SN65LVDS93AIDGGRQ1 [TI]

10MHz – 135MHz 28 位平板显示器链路 LVDS 串行解串器发送器 | DGG | 56 | -40 to 85;
SN65LVDS93AIDGGRQ1
型号: SN65LVDS93AIDGGRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10MHz – 135MHz 28 位平板显示器链路 LVDS 串行解串器发送器 | DGG | 56 | -40 to 85

显示器
文件: 总35页 (文件大小:1897K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
SN65LVDS93A-Q1 FlatLink™ 发送器  
1 特性  
发送数据时,数据位 D0 D27 会在输入时钟信号  
1
(CLKIN) 边沿逐个载入寄存器。 可通过时钟选择  
(CLKSEL) 引脚来选择时钟的上升沿或下降沿。  
CLKIN 的频率会进行 7 倍倍频,然后用于以串行方式  
7 位时间片上传数据寄存器。 接着会将 4 个串行数  
据流和锁相时钟 (CLKOUT) 输出至 LVDS 输出驱动  
器。 CLKOUT 的频率与输入时钟 (CLKIN) 相同。  
具有符合 AEC-Q100 标准的以下结果:  
温度等级 3-40°C 85°C  
人体模型 (HBM) 静电放电 (ESD) 分类等级 3  
充电器件模型 (CDM) ESD 分类等级 C6  
低压差分信号 (LVDS) 显示系列接口,可直接连接  
具有集成 LVDS LCD 显示面板  
封装:14mm x 6.1mm 薄型小外形尺寸 (TSSOP)  
SN65LVDS93A-Q1 无需外部元件或者很少,而且也无  
需控制。 发送器输入端的数据总线与接收器输出端的  
相同,数据传输对于用户而言是透明的。 用户唯一能  
够干预的是选择时钟上升沿(向 CLKSEL 输入高电  
平)或下降沿(向 CLKSEL 输入低电平),以及能够  
使用关断/清零 (SHTDN) 引脚。 SHTDN 是一个低电  
平有效输入,可禁用时钟并关断 LVDS 输出驱动器,  
从而降低功耗。 该信号为低电平时,可将所有内部寄  
存器置为低电平。  
1.8V 3.3V 耐压数据输入,可直接连接低功耗、  
低压应用和图形处理器  
传输速率高达 135Mpps(每秒百万像素);像素时  
钟频率范围为 10MHz 135MHz  
适合 HVGA 到高清 (HD) 范围内的显示分辨率,并  
且电磁干扰 (EMI) 较低  
通过 3.3V 单电源供电运行,75MHz 频率下的功耗  
170mW(典型值)  
28 个数据通道 + 时钟输入低压晶体管-晶体管逻辑  
(TTL)4 个数据通道 + 时钟输出低压差分  
SN65LVDS93A-Q1 额定工作环境温度范围为 -40°C  
85°C。  
禁用时的功耗不到 1mW  
可选择上升或下降时钟沿触发输入  
支持扩频时钟 (SSC)  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
兼容所有 OMAP™ 2xOMAP™ 3x DaVinci™  
应用处理器  
SN65LVDS93A-Q1  
TSSOP (56)  
14.00mm x 6.10mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
简化电路原理图  
LCD 显示面板驱动器  
超便携移动个人电脑 (UMPC) 和上网本  
数码相框  
3 说明  
SN65LVDS93A-Q1 Flatlink™ 发送器在单个集成电路  
上包含了四个 7 位并联负载串行输出移位寄存器、一  
7X 时钟合成器以及五个低压差分信号 (LVDS) 线路  
驱动器。 凭借这些功能,该器件可通过 5 条平衡双股  
线同步发送 28 位单端低电压晶体管-晶体管逻辑  
(LVTTL) 数据,这些数据将由 SN75LVDS94 和具有集  
LVDS 接收器的 LCD 面板等兼容接收器来接收。  
Application  
processor  
SN65LVDS93A-Q1  
FlatLinkTM Transmitter  
(e.g. OMAPTM  
)
Package Options  
TSSOP: 14 mm x 6.1 mm DGG  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEM1  
 
 
 
 
 
 
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application .................................................. 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 7  
6.7 Switching Characteristics.......................................... 8  
6.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 13  
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 23  
11.1 Layout Guidelines ................................................. 23  
11.2 Layout Example .................................................... 25  
12 器件和文档支持 ..................................................... 27  
12.1 ....................................................................... 27  
12.2 静电放电警告......................................................... 27  
12.3 术语表 ................................................................... 27  
13 机械、封装和可订购信息....................................... 27  
7
8
4 修订历史记录  
Changes from Revision A (February 2015) to Revision B  
Page  
Changed "Toggle LVDS83B" To "Toggle SN65LVDS93A-Q1" in item 4 in the Power Up Sequence section .................... 17  
Changed "this allows the LVDS83B" To "this allows the SN65LVDS93A-Q1" in item 5 in the Power Up Sequence  
section .................................................................................................................................................................................. 17  
Changes from Original (February 2015) to Revision A  
Page  
已将特性中的人体模型 (HBM) 静电放电 (ESD) 分类等级 2”更改为人体模型 (HBM) 静电放电 (ESD) 分类等级 3” ............. 1  
已删除特性中的“ESD5kV HBM1.5kV CDM.................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
5 Pin Configuration and Functions  
56-PIN  
DGG PACKAGE  
(TOP VIEW)  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
D4  
IOVCC  
D5  
D3  
2
3
D2  
D6  
4
GND  
D1  
D7  
5
GND  
D8  
D0  
6
D27  
GND  
D9  
7
D10  
8
Y0M  
9
VCC  
D11  
10  
11  
12  
13  
14  
15  
16  
Y0P  
Y1M  
D12  
D13  
Y1P  
LVDSVCC  
GND  
Y2M  
GND  
D14  
D15  
D16  
Y2P  
CLKSEL  
D17  
CLKOUTM  
CLKOUTP  
Y3M  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
D18  
Y3P  
D19  
GND  
D20  
GND  
GND  
D21  
PLLVCC  
GND  
D22  
D23  
SHTDN  
CLKIN  
IOVCC  
D24  
D26  
GND  
D25  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CMOS IN with Input pixel clock; rising or falling clock polarity is selectable by Control input  
CLKIN  
31  
pulldn  
CLKSEL.  
CLKOUTP,  
CLKOUTM  
39  
40  
Differential LVDS pixel clock output.  
Output is high-impedance when SHTDN is pulled low (de-asserted).  
LVDS Out  
CMOS IN with Selects between rising edge input clock trigger (CLKSEL = VIH) and falling edge  
CLKSEL  
17  
pulldn  
input clock trigger (CLKSEL = VIL).  
2, 3, 4, 6  
7, 8, 10, 11  
12, 14, 15 , 16  
D5, D6, D7, D8  
Data inputs; supports 1.8 V to 3.3 V input voltage selectable by VDD supply. To  
connect a graphic source successfully to a display, the bit assignment of D[27:0]  
D9, D10, D11, D12  
D13, D14, D15, D16  
D17, D18, D19, D20  
D21, D22, D23, D24  
D25, D26, D27  
18, 19, 20, 22 CMOS IN with is critical (and not necessarily intuitive).  
23, 24, 25, 27  
28, 30, 50  
51, 52, 54, 55,  
56  
pulldn  
For input bit assignment see Figure 15 to Figure 18 for details.  
Note: if application only requires 18-bit color, connect unused inputs D5, D10,  
D11, D16, D17, D23, and D27 to GND.  
D0, D1, D2, D3, D4  
5, 13, 21, 29,  
33, 35, 36, 43,  
49, 53  
Power  
GND  
Supply ground for VCC, IOVCC, LVDSVCC, and PLLVCC.  
Supply(1)  
(1) For a multilayer pcb, it is recommended to keep one common GND layer underneath the device and connect all ground terminals  
directly to this plane.  
Copyright © 2015, Texas Instruments Incorporated  
3
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Power  
I/O supply reference voltage (1.8 V up to 3.3 V matching the GPU data output  
signal swing)  
IOVCC  
1, 26  
Supply(1)  
Power  
LVDSVCC  
PLLVCC  
SHTDN  
VCC  
44  
34  
32  
9
3.3 V LVDS output analog supply  
3.3 V PLL analog supply  
Supply(1)  
Power  
Supply(1)  
CMOS IN with Device shut down; pull low (de-assert) to shut down the device (low power,  
pulldn  
resets all registers) and high (assert) for normal operation.  
Power  
3.3 V digital supply voltage  
Supply(1)  
Y0P, Y0M  
Y1P, Y1M  
Y2P, Y2M  
47, 48  
45, 46  
41, 42  
Differential LVDS data outputs.  
Outputs are high-impedance when SHTDN is pulled low (de-asserted)  
LVDS Out  
LVDS Out  
Differential LVDS Data outputs.  
Output is high-impedance when SHTDN is pulled low (de-asserted).  
Note: if the application only requires 18-bit color, this output can be left open.  
Y3P, Y3M  
37, 38  
4
Copyright © 2015, Texas Instruments Incorporated  
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
4
UNIT  
Supply voltage range, VCC, IOVCC, LVDSVCC, PLLVCC(2)  
Voltage range at any output terminal  
Voltage range at any input terminal  
Continuous power dissipation  
V
V
V
VCC + 0.5  
IOVCC + 0.5  
See Thermal Information  
–65 150  
Storage temperature, Tstg  
°C  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) All voltages are with respect to the GND terminals.  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q200-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q200-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
3
NOM  
MAX  
3.6  
3.6  
3.6  
3.6  
0.1  
UNIT  
Supply voltage, VCC  
3.3  
3.3  
LVDS output Supply voltage, LVDSVCC  
PLL analog supply voltage, PLLVCC  
IO input reference supply voltage, IOVCC  
Power supply noise on any VCC terminal  
3
3
3.3  
V
1.62  
1.8 / 2.5 / 3.3  
IOVCC = 1.8 V  
IOVCC = 2.5 V  
IOVCC = 3.3 V  
IOVCC = 1.8 V  
IOVCC = 2.5 V  
IOVCC = 3.3 V  
IOVCC/2 + 0.3 V  
IOVCC/2 + 0.4 V  
IOVCC/2 + 0.5 V  
High-level input voltage, VIH  
Low-level input voltage, VIL  
V
V
IOVCC/2 - 0.3 V  
IOVCC/2 - 0.4 V  
IOVCC/2 - 0.5 V  
Differential load impedance, ZL  
Operating free-air temperature, TA  
Virtual junction temperature, TJ  
90  
132  
85  
–40  
°C  
°C  
105  
6.4 Thermal Information  
DGG  
56 PINS  
63.4  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
15.9  
32.5  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
32.2  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2015, Texas Instruments Incorporated  
5
 
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
V
VT  
Input voltage threshold  
IOVCC/2  
Differential steady-state output voltage  
magnitude  
mV  
|VOD  
|
250  
450  
35  
RL = 100, See Figure 7  
Change in the steady-state differential  
output voltage magnitude between  
opposite binary states  
Δ|VOD  
|
1
mV  
Steady-state common-mode output  
voltage  
VOC(SS)  
VOC(PP)  
1.125  
1.375  
35  
V
See Figure 7  
tR/F (Dx, CLKin) = 1ns  
Peak-to-peak common-mode output  
voltage  
mV  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = IOVCC  
VIL = 0 V  
25  
±10  
±24  
±12  
±20  
μA  
μA  
VOY = 0 V  
mA  
mA  
μA  
IOS  
Short-circuit output current  
VOD = 0 V  
IOZ  
High-impedance state output current  
VO = 0 V to VCC  
IOVCC = 1.8 V  
IOVCC = 3.3 V  
200  
100  
Input pull-down integrated resistor on all  
inputs (Dx, CLKSEL, SHTDN, CLKIN)  
Rpdn  
kΩ  
μA  
disabled, all inputs at GND;  
SHTDN = VIL  
IQ  
Quiescent current (average)  
2
100  
SHTDN = VIH, RL = 100(5 places),  
grayscale pattern (Figure 8)  
VCC = 3.3 V, fCLK = 75 MHz  
I(VCC) + I(PLLVCC) + I(LVDSVCC)  
51.9  
0.4  
I(IOVCC) with IOVCC = 3.3 V  
I(IOVCC) with IOVCC = 1.8 V  
mA  
mA  
mA  
mA  
0.1  
SHTDN = VIH, RL = 100(5 places), 50%  
transition density pattern (Figure 8),  
VCC = 3.3 V, fCLK = 75 MHz  
I(VCC) + I(PLLVCC) + I(LVDSVCC)  
I(IOVCC) with IOVCC = 3.3 V  
I(IOVCC) with IOVCC = 1.8 V  
53.3  
0.6  
0.2  
SHTDN = VIH, RL = 100(5 places), worst-  
case pattern (Figure 9),  
VCC = 3.6 V, fCLK = 75 MHz  
ICC  
Supply current (average)  
I(VCC) + I(PLLVCC) + I(LVDSVCC)  
I(IOVCC) with IOVCC = 3.3 V  
I(IOVCC) with IOVCC = 1.8 V  
63.7  
1.3  
0.5  
SHTDN = VIH, RL = 100(5 places), worst-  
case pattern (Figure 9),  
fCLK = 100 MHz  
I(VCC) + I(PLLVCC) + I(LVDSVCC)  
I(IOVCC) with IOVCC = 3.6 V  
I(IOVCC) with IOVCC = 1.8 V  
81.6  
1.6  
0.6  
SHTDN = VIH, RL = 100(5 places), worst-  
case pattern (Figure 9),  
fCLK = 135 MHz  
I(VCC) + I(PLLVCC) + I(LVDSVCC)  
I(IOVCC) with IOVCC = 3.6 V  
I(IOVCC) with IOVCC = 1.8 V  
102.2  
2.1  
0.8  
2
mA  
pF  
CI  
Input capacitance  
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
6
Copyright © 2015, Texas Instruments Incorporated  
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
6.6 Timing Requirements  
PARAMETER  
MIN  
MAX  
100  
8%  
UNIT  
Input clock period, tc  
Input clock modulation  
7.4  
ns  
with modulation frequency 30 kHz  
with modulation frequency 50 kHz  
6%  
High-level input clock pulse width duration, tw  
Input signal transition time, tt  
0.4 tc  
0.6 tc  
3
ns  
ns  
ns  
ns  
Data set up time, D0 through D27 before CLKIN (See Figure 6)  
Data hold time, D0 through D27 after CLKIN  
2
0.8  
Dn  
CLKIN  
or  
CLKIN  
CLKOUT  
Previous cycle  
Next  
Current cycle  
Y0  
D7+1  
D0-1  
D7  
D18  
D26  
D23  
D6  
D15  
D25  
D17  
D4  
D14  
D24  
D16  
D3  
D13  
D22  
D11  
D2  
D12  
D21  
D10  
D1  
D9  
D0  
D8  
Y1  
Y2  
Y3  
D8-1  
D19-1  
D27-1  
D18+1  
D26+1  
D23+1  
D20  
D5  
D19  
D27  
Figure 1. Typical SN65LVDS93A-Q1 Load and Shift Sequences  
LVDSVCC  
IOVCC  
5W  
YnP or  
YnM  
D or  
SHTDN  
50W  
10kW  
7V  
7V  
300kW  
Figure 2. Equivalent Input and Output Schematic Diagrams  
Copyright © 2015, Texas Instruments Incorporated  
7
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
Delay time, CLKOUTafter Yn valid  
(serial bit position 0, equal D1, D9,  
D20, D5)  
t0  
t1  
t2  
t3  
t4  
t5  
-0.1  
0
0.1  
7 tc + 0.1  
7 tc + 0.1  
7 tc + 0.1  
7 tc + 0.1  
7 tc + 0.1  
7 tc + 0.1  
ns  
Delay time, CLKOUTafter Yn valid  
(serial bit position 1, equal D0, D8,  
D19, D27)  
1
2
3
4
5
6
1
2
3
4
5
6
/
/
/
/
/
/
7 tc - 0.1  
7 tc - 0.1  
7 tc - 0.1  
7 tc - 0.1  
7 tc - 0.1  
7 tc - 0.1  
/
/
/
/
/
/
ns  
ns  
ns  
ns  
ns  
Delay time, CLKOUTafter Yn valid  
(serial bit position 2, equal D7, D18,  
D26. D23)  
Delay time, CLKOUTafter Yn valid  
(serial bit position 3; equal D6, D15,  
D25, D17)  
See Figure 10, tC = 10ns,  
|Input clock jitter| < 25ps  
(2)  
Delay time, CLKOUTafter Yn valid  
(serial bit position 4, equal D4, D14,  
D24, D16)  
Delay time, CLKOUTafter Yn valid  
(serial bit position 5, equal D3, D13,  
D22, D11)  
Delay time, CLKOUTafter Yn valid  
(serial bit position 6, equal D2, D12,  
D21, D10)  
t6  
ns  
ns  
tc(o)  
Output clock period  
tc  
tC = 10ns; clean reference clock, see  
Figure 11  
±26  
tC = 10ns with 0.05UI added noise  
modulated at 3MHz, see Figure 11  
±44  
±35  
(3)  
Δtc(o)  
Output clock cycle-to-cycle jitter  
ps  
tC = 7.4ns; clean reference clock,  
see Figure 11  
tC = 7.4ns with 0.05UI added noise  
modulated at 3MHz, see Figure 11  
±42  
High-level output clock pulse  
duration  
4
tw  
/
7 tc  
ns  
ps  
µs  
ns  
Differential output voltage transition  
time (tr or tf)  
tr/f  
ten  
tdis  
See Figure 7  
225  
6
500  
Enable time, SHTDNto phase lock  
(Yn valid)  
f(clk) = 135 MHz, See Figure 12  
f(clk) = 135 MHz, See Figure 13  
Disable time, SHTDNto off-state  
(CLKOUT high-impedance)  
7
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
(2) |Input clock jitter| is the magnitude of the change in the input clock period.  
(3) The output clock cycle-to-cycle jitter is the largest recorded change in the output clock period from one cycle to the next cycle observed  
over 15,000 cycles.Tektronix TDSJIT3 Jitter Analysis software was used to derive the maximum and minimum jitter value.  
8
Copyright © 2015, Texas Instruments Incorporated  
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
6.8 Typical Characteristics  
100  
90  
800  
700  
600  
500  
400  
300  
200  
Output Jitter  
Input Jitter  
80  
V
CC  
= 3.6V  
70  
60  
50  
V
= 3.3V  
CC  
40  
V
= 3V  
70  
CC  
100  
0
30  
20  
0.01  
0.10  
1
10  
10  
30  
50  
90  
110  
130  
f
- Input Modular Frequency - MHz  
f
- Clock Frequency - MHz  
(mod)  
clk  
CLK Frequency During Test = 100 MHz  
Total Device Current (Using Grayscale pattern) Over Pixel Clock  
Frequency  
Figure 3. Average Grayscale ICC vs Clock Frequency  
Figure 4. Output Clock Jitter vs Input Clock Jitter  
PRBS Data Signal  
CLKL Signal  
t
- Time - 1ns/div  
k
Clock Signal = 135 MHz  
Figure 5. Typical PRBS Output Signal Over One Clock Period  
Copyright © 2015, Texas Instruments Incorporated  
9
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
7 Parameter Measurement Information  
tsu  
thold  
Dn  
CLKIN  
All input timing is defined at IOVDD / 2 on an input signal with a 10% to 90% rise or fall time of less than 3 ns.  
CLKSEL = 0 V.  
Figure 6. Set Up and Hold Time Definition  
49.9W ꢀ1 ꢁ( ꢂPLCS  
Yꢂ  
V
OD  
V
YM  
OL  
ꢀ001  
801  
V
ODꢁHS  
0V  
V
ODꢁPS  
(01  
01  
t
t
r
f
V
OLꢁꢂꢂS  
V
V
OLꢁCCS  
OLꢁCCS  
0V  
Figure 7. Test Load and Voltage Definitions for LVDS Outputs  
10  
Copyright © 2015, Texas Instruments Incorporated  
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
Parameter Measurement Information (continued)  
CLKIN  
D0,8,16  
D1,9,17  
D2,10,18  
D3,11,19  
D4-7,12-15,20-23  
D24-27  
The 16 grayscale test pattern test device power consumption for a typical display pattern.  
Figure 8. 16 Grayscale Test Pattern  
T
CLKIN  
EVEN Dn  
ODD Dn  
The worst-case test pattern produces nearly the maximum switching frequency for all of the LVDS outputs.  
Figure 9. Worst-Case Power Test Pattern  
t7  
CLKIN  
CLKOUT  
t6  
t5  
t4  
t3  
t2  
t1  
t0  
Yn  
VOD(H)  
0.00V  
VOD(L)  
~2.5V  
CLKOUT  
or Yn  
1.40V  
CLKIN  
~0.5V  
t7  
t0-6  
CLKOUT is shown with CLKSEL at high-level.  
CLKIN polarity depends on CLKSEL input level.  
Figure 10. SN65LVDS93A-Q1 Timing Definitions  
Copyright © 2015, Texas Instruments Incorporated  
11  
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
Parameter Measurement Information (continued)  
Device  
Under  
Test  
+
Reference  
VCO  
+
Modulation  
v(t) = A sin(2 pf  
t)  
mod  
HP8656B Signal  
Generator,  
0.1 MHz-990 MHz  
HP8665A Synthesized  
Signal Generator,  
0.1 MHz-4200 MHz  
Device Under  
Test  
DTS2070C  
Digital  
TimeScope  
Input  
RF Output  
CLKIN  
CLKOUT  
RF Output  
Modulation Input  
Figure 11. Output Clock Jitter Test Set Up  
CLKIN  
Dn  
ten  
SHTDN  
Yn  
Invalid  
Valid  
Figure 12. Enable Time Waveforms  
CLKIN  
tdis  
SHTDN  
CLKOUT  
Figure 13. Disable Time Waveforms  
12  
Copyright © 2015, Texas Instruments Incorporated  
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
8 Detailed Description  
8.1 Overview  
FlatLink™ is an LVDS SerDes data transmission system. The SN65LVDS93A-Q1 takes in three (or four) data  
words each containing seven single-ended data bits and converts this to an LVDS serial output. Each serial  
output runs at seven times that of the parallel data rate. The deserializer (receiver) device operates in the  
reverse manner. The three (or four) LVDS serial inputs are transformed back to the original seven-bit parallel  
single-ended data. FlatLink™ devices are available in 21:3 or 28:4 SerDes ratios.  
The 21-bit devices are designed for 6-bit RGB video for a total of 18 bits in addition to three extra bits for  
horizontal synchronization, vertical synchronization, and data enable.  
The 28-bit devices are intended for 8-bit RGB video applications. Again, the extra four bits are for horizontal  
synchronization, vertical synchronization, data enable, and the remaining is the reserved bit. These 28-bit  
devices can also be used in 6-bit and 4-bit RGB applications as shown in the subsequent system diagrams.  
8.2 Functional Block Diagram  
Parallel-Load 7-bit  
Shift Register  
D0, D1, D2, D3,  
D4, D6, D7  
7
7
7
7
Y0P  
Y0M  
A,B,...G  
SHIFT/LOAD  
>CLK  
Parallel-Load 7-bit  
Shift Register  
D8, D9, D12, D13,  
D14, D15, D18  
Y1P  
Y1M  
A,B,...G  
SHIFT/LOAD  
>CLK  
Parallel-Load 7-bit  
ShiftRegister  
D19, D20, D21, D22,  
D24, D25, D26  
Y2P  
Y2M  
A,B,...G  
SHIFT/LOAD  
>CLK  
Parallel-Load 7-bit  
Shift Register  
D27, D5, D10, D11,  
D16, D17, D23  
Y3P  
Y3M  
A,B,...G  
SHIFT/LOAD  
>CLK  
Control Logic  
SHTDN  
7X Clock/PLL  
7XCLK  
CLKOUTP  
CLKOUTM  
>CLK  
CLKIN  
CLKINH  
CLKSEL  
RISING/FALLING EDGE  
Copyright © 2015, Texas Instruments Incorporated  
13  
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 TTL Input Data  
The data inputs to the transmitter come from the graphics processor and consist of up to 24 bits of video  
information, a horizontal synchronization bit, a vertical synchronization bit, an enable bit, and a spare bit. The  
data can be loaded into the registers upon either the rising or falling edge of the input clock selectable by the  
CLKSEL pin. Data inputs are 1.8 V to 3.3 V tolerant for the SN65LVDS93A-Q1 and can connect directly to low-  
power, low-voltage application and graphic processors. The bit mapping is listed in Table 1.  
Table 1. Pixel Bit Ordering  
RED  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
GREEN  
G0  
BLUE  
B0  
LSB  
G1  
B1  
G2  
B2  
4-bit MSB  
6-bit MSB  
G3  
B3  
G4  
B4  
G5  
B5  
G6  
B6  
8-bit MSB  
G7  
B7  
8.3.2 LVDS Output Data  
The pixel data assignment is listed in Table 2 for 24-bit, 18-bit, and 12-bit color hosts.  
Table 2. Pixel Data Assignment  
8-BIT  
6-BIT  
4-BIT  
SERIAL  
CHANNEL  
DATA BITS  
NON-LINEAR STEP LINEAR STEP  
FORMAT-1  
FORMAT-2  
FORMAT-3  
SIZE  
SIZE  
VCC  
GND  
R0  
D0  
D1  
R0  
R1  
R2  
R3  
R2  
R3  
R0  
R1  
R2  
R3  
D2  
R2  
R4  
R4  
R2  
R0  
Y0  
Y1  
Y2  
D3  
R3  
R5  
R5  
R3  
R1  
R1  
D4  
R4  
R6  
R6  
R4  
R2  
R2  
D6  
R5  
R7  
R7  
R5  
R3  
R3  
D7  
G0  
G2  
G2  
G0  
G2  
VCC  
GND  
G0  
D8  
G1  
G3  
G3  
G1  
G3  
D9  
G2  
G4  
G4  
G2  
G0  
D12  
D13  
D14  
D15  
D18  
D19  
D20  
D21  
D22  
D24  
D25  
D26  
G3  
G5  
G5  
G3  
G1  
G1  
G4  
G6  
G6  
G4  
G2  
G2  
G5  
G7  
G7  
G5  
G3  
G3  
B0  
B2  
B2  
B0  
B2  
VCC  
GND  
B0  
B1  
B3  
B3  
B1  
B3  
B2  
B4  
B4  
B2  
B0  
B3  
B5  
B5  
B3  
B1  
B1  
B4  
B6  
B6  
B4  
B2  
B2  
B5  
B7  
B7  
B5  
B3  
B3  
HSYNC  
VSYNC  
ENABLE  
HSYNC  
VSYNC  
ENABLE  
HSYNC  
VSYNC  
ENABLE  
HSYNC  
VSYNC  
ENABLE  
HSYNC  
VSYNC  
ENABLE  
HSYNC  
VSYNC  
ENABLE  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
Table 2. Pixel Data Assignment (continued)  
8-BIT  
6-BIT  
4-BIT  
SERIAL  
CHANNEL  
DATA BITS  
NON-LINEAR STEP LINEAR STEP  
FORMAT-1  
FORMAT-2  
FORMAT-3  
SIZE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CLK  
SIZE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CLK  
D27  
D5  
R6  
R7  
R0  
R1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CLK  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CLK  
D10  
D11  
D16  
D17  
D23  
CLKIN  
G6  
G0  
Y3  
G7  
G1  
B6  
B0  
B7  
B1  
RSVD  
CLK  
RSVD  
CLK  
CLKOUT  
8.4 Device Functional Modes  
8.4.1 Input Clock Edge  
The transmission of data bits D0 through D27 occurs as each are loaded into registers upon the edge of the  
CLKIN signal, where the rising or falling edge of the clock may be selected via CLKSEL. The selection of a clock  
rising edge occurs by inputting a high level to CLKSEL, which is achieved by populating pull-up resistor to pull  
CLKSEL=high. Inputting a low level to select a clock falling edge is achieved by directly connecting CLKSEL to  
GND.  
8.4.2 Low Power Mode  
The SN65LVDS93A-Q1 can be put in low-power consumption mode by active-low input SHTDN#. Connecting  
pin SHTDN# to GND will inhibit the clock and shut off the LVDS output drivers for lower power consumption. A  
low-level on this signal clears all internal registers to a low-level. Populate a pull-up to VCC on SHTDN# to  
enable the device for normal operation.  
Copyright © 2015, Texas Instruments Incorporated  
15  
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
This section describes the power up sequence, provides information on device connectivity to various GPU and  
LCD display panels, and offers a PCB routing example.  
9.2 Typical Application  
J1  
U1H  
J2  
sma_surface  
C3  
GND1  
C5  
GND2  
D3  
GND3  
F5  
J3  
GND4  
sma_surface  
G3  
H3  
J5  
A1  
B1  
F2  
U1A  
GND5  
D1  
D2  
GND6  
CLKM  
CLKP  
GND7  
J4  
PLLGND  
LVDSGND1  
LVDSGND2  
sma_surface  
H2  
H1  
Y0P  
Y0M  
G2  
G1  
J5  
sma_surface  
Y1P  
Y1M  
SN65LVDS93A-Q1ZQL  
E1  
E2  
Y2P  
Y2M  
J6  
sma_surface  
IOVCC  
C2  
C1  
Y3P  
Y3M  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
4.7k  
4.7k  
4.7k  
4.7k  
4.7k  
4.7k  
4.7k  
J7  
sma_surface  
JMP1  
SN65LVDS93A-Q1ZQL  
U1B  
J2  
D0  
D1  
D2  
D3  
D4  
D6  
D7  
D0  
K1  
D1  
K2  
1
2
J8  
sma_surface  
D2  
J3  
D3  
K3  
D4  
J4  
J9  
D6  
K5  
D7  
sma_surface  
14  
Header 7x2  
SN65LVDS93A-Q1ZQL  
J10  
sma_surface  
IOVCC  
R11  
4.7k  
R12  
4.7k  
R13  
4.7k  
R14  
4.7k  
R15  
4.7k  
R16  
4.7k  
R17  
4.7k  
sma_surface  
JMP2  
U1C  
K6  
D8  
D8  
J6  
D9  
1
2
D9  
IOVCC  
IOVCC  
G5  
D12  
D13  
D14  
D15  
D18  
D12  
G6  
D13  
F6  
D14  
E5  
D15  
D5  
D18  
14  
R1  
R2  
Header 7x2  
4.7k  
SN65LVDS93A-Q1ZQL  
IOVCC  
R18  
4.7k  
R19  
4.7k  
R20  
4.7k  
R21  
4.7k  
R22  
4.7k  
R23  
4.7k  
R24  
4.7k  
JMP6  
U1G  
JMP3  
B3  
SHTDN  
U1D  
SHTDN  
1
3
2
4
D4  
CLKSEL  
C6  
D19  
D19  
D20  
D21  
D22  
D24  
D25  
D26  
CLKSEL  
1
2
B6  
D20  
Header 2x2  
B5  
D21  
A6  
D22  
SN65LVDS93A-Q1ZQL  
A4  
D24  
B4  
D25  
A3  
D26  
14  
U1J  
E3  
NC1  
E4  
Header 7x2  
NC2  
F3  
NC3  
SN65LVDS93A-Q1ZQL  
F4  
NC4  
IOVCC  
R25  
4.7k  
R26  
4.7k  
R27  
4.7k  
R28  
4.7k  
R29  
4.7k  
R30  
4.7k  
R31  
4.7k  
SN65LVDS93A-Q1ZQL  
JMP4  
U1E  
K4  
D5  
D5  
VCC  
IOVCC  
1
2
H4  
D10  
H6  
D10  
D11  
D16  
D17  
D23  
D27  
U1I  
D11  
E6  
D16  
G4  
VCC  
B2  
D6  
PLLVCC  
F1  
LVDSVCC  
D17  
A5  
D23  
J1  
D27  
14  
H5  
IOVCC1  
C4  
IOVCC2  
Header 7x2  
SN65LVDS93A-Q1ZQL  
SN65LVDS93A-Q1ZQL  
IOVCC  
VCC  
VCC  
VCC  
C31  
1uF  
C32  
0.1uF  
C33  
0.01uF  
C34  
1uF  
C35  
0.1uF  
C36  
0.01uF  
C40  
1uF  
C41  
C42  
C37  
1uF  
C38  
C39  
0.1uF  
0.01uF  
0.1uF  
0.01uF  
PLACE UNDER LVDS93A-Q1  
(bottom pcb side)  
Figure 14. Schematic Example (SN65LVDS93A-Q1 Evaluation Board)  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
Typical Application (continued)  
9.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
VCC  
VCCIO  
CLKIN  
3.3 V  
1.8 V  
Falling edge  
High  
SHTDN#  
Format  
18-bit GPU to 24-bit LCD  
9.2.2 Detailed Design Procedure  
9.2.2.1 Power Up Sequence  
The SN65LVDS93A-Q1 does not require a specific power up sequence.  
It is permitted to power up IOVCC while VCC, VCCPLL, and VCCLVDS remain powered down and connected to  
GND. The input level of the SHTDN during this time does not matter as only the input stage is powered up while  
all other device blocks are still powered down.  
It is also permitted to power up all 3.3V power domains while IOVCC is still powered down to GND. The device  
will not suffer damage. However, in this case, all the I/Os are detected as logic HIGH, regardless of their true  
input voltage level. Hence, connecting SHTDN to GND will still be interpreted as a logic HIGH; the LVDS output  
stage will turn on. The power consumption in this condition is significantly higher than standby mode, but still  
lower than normal mode.  
The user experience can be impacted by the way a system powers up and powers down an LCD screen. The  
following sequence is recommended:  
Power up sequence (SN65LVDS93A-Q1 SHTDN input initially low):  
1. Ramp up LCD power (maybe 0.5ms to 10ms) but keep backlight turned off.  
2. Wait for additional 0-200ms to ensure display noise won’t occur.  
3. Enable video source output; start sending black video data.  
4. Toggle SN65LVDS93A-Q1 shutdown to SHTDN = VIH.  
5. Send >1ms of black video data; this allows the SN65LVDS93A-Q1 to be phase locked, and the display to  
show black data first.  
6. Start sending true image data.  
7. Enable backlight.  
Power Down sequence (SN65LVDS93A-Q1 SHTDN input initially high):  
1. Disable LCD backlight; wait for the minimum time specified in the LCD data sheet for the backlight to go low.  
2. Video source output data switch from active video data to black image data (all visible pixel turn black); drive  
this for >2 frame times.  
3. Set SN65LVDS93A-Q1 input SHTDN = GND; wait for 250ns.  
4. Disable the video output of the video source.  
5. Remove power from the LCD panel for lowest system power.  
9.2.2.2 Signal Connectivity  
While there is no formal industry standardized specification for the input interface of LVDS LCD panels, the  
industry has aligned over the years on a certain data format (bit order). Figure 15 through Figure 18 show how  
each signal should be connected from the graphic source through the SN65LVDS93A-Q1 input, output and  
LVDS LCD panel input. Detailed notes are provided with each figure.  
Copyright © 2015, Texas Instruments Incorporated  
17  
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
24-bpc GPU  
SN65LVDS93A-Q1  
FORMAT1 FORMAT2 (See Note A)  
R0(LSB)  
R1  
R2  
D0  
D1  
D27  
D5  
D2  
D3  
D4  
D6  
D27  
D5  
D7  
D8  
D0  
D1  
D2  
D3  
R3  
R4  
R5  
R6  
Y0M  
Y0P  
100  
100  
to column  
driver  
D4  
R7(MSB)  
G0(LSB)  
G1  
D6  
Y1M  
Y1P  
D10  
D11  
D7  
FPC  
Cable  
LVDS  
timing  
Controller  
G2  
G3  
D9  
Y2M  
Y2P  
100  
D12  
D13  
D14  
D10  
D11  
D15  
D18  
D19  
D20  
D21  
D22  
D16  
D17  
D24  
D25  
D26  
D23  
D8  
G4  
D9  
(8bpc, 24bpp)  
G5  
G6  
D12  
D13  
D14  
D16  
D17  
D15  
D18  
D19  
D20  
D21  
D22  
D24  
D25  
D26  
D23  
Y3M  
Y3P  
100  
to row driver  
G7(MSB)  
B0(LSB)  
B1  
CLKOUTM  
CLKOUTP  
100  
B2  
B3  
B4  
B5  
24-bpp LCD Display  
B6  
B7(MSB)  
HSYNC  
VSYNC  
ENABLE  
RSVD (Note C)  
CLK  
CLKIN CLKIN  
4.8k  
3.3V  
C2  
3.3V  
C3  
1.8V or 2.5V  
or 3.3V  
C1  
Rpullup  
Rpulldown  
(See Note B)  
Main Board  
Note A. FORMAT: The majority of 24-bit LCD display panels require the two most significant bits (2 MSB ) of each  
color to be transferred over the 4th serial data output Y3. A few 24-bit LCD display panels require the two LSBs of  
each color to be transmitted over the Y3 output. The system designer needs to verify which format is expected by  
checking the LCD display data sheet.  
Format 1: use with displays expecting the 2 MSB to be transmitted over the 4th data channel Y3. This is the  
dominate data format for LCD panels.  
Format 2: use with displays expecting the 2 LSB to be transmitted over the 4th data channel.  
Note B. Rpullup: install only to use rising edge triggered clocking.  
Rpulldown: install only to use falling edge triggered clocking.  
C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF.  
C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF.  
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF.  
Note C. If RSVD is not driven to a valid logic level, then an external connection to GND is recommended.  
Note D. RSVD must be driven to a valid logic level. All unused SN65LVDS93A-Q1 inputs must be tied to a valid logic  
level.  
Figure 15. 24-Bit Color Host to 24-Bit LCD Panel Application  
18  
Copyright © 2015, Texas Instruments Incorporated  
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
18-bpp GPU  
SN65LVDS93A-Q1  
R0(LSB)  
R1  
R2  
D0  
D1  
D2  
R3  
R4  
D3  
D4  
D6  
Y0M  
Y0P  
100  
R5(MSB)  
to column  
driver  
D27  
D5  
D7  
D8  
Y1M  
Y1P  
100  
G0(LSB)  
G1  
G2  
FPC  
Cable  
D9  
Y2M  
Y2P  
LVDS  
100  
timing  
Controller  
(6-bpc, 18-bpp)  
G3  
G4  
D12  
D13  
D14  
D10  
D11  
D15  
D18  
D19  
D20  
D21  
D22  
D16  
D17  
D24  
D25  
D26  
D23  
CLKIN  
G5(MSB)  
CLKOUTM  
CLKOUTP  
100  
to row driver  
B0(LSB)  
B1  
B2  
B3  
B4  
B5(MSB)  
18-bpp LCD Display  
Y3M  
Y3P  
(See Note A)  
HSYNC  
VSYNC  
ENABLE  
RSVD  
CLK  
3.3V  
C2  
3.3V  
C3  
4.8k  
1.8V or 2.5V  
or 3.3V  
C1  
Rpullup  
Rpulldown  
(See Note B)  
Main Board  
Note A. Leave output Y3 NC.  
Note B.Rpullup: install only to use rising edge triggered clocking.  
Rpulldown: install only to use falling edge triggered clocking.  
C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF.  
C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF.  
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF.  
Figure 16. 18-Bit Color Host to 18-Bit Color LCD Panel Display Application  
Copyright © 2015, Texas Instruments Incorporated  
19  
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
12-bpp GPU  
SN65LVDS93A-Q1  
(See Note B)  
R2 or VCC  
R3 or GND  
R0  
D0  
D1  
D2  
R1  
R2  
D3  
D4  
D6  
Y0M  
Y0P  
100  
100  
R3(MSB)  
to column  
driver  
D27  
D5  
D7  
D8  
Y1M  
Y1P  
(See Note B)  
G2 or VCC  
G3 or GND  
G0  
FPC  
Cable  
D9  
Y2M  
Y2P  
LVDS  
timing  
Controller  
100  
G1  
G2  
D12  
D13  
D14  
D10  
D11  
D15  
D18  
D19  
D20  
D21  
D22  
D16  
D17  
D24  
D25  
D26  
D23  
CLKIN  
(6-bpc, 18-bpp)  
G3(MSB)  
CLKOUTM  
CLKOUTP  
100  
to row driver  
(See Note B)  
B2 or VCC  
B3 or GND  
B0  
B1  
B2  
18-bpp LCD Display  
B3(MSB)  
Y3M  
Y3P  
(See Note A)  
HSYNC  
VSYNC  
ENABLE  
RSVD  
CLK  
4.8k  
3.3V  
C2  
3.3V  
C3  
1.8V or 2.5V  
or 3.3V  
C1  
Rpullup  
Rpulldown  
(See Note C)  
Main Board  
Note A. Leave output Y3 N.C.  
Note B. R3, G3, B3: this MSB of each color also connects to the 5th bit of each color for increased dynamic range of  
the entire color space at the expense of none-linear step sizes between each step. For linear steps with less dynamic  
range, connect D1, D8, and D18 to GND.  
R2, G2, B2: these outputs also connects to the LSB of each color for increased, dynamic range of the entire color  
space at the expense of none-linear step sizes between each step. For linear steps with less dynamic range, connect  
D0, D7, and D15 to VCC.  
Note C.Rpullup: install only to use rising edge triggered clocking.  
Rpulldown: install only to use falling edge triggered clocking.  
C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF.  
C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF.  
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF.  
Figure 17. 12-Bit Color Host to 18-Bit Color LCD Panel Display Application  
20  
Copyright © 2015, Texas Instruments Incorporated  
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
24-bpp GPU  
SN65LVDS93A-Q1  
R0 and R1: NC  
(See Note B)  
R2  
D0  
R3  
R4  
D1  
D2  
R5  
R6  
D3  
D4  
D6  
Y0M  
Y0P  
100  
R7(MSB)  
to column  
driver  
D27  
D5  
D7  
D8  
G0 and G1: NC  
(See Note B)  
Y1M  
Y1P  
100  
G2  
G3  
FPC  
Cable  
G4  
G5  
G6  
D9  
Y2M  
Y2P  
LVDS  
100  
timing  
Controller  
(6-bpc, 18-bpp)  
D12  
D13  
D14  
D10  
D11  
D15  
D18  
D19  
D20  
D21  
D22  
D16  
D17  
D24  
D25  
D26  
D23  
CLKIN  
G7(MSB)  
CLKOUTM  
CLKOUTP  
100  
to row driver  
B0 and B1: NC  
(See Note B)  
B2  
B3  
B4  
B5  
B6  
B7(MSB)  
18-bpp LCD Display  
B0 and B1: NC  
(See Note B)  
Y3M  
Y3P  
(See Note A)  
HSYNC  
VSYNC  
ENABLE  
RSVD  
CLK  
4.8k  
3.3V  
C2  
3.3V  
C3  
1.8V or 2.5V  
or 3.3V  
C1  
Rpullup  
Rpulldown  
(See Note C)  
Main Board  
Note A. Leave output Y3 NC.  
Note B. R0, R1, G0, G1, B0, B1: For improved image quality, the GPU should dither the 24-bit output pixel down  
to18-bit per pixel.  
NoteC.Rpullup: install only to use rising edge triggered clocking.  
Rpulldown: install only to use falling edge triggered clocking.  
C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF.  
C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF.  
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF.  
Figure 18. 24-Bit Color Host to 18-Bit Color LCD Panel Display Application  
Copyright © 2015, Texas Instruments Incorporated  
21  
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
9.2.2.3 PCB Routing  
Figure 19 shows a possible breakout of the data input and output signals on two layers of a printed circuit board.  
D27  
D5  
D10  
D11  
D16  
D17  
D23  
Y0M  
Y0P  
D19  
D20  
D21  
Y1M  
Y1P  
D22  
D24  
Y2M  
Y2P  
D25  
D26  
D8  
D9  
CLKINM  
CLKINP  
D12  
D13  
D14  
D15  
D18  
Y3M  
Y3P  
D0  
D1  
D2  
D3  
D4  
D6  
D7  
CLKIN  
Figure 19. Printed Circuit Board Routing Example (See Figure 14 for the Schematic)  
9.2.3 Application Curve  
250  
200  
150  
100  
50  
0
1
4
7
10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64  
Pixel Samples  
Figure 20. 18b GPU to 24b LCD  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
10 Power Supply Recommendations  
Power supply PLL, IO, and LVDS pins must be uncoupled from each.  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Board Stackup  
There is no fundamental information about how many layers should be used and how the board stackup should  
look. Again, the easiest way the get good results is to use the design from the EVMs of Texas Instruments. The  
magazine Elektronik Praxis has published an article with an analysis of different board stackups. These are listed  
in Table 3. Generally, the use of microstrip traces needs at least two layers, whereas one of them must be a  
GND plane. Better is the use of a four-layer PCB, with a GND and a VCC plane and two signal layers. If the  
circuit is complex and signals must be routed as stripline, because of propagation delay and/or characteristic  
impedance, a six-layer stackup should be used.  
Table 3. Possible Board Stackup on a Four-Layer PCB  
MODEL 1  
SIG  
MODEL 2  
SIG  
MODEL 3  
SIG  
MODEL 4  
GND  
SIG  
Layer 1  
Layer 2  
SIG  
GND  
GND  
Layer 3  
VCC  
VCC  
SIG  
VCC  
SIG  
Layer 4  
GND  
SIG  
VCC  
Decoupling  
EMC  
Good  
Bad  
Good  
Bad  
Bad  
Bad  
Bad  
Bad  
Signal Integrity  
Self Disturbance  
Bad  
Bad  
Good  
Satisfaction  
Bad  
Satisfaction  
Satisfaction  
High  
11.1.2 Power and Ground Planes  
A complete ground plane in high-speed design is essential. Additionally, a complete power plane is  
recommended as well. In a complex system, several regulated voltages can be present. The best solution is for  
every voltage to have its own layer and its own ground plane. But this would result in a huge number of layers  
just for ground and supply voltages. What are the alternatives? Split the ground planes and the power planes? In  
a mixed-signal design, e.g., using data converters, the manufacturer often recommends splitting the analog  
ground and the digital ground to avoid noise coupling between the digital part and the sensitive analog part. Take  
care when using split ground planes because:  
Split ground planes act as slot antennas and radiate.  
A routed trace over a gap creates large loop areas, because the return current cannot flow beside the signal,  
and the signal can induce noise into the nonrelated reference plane (Figure 21).  
With a proper signal routing, crosstalk also can arise in the return current path due to discontinuities in the  
ground plane. Always take care of the return current (Figure 22).  
For Figure 22, do not route a signal referenced to digital ground over analog ground and vice versa. The return  
current cannot take the direct way along the signal trace and so a loop area occurs. Furthermore, the signal  
induces noise, due to crosstalk (dotted red line) into the analog ground plane.  
Copyright © 2015, Texas Instruments Incorporated  
23  
 
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
Figure 21. Loop Area and Crosstalk Due to Poor Signal Routing and Ground Splitting  
Figure 22. Crosstalk Induced by the Return Current Path  
11.1.3 Traces, Vias, and Other PCB Components  
A right angle in a trace can cause more radiation. The capacitance increases in the region of the corner, and the  
characteristic impedance changes. This impedance change causes reflections.  
Avoid right-angle bends in a trace and try to route them at least with two 45° corners. To minimize any  
impedance change, the best routing would be a round bend (see Figure 23).  
Separate high-speed signals (e.g., clock signals) from low-speed signals and digital from analog signals;  
again, placement is important.  
To minimize crosstalk not only between two signals on one layer but also between adjacent layers, route  
them with 90° to each other.  
24  
Copyright © 2015, Texas Instruments Incorporated  
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
Figure 23. Poor and Good Right Angle Bends  
11.2 Layout Example  
Figure 24. SN65LVDS93A-Q1 EVM Top Layer – TSSOP Package  
Copyright © 2015, Texas Instruments Incorporated  
25  
SN65LVDS93A-Q1  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
www.ti.com.cn  
Layout Example (continued)  
Figure 25. SN65LVDS93A-Q1 EVM VCC Layer – TSSOP Package  
26  
版权 © 2015, Texas Instruments Incorporated  
SN65LVDS93A-Q1  
www.ti.com.cn  
ZHCSDA2B FEBRUARY 2015REVISED APRIL 2015  
12 器件和文档支持  
12.1 商标  
OMAP, DaVinci, Flatlink are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
27  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65LVDS93AIDGGRQ1  
ACTIVE  
TSSOP  
DGG  
56  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
LVDS93AQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Aug-2015  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65LVDS93AIDGGRQ1 TSSOP  
DGG  
56  
2000  
330.0  
24.4  
8.6  
15.6  
1.8  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Aug-2015  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP DGG 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 45.0  
SN65LVDS93AIDGGRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DGG0056A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
0
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
54X 0.5  
56  
1
14.1  
13.9  
NOTE 3  
2X  
13.5  
28  
B
29  
0.27  
0.17  
6.2  
6.0  
56X  
1.2 MAX  
0.08  
C A  
B
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.05  
0.75  
0.50  
DETAIL A  
TYPICAL  
4222167/A 07/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05)  
TYP  
SYMM  
28  
29  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222167/A 07/2015  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05) TYP  
SYMM  
28  
29  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4222167/A 07/2015  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SN65LVDS93AZQLR

FLATLINK TRANSMITTER
TI

SN65LVDS93B

10MHz - 85MHz LVDS 串行器/解串器变送器
TI

SN65LVDS93B-Q1

10MHz - 85MHz 汽车类 28 位平板显示器链路 LVDS
TI

SN65LVDS93BDGG

暂无描述
TI

SN65LVDS93BDGGR

10MHz - 85MHz LVDS 串行器/解串器变送器 | DGG | 56 | -40 to 85
TI

SN65LVDS93BIDGGRQ1

10MHz - 85MHz 汽车类 28 位平板显示器链路 LVDS | DGG | 56 | -40 to 85
TI

SN65LVDS93BIDGGTQ1

10MHz - 85MHz 汽车类 28 位平板显示器链路 LVDS | DGG | 56 | -40 to 85
TI

SN65LVDS93DGG

LVDS SERDES TRANSMITTER
TI

SN65LVDS93DGGG4

20MHz 至 68MHz LVDS 串行器/解串器变送器 | DGG | 56
TI

SN65LVDS93DGGR

20MHz 至 68MHz LVDS 串行器/解串器变送器 | DGG | 56 | -40 to 85
TI

SN65LVDS93IDGG

5 LINE TRANSCEIVER, PDSO56
TI

SN65LVDS93IDGGR

5 LINE TRANSCEIVER, PDSO56
TI