SN65LVDS047 [TI]

LVDS QUAD DIFFERENTIAL LINE DRIVER; 四路LVDS差分线路驱动器
SN65LVDS047
型号: SN65LVDS047
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LVDS QUAD DIFFERENTIAL LINE DRIVER
四路LVDS差分线路驱动器

驱动器
文件: 总11页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃꢄꢅ ꢆꢀ ꢇꢈ ꢉ  
ꢄꢅꢆꢀ ꢊ ꢋꢌꢆ ꢆꢍ ꢎꢎ ꢏꢐ ꢏꢁꢑ ꢍꢌ ꢄ ꢄ ꢍꢁꢏ ꢆ ꢐꢍ ꢅ ꢏꢐ  
SLLS416B − JUNE 2000 − REVISED DECEMBER 2003  
D OR PW PACKAGE  
(Marked as LVDS047)  
(TOP VIEW)  
D
D
>400 Mbps (200 MHz) Signaling Rates  
Flow-Through Pinout Simplifies PCB  
Layout  
EN  
D
D
D
D
D
D
D
D
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
D
D
D
D
D
300 ps Maximum Differential Skew  
Propagation Delay Times 1.8 ns (Typical)  
3.3 V Power Supply Design  
OUT1−  
OUT1+  
OUT2+  
OUT2−  
OUT3−  
OUT3+  
OUT4+  
OUT4−  
D
D
IN1  
IN2  
V
CC  
350 mV Differential Signaling  
GND  
High Impedance on LVDS Outputs on  
Power Down  
D
D
IN3  
IN4  
EN  
D
Conforms to TIA/EIA-644 LVDS Standard  
D
Industrial Operating Temperature Range  
(−40°C to 85°C)  
functional block diagram  
D
Available in SOIC and TSSOP Packages  
D
OUT1+  
D1  
D2  
D3  
D4  
D
D
D
D
IN1  
IN2  
IN3  
IN4  
D
OUT1−  
description  
The SN65LVDS047 is a quad differential line  
D
OUT2+  
OUT2−  
driver that implements the electrical characteris-  
tics of low-voltage differential signaling (LVDS).  
This signaling technique lowers the output voltage  
levels of 5-V differential standard levels (such as  
EIA/TIA-422B) to reduce the power, increase the  
switching speeds, and allow operation with a  
3.3-V supply rail. Any of the four current-mode  
drivers will deliver a minimum differential output  
voltage magnitude of 247 mV into a 100-load  
when enabled.  
D
D
OUT3+  
D
OUT3−  
D
D
OUT4+  
OUT4−  
EN  
EN  
The intended application of this device and  
signaling technique is for point-to-point and multi-  
drop baseband data transmission over controlled  
impedance media of approximately 100 . The transmission media may be printed-circuit board traces,  
backplanes, or cables. The ultimate rate and distance of data transfer is dependent upon the attenuation  
characteristics of the media, the noise coupling to the environment, and other system characteristics.  
The SN65LVDS047 is characterized for operation from −40°C to 85°C.  
TRUTH TABLE  
INPUT  
ENABLES  
OUTPUTS  
D
EN  
EN  
D
D
OUT−  
IN  
OUT+  
L
H
X
L
H
H
L or OPEN  
H
Z
L
Z
All other conditions  
H = high level, L = low level, X = irrelevant,  
Z = high impedance (off)  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢑꢠ  
Copyright 2001 − 2003, Texas Instruments Incorporated  
ꢜ ꢠ ꢝ ꢜꢕ ꢖꢪ ꢘꢗ ꢛ ꢣꢣ ꢡꢛ ꢙ ꢛ ꢚ ꢠ ꢜ ꢠ ꢙ ꢝ ꢥ  
ꢞꢠ  
1
WWW.TI.COM  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢀꢇ ꢈ ꢉ  
ꢄꢅ ꢆ ꢀ ꢊꢋ ꢌ ꢆ ꢆ ꢍ ꢎ ꢎꢏ ꢐꢏ ꢁꢑ ꢍ ꢌꢄ ꢄꢍ ꢁ ꢏ ꢆꢐ ꢍ ꢅ ꢏꢐ  
SLLS416B − JUNE 2000 − REVISED DECEMBER 2003  
equivalent input and output schematic diagrams  
V
CC  
V
CC  
50 Ω  
D
or EN  
Input  
IN  
50 Ω  
10 kΩ  
Output  
7 V  
7 V  
300 kΩ  
absolute maximum ratings over operating free-air temperature (see Note 1) (unless otherwise  
noted)  
Supply voltage (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4 V  
CC  
Input voltage range, V (D ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to (V  
+0.3 V)  
+0.3 V)  
I
IN  
CC  
CC  
Enable input voltage (EN, EN ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to (V  
Output voltage, V (D  
D ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to (Vcc + 0.5 V)  
O
OUT+, OUT−  
Bus-pin (D  
D
) electrostatic discharge, (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >10 kV  
OUT+, OUT−  
Short circuit duration (D  
(D  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous  
OUT+, OUT−  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
2. Tested in accordance with MIL-STD-883C Method 3015.7.  
DISSIPATION RATING TABLE  
T
A
25°C  
OPERATING FACTOR  
T = 85°C  
A
POWER RATING  
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
D
950 mW  
7.6 mW/°C  
6.2 mW/°C  
494 mW  
PW  
774 mW  
402 mW  
This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with  
no air flow.  
recommended operating conditions  
MIN NOM  
MAX  
3.6  
UNIT  
V
Supply voltage, V  
CC  
3
3.3  
25  
Operating free-air temperature, T  
−40  
85  
°C  
A
2
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄꢅ ꢆꢀ ꢇꢈ ꢉ  
ꢄꢅꢆꢀ ꢊ ꢋꢌꢆ ꢆꢍ ꢎꢎ ꢏꢐ ꢏꢁꢑ ꢍꢌ ꢄ ꢄ ꢍꢁ ꢏ ꢆ ꢐꢍ ꢅ ꢏꢐ  
SLLS416B − JUNE 2000 − REVISED DECEMBER 2003  
electrical characteristics over recommended operating free-air temperature range (see Notes 3, 4)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
Differential output voltage  
Change in magnitude of V  
250  
310  
1
450  
mV  
OD  
for  
OD  
n|V  
|
35  
|mV|  
V
OD  
complementary output states  
Steady-state, common-mode output  
voltage  
V
1.125  
1.17 1.375  
OC(SS)  
R
= 100 (see Figure 1)  
L
Change in steady-state common-mode  
output voltage between logic states  
nV  
OC(SS)  
1
25  
|mV|  
V
V
V
V
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Input clamp voltage  
1.33  
1.02  
1.6  
V
V
OH  
0.90  
2
OL  
IH  
IL  
V
V
CC  
0.8  
GND  
−10  
−10  
−1.5  
V
I
IH  
I
IL  
V
V
= V  
CC  
or 2.5 V  
3
1
10  
10  
µA  
µA  
V
IN  
= GND or 0.4 V  
= −18 mA  
IN  
V
IK  
I
−0.8  
CL  
Enabled,  
I
Output short circuit current (see Note 5)  
D
D
= V  
CC  
,
D
D
= 0 V or  
= 0 V  
−3.1  
−9  
mA  
OS  
IN  
IN  
OUT+  
OUT−  
= GND,  
Differential output short circuit current  
(see Note 5)  
I
I
I
I
I
I
Enabled, V  
OD  
= 0 V  
−9  
1
mA  
µA  
OSD  
OFF  
OZ  
Power-off leakage  
V
= 0 V or 3.6 V,  
V
= 0 V or Open  
−1  
−1  
O
CC  
EN = 0.8 V and EN = 2 V,  
= 0 V or V  
Output 3-state current  
1
µA  
V
O
CC  
or GND  
No load supply current, drivers enabled  
Loaded supply current, drivers enabled  
No load supply current, drivers disabled  
D
= V  
IN CC  
7
20  
mA  
mA  
mA  
CC  
R
D
= 100 all channels,  
L
26  
CCL  
= V  
or GND (all inputs)  
IN  
CC  
D
= V  
or GND, EN = GND, EN = V  
CC  
0.5  
1.3  
CC(Z)  
IN  
CC  
All typical values are given for: V  
CC  
= 3.3 V, T = 25°C.  
A
NOTES: 3. Current into device pin is defined as positive. Current out of the device is defined as negative. All voltages are referenced to ground,  
unless otherwise specified.  
4. The SN65LVDS047 is a current mode device and only functions within data sheet specifications when a resistive load is applied  
to the driver outputs, 90 to 110 typical range.  
5. Output short circuit current (I ) is specified as magnitude only, minus sign indicates direction only.  
OS  
3
WWW.TI.COM  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢀꢇ ꢈ ꢉ  
ꢄꢅ ꢆ ꢀ ꢊꢋ ꢌ ꢆ ꢆ ꢍ ꢎ ꢎꢏ ꢐꢏ ꢁꢑ ꢍ ꢌꢄ ꢄꢍ ꢁ ꢏ ꢆꢐ ꢍ ꢅ ꢏꢐ  
SLLS416B − JUNE 2000 − REVISED DECEMBER 2003  
switching characteristics over recommended operating conditions (see Notes 6, 7, and 12) (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
2.8  
2.8  
300  
300  
1
UNIT  
ns  
t
t
t
t
t
t
t
t
t
Differential propagation delay, high-to-low  
Differential propagation delay, low-to-high  
1.4  
1.4  
1.8  
1.8  
50  
PHL  
PLH  
SK(p)  
SK(o)  
SK(pp)  
SK(lim)  
r
ns  
Differential pulse skew (t  
t
) (see Note 8)  
ps  
PHLD − PLHD  
R
= 100 ,, C = 15 pF  
L
(see Figures 2 and 3)  
L
Channel-to−channel skew (see Note 9)  
40  
ps  
Differential part-to-part skew (see Note 10)  
Differential part-to-part skew (see Note 11)  
Rise time  
ns  
1.2  
1.5  
1.5  
8
ns  
0.5  
0.5  
5.5  
ns  
Fall time  
ns  
f
Disable time high to Z  
ns  
PHZ  
t
t
t
Disable time low to Z  
Enable time Z to high  
Enable time Z to low  
5.5  
8.5  
8.5  
8
12  
12  
ns  
ns  
ns  
PLZ  
PZH  
PZL  
R = 100 ,, C = 15 pF  
L L  
(see Figures 4 and 5)  
f
Maximum operating frequency (see Note 13)  
250  
MHz  
(MAX)  
All typical values are given for: V  
CC  
= 3.3 V, T = 25°C.  
A
NOTES: 6. Generator waveform for all tests unless otherwise: f = 1 MHz, Z = 50 Ω, t < 1 ns, and t < 1 ns.  
o
r
f
7.  
8.  
C includes probe and jig capacitance.  
L
t
|t | is the magnitude difference in differential propagation delay time between the positive going edge and  
−t  
SK(p) PHL PLH  
the negative going edge of the same channel.  
9.  
10.  
t
is the differential channel-to-channel skew of any event on the same device.  
SK(o)  
t
is the differential part-to-part skew, and is defined as the difference between the minimum and the maximum specified  
SK(pp)  
differential propagation delays. This specification applies to devices at the same V  
operating temperature range.  
and within 5°C of each other within the  
CC  
11.  
t
part-to-part skew, is the differential channel-to-channel skew of any event between devices. This specification applies to  
SK(lim)  
devices over recommended operating temperature and voltage ranges, and across process distribution. t  
|Min − Max| differential propagation delay.  
is defined as  
SK(lim)  
12. All input voltages are for one channel unless otherwise specified. Other inputs are set to GND.  
13.  
f
V
generator input conditions: t = t < 1 ns (0% to 100%), 50% duty cycle, 0 V to 3 V. Output criteria: duty cycle = 45% to 55,  
> 250 mV, all channels switching  
(MAX)  
OD  
r
f
4
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄꢅ ꢆꢀ ꢇꢈ ꢉ  
ꢄꢅꢆꢀ ꢊ ꢋꢌꢆ ꢆꢍ ꢎꢎ ꢏꢐ ꢏꢁꢑ ꢍꢌ ꢄ ꢄ ꢍꢁ ꢏ ꢆ ꢐꢍ ꢅ ꢏꢐ  
SLLS416B − JUNE 2000 − REVISED DECEMBER 2003  
PARAMETER MEASUREMENT INFORMATION  
D
OUT+  
R /2  
L
V
CC  
D
IN  
V
OC  
V
OD  
D
GND  
S1  
R /2  
L
Driver Enable  
D
OUT−  
Figure 1. Driver V  
and V  
Test Circuit  
OD  
OC  
C
L
D
OUT+  
OUT−  
D
IN  
R
Generator  
D
L
50 Ω  
D
Driver Enable  
C
L
Figure 2. Driver Propagation Delay and Transition Time Test Circuit  
3 V  
1.5 V  
1.5 V  
D
IN  
0 V  
V
t
t
PHL  
PLH  
D
D
OH  
OUT−  
0 V (Differential)  
0 V  
V
OL  
OUT+  
80%  
0 V  
80%  
0 V  
V
(DIFF)  
20%  
20%  
V
= D + − D −  
OUT OUT  
(DIFF)  
t
t
f
r
Figure 3. Driver Propagation Delay and Transition Time Waveforms  
5
WWW.TI.COM  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢀꢇ ꢈ ꢉ  
ꢄꢅ ꢆ ꢀ ꢊꢋ ꢌ ꢆ ꢆ ꢍ ꢎ ꢎꢏ ꢐꢏ ꢁꢑ ꢍ ꢌꢄ ꢄꢍ ꢁ ꢏ ꢆꢐ ꢍ ꢅ ꢏꢐ  
SLLS416B − JUNE 2000 − REVISED DECEMBER 2003  
PARAMETER MEASUREMENT INFORMATION  
C
L
D
D
OUT+  
50 Ω  
50 Ω  
V
D
CC  
IN  
D
GND  
1.2 V  
OUT−  
EN  
EN  
Generator  
C
L
50 Ω  
1/4 65LVDS047  
Figure 4. Driver 3-State Delay Test Circuit  
3 V  
1.5 V  
1.5 V  
1.5 V  
EN When EN = GND or Open  
0 V  
3 V  
EN When EN = V  
CC  
1.5 V  
0 V  
t
t
PZH  
PHZ  
V
OH  
D
When D = V  
IN CC  
OUT+  
50%  
50%  
D
− When D = GND  
OUT  
IN  
1.2 V  
1.2 V  
D
D
When D = GND  
OUT+  
IN  
50%  
50%  
When D = V  
IN CC  
OUT−  
V
OL  
t
t
PZL  
PLZ  
Figure 5. Driver 3-State Delay Waveform  
6
WWW.TI.COM  
ꢀꢁꢂ ꢃꢄꢅ ꢆꢀ ꢇꢈ ꢉ  
ꢄꢅꢆꢀ ꢊ ꢋꢌꢆ ꢆꢍ ꢎꢎ ꢏꢐ ꢏꢁꢑ ꢍꢌ ꢄ ꢄ ꢍꢁ ꢏ ꢆ ꢐꢍ ꢅ ꢏꢐ  
SLLS416B − JUNE 2000 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
OUTPUT HIGH VOLTAGE  
OUTPUT LOW VOLTAGE  
vs  
vs  
POWER SUPPLY VOLTAGE  
POWER SUPPLY VOLTAGE  
1.36  
1.35  
1.34  
1.33  
1.32  
1.31  
1.30  
1.061  
1.056  
1.051  
1.046  
1.041  
1.036  
T
= 25°C  
A
T
= 25°C  
A
Load = 100 Ω  
Load = 100 Ω  
3
3.3  
3.6  
3
3.3  
3.6  
V
CC  
− Power Supply Voltage − V  
V
CC  
− Power Supply Voltage − V  
Figure 6  
Figure 7  
OUTPUT SHORT CIRCUIT CURRENT  
DIFFERENTIAL OUTPUT VOLTAGE  
vs  
vs  
POWER SUPPLY VOLTAGE  
POWER SUPPLY VOLTAGE  
−3.30  
−3.25  
−3.20  
350  
330  
310  
290  
270  
250  
T
= 25°C  
T = 25°C  
A
Load = 100 Ω  
A
I
O
V = V  
V
or GND,  
CC  
= 0 V  
−3.15  
−3.10  
−3.05  
−3.00  
3
3.3  
3.6  
3
3.3  
3.6  
V
CC  
− Power Supply Voltage − V  
V
CC  
− Power Supply Voltage − V  
Figure 8  
Figure 9  
7
WWW.TI.COM  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢀꢇ ꢈ ꢉ  
ꢄꢅ ꢆ ꢀ ꢊꢋ ꢌ ꢆ ꢆ ꢍ ꢎ ꢎꢏ ꢐꢏ ꢁꢑ ꢍ ꢌꢄ ꢄꢍ ꢁ ꢏ ꢆꢐ ꢍ ꢅ ꢏꢐ  
SLLS416B − JUNE 2000 − REVISED DECEMBER 2003  
TYPICAL CHARACTERISTICS  
COMMON-MODE OUTPUT VOLTAGE  
vs  
POWER SUPPLY VOLTAGE  
POWER SUPPLY CURRENT  
vs  
FREQUENCY  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
60  
50  
40  
30  
20  
10  
T
= 25°C  
T
= 25°C  
A
A
Load = 100 Ω  
Load = 100 Ω  
ꢀ ꢂ ꢃ ꢀ ꢄ ꢅ ꢆ ꢀ  
ꢂ ꢉ ꢊ ꢋꢍ  
ꢂ ꢆ ꢎ ꢆ ꢀ  
ꢇ ꢇ  
All Switching  
0
0.01  
3
3.3  
3.6  
0.1  
10  
100  
1000  
1
V
CC  
− Power Supply Voltage − V  
f − Frequency − MHz  
Figure 10  
Figure 11  
8
WWW.TI.COM  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

SN65LVDS047D

LVDS QUAD DIFFERENTIAL LINE DRIVER
TI

SN65LVDS047DG4

LVDS QUAD DIFFERENTIAL LINE DRIVER
TI

SN65LVDS047DR

LVDS QUAD DIFFERENTIAL LINE DRIVER
TI

SN65LVDS047DRG4

LVDS QUAD DIFFERENTIAL LINE DRIVER
TI

SN65LVDS047PW

LVDS QUAD DIFFERENTIAL LINE DRIVER
TI

SN65LVDS047PWG4

LVDS QUAD DIFFERENTIAL LINE DRIVER
TI

SN65LVDS047PWR

LVDS QUAD DIFFERENTIAL LINE DRIVER
TI

SN65LVDS047PWRG4

LVDS QUAD DIFFERENTIAL LINE DRIVER
TI

SN65LVDS047_06

LVDS QUAD DIFFERENTIAL LINE DRIVER
TI

SN65LVDS047_07

LVDS QUAD DIFFERENTIAL LINE DRIVER
TI

SN65LVDS047_10

LVDS QUAD DIFFERENTIAL LINE DRIVER
TI

SN65LVDS048

LVDS QUAD DIFFERENTIAL LINE RECEIVER
TI