SN65LVDS311YFFT [TI]

可编程 27 位显示屏串行接口变送器 | YFF | 49 | -40 to 85;
SN65LVDS311YFFT
型号: SN65LVDS311YFFT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

可编程 27 位显示屏串行接口变送器 | YFF | 49 | -40 to 85

驱动 接口集成电路 驱动器
文件: 总33页 (文件大小:1774K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
PROGRAMMABLE 27-BIT DISPLAY SERIAL INTERFACE TRANSMITTER  
Check for Samples: SN65LVDS311  
When transmitting, the PLL locks to the incoming  
1
FEATURES  
pixel clock PCLK and generates an internal high-  
speed clock at the line rate of the data lines. The  
parallel data is latched on the rising edge of PCLK.  
The serialized data is presented on the serial outputs  
D0, D1, D2 with a recreation of the Pixel clock PCLK  
generated from the internal high-speed clock and  
output on the CLK output. If the input clock PCLK  
stops, the device enters a standby mode to conserve  
power.  
2.8 × 2.8mm package size  
1.8V input signal swing  
24-Bit RGB Data, 3 Control Bits, 1 Parity Bit  
and 2 Reserved Bits Transmitted over 1, 2 or 3  
Differential Lines  
SubLVDS Differential Voltage Levels  
Three Operating Modes to Conserve Power  
Active-Mode QVGA 17.4mW (typ)  
Active-Mode VGA 28.8mW (typ)  
Shutdown Mode 0.5μA (typ)  
Standby Mode 0.5μA (typ)  
Two Link-Select lines LS0 and LS1 control whether 1,  
2 or 3 serial links are used. The TXEN input may be  
used to put the SN65LVDS311 in a shutdown mode.  
The SN65LVDS311 enters an active Standby mode if  
the input clock PCLK stops. This minimizes power  
consumption without the need for controlling an  
external pin. The SN65LVDS311 is characterized for  
operation over ambient air temperatures of -40°C to  
85°C. All CMOS inputs offer failsafe to protect the  
input from damage during power-up and to avoid  
current flow into the device inputs during power-up.  
ESD Rating > 3kV (HBM)  
Pixel Clock Range of 4MHz–65MHz  
Failsafe on all CMOS Inputs  
Typical Application: Cameras, Embedded  
Computers  
DESCRIPTION  
The SN65LVDS311 serializer transmits 27 parallel  
input data over 1, 2, or 3 serial output links. The  
device pinout is optimized to interface with the  
OMAP3630 application processor. The device loads a  
shift register with the 24 pixel bits and 3 control bits  
from the parallel CMOS input interface. The data are  
latched into the device by the pixel clock, PCLK. In  
addition to the 27 bits, the device adds a parity bit  
and two reserved bits for a total number of 30 serial  
bits. The parity bit allows a receiver to detect single-  
bit errors. Odd parity is implemented.  
The serial shift register is uploaded through 1, 2, or 3  
serial outputs at 30, 15, or 10 times the pixel clock  
data rate. A copy of the pixel clock is output on an  
additional differential output. The serial data and  
clock are transmitted via Sub Low-Voltage Differential  
Signaling (SubLVDS) lines. The SN65LVDS311  
supports three power modes (Shutdown, Standby  
and Active) to conserve power.  
LCD  
VDS314  
L
or  
VDS302  
L
Application  
Processor  
with CMOS  
Video Interface  
LVDS301  
or  
LVDS311  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
Functional Block Diagram  
Parity  
Calculation  
D0+  
SubLVDS  
Bit 29  
D0-  
Bit 28 = 0  
8
R[0:7]  
Bit 27 = 0  
D1+  
SubLVDS  
8
G[0:7]  
D1-  
[0..26]  
8
B[0:7]  
D2+  
SubLVDS  
D2-  
HS  
VS  
CLK+  
SubLVDS  
DE  
CLK-  
iPCLK  
PCLK  
x10, x15, x30  
x1  
PLL  
Multiplier  
LS0  
LS1  
Control /  
Standby Monitor  
Glitch  
Suppression  
TXEN  
PINOUT  
SN65LVDS311 Top view  
SN65LVDS311 Bottom view  
1
2
3
G1  
R0  
G3  
R7  
B2  
B3  
D0N  
4
5
6
7
PCLK  
HS  
7
PCLK  
HS  
6
DE  
5
4
3
G1  
R0  
G3  
R7  
B2  
B3  
D0N  
2
1
A
B
C
D
E
F
A
B
C
D
E
F
R3  
R5  
B0  
B1  
B4  
G5  
G4  
R2  
R1  
G6  
R6  
G2  
B5  
G7  
B7  
R4  
DE  
R4  
B7  
R2  
R1  
G6  
R6  
G2  
B5  
G7  
R3  
R5  
B0  
B1  
B4  
G5  
G4  
G0  
B6  
VS  
VS  
B6  
G0  
GND  
VDD  
GND  
GND  
D0P  
LS1  
LS0  
D2P  
D2P  
LS0  
LS1  
GND  
VDD  
GND  
GND  
D0P  
VDDPLLD  
TXEN  
GND  
CLKN  
GND  
GND  
VDDPLLA  
CLKP  
D2N  
D2N  
GND  
GND  
VDDPLLA  
CLKP  
VDDPLLD  
TXEN  
GND  
CLKN  
D1P  
D1P  
D1N  
D1N  
G
G
VDDLVDS  
VDDLVDS  
2
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
Table 1. SIGNAL LIST  
SIGNAL  
R0  
PIN  
SIGNAL  
PIN  
SIGNAL  
B0  
PIN  
SIGNAL  
PCLK  
HS  
PIN  
A7  
B7  
B6  
A6  
E5  
C6  
C5  
B3  
B2  
A2  
A1  
A5  
B1  
D2  
D3  
G4  
G3  
D4  
G0  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
B4  
A3  
E2  
C3  
G1  
F1  
C2  
G2  
E7  
F7  
D5  
C1  
D1  
E3  
F3  
E1  
F2  
B5  
A4  
C7  
D7  
F6  
R1  
B1  
R2  
B2  
VS  
R3  
B3  
DE  
R4  
B4  
TXEN  
LS0  
R5  
B5  
R6  
B6  
LS1  
R7  
B7  
D0P  
D0N  
VDD  
GND  
D1P  
D2P  
D2N  
VDDPLLA  
CLKP  
CLKN  
G6  
G5  
G7  
D1N  
VDDPLLD  
VDDLVDS  
C4, D6, E6, E4, F4, F5  
Table 2. TERMINAL FUNCTIONS  
NAME  
I/O  
DESCRIPTION  
D0+, D0–  
SubLVDS Data Link (active during normal operation)  
SubLVDS Data Link (active during normal operation when LS0 = high and LS1 = low, or  
LS0 = low and LS1=high; high impedance if LS0 = LS1 = low)  
D1+, D1–  
SubLVDS Out  
SubLVDS Data Link (active during normal operation when LS0 = low and LS1 = high,  
high-impedance when LS1 = low)  
D2+, D2–  
CLK+, CLK–  
R0–R7  
G0–G7  
B0–B7  
HS  
SubLVDS output Clock; clock polarity is fixed  
Red Pixel Data (8); pin assignment depends on SWAP pin setting  
Green Pixel Data (8); pin assignment depends on SWAP pin setting  
Blue Pixel Data (8); pin assignment depends on SWAP pin setting  
Horizontal Sync  
VS  
Vertical Sync  
DE  
Data Enable  
PCLK  
LS0, LS1  
Input Pixel Clock; data are latched on rising input clock edge  
Link Select (Determines active SubLVDS Data Links and PLL Range) See Table 3  
Disables the CMOS Drivers and Turns Off the PLL, putting device in shutdown mode  
CMOS IN  
1 – Transmitter enabled  
0 – Transmitter disabled  
(Shutdown)  
TXEN  
Note: The TXEN input incorporates glitch-suppression logic to avoid device malfunction  
on short input spikes. It is necessary to pull TXEN high for longer than 10 μs to enable  
the transmitter. It is necessary to pull the TXEN input low for longer than 10 μs to disable  
the transmitter. At power up, the transmitter is enabled immediately if TXEN = 1 and  
disabled if TXEN = 0  
VDD  
Supply Voltage  
GND  
Supply Ground  
VDDLVDS  
GNDLVDS  
VDDPLLA  
GNDPLLA  
VDDPLLD  
GNDPLLD  
SubLVDS I/O supply Voltage  
SubLVDS Ground  
Power Supply(1)  
PLL analog supply Voltage  
PLL analog GND  
PLL digital supply Voltage  
PLL digital GND  
(1) For a multilayer pcb, it is recommended to keep one common GND layer underneath the device and connect all ground terminals  
directly to this plane.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: SN65LVDS311  
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
FUNCTIONAL DESCRIPTION  
Serialization Modes  
The SN65LVDS311 transmitter has three modes of operation controlled by link-select pins LS0 and LS1. Table 3  
shows the serializer modes of operation.  
Table 3. Logic Table: Link Select Operating Modes  
LS1  
LS0  
Mode of Operation  
Data Links Status  
0
0
1ChM  
2ChM  
3ChM  
1-channel mode (30-bit serialization rate)  
D0 active;  
D1, D2 high-impedance  
0
1
2-channel mode (15-bit serialization rate)  
D0, D1 active;  
D2 high-impedance  
1
1
0
1
3-channel mode (10-bit serialization rate)  
Reserved  
D0, D1, D2 active  
Reserved  
1-Channel Mode  
While LS0 and LS1 are held low, the SN65LVDS311 transmits payload data over a single SubLVDS data pair,  
D0. The PLL locks to PCLK and internally multiplies the clock by a factor of 30. The internal high-speed clock is  
used to serialize (shift out) the data payload on D0. Two reserved bits and the parity bit are added to the data  
frame. Figure 1 illustrates the timing and the mapping of the data payload into the 30-bit frame. The internal high-  
speed clock is divided by a factor of 30 to recreate the pixel clock, and presented on the SubLVDS CLK output.  
While in this mode, the PLL can lock to a clock that is in the range of 4MHz through 15MHz. This mode is  
intended for smaller video display formats (e.g. QVGA to HVGA) that do not require the full bandwidth  
capabilities of the SN65LVDS311.  
CLK–  
CLK+  
D0 +/– CHANNEL  
0
0
CP R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0 VS HS DE  
0
0
CP R7 R6  
Figure 1. Data and Clock Output in 1-Channel Mode (LS0 and LS1 = low).  
2-Channel Mode  
While LS0 is held high and LS1 is held low, the SN65LVDS311 transmits payload data over two SubLVDS data  
pairs, D0 and D1. The PLL locks to PCLK and internally multiplies it by a factor of 15. The internal high-speed  
clock is used to serialize the data payload on D0, and D1. Two reserved bits and the parity bit are added to the  
data frame. Figure 2 illustrates the timing and the mapping of the data payload into the 30-bit frame and how the  
frame becomes split into the two output channels. The internal high-speed clock is divided by 15 to recreate the  
pixel clock, and presented on SubLVDS CLK. The PLL can lock to a clock that is in the range of 8MHz through  
30MHz in this mode. Typical applications for using the 2-channel mode are HVGA and VGA displays.  
CLK–  
CLK +  
D0 +/– Channel CP R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 VS  
0
CP R7 R6  
D1 +/– Channel  
G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0 HS DE G3 G2  
0 0  
Figure 2. Data and Clock Output in 2-Channel Mode (LS0 = high; LS1 = low).  
4
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
 
 
 
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
3-Channel Mode  
While LS0 is held low and LS1 is held high, the SN65LVDS311 transmits payload data over three SubLVDS data  
pairs D0, D1, and D2. The PLL locks to PCLK, and internally multiplies it by 10. The internal high-speed clock is  
used to serialize the data payload on D0, D1, and D2. Two reserved bits and the parity bit are added to the data  
frame. Figure 3 illustrates the timing and the mapping of the data payload into the 30-bit frame and how the  
frame becomes split over the three output channels. The internal high speed clock is divided back down by a  
factor of 10 to recreate the pixel clock and presented on SubLVDS CLK output. While in this mode, the PLL can  
lock to a clock in the range of 20MHz through 65MHz. The 3-channel mode supports applications with very large  
display resolutions such as VGA or XGA.  
CLK -  
CLK +  
D0 +/- CHANNEL CP R7 R6 R5 R4 R3 R2 R1 R0 VS CP R7 R6  
D1 +/- CHANNEL  
D2 +/- CHANNEL  
0
0
G7 G6 G5 G4 G3 G2 G1 G0 HS  
B7 B6 B5 B4 B3 B2 B1 B0 DE  
0
0
G7 G6  
B7 B6  
Figure 3. Data and Clock Output in 3-Channel Mode (LS0 = low; LS1 = high).  
Powerdown Modes  
The SN65LVDS311 Transmitter has two powerdown modes to facilitate efficient power management.  
Shutdown Mode  
The SN65LVDS311 enters Shutdown mode when the TXEN pin is asserted low. This turns off all transmitter  
circuitry, including the CMOS input, PLL, serializer, and SubLVDS transmitter output stage. All outputs are high-  
impedance. Current consumption in Shutdown mode is nearly zero.  
Standby Mode  
The SN65LVDS311 enters the Standby mode if TXEN is high and the PCLK input frequency is less than 500kHz.  
All circuitry except the PCLK input monitor is shut down, and all outputs enter high-impedance mode. The current  
consumption in Standby mode is very low. When the PCLK input signal is completely stopped, the IDD current  
consumption is less than 10 μA. The PCLK input must not be left floating.  
NOTE  
A floating (left open) CMOS input allows leakage currents to flow from VDD to GND. To  
prevent large leakage current, a CMOS gate must be kept at a valid logic level, either VIH  
or VIL. This can be achieved by applying an external voltage of VIH or VIL to all  
SN65LVDS311 inputs.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: SN65LVDS311  
 
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
Active Modes  
When TXEN is high and the PCLK input clock signal is faster than 3MHz, the SN65LVDS311 enters Active  
mode. Current consumption in Active mode depends on operating frequency and the number of data transitions  
in the data payload.  
Acquire Mode (PLL approaches lock)  
The PLL is enabled and attempts to lock to the input Clock. All outputs remain in high-impedance mode. When  
the PLL monitor detects stable PLL operation, the device switches from Acquire to Transmit mode. For proper  
device operation, the pixel clock frequency must fall within the valid fPCLK range specified under recommended  
operating conditions. If the pixel clock frequency is larger than 3MHz but smaller than fPCLK(min), the  
SN65LVDS311 PLL is enabled. Under such conditions, it is possible for the PLL to lock temporarily to the pixel  
clock, causing the PLL monitor to release the device into transmit mode. If this happens, the PLL may or may not  
be properly locked to the pixel clock input, potentially causing data errors, frequency oscillation, and PLL  
deadlock (loss of VCO oscillation).  
Transmit Mode  
After the PLL achieves lock, the device enters the normal transmit mode. The CLK pin outputs a copy of PCLK.  
Based on the selected mode of operation, the D0, D1, and D2 outputs carry the serialized data. In 1-channel  
mode, outputs D1 and D2 remain high-impedance. In the 2-channel mode, output D2 remains high-impedance.  
Parity Bit Generation  
The SN65LVDS311 transmitter calculates the parity of the transmit data word and sets the parity bit accordingly.  
The parity bit covers the 27 bit data payload consisting of 24 bits of pixel data plus VS, HS and DE. The two  
reserved bits are not included in the parity generation. ODD Parity bit signaling is used. The transmitter sets the  
Parity bit if the sum of the 27 data bits result in an even number of ones. The Parity bit is cleared otherwise. This  
allows the receiver to verify Parity and detect single bit errors.  
Status Detect and Operating Modes Flow diagram  
The SN65LVDS311 switches between the power saving and active modes in the following way:  
Power Up  
TXEN = 1  
CLK Inactive  
Power Up  
TXEN = 0  
TXEN Low  
> 10 ms  
TXEN High > 10 ms  
Shutdown  
Mode  
Standby  
Mode  
PCLK  
Stops or Lost  
PCLK  
Active  
TXEN Low  
> 10 ms  
PCLK  
Stops or Lost  
Power Up  
TXEN = 1  
CLK Active  
TXEN Low  
> 10 ms  
PLL Achieved Lock  
Transmit  
Mode  
Acquire  
Mode  
Figure 4. Status Detect and Operating Modes Flow Diagram  
6
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
Table 4. Status Detect and Operating Modes Descriptions  
Mode  
Characteristics  
Conditions  
Shutdown Mode  
Least amount of power consumption(1) (most circuitry turned TXEN is low(1) (2)  
off); All outputs are high-impedance  
Standby Mode  
Low power consumption (only clock activity circuit active; PLL TXEN is high; PCLK input signal is missing or  
is disabled to conserve power); All outputs are high-  
impedance  
inactive(2)  
Acquire Mode  
Transmit Mode  
PLL tries to achieve lock; All outputs are high-impedance  
TXEN is high; PCLK input monitor detected input  
activity  
Data transfer (normal operation); Transmitter serializes data  
and transmits data on serial output; unused outputs remain  
high-impedance  
TXEN is high and PLL is locked to incoming clock  
(1) In Shutdown Mode, all SN65LVDS311 internal switching circuits (e.g., PLL, serializer, etc.) are turned off to minimize power  
consumption. The input stage of any input pin remains active.  
(2) Leaving inputs unconnected can cause random noise to toggle the input stage and potentially harm the device. All inputs must be tied to  
a valid logic level VIL or VIH during Shutdown or Standmby Mode.  
Table 5. Operating Mode Transitions  
MODE TRANSITION  
USE CASE  
TRANSITION SPECIFICS  
Shutdown Standby  
Drive TXEN high to enable  
transmitter  
1. TXEN high > 10 μs  
2. Transmitter enters standby mode  
a. All outputs are high-impedance  
b. Transmitter turns on clock input monitor  
1. PCLK input monitor detects clock input activity;  
2. Outputs remain high-impedance;  
Standby Acquire  
Acquire Transmit  
Transmitter activity detected  
Link is ready to transfer data  
3. PLL circuit is enabled  
1. PLL is active and approaches lock  
2. PLL achieved lock within 2 ms  
3. Parallel Data input latches into shift register  
4. CLK output turns on  
5. selected Data outputs turn on and send out first serial data bit  
1. PCLK Input monitor detects missing PCLK  
2. Transmitter indicates standby, putting all outputs into high-impedance;  
3. PLL shuts down;  
Transmit Standby  
Request Transmitter to enter  
Standby mode by stopping  
PCLK  
4. PCLK activity input monitor remains active  
1. TXEN pulled low for longer than 10us  
Transmit/Standby →  
Turn off Transmitter  
Shutdown  
2. Transmitter indicates standby, putting output CLK+ and CLK– into high-  
impedance state;  
3. Transmitter puts all other outputs into high-impedance state  
4. Most IC circuitry is shut down for least power consumption  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: SN65LVDS311  
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
ORDERING INFORMATION(1)  
PART NUMBER  
SN65LVDS311YFF  
SN65LVDS311YFFR  
PACKAGE  
SHIPPING METHOD  
Tray  
Reel  
YFF  
(1) Updated odering information is found in the orderable addendum at the end of this document.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
-0.3 to 2.175  
-0.5 to 2.175  
-0.5 to VDD + 2.175  
±3  
UNIT  
V
Supply voltage range, VDD (2), VDDPLLA, VDDPLLD, VDDLVDS  
Voltage range at any input When VDDx > 0 V  
V
or output terminal  
When VDDx 0 V  
V
Human Body Model(3) (all Pins)  
kV  
V
Electrostatic discharge  
Charged-Device Mode(4)l (all Pins)  
Machine Model(5) (all pins)  
±500  
±200  
Continuous power dissipation  
See Dissipation Rating Table  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND terminals.  
(3) In accordance with JEDEC Standard 22, Test Method A114-A.  
(4) In accordance with JEDEC Standard 22, Test Method C101.  
(5) In accordance with JEDEC Standard 22, Test Method A115-A  
DISSIPATION RATINGS  
CIRCUIT  
DERATING FACTOR(1)  
ABOVE TA = 25°C  
TA = 85°C  
POWER RATING  
PACKAGE  
θJA < 25°C  
BOARD MODEL  
YFF  
Low-K(2)  
692mW  
7.69 mW/°C  
148 mW  
(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
(2) In accordance with the Low-K thermal metric definitions of EIA/JESD51-2.  
THERMAL CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
VALUE  
14.4  
UNIT  
PCLK at 4MHz  
PCLK at 65MHz  
PCLK at 4MHz  
PCLK=65MHz  
Typical  
VDDx = 1.8 V, TA = 25°C  
mW  
mW  
44.5  
PD Device Power Dissipation  
22.3  
Maximum  
VDDx = 1.95 V, TA = –40°C  
71.8  
8
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
RECOMMENDED OPERATING CONDITIONS(1)  
MIN  
NOM  
MAX UNIT  
VDD  
Supply voltages  
1.65  
1.8  
1.95  
V
VDDPLLA  
VDDPLLD  
VDDLVDS  
VDDn(PP)  
Test set-up see Figure 10  
f(PCLK) 50MHz; f(noise) = 1 Hz to 2 GHz  
f(PCLK) > 50MHz; f(noise) = 1 Hz to 1MHz  
f(PCLK) > 50MHz; f(noise) > 1MHz  
1-Channel transmit mode, see Figure 1  
2-Channel transmit mode, see Figure 2  
3-Channel transmit mode, see Figure 3  
100  
100  
40  
15  
30  
65  
3
Supply voltage noise  
magnitude (all supplies)  
mV  
4
8
fPCLK  
Pixel clock frequency  
PCLK input duty cycle  
MHz  
°C  
20  
0.5  
Frequency threshold Standby mode to active  
mode(2), see Figure 14  
tH x fPCLK  
TA  
0.33  
–40  
0.67  
85  
Operating free-air  
temperature  
tjit(per)PCLK  
tjit(TJ)PCLK  
tjit(CC)PCLK  
PCLK RMS period jitter(3)  
5
0.05/fPCLK  
0.02/fPCLK  
ps-rms  
PCLK total jitter  
s
s
Measured on PCLK input  
PCLK peak  
cycle-to-cycle jitter(4)  
PCLK, R[0:7], G[0:7], B[0:7], VS, HS, DE, PCLK, LS[1:0], TXEN, SWAP  
VIH  
VIL  
tDS  
High-level input voltage  
Low-level input voltage  
0.7×VDD  
VDD  
V
V
0.3×VDD  
Data set up time prior to  
PCLK transition  
2.0  
2.0  
ns  
f (PCLK) = 65MHz; see Figure 6  
tDH  
Data hold time after PCLK  
transition  
ns  
(1) Unused single-ended inputs must be held high or low to prevent them from floating.  
(2) PCLK input frequencies lower than 500kHz force the SN65LVDS311into standby mode. Input frequencies between 500kHz and 3MHz  
may or may not activate the SN65LVDS311. Input frequencies beyond 3MHz activate the SN65LVDS311.  
(3) Period jitter is the deviation in cycle time of a signal with respect to the ideal period over a random sample of 100,000 cycles.  
(4) Cycle-to-cycle jitter is the variation in cycle time of a signal between adjacent cycles; over a random sample of 1,000 adjacent cycle  
pairs.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: SN65LVDS311  
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
DEVICE ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAM  
ETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
VDD =VDDPLLA=VDDPLLD=VDDLVDS  
RL(PCLK)=RL(D0)=100 , VIH=VDD, VIL=0 V,  
,
fPCLK = 4MHz  
fPCLK = 6MHz  
fPCLK = 15MHz  
fPCLK = 4MHz  
fPCLK = 6MHz  
fPCLK = 15MHz  
fPCLK = 8MHz  
fPCLK = 22MHz  
fPCLK = 30MHz  
fPCLK = 8MHz  
fPCLK = 22MHz  
fPCLK = 30MHz  
fPCLK = 20MHz  
fPCLK = 65MHz  
9.0  
10.6  
16  
11.4  
12.6  
18.8  
mA  
TXEN at VDD  
,
alternating 1010 serial bit pattern  
1ChM  
2ChM  
3ChM  
VDD =VDDPLLA=VDDPLLD=VDDLVDS  
,
8.0  
RL(PCLK)=RL(D0)=100 , VIH=VDD, VIL=0 V,  
TXEN at VDD  
typical power test pattern (see Table 7)  
8.9  
mA  
mA  
mA  
mA  
,
14.0  
13.7  
18.4  
21.4  
11.5  
16.0  
19.1  
20.0  
VDD =VDDPLLA=VDDPLLD=VDDLVDS  
RL(PCLK)=RL(Dx)=100 , VIH=VDD, VIL=0 V,  
TXEN at VDD  
alternating 1010 serial bit pattern;  
,
15.9  
22.0  
25.8  
,
VDD =VDDPLLA=VDDPLLD=VDDLVDS  
RL(PCLK)=RL(D0)=100 , VIH=VDD, VIL=0 V,  
TXEN at VDD  
typical power test pattern (see Table 8)  
,
,
IDD  
VDD =VDDPLLA=VDDPLLD=VDDLVDS  
RL(PCLK)=RL(D0)=100 , VIH=VDD, VIL=0 V,  
TXEN at VDD  
,
22.5  
36.8  
,
29.1  
15.9  
24.7  
0.61  
alternating 1010 serial bit pattern  
VDD =VDDPLLA=VDDPLLD=VDDLVDS  
,
fPCLK = 20MHz  
fPCLK = 65MHz  
RL(PCLK)=RL(D0)=100 , VIH=VDD, VIL=0 V,  
TXEN at VDD  
typical power test pattern (see Table 9)  
mA  
,
Standby Mode  
VDD = VDDPLLA = VDDPLLD  
10  
10  
μA  
= VDDLVDS  
,
RL(PCLK)=RL(D0)=100 ,  
VIH=VDD, VIL=0 V, all  
inputs held static high or  
static low  
Shutdown Mode  
0.55  
μA  
(1) All typical values are at 25°C and with 1.8 V supply unless otherwise noted.  
OUTPUT ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
subLVDS output (D0+, D0–, D1+, D1–, D2+, D1–, CLK+, and CLK–)  
VOCM(SS) Steady-state common-mode output voltage  
VOCM(SS) Change in steady-state common-mode output voltage  
VOCM(PP) Peak-to-peak common mode output voltage  
Output load see Figure 8  
0.8  
0.9  
1.0  
10  
V
–10  
mV  
mV  
75  
|VOD  
|
Differential output voltage magnitude  
|VDx+ – VDx– |, |VCLK+ – VCLK–  
100  
–10  
150  
200  
mV  
|
Δ|VOD  
|
Change in differential output voltage between logic states  
10  
10  
3
mV  
ZOD(CLK) Differential small-signal output impedance  
TXEN at VDD  
210  
5
IOSD  
IOS  
Differential short-circuit output current  
Short circuit output current(2)  
VOD = 0 V, fPCLK = 28MHz  
VO = 0 V or VDD  
mA  
IOZ  
High-impedance state output current  
VO = 0 V or VDD(max),  
TXEN at GND  
–3  
μA  
(1) All typical values are at 25°C and with 1.8 V supply unless otherwise noted.  
(2) All SN65LVDS311 outputs tolerate shorts to GND or VDD without permanent device damage.  
10  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
INPUT ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1) MAX UNIT  
PCLK, R[0:7], G[0:7], B[0:7], VS, HS, DE, PCLK, LS[1:0], TXEN, SWAP  
IIH  
High-level input current  
Low-level input current  
Input capacitance  
VIN = 0.7 × VDD  
VIN = 0.3 × VDD  
–200  
–200  
200  
nA  
IIL  
200  
CIN  
1.5  
pF  
(1) All typical values are at 25°C and with 1.8 V supply unless otherwise noted.  
SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
tr  
tf  
20%-to-80% differential  
output signal rise time  
See Figure 7 and Figure 8  
250  
500  
ps  
20%-to-80% differential  
output signal fall time  
See Figure 7 and Figure 8  
Tested from PCLK input to  
250  
500  
fPCLK = 22MHz  
fPCLK = 65MHz  
1-channel mode  
2-channel mode  
3-channel mode  
0.082 × fPCLK  
0.07 × fPCLK  
1.2/fPCLK  
1.5/fPCLK  
1.6/fPCLK  
0.55  
PLL bandwidth (3dB cutoff  
frequency)  
(2)  
fBW  
MHz  
s
CLK output, See Figure 5  
tpd(L)  
Propagation delay time,  
input to serial output (data  
latency Figure 9)  
TXEN at VDD, VIH=VDD  
,
0.8/fPCLK  
1.0/fPCLK  
1.1/fPCLK  
0.45  
1/fPCLK  
1.21/fPCLK  
1.31/fPCLK  
0.50  
VIL=GND, RL=100  
tH × fCLK0  
Output CLK duty cycle  
1-channel and 3-channel  
mode  
2-channel mode  
0.49  
3.8  
0.53  
0.58  
10  
tGS  
TXEN Glitch suppression  
pulse width(3)  
VIH=VDD, VIL=GND, TXEN toggles between VIL and VIH,  
μs  
see Figure 12 and Figure 13  
tpwrup  
tpwrdn  
Enable time from power  
down (TXEN)  
Time from TXEN pulled high to CLK and Dx outputs  
enabled and transmit valid data; see Figure 13  
0.24  
0.5  
2
ms  
Disable time from active  
TXEN is pulled low during transmit mode; time  
11  
mode (TXEN)  
measurement until output is disabled and PLL is Shutdown;  
see Figure 13  
μs  
ms  
μs  
twakup  
Enable time from Standby  
(PCLK)  
TXEN at VDD; device in standby; time measurement from  
PCLK starts switching to CLK and Dx outputs enabled and  
transmit valid data; see Figure 13  
0.23  
0.4  
2
tsleep  
Disable time from Active  
mode (PCLK stopping)  
TXEN at VDD; device is transmitting; time measurement  
from PCLK input signal stops until CLK + Dx outputs are  
disabled and PLL is disabled; see Figure 13  
100  
(1) All typical values are at 25°C and with 1.8 V supply unless otherwise noted.  
(2) The Maximum Limit is based on statistical analysis of the device performance over process, voltage, and temp ranges. This parameter  
is functionality tested only on Automatic Test Equipment (ATE).  
(3) The TXEN input incorporates glitch-suppression circuitry to disregard short input pulses. tGS is the duration of either a high-to-low or low-  
to-high transition that is suppressed.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
12.0%  
11.0%  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
4 MHz:  
8.5%  
8 MHz:  
8.5%  
20 MHz:  
8.3%  
RX PLL BW  
10.0%  
9.0%  
8.0%  
7.0%  
6.0%  
5.0%  
4.0%  
Spec Limit  
1ChM  
Spec  
Limit  
2ChM  
9%  
8.5%  
Spec Limit 3ChM  
30 MHz:  
7.6%  
15 MHz:  
7.6%  
7.5%  
7%  
65 MHz:  
7.0%  
TX PLL BW  
0
100  
200  
300  
400  
500  
600  
700  
0
10  
20  
30  
40  
50  
60  
70  
PLL frequency − MHz  
PCLK FREQUENCY - MHz  
Figure 5. LVDS311 PLL Bandwidth (also showing the LVDS302 PLL bandwidth)  
TIMING CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1ChM: x=0..29, fPCLK=15MHz; TXEN at  
x
x
- 330 ps  
+ 330 ps  
VDD, VIH=VDD, VIL=GND, RL=100 , test  
30 × fPCLK  
30 × fPCLK  
(3)  
pattern as in Table 12  
1ChM: x=0..29,  
fPCLK=4MHz to 15MHz  
x – 0.1845  
30 × fPCLK  
x + 0.1845  
30 × fPCLK  
(4)  
2ChM: x = 0..14, fPCLK = 30MHz  
TXEN at VDD, VIH=VDD, VIL=GND,  
RL=100 , test pattern as in Table 13  
x
x
- 330 ps  
+ 330 ps  
15 × fPCLK  
15 × fPCLK  
x + 0.1845  
15 × fPCLK  
(3)  
Output Pulse Position,  
tPPOSX serial data to CLK; see  
ps  
(1)  
(2)and Figure 11  
2ChM: x=0..14,  
fPCLK= 8MHz to 30MHz  
x – 0.1845  
15 × fPCLK  
(4)  
3ChM: x=0..9, fPCLK=65MHz,  
TXEN at VDD, VIH=VDD, VIL=GND,  
RL=100 , test pattern as in Table 14  
x
x
- 210 ps  
+ 210 ps  
10 × fPCLK  
10 × fPCLK  
x + 0.153  
10 × fPCLK  
(3)  
3ChM: x=0..9,  
fPCLK=20MHz to 65MHz  
x - 0.153  
10 × fPCLK  
(4)  
(1) This number also includes the high-frequency random and deterministic PLL clock jitter that is not traceable by the SN65LVDS302  
receiver PLL; tPPosx represents the total timing uncertainty of the transmitter necessary to calculate the jitter budget when combined  
with the SN65LVDS302 receiver;  
(2) The pulse position min/max variation is given with a bit error rate target of 10–12; The measurement estimates the random jitter  
contribution to the total jitter contribution by multiplying the random RMS jitter by the factor 14; Measurements of the total jitter are taken  
over a sample amount of > 10–12 samples.  
(3) The Minimum and Maximum Limits are based on statistical analysis of the device performance over process, voltage, and temp ranges.  
This parameter is functionality tested only on Automatic Test Equipment (ATE).  
(4) These Minimum and Maximum Limits are simulated only.  
12  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
PARAMETER MEASUREMENT INFORMATION  
t
DS  
VIH  
VIL  
R[7:0], G[7:0], B[7:0];  
VS, HS, DE, LS0, LS1,  
TXEN, SWAP  
t
DH  
VIH  
VIL  
PCLK  
t
R
Figure 6. Setup/Hold Time  
150mV (nom)  
V
OD  
t
f
t
r
80%  
0 V  
20%  
−150mV (nom)  
Figure 7. Rise and Fall Time Definitions  
975mV (nom)  
825mV (nom)  
V
or V  
CLK+  
Dx+  
V
or V  
CLK−  
Dx−  
R1 = 49.9  
R2 = 49.9  
CLK+, Dx+  
V
OD  
V
V
OCM  
OCM  
CLK−, Dx−  
SN65LVDS311  
V
OCM  
(pp)  
V
OCM  
(ss)  
C1 = 1 pF  
C2 = 1 pF  
NOTES:  
A. 20 MHz output test pattern on all differental outputs (CLK, D0, D1, and D2):  
this is achieved by: 1. Device is set to 3-channel-mode;  
2. f  
= 20 MHz  
PCLK  
3. Inputs R[7:3] = B[7:3] connected to VDD, all other data inputs set to GND.  
B. C1, C2 and C3 includes instrumentation and fixture capacitance; tolerance± 20%; C, R1 and R2 tolerance± 1%.  
C. The measurement of V (pp) and V (ss) are taken with test equipment bandwidth >1 GHz.  
OCM  
OC  
Figure 8. Driver Output Voltage Test Circuit and Definitions  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
CMOS  
Data In  
pixel  
R7  
pixel  
(n)  
(n+1)  
R7  
R7  
R6  
(n−1)  
(n)  
(n+1)  
R6  
R6  
(n)  
(n−1)  
(n+1)  
V
DD  
/2  
PCLK  
t
PROP  
CLK−  
CLK+  
R7 R6  
CP  
CP R7 R6  
D0+  
pixel  
(n−1)  
pixel  
(n−2)  
R6  
(n)  
R6  
R7  
(n−1)  
(n−1)  
R7  
(n)  
Figure 9. tpd(L) Propagation Delay Input to Output (LS0 = LS1 = 0)  
SN65LVDS311  
V
DDPLLD  
V
1
2
DDPLLA  
1
V
DD  
Noise  
Generator  
100mV  
10mF  
V
DDLVDS  
GND  
1.8V  
supply  
Note: The generator regulates the  
noise amplitude at point to the  
target amplitude given under the table  
1.6mH  
1
Recommended Operating Conditions  
Figure 10. Power Supply Noise Test Set-Up  
t
CLK+  
CLK−  
CLK+  
Next Cycle  
Bit0  
Current Cycle  
Bit 0  
Bit1  
Bit2  
Bitx  
Bit1  
D[0:m]+  
t
PPOS0  
Note:  
t
PPOS1  
1−channel mode: x=0..29; m=0  
2−channel mode: x=0..14; m=1  
3−channel mode: x=0....9; m=2  
t
PPOS2  
t
PPOSx  
Figure 11. tSK(0) SubLVDS Output Pulse Position Measurement  
14  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
V /2  
DD  
TXEN  
t
GS  
PCLK  
PLL Approaches Lock  
VCO Internal Signal  
t
pwrup  
CLK  
D0, D1, D2  
Figure 12. Transmitter Behavior While Approaching Sync  
<20 ns  
2 s  
3
s
Glitch Shorter  
Will Be  
Ignored  
Less Than 20 ns  
Spike Will be  
Rejected  
Than t  
GS  
Glitch Shorter  
Than t Will Be  
Ignored  
GS  
TXEN  
CLK+  
t
pwrup  
t
pwrdn  
t
GS  
I
CC  
t
GS  
PCLK  
Transmitter Disabled  
(OFF)  
Transmitter Aquires Lock  
Transmitter Enabled  
(ON)  
Transmitter  
Disabled  
(OFF)  
Transmitter  
Turns OFF  
Figure 13. Transmitter Enable Glitch Suppression Time  
PCLK  
twakeup  
tsleep  
CLK+  
Transmitter Disabled  
(OFF)  
Transmitter Aquires Lock,  
Outputs Still Disabled  
Transmitter Enabled,  
Output Data Valid  
Transmitter  
Enabled,  
Output Data  
Valid  
Transmitter  
Disabled  
(OFF)  
Figure 14. Standby Detection  
Power Consumption Tests  
Table 6 shows an example test pattern word.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
Table 6. Example Test Pattern Word  
Word  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
0x7C3E1E7  
7
C
3
E
1
E
7
R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0  
0
0
VS HS DE  
0
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
1
Typical IC Power Consumption Test Pattern  
The typical power consumption test patterns consists of sixteen 30-bit transmit words in 1-channel mode, eight  
30-bit transmit words in 2-channel mode and five 30-bit transmit words in 3-channel mode. The pattern repeats  
itself throughout the entire measurement. It is assumed that every possible transmit code on RGB inputs has the  
same probability to occur during typical device operation.  
Table 7. Typical IC Power Consumption Test Pattern,  
1-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
0x0000007  
0xFFF0007  
0x01FFF47  
0xF0E07F7  
0x7C3E1E7  
0xE707C37  
0xE1CE6C7  
0xF1B9237  
0x91BB347  
0xD4CCC67  
0xAD53377  
0xACB2207  
0xAAB2697  
0x5556957  
0xAAAAAB3  
0xAAAAAA5  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
16  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
Table 8. Typical IC Power Consumption Test Pattern,  
2-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
3
4
5
6
7
8
0x0000001  
0x03F03F1  
0xBFFBFF1  
0x1D71D71  
0x4C74C71  
0xC45C451  
0xA3aA3A5  
0x5555553  
Table 9. Typical IC Power Consumption Test Pattern,  
3-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
3
4
5
0xFFFFFF1  
0x0000001  
0xF0F0F01  
0xCCCCCC1  
0xAAAAAA7  
Maximum Power Consumption Test Pattern  
The maximum (or worst-case) power consumption of the SN65LVDS311 is tested using the two different test  
patterns shown in Table 10 and Table 11. The test patterns consist of sixteen 30-bit transmit words in 1-channel  
mode, eight 30-bit transmit words in 2-channel mode and five 30-bit transmit words in 3-channel mode. The  
pattern repeats itself throughout the entire measurement. It is assumed that every possible transmit code on  
RGB inputs has the same probability to occur during typical device operation.  
Table 10. Worst-Case Power Consumption Test Pattern  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
0xAAAAAA5  
0x5555555  
Table 11. Worst-Case Power Consumption Test Pattern  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
0x0000000  
0xFFFFFF7  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: SN65LVDS311  
 
 
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
Output Skew Pulse Position & Jitter Performance  
The following test patterns are used to measure the output-skew pulse position and the jitter performance of the  
SN65LVDS311. The jitter test pattern stresses the interconnect, particularly to test for ISI. Very long run-lengths  
of consecutive bits incorporate very high and low data rates, maximinges switching noise. Each pattern is self-  
repeating for the duration of the test.  
Table 12. Transmit Jitter Test Pattern, 1-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
0x0000001  
0x0000031  
0x00000F1  
0x00003F1  
0x0000FF1  
0x0003FF1  
0x000FFF1  
0x0F0F0F1  
0x0C30C31  
0x0842111  
0x1C71C71  
0x18C6311  
0x1111111  
0x3333331  
0x2452413  
0x22A2A25  
0x5555553  
0xDB6DB65  
0xCCCCCC1  
0xEEEEEE1  
0xE739CE1  
0xE38E381  
0xF7BDEE1  
0xF3CF3C1  
0xF0F0F01  
0xFFF0001  
0xFFFC001  
0xFFFF001  
0xFFFFC01  
0xFFFFF01  
0xFFFFFC1  
0xFFFFFF1  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
18  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
Table 13. Transmit Jitter Test Pattern, 2-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
0x0000001  
2
0x000FFF3  
3
0x8008001  
4
0x0030037  
5
0xE00E001  
6
0x00FF001  
7
0x007E001  
8
0x003C001  
9
0x0018001  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
0x1C7E381  
0x3333331  
0x555AAA5  
0x6DBDB61  
0x7777771  
0x555AAA3  
0xAAAAAA5  
0x5555553  
0xAAA5555  
0x8888881  
0x9242491  
0xAAA5571  
0xCCCCCC1  
0xE3E1C71  
0xFFE7FF1  
0xFFC3FF1  
0xFF81FF1  
0xFE00FF1  
0x1FF1FF1  
0xFFCFFC3  
0x7FF7FF1  
0xFFF0007  
0xFFFFFF1  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
Table 14. Transmit Jitter Test Pattern, 3-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
0x0000001  
0x0000001  
0x0000003  
0x0101013  
0x0303033  
0x0707073  
0x1818183  
0xE7E7E71  
0x3535351  
0x0202021  
0x5454543  
0xA5A5A51  
0xADADAD1  
0x5555551  
0xA6A2AA3  
0xA6A2AA5  
0x5555553  
0x5555555  
0xAAAAAA1  
0x5252521  
0x5A5A5A1  
0xABABAB1  
0xFDFCFD1  
0xCAAACA1  
0x1818181  
0xE7E7E71  
0xF8F8F81  
0xFCFCFC1  
0xFEFEFE1  
0xFFFFFF1  
0xFFFFFF5  
0xFFFFFF5  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
20  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
TYPICAL CHARACTERISTICS  
POWERDOWN, STANDBY SUPPLY CURRENT  
vs  
TEMPERATURE  
SUPPLY CURRENT IDD  
vs  
TEMPERATURE  
1.0  
20  
15  
10  
5
2-Channel Mode, 22 MHz (VGA)  
2-Channel Mode, 11 MHz (HVGA)  
Standby Current  
Power-Down Current  
0.1  
0
-50  
-30  
-10  
10  
30  
50  
70  
90  
-50  
-30  
-10  
10  
30  
50  
70  
90  
Temperature - °C  
Temperature - °C  
Figure 15.  
Figure 16.  
SUPPLY CURRENT  
vs  
PCLK FREQUENCY  
DIFFERENTIAL OUTPUT SWING  
vs  
PCLK FREQUENCY  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
30  
25  
20  
15  
10  
5
85°C  
25°C  
3-Channel Mode  
–40°C  
2-Channel Mode  
1-Channel Mode  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
FREQUENCY - MHz  
FREQUENCY - MHz  
Figure 17.  
Figure 18.  
CYCLE-TO-CYCLE OUTPUT JITTER  
vs  
PLL BANDWIDTH  
PCLK FREQUENCY  
500  
400  
300  
200  
100  
0
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
Spec Limit 1ChM, 4 MHz: 8.5%  
Spec Limit 2ChM8 MHz: 8.5%  
Spec Limit 3ChM 20 MHz: 8.3%  
Spec Limit 2ChM  
30 MHz: 7.6%  
Spec Limit 1ChM,  
15 MHz: 7.6%  
Spec Limit 3ChM  
65 MHz: 7.0%  
3-ChM  
2-ChM  
3-Channel Mode  
2-Channel Mode  
1-Channel Mode  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
FREQUENCY - MHz  
FREQUENCY - MHz  
Figure 19.  
Figure 20.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
CYCLE-TO-CYCLE OUTPUT JITTER  
vs  
TEMPERATURE  
OUTPUT PULSE POSITION  
vs  
TEMPERATURE  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
2-Channel Mode,  
11 MHz (VGA)  
2-Channel Mode,  
f(PCLK) = 11 MHz  
2-Channel Mode,  
22 MHz (HVGA)  
2-Channel Mode,  
f(PCLK) = 22 MHz  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
TEMPERATURE - °C  
Temperature - °C  
Figure 21.  
Figure 22.  
DATA EYE PATTERN, 2-CHANNEL MODE  
DATA EYE PATTERN, 3-CHANNEL MODE  
250  
175  
250  
190  
2-Channel Mode,  
f(PCLK) = 22 MHz  
3-Channel Mode,  
f(PCLK) = 65 MHz  
0
0
–175  
–250  
–190  
–250  
500 ps/div  
200 ps/div  
Figure 23.  
Figure 24.  
QVGA OUTPUT WAVEFORM  
VGA 2-CHANNEL OUTPUT WAVEFORM  
249  
190  
250  
190  
1-Channel Mode,  
f(PCLK) = 5.5 MHz  
2-Channel Mode,  
f(PCLK) = 22 MHz  
0
0
–190  
–251  
–190  
–250  
1 ns/div  
500 ps/div  
Response Over 80-inch of FR-4 + 1m Coax Cable  
Response Over 8-inch FR-4 + 1m Coax Cable  
Figure 25.  
Figure 26.  
22  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
TYPICAL CHARACTERISTICS (continued)  
VGA 2-CHANNEL OUTPUT WAVEFORM  
VGA3-CHANNEL OUTPUT WAVEFORM  
249  
249  
190  
190  
2-Channel Mode,  
f(PCLK) = 22 MHz  
3-Channel Mode,  
f(PCLK) = 22 MHz  
0
0
–190  
–251  
–190  
–251  
500 ps/div  
1 ns/div  
Response Over 80-inch FR-4 + 1m Coax Cable  
Response Over 80-inch FR-4 + 1m Coax Cable  
Figure 27.  
Figure 28.  
XGA 3-CHANNEL OUTPUT WAVEFORM ON THE  
SN65LVDS302 WHEN DRIVEN BY THE SN65LVDS311  
XGA 3-CHANNEL OUTPUT WAVEFORM  
249  
190  
0
3-Channel Mode,  
f(PCLK) = 56 MHz  
–190  
–251  
3-Channel Mode,  
f(PCLK) = 56 MHz  
300 ps/div  
3.5 ns/div  
Response Over 80-inch FR-4 + 1m Coax Cable  
Response With 10-pF Load  
Figure 29.  
Figure 30.  
PLL PHASE NOISE  
OUTPUT RETURN LOSS  
-50  
-60  
0
-70  
-80  
-90  
–5  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
f(PCLK) = 65 MHz  
CLK  
D0  
–10  
D2  
D1  
–15  
0
500  
1000  
1500  
2000  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY - Hz  
FREQUENCY - Hz  
Figure 31.  
Figure 32.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: SN65LVDS311  
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
OUTPUT COMMON MODE NOISE REJECTION  
CROSSTALK  
0
0
-20  
–5  
D0  
CLK  
-40  
–10  
–15  
–20  
D0 to D1  
D1  
D2  
-60  
D0 to D2  
-80  
-100  
0
500  
1000  
1500  
2000  
0
500  
1000  
1500  
2000  
FREQUENCY - MHz  
FREQUENCY - MHz  
Figure 33.  
Figure 34.  
GTEM SAE J1752/3 EMI TEST  
20  
15  
10  
5
f(PCLK)=65MHz  
2-ChM, f(PCLK)=22MHz  
320MHz; 16dBuV  
3-ChM, f(PCLK)=65MHz,  
988MHz, 12dBuV  
2-ChM, f(PCLK)=22MHz  
683MHz; 12dBuV  
3-ChM, f(PCLK)=65MHz,  
282MHz  
3-ChM, f(PCLK)=65MHz  
777MHz; 11dBuV  
1-ChM f(PCLK)=5MHz,  
960MHz; 8dBuV  
3-ChM, f(PCLK)=65MHz  
113MHz; 6dBuV  
0
0
200  
400  
600  
800  
1000  
FREQUENCY - MHz  
Figure 35.  
A. Figure 35 shows a superimposed image of three EMI measurements with the device operating at f(PCLK) = 5MHz,  
f(PCLK) = 22MHz, and f(PCLK) = 65MHz. This excellent EMI performance meets the system requirements of dense,  
mobile designs with a noise floor of ~2 dBµV (-105 dBm) and all spurs being smaller than 16 dBµV (-101 dBm). The  
test was performed in compliance with the SAE J1752/3 EMI test guidelines.  
24  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
 
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
APPLICATION INFORMATION  
Preventing Increased Leakage Currents in Control Inputs  
A floating (left open) CMOS input allows leakage currents to flow from VDD to GND. Do not leave any CMOS  
Input unconnected or floating. Every input must be connected to a valid logic level VIH or VOL while power is  
supplied to VDD. This also minimizes the power consumption of standby and power down mode.  
Power Supply Design Recommendation  
For a multilayer pcb, it is recommended to keep one common GND layer underneath the device and connect all  
ground terminals directly to this plane.  
Decoupling Recommendation  
The SN65LVDS311 was designed to operate reliably in a constricted environment with other digital switching  
ICs. In many designs, the SN65LVDS311 often shares a power supply with the application processor. The  
SN65LVDS311 can operate with power supply noise as specified in Recommend Device Operating Conditions.  
To minimize the power supply noise floor, provide good decoupling near the SN65LVDS311 power pins. The use  
of four ceramic capacitors (2×0.01 μF and 2×0.1 μF) provides good performance. At the very least, it is  
recommended to install one 0.1 μF and one 0.01 μF capacitor near the SN65LVDS311. To avoid large current  
loops and trace inductance, the trace length between decoupling capacitor and IC power inputs pins must be  
minimized. Placing the capacitor underneath the SN65LVDS311 on the bottom of the pcb is often a good choice.  
VGA Application  
Figure 36 shows a possible implementation of a VGA display.  
The LVDS311 interfaces directly to a LCD driver with integrated FlatLink3G receiver. The SPI interface is used to  
configure the display. The pixel clock rate of 22MHz assumes 10% blanking overhead and 60Hz display refresh  
rate. The application assumes 24-bit color resolution.  
2x0.1uF  
FPC  
GND  
2.7V  
1.8V  
GND  
GND  
2.7V  
1.8V  
GND  
2x0.01uF  
OMAP3630  
Application  
Processor  
Display with  
Integrated  
FL3G RX  
CLK+  
CLK-  
22MHz  
D0+  
D0-  
330Mbps  
330Mbps  
Pixel CLK  
PCLK  
22MHz  
D1+  
D1-  
D[7:0]  
D[15:8]  
R[7:0]  
G[7:0]  
B[7:0]  
D[23:16]  
HS,VS,DE  
27  
HS,VS,DE  
SN65LVDS311  
1.8V  
Serial port interface  
(3-wire IF)  
3
Figure 36. Typical VGA Display Application  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: SN65LVDS311  
 
SN65LVDS311  
SLLSE31B MAY 2010REVISED MARCH 2013  
www.ti.com  
Dual LCD-Display Application  
The example in Figure 37 shows a possible application setup driving two video mode displays from one  
application processor. The data rate of 330 Mbps at a pixel clock rate of 5.5 MHz corresponds to QVGA  
resolution at 60 Hz refresh rate and 10% blanking overhead.  
2x0.1uF  
2x0.1uF  
FPC  
GND  
2.7V  
1.8V  
GND  
GND  
2.7V  
1.8V  
GND  
2x0.01uF  
2x0.01uF  
Display Driver1  
Application  
Processor  
(e.g. OMAP)  
21  
CLK+  
CLK-  
CLK+  
CLK-  
D0+  
5.5MHz  
PCLK  
PCLK  
Pixel CLK  
PCLK  
5.5MHz  
18+3  
R[5:0]  
G[5:0]  
B[5:0]  
D0+  
D0-  
EN  
330Mbps  
SIN  
SOUT  
SCLK  
D0-  
D[5:0]  
D[11:6]  
D[17:12]  
HS,VS,DE  
R[5:0]  
G[5:0]  
B[5:0]  
HS,VS,DE  
HS,VS,DE  
SN65LVDS311  
SN65LVDS302  
Display Driver2  
PCLK  
EN  
1.8V  
1.8V  
SIN  
SOUT  
SCLK  
Figure 37. Example Dual-QVGA Display Application  
Typical Application Frequencies  
The SN65LVDS311 supports pixel clock frequencies from 4MHz to 65MHz over 1, 2, or 3 data lanes. Table 15  
provides a few typical display resolution examples and shows the number of data lanes necessary to connect the  
LVDS311 with the display. The blanking overhead is assumed to be 20%. Often, blanking overhead is smaller,  
resulting in a lower data rate. Furthermore, the examples in the table assumes a display frame refresh rate of 60  
Hz or 90 Hz. The actual refresh rate may differ depending on the application-processor clock implementation.  
Table 15. Typical Application Data Rates & Serial Lane Usage  
Display Screen  
Resolution  
Visible  
Pixel Count Overhead  
Blanking  
Display  
Refresh  
Rate  
Pixel Clock Frequency  
[MHz]  
Serial Data Rate Per Lane  
1-ChM  
2-ChM  
3-ChM  
176x220 (QCIF+)  
240x320 (QVGA)  
640x200  
38,720  
76,800  
20%  
90 Hz  
60 Hz  
4.2MHz  
5.5MHz  
125 Mbps  
166 Mbps  
276 Mbps  
316 Mbps  
335 Mbps  
332 Mbps  
432 Mbps  
442 Mbps  
128,000  
146,432  
154,880  
153,600  
200,000  
204,800  
307,200  
327,680  
409,920  
480,000  
786,432  
9.2MHz  
138 Mbps  
158 Mbps  
167 Mbps  
166 Mbps  
216 Mbps  
221 Mbps  
332 Mbps  
354 Mbps  
443 Mbps  
352x416 (CIF+)  
352x440  
10.5MHz  
11.2MHz  
11.1MHz  
14.4MHz  
14.7MHz  
22.1MHz  
23.6MHz  
29.5MHz  
34.6MHz  
56.6MHz  
320x480 (HVGA)  
800x250  
640x320  
640x480 (VGA)  
1024x320  
221 Mbps  
236 Mbps  
295 Mbps  
346 Mbps  
566 Mbps  
854x480 (WVGA)  
800x600 (SVGA)  
1024x768 (XGA)  
26  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: SN65LVDS311  
 
 
SN65LVDS311  
www.ti.com  
SLLSE31B MAY 2010REVISED MARCH 2013  
Calculation Example: HVGA Display  
This example calculation shows a typical Half-VGA display with these parameters:  
Display Resolution:  
Frame Refresh Rate:  
480 x 320  
58.4 Hz  
Hsync = 5  
Visible area = 480 column  
HFP = 20  
Horizontal Visible Pixel:  
Horizontal Front Porch:  
Horizontal Sync:  
480 columns  
20 columns  
5 columns  
3 columns  
Vsync = 5  
VBP = 3  
Horizontal Back Porch:  
Visible area  
= 320 lines  
Visible area  
Vertical Visible Pixel:  
Vertical Front Porch:  
Vertical Sync:  
320 lines  
10 lines  
5 lines  
Vertical Back Porch:  
3 lines  
VFP = 10  
Entire display  
Figure 38. HVGA Display Parameters  
Calculation of the total number of pixel and Blanking overhead:  
Visible Area Pixel Count:  
Total Frame Pixel Count: (480+20+5+3) × (320+10+5+3) = 171704 pixel  
Blanking Overhead: (171704-153600) ÷ 153600 = 11.8 %  
The application requires following serial-link parameters:  
480 × 320 = 153600 pixel  
Pixel Clk Frequency:  
Serial Data Rate:  
171704 × 58.4 Hz = 10.0MHz  
1-channel mode: 10.0MHz × 30 bit/channel = 300 Mbps  
2-channel mode: 10.0MHz × 15 bit/channel = 150 Mbps  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: SN65LVDS311  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65LVDS311YFFR  
SN65LVDS311YFFT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
49  
49  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
LVDS311  
LVDS311  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2015  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65LVDS311YFFR  
SN65LVDS311YFFT  
DSBGA  
DSBGA  
YFF  
YFF  
49  
49  
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.93  
2.93  
2.93  
2.93  
0.81  
0.81  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2015  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65LVDS311YFFR  
SN65LVDS311YFFT  
DSBGA  
DSBGA  
YFF  
YFF  
49  
49  
3000  
250  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SN65LVDS314

可编程 27 位串行至并行接收器
TI

SN65LVDS314RSKR

可编程 27 位串行至并行接收器 | RSK | 64 | -40 to 85
TI

SN65LVDS315

CAMERA PARALLEL RGB TO MIPI CSI-1 SERIAL CONVERTER
TI

SN65LVDS315RGER

CAMERA PARALLEL RGB TO MIPI CSI-1 SERIAL CONVERTER
TI

SN65LVDS315RGERG4

CAMERA PARALLEL RGB TO MIPI CSI-1 SERIAL CONVERTER
TI

SN65LVDS315RGET

CAMERA PARALLEL RGB TO MIPI CSI-1 SERIAL CONVERTER
TI

SN65LVDS315RGETG4

CAMERA PARALLEL RGB TO MIPI CSI-1 SERIAL CONVERTER
TI

SN65LVDS31D

HIGH-SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS31DG4

HIGH-SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS31DR

HIGH SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS31DRG4

HIGH SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS31MDREP

HIGH-SPEED DIFFERENTIAL LINE DRIVER
TI