SN74AXC4T774QBQBRQ1 [TI]

SN74AXC4T774-Q1 Automotive 4-Bit Dual-Supply Bus Transceiver with Independent Direction, Configurable-Voltage Translation, and Tri-State Outputs;
SN74AXC4T774QBQBRQ1
型号: SN74AXC4T774QBQBRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SN74AXC4T774-Q1 Automotive 4-Bit Dual-Supply Bus Transceiver with Independent Direction, Configurable-Voltage Translation, and Tri-State Outputs

文件: 总36页 (文件大小:1470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
SN74AXC4T774-Q1 Automotive 4-Bit Dual-Supply Bus Transceiver with  
Independent Direction, Configurable-Voltage Translation, and Tri-State Outputs  
The SN74AXC4T774-Q1 device is designed for  
asynchronous communication between data buses.  
1 Features  
AEC-Q100 Qualified for automotive applications  
Fully configurable dual-rail design allows each port  
to operate with a power supply range from 0.65 V  
to 3.6 V  
Operating temperature from –40°C to +125°C  
Independent direction control pins to allow  
configurable up and down translation  
Glitch-free power supply sequencing  
Up to 310 Mbps support when translating from 1.8  
V to 3.3 V  
The device transmits data from the A bus to the B bus  
or from the B bus to the A bus, depending on the logic  
level of the direction-control inputs (DIRx). The output-  
enable input ( OE) is used to disable the outputs so  
the buses are effectively isolated. The  
SN74AXC4T774-Q1 device is designed so the control  
pins (DIRx and OE) are referenced to VCCA  
.
To ensure the high-impedance state of the level shifter  
I/Os during power up or power down, the OE pin  
should be tied to VCCA through a pullup resistor.  
VCC isolation feature  
This device is fully specified for partial-power-down  
applications using the Ioff current. The Ioff protection  
circuitry ensures that no excessive current is drawn  
from or to an input, output, or combined I/O that is  
biased to a specific voltage while the device is  
powered down.  
– If either VCC input is below 100 mV, all I/Os  
outputs are disabled and become high-  
impedance  
Ioff supports partial-power-down mode operation  
Compatible with AVC family level shifters  
Latch-up performance exceeds 100 mA per JESD  
78, Class II  
ESD protection exceeds JEDEC JS-001  
– 8000-V human-body model  
– 1000-V charged-device model  
The VCC isolation feature ensures that if either VCCA  
or VCCB is less than 100 mV, both I/O ports are set to  
the high-impedance state by disabling their outputs.  
Glitch-free power supply sequencing allows either  
supply rail to be powered on or off in any order while  
providing robust power sequencing performance.  
2 Applications  
Device Information  
Infotainment head unit  
ADAS Fusion  
ADAS Front camera  
HEV/EV Battery Management  
Telematics Control Unit  
PACKAGE(1)  
PART NUMBER  
BODY SIZE (NOM)  
(2)  
SN74AXC4T774QPWRQ1  
TSSOP (16) 5.00 mm x 4.40 mm  
SN74AXC4T774QBQBRQ1 WQFN (16)  
SN74AXC4T774QRSVRQ1 UQFN (16)  
2.50 mm x 3.50 mm  
2.60 mm x 1.80 mm  
3 Description  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
The SN74AXC4T774-Q1 is a four-bit non-inverting  
bus transceiver that uses two individually configurable  
power-supply rails. The device is operational with both  
VCCA and VCCB supplies as low as 0.65 V. The A port  
is designed to track VCCA, which accepts any supply  
voltage from 0.65 V to 3.6 V. The B port is designed to  
track VCCB, which also accepts any supply voltage  
from 0.65 V to 3.6 V. Additionally the  
(2) BQB package is a product preview.  
One of Four Transceivers  
VCCA  
VCCB  
DIRx  
OE  
SN74AXC4T774-Q1 is compatible with a single-  
supply system.  
Bx  
Ax  
Functional Block Diagram  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Switching Characteristics, VCCA = 0.7 ± 0.05 V.......... 7  
6.7 Switching Characteristics, VCCA = 0.8 ± 0.04 V.......... 8  
6.8 Switching Characteristics, VCCA = 0.9 ± 0.045 V........ 9  
6.9 Switching Characteristics, VCCA = 1.2 ± 0.1 V.......... 10  
6.10 Switching Characteristics, VCCA = 1.5 ± 0.1 V........ 11  
6.11 Switching Characteristics, VCCA = 1.8 ± 0.15 V...... 12  
6.12 Switching Characteristics, VCCA = 2.5 ± 0.2 V........ 13  
6.13 Switching Characteristics, VCCA = 3.3 ± 0.3 V........ 14  
6.14 Operating Characteristics: TA = 25°C..................... 15  
6.15 Typical Characteristics............................................17  
7 Parameter Measurement Information..........................18  
7.1 Load Circuit and Voltage Waveforms........................18  
8 Detailed Description......................................................20  
8.1 Overview...................................................................20  
8.2 Functional Block Diagram.........................................20  
8.3 Feature Description...................................................20  
8.4 Device Functional Modes..........................................21  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Application.................................................... 22  
10 Power Supply Recommendations..............................24  
11 Layout...........................................................................24  
11.1 Layout Guidelines................................................... 24  
11.2 Layout Example...................................................... 24  
12 Device and Documentation Support..........................25  
12.1 Related Documentation.......................................... 25  
12.2 Receiving Notification of Documentation Updates..25  
12.3 Support Resources................................................. 25  
12.4 Trademarks.............................................................25  
12.5 Electrostatic Discharge Caution..............................25  
12.6 Glossary..................................................................25  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 25  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (June 2020) to Revision C (July 2020)  
Page  
Added BQB (WQFN) package option to Device Information table..................................................................... 1  
Updated the numbering format for tables, figures and cross-references throughout the document...................1  
Changes from Revision A (April 2020) to Revision B (June 2020)  
Page  
Changed RSV device status from Preview to Active .........................................................................................1  
Changes from Revision * (February 2020) to Revision A (April 2020)  
Page  
Changed device status from Advance Information to Production Data ............................................................. 1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
5 Pin Configuration and Functions  
DIR1  
DIR2  
A1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCCA  
VCCB  
B1  
2
DIR2  
A1  
15 VCCB  
14 B1  
13 B2  
12 B3  
11 B4  
10 GND  
3
4
5
6
7
A2  
A2  
B2  
Thermal  
Pad  
A3  
A3  
B3  
A4  
A4  
B4  
DIR3  
DIR3  
DIR4  
GND  
OE  
Figure 5-2. BQB Package Preview 16-Pin WQFN  
Transparent Top View  
Figure 5-1. PW Package 16-Pin TSSOP Top View  
16 15 14 13  
1
12  
B1  
A1  
2
3
4
11 B2  
A2  
A3  
A4  
10  
B3  
B4  
9
5
6
7
8
Figure 5-3. RSV Package 16-Pin UQFN Transparent Top View  
Pin Functions  
PIN  
NAME  
A1  
NO.  
TYPE  
DESCRIPTION  
PW  
3
RSV  
1
BQB  
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Input/output A1. Referenced to VCCA  
Input/output A2. Referenced to VCCA  
Input/output A3. Referenced to VCCA  
Input/output A4. Referenced to VCCA  
Input/output B1. Referenced to VCCB  
Input/output B2. Referenced to VCCB  
Input/output B3. Referenced to VCCB  
Input/output B4. Referenced to VCCB  
.
.
.
.
.
.
.
.
A2  
4
2
4
A3  
5
3
5
A4  
6
4
6
B1  
14  
13  
12  
11  
12  
11  
10  
9
14  
13  
12  
11  
B2  
B3  
B4  
Direction-control input for port 1. Referenced to  
VCCA  
DIR1  
DIR2  
DIR3  
DIR4  
1
2
7
8
15  
16  
5
1
2
7
8
I
I
I
I
.
Direction-control input for port 2. Referenced to  
VCCA  
.
Direction-control input for port 3. Referenced to  
VCCA  
.
Direction-control input for port 4. Referenced to  
VCCA  
6
.
Tri-state output enable. Pull OE high to place all  
OE  
9
7
8
9
I
outputs in tri-state mode. Referenced to VCCA  
.
GND  
VCCA  
10  
16  
10  
16  
Ground  
A-port power supply voltage. 0.65 V ≤ VCCA ≤ 3.6  
V
14  
B-port power supply voltage. 0.65 V ≤ VCCB ≤ 3.6  
V
VCCB  
15  
13  
15  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
MAX UNIT  
VCCA Supply voltage A  
VCCB Supply voltage B  
4.2  
4.2  
4.2  
4.2  
4.2  
4.2  
4.2  
V
V
I/O Ports (A Port)  
I/O Ports (B Port)  
Control Inputs  
A Port  
VI  
Input Voltage(2)  
V
VO  
VO  
Voltage applied to any output in the high-impedance or power-off state(2)  
Voltage applied to any output in the high or low state(2) (3)  
V
V
B Port  
A Port  
–0.5 VCCA + 0.2  
–0.5 VCCB + 0.2  
–50  
B Port  
IIK  
IOK  
IO  
Input clamp current  
VI < 0  
mA  
mA  
Output clamp current  
VO < 0  
–50  
Continuous output current  
Continuous current through VCC or GND  
Junction Temperature  
–50  
50 mA  
100 mA  
150 °C  
150 °C  
–100  
Tj  
Tstg  
Storage temperature  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current rating is observed.  
6.2 ESD Ratings  
VALUE  
±8000  
±1000  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN74AXC4T774-Q1  
 
 
 
 
 
 
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.65  
MAX UNIT  
VCCA  
VCCB  
Supply voltage A  
Supply voltage B  
3.6  
3.6  
V
V
0.65  
VCCI = 0.65 V - 0.75 V  
VCCI = 0.76 V - 1 V  
VCCI = 1.1 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3 V - 3.6 V  
VCCI x 0.70  
VCCI x 0.70  
VCCI x 0.65  
1.6  
Data Inputs  
2
VIH  
High-level input voltage  
VCCA = 0.65 V - 0.75 V  
VCCA = 0.76 V - 1 V  
VCCA = 1.1 V - 1.95 V  
VCCA = 2.3 V - 2.7 V  
VCCA = 3 V - 3.6 V  
VCCI = 0.65 V - 0.75 V  
VCCI = 0.76 V - 1 V  
VCCI = 1.1 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3 V - 3.6 V  
VCCA x 0.70  
VCCA x 0.70  
VCCA x 0.65  
1.6  
Control Inputs(DIRx,  
OE), Referenced to VCCA  
2
VCCI x 0.30  
VCCI x 0.30  
VCCI x 0.35  
0.7  
Data Inputs  
0.8  
VIL  
Low-level input voltage  
V
VCCA = 0.65 V - 0.75 V  
VCCA = 0.76 V - 1 V  
VCCA = 1.1 V - 1.95 V  
VCCA = 2.3 V - 2.7 V  
VCCA = 3 V - 3.6 V  
VCCA x 0.30  
VCCA x 0.30  
VCCA x 0.35  
0.7  
Control Inputs(DIRx,  
OE), Referenced to VCCA  
0.8  
VI  
Input voltage(1)  
Output voltage  
0
0
0
3.6  
V
V
Active State  
Tri-State  
VCCO  
VO  
3.6  
Δt/Δv(2) Input transition rise and fall time  
10 ns/V  
125 °C  
TA Operating free-air temperature  
–40  
(1) VCCI is the VCC associated with the input port.VCCO is the VCC associated with the output port.  
(2) All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,  
Implications of Slow or Floating CMOS Inputs, SCBA004.  
6.4 Thermal Information  
SN74AXC4T774-Q1  
THERMAL METRIC(1)  
PW (TSSOP) RSV (UQFN) BQB (WQFN)  
UNIT  
16 PINS  
118.2  
48.6  
64.5  
7.3  
16 PINS  
130.8  
69.1  
59.9  
3.9  
16 PINS  
73.7  
70.9  
43.5  
4.9  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
YJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
YJB  
63.9  
NA  
58.3  
NA  
43.5  
21.2  
RθJC(bottom)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74AXC4T774-Q1  
 
 
 
 
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted) (1) (2) (4)  
Operating free-air temperature (TA)  
–40°C to 85°C –40°C to 125°C  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
VCCO  
VCCO  
IOH = –100 µA  
0.7 V - 3.6 V  
0.7 V - 3.6 V  
0.1  
0.55  
0.58  
0.65  
0.85  
1.05  
1.2  
0.1  
0.55  
0.58  
0.65  
0.85  
1.05  
1.2  
IOH = –50 µA  
IOH = –200 µA  
IOH = –500 µA  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
High-level output  
voltage  
VOH  
VI = VIH  
V
IOH = –3 mA  
IOH = –6 mA  
IOH = –8 mA  
IOH = –9 mA  
IOH = –12 mA  
IOL = 100 µA  
IOL = 50 µA  
IOL = 200 µA  
IOL = 500 µA  
IOL = 3 mA  
1.4 V  
1.4 V  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
1.75  
2.3  
1.75  
2.3  
3 V  
3 V  
0.7 V - 3.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.7 V - 3.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.1  
0.1  
0.1  
0.1  
0.18  
0.2  
0.18  
0.2  
Low-level output  
voltage  
VOL  
VI = VIL  
0.25  
0.35  
0.45  
0.55  
0.7  
0.25  
0.35  
0.45  
0.55  
0.7  
V
IOL = 6 mA  
1.4 V  
1.4 V  
IOL = 8 mA  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
IOL = 9 mA  
IOL = 12 mA  
3 V  
3 V  
Control inputs (DIRx, OE):VI =  
VCCA or GND  
0.65 V- 3.6 V  
0.65 V- 3.6 V  
0.65 V- 3.6 V  
0.65 V- 3.6 V  
–0.5  
–4  
0.5  
4
–1  
–8  
1
8
µA  
µA  
Input leakage  
current  
II  
Data Inputs (Ax, Bx),VI = VCCI  
or GND  
A Port: VI or VO = 0 V - 3.6 V 0 V  
0 V - 3.6 V  
0 V  
–4  
–4  
4
4
–8  
–8  
8
8
Partial power  
down current  
Ioff  
µA  
µA  
B Port: VI or VO = 0 V - 3.6 V 0 V - 3.6 V  
Tri-state output A or B Port, VI = VCCI or GND,  
IOZ  
3.6 V  
3.6 V  
–4  
4
–8  
8
current (3)  
VO = VCCO or GND, OE = VIH  
0.65 V- 3.6 V  
0 V  
0.65 V- 3.6 V  
3.6 V  
15  
27  
VCCA supply  
current  
VI = VCCI  
IO = 0  
ICCA  
–2  
–12  
µA  
µA  
or GND  
3.6 V  
0 V  
10  
15  
10  
18  
27  
18  
0.65 V- 3.6 V  
0 V  
0.65 V- 3.6 V  
3.6 V  
VCCB supply  
current  
VI = VCCI  
IO = 0  
ICCB  
or GND  
3.6 V  
0 V  
–2  
–12  
ICCA  
ICCB  
+
Combined  
supply current  
VI = VCCI  
IO = 0  
0.65 V- 3.6 V  
3.3 V  
0.65 V- 3.6 V  
3.3 V  
21  
40  
µA  
pF  
pF  
or GND  
Control Input  
Capacitance  
Ci  
VI = 3.3 V or GND  
4.5  
6.5  
4.5  
6.5  
Data I/O  
Capacitance  
OE = VCCA, VO = 1.65V DC +1  
MHz -16 dBm sine wave  
Cio  
3.3 V  
3.3 V  
(1) VCCI is the VCC associated with the input port.  
(2) VCCO is the VCC associated with the output port.  
(3) For I/O ports, the parameter IOZ includes the input leakage current.  
(4) All typical data is taken at 25°C.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74AXC4T774-Q1  
 
 
 
 
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6.6 Switching Characteristics, VCCA = 0.7 ± 0.05 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B–Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
172  
172  
172  
172  
205  
205  
189  
189  
287  
287  
309  
309  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
120  
120  
141  
141  
205  
205  
161  
161  
287  
287  
219  
219  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
88  
88  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
51  
51  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
46  
46  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
56  
56  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
78  
78  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
221  
221  
9
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
109  
109  
205  
205  
145  
145  
287  
287  
177  
177  
51  
16  
12  
9
51  
16  
12  
9
9
205  
205  
102  
102  
287  
287  
133  
133  
205  
205  
99  
205  
205  
102  
102  
287  
287  
132  
132  
205  
205  
113  
113  
287  
287  
165  
165  
205  
205  
176  
176  
287  
287  
418  
418  
OE  
OE  
OE  
OE  
tdis Disable time  
ns  
ns  
99  
287  
287  
127  
127  
ten Enable time  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6.7 Switching Characteristics, VCCA = 0.8 ± 0.04 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V 1.5 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX  
)
PARAMETER  
FROM  
TO  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
141  
141  
120  
120  
114  
114  
156  
156  
161  
161  
258  
258  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
96  
96  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
73  
73  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
39  
39  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
29  
29  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
28  
28  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
29  
29  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
40  
40  
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
96  
76  
39  
16  
11  
9
9
96  
76  
39  
16  
12  
9
9
114  
114  
131  
131  
161  
161  
174  
174  
114  
114  
116  
116  
161  
161  
137  
137  
114  
114  
71  
114  
114  
67  
114  
114  
68  
114  
114  
70  
114  
114  
84  
OE  
OE  
OE  
OE  
tdis Disable time  
ns  
ns  
71  
67  
68  
70  
84  
161  
161  
90  
161  
161  
73  
161  
161  
71  
161  
161  
77  
161  
161  
106  
106  
ten Enable time  
90  
73  
71  
77  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6.8 Switching Characteristics, VCCA = 0.9 ± 0.045 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V 1.5 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX  
)
PARAMETER  
FROM  
TO  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
109  
109  
88  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
76  
76  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
60  
60  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
33  
33  
33  
33  
83  
83  
51  
51  
94  
94  
70  
74  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
23  
23  
16  
16  
83  
83  
46  
46  
94  
94  
52  
54  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
21  
21  
11  
12  
83  
83  
46  
46  
94  
94  
45  
47  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
21  
21  
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
24  
24  
9
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
73  
60  
88  
73  
60  
9
9
83  
83  
83  
83  
83  
46  
46  
94  
94  
43  
43  
83  
83  
54  
54  
94  
94  
51  
51  
OE  
OE  
OE  
OE  
83  
83  
83  
tdis Disable time  
ns  
ns  
138  
138  
94  
112  
112  
94  
97  
97  
94  
94  
94  
94  
ten Enable time  
203  
203  
140  
140  
110  
110  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6.9 Switching Characteristics, VCCA = 1.2 ± 0.1 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V 1.5 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX  
)
PARAMETER  
FROM  
TO  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
50  
50  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
39  
39  
39  
39  
28  
29  
95  
95  
39  
40  
87  
87  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
33  
33  
33  
33  
28  
29  
78  
79  
39  
40  
70  
70  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
20  
20  
20  
20  
28  
29  
33  
34  
39  
40  
51  
55  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
14  
14  
15  
15  
28  
29  
26  
27  
39  
40  
38  
42  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
12  
12  
11  
12  
28  
29  
25  
26  
39  
40  
33  
36  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
12  
12  
7
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
51  
51  
8
7
28  
28  
29  
23  
24  
39  
40  
26  
28  
28  
29  
26  
26  
39  
40  
25  
26  
OE  
OE  
OE  
OE  
29  
tdis Disable time  
ns  
ns  
123  
124  
39  
40  
ten Enable time  
124  
124  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6.10 Switching Characteristics, VCCA = 1.5 ± 0.1 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V 1.5 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX  
)
PARAMETER  
FROM  
TO  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
16  
16  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
16  
16  
29  
29  
19  
20  
91  
92  
24  
25  
29  
30  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
16  
16  
23  
23  
19  
20  
74  
75  
24  
25  
33  
33  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
15  
15  
14  
14  
19  
20  
29  
30  
24  
25  
41  
42  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
11  
11  
11  
19  
20  
22  
23  
24  
25  
31  
33  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
6
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
47  
7
47  
9
7
6
19  
19  
20  
20  
22  
24  
25  
27  
29  
19  
20  
20  
19  
24  
25  
22  
24  
19  
20  
20  
20  
24  
25  
19  
21  
OE  
OE  
OE  
OE  
20  
tdis Disable time  
ns  
ns  
120  
120  
24  
25  
ten Enable time  
28  
29  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6.11 Switching Characteristics, VCCA = 1.8 ± 0.15 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V 1.5 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX  
)
PARAMETER  
FROM  
TO  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
12  
12  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
12  
28  
28  
17  
18  
90  
90  
19  
20  
20  
22  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
12  
21  
21  
17  
18  
73  
74  
19  
20  
20  
22  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
12  
12  
12  
17  
18  
28  
29  
19  
20  
32  
34  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
7
7
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
7
7
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
56  
10  
10  
17  
18  
21  
22  
19  
20  
27  
29  
8
6
5
56  
9
7
6
17  
17  
18  
19  
20  
19  
20  
24  
26  
17  
18  
16  
17  
19  
20  
20  
22  
17  
18  
18  
18  
19  
20  
18  
19  
OE  
OE  
OE  
OE  
18  
tdis Disable time  
ns  
ns  
117  
119  
19  
20  
ten Enable time  
21  
22  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6.12 Switching Characteristics, VCCA = 2.5 ± 0.2 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V 1.5 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX  
)
PARAMETER  
FROM  
TO  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
30  
30  
13  
14  
89  
89  
14  
16  
14  
15  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
7
7
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
7
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
78  
21  
21  
13  
14  
72  
72  
14  
16  
13  
15  
10  
10  
13  
14  
26  
28  
14  
16  
14  
16  
8
7
6
5
78  
8
7
6
5
13  
13  
14  
19  
21  
14  
16  
15  
17  
13  
14  
18  
19  
14  
16  
16  
18  
13  
14  
14  
15  
14  
16  
15  
17  
13  
14  
17  
17  
14  
16  
15  
16  
OE  
OE  
OE  
OE  
14  
tdis Disable time  
ns  
ns  
115  
117  
14  
16  
ten Enable time  
15  
16  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6.13 Switching Characteristics, VCCA = 3.3 ± 0.3 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
Test Condtions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V 1.5 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX  
)
PARAMETER  
FROM  
TO  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
221  
221  
16  
40  
40  
16  
16  
89  
89  
12  
13  
12  
12  
24  
24  
16  
16  
72  
72  
12  
13  
11  
12  
12  
12  
16  
16  
26  
27  
12  
13  
11  
12  
10  
10  
16  
16  
19  
20  
12  
13  
11  
12  
7
6
5
7
6
5
16  
16  
17  
18  
12  
13  
12  
13  
16  
16  
14  
14  
12  
13  
12  
13  
16  
16  
16  
16  
12  
13  
12  
13  
OE  
OE  
OE  
OE  
16  
tdis Disable time  
ns  
ns  
115  
117  
12  
13  
ten Enable time  
13  
14  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6.14 Operating Characteristics: TA = 25°C  
PARAMETER  
TEST CONDITIONS  
VCCA  
0.7 V  
VCCB  
0.7 V  
MIN  
TYP  
2.4  
MAX UNIT  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
2.3  
2.2  
Power Dissipation Capacitance CL = 0, RL = Open  
per transceiver (A to B: outputs f = 1 MHz  
2.2  
pF  
2.2  
enabled)  
trise = tfall = 1 ns  
2.2  
2.4  
3.0  
1.5  
1.5  
1.5  
Power Dissipation Capacitance CL = 0, RL = Open  
per transceiver (A to B: outputs f = 1 MHz  
1.5  
pF  
pF  
pF  
1.5  
disabled)  
trise = tfall = 1 ns  
1.5  
1.6  
2.0  
CpdA  
13.4  
15.0  
14.0  
20.7  
29.6  
40.2  
65.8  
91.7  
1.3  
Power Dissipation Capacitance CL = 0, RL = Open  
per transceiver (B to A: outputs f = 1 MHz  
enabled)  
trise = tfall = 1 ns  
1.1  
1.1  
Power Dissipation Capacitance CL = 0, RL = Open  
per transceiver (B to A: outputs f = 1 MHz  
1.0  
1.0  
disabled)  
trise = tfall = 1 ns  
1.0  
1.0  
1.0  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
www.ti.com  
MAX UNIT  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
PARAMETER  
TEST CONDITIONS  
VCCA  
0.7 V  
VCCB  
0.7 V  
MIN  
TYP  
13.4  
13.8  
14.9  
20.6  
29.6  
40.3  
66.2  
92.5  
1.3  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
Power Dissipation Capacitance CL = 0, RL = Open  
per transceiver (A to B: outputs f = 1 MHz  
enabled)  
pF  
pF  
pF  
pF  
trise = tfall = 1 ns  
1.2  
1.1  
Power Dissipation Capacitance CL = 0, RL = Open  
per transceiver (A to B: outputs f = 1 MHz  
disabled)  
1.1  
1.1  
trise = tfall = 1 ns  
1.1  
1.1  
1.1  
CpdB  
2.5  
2.4  
2.3  
Power Dissipation Capacitance CL = 0, RL = Open  
per transceiver (B to A: outputs f = 1 MHz  
enabled)  
2.2  
2.3  
trise = tfall = 1 ns  
2.3  
2.5  
3.0  
1.6  
1.5  
1.5  
Power Dissipation Capacitance CL = 0, RL = Open  
per transceiver (B to A: outputs f = 1 MHz  
disabled)  
1.5  
1.5  
trise = tfall = 1 ns  
1.5  
1.6  
2.0  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN74AXC4T774-Q1  
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
6.15 Typical Characteristics  
3.4  
3.2  
3
1.25  
1.2  
VCC = 1.8V  
VCC = 2.5V  
VCC = 3.3V  
1.15  
1.1  
1.05  
1
2.8  
2.6  
2.4  
2.2  
2
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
1.8  
1.6  
1.4  
0.65  
0.6  
VCC = 0.7V  
VCC = 1.2V  
0.55  
0
0.5  
1
1.5  
2
2.5  
IOH (mA)  
3
3.5  
4
4.5  
5
0
2
4
6
8
10  
IOH (mA)  
12  
14  
16  
18  
20  
D001  
D001  
Figure 6-2. Typical (TA=25°C) Output High Voltage  
(VOH) vs Source Current (IOH  
Figure 6-1. Typical (TA=25°C) Output High Voltage  
(VOH) vs Source Current (IOH  
)
)
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
220  
200  
180  
160  
140  
120  
100  
80  
60  
40  
VCC = 1.8V  
VCC = 2.5V  
VCC = 3.3V  
VCC = 0.7V  
VCC = 1.2V  
20  
0
-50  
0
0
2
4
6
8
10  
IOL (mA)  
12  
14  
16  
18  
20  
0
0.5  
1
1.5  
2
2.5  
IOL (mA)  
3
3.5  
4
4.5  
5
D001  
D001  
Figure 6-3. Typical (TA=25°C) Output High Voltage Figure 6-4. Typical (TA=25°C) Output High Voltage  
(VOL) vs Sink Current (IOL (VOL) vs Sink Current (IOL  
)
)
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
7 Parameter Measurement Information  
7.1 Load Circuit and Voltage Waveforms  
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:  
f = 1 MHz  
ZO = 50 Ω  
dv/dt ≤ 1 ns/V  
Measurement Point  
2 x VCCO  
Open  
S1  
RL  
Output Pin  
Under Test  
GND  
(1)  
CL  
RL  
A. CL includes probe and jig capacitance.  
Figure 7-1. Load Circuit  
Table 7-1. Load Circuit Conditions  
Parameter  
VCCO  
RL  
CL  
S1  
VTP  
N/A  
N/A  
Δt/Δv Input transition rise or fall rate  
0.65 V – 3.6 V  
1.1 V – 3.6 V  
1 MΩ  
2 kΩ  
15 pF  
15 pF  
Open  
Open  
tpd  
Propagation (delay) time  
0.65 V – 0.95  
V
20 kΩ  
15 pF  
Open  
N/A  
3 V – 3.6 V  
1.65 V – 2.7 V  
1.1 V – 1.6 V  
2 kΩ  
2 kΩ  
2 kΩ  
15 pF  
15 pF  
15 pF  
2 × VCCO  
2 × VCCO  
2 × VCCO  
0.3 V  
0.15 V  
0.1 V  
ten, tdis Enable time, disable time  
0.65 V – 0.95  
V
20 kΩ  
15 pF  
2 × VCCO  
0.1 V  
3 V – 3.6 V  
1.65 V – 2.7 V  
1.1 V – 1.6 V  
2 kΩ  
2 kΩ  
2 kΩ  
15 pF  
15 pF  
15 pF  
GND  
GND  
GND  
0.3 V  
0.15 V  
0.1 V  
ten, tdis Enable time, disable time  
0.65 V – 0.95  
V
20 kΩ  
15 pF  
GND  
0.1 V  
(1)  
VCCI  
(1)  
VCCI  
Input A, B  
100 kHz  
VCCI / 2  
VCCI / 2  
Input A, B  
500 ps/V œ 10 ns/V  
0 V  
0 V  
VOH  
(2)  
VOH  
tpd  
tpd  
(2)  
Output B, A  
Ensure Monotonic  
Rising and Falling Edge  
(2)  
VOL  
Output B, A  
VCCI / 2  
VCCI / 2  
(2)  
VOL  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur with  
specified RL, CL, and S1  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur with  
specified RL, CL, and S1  
Figure 7-3. Input Transition Rise or Fall Rate  
Figure 7-2. Propagation Delay  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN74AXC4T774-Q1  
 
 
 
 
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
VCCA  
OE  
VCCA / 2  
VCCA / 2  
GND  
tdis  
ten  
(3)  
VCCO  
Output(1)  
VCCO / 2  
VOL + VTP  
(4)  
VOL  
(4)  
VOH  
VOH - VTP  
Output(2)  
VCCO / 2  
GND  
A. Output waveform on the condition that input is driven to a valid Logic Low.  
B. Output waveform on the condition that input is driven to a valid Logic High.  
C. VCCO is the supply pin associated with the output port.  
D. VOH and VOL are typical output voltage levels with specified RL, CL, and S1.  
Figure 7-4. Enable Time And Disable Time  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN74AXC4T774-Q1  
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The SN74AXC4T774-Q1 is a 4-bit, dual-supply noninverting bidirectional voltage level translation device. Ax pins  
and control pins (DIRx and OE) are reference to VCCA logic levels, and Bx pins are referenced to VCCB logic  
levels. The A port is able to accept I/O voltages ranging from 0.65 V to 3.6 V, while the B port can accept I/O  
voltages from 0.65 V to 3.6 V. A high on DIR allows data transmission from A to B and a low on DIR allows data  
transmission from B to A when OE is set to low. When OE is set to high, both Ax and Bx pins are in the high-  
impedance state. See Section 8.4 for a summary of the operation of the control logic.  
8.2 Functional Block Diagram  
One of Four Transceivers  
VCCA  
VCCB  
DIRx  
OE  
Bx  
Ax  
8.3 Feature Description  
8.3.1 Standard CMOS Inputs  
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input  
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum  
input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the  
Electrical Characteristics, using ohm's law (R = V ÷ I).  
Signals applied to the inputs need to have fast edge rates, as defined by Δt/Δv in Recommended Operating  
Conditions to avoid excessive current consumption and oscillations. If a slow or noisy input signal is required, a  
device with a Schmitt-trigger input should be used to condition the input signal prior to the standard CMOS input.  
8.3.2 Balanced High-Drive CMOS Push-Pull Outputs  
A balanced output allows the device to sink and source similar currents. The high drive capability of this device  
creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.  
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without  
being damaged. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at  
all times.  
8.3.3 Partial Power Down (Ioff)  
The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting  
current backflow into the device. The maximum leakage into or out of any input or output pin on the device is  
specified by Ioff in the Electrical Characteristics.  
8.3.4 VCC Isolation  
The inputs and outputs for this device enter a high-impedance state when either supply is <100mV.  
8.3.5 Over-voltage Tolerant Inputs  
Input signals to this device can be driven above the supply voltage so long as they remain below the maximum  
input voltage value specified in the Recommended Operating Conditions.  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN74AXC4T774-Q1  
 
 
 
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
8.3.6 Glitch-free Power Supply Sequencing  
Either supply rail may be powered on or off in any order without producing a glitch on the I/Os (that is, where the  
output erroneously transitions to VCC when it should be held low). Glitches of this nature can be misinterpreted  
by a peripheral as a valid data bit, which could trigger a false device reset of the peripheral, a false device  
configuration of the peripheral, or even a false data initialization by the peripheral. For more information  
regarding the power up glitch performance of the AXC family of level translators, see the Glitch Free Power  
Sequencing With AXC Level Translators application report  
8.3.7 Negative Clamping Diodes  
The inputs and outputs to this device have negative clamping diodes as depicted in Figure 8-1.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to  
the device. The input negative-voltage and output voltage ratings may be exceeded if the input and  
output clamp-current ratings are observed.  
VCC  
Device  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
Figure 8-1. Electrical Placement of Clamping Diodes for Each Input and Output  
8.3.8 Fully Configurable Dual-Rail Design  
Both the VCCA and VCCB pins can be supplied at any voltage from 0.65 V to 3.6 V, making the device suitable for  
translating between any of the voltage nodes (0.7 V, 0.8 V, 0.9 V, 1.2 V, 1.8 V, 2.5 V and 3.3 V).  
8.3.9 Supports High-Speed Translation  
The SN74AXC4T774-Q1 device can support high data-rate applications. The translated signal data rate can be  
up to 310 Mbps when the signal is translated from 1.8 V to 3.3 V.  
8.4 Device Functional Modes  
Table 8-1. Function Table  
(Each Transceiver)  
CONTROL INPUTS(1) (2)  
Port Status  
A PORT  
OPERATION  
OE  
L
DIR  
L
B PORT  
Output (Enabled)  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
Output (Enabled)  
Input (Hi-Z)  
B data to A bus  
A data to B bus  
Isolation  
L
H
H
X
(1) Input circuits of the data I/Os are always active.  
(2) Pins configured as inputs should not be left floating.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN74AXC4T774-Q1  
 
 
 
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The SN74AXC4T774-Q1 device can be used in level-translation applications for interfacing devices or systems  
operating at different interface voltages with one another. The SN74AXC4T774-Q1 device is ideal for use in  
applications where a push-pull driver is connected to the data I/Os. The max data rate can be up to 310 Mbps  
when device translates a signal from 1.8 V to 3.3 V.  
One example application is shown in Figure 9-1, where the SN74AXC4T774-Q1 device is used to translate a low  
voltage SPI signal from an SoC to a higher voltage signal to properly drive the inputs of a GPS module, and vice  
versa.  
9.2 Typical Application  
Pullup Resistors keep device disabled  
during power up. OE inputs may also  
be tied to GND to keep device enabled  
0.7 V  
3.3 V  
0.1 µF  
0.1 µF  
VCCA  
VCCB  
DIR1  
DIR3  
DIR2  
DIR4  
GPS  
Module  
GPIO1  
OE  
SN74AXC4T774  
SoC  
CLK  
MOSI  
MISO  
SS  
CLK  
MOSI  
MISO  
SS  
B1  
B2  
B3  
B4  
A1  
A2  
A3  
A4  
GND  
Figure 9-1. Serial Peripheral Interface (SPI) Application  
9.2.1 Design Requirements  
For this design example, use the parameters listed in Table 9-1.  
Table 9-1. Design Parameters  
DESIGN PARAMETERS  
Input voltage range  
EXAMPLE VALUES  
0.65 V to 3.6 V  
0.65 V to 3.6 V  
Output voltage range  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN74AXC4T774-Q1  
 
 
 
 
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
9.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
– Use the supply voltage of the device that is driving the SN74AXC4T774-Q1 device to determine the input  
voltage range. For a valid logic-high, the value must exceed the high-level input voltage (VIH) of the input  
port. For a valid logic low the value must be less than the low-level input voltage (VIL) of the input port.  
Output voltage range  
– Use the supply voltage of the device that the SN74AXC4T774-Q1 device is driving to determine the output  
voltage range.  
9.2.3 Application Curve  
Figure 9-2. Up Translation at 2.5 MHz (0.7 V to 3.3 V)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN74AXC4T774-Q1  
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
10 Power Supply Recommendations  
Always apply a ground reference to the GND pins first. This device is designed for glitch free power sequencing  
without any supply sequencing requirements such as ramp order or ramp rate.  
This device was designed with various power supply sequencing methods in mind to help prevent unintended  
triggering of downstream devices. For more information regarding the power up glitch performance of the AXC  
family of level translators, see the Glitch Free Power Sequencing With AXC Level Translators application report  
11 Layout  
11.1 Layout Guidelines  
To ensure reliability of the device, following common printed-circuit board layout guidelines are recommended:  
Use bypass capacitors on the power supply pins and place them as close to the device as possible. A 0.1 µF  
capacitor is recommended, but transient performance can be improved by having both 1 µF and 0.1 µF  
capacitors in parallel as bypass capacitors.  
The high drive capability of this device creates fast edges into light loads so routing and load conditions  
should be considered to prevent ringing.  
11.2 Layout Example  
Legend  
Via to VCCA  
Via to VCCB  
A
B
G
Via to GND  
Copper Traces  
SN74AXC4T774RSV  
0.1µF  
G
G
A
0.1µF  
16 15 14 13  
B
CLK from SoC  
1
2
3
4
12  
11  
10  
9
CLK to Module  
MOSI to Module  
MISO from Module  
SS to Module  
B1  
B2  
B3  
B4  
A1  
MOSI from SoC A2  
MISO to SoC  
A3  
SS from SoC A4  
5
6
7
8
G
G
Figure 11-1. Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN74AXC4T774-Q1  
 
 
 
 
SN74AXC4T774-Q1  
SCES918C – FEBRUARY 2020 – REVISED JULY 2020  
www.ti.com  
12 Device and Documentation Support  
12.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Implications of Slow or Floating CMOS Inputs application report  
Texas Instruments, Power Sequencing for AXC Family of Devices application report  
Texas Instruments, SN74AXC4T774 Evaluation Module Tool Folder  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN74AXC4T774-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CAXC4T774QBQBRQ1  
CAXC4T774QRSVRQ1  
PREVIEW  
ACTIVE  
WQFN  
UQFN  
BQB  
RSV  
16  
16  
3000  
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Green (RoHS  
& no Sb/Br)  
NIPDAUAG  
Level-1-260C-UNLIM  
25ZR  
PCAXC4T774QBQBRQ1  
SN74AXC4T774QPWRQ1  
ACTIVE  
ACTIVE  
WQFN  
BQB  
PW  
16  
16  
3000  
2000  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
TSSOP  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-1-260C-UNLIM  
4T774Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN74AXC4T774-Q1 :  
Catalog: SN74AXC4T774  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CAXC4T774QRSVRQ1  
UQFN  
RSV  
PW  
16  
16  
3000  
2000  
178.0  
330.0  
13.5  
12.4  
2.1  
6.9  
2.9  
5.6  
0.75  
1.6  
4.0  
8.0  
12.0  
12.0  
Q1  
Q1  
SN74AXC4T774QPWRQ1 TSSOP  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CAXC4T774QRSVRQ1  
UQFN  
RSV  
PW  
16  
16  
3000  
2000  
189.0  
367.0  
185.0  
367.0  
36.0  
35.0  
SN74AXC4T774QPWRQ1  
TSSOP  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RSV0016A  
UQFN - 0.55 mm max height  
S
C
A
L
E
5
.
0
0
0
ULTRA THIN QUAD FLATPACK - NO LEAD  
1.85  
1.75  
A
B
PIN 1 INDEX AREA  
2.65  
2.55  
C
0.55  
0.45  
SEATING PLANE  
0.05 C  
0.05  
0.00  
2X 1.2  
SYMM  
(0.13) TYP  
5
8
0.45  
0.35  
15X  
4
9
SYMM  
2X 1.2  
12X 0.4  
1
0.25  
16X  
12  
0.15  
0.07  
0.05  
C A B  
13  
16  
0.55  
0.45  
PIN 1 ID  
(45° X 0.1)  
4220314/C 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
SYMM  
(0.7)  
16  
SEE SOLDER MASK  
DETAIL  
13  
12  
16X (0.2)  
1
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
9
4
15X (0.6)  
5
8
(1.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220314/C 02/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
(0.7)  
16  
13  
16X (0.2)  
1
12  
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
4
9
15X (0.6)  
5
8
SYMM  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 25X  
4220314/C 02/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SN74AXC4T774QPWRQ1

具有三态输出和独立方向控制输入汽车类的 4 位双电源总线收发器 | PW | 16 | -40 to 125
TI

SN74AXC4T774RSVR

具有三态输出和独立方向控制输入的 4 位双电源总线收发器 | RSV | 16 | -40 to 125
TI

SN74AXC8T245

8 位双电源总线收发器
TI

SN74AXC8T245-Q1

具有可配置电压转换和三态输出的汽车类 8 位双电源总线收发器
TI

SN74AXC8T245-Q1_V02

SN74AXC8T245-Q1 Automotive 8-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and Tri-State Outputs
TI

SN74AXC8T245-Q1_V03

SN74AXC8T245-Q1 Automotive 8-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and Tri-State Outputs
TI

SN74AXC8T245PW-Q1

SN74AXC8T245-Q1 Automotive 8-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and Tri-State Outputs
TI

SN74AXC8T245PWR

8 位双电源总线收发器 | PW | 24 | -40 to 125
TI

SN74AXC8T245QPWRQ1

具有可配置电压转换和三态输出的汽车类 8 位双电源总线收发器 | PW | 24 | -40 to 125
TI

SN74AXC8T245QRGYQ1

SN74AXC8T245-Q1 Automotive 8-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and Tri-State Outputs
TI

SN74AXC8T245RHL-Q1

SN74AXC8T245-Q1 Automotive 8-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and Tri-State Outputs
TI

SN74AXC8T245RHLR

8 位双电源总线收发器 | RHL | 24 | -40 to 125
TI