  
as an erroneous bit in the serial data. Also, depending on how many falling CLK edges were seen before the CE  
signal is transitioned back high, the final bit, IP7, may not get shifted out of the shift register.  
CLK  
CE  
SIP  
high  
LD  
PIP0-PIP6  
PIP7  
SOP  
IP7  
Inhibit  
IP6  
IP5  
IP4  
IP3  
IP2  
IP1  
IP0  
SIP  
don’t care  
Serial shift  
Figure 21. Interface Timing for Parallel-Load and Serial-Shift Operation of the Shift Register  
Copyright © 2016, Texas Instruments Incorporated  
17  
SN65HVS883  
ZHCSFI0 SEPTEMBER 2016  
www.ti.com.cn  
9.1.4 Cascading for High Channel Count Input Modules  
Designing high-channel count modules require cascading multiple SN65HVS883 devices. Simply connect the  
serial output (SOP) of a leading device with the serial input (SIP) of a following device without changing the  
processor interface.  
HOST  
ISO7241  
CONTROLLER  
4 X SN65HVS883  
OUTA  
OUTB  
OUTC  
IND  
INA  
INB  
LOAD  
STE  
INC  
SCLK  
SOMI  
OUTD  
SERIALIZER  
SERIALIZER  
SERIALIZER  
SERIALIZER  
Figure 22. Cascading Four SN65HVS883 for a 32-Channel Input Module  
NOTE  
When daisy-chaining multiple devices, the maximum operating rate (CLK pulse width) may  
need to be restricted in order to maintain minimum set-up/hold timing relationships  
between the serial data (SIP/SOP) and the CLK line.  
9.2 Typical Application  
SM15T39CA  
24 V  
5 V  
5 V-ISO  
(Logic) 24 V1  
SM15T39A  
4.7 nF  
2 kV  
Isolated  
DC / DC  
(Sensors) 24 V2  
4.7 nF  
2 kV  
220 nF  
100 V  
220 nF  
100 V  
Power  
Supply  
GND2  
GND1  
0 V  
0 V-ISO  
4.7 nF  
2 kV  
56 Ω  
MELF  
FE  
220 nF  
100 V  
BYM10-1000  
Z2SMB36  
2.2 mF  
60 V  
1 mF  
0.1 mF  
SN65HVS883  
V24  
5VOP  
CE  
1.2 kW  
MELF  
220 nF  
60 V  
ISO7242  
VCC2  
HOST  
IP0  
VCC1  
CONTROLLER  
22 nF  
100 V  
S0  
RE0  
SIP  
EN2  
EN1  
INA  
VCC  
LD  
OUTA  
OUTB  
INC  
LOAD  
SCLK  
INT  
CLK  
CHOK  
SOP  
DB0  
DB1  
INB  
1.2 kW  
MELF  
IP7  
OUTC  
OUTD  
GND1  
22 nF  
100 V  
S7  
RE7  
IND  
MISO  
DGND  
RLIM  
FGND  
GND2  
24.9 kW  
Copyright © 2016, Texas Instruments Incorporated  
Figure 23. Typical Digital Input Module Application  
18  
Copyright © 2016, Texas Instruments Incorporated  
 
SN65HVS883  
www.ti.com.cn  
ZHCSFI0 SEPTEMBER 2016  
Typical Application (continued)  
9.2.1 Design Requirements  
The simplified schematic in Figure 23 demonstrates a typical application of the SN65HVS883 for sensing the  
state of digital switches with 24-V high logic levels. In this application, a 5-V host controller must receive the state  
of 8 switches as a serial input, while remaining isolated from the high voltage power supply.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Input Stage  
Selection of the current limiting resistor RLIM sets the input current limit ILIM for the device. Digital Inputs includes  
necessary equations for choosing the limiting resistor.  
The On/Off voltage thresholds at the device pin VTH(IP+) and VTH(IP-) are fixed to 5.2 V and 4.3 V respectively,  
however the On/Off voltage thresholds of the field input VTH(IN+) and VTH(IN-) are determined by the value of the  
series resistor RIN placed between the field input and the device. The threshold voltage VTH(IN+) is determined  
with the following equation:  
VTH(IN+) = IIN ´RIN + VTH(IP+)  
(3)  
Substituting Equation 1 and solving for RIN produces an equation for RIN given a desired on-threshold.  
(VTH(IN+) -5.2V)´RLIM  
RIN =  
90V  
(4)  
(5)  
The following equation can be used to calculate the off-threshold voltage given a value for RIN  
90V´RIN  
VTH(IN-)  
=
+ VTH(IP-)  
RLIM  
Figure 24 contains an example input characteristic:  
30  
25  
20  
15  
10  
ON = 8.2V  
OFF = 7.3V  
5
0
0
0.5  
1
1.5  
(mA)  
2
2.5  
3
I
IN  
Figure 24. SN65HVS883 Example Input Characteristic  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
SN65HVS883  
ZHCSFI0 SEPTEMBER 2016  
www.ti.com.cn  
Typical Application (continued)  
9.2.2.2 Setting Debounce Time  
The logic signals at the DB0 and DB1 pins determine the denounce times for the device according to the table in  
section 6.5. The DB0 and DB1 pins are internally pulled high. Connecting the pins to GND in different  
configurations allows for selection of 0, 1, or 3 ms debounce times. In noisy environments, it is recommended  
that unused DB pins should be connected externally to a 5 V supply.  
9.2.2.3 Example: High-Voltage Sensing Application  
For the high-voltage sensing application in Figure 23, inputs from each switch (S0-S7) are connected to the 8  
parallel inputs (IP0-IP7) of the SN65HVS883 through 1.2 kMELF resistors. Small capacitors (22 nF) are tied to  
ground at each input to provide noise protection for the signals. A resistor is added between the RLIM pin and  
GND to provide a device current limit according to the equation ILIM = 90 V / RLIM. In this example, with a 24.9 kΩ  
resistor, the current limit for the device is set to 3.6 mA. LEDs are placed between pins RE0-RE7 to allow for  
external status observation of the parallel inputs. Finally the SN65HVS883 is connected through a digital isolation  
device to the host controller to provide galvanic isolation to the external interfaces and to allow for  
communication between the 5 V SN65HVS883 logic and the 5-V host controller. The host controller manages  
mode switching and clocking of the SN65HVS883 through the digital isolation device.  
9.2.3 Application Curve  
The application traces acquired in Figure 25 demonstrates the typical behavior of the SN65HVD883 when in shift  
mode (Load Pulse Input pulled high and Clock Enable Input pulled low). Channel 1 shows the SIP input, Channel  
2 shows the CLK input, and Channel 3 shows the SOP output.  
500 ns/div  
Figure 25. SN65HVS883 Serial Input and Output Timing  
20  
Copyright © 2016, Texas Instruments Incorporated  
 
SN65HVS883  
www.ti.com.cn  
ZHCSFI0 SEPTEMBER 2016  
10 Power Supply Recommendations  
The SN65HVS883 operates within a recommended supply voltage range from 4.5 V to 5.5 V. A 0.1 µF or larger  
capacitor should be placed between VCC and ground to improve power supply noise immunity. A current limiting  
resistor can be used to reduce overall power consumption as described in Digital Inputs. The high voltage  
parallel field inputs can accept voltages ranging from 0 V to 34 V, however all other inputs must remain between  
0 V to 5 V. Refer to the Recommended Operating Conditions table for more detailed voltage suggestions. High  
voltage field inputs should be buffered as shown in Figure 23 to improve input noise immunity.  
11 Layout  
11.1 Layout Guidelines  
1. Place series MELF resistors between the field inputs and the device input pins.  
2. Place small ~22 nF capacitors close to the field input pins to reduce noise.  
3. Place a supply buffering 0.1-µF capacitor around as close to the VCC pin as possible.  
11.2 Layout Example  
1
R
2
C
R
R
R
C
C
C
High  
{b65Iëꢀ883  
Voltage  
Parallel  
Inputs  
Isolator  
MCU  
R
R
R
R
C
C
C
C
R
C
C
3
Isolated  
DC-DC  
Via to ground  
Via to VCC 5V  
Via to VCC 24V  
版权 © 2016, Texas Instruments Incorporated  
21  
SN65HVS883  
ZHCSFI0 SEPTEMBER 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65HVS883PWP  
SN65HVS883PWPR  
NRND  
HTSSOP  
HTSSOP  
PWP  
PWP  
28  
28  
50  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
HVS883  
HVS883  
ACTIVE  
2000 RoHS & Green  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
PWP 28  
4.4 x 9.7, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224765/B  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN65HVS883PWPR

34V、8 通道数字输入串行器 | PWP | 28 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN65HVS885

34 V, Digital-Input Serializer for 5V Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN65HVS885PWP

34 V, Digital-Input Serializer for 5V Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN65HVS885PWPR

34 V, Digital-Input Serializer for 5V Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN65HVS885_15

34-V Digital-Input Serializer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN65LBC031

HIGH-SPEED CONTROLLER AREA NETWORK (CAN) TRANSCEIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN65LBC031D

HIGH-SPEED CONTROLLER AREA NETWORK (CAN) TRANSCEIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN65LBC031DG4

HIGH-SPEED CONTROLLER AREA NETWORK (CAN) TRANSCEIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN65LBC031DRG4

HIGH-SPEED CONTROLLER AREA NETWORK (CAN) TRANSCEIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN65LBC031P

HIGH-SPEED CONTROLLER AREA NETWORK (CAN) TRANSCEIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN65LBC031Q

HIGH-SPEED CONTROLLER AREA NETWORK CAN TRANSCEIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN65LBC031QD

HIGH-SPEED CONTROLLER AREA NETWORK CAN TRANSCEIVERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI