SN65MLVD205DG4 [TI]

LINE TRANSCEIVER, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14;
SN65MLVD205DG4
型号: SN65MLVD205DG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LINE TRANSCEIVER, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14

驱动 光电二极管 接口集成电路 驱动器
文件: 总31页 (文件大小:1050K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINT–LVDS LINE DRIVERS AND RECEIVERS  
SLLS463E – SEPTEMBER 2001 – REVISED JUNE 2003  
D
D
D
Low-Voltage Differential 30-Line Drivers  
and Receivers for Signaling Rates up to  
100 Mbps  
D
Type-2 Receivers Provide an Offset  
(100 mV) Threshold to Detect Open-Circuit  
and Idle-Bus Conditions  
Power Dissipation at 100 Mbps  
– Driver: 50 mW Typical  
– Receiver: 30 mW Typical  
D
D
Operates From a Single 3.3-V Supply  
Propagation Delay Times Typically 2.3 ns  
for Drivers and 5 ns for Receivers  
Meets or Exceeds Current Revision of  
M-LVDS Standard TIA/EIA–899 for  
Multipoint Data Interchange  
D
Power-Up/Down Glitch-Free Driver  
D
Driver Handles Operation Into a  
Continuous Short Circuit Without Damage  
D
D
Controlled Driver Output Voltage Transition  
Times for Improved Signal Quality  
D
D
Bus Pins High Impedance When Disabled  
or V  
1.5 V  
CC  
–1-V to 3.4-V Common-Mode Voltage Range  
Allows Data Transfer With up to 2 V of  
Ground Noise  
200-Mbps Devices Available  
(SN65MLVD201, 203, 206, and 207)  
D
Type-1 Receivers Incorporate 25 mV of  
Hysteresis  
SN65MLVD200D (Marked as MF200)  
SN65MLVD204D (Marked as MF204)  
(TOP VIEW)  
SN65MLVD202D (Marked as MLVD202)  
SN65MLVD205D (Marked as MLVD205)  
(TOP VIEW)  
R
RE  
DE  
D
V
B
A
1
2
3
4
8
7
6
5
NC  
R
V
V
A
B
Z
Y
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CC  
CC  
CC  
RE  
GND  
DE  
D
GND  
GND  
8
NC  
NC – No internal connection  
logic diagram (positive logic)  
SN65MLVD200, SN65MLVD204  
SN65MLVD202, SN65MLVD205  
9
3
Y
DE  
5
D
DE  
RE  
10  
Z
4
D
4
3
2
RE  
R
12  
11  
A
B
6
7
2
A
B
1
R
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
The signaling rate of a line is the number of voltage transitions that are made per second expressed in bps (bits per second) units.  
Copyright 2001–2003, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
description  
This series of SN65MLVD20x devices are low-voltage differential line drivers and receivers complying with the  
proposed multipoint low-voltage differential signaling (M-LVDS) standard (TIA/EIA899). These circuits are  
similar to their TIA/EIA-644 standard compliant LVDS counterparts, with added features to address multipoint  
applications. Driver output current has been increased to support doubly-terminated, 50-load multipoint  
applications. Driver output slew rates are optimized for signaling rates up to 100 Mbps.  
Types 1 and 2 receivers are available. Both types of receivers operate over a common-mode voltage range of  
1 V to 3.4 V to provide increased noise immunity in harsh electrical environments. Type-1 receivers have their  
differential input voltage thresholds near zero volts (±50 mV), and include 25 mV of hysteresis to prevent output  
oscillationsinthepresenceofnoise. Type-2receiversincludeanoffsetthresholdtodetectopen-circuit, idle-bus,  
and other fault conditions, and provide a known output state under these conditions.  
The intended application of these devices is in half-duplex or multipoint baseband data transmission over  
controlled impedance media of approximately 100-characteristic impedance. The transmission media may  
be printed circuit board traces, backplanes, or cables. (Note: The ultimate rate and distance of data transfer is  
dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other  
application-specific characteristics).  
These devices are characterized for operation from 40°C to 85°C.  
AVAILABLE OPTIONS  
NOMINAL  
SIGNALING RATE,  
Mbps  
FOOTPRINT  
RECEIVER TYPE  
PART NUMBER  
100  
100  
100  
100  
SN75176  
SN75ALS180  
SN75176  
Type 1  
Type 1  
Type 2  
Type 2  
SN65MLVD200D  
SN65MLVD202D  
SN65MLVD204D  
SN65MLVD205D  
SN75ALS180  
The D package is available taped and reeled. Add the R suffix to the device type (e.g., SN65MLVD200DR)  
Function Tables  
TYPE-1 RECEIVER (200, 202)  
INPUTS OUTPUT  
= V V  
TYPE-2 RECEIVER (204, 205)  
INPUTS OUTPUT  
= V V  
RE  
RE  
V
ID  
R
V
ID  
R
A
B
A
B
L
L
H
?
L
Z
Z
L
L
H
?
L
Z
Z
V
50 mV  
V
150 mV  
ID  
50 mV < V < 50 mV  
ID  
50 mV < V < 150 mV  
ID  
ID  
50 mV  
V
ID  
50 mV  
L
V
L
ID  
X
X
H
X
X
H
Open  
Open  
Open Circuit  
?
Open Circuit  
L
L
L
DRIVER  
INPUT ENABLE  
OUTPUTS  
D
DE  
A OR Y  
B OR Z  
L
H
OPEN  
X
X
H
H
H
OPEN  
L
L
H
L
Z
Z
H
L
H
Z
Z
H = high level, L = low level, Z = high impedance, X = Dont care, ? = indeterminate  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
equivalent input and output schematic diagrams  
RECEIVER OUTPUT  
DRIVER INPUT AND DRIVER ENABLE  
RECEIVER ENABLE  
V
CC  
V
CC  
V
CC  
360 kΩ  
400 Ω  
10 Ω  
400 Ω  
D or DE  
7 V  
RE  
7 V  
R
360 kΩ  
10 Ω  
7 V  
RECEIVER INPUT  
DRIVER OUTPUT  
V
CC  
V
CC  
100 kΩ  
250 kΩ  
100 kΩ  
250 kΩ  
A/Y or B/Z  
A
B
200 kΩ  
200 kΩ  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4 V  
CC  
Input voltage range: D, DE, RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4 V  
A, B (200, 204) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 V to 4 V  
A, B (202, 205) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V to 6 V  
Output voltage range: R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
Y, Z, A, or B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 V to 4 V  
Electrostatic discharge: Human body model (see Note 2)  
A, B, Y, or Z . . . . . . . . . . . . . . . . . . . . . . ±3 kV  
All pins . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 kV  
Charged-device model (see Note 3) All pins . . . . . . . . . . . . . . . . . . . . . . . . . . ±500 V  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (see Dissipation Rating table)  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and  
functionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderrecommendedoperatingconditionsisnotimplied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
2. Tested in accordance with JEDEC Standard 22, Test Method A114-A.  
3. Tested in accordance with JEDEC Standard 22, Test Method C101.  
DISSIPATION RATING  
T
25°C  
OPERATING FACTOR  
T = 85°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
D(8)  
725 mW  
5.8 mW/°C  
7.6 mW/°C  
377 mW  
D(14)  
950 mW  
494 mW  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
V
Supply voltage, V  
CC  
3
2
3.3  
3.6  
High-level input voltage, V  
IH  
V
CC  
0.8  
V
Low-level input voltage, V  
0
V
IL  
Magnitude of differential input voltage,  
Voltage at any bus terminal, V , V , V  
V
0.05  
1.4  
1  
V
V
ID  
CC  
3.8  
V
B
V
A
Y
Z, or  
Common-mode input voltage V  
CM  
, (V + V )/2  
3.4  
15  
85  
V
A
B
Receiver load capacitance, C  
5
pF  
°C  
L
Operating free-air temperature, T  
40  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
device electrical characteristics over recommended operating conditions (unless otherwise  
noted)  
MIN  
PARAMETER  
TEST CONDITIONS  
RE and DE at V  
TYP  
MAX  
UNIT  
,
CC  
= 50 , All others open  
Receiver disabled and driver enabled  
13  
1
22  
R
L
RE at V , DE at 0 V,  
CC  
Driver and receiver disabled  
7
26  
11  
R
= No load, All others open  
L
I
Supply current  
mA  
RE at 0 V, DE at V  
,
CC  
CC  
= 50 , All others open,  
Receiver enabled and driver enabled  
Receiver enabled and driver disabled  
R
16  
4
L
No receiver load  
RE at 0 V, DE at 0 V,  
All others open, No receiver load  
The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet.  
All typical values are at 25°C and with a 3.3-V supply voltage.  
driver electrical characteristics over recommended operating conditions (unless otherwise noted)  
MIN  
TYP  
PARAMETER  
TEST CONDITIONS  
MAX  
UNIT  
V
or  
AB  
Differential output voltage magnitude  
See Figure 2  
480  
650  
mV  
V
YZ  
V  
or  
Change in differential output voltage magnitude  
between logic states  
AB  
V  
See Figure 2  
See Figure 3  
50  
0.8  
50  
1.2  
50  
mV  
V
YZ  
V
Steady-state common-mode output voltage  
OS(SS)  
Change in steady-state common-mode output  
voltage between logic states  
V  
OS(SS)  
50  
mV  
mV  
V
V
Peak-to-peak common-mode output voltage  
150  
2.4  
OS(PP)  
V
or  
or  
A(OC)  
Maximum steady-state open-circuit output voltage  
0
0
V
Y(OC)  
See Figure 7  
See Figure 5  
V
V
B(OC)  
Z(OC)  
Maximum steady-state open-circuit output voltage  
2.4  
V
V
Voltage overshoot, low-to-high level output  
Voltage overshoot, high-to-low level output  
High-level input current  
1.2V  
V
V
P(H)  
P(L)  
SS  
V
0.2V  
SS  
0
I
IH  
V
V
= 2 V  
10  
10  
24  
µA  
µA  
mA  
IH  
I
IL  
Low-level input current  
= 0.8 V  
0
IL  
I
Differential short-circuit output current  
See Figure 4  
OS  
1.4 V (V or V ) 3.8 V,  
Other output at 1.2 V  
Y
Z
I
High-impedance state output current (driver only)  
15  
10  
10  
µA  
OZ  
1.4 V (V or V ) 3.8 V,  
Y
Z
I
Power-off output current (driver only)  
V
1.5 V,  
10  
µA  
O(OFF)  
CC  
Other output at 1.2 V  
The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet.  
All typical values are at 25°C and with a 3.3-V supply voltage.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
receiver electrical characteristics over recommended operating conditions (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
50  
UNIT  
Type 1  
Type 2  
Type 1  
Type 2  
Type 1  
Type 2  
V
V
V
Positive-going differential input voltage threshold  
mV  
IT+  
150  
50  
See Figure 8,  
Table 1 and Table 2  
Negative-going differential input voltage threshold  
mV  
mV  
IT–  
50  
25  
0
Differential input voltage hysteresis, V  
V  
IT–  
ID(HYS)  
IT+  
V
V
High-level output voltage  
Low-level output voltage  
High-level input current  
Low-level input current  
I
I
= 8 mA  
= 8 mA  
2.4  
V
OH  
OH  
0.4  
0
V
OL  
OL  
I
I
I
V
V
V
= 2 V  
10  
10  
10  
µA  
µA  
µA  
IH  
IH  
IL  
O
= 0.8 V  
0
IL  
High-impedance output current  
= 0 V or 3.6 V  
15  
OZ  
All typical values are at 25°C and with a 3.3-V supply voltage.  
bus input and output electrical characteritics over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
32  
20  
0
UNIT  
V
= 3.8 V,  
V
V
V
= 1.2 V  
= 1.2 V  
= 1.2 V  
= 1.2 V  
= 1.2 V  
= 1.2 V  
0
20  
32  
0
A
B
B
B
Receiver input or transceiver input/output  
current  
V
A
= 0 V or 2.4 V,  
= 1.4 V,  
I
A
µA  
V
A
V
B
V
B
V
B
= 3.8 V,  
V
A
32  
20  
0
Receiver input or transceiver input/output  
current  
= 0 V or 2.4 V,  
= 1.4 V,  
V
A
20  
32  
I
I
µA  
µA  
B
V
A
Receiver input or transceiver input/output  
V
A
= V ,  
B
1.4 V 3.8 V  
4  
4
AB  
A
differential current (I I )  
A
B
V
= 3.8 V,  
V
V
V
= 1.2 V,  
= 1.2 V,  
= 1.2 V,  
= 1.2 V,  
= 1.2 V,  
= 1.2 V,  
V
V
V
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
0
20  
32  
0
32  
20  
0
A
B
B
B
CC  
CC  
CC  
CC  
CC  
CC  
Receiver input or transceiver input/output  
power-off current  
V
A
= 0 V or 2.4 V,  
= 1.4 V,  
I
µA  
A(OFF)  
V
A
V
= 3.8 V,  
V
A
V
V
V
32  
20  
0
B
B
B
Receiver input or transceiver input/output  
power-off current  
V
V
= 0 V or 2.4 V,  
= 1.4 V,  
V
A
20  
32  
I
I
µA  
µA  
B(OFF)  
V
A
Receiver input or transceiver input/output  
V
A
= V ,  
B
1.4 V 3.8 V,  
V 1.5 V  
CC  
4  
4
AB(OFF)  
A
power-off differential current (I I )  
A
B
Receiver input, driver high-impedance  
output, or transceiver input/output  
capacitance  
C
C
V
= 0.4 sin(2E8πt) +0.5,  
= 0.4 sin(2E8πt) +0.5,  
V
= 1.2 V  
V = 1.2 V  
A
3
3
pF  
pF  
A
B
A
B
V
B
All typical values are at 25°C and with a 3.3-V supply voltage.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
driver switching characteristics over recommended operating conditions (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.6  
1.6  
1.5  
1.5  
TYP  
MAX  
4.1  
4.1  
3
UNIT  
ns  
t
t
t
t
t
t
t
t
t
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time  
2.3  
2.3  
2
PLH  
PHL  
r
ns  
ns  
See Figure 5  
Differential output signal fall time  
2
3
ns  
f
Pulse skew (|t  
- t |)  
PLH  
30  
ps  
sk(p)  
sk(pp)  
PZH  
PZL  
PHZ  
PLZ  
PHL  
Part-to-part skew (see Note 4)  
900  
6.5  
6.5  
6.8  
6.1  
ps  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
1.5  
1.5  
1.3  
1.8  
3.7  
3.7  
3.5  
3.5  
ns  
ns  
See Figure 6  
ns  
ns  
50-MHz clock input  
(see Figure 8)  
t
t
t
Period jitter, rms (1 standard deviation) (see Notes 5 and 6)  
Cycle-to-cycle jitter, peak (see Notes 5 and 6)  
Peak-to-peak jitter, (see Notes 5, 7, and 8)  
23  
180  
210  
ps  
ps  
ps  
jit(per)  
jit(cc)  
jit(pp)  
50-MHz clock input  
(see Figure 8)  
15  
100 Mbps 2 1 PRBS  
input (see Figure 8)  
All typical values are at 25°C and with a 3.3-V supply voltage.  
NOTES: 4. t is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both  
sk(pp)  
devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
5. Jitterparametersarebasedondesignandcharacterization. Stimulussystemjitterof11 ps t , 43 ps t , or 54 ps t have  
jit(pp)  
jit(per)  
jit(cc)  
been subtracted from the values.  
6. Input voltage = 0 V to V , t = t 1 ns (20% to 80%), measured over 30k samples.  
CC  
r
f
7. Input voltage = 0 V to V , t = t 1 ns (20% to 80%), measured over 100k samples.  
CC  
r
f
8. Peak-to-peak jitter includes jitter due to pulse skew (t  
).  
sk(p)  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
receiver switching characteristics over recommended operating conditions (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
6.7  
UNIT  
ns  
ns  
ps  
ns  
ns  
ns  
ns  
ns  
ps  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
3
5
PLH  
PHL  
sk(p)  
sk(pp)  
r
3
4.6  
6.7  
Pulse skew (|t  
- t  
|)  
PLH  
400  
PHL  
C
= 5 pF, See Figure 10  
L
Part-to-part skew (see Note 9)  
1.5  
2
Output signal rise time  
0.8  
0.8  
3.4  
3.4  
1.4  
1.5  
5.8  
5.4  
400  
Output signal fall time  
2
f
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
9
PLH  
PHL  
sk(p)  
sk(pp)  
r
9
Pulse skew (|t  
- t  
|)  
PLH  
PHL  
C
= 15 pF, See Figure 10  
L
Part-to-part skew (see Note 9)  
Output signal rise time  
2.5  
2.6  
2.6  
1
1
2
Output signal fall time  
1.4  
f
Propagation delay time, high-level-to-high-impedance  
output  
t
t
t
t
4.5  
2
6
3.4  
9.8  
8.7  
15  
5
ns  
ns  
ns  
ns  
PHZ  
PLZ  
PZH  
PZL  
Propagation delay time, low-level-to-high-impedance  
output  
See Figure 11  
Propagation delay time, high-impedance-to-high-level  
output  
3.5  
4
15  
15  
Propagation delay time, high-impedance-to-low-level  
output  
Type 1  
Type 2  
Type 1  
Type 2  
Type 1  
Type 2  
10  
10  
Period jitter, rms (1 standard deviation)  
(see Notes 10 and 11)  
50-MHz clock input  
(see Figure 12)  
t
t
t
ps  
ps  
ps  
jit(per)  
jit(cc)  
jit(pp)  
93  
50-MHz clock input  
(see Figure 12)  
Cycle-to-cycle jitter, peak (see Notes 10 and 11)  
Peak-to-peak jitter, (see Notes 10, 12, and 13)  
86  
15  
850  
790  
100 Mbps 2 1 PRBS  
input (see Figure 12)  
All typical values are at 25°C and with a 3.3-V supply voltage.  
NOTES: 9. t is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both  
sk(pp)  
devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
10. Jitterparametersarebasedondesignandcharacterization. Stimulussystemjitterof11 ps t , 43 ps t , or 54 ps t have  
jit(pp)  
jit(per)  
jit(cc)  
been subtracted from the values.  
11. Differential input voltage = 250 mV  
samples.  
12. Differential input voltage = 250 mV  
samples.  
(Type 1) or 500 mV  
(Type 2), V = 1 V, t = t 1 ns (20% to 80%), measured over 30k  
CM r f  
pp  
pp  
pp  
pp  
(Type 1) or 500 mV  
(Type 2), V = 1 V, t = t 1 ns (20% to 80%), measured over 100k  
CM r f  
13. Peak-to-peak jitter includes jitter due to pulse skew (t  
).  
sk(p)  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
I
A
or I  
Y
A/Y  
I
I
D
V
or V  
or V  
I
B
or I  
AB  
YZ  
Z
V
A
or V  
Y
B/Z  
V
I
V
OS  
V
B
Z
V
A
+ V  
2
V
Y
+ V  
2
B
Z
or  
Figure 1. Driver Voltage and Current Definitions  
3.32 kΩ  
A/Y  
+
1 V V  
3.4 V  
V
AB  
or V  
YZ  
49.9 Ω  
D
test  
_
B/Z  
3.32 kΩ  
NOTE: All resistors are 1% tolerance.  
Figure 2. Differential Output Voltage Test Circuit  
A/Y  
B/Z  
1.3 V  
0.7 V  
24.9 Ω ±1%  
A/Y  
B/Z  
D
V
V
OS(SS)  
OS(PP)  
C
L
V
OS  
2 pF  
V
OS  
24.9 Ω ±1%  
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 0.25 Mpps,  
r
f
pulse width = 500 ±10 ns. C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T. The measurement of V  
is made on test equipment with a 3-dB bandwidth of at least 1 GHz.  
L
OS(PP)  
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
I
OS  
A/Y  
B/Z  
0 V or V  
CC  
+
V
Test  
1 V or 3.4 V  
Figure 4. Driver Short-Circuit Test Circuit  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
A/Y  
C
L
0.5 pF  
Output  
49.9 Ω ±1%  
D
(Metal Film Surface Mount)  
B/Z  
V
V
CC  
/2  
Input  
CC  
0 V  
t
t
PHL  
PLH  
V
SS  
0.9V  
SS  
V
P(H)  
0 V  
Output  
V
P(L)  
0.1V  
SS  
0 V  
SS  
t
t
r
f
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 1 Mpps,  
r
f
pulse width = 0.5 ±0.05 µs. C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
Figure 5. Driver Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal  
24.9 Ω ±1%  
(2 Places)  
A/Y  
C
L
0.5 pF  
0 V or V  
Output  
CC  
B/Z  
+
1 V  
DE  
V
CC  
V
CC  
/2  
DE  
0 V  
t
t
t
PZH  
PHZ  
PLZ  
0.6 V  
0.1 V  
Output With  
D at V  
0 V  
CC  
t
PZL  
Output With  
D at 0 V  
0 V  
0.1 V  
0.6 V  
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 0.25 Mpps,  
r
f
pulse width = 500 ±10 ns. C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
Figure 6. Driver Enable and DIsable Time Circuit and Definitions  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
A/Y  
0 V or V  
CC  
B/Z  
V , V , V or V  
Z
1.62 kΩ  
A
B
Y
C
Figure 7. Maximum Steady-State Output Voltage Test Circuit  
OUTPUT  
0 V DIFF  
V
CC  
CLOCK  
INPUT  
V
/2  
CC  
V
A
V or V V  
B Y Z  
0 V  
t
t
c(n+1)  
c(n)  
1/f0  
t
= | t  
t |  
c(n) c(n+1)  
jit(cc)  
Period Jitter  
IDEAL  
V
V
CC  
0 V  
OUTPUT  
V or V V  
Z
PRBS INPUT  
/2  
CC  
V
A
1/f0  
0 V  
B
Y
Peak to Peak Jitter  
ACTUAL  
OUTPUT  
0 V  
V
A
V or V V  
Z
B
Y
OUTPUT 0 V Diff  
V
A
V or V V  
B Y Z  
t
c(n)  
t
= t  
1/f0  
c(n)  
jit(per)  
t
jit(pp)  
NOTES: A. All input pulses are supplied by an Agilent 8304A Stimulus System.  
B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software  
C. Period jitter is measured using a 100 MHz 50 ±1% duty cycle clock input.  
15  
D. Peak-to-peak jitter is measured using a 200Mbps 2 1 PRBS input.  
Figure 8. Driver Jitter Measurement Waveforms  
I
A
A
B
I
O
R
V
ID  
I
B
V
O
V
CM  
V
A
(V + V )/2  
A
B
V
B
Figure 9. Receiver Voltage and Current Definitions  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
Table 1. Type-1 Receiver Input Threshold Test Voltages  
RESULTING DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING COMMON-  
MODE INPUT VOLTAGE  
APPLIED VOLTAGES  
RECEIVER OUTPUT  
V
A
V
B
V
ID  
V
CM  
V
O
3.425 V  
3.375 V  
0.975 V  
1.025 V  
3.800 V  
3.000 V  
0.600 V  
1.400 V  
3.375 V  
3.425 V  
1.025 V  
0.975 V  
3.000 V  
3.800 V  
1.400 V  
0.600 V  
50 mV  
50 mV  
50 mV  
3.4 V  
3.4 V  
H
L
H
L
1.0 V  
1.0 V  
3.4 V  
50 mV  
800 mV  
800 mV  
800 mV  
800 mV  
H
L
3.4 V  
1.0 V  
1.0 V  
H
L
NOTE: H= high level, L = low level. Output state assumes receiver is enabled (RE is Low).  
Table 2. Type-2 Receiver Input Threshold Test Voltages  
RESULTING DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING COMMON–  
MODE INPUT VOLTAGE  
APPLIED VOLTAGES  
RECEIVER OUTPUT  
V
A
V
B
V
ID  
V
CM  
V
O
3.475 V  
3.425 V  
0.925 V  
0.975 V  
3.800 V  
3.000 V  
0.600 V  
1.400 V  
3.325 V  
3.375 V  
1.075 V  
1.025 V  
3.000 V  
3.800 V  
1.400 V  
0.600 V  
150 mV  
50 mV  
3.4 V  
3.4 V  
H
L
H
L
150 mV  
50 mV  
1.0 V  
1.0 V  
3.4 V  
800 mV  
800 mV  
800 mV  
800 mV  
H
L
3.4 V  
1.0 V  
1.0 V  
H
L
NOTE: H= high level, L = low level. Output state assumes receiver is enabled (RE is Low).  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
R1  
453 Ω  
V
ID  
R2  
49.9 Ω  
C
V
O
L
V
A
V
B
V
1.1 V  
0.9 V  
V
1.2 V  
0.8 V  
A
A
V
B
V
B
0.2 V  
0 V  
0.4 V  
0.1 V  
V
ID  
V
ID  
0.2 V  
0.4 V  
t
t
t
t
PLH  
pHL  
pLH  
PHL  
0.1 V  
0.1 V  
OH  
OH  
90%  
10%  
90%  
10%  
0.1 V /2  
CC  
0.1 V  
0.1 V /2  
V
O
V
O
CC  
0.1 V  
OL  
OL  
t
t
t
t
r
f
r
f
Type 1  
Type 2  
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 1 Mpps,  
r
f
pulse width = 0.5 ±0.05 µs.  
B. Resistors are 1% tolerance, metal film, and surface mount.  
C.  
C is 20% tolerance, low-loss ceramic, and surface mount.  
L
D. R1 and C are located within 2 cm of the D.U.T.  
E. R2 is located within 15 cm of the D.U.T.  
L
Figure 10. Receiver Timing Test Circuit and Waveforms  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
B
A
500 Ω ±1%  
1.2 V  
R
C
L
+
_
V
test  
Output  
Inputs  
5 pF  
RE  
V
CC  
V
TEST  
1 V  
A
Inputs  
V
V
CC  
RE  
/2  
/2  
CC  
0 V  
t
t
PLZ  
PZL  
V
CC  
V
CC  
Output  
R
V
OL  
V
OL  
+0.5 V  
V
0 V  
1.4 V  
TEST  
A
Inputs  
V
V
CC  
RE  
/2  
CC  
0 V  
t
t
PHZ  
PZH  
V
V
V
OH  
OH  
CC  
0.5 V  
/2  
Output  
R
0 V  
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 0.25 Mpps,  
r
f
pulse width = 500 ±10 ns. C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
Figure 11. Receiver Enable/Disable Time Test Circuit and Waveforms  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
V
OH  
OUTPUT  
/2  
INPUTS  
V  
0.25 V Type 1 1 V  
0.5 V Type 2  
CLOCK INPUT  
V
A
V
IC  
B
V
CC  
V
A
V  
B
V
1/f0  
OL  
t
t
c(n+1)  
c(n)  
Period Jitter  
t
= | t  
t |  
c(n) c(n+1)  
jit(cc)  
V
IDEAL  
OUTPUT  
OH  
V
A
V
CC  
/2  
PRBS INPUT  
V
OL  
1/f0  
V
B
V
OH  
Peak to Peak Jitter  
ACTUAL  
OUTPUT  
V
CC  
/2  
V
OH  
V
OL  
OUTPUT  
V
/2  
CC  
t
c(n)  
= t  
V
OL  
t
1/f0  
c(n)  
jit(per)  
t
jit(pp)  
NOTES: A. All input pulses are supplied by an Agilent 8304A Stimulus System.  
B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software  
C. Period jitter is measured using a 100 MHz 50 ±1% duty cycle clock input.  
15  
D. Peak-to-peak jitter is measured using a 200Mbps 2 1 PRBS input.  
Figure 12. Receiver Jitter Measurement Waveforms  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
TYPICAL CHARACTERISTICS  
DRIVER LOW-TO-HIGH PROPAGATION DELAY  
DRIVER HIGH-TO-LOW PROPAGATION DELAY  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
2.5  
2.5  
See Figure 5  
See Figure 5  
V
CC  
= 3 V  
V
CC  
= 3 V  
2.4  
2.3  
2.4  
2.3  
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
V
CC  
= 3.6 V  
V
CC  
= 3.6 V  
2.2  
2.1  
2.2  
2.1  
50  
0
50  
100  
50  
0
50  
100  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 13  
Figure 14  
RECEIVER LOW-TO-HIGH PROPAGATION DELAY  
RECEIVER HIGH-TO-LOW PROPAGATION DELAY  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
5.5  
5.5  
C
= 5 pF  
L
C = 5 pF  
L
See Figure 9  
V
CC  
= 3 V  
See Figure 9  
V
CC  
= 3 V  
V
CC  
= 3.3 V  
5
4.5  
4
5
V
CC  
= 3.3 V  
V
= 3.6 V  
CC  
4.5  
V
= 3.6 V  
CC  
4
50  
50  
0
50  
100  
0
50  
100  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 15  
Figure 16  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
TYPICAL CHARACTERISTICS  
DRIVER LOW-LEVEL OUTPUT CURRENT  
DRIVER HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
5
0
15  
10  
5
T
= 25 °C  
A
T
= 25 °C  
A
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
5  
10  
0
5  
15  
1  
0
1
2
3
4
1  
0
1
2
3
4
V
OL  
Low-Level Output Voltage V  
V
OH  
High-Level Output Voltage V  
Figure 17  
Figure 18  
RECEIVER LOW-LEVEL OUTPUT CURRENT  
RECEIVER HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
20  
0
120  
100  
T
= 25 °C  
T
= 25 °C  
A
A
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
80  
60  
40  
20  
0
20  
40  
60  
80  
0
0.5  
V
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
V
1
1.5  
2
2.5  
3
3.5  
4
High-Level Output Voltage V  
Low-Level Output Voltage V  
OH  
OL  
Figure 19  
Figure 20  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
TYPICAL CHARACTERISTICS  
AVERAGE DRIVER SUPPLY CURRENT  
DIFFERENTIAL OUTPUT VOLTAGE  
vs  
vs  
FREQUENCY  
OUTPUT CURRENT  
2
17  
16  
15  
14  
50% Duty Cycle  
R
= 50 Ω  
= 25°C  
L
T
A
V
CC  
= 3.6 V  
See Figure 5  
1.6  
1.2  
V
CC  
= 3.3 V  
V
CC  
= 3 V  
0.8  
0.4  
0
13  
12  
V
T
A
= 3.3 V  
2
CC  
= 25°C  
Note: 100 MHz = 200 Mbps  
25 50  
0
75  
100  
0
4
6
8
10  
12  
f Frequency MHz  
I
O
Output Current mA  
Figure 21  
Figure 22  
AVERAGE RECEIVER SUPPLY CURRENT  
ADDED DRIVER PERIOD JITTER (1 SIGMA)  
vs  
vs  
FREQUENCY  
CLOCK FREQUENCY  
20  
15  
10  
50  
50% Duty Cycle  
R
C
T
= 500 Ω  
= 5 pF  
= 25°C  
V
T
A
= 3.3 V,  
CC  
= 25°C,  
Input = Clock  
L
L
A
40  
V
= 3.6 V  
CC  
CC  
See Figure 9  
V
CC  
= 3.3 V  
30  
20  
10  
0
V
= 3 V  
5
0
Note: 100 MHz = 200 Mbps  
25 50  
0
75  
100  
10  
20  
30  
40  
50  
f Frequency MHz  
f Clock Frequency MHz  
Figure 23  
Figure 24  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
TYPICAL CHARACTERISTICS  
ADDED TYPE 1 RECEIVER PERIOD JITTER (1 SIGMA)  
ADDED TYPE 2 RECEIVER PERIOD JITTER (1 SIGMA)  
vs  
vs  
CLOCK FREQUENCY  
25  
CLOCK FREQUENCY  
25  
V
= 3.3 V,  
CC  
= 25°C,  
V
= 3.3 V,  
CC  
T = 25°C,  
A
T
A
Input = Clock,  
= 250 mV  
20  
15  
10  
20  
15  
Input = Clock,  
V = 500 mV  
ID  
V
ID  
V
IC  
= 0.5 V  
V
IC  
= 3 V  
V
IC  
= 1 V  
10  
V
IC  
= 3 V  
V
= 0.5 V  
V
= 1 V  
IC  
IC  
5
0
5
0
10  
10  
20  
30  
40  
50  
20  
30  
40  
50  
f Clock Frequency MHz  
f Clock Frequency MHz  
Figure 25  
Figure 26  
ADDED TYPE 1 RECEIVER CYCLE-TO-CYCLE  
JITTER (PEAK)  
vs  
ADDED DRIVER CYCLE-TO-CYCLE JITTER (PEAK)  
vs  
CLOCK FREQUENCY  
CLOCK FREQUENCY  
250  
200  
150  
250  
200  
150  
100  
50  
V
= 3.3 V,  
CC  
= 25°C,  
V
= 3.3 V,  
CC  
= 25°C,  
T
A
T
A
Input = Clock,  
= 250 mV  
Input = Clock  
V
ID  
V
IC  
= 0.5 V  
V
= 3 V  
IC  
100  
50  
0
V
IC  
= 1 V  
0
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
f Clock Frequency MHz  
f Clock Frequency MHz  
Figure 27  
Figure 28  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
TYPICAL CHARACTERISTICS  
ADDED TYPE 2 RECEIVER CYCLE-TO-CYCLE  
ADDED DRIVER PEAK-TO-PEAK JITTER  
JITTER (PEAK)  
vs  
CLOCK FREQUENCY  
vs  
DATA RATE  
250  
200  
150  
100  
50  
250  
200  
150  
V
= 3.3 V,  
CC  
T = 25°C,  
A
V
= 3.3 V,  
CC  
= 25°C,  
T
15  
Input = PRBS(2 1)  
A
Input = Clock,  
= 500 mV  
V
ID  
V
IC  
= 1 V  
V
= 0.5 V  
IC  
100  
50  
0
V
= 3 V  
IC  
0
20  
40  
60  
80  
100  
10  
20  
30  
40  
50  
Data Rate Mbps  
f Clock Frequency MHz  
Figure 29  
Figure 30  
ADDED TYPE 2 RECEIVER PEAK-TO-PEAK JITTER  
ADDED TYPE 1 RECEIVER PEAK-TO-PEAK JITTER  
vs  
vs  
DATA RATE  
DATA RATE  
2000  
1600  
1200  
800  
2000  
1600  
1200  
800  
V
= 3.3 V,  
CC  
= 25°C,  
V
= 3.3 V,  
CC  
= 25°C,  
T
A
T
A
15  
Input = PRBS(2 1),  
15  
Input = PRBS(2 1),  
V
ID  
= 500 mV  
V
ID  
= 250 mV  
400  
0
400  
0
20  
40  
60  
80  
100  
20  
40  
60  
80  
100  
Data Rate Mbps  
Data Rate Mbps  
Figure 31  
Figure 32  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
APPLICATION INFORMATION  
Type-1 and Type-2 receivers  
The M-LVDS standard defines Type-1 and Type-2 receivers. Type-1 receivers include no provisions for failsafe  
and have their differential input voltage thresholds near zero volts. Type-2 receivers have their differential input  
voltage thresholds offset from zero volts to detect the absence of a voltage difference. Type-1 receivers  
maximize the differential noise margin and are intended for maximum signaling rates. Type-2 receivers are  
intended for control signals and slower signaling rates. The impact on receiver output by the offset input can  
be seen in Table 3 and Figure 33.  
Table 3. M-LVDS Receiver Input Voltage Threshold Requirements  
Receiver Type  
Output Low  
Output High  
0.05 V V 2.4 V  
1
2
2.4 V V 0.05 V  
ID  
2.4 V V 0.05 V  
ID  
0.15 V V 2.4 V  
ID  
ID  
Type 1  
Type 2  
High  
200  
150  
100  
50  
High  
0
Low  
50  
100  
Low  
Transition Regions  
Figure 33. Receiver Differential Input Voltage Showing Transition Region  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
APPLICATION INFORMATION  
comparison of M-LVDS with RS-485  
RS-485 applications are similar to M-LVDS. The two standards define balanced multipoint systems with some  
basic architecture changes due to the different applications. Table 4 gives a high-level comparison of the two  
different technologies.  
Table 4. Comparison Between M-LVDS and RS-485 Standards  
Differential Voltage  
Range  
Common-Mode  
Voltage Range  
Maximum Signaling Receiver Minimum  
Number of Loads  
Rate (Mbps)  
Threshold  
±200 mV  
±50 mV  
RS-485  
M-LVDS  
32  
32  
1.5 V to 5 V  
7 V to 12 V  
1 V to 3.4 V  
50 Mbps  
480 mV to 650 mV  
500 Mbps  
It can be seen that with the greater differential output voltage and common-mode voltage range of the  
RS-485-type device, it can handle longer signaling distances where M-LVDS offers ten times the signaling rate  
of RS-485.  
SN65MLVD200  
SN65MLVD200  
R
R
T
T
Up to 32  
Transceivers  
NOTE A: The line should be terminated at both ends in its characteristic impedance (R = Z ). Stub lengths off the main line should be kept  
T
O
as short as possible.  
Figure 34. Typical Application Circuit  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
SN65MLVD200D  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
NRND  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
MF200  
SN65MLVD200DG4  
SN65MLVD200DR  
SN65MLVD200DRG4  
SN65MLVD202D  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
NRND  
D
D
D
D
D
D
D
D
D
D
D
D
D
75  
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
MF200  
8
Green (RoHS  
& no Sb/Br)  
MF200  
8
Green (RoHS  
& no Sb/Br)  
MF200  
14  
14  
14  
14  
8
Green (RoHS  
& no Sb/Br)  
MLVD202  
MLVD202  
MLVD202  
MLVD202  
MF204  
SN65MLVD202DG4  
SN65MLVD202DR  
SN65MLVD202DRG4  
SN65MLVD204D  
50  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
SN65MLVD204DG4  
SN65MLVD204DR  
SN65MLVD204DRG4  
SN65MLVD205D  
8
75  
Green (RoHS  
& no Sb/Br)  
MF204  
8
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
MF204  
8
Green (RoHS  
& no Sb/Br)  
MF204  
14  
14  
Green (RoHS  
& no Sb/Br)  
MLVD205  
MLVD205  
SN65MLVD205DG4  
50  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jan-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65MLVD200DR  
SN65MLVD202DR  
SN65MLVD204DR  
SOIC  
SOIC  
SOIC  
D
D
D
8
14  
8
2500  
2500  
2500  
330.0  
330.0  
330.0  
12.4  
16.4  
12.4  
6.4  
6.5  
6.4  
5.2  
9.0  
5.2  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
12.0  
16.0  
12.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jan-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65MLVD200DR  
SN65MLVD202DR  
SN65MLVD204DR  
SOIC  
SOIC  
SOIC  
D
D
D
8
14  
8
2500  
2500  
2500  
340.5  
333.2  
340.5  
338.1  
345.9  
338.1  
20.6  
28.6  
20.6  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

SN65MLVD205DR

LINE TRANSCEIVER, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14
TI

SN65MLVD205DRG4

LINE TRANSCEIVER, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14
TI

SN65MLVD206

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD206B

高噪声抗扰度 200Mbps M-LVDS 收发器
TI

SN65MLVD206BD

High Noise Immunity 200Mbps M-LVDS Transceiver 8-SOIC -40 to 85
TI

SN65MLVD206BDR

High Noise Immunity 200Mbps M-LVDS Transceiver 8-SOIC -40 to 85
TI

SN65MLVD206D

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD206DG4

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD206DR

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD206DRE4

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD207

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD207D

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI