SN65LVDS301ZXHR [TI]

SN65LVDS301 Programmable 27-Bit Parallel-to-Serial Transmitter;
SN65LVDS301ZXHR
型号: SN65LVDS301ZXHR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SN65LVDS301 Programmable 27-Bit Parallel-to-Serial Transmitter

文件: 总43页 (文件大小:2387K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
SN65LVDS301 Programmable 27-Bit Parallel-to-Serial Transmitter  
1 Features  
3 Description  
FlatLink3G serial interface technology  
Compatible with FlatLink3G receivers such as  
SN65LVDS302  
The SN65LVDS301 serializer device converts 27  
parallel data inputs to 1, 2, or 3 Sub Low-Voltage  
Differential Signaling (SubLVDS) serial outputs. It  
loads a shift register with 24 pixel bits and 3 control  
bits from the parallel CMOS input interface. In addition  
to the 27 data bits, the device adds a parity bit and  
two reserved bits into a 30-bit data word. Each word is  
latched into the device by the pixel clock (PCLK). The  
parity bit (odd parity) allows a receiver to detect single  
bit errors. The serial shift register is uploaded at 30,  
15, or 10 times the pixel-clock data rate depending on  
the number of serial links used. A copy of the pixel  
clock is output on a separate differential output.  
Input supports 24-bit RGB video mode interface  
24-Bit RGB data, 3 control bits, 1 parity bit and 2  
reserved bits transmitted over 1, 2 or 3 differential  
lines  
SubLVDS differential voltage levels  
Effective data throughput up to 1755 Mbps  
Three operating modes to conserve power  
– Active-mode QVGA 17.4 mW (typ)  
– Active-mode VGA 28.8 mW (typ)  
– Shutdown mode 0.5 μA (typ)  
– Standby mode 0.5 μA (typ)  
Bus swap for increased PCB layout flexibility  
1.8-V supply voltage  
ESD rating > 2 kV (HBM)  
Pixel clock range of 4 MHz–65 MHz  
Failsafe on all CMOS inputs  
FPC  
cabling  
typically  
interconnects  
the  
SN65LVDS301 with the display. Compared to parallel  
signaling, the LVDS301 outputs significantly reduce  
the EMI of the interconnect by over 20 dB. The  
electromagnetic emission of the device itself is very  
low and meets the meets SAE J1752/3 'M'-spec. (see  
Figure 6-22)  
Packaging: 80 pin 5mm × 5mm nFBGA®  
Very low EMI meets SAE J1752/3 'M'-spec  
The SN65LVDS301 is characterized for operation  
over ambient air temperatures of –40°C to 85°C. All  
CMOS inputs offer failsafe features to protect them  
from damage during power-up and to avoid current  
flow into the device inputs during power-up. An input  
voltage of up to 2.165 V can be applied to all CMOS  
inputs while VDD is between 0V and 1.65V.  
2 Applications  
Wearables (non-medical)  
Tablets  
Mobile phones  
Portable electronics  
Gaming  
Retail automation & payment  
Building automation  
Device Information (1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
SN65LVDS301  
nFBGA (80)  
5.00 mm × 5.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
LCD  
VDS314  
L
or  
VDS302  
L
Application  
Processor  
with CMOS  
Video Interface  
LVDS301  
or  
LVDS311  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings (1) ...................................5  
6.2 Thermal Information....................................................5  
6.3 Recommended Operating Conditions (1) ................... 6  
6.4 Device Electrical Characteristics.................................7  
6.5 Output Electrical Characteristics.................................7  
6.6 Input Electrical Characteristics....................................8  
6.7 Switching Characteristics............................................8  
6.8 Timing Characteristics.................................................9  
6.9 Device Power Dissipation........................................... 9  
6.10 Typical characteristics.............................................10  
7 Parameter Measurement Information..........................14  
8 Detailed Description......................................................22  
8.1 Overview...................................................................22  
8.2 Functional Block Diagram.........................................23  
8.3 Feature Description...................................................23  
8.4 Device Functional Modes..........................................25  
9 Application information................................................ 30  
9.1 Application Information............................................. 30  
9.2 Preventing Increased Leakage Currents in  
Control Inputs..............................................................30  
9.3 VGA Application........................................................30  
9.4 Dual LCD-Display Application...................................31  
9.5 Typical Application Frequencies............................... 31  
10 Power Supply Design Recommendation...................33  
10.1 Decoupling Recommendation.................................33  
11 Layout...........................................................................34  
11.1 Layout Guidelines................................................... 34  
12 Device and Documentation Support..........................35  
12.1 Support Resources................................................. 35  
12.2 Trademarks.............................................................35  
12.3 Electrostatic Discharge Caution..............................35  
12.4 Glossary..................................................................35  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 36  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (August 2012) to Revision E (October 2020)  
Page  
NOTE: The device in the MicroStar Jr. BGA packaging were redesigned using a laminate nFBGA package.  
This nFBGA package offers datasheet-equivalent electrical performance. It is also footprint equivalent to the  
MicroStar Jr. BGA. The new package designator in place of the discontinued package designator will be  
updated throughout the datasheet......................................................................................................................1  
Changed u*jr ZQE to nFBGA ZXH..................................................................................................................... 1  
Changed u*jr ZQE to nFBGA ZXH..................................................................................................................... 3  
Changed u*jr ZQE to nFBGA ZXH, updated thermal information.......................................................................5  
Added overview................................................................................................................................................ 22  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
5 Pin Configuration and Functions  
Figure 5-1. 80-Ball ZXH (Top View)  
Pin Functions  
NAME  
D0+, D0–  
PIN  
I/O  
DESCRIPTION  
J5, J4  
SubLVDS Data Link (active during normal operation)  
SubLVDS Data Link (active during normal operation when LS0 = high and  
LS1 = low, or LS0 = low and LS1=high; high impedance if LS0 = LS1 = low)  
D1+, D1–  
F9, G9  
SubLVDS Out  
SubLVDS Data Link (active during normal operation when LS0 = low and  
LS1 = high, high-impedance when LS1 = low)  
D2+, D2–  
D9, E9  
J7, J6  
CLK+, CLK–  
SubLVDS output Clock; clock polarity is fixed  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN65LVDS301  
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
Pin Functions (continued)  
NAME  
PIN  
I/O  
DESCRIPTION  
A5/C2, B6/C1,  
A6/D2, B7/D1,  
A7/E1, B8/F2,  
A8/F1, B9/G2  
R0–R7  
Red Pixel Data (8); pin assignment depends on SWAP pin setting  
B1/B5, B2/A4,  
A2/B4, B3/A3,  
A3/B3, B4/A2,  
A4/B2, B5/B1  
G0–G7  
B0–B7  
Green Pixel Data (8); pin assignment depends on SWAP pin setting  
Blue Pixel Data (8); pin assignment depends on SWAP pin setting  
B9/G2, A8/F1,  
B8/F2, A7/E1,  
B7/D1, A6/D2,  
B6/C1, A5/C2  
HS  
VS  
DE  
H1  
H2  
J2  
Horizontal Sync  
Vertical Sync  
Data Enable  
CMOS IN  
Input Pixel Clock; rising or falling clock polarity is selected by control input  
CPOL  
PCLK  
G1  
Link Select (Determines active SubLVDS Data Links and PLL Range) See  
Table 8-2  
LS0, LS1  
C9, D8  
Disables the CMOS Drivers and Turns Off the PLL, putting device in  
shutdown mode  
1 – Transmitter enabled  
0 – Transmitter disabled  
(Shutdown)  
TXEN  
CPOL  
J3  
Note: The TXEN input incorporates glitch-suppression logic to avoid device  
malfunction on short input spikes. It is necessary to pull TXEN high for  
longer than 10 μs to enable the transmitter. It is necessary to pull the TXEN  
input low for longer than 10 μs to disable the transmitter. At power up, the  
transmitter is enabled immediately if TXEN = 1 and disabled if TXEN = 0  
Input Clock Polarity Selection  
H9  
CMOS In  
CMOS In  
0 – rising edge clocking  
1 – falling edge clocking  
Bus Swap swaps the bus pins to allow device placement on top or bottom  
of pcb. See pinout drawing for pin assignments.  
SWAP  
VDD  
J8  
0 – data input from B0...R7  
1 – data input from R7...B0  
C4  
Supply Voltage  
A1, A9, C5, C8, D4,  
D5, D6, D7, E2, E4,  
E5, E6, E7, F4, F5,  
F6, F7, G4, G5, G6,  
G7, H3, J1  
GND  
Supply Ground  
Power Supply(1)  
VDDLVDS  
GNDLVDS  
VDDPLLA  
GNDPLLA  
VDDPLLD  
GNDPLLD  
H5, H8  
G8, H4  
H7  
SubLVDS I/O supply Voltage  
SubLVDS Ground  
PLL analog supply Voltage  
PLL analog GND  
H6  
F8  
PLL digital supply Voltage  
PLL digital GND  
E8  
(1) For a multilayer pcb, it is recommended to keep one common GND layer underneath the device and connect all ground terminals  
directly to this plane.  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings (1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
-0.3 to 2.175  
-0.5 to 2.175  
-0.5 to VDD + 2.175  
±3  
UNIT  
V
Supply voltage range, VDD (2), VDDPLLA, VDDPLLD, VDDLVDS  
Voltage range at any input When VDDx > 0 V  
V
or output terminal  
When VDDx ≤ 0 V  
V
Human Body Model(3) (all Pins)  
kV  
V
Electrostatic discharge  
Charged-Device Mode(4)l (all Pins)  
Machine Model(5) (all pins)  
±500  
±200  
Continuous power dissipation  
See Dissipation Rating Table  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND terminals.  
(3) In accordance with JEDEC Standard 22, Test Method A114-A.  
(4) In accordance with JEDEC Standard 22, Test Method C101.  
(5) In accordance with JEDEC Standard 22, Test Method A115-A  
6.2 Thermal Information  
SN65LVDS301  
ZXH  
THERMAL METRIC(1)  
UNIT  
(nFBGA)  
80 PINS  
47.6  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
33.1  
30.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.7  
ψJB  
30.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN65LVDS301  
 
 
 
 
 
 
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
6.3 Recommended Operating Conditions (1)  
MIN  
NOM  
MAX UNIT  
VDD  
Supply voltages  
1.65  
1.8  
1.95  
V
VDDPLLA  
VDDPLLD  
VDDLVDS  
VDDn(PP)  
Test set-up see Figure 7-5  
f(PCLK) ≤ 50 MHz; f(noise) = 1 Hz to 2 GHz  
f(PCLK) > 50 MHz; f(noise) = 1 Hz to 1 MHz  
f(PCLK) > 50 MHz; f(noise) > 1 MHz  
1-Channel transmit mode, see Figure 8-4  
2-Channel transmit mode, see Figure 8-5  
3-Channel transmit mode, see Figure 8-6  
100  
100  
40  
15  
30  
65  
3
Supply voltage noise  
magnitude (all supplies)  
mV  
4
8
fPCLK  
Pixel clock frequency  
PCLK input duty cycle  
MHz  
°C  
20  
0.5  
Frequency threshold Standby mode to active  
mode(2), see Figure 7-9  
tH x fPCLK  
TA  
0.33  
–40  
0.67  
85  
Operating free-air  
temperature  
tjit(per)PCLK  
tjit(TJ)PCLK  
tjit(CC)PCLK  
PCLK RMS period jitter(3)  
5
0.05/fPCLK  
0.02/fPCLK  
ps-rms  
PCLK total jitter  
s
s
Measured on PCLK input  
PCLK peak  
cycle-to-cycle jitter(4)  
PCLK, R[0:7], G[0:7], B[0:7], VS, HS, DE, PCLK, LS[1:0], CPOL, TXEN, SWAP  
VIH  
VIL  
tDS  
High-level input voltage  
Low-level input voltage  
0.7×VDD  
VDD  
V
V
0.3×VDD  
Data set up time prior to  
PCLK transition  
2.0  
2.0  
ns  
f (PCLK) = 65 MHz; see Figure 7-1  
tDH  
Data hold time after PCLK  
transition  
ns  
(1) Unused single-ended inputs must be held high or low to prevent them from floating.  
(2) PCLK input frequencies lower than 500 kHz force the SN65LVDS301into standby mode. Input frequencies between 500 kHz and 3  
MHz may or may not activate the SN65LVDS301. Input frequencies beyond 3 MHz activate the SN65LVDS301.  
(3) Period jitter is the deviation in cycle time of a signal with respect to the ideal period over a random sample of 100,000 cycles.  
(4) Cycle-to-cycle jitter is the variation in cycle time of a signal between adjacent cycles; over a random sample of 1,000 adjacent cycle  
pairs.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
 
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
6.4 Device Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAM  
ETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
VDD =VDDPLLA=VDDPLLD=VDDLVDS, RL(CLK)=R  
L(D0)=100 Ω, VIH=VDD, VIL=0 V, TXEN at VDD  
alternating 1010 serial bit pattern  
fPCLK = 4 MHz  
fPCLK = 6 MHz  
fPCLK = 15 MHz  
fPCLK = 4 MHz  
fPCLK = 6 MHz  
fPCLK = 15 MHz  
fPCLK = 8 MHz  
fPCLK = 22 MHz  
fPCLK = 30 MHz  
fPCLK = 8 MHz  
fPCLK = 22 MHz  
fPCLK = 30 MHz  
fPCLK = 20 MHz  
fPCLK = 65 MHz  
9.0  
10.6  
16  
11.4  
12.6  
18.8  
,
mA  
1ChM  
VDD =VDDPLLA=VDDPLLD=VDDLVDS, RL(PCLK)=R  
8.0  
L(D0)=100 Ω, VIH=VDD, VIL=0 V, TXEN at VDD  
,
8.9  
mA  
mA  
typical power test pattern (see Table 7-2)  
14.0  
13.7  
18.4  
21.4  
11.5  
16.0  
19.1  
20.0  
VDD =VDDPLLA=VDDPLLD=VDDLVDS, RL(CLK)=R  
15.9  
22.0  
25.8  
L(Dx)=100 Ω, VIH=VDD, VIL=0 V, TXEN at VDD  
,
alternating 1010 serial bit pattern;  
2ChM  
3ChM  
VDD =VDDPLLA=VDDPLLD=VDDLVDS, RL(PCLK)=R  
L(D0)=100 Ω, VIH=VDD, VIL=0 V, TXEN at VDD  
,
IDD  
mA  
mA  
typical power test pattern (see Table 7-3)  
VDD =VDDPLLA=VDDPLLD=VDDLVDS, RL(PCLK)=R  
22.5  
36.8  
L(D0)=100 Ω, VIH=VDD, VIL=0 V, TXEN at VDD  
,
29.1  
15.9  
24.7  
0.61  
alternating 1010 serial bit pattern  
VDD =VDDPLLA=VDDPLLD=VDDLVDS, RL(PCLK)=R  
fPCLK = 20 MHz  
fPCLK = 65 MHz  
L(D0)=100 Ω, VIH=VDD, VIL=0 V, TXEN at VDD  
,
mA  
μA  
typical power test pattern (see Table 7-4)  
Standby Mode  
VDD = VDDPLLA = VDDPLLD  
= VDDLVDS, RL(PCLK)=R  
L(D0)=100 Ω, VIH=VDD, V  
IL=0 V, all inputs held static  
high or static low  
10  
10  
Shutdown Mode  
0.55  
μA  
(1) All typical values are at 25°C and with 1.8 V supply unless otherwise noted.  
6.5 Output Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
subLVDS output (D0+, D0–, D1+, D1–, D2+, D1–, CLK+, and CLK–)  
VOCM(SS) Steady-state common-mode output voltage  
VOCM(SS) Change in steady-state common-mode output voltage  
VOCM(PP) Peak-to-peak common mode output voltage  
Output load see Figure 7-3  
0.8  
0.9  
1.0  
10  
V
–10  
mV  
mV  
75  
|VOD  
|
Differential output voltage magnitude  
|VDx+ – VDx– |, |VCLK+ – VCLK–  
100  
–10  
150  
200  
mV  
|
Δ|VOD  
|
Change in differential output voltage between logic states  
10  
10  
3
mV  
ZOD(CLK) Differential small-signal output impedance  
TXEN at VDD  
210  
5
IOSD  
IOS  
Differential short-circuit output current  
Short circuit output current(2)  
VOD = 0 V, fPCLK = 28 MHz  
VO = 0 V or VDD  
mA  
μA  
IOZ  
High-impedance state output current  
VO = 0 V or VDD(max),  
TXEN at GND  
–3  
(1) All typical values are at 25°C and with 1.8 V supply unless otherwise noted.  
(2) All SN65LVDS301 outputs tolerate shorts to GND or VDD without permanent device damage.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN65LVDS301  
 
 
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
6.6 Input Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1) MAX UNIT  
PCLK, R[0:7], G[0:7], B[0:7], VS, HS, DE, PCLK, LS[1:0], CPOL, TXEN, SWAP  
IIH  
High-level input current  
Low-level input current  
Input capacitance  
VIN = 0.7 × VDD  
VIN = 0.3 × VDD  
–200  
–200  
200  
nA  
IIL  
200  
CIN  
1.5  
pF  
(1) All typical values are at 25°C and with 1.8 V supply unless otherwise noted.  
6.7 Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
tr  
tf  
20%-to-80% differential  
output signal rise time  
See Figure 7-2 and Figure 7-3  
250  
500  
ps  
20%-to-80% differential  
output signal fall time  
See Figure 7-2 and Figure 7-3  
Tested from PCLK input to  
250  
500  
fPCLK = 22 MHz  
fPCLK = 65 MHz  
0.082 × fPCLK  
0.07 × fPCLK  
PLL bandwidth (3dB cutoff  
frequency)  
fBW  
CLK output, See Figure 6-1  
MHz  
s
(3)  
tpd(L)  
Propagation delay time,  
input to serial output (data  
latency Figure 7-4)  
TXEN at VDD, VIH=VDD, V  
IL=GND, RL=100 Ω  
1-channel mode  
2-channel mode  
3-channel mode  
0.8/fPCLK  
1.0/fPCLK  
1.1/fPCLK  
0.45  
1/fPCLK  
1.21/fPCLK  
1.31/fPCLK  
0.50  
1.2/fPCLK  
1.5/fPCLK  
1.6/fPCLK  
0.55  
tH × fCLK0  
Output CLK duty cycle  
1-channel and 3-channel  
mode  
2-channel mode  
0.49  
3.8  
0.53  
0.58  
10  
tGS  
TXEN Glitch suppression  
pulse width(2)  
VIH=VDD, VIL=GND, TXEN toggles between VIL and VIH  
,
μs  
see Figure 7-7 and Figure 7-8  
tpwrup  
tpwrdn  
Enable time from power  
down (↑TXEN)  
Time from TXEN pulled high to CLK and Dx outputs  
enabled and transmit valid data; see Figure 7-8  
0.24  
0.5  
2
ms  
Disable time from active  
mode (↓TXEN)  
TXEN is pulled low during transmit mode; time  
measurement until output is disabled and PLL is  
Shutdown; see Figure 7-8  
11  
μs  
ms  
μs  
twakup  
Enable time from Standby  
(↕PCLK)  
TXEN at VDD; device in standby; time measurement from  
PCLK starts switching to CLK and Dx outputs enabled  
and transmit valid data; see Figure 7-8  
0.23  
0.4  
2
tsleep  
Disable time from Active  
mode (PCLK stopping)  
TXEN at VDD; device is transmitting; time measurement  
from PCLK input signal stops until CLK + Dx outputs are  
disabled and PLL is disabled; see Figure 7-8  
100  
(1) All typical values are at 25°C and with 1.8 V supply unless otherwise noted.  
(2) The TXEN input incorporates glitch-suppression circuitry to disregard short input pulses. tGS is the duration of either a high-to-low or  
low-to-high transition that is suppressed.  
(3) The Maximum Limit is based on statistical analysis of the device performance over process, voltage, and temp ranges. This parameter  
is functionality tested only on Automatic Test Equipment (ATE).  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
 
 
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
12.0%  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
4 MHz:  
8.5%  
8 MHz:  
8.5%  
11.0%  
10.0%  
9.0%  
8.0%  
7.0%  
6.0%  
5.0%  
4.0%  
20 MHz:  
8.3%  
RX PLL BW  
Spec Limit  
1ChM  
Spec  
Limit  
2ChM  
9%  
8.5%  
Spec Limit 3ChM  
30 MHz:  
7.6%  
15 MHz:  
7.6%  
7.5%  
7%  
65 MHz:  
7.0%  
TX PLL BW  
0
100  
200  
300  
400  
500  
600  
700  
0
10  
20  
30  
40  
50  
60  
70  
PLL frequency − MHz  
PCLK FREQUENCY - MHz  
Figure 6-1. LVDS301 PLL Bandwidth (also showing the LVDS302 PLL bandwidth)  
6.8 Timing Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1ChM: x=0..29, fPCLK=15 MHz; TXEN at  
VDD, VIH=VDD, VIL=GND, RL=100 Ω, test  
pattern as in Table 7-7 (3)  
x
x
- 330 ps  
+ 330 ps  
30 × fPCLK  
30 × fPCLK  
1ChM: x=0..29,  
x – 0.1845  
30 × fPCLK  
x + 0.1845  
30 × fPCLK  
fPCLK=4 MHz to 15 MHz (4)  
2ChM: x = 0..14, fPCLK = 30 MHz  
x
x
- 330 ps  
+ 330 ps  
TXEN at VDD, VIH=VDD, VIL=GND, R  
15 × fPCLK  
15 × fPCLK  
L=100 Ω, test pattern as in Table 7-8 (3)  
Output Pulse Position,  
tPPOSX serial data to ↑CLK; see (1)  
(2)and Figure 7-6  
ps  
2ChM: x=0..14,  
x – 0.1845  
15 × fPCLK  
x + 0.1845  
15 × fPCLK  
fPCLK= 8 MHz to 30 MHz (4)  
3ChM: x=0..9, fPCLK=65 MHz,  
x
x
- 210 ps  
+ 210 ps  
TXEN at VDD, VIH=VDD, VIL=GND, R  
10 × fPCLK  
10 × fPCLK  
L=100 Ω, test pattern as in Table 7-9 (3)  
3ChM: x=0..9,  
x - 0.153  
10 × fPCLK  
x + 0.153  
10 × fPCLK  
fPCLK=20 MHz to 65 MHz (4)  
(1) This number also includes the high-frequency random and deterministic PLL clock jitter that is not traceable by the SN65LVDS302  
receiver PLL; tPPosx represents the total timing uncertainty of the transmitter necessary to calculate the jitter budget when combined  
with the SN65LVDS302 receiver;  
(2) The pulse position min/max variation is given with a bit error rate target of 10–12; The measurement estimates the random jitter  
contribution to the total jitter contribution by multiplying the random RMS jitter by the factor 14; Measurements of the total jitter are  
taken over a sample amount of > 10–12 samples.  
(3) The Minimum and Maximum Limits are based on statistical analysis of the device performance over process, voltage, and temp  
ranges. This parameter is functionality tested only on Automatic Test Equipment (ATE).  
(4) These Minimum and Maximum Limits are simulated only.  
6.9 Device Power Dissipation  
PARAMETER  
TEST CONDITIONS  
TYP  
14.4  
44.5  
MAX  
UNIT  
fCLK = 4 MHz  
fCLK = 65 MHz  
fCLK = 4 MHz  
fCLK = 65 MHz  
VDDx = 1.8 V, TA = 25°C  
mW  
Device Power  
Dissipation  
PD  
22.3  
71.8  
VDDx = 1.95 V, TA = –40°C  
mW  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN65LVDS301  
 
 
 
 
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
6.10 Typical characteristics  
1.0  
20  
15  
10  
5
2-Channel Mode, 22 MHz (VGA)  
2-Channel Mode, 11 MHz (HVGA)  
Standby Current  
Power-Down Current  
0.1  
0
-50  
-30  
-10  
10  
30  
50  
70  
90  
-50  
-30  
-10  
10  
30  
50  
70  
90  
Temperature - °C  
Temperature - °C  
Figure 6-2. Powerdown, Standby Supply Current  
vs Temperature  
Figure 6-3. Supply Current IDD vs Temperature  
200  
30  
85°C  
190  
25°C  
180  
3-Channel Mode  
25  
170  
–40°C  
2-Channel Mode  
20  
160  
150  
140  
130  
120  
110  
100  
15  
10  
1-Channel Mode  
5
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
FREQUENCY - MHz  
FREQUENCY - MHz  
Figure 6-4. Supply Current vs PCLK Frequency  
Figure 6-5. Differential Output Swing vs PCLK  
Frequency  
500  
400  
300  
200  
9.0  
Spec Limit 1ChM, 4 MHz: 8.5%  
Spec Limit 2ChM8 MHz: 8.5%  
8.5  
Spec Limit 3ChM 20 MHz: 8.3%  
8.0  
7.5  
Spec Limit 2ChM  
30 MHz: 7.6%  
Spec Limit 1ChM,  
15 MHz: 7.6%  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
Spec Limit 3ChM  
65 MHz: 7.0%  
3-ChM  
2-ChM  
3-Channel Mode  
100  
2-Channel Mode  
40  
1-Channel Mode  
0
0
10  
20  
30  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
FREQUENCY - MHz  
FREQUENCY - MHz  
Figure 6-7. Cycle-to-cycle Output Jitter vs PCLK  
Frequency  
Figure 6-6. PLL Bandwidth  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
200  
120  
100  
80  
60  
40  
20  
0
2-Channel Mode,  
11 MHz (VGA)  
2-Channel Mode,  
f(PCLK) = 11 MHz  
150  
100  
50  
2-Channel Mode,  
22 MHz (HVGA)  
2-Channel Mode,  
f(PCLK) = 22 MHz  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE - °C  
Temperature - °C  
Figure 6-9. Output Pulse Position vs Temperature  
Figure 6-8. Cycle-to-cycle Output Jitter vs  
Temperature  
250  
250  
190  
175  
2-Channel Mode,  
f(PCLK) = 22 MHz  
3-Channel Mode,  
f(PCLK) = 65 MHz  
0
0
–175  
–190  
–250  
–250  
500 ps/div  
200 ps/div  
Figure 6-10. Data Eye Pattern, 2-channel Mode  
Figure 6-11. Data Eye Pattern, 3-channel Mode  
249  
250  
190  
190  
1-Channel Mode,  
f(PCLK) = 5.5 MHz  
2-Channel Mode,  
f(PCLK) = 22 MHz  
0
0
–190  
–190  
–251  
–250  
1 ns/div  
500 ps/div  
Response Over 80-inch of FR-4 + 1m Coax Cable  
Response Over 8-inch FR-4 + 1m Coax Cable  
Figure 6-12. QVGA Output Waveform  
Figure 6-13. VGA 2-channel Output Waveform  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN65LVDS301  
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
249  
190  
249  
190  
2-Channel Mode,  
f(PCLK) = 22 MHz  
3-Channel Mode,  
f(PCLK) = 22 MHz  
0
0
–190  
–190  
–251  
–251  
500 ps/div  
1 ns/div  
Response Over 80-inch FR-4 + 1m Coax Cable  
Response Over 80-inch FR-4 + 1m Coax Cable  
Figure 6-14. VGA 2-channel Output Waveform  
Figure 6-15. VGA 3-channel Output Waveform  
249  
190  
0
3-Channel Mode,  
f(PCLK) = 56 MHz  
–190  
3-Channel Mode,  
f(PCLK) = 56 MHz  
–251  
300 ps/div  
3.5 ns/div  
Response Over 80-inch FR-4 + 1m Coax Cable  
Response With 10-pF Load  
Figure 6-16. XGA 3-channel Output Waveform  
Figure 6-17. XGA 3-channel Output Waveform on  
the SN65LVDS302 when driven by the  
SN65LVDS301  
-50  
-60  
-70  
-80  
-90  
0
–5  
-100  
f(PCLK) = 65 MHz  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
CLK  
D0  
–10  
D2  
D1  
–15  
0
500  
1000  
FREQUENCY - Hz  
1500  
2000  
1
10  
100  
1k  
10k  
FREQUENCY - Hz  
100k  
1M  
10M  
Figure 6-18. PLL Phase Noise  
Figure 6-19. Output Return Loss  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
0
0
-20  
–5  
–10  
–15  
–20  
D0  
CLK  
-40  
D0 to D1  
D1  
D2  
-60  
D0 to D2  
-80  
-100  
0
500  
1000  
FREQUENCY - MHz  
1500  
2000  
0
500  
1000  
1500  
2000  
FREQUENCY - MHz  
Figure 6-21. Crosstalk  
Figure 6-20. Output Common Mode Noise  
Rejection  
20  
f(PCLK)=65MHz  
2-ChM, f(PCLK)=22MHz  
320MHz; 16dBuV  
3-ChM, f(PCLK)=65MHz,  
988MHz, 12dBuV  
15  
2-ChM, f(PCLK)=22MHz  
683MHz; 12dBuV  
3-ChM, f(PCLK)=65MHz,  
282MHz  
3-ChM, f(PCLK)=65MHz  
777MHz; 11dBuV  
10  
1-ChM f(PCLK)=5MHz,  
960MHz; 8dBuV  
3-ChM, f(PCLK)=65MHz  
113MHz; 6dBuV  
5
0
0
200  
400  
600  
800  
1000  
FREQUENCY - MHz  
Figure 6-22. GTEM SAE J1752/3 EMI Test  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN65LVDS301  
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
7 Parameter Measurement Information  
t
DS  
VIH  
VIL  
R[7:0], G[7:0], B[7:0];  
VS, HS, DE, LS0, LS1,  
TXEN, SWAP, CPOL  
t
DH  
VIH  
VIL  
PCLK  
(CPOL=low)  
t
R
Figure 7-1. Setup/Hold Time  
150mV (nom)  
V
OD  
t
f
t
r
80%  
0 V  
20%  
−150mV (nom)  
Figure 7-2. Rise and Fall Time Definitions  
975mV (nom)  
825mV (nom)  
V
or V  
CLK+  
Dx+  
V
or V  
CLK−  
Dx−  
R1 = 49.9  
R2 = 49.9  
CLK+, Dx+  
V
OD  
V
V
OCM  
OCM  
CLK−, Dx−  
SN65LVDS301  
V
OCM  
(pp)  
V
OCM  
(ss)  
C1 = 1 pF  
C2 = 1 pF  
NOTES:  
A. 20 MHz output test pattern on all differental outputs (CLK, D0, D1, and D2):  
this is achieved by: 1. Device is set to 3-channel-mode;  
2. f  
= 20 MHz  
PCLK  
3. Inputs R[7:3] = B[7:3] connected to VDD, all other data inputs set to GND.  
B. C1, C2 and C3 includes instrumentation and fixture capacitance; tolerance± 20%; C, R1 and R2 tolerance± 1%.  
C. The measurement of V (pp) and V (ss) are taken with test equipment bandwidth >1 GHz.  
OCM  
OC  
Figure 7-3. Driver Output Voltage Test Circuit and Definitions  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
CMOS  
Data In  
pixel  
R7  
pixel  
(n)  
(n+1)  
R7  
R7  
R6  
(n−1)  
(n)  
(n+1)  
R6  
R6  
(n)  
(n−1)  
(n+1)  
V
DD  
/2  
PCLK  
t
PROP  
CLK−  
CLK+  
R7 R6  
CP  
CP R7 R6  
D0+  
pixel  
(n−1)  
pixel  
(n−2)  
R6  
(n)  
R6  
R7  
(n−1)  
(n−1)  
R7  
(n)  
Figure 7-4. tpd(L) Propagation Delay Input to Output (LS0 = LS1 = 0; CPOL = 0)  
SN65LVDS301  
V
DDPLLD  
V
1
2
DDPLLA  
1
V
DD  
Noise  
Generator  
100 mV  
10 mF  
V
DDLVDS  
GND  
1.8 V  
supply  
Note: The generator regulates the  
noise amplitude at point 1 to the  
target amplitude given under the table  
1.6  
H
Recommended Operating Conditions  
Figure 7-5. Power Supply Noise Test Set-Up  
t
CLK+  
CLK−  
CLK+  
Next Cycle  
Current Cycle  
Bit 0  
Bit1  
Bit2  
Bitx  
Bit0  
Bit1  
D[0:m]+  
t
PPOS0  
Note:  
t
PPOS1  
1−channel mode: x=0..29; m=0  
2−channel mode: x=0..14; m=1  
3−channel mode: x=0....9; m=2  
t
PPOS2  
t
PPOSx  
Figure 7-6. tSK(0) SubLVDS Output Pulse Position Measurement  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN65LVDS301  
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
V /2  
DD  
TXEN  
PCLK  
t
GS  
PLL Approaches Lock  
VCO Internal Signal  
t
pwrup  
CLK  
D0, D1, D2  
Figure 7-7. Transmitter Behavior While Approaching Sync  
<20 ns  
2 s  
3
s
Glitch Shorter  
Will Be  
Ignored  
Less Than 20 ns  
Spike Will be  
Rejected  
Than t  
GS  
Glitch Shorter  
Than t Will Be  
Ignored  
GS  
TXEN  
CLK+  
t
pwrup  
t
pwrdn  
t
GS  
I
CC  
t
GS  
PCLK  
Transmitter Disabled  
(OFF)  
Transmitter Aquires Lock  
Transmitter Enabled  
(ON)  
Transmitter  
Disabled  
(OFF)  
Transmitter  
Turns OFF  
Figure 7-8. Transmitter Enable Glitch Suppression Time  
PCLK  
twakeup  
tsleep  
CLK+  
Transmitter Disabled  
(OFF)  
Transmitter Aquires Lock,  
Outputs Still Disabled  
Transmitter Enabled,  
Output Data Valid  
Transmitter  
Enabled,  
Output Data  
Valid  
Transmitter  
Disabled  
(OFF)  
Figure 7-9. Standby Detection  
7.1.1 Power Consumption Tests  
Table 7-1 shows an example test pattern word.  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 7-1. Example Test Pattern Word  
Word  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
0x7C3E1E7  
7
C
3
E
1
E
7
R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0  
0
0
VS HS DE  
0
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
1
7.1.1.1 Typical IC Power Consumption Test Pattern  
The typical power consumption test patterns consists of sixteen 30-bit transmit words in 1-channel mode, eight  
30-bit transmit words in 2-channel mode and five 30-bit transmit words in 3-channel mode. The pattern repeats  
itself throughout the entire measurement. It is assumed that every possible transmit code on RGB inputs has the  
same probability to occur during typical device operation.  
7.1.1.2  
Table 7-2. Typical IC Power Consumption Test  
Pattern, 1-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
0x0000007  
0xFFF0007  
0x01FFF47  
0xF0E07F7  
0x7C3E1E7  
0xE707C37  
0xE1CE6C7  
0xF1B9237  
0x91BB347  
0xD4CCC67  
0xAD53377  
0xACB2207  
0xAAB2697  
0x5556957  
0xAAAAAB3  
0xAAAAAA5  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN65LVDS301  
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 7-3. Typical IC Power Consumption Test  
Pattern, 2-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
3
4
5
6
7
8
0x0000001  
0x03F03F1  
0xBFFBFF1  
0x1D71D71  
0x4C74C71  
0xC45C451  
0xA3aA3A5  
0x5555553  
Table 7-4. Typical IC Power Consumption Test  
Pattern, 3-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
3
4
5
0xFFFFFF1  
0x0000001  
0xF0F0F01  
0xCCCCCC1  
0xAAAAAA7  
7.1.2 Maximum Power Consumption Test Pattern  
The maximum (or worst-case) power consumption of the SN65LVDS301 is tested using the two different test  
patterns shown in Table 7-5 and Table 7-6. The test patterns consist of sixteen 30-bit transmit words in 1-channel  
mode, eight 30-bit transmit words in 2-channel mode and five 30-bit transmit words in 3-channel mode. The  
pattern repeats itself throughout the entire measurement. It is assumed that every possible transmit code on  
RGB inputs has the same probability to occur during typical device operation.  
Table 7-5. Worst-Case Power Consumption Test  
Pattern  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
0xAAAAAA5  
0x5555555  
Table 7-6. Worst-Case Power Consumption Test  
Pattern  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
0x0000000  
0xFFFFFF7  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
7.1.3 Output Skew Pulse Position & Jitter Performance  
The following test patterns are used to measure the output-skew pulse position and the jitter performance of the  
SN65LVDS301. The jitter test pattern stresses the interconnect, particularly to test for ISI. Very long run-lengths  
of consecutive bits incorporate very high and low data rates, maximinges switching noise. Each pattern is self-  
repeating for the duration of the test.  
Table 7-7. Transmit Jitter Test Pattern, 1-Channel  
Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
0x0000001  
0x0000031  
0x00000F1  
0x00003F1  
0x0000FF1  
0x0003FF1  
0x000FFF1  
0x0F0F0F1  
0x0C30C31  
0x0842111  
0x1C71C71  
0x18C6311  
0x1111111  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
0x3333331  
0x2452413  
0x22A2A25  
0x5555553  
0xDB6DB65  
0xCCCCCC1  
0xEEEEEE1  
0xE739CE1  
0xE38E381  
0xF7BDEE1  
0xF3CF3C1  
0xF0F0F01  
0xFFF0001  
0xFFFC001  
0xFFFF001  
0xFFFFC01  
0xFFFFF01  
0xFFFFFC1  
0xFFFFFF1  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN65LVDS301  
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 7-8. Transmit Jitter Test Pattern, 2-Channel  
Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
0x0000001  
2
0x000FFF3  
3
0x8008001  
4
0x0030037  
5
0xE00E001  
6
0x00FF001  
7
0x007E001  
8
0x003C001  
9
0x0018001  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
0x1C7E381  
0x3333331  
0x555AAA5  
0x6DBDB61  
0x7777771  
0x555AAA3  
0xAAAAAA5  
0x5555553  
0xAAA5555  
0x8888881  
0x9242491  
0xAAA5571  
0xCCCCCC1  
0xE3E1C71  
0xFFE7FF1  
0xFFC3FF1  
0xFF81FF1  
0xFE00FF1  
0x1FF1FF1  
0xFFCFFC3  
0x7FF7FF1  
0xFFF0007  
0xFFFFFF1  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 7-9. Transmit Jitter Test Pattern, 3-Channel  
Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
0x0000001  
2
0x0000001  
3
0x0000003  
4
0x0101013  
5
0x0303033  
6
0x0707073  
7
0x1818183  
8
0xE7E7E71  
9
0x3535351  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
0x0202021  
0x5454543  
0xA5A5A51  
0xADADAD1  
0x5555551  
0xA6A2AA3  
0xA6A2AA5  
0x5555553  
0x5555555  
0xAAAAAA1  
0x5252521  
0x5A5A5A1  
0xABABAB1  
0xFDFCFD1  
0xCAAACA1  
0x1818181  
0xE7E7E71  
0xF8F8F81  
0xFCFCFC1  
0xFEFEFE1  
0xFFFFFF1  
0xFFFFFF5  
0xFFFFFF5  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN65LVDS301  
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The SN65LVDS301 is a serialising device where the input paralle data is converted to Sub Low-Voltage  
Differential Signaling (SubLVDS) serial outputs. The SN65LVDS301 supports three power modes (Shutdown,  
Standby and Active) to conserve power. When transmitting, the PLL locks to the incoming pixel clock PCLK and  
generates an internal high-speed clock at the line rate of the data lines. The parallel data are latched on the  
rising or falling edge of PCLK as selected by the external control signal CPOL. The serialized data is presented  
on the serial outputs D0, D1, D2 with a recreated PCLK generated from the internal high-speed clock, output on  
the CLK output. If PCLK stops, the device enters a standby mode to conserve power  
The parallel (CMOS) input bus offers a bus-swap feature. The SWAP pin configures the input order of the pixel  
data to be either R[7:0]. G[7:0], B[7:0], VS, HS, DE or B[0:7]. G[0:7], R[0:7], VS, HS, DE. This gives a PCB  
designer the flexibility to better match the bus to the host controller pinout or to put the transmitter device on the  
top side or the bottom side of the PCB.  
Two Link Select lines LS0 and LS1 control whether 1, 2 or 3 serial links are used. The TXEN input may be used  
to put the SN65LVDS301 in a shutdown mode. The SN65LVDS301 enters an active Standby mode if the input  
clock PCLK stops.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
8.2 Functional Block Diagram  
Parity  
Calc  
D0+  
SubLVDS  
SWAP  
D0−  
Bit29  
Bit28=0  
Bit27=0  
1
0
D1+  
SubLVDS  
D1−  
8
[0..26]  
R[0:7]  
8
D2+  
G[0:7]  
SubLVDS  
D2−  
8
B[0:7]  
HS  
VS  
DE  
CLK+  
SubLVDS  
CLK−  
PCLK  
0
1
iPCLK  
x10, x15, or x30  
x1  
PLL  
multiplier  
CPOL  
LS0  
LS1  
Control /  
Glitch  
supression  
standby Monitor  
TXEN  
Figure 8-1. Functional Block Diagram  
8.3 Feature Description  
8.3.1 Swap Pin Functionality  
The SWAP pin allows the pcb designer to reverse the RGB bus to minimize potential signal crossovers in the  
PCB routing. The two drawings beneath show the RGB signal pin assignment based on the SWAP-pin setting.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN65LVDS301  
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A
B
C
D
E
F
G2  
G1  
B7  
B5  
G4  
G6  
G5  
R0  
G7  
R2  
R1  
R4  
R3  
R6  
R5  
G5  
G6  
R0  
R2  
G3  
G1  
G2  
B7  
G0  
B5  
B6  
B3  
B4  
B1  
B2  
G0  
B6  
G3  
R7  
G7  
R1  
G4  
B0  
SN65LVDS301  
Top View  
SN65LVDS301  
Top View  
B4  
R3  
B3  
R4  
B1  
B2  
B0  
VS  
DE  
R6  
R5  
R7  
VS  
DE  
G
H
J
G
H
J
PCLK  
HS  
PCLK  
HS  
SWAP=1  
SWAP  
SWAP  
1.8V  
SWAP=0  
Figure 8-2. SWAP PIN = 0  
Figure 8-3. SWAP PIN = 1  
Table 8-1. NUMERIC PIN LIST  
PIN  
SWAP  
SIGNAL  
GND  
G2  
G5  
G4  
G3  
G6  
G1  
R0  
. PIN  
SWAP  
SIGNAL  
B6  
. PIN  
SWAP  
SIGNAL  
B1  
A1  
0
0
C1  
C2  
F1  
F2  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
R1  
1
R6  
A2  
A3  
A4  
A5  
A6  
A7  
B7  
0
B2  
R0  
1
R5  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
UNPOPULATED  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
G1  
0
VDD  
GND  
GND  
GND  
GND  
VDDPLLD  
D1+  
VDD  
GND  
VDD  
VDD  
GND  
LS0  
B4  
0
B7  
R2  
B5  
R4  
PCLK  
B0  
D1  
D2  
B3  
1
R3  
G2  
R6  
0
B5  
1
R7  
A8  
A9  
B1  
B1  
1
R2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H2  
H3  
H4  
H5  
VDD  
GND  
G0  
G7  
G1  
G6  
G3  
G4  
G5  
G2  
G7  
G0  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
0
VDD  
GND  
GND  
GND  
GND  
LS1  
D2+  
B3  
GND  
GND  
GND  
GND  
GNDLVDS  
D1–  
B2  
B3  
B4  
B5  
HS  
VS  
E1  
1
R4  
GND  
GNDLVDS  
VDDLVDS  
E2  
E3  
GND  
VDD  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 8-1. NUMERIC PIN LIST (continued)  
PIN  
B6  
SWAP  
SIGNAL  
R1  
. PIN  
SWAP  
SIGNAL  
. PIN  
SWAP  
SIGNAL  
GNDPLLA  
0
E4  
E5  
E6  
E7  
E8  
E9  
GND  
H6  
H7  
H8  
H9  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
1
0
1
0
1
0
1
B6  
GND  
GND  
VDDPLLA  
VDDLVDS  
CPOL  
GND  
R3  
B7  
B8  
B9  
B4  
GND  
R5  
GNDPLLD  
D2–  
B2  
DE  
R7  
TXEN  
D0–  
B0  
D0+  
CLK–  
CLK+  
SWAP  
GNDLVDS  
8.3.2 Parity Bit Generation  
The SN65LVDS301 transmitter calculates the parity of the transmit data word and sets the parity bit accordingly.  
The parity bit covers the 27 bit data payload consisting of 24 bits of pixel data plus VS, HS and DE. The two  
reserved bits are not included in the parity generation. ODD Parity bit signaling is used. The transmitter sets the  
Parity bit if the sum of the 27 data bits result in an even number of ones. The Parity bit is cleared otherwise. This  
allows the receiver to verify Parity and detect single bit errors.  
8.4 Device Functional Modes  
8.4.1 Serialization Modes  
The SN65LVDS301 transmitter has three modes of operation controlled by link-select pins LS0 and LS1. Table  
8-2 shows the serializer modes of operation.  
Table 8-2. Logic Table: Link Select Operating Modes  
LS1  
LS0  
Mode of Operation  
Data Links Status  
0
0
1ChM  
2ChM  
3ChM  
1-channel mode (30-bit serialization rate)  
D0 active;  
D1, D2 high-impedance  
0
1
2-channel mode (15-bit serialization rate)  
D0, D1 active;  
D2 high-impedance  
1
1
0
1
3-channel mode (10-bit serialization rate)  
Reserved  
D0, D1, D2 active  
Reserved  
8.4.1.1 1-Channel Mode  
While LS0 and LS1 are held low, the SN65LVDS301 transmits payload data over a single SubLVDS data pair,  
D0. The PLL locks to PCLK and internally multiplies the clock by a factor of 30. The internal high-speed clock is  
used to serialize (shift out) the data payload on D0. Two reserved bits and the parity bit are added to the data  
frame. Figure 8-4 illustrates the timing and the mapping of the data payload into the 30-bit frame. The internal  
high-speed clock is divided by a factor of 30 to recreate the pixel clock, and presented on the SubLVDS CLK  
output. While in this mode, the PLL can lock to a clock that is in the range of 4 MHz through 15 MHz. This mode  
is intended for smaller video display formats (e.g. QVGA to HVGA) that do not require the full bandwidth  
capabilities of the SN65LVDS301.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN65LVDS301  
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
CLK–  
CLK+  
D0 +/– CHANNEL  
0
0
CP R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0 VS HS DE  
0
0
CP R7 R6  
Figure 8-4. Data and Clock Output in 1-Channel Mode (LS0 and LS1 = low).  
8.4.1.2 2-Channel Mode  
While LS0 is held high and LS1 is held low, the SN65LVDS301 transmits payload data over two SubLVDS data  
pairs, D0 and D1. The PLL locks to PCLK and internally multiplies it by a factor of 15. The internal high-speed  
clock is used to serialize the data payload on D0, and D1. Two reserved bits and the parity bit are added to the  
data frame. Figure 8-5 illustrates the timing and the mapping of the data payload into the 30-bit frame and how  
the frame becomes split into the two output channels. The internal high-speed clock is divided by 15 to recreate  
the pixel clock, and presented on SubLVDS CLK. The PLL can lock to a clock that is in the range of 8 MHz  
through 30 MHz in this mode. Typical applications for using the 2-channel mode are HVGA and VGA displays.  
CLK–  
CLK +  
D0 +/– Channel CP R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 VS  
0
CP R7 R6  
D1 +/– Channel  
G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0 HS DE G3 G2  
0 0  
Figure 8-5. Data and Clock Output in 2-Channel Mode (LS0 = high; LS1 = low).  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
8.4.1.3 3-Channel Mode  
While LS0 is held low and LS1 is held high, the SN65LVDS301 transmits payload data over three SubLVDS data  
pairs D0, D1, and D2. The PLL locks to PCLK, and internally multiplies it by 10. The internal high-speed clock is  
used to serialize the data payload on D0, D1, and D2. Two reserved bits and the parity bit are added to the data  
frame. Figure 8-6 illustrates the timing and the mapping of the data payload into the 30-bit frame and how the  
frame becomes split over the three output channels. The internal high speed clock is divided back down by a  
factor of 10 to recreate the pixel clock and presented on SubLVDS CLK output. While in this mode, the PLL can  
lock to a clock in the range of 20 MHz through 65 MHz. The 3-channel mode supports applications with very  
large display resolutions such as VGA or XGA.  
CLK -  
CLK +  
D0 +/- CHANNEL CP R7 R6 R5 R4 R3 R2 R1 R0 VS CP R7 R6  
D1 +/- CHANNEL  
D2 +/- CHANNEL  
0
0
G7 G6 G5 G4 G3 G2 G1 G0 HS  
B7 B6 B5 B4 B3 B2 B1 B0 DE  
0
0
G7 G6  
B7 B6  
Figure 8-6. Data and Clock Output in 3-Channel Mode (LS0 = low; LS1 = high).  
8.4.2 Powerdown Modes  
The SN65LVDS301 Transmitter has two powerdown modes to facilitate efficient power management.  
8.4.3 Shutdown Mode  
The SN65LVDS301 enters Shutdown mode when the TXEN pin is asserted low. This turns off all transmitter  
circuitry, including the CMOS input, PLL, serializer, and SubLVDS transmitter output stage. All outputs are high-  
impedance. Current consumption in Shutdown mode is nearly zero.  
8.4.4 Standby Mode  
The SN65LVDS301 enters the Standby mode if TXEN is high and the PCLK input signal frequency is less than  
500kHz. All circuitry except the PCLK input monitor is shut down, and all outputs enter high-impedance mode.  
The current consumption in Standby mode is very low. When the PCLK input signal is completely stopped, the I  
DD current consumption is less than 10 μA. The PCLK input must not be left floating.  
Note  
A floating (left open) CMOS input allows leakage currents to flow from VDD to GND. To prevent large  
leakage current, a CMOS gate must be kept at a valid logic level, either V IH or V IL. This can be  
achieved by applying an external voltage of VIH or VIL to all SN65LVDS301 inputs.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: SN65LVDS301  
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
8.4.5 Active Modes  
When TXEN is high and the PCLK input clock signal is faster than 3 MHz, the SN65LVDS301 enters Active  
mode. Current consumption in Active mode depends on operating frequency and the number of data transitions  
in the data payload.  
8.4.6 Acquire Mode (PLL approaches lock)  
The PLL is enabled and attempts to lock to the input Clock. All outputs remain in high-impedance mode. When  
the PLL monitor detects stable PLL operation, the device switches from Acquire to Transmit mode. For proper  
device operation, the pixel clock frequency must fall within the valid fPCLK range specified under recommended  
operating conditions. If the pixel clock frequency is larger than 3 MHz but smaller than f PCLK(min), the  
SN65LVDS301 PLL is enabled. Under such conditions, it is possible for the PLL to lock temporarily to the pixel  
clock, causing the PLL monitor to release the device into transmit mode. If this happens, the PLL may or may not  
be properly locked to the pixel clock input, potentially causing data errors, frequency oscillation, and PLL  
deadlock (loss of VCO oscillation).  
8.4.7 Transmit Mode  
After the PLL achieves lock, the device enters the normal transmit mode. The CLK pin outputs a copy of PCLK.  
Based on the selected mode of operation, the D0, D1, and D2 outputs carry the serialized data. In 1-channel  
mode, outputs D1 and D2 remain high-impedance. In the 2-channel mode, output D2 remains high-impedance.  
8.4.8 Status Detect and Operating Modes Flow diagram  
The SN65LVDS301 switches between the power saving and active modes in the following way:  
Power Up  
TXEN = 1  
CLK Inactive  
Power Up  
TXEN = 0  
TXEN Low  
> 10 ms  
TXEN High > 10 ms  
Shutdown  
Mode  
Standby  
Mode  
PCLK  
Stops or Lost  
PCLK  
Active  
TXEN Low  
> 10 ms  
PCLK  
Stops or Lost  
Power Up  
TXEN = 1  
CLK Active  
TXEN Low  
> 10 ms  
PLL Achieved Lock  
Transmit  
Mode  
Acquire  
Mode  
Figure 8-7. Status Detect and Operating Modes Flow Diagram  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 8-3. Status Detect and Operating Modes Descriptions  
Mode  
Characteristics  
Conditions  
Shutdown Mode  
Least amount of power consumption(1) (most circuitry turned TXEN is low(1) (2)  
off); All outputs are high-impedance  
Standby Mode  
Low power consumption (only clock activity circuit active; PLL TXEN is high; PCLK input signal is missing or  
is disabled to conserve power); All outputs are high-  
impedance  
inactive(2)  
Acquire Mode  
Transmit Mode  
PLL tries to achieve lock; All outputs are high-impedance  
TXEN is high; PCLK input monitor detected input  
activity  
Data transfer (normal operation); Transmitter serializes data TXEN is high and PLL is locked to incoming clock  
and transmits data on serial output; unused outputs remain  
high-impedance  
(1) In Shutdown Mode, all SN65LVDS301 internal switching circuits (e.g., PLL, serializer, etc.) are turned off to minimize power  
consumption. The input stage of any input pin remains active.  
(2) Leaving inputs unconnected can cause random noise to toggle the input stage and potentially harm the device. All inputs must be tied  
to a valid logic level VIL or VIH during Shutdown or Standby Mode.  
Table 8-4. Operating Mode Transitions  
MODE TRANSITION  
USE CASE  
TRANSITION SPECIFICS  
Shutdown → Standby  
Drive TXEN high to enable  
transmitter  
1. TXEN high > 10 μs  
2. Transmitter enters standby mode  
a. All outputs are high-impedance  
b. Transmitter turns on clock input monitor  
1. PCLK input monitor detects clock input activity;  
2. Outputs remain high-impedance;  
Standby → Acquire  
Acquire → Transmit  
Transmitter activity detected  
Link is ready to transfer data  
3. PLL circuit is enabled  
1. PLL is active and approaches lock  
2. PLL achieved lock within 2 ms  
3. Parallel Data input latches into shift register  
4. CLK output turns on  
5. selected Data outputs turn on and send out first serial data bit  
1. PCLK Input monitor detects missing PCLK  
2. Transmitter indicates standby, putting all outputs into high-impedance;  
3. PLL shuts down;  
Transmit → Standby  
Request Transmitter to enter  
Standby mode by stopping  
PCLK  
4. PCLK activity input monitor remains active  
1. TXEN pulled low for longer than 10us  
Transmit/Standby →  
Shutdown  
Turn off Transmitter  
2. Transmitter indicates standby, putting output CLK+ and CLK– into high-  
impedance state;  
3. Transmitter puts all other outputs into high-impedance state  
4. Most IC circuitry is shut down for least power consumption  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: SN65LVDS301  
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
9 Application information  
9.1 Application Information  
General application guidelines and hints for LVDS drivers and receivers may be found in the LVDS application  
notes and design guides.  
9.2 Preventing Increased Leakage Currents in Control Inputs  
A floating (left open) CMOS input allows leakage currents to flow from VDD to GND. Do not leave any CMOS  
Input unconnected or floating. Every input must be connected to a valid logic level VIH or VOL while power is  
supplied to VDD. This also minimizes the power consumption of standby and power down mode.  
9.3 VGA Application  
Figure 9-1 shows a possible implementation of a VGA display. The LVDS301 interfaces to the SN65LVDS302,  
which is the corresponding receiver device to deserialize the data and drive the display driver. The pixel clock  
rate of 22 MHz assumes ~10% blanking overhead and 60 Hz display refresh rate. The application assumes 24-  
bit color resolution. It is also shown, how the application processor provides a powerdown (reset) signal for both  
serializer and the display driver. The signal count over the FPC could be further decreased by using the standby  
option on the SN65LVDS302 and pulling RXEN high with a 30 kΩ resistor to VDD  
.
2x0.1uF  
2x0.1uF  
FPC  
GND  
2.7V  
1.8V  
GND  
GND  
2.7V  
1.8V  
GND  
2x0.01uF  
2x0.01uF  
Application  
Processor  
(e.g. OMAP)  
Video Mode Display  
Driver  
CLK+  
CLK-  
CLK+  
CLK-  
D0+  
22MHz  
D0+  
D0-  
330Mbps  
330Mbps  
Pixel CLK  
PCLK  
PCLK  
D0-  
22MHz  
22MHz  
D1+  
D1-  
D1+  
D1-  
R[7:0]  
G[7:0]  
B[7:0]  
D[7:0]  
D[15:8]  
R[7:0]  
G[7:0]  
B[7:0]  
D[23:16]  
HS,VS,DE  
27  
27  
HS,VS,DE  
HS,VS,DE  
SN65LVDS301  
SN65LVDS302  
1.8V  
1.8V  
If FPC wire count is critical, replace this  
connection with a pull-up resistor at RXEN  
Serial port interface  
(3-wire IF)  
3
Figure 9-1. Typical VGA Display Application  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
 
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
9.4 Dual LCD-Display Application  
The example in Figure 9-2 shows a possible application setup driving two video mode displays from one  
application processor. The data rate of 330 Mbps at a pixel clock rate of 5.5 MHz corresponds to QVGA  
resolution at 60 Hz refresh rate and 10% blanking overhead.  
2x0.1uF  
2x0.1uF  
FPC  
GND  
2.7V  
1.8V  
GND  
GND  
2.7V  
1.8V  
GND  
2x0.01uF  
2x0.01uF  
Display Driver1  
Application  
Processor  
(e.g. OMAP)  
21  
CLK+  
CLK-  
CLK+  
CLK-  
D0+  
5.5MHz  
PCLK  
PCLK  
Pixel CLK  
PCLK  
5.5MHz  
R[5:0]  
G[5:0]  
B[5:0]  
D0+  
D0-  
EN  
330Mbps  
SIN  
SOUT  
SCLK  
D0-  
D[5:0]  
D[11:6]  
D[17:12]  
HS,VS,DE  
R[5:0]  
G[5:0]  
B[5:0]  
HS,VS,DE  
HS,VS,DE  
18+3  
SN65LVDS301  
SN65LVDS302  
Display Driver2  
PCLK  
EN  
1.8V  
1.8V  
SIN  
SOUT  
SCLK  
Figure 9-2. Example Dual-QVGA Display Application  
9.5 Typical Application Frequencies  
The SN65LVDS301 supports pixel clock frequencies from 4 MHz to 65 MHz over 1, 2, or 3 data lanes. Table 9-1  
provides a few typical display resolution examples and shows the number of data lanes necessary to connect  
the LVDS301 with the display. The blanking overhead is assumed to be 20%. Often, blanking overhead is  
smaller, resulting in a lower data rate. Furthermore, the examples in the table assumes a display frame refresh  
rate of 60 Hz or 90 Hz. The actual refresh rate may differ depending on the application-processor clock  
implementation.  
Table 9-1. Typical Application Data Rates & Serial Lane Usage  
Display Screen  
Resolution  
Visible Pixel Blanking  
Display  
Refresh  
Rate  
Pixel Clock Frequency  
[MHz]  
Serial Data Rate Per Lane  
Count  
Overhead  
1-ChM  
2-ChM  
3-ChM  
176x220 (QCIF+)  
240x320 (QVGA)  
640x200  
38,720  
76,800  
20%  
90 Hz  
60 Hz  
4.2 MHz  
5.5 MHz  
125 Mbps  
166 Mbps  
276 Mbps  
316 Mbps  
335 Mbps  
332 Mbps  
432 Mbps  
442 Mbps  
128,000  
146,432  
154,880  
153,600  
200,000  
204,800  
307,200  
327,680  
409,920  
480,000  
786,432  
9.2 MHz  
138 Mbps  
158 Mbps  
167 Mbps  
166 Mbps  
216 Mbps  
221 Mbps  
332 Mbps  
354 Mbps  
443 Mbps  
352x416 (CIF+)  
352x440  
10.5 MHz  
11.2 MHz  
11.1 MHz  
14.4 MHz  
14.7 MHz  
22.1 MHz  
23.6 MHz  
29.5 MHz  
34.6 MHz  
56.6 MHz  
320x480 (HVGA)  
800x250  
640x320  
640x480 (VGA)  
1024x320  
221 Mbps  
236 Mbps  
295 Mbps  
346 Mbps  
566 Mbps  
854x480 (WVGA)  
800x600 (SVGA)  
1024x768 (XGA)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: SN65LVDS301  
 
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
9.5.1 Calculation Example: HVGA Display  
This example calculation shows a typical Half-VGA display with these parameters:  
Display Resolution:  
Frame Refresh Rate:  
480 x 320  
58.4 Hz  
Hsync = 5  
Visible area = 480 column  
HFP = 20  
Horizontal Visible Pixel:  
Horizontal Front Porch:  
Horizontal Sync:  
480 columns  
20 columns  
5 columns  
3 columns  
Vsync = 5  
VBP = 3  
Horizontal Back Porch:  
Vertical Visible Pixel:  
Vertical Front Porch:  
Vertical Sync:  
320 lines  
10 lines  
5 lines  
Visible area  
= 320 lines  
Visible area  
Vertical Back Porch:  
3 lines  
VFP = 10  
Entire display  
Figure 9-3. HVGA Display Parameters  
Calculation of the total number of pixel and Blanking overhead:  
Visible Area Pixel Count:  
Total Frame Pixel Count:  
Blanking Overhead:  
480 × 320 = 153600 pixel  
(480+20+5+3) × (320+10+5+3) = 171704 pixel  
(171704-153600) ÷ 153600 = 11.8 %  
The application requires following serial-link parameters:  
Pixel Clk Frequency:  
Serial Data Rate:  
171704 × 58.4 Hz = 10.0 MHz  
1-channel mode: 10.0 MHz × 30 bit/channel = 300 Mbps  
2-channel mode: 10.0 MHz × 15 bit/channel = 150 Mbps  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
10 Power Supply Design Recommendation  
For a multilayer pcb, it is recommended to keep one common GND layer underneath the device and connect all  
ground terminals directly to this plane.  
10.1 Decoupling Recommendation  
The SN65LVDS301 was designed to operate reliably in a constricted environment with other digital switching  
ICs. In many designs, the SN65LVDS301 often shares a power supply with the application processor. The  
SN65LVDS301 can operate with power supply noise as specified in Recommend Device Operating Conditions.  
To minimize the power supply noise floor, provide good decoupling near the SN65LVDS301 power pins. The use  
of four ceramic capacitors (2×0.01 μF and 2×0.1 μF) provides good performance. At the very least, it is  
recommended to install one 0.1 μF and one 0.01 μF capacitor near the SN65LVDS301. To avoid large current  
loops and trace inductance, the trace length between decoupling capacitor and IC power inputs pins must be  
minimized. Placing the capacitor underneath the SN65LVDS301 on the bottom of the pcb is often a good choice.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: SN65LVDS301  
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
Use chamfered corners (45° bends) instead of right-angle (90°) bends. Right-angle bends increase the effective  
trace width, which changes the differential trace impedance creating large discontinuities. A 45° bend is seen as  
a smaller discontinuity.  
When routing traces next to a via or between an array of vias, make sure that the via clearance section does not  
interrupt the path of the return current on the ground plane below.  
Avoid metal layers and traces underneath or between the pads of the LVDS connectors for better impedance  
matching. Otherwise they cause the differential impedance to drop below 75 Ω and fail the board during TDR  
testing.  
Use solid power and ground planes for 100 Ω impedance control and minimum power noise.  
For a multilayer PCB, TI recommends keeping one common GND layer underneath the device and connect all  
ground terminals directly to this plane. For 100 Ω differential impedance, use the smallest trace spacing  
possible, which is usually specified by the PCB vendor.  
Keep the trace length as short as possible to minimize attenuation.  
Place bulk capacitors (10 μF) close to power sources, such as voltage regulators or where the power is supplied  
to the PCB.  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
12 Device and Documentation Support  
12.1 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.2 Trademarks  
FlatLinkis a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
nFBGA® is a registered trademark of Tessera, Inc..  
All other trademarks are the property of their respective owners.  
12.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.4 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: SN65LVDS301  
 
 
 
 
 
SN65LVDS301  
SLLS681E – FEBRUARY 2006 – REVISED OCTOBER 2020  
www.ti.com  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: SN65LVDS301  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2020  
PACKAGING INFORMATION  
Orderable Device  
SN65LVDS301ZQE  
SN65LVDS301ZQER  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQE  
80  
80  
360  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
LVDS301  
ACTIVE  
BGA  
ZQE  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
-40 to 85  
LVDS301  
MICROSTAR  
JUNIOR  
SN65LVDS301ZXH  
SN65LVDS301ZXHR  
ACTIVE  
ACTIVE  
NFBGA  
ZXH  
ZXH  
80  
80  
360  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
LVDS301  
LVDS301  
NFBGA  
2500  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
ZXH0080A  
NFBGA - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
BALL GRID ARRAY  
5.1  
4.9  
A
B
BALL A1 CORNER  
INDEX AREA  
5.1  
4.9  
0.7  
0.6  
C
1 MAX  
SEATING PLANE  
0.08 C  
BALL TYP  
0.25  
TYP  
0.15  
4 TYP  
SYMM  
J
H
G
F
SYMM  
80X  
4
E
D
C
B
A
TYP  
0.35  
0.25  
0.15  
0.05  
C B  
C
A
0.5 TYP  
1
2
3
4
5
6
7
8
9
0.5 TYP  
4221325/A 01/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis is for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This is a Pb-free solder ball design.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZXH0080A  
NFBGA - 1 mm max height  
BALL GRID ARRAY  
(0.5) TYP  
0.265  
0.235  
80X  
6
7
9
2
3
4
5
8
1
A
B
C
(0.5) TYP  
D
E
F
G
H
J
SYMM  
SYMM  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
0.05 MIN  
METAL  
UNDER  
MASK  
(
0.25)  
METAL  
(
0.25)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221325/A 01/2014  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SBVA017 (www.ti.com/lit/sbva017).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZXH0080A  
NFBGA - 1 mm max height  
BALL GRID ARRAY  
(0.5) TYP  
80X ( 0.25)  
(R0.05) TYP  
5
4
3
6
7
9
2
8
1
A
(0.5)  
TYP  
B
C
METAL  
TYP  
D
E
F
G
H
J
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:20X  
4221325/A 01/2014  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SN65LVDS301_08

PROGRAMMABLE 27-BIT DISPLAY SERIAL INTERFACE TRANSMITTER
TI

SN65LVDS301_V01

SN65LVDS301 Programmable 27-Bit Parallel-to-Serial Transmitter
TI

SN65LVDS302

PROGRAMMABLE 27-BIT SERIAL-TO-PARALLEL RECEIVER
TI

SN65LVDS302ZQE

PROGRAMMABLE 27-BIT SERIAL-TO-PARALLEL RECEIVER
TI

SN65LVDS302ZQER

PROGRAMMABLE 27-BIT SERIAL-TO-PARALLEL RECEIVER
TI

SN65LVDS302ZXH

SN65LVDS302 Programmable 27-Bit Serial-to-Parallel Receiver
TI

SN65LVDS302ZXHR

SN65LVDS302 Programmable 27-Bit Serial-to-Parallel Receiver
TI

SN65LVDS302_07

PROGRAMMABLE 27-BIT SERIAL-TO-PARALLEL RECEIVER
TI

SN65LVDS302_V01

SN65LVDS302 Programmable 27-Bit Serial-to-Parallel Receiver
TI

SN65LVDS303

PROGRAMMABLE 27-BIT DISPLAY SERIAL-INTERFACE TRANSMITTER
TI

SN65LVDS303ZQE

LINE DRIVER, PBGA80, 5 X 5 MM, PLASTIC, MICRO, BGA-80
TI

SN65LVDS303ZQER

PROGRAMMABLE 27-BIT DISPLAY SERIAL-INTERFACE TRANSMITTER
TI