SN74AXC8T245PWR [TI]

8 位双电源总线收发器 | PW | 24 | -40 to 125;
SN74AXC8T245PWR
型号: SN74AXC8T245PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8 位双电源总线收发器 | PW | 24 | -40 to 125

总线收发器
文件: 总40页 (文件大小:1740K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
具有可配置电压转换和三态输出的 SN74AXC8T245 8 位双电源总线收发器  
1 特性  
SN74AXC8T245 器件旨在实现数据总线间的异步通  
信。根据方向控制输入(DIR1 DIR2)的逻辑电  
平,此器件将数据从 A 总线传输至 B 总线,或者将数  
据从 B 总线传输至 A 总线。输出使能 (OE) 输入可用  
于禁用输出,从而有效隔离总线。  
1
通过认证且完全可配置的双电源轨设计可允许各个  
端口在 0.65V 3.6V 的电源电压范围内运行  
工作温度范围 -40°C +125°C  
多向控制引脚,支持同步升降转换  
1.8V 转换到 3.3V 时,支持高达 380Mbps 的转  
换速率  
SN74AXC8T245 器件旨在使控制引脚(DIR OE)  
VCCA 为基准。  
VCC 隔离功能可在断电情况下有效隔离两条总线  
局部断电模式可在断电情况下限制回流电流  
该器件完全 适用于 使用 Ioff 的局部断电应用。当器件  
断电时,Ioff 电路将会禁用输出。这会抑制电流反流到  
器件中,从而防止损坏器件。  
兼容 SN74AVC8T245 74AVC8T245 电平转换  
闩锁性能超出 JESD 78 II 类规范要求的 100mA  
V
CC 隔离功能可确保当任一 VCC 输入电源低于 100mV  
静电放电 (ESD) 保护性能超过 JESD 22 规范的要  
时,所有电平转换器输出都将禁用并处于高阻抗状态。  
8000V 人体放电模型  
1000V 充电器件模型  
为了确保电平转换器 I/O 在上电或断电期间处于高阻抗  
状态,应将 OE 通过上拉电阻器接到 VCCA;此电阻器  
的最小值由驱动器的灌电流能力决定。  
2 应用  
器件信息(1)  
企业与通信  
器件编号  
封装  
TSSOP (24)  
VQFN (24)  
UQFN (24)  
封装尺寸(标称值)  
4.40mm × 7.80mm  
3.50mm × 5.50mm  
2.00mm × 4.00mm  
工业  
SN74AXC8T245PW  
SN74AXC8T245RHL  
SN74AXC8T245RJW  
个人电子产品  
无线基础设施  
楼宇自动化  
销售终端  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
3 说明  
典型应用原理图  
3.3 V  
1.5 V  
SN74AXC8T245 器件是一款 8 位反相总线收发器,可  
用于解决在最新电压节点(0.7V0.8V 0.9V)上运  
行的器件与在行业标准电压节点(1.8V2.5V、  
3.3V)上运行的器件之间的电压电平不匹配问题。  
Processor  
VCCA DIR1 DIR2  
VCCB  
B1  
Power Management  
A1  
A2  
A3  
A4  
Control Block  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
SN74AXC8T245  
Data Block  
Interrupts  
Register Map  
Sensor Block  
A5  
A6  
A7  
A8  
器件通过两条独立电源轨(VCCA VCCB)运行,运行  
电压可低至 0.65V。数据引脚 A1 A8 均用于跟踪  
GND  
GND  
VCCA,可承受 0.65V-3.6V 的电源电压。数据引脚 B1  
B8 均用于跟踪 VCCB,可承受 0.65V-3.6V 的电源电  
压。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCES875  
 
 
 
 
 
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 7  
6.6 Switching Characteristics, VCCA = 0.7 V ................... 8  
6.7 Switching Characteristics, VCCA = 0.8 V ................... 9  
6.8 Switching Characteristics, VCCA = 0.9 V ................. 10  
6.9 Switching Characteristics, VCCA = 1.2 V ................. 11  
6.10 Switching Characteristics, VCCA = 1.5 V ............... 12  
6.11 Switching Characteristics, VCCA = 1.8 V ............... 13  
6.12 Switching Characteristics, VCCA = 2.5 V ............... 14  
6.13 Switching Characteristics, VCCA = 3.3 V ............... 15  
6.14 Operating Characteristics: TA = 25°C ................... 16  
Parameter Measurement Information ................ 18  
8
9
Detailed Description ............................................ 20  
8.1 Overview ................................................................. 20  
8.2 Functional Block Diagram ....................................... 20  
8.3 Feature Description................................................. 21  
8.4 Device Functional Modes........................................ 21  
Application and Implementation ........................ 22  
9.1 Application Information............................................ 22  
9.2 Typical Application ................................................. 22  
10 Power Supply Recommendations ..................... 24  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 24  
12 器件和文档支持 ..................................................... 25  
12.1 文档支持................................................................ 25  
12.2 接收文档更新通知 ................................................. 25  
12.3 社区资源................................................................ 25  
12.4 ....................................................................... 25  
12.5 静电放电警告......................................................... 25  
12.6 术语表 ................................................................... 25  
13 机械、封装和可订购信息....................................... 25  
7
4 修订历史记录  
Changes from Revision A (July 2018) to Revision B  
Page  
将数据表状态从混合生产更改为生产数据” .......................................................................................................................... 1  
RJW 封装中删除了封装预览说明 ...................................................................................................................................... 1  
Changes from Original (March 2018) to Revision A  
Page  
已添加 添加了 RJW 作为新的封装选项(预览.................................................................................................................... 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
SN74AXC8T245  
www.ti.com.cn  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
5 Pin Configuration and Functions  
PW Package  
24-Pin TSSOP  
Top View  
RHL Package  
24-Pin VQFN  
Top View  
VCCA  
DIR1  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VCCB  
VCCB  
OE  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
2
3
23  
DIR1  
A1  
VCCB  
22 OE  
21  
4
A2  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
5
20  
A3  
6
19  
A4  
PAD  
7
18  
A5  
9
16  
15  
14  
13  
8
17  
A6  
A8  
DIR2  
GND  
10  
11  
12  
9
16  
A7  
B8  
GND  
10  
11  
15  
A8  
14  
DIR2  
RJW Package  
24-Pin UQFN  
Top View  
1
2
22  
DIR1  
A1  
VCCB  
24 23  
21  
20  
19  
18  
17  
16  
15  
14  
13  
OE  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
3
A2  
4
A3  
5
A4  
6
A5  
7
A6  
8
A7  
9
A8  
11  
12  
10  
DIR2  
Copyright © 2018, Texas Instruments Incorporated  
3
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
A1  
PW, RHL  
RJW  
2
3
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Input/output A1. Referenced to VCCA  
Input/output A2. Referenced to VCCA  
Input/output A3. Referenced to VCCA  
Input/output A4. Referenced to VCCA  
Input/output A5. Referenced to VCCA  
Input/output A6. Referenced to VCCA  
Input/output A7. Referenced to VCCA  
Input/output A8. Referenced to VCCA  
Input/output B1. Referenced to VCCB  
Input/output B2. Referenced to VCCB  
Input/output B3. Referenced to VCCB  
Input/output B4. Referenced to VCCB  
Input/output B5. Referenced to VCCB  
Input/output B6. Referenced to VCCB  
Input/output B7. Referenced to VCCB  
Input/output B8. Referenced to VCCB  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
A2  
3
A3  
5
4
A4  
6
5
A5  
7
6
A6  
8
7
A7  
9
8
A8  
10  
21  
20  
19  
18  
17  
16  
15  
14  
2
9
B1  
20  
19  
18  
17  
16  
15  
14  
13  
1
B2  
B3  
B4  
B5  
B6  
B7  
B8  
DIR1  
Direction-control signal. Referenced to VCCA  
.
Direction-control signal when both VCCA and VCCB 1.4 V.  
DIR2  
GND  
11  
10  
I
Referenced to VCCA. Tie to GND to maintain backward compatibility with  
SN74AVC8T245 device.  
12  
13  
11  
12  
Ground  
Ground  
Output Enable. Pull to GND to enable all outputs. Pull to VCCA to place all  
OE  
22  
21  
I
outputs in high-impedance mode. Referenced to VCCA  
A-port supply voltage. 0.65 V VCCA 3.6 V  
B-port supply voltage. 0.65 V VCCB 3.6 V  
B-port supply voltage. 0.65 V VCCB 3.6 V  
.
VCCA  
1
24  
22  
23  
23  
24  
VCCB  
4
Copyright © 2018, Texas Instruments Incorporated  
SN74AXC8T245  
www.ti.com.cn  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–50  
MAX  
4.2  
UNIT  
V
Supply voltage, VCCA  
Supply voltage, VCCB  
4.2  
V
I/O ports (A port)  
I/O ports (B port)  
Control inputs  
A port  
4.2  
Input voltage, VI(2)  
4.2  
V
4.2  
4.2  
Voltage applied to any output  
in the high-impedance or power-off state, VO  
V
V
(2)  
B port  
4.2  
A port  
VCCA + 0.2  
VCCB + 0.2  
(2) (3)  
Voltage applied to any output in the high or low state, VO  
B port  
Input clamp current, IIK  
VI < 0  
mA  
mA  
mA  
mA  
°C  
Output clamp current, IOK  
VO < 0  
–50  
Continuous output current, IO  
Continuous current through VCCA, VCCB, or GND  
Junction Temperature, TJ  
–50  
50  
–100  
100  
150  
150  
Storage temperature, Tstg  
–65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current rating is observed.  
6.2 ESD Ratings  
VALUE  
±8000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2018, Texas Instruments Incorporated  
5
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)(3)  
MIN  
0.65  
MAX  
3.6  
UNIT  
V
VCCA  
VCCB  
Supply voltage  
Supply voltage  
0.65  
3.6  
V
VCCI = 0.65 V - 0.75 V  
VCCI = 0.76 V - 1 V  
VCCI = 1.1 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3 V - 3.6 V  
VCCI × 0.70  
VCCI × 0.70  
VCCI × 0.65  
1.6  
Data inputs  
2
VIH  
High-level input voltage  
V
VCCA = 0.65 V - 0.75 V  
VCCA = 0.76 V - 1 V  
VCCA = 1.1 V - 1.95 V  
VCCA = 2.3 V - 2.7 V  
VCCA = 3 V - 3.6 V  
VCCI = 0.65 V - 0.75 V  
VCCI = 0.76 V - 1 V  
VCCI = 1.1 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3 V - 3.6 V  
VCCA × 0.70  
VCCA × 0.70  
VCCA × 0.65  
1.6  
Control inputs  
(DIR, OE)  
Referenced to VCCA  
2
VCCI × 0.30  
VCCI × 0.30  
VCCI × 0.35  
0.7  
Data inputs  
0.8  
VIL  
Low-level input voltage  
V
VCCA = 0.65 V - 0.75 V  
VCCA = 0.76 V - 1 V  
VCCA = 1.1 V - 1.95 V  
VCCA = 2.3 V - 2.7 V  
VCCA = 3 V - 3.6 V  
VCCA × 0.30  
VCCA × 0.30  
VCCA × 0.35  
0.7  
Control inputs  
(DIR, OE)  
Referenced to VCCA  
0.8  
VI  
Input voltage(3)  
Output voltage  
0
0
0
3.6  
V
V
(2)  
Active state  
Tri-state  
VCCO  
VO  
3.6  
10  
Δt/Δv  
Input transition rise or fall rate  
Operating free-air temperature  
ns/V  
°C  
TA  
–40  
125  
(1) VCCI is the VCC associated with the input port.  
(2) VCCO is the VCC associated with the output port.  
(3) All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. See the Implications of Slow or  
Floating CMOS Inputs application report.  
6.4 Thermal Information  
SN74AXC8T245  
THERMAL METRIC  
PW (TSSOP)  
24 PINS  
92.0  
RHL (VQFN)  
24 PINS  
35.0  
RJW (UQFN)  
24 PINS  
123.1  
65.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
29.3  
39.9  
46.7  
13.8  
55.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
0.3  
3.9  
ψJB  
46.2  
13.8  
54.9  
RθJC(bot)  
N/A  
1.4  
N/A  
6
Copyright © 2018, Texas Instruments Incorporated  
SN74AXC8T245  
www.ti.com.cn  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
6.5 Electrical Characteristics  
Over recommended operating free-air temperature range (unless otherwise noted)(1)  
–40°C to 85°C  
MIN TYP(2) MAX  
VCCO – 0.1  
–40°C to 125°C  
MIN TYP(2) MAX  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
UNIT  
IOH = –100 µA  
IOH = –50 µA  
IOH = –200 µA  
IOH = –500 µA  
0.7 V - 3.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.7 V - 3.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
VCCO – 0.1  
0.55  
0.58  
0.65  
0.85  
1.05  
1.2  
0.55  
0.58  
0.65  
0.85  
1.05  
1.2  
High-level  
VOH output  
voltage  
VI = VIH  
IOH = -3 mA  
IOH = -6 mA  
IOH = -8 mA  
IOH = -9 mA  
IOH = -12 mA  
IOL = 100 µA  
IOL = 50 µA  
IOL = 200 µA  
IOL = 500 µA  
IOL = 3 mA  
IOL = 6 mA  
IOL = 8 mA  
IOL = 9 mA  
IOL = 12 mA  
V
1.4 V  
1.4 V  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
1.75  
2.3  
1.75  
2.3  
3 V  
3 V  
0.7 V - 3.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.7 V - 3.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.1  
0.1  
0.1  
0.1  
0.18  
0.2  
0.18  
0.2  
Low-level  
VOL output  
voltage  
VI = VIL  
0.25  
0.35  
0.45  
0.55  
0.7  
0.25  
0.35  
0.45  
0.55  
0.7  
V
1.4 V  
1.4 V  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
3 V  
3 V  
Input leakage Control Inputs (DIR, OE):  
II  
0.65 V - 3.6 V  
0 V  
0.65 V - 3.6 V  
0 V - 3.6 V  
0 V  
-0.5  
-4  
0.5  
4
-1  
-8  
-8  
1
8
8
µA  
µA  
current  
VI = VCCA or GND  
A Port:  
VI or VO = 0 V - 3.6 V  
Partial power  
down current  
Ioff  
B Port:  
0 V - 3.6 V  
-4  
4
VI or VO = 0 V - 3.6 V  
A Port:  
VO = VCCO or GND, VI = VCCI  
or GND, OE = VIH  
3.6 V  
3.6 V  
3.6 V  
3.6 V  
-4  
-4  
4
-8  
-8  
8
High-  
impedance  
state output  
current  
IOZ  
µA  
B Port:  
VO = VCCO or GND, VI = VCCI  
or GND, OE = VIH  
4
8
0.65 V - 3.6 V  
0 V  
0.65 V - 3.6 V  
3.6 V  
19  
40  
VCCA supply  
current  
ICCA  
VI = VCCI or GND, IO = 0 mA  
-2  
-2  
-12  
-12  
µA  
µA  
3.6 V  
0 V  
12  
18  
12  
25  
38  
25  
0.65 V - 3.6 V  
0 V  
0.65 V - 3.6 V  
3.6 V  
VCCB supply  
current  
ICCB  
VI = VCCI or GND, IO = 0 mA  
VI = VCCI or GND, IO = 0 mA  
3.6 V  
0 V  
ICCA Combined  
supply  
ICCB current  
+
0.65 V - 3.6 V  
3.3 V  
0.65 V - 3.6 V  
3.3 V  
25  
55  
µA  
pF  
pF  
Input  
Ci  
Control Inputs (DIR, OE):  
VI = 3.3 V or GND  
4.5  
5.7  
4.5  
5.7  
capacitance  
Ports A and B:  
OE = VCCA, VO = 1.65V DC +  
1 MHz -16 dBm sine wave  
Data I/O  
capacitance  
Cio  
3.3 V  
3.3 V  
(1) VCCO is the VCC associated with the output port.  
(2) All typical values are for TA = 25°C  
Copyright © 2018, Texas Instruments Incorporated  
7
 
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
www.ti.com.cn  
6.6 Switching Characteristics, VCCA = 0.7 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
0.7 V ± 0.05 V  
MIN  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
MAX  
UNIT  
MAX  
172  
172  
172  
172  
192  
195  
156  
157  
237  
237  
223  
223  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
114  
114  
153  
153  
192  
195  
129  
129  
237  
237  
145  
145  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
82  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
49  
49  
From input A  
to output B  
82  
Propagation  
delay  
tpd  
tdis  
ten  
ns  
126  
126  
192  
195  
118  
120  
237  
237  
106  
106  
88  
From input B  
to output A  
88  
192  
195  
120  
122  
237  
237  
74  
From inputOE  
to output A  
Disable time  
Enable time  
ns  
ns  
From inputOE  
to output B  
From input OE  
to output A  
From input OE  
to output B  
74  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
1.5 V ± 0.1 V  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
MAX  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
46  
MIN  
MAX  
49  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
61  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
142  
142  
81  
From input A  
to output B  
46  
49  
61  
Propagation  
delay  
tpd  
tdis  
ten  
ns  
83  
82  
81  
From input B  
to output A  
83  
82  
81  
81  
192  
195  
69  
192  
195  
66  
192  
195  
67  
192  
195  
150  
150  
237  
237  
552  
552  
From inputOE  
to output A  
Disable time  
Enable time  
ns  
ns  
From inputOE  
to output B  
70  
67  
67  
237  
237  
68  
237  
237  
69  
237  
237  
84  
From input OE  
to output A  
From input OE  
to output B  
68  
69  
84  
8
Copyright © 2018, Texas Instruments Incorporated  
SN74AXC8T245  
www.ti.com.cn  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
6.7 Switching Characteristics, VCCA = 0.8 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
0.7 V ± 0.05 V  
MIN  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
MIN MAX  
0.5 32  
UNIT  
MAX  
153  
153  
114  
114  
101  
103  
141  
142  
102  
102  
202  
202  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
95  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
62  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
From input A  
to output B  
95  
62  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
32  
52  
Propagation  
delay  
tpd  
ns  
95  
78  
From input B  
to output A  
95  
78  
52  
101  
103  
114  
115  
102  
102  
124  
124  
101  
103  
104  
106  
102  
102  
86  
101  
103  
106  
109  
102  
102  
52  
From inputOE  
to output A  
tdis  
Disable time  
Enable time  
ns  
ns  
From inputOE  
to output B  
From input OE  
to output A  
ten  
From input OE  
to output B  
86  
52  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
1.5 V ± 0.1 V  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
UNIT  
MIN  
MAX  
26  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
25  
MIN  
MAX  
35  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
25  
25  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
From input A  
to output B  
26  
25  
35  
Propagation  
delay  
tpd  
tdis  
ten  
ns  
42  
41  
40  
40  
From input B  
to output A  
42  
41  
40  
40  
101  
103  
55  
101  
103  
51  
101  
103  
49  
101  
103  
51  
From inputOE  
to output A  
Disable time  
Enable time  
ns  
ns  
From inputOE  
to output B  
57  
53  
50  
52  
102  
102  
44  
102  
102  
43  
102  
102  
45  
102  
102  
58  
From input OE  
to output A  
From input OE  
to output B  
44  
43  
45  
58  
Copyright © 2018, Texas Instruments Incorporated  
9
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
www.ti.com.cn  
6.8 Switching Characteristics, VCCA = 0.9 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
UNIT  
MIN  
MAX  
127  
127  
82  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
78  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
52  
MIN  
MAX  
23  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
From input A  
to output B  
78  
52  
23  
Propagation  
delay  
tpd  
tdis  
ten  
ns  
63  
52  
39  
From input B  
to output A  
82  
63  
52  
39  
125  
128  
131  
133  
124  
128  
191  
191  
125  
128  
105  
107  
124  
128  
113  
113  
125  
128  
96  
125  
128  
99  
From inputOE  
to output A  
Disable time  
Enable time  
ns  
ns  
From inputOE  
to output B  
98  
101  
124  
128  
41  
124  
128  
75  
From input OE  
to output A  
From input OE  
to output B  
75  
41  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
1.5 V ± 0.1 V  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
17  
MIN  
MAX  
15  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
14  
MIN  
MAX  
17  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
From input A  
to output B  
17  
15  
14  
17  
Propagation  
delay  
tpd  
ns  
28  
24  
22  
22  
From input B  
to output A  
28  
24  
22  
22  
125  
128  
47  
125  
128  
44  
125  
128  
40  
125  
128  
73  
From inputOE  
to output A  
tdis  
Disable time  
Enable time  
ns  
ns  
From inputOE  
to output B  
50  
46  
42  
73  
124  
128  
34  
124  
128  
32  
124  
128  
31  
124  
128  
35  
From input OE  
to output A  
ten  
From input OE  
to output B  
34  
32  
31  
35  
10  
Copyright © 2018, Texas Instruments Incorporated  
SN74AXC8T245  
www.ti.com.cn  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
6.9 Switching Characteristics, VCCA = 1.2 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
88  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
52  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
15  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
39  
39  
23  
23  
87  
91  
From input A  
to output B  
88  
52  
15  
Propagation  
delay  
tpd  
ns  
49  
32  
15  
From input B  
to output A  
49  
32  
15  
From  
inputOE  
to output A  
87  
87  
87  
91  
91  
91  
Disable  
time  
tdis  
ns  
ns  
From  
inputOE  
to output B  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
119  
121  
0.5  
0.5  
94  
96  
0.5  
0.5  
85  
88  
0.5  
0.5  
89  
93  
From input  
OE  
to output A  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
34  
36  
0.5  
0.5  
34  
36  
0.5  
0.5  
34  
36  
0.5  
0.5  
34  
36  
ten Enable time  
From input  
OE  
to output B  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
168  
168  
0.5  
0.5  
98  
98  
0.5  
0.5  
61  
61  
0.5  
0.5  
29  
30  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
1.5 V ± 0.1 V  
MIN  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
UNIT  
MAX  
10  
10  
13  
13  
87  
91  
38  
41  
34  
36  
22  
23  
MIN  
MAX  
9
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
7
MIN  
MAX  
7
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
From input A  
to output B  
9
7
8
Propagation  
delay  
tpd  
ns  
11  
11  
87  
91  
35  
38  
34  
36  
19  
20  
8
7
From input B  
to output A  
8
7
87  
91  
31  
33  
34  
36  
17  
18  
87  
91  
29  
31  
34  
36  
17  
18  
From inputOE  
to output A  
tdis  
Disable time  
Enable time  
ns  
ns  
From inputOE  
to output B  
From input OE  
to output A  
ten  
From input OE  
to output B  
Copyright © 2018, Texas Instruments Incorporated  
11  
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
www.ti.com.cn  
6.10 Switching Characteristics, VCCA = 1.5 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
MAX  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
84  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
42  
42  
26  
26  
34  
37  
89  
91  
21  
23  
90  
90  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
28  
28  
17  
17  
34  
37  
80  
83  
21  
23  
55  
55  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
13  
13  
10  
10  
34  
37  
85  
89  
21  
23  
24  
25  
From input A  
to output B  
84  
Propagation  
delay  
tpd  
tdis  
ten  
ns  
46  
From input B  
to output A  
46  
34  
From inputOE  
to output A  
37  
Disable time  
Enable time  
ns  
ns  
115  
117  
21  
From inputOE  
to output B  
From input OE  
to output A  
23  
159  
159  
From input OE  
to output B  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
1.5 V ± 0.1 V  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
UNIT  
MIN  
MAX  
9
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
7
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
6
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
5
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
From input A  
to output B  
9
7
6
6
Propagation  
delay  
tpd  
tdis  
ten  
ns  
9
7
6
5
From input B  
to output A  
9
8
6
5
34  
37  
35  
38  
21  
23  
17  
18  
34  
37  
31  
34  
21  
23  
15  
15  
34  
37  
28  
31  
21  
23  
12  
13  
34  
37  
25  
27  
21  
23  
11  
12  
From inputOE  
to output A  
Disable time  
Enable time  
ns  
ns  
From inputOE  
to output B  
From input OE  
to output A  
From input OE  
to output B  
12  
Copyright © 2018, Texas Instruments Incorporated  
SN74AXC8T245  
www.ti.com.cn  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
6.11 Switching Characteristics, VCCA = 1.8 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
UNIT  
MIN  
MAX  
82  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
41  
41  
25  
25  
37  
40  
87  
89  
17  
19  
88  
88  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
24  
24  
15  
15  
37  
40  
78  
81  
17  
19  
54  
54  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
11  
11  
9
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
From input A  
to output B  
82  
Propagation  
delay  
tpd  
tdis  
ten  
ns  
49  
From input B  
to output A  
49  
9
37  
37  
40  
83  
87  
17  
19  
23  
23  
From inputOE  
to output A  
40  
Disable time  
Enable time  
ns  
ns  
113  
115  
17  
From inputOE  
to output B  
From input OE  
to output A  
19  
157  
157  
From input OE  
to output B  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
1.5 V ± 0.1 V  
MIN MAX  
0.5  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
MAX  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
6
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
5
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
8
5
5
From input A  
to output B  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
7
6
Propagation  
delay  
tpd  
tdis  
ten  
ns  
7
6
5
4
From input B  
to output A  
7
7
5
4
37  
40  
33  
36  
17  
19  
15  
16  
37  
40  
30  
33  
17  
19  
13  
14  
37  
40  
27  
29  
17  
19  
10  
11  
37  
40  
57  
60  
17  
19  
9
From inputOE  
to output A  
Disable time  
Enable time  
ns  
ns  
From inputOE  
to output B  
From input OE  
to output A  
From input OE  
to output B  
10  
Copyright © 2018, Texas Instruments Incorporated  
13  
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
www.ti.com.cn  
6.12 Switching Characteristics, VCCA = 2.5 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
UNIT  
MIN  
MAX  
81  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
40  
40  
25  
25  
25  
28  
85  
87  
11  
12  
86  
86  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
22  
22  
14  
14  
25  
28  
76  
78  
11  
12  
52  
52  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
8
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
From input A  
to output B  
81  
8
Propagation  
delay  
tpd  
tdis  
ten  
ns  
61  
7
From input B  
to output A  
61  
7
25  
25  
28  
81  
84  
11  
12  
21  
21  
From inputOE  
to output A  
28  
Disable time  
Enable time  
ns  
ns  
111  
113  
11  
From inputOE  
to output B  
From input OE  
to output A  
12  
155  
155  
From input OE  
to output B  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
1.5 V ± 0.1 V  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
6
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
5
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
4
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
4
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
From input A  
to output B  
6
5
5
4
Propagation  
delay  
tpd  
tdis  
ten  
ns  
6
5
4
4
From input B  
to output A  
6
5
5
4
25  
28  
31  
34  
11  
12  
14  
14  
25  
28  
28  
31  
11  
12  
11  
12  
25  
28  
25  
28  
11  
12  
9
25  
28  
23  
25  
11  
12  
7
From inputOE  
to output A  
Disable time  
Enable time  
ns  
ns  
From inputOE  
to output B  
From input OE  
to output A  
From input OE  
to output B  
9
8
14  
Copyright © 2018, Texas Instruments Incorporated  
SN74AXC8T245  
www.ti.com.cn  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
6.13 Switching Characteristics, VCCA = 3.3 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
MAX  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
81  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
40  
40  
35  
35  
22  
24  
84  
86  
9
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
22  
22  
17  
17  
22  
24  
75  
78  
9
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
7
7
From input A  
to output B  
81  
Propagation  
delay  
tpd  
tdis  
ten  
ns  
142  
142  
22  
7
From input B  
to output A  
8
22  
24  
80  
83  
9
From inputOE  
to output A  
24  
Disable time  
Enable time  
ns  
ns  
111  
113  
9
From inputOE  
to output B  
From input OE  
to output A  
10  
10  
86  
86  
10  
51  
51  
10  
20  
20  
154  
154  
From input OE  
to output B  
B-PORT SUPPLY VOLTAGE (VCCB  
)
PARAMETER  
TEST CONDITIONS  
1.5 V ± 0.1 V  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
5
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
4
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
4
MIN  
MAX  
4
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
From input A  
to output B  
5
4
4
4
Propagation  
delay  
tpd  
tdis  
ten  
ns  
5
5
4
4
From input B  
to output A  
6
5
4
4
22  
24  
30  
33  
9
22  
24  
27  
30  
9
22  
24  
25  
27  
9
22  
24  
23  
25  
9
From inputOE  
to output A  
Disable time  
Enable time  
ns  
ns  
From inputOE  
to output B  
From input OE  
to output A  
10  
13  
14  
10  
10  
11  
10  
8
10  
7
From input OE  
to output B  
8
7
Copyright © 2018, Texas Instruments Incorporated  
15  
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
www.ti.com.cn  
6.14 Operating Characteristics: TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
VCCA = VCCB = 0.7 V  
1.2  
1.8  
1.8  
1.7  
1.7  
1.7  
2
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
Power dissipation  
CL = 0, RL = Open  
CpdA capacitance per transceiver  
f = 1 MHz, tr = tf = 1 ns  
(A to B: outputs enabled)  
pF  
2.5  
1.1  
1.8  
1.8  
1.7  
1.7  
1.7  
2
Power dissipation  
CL = 0, RL = Open  
CpdA capacitance per transceiver  
f = 1 MHz, tr = tf = 1 ns  
pF  
pF  
pF  
(A to B: outputs disabled)  
2.1  
9.3  
11.8  
11.8  
12  
Power dissipation  
CL = 0, RL = Open  
CpdA capacitance per transceiver  
f = 1 MHz, tr = tf = 1 ns  
(B to A: outputs enabled)  
12.2  
13  
16.4  
18.1  
2.6  
1.2  
1.1  
1.2  
1.2  
1.3  
1.6  
3.9  
Power dissipation  
CL = 0, RL = Open  
CpdA capacitance per transceiver  
f = 1 MHz, tr = tf = 1 ns  
(B to A: outputs disabled)  
16  
Copyright © 2018, Texas Instruments Incorporated  
SN74AXC8T245  
www.ti.com.cn  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
Operating Characteristics: TA = 25°C (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
9.3  
UNIT  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
11.7  
11.8  
11.9  
12.2  
12.9  
16.3  
18  
Power dissipation  
CpdB capacitance per transceiver  
(A to B: outputs enabled)  
CL = 0, RL = Open  
f = 1 MHz, tr = tf = 1 ns  
pF  
2.6  
11.7  
11.8  
11.9  
12.2  
12.9  
16.3  
3.9  
Power dissipation  
CpdB capacitance per transceiver  
(A to B: outputs disabled)  
CL = 0, RL = Open  
f = 1 MHz, tr = tf = 1 ns  
pF  
pF  
pF  
1.2  
1.8  
1.8  
Power dissipation  
CpdB capacitance per transceiver  
(B to A: outputs enabled)  
1.7  
CL = 0, RL = Open  
f = 1 MHz, tr = tf = 1 ns  
1.7  
1.7  
2
2.5  
1.1  
1.8  
1.8  
Power dissipation  
CpdB capacitance per transceiver  
(B to A: outputs disabled)  
1.7  
CL = 0, RL = Open  
f = 1 MHz, tr = tf = 1 ns  
1.7  
1.7  
2
2.1  
版权 © 2018, Texas Instruments Incorporated  
17  
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
www.ti.com.cn  
7 Parameter Measurement Information  
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:  
f =1 MHz  
Z0 = 50 Ω  
dv / dt 1 ns/V  
Measurement Point  
2 X VCCO  
Open  
S1  
RL  
Output Pin  
Under Test  
GND  
(1)  
CL  
RL  
(1) CL includes probe and jig capacitance.  
1. Load Circuit  
VCCO  
RL  
CL  
VTP  
Parameter  
tpd  
S1  
Open  
Open  
1.1 V - 3.6 V  
2 k15 pF  
N/A  
N/A  
0.65 V - 0.95 V 20 k15 pF  
3 V - 3.6 V 2 k15 pF  
1.65 V - 2.7 V 2 k15 pF  
1.1 V - 1.6 V  
0.65 V - 0.95 V 20 k15 pF  
3 V - 3.6 V 2 k15 pF  
1.65V - 2.7 V 2 k15 pF  
1.1 V - 1.6 V 2 k15 pF  
0.65 V - 0.95 V 20 k15 pF  
2 X VCCO  
2 X VCCO  
0.3 V  
0.15 V  
0.1 V  
0.1 V  
(1)  
ten(1), tdis  
2 k15 pF 2 X VCCO  
2 X VCCO  
GND  
0.3 V  
GND  
0.15 V  
(2)  
ten(2), tdis  
GND  
GND  
0.1 V  
0.1 V  
(1) Output waveform on the conditions that input is driven to a valid Logic Low.  
(2) Output waveform on the condition that input is driven to a valid Logic High.  
2. Load Circuit Conditions  
(1)  
VCCI  
VCCI / 2  
VCCI / 2  
An, Bn Input  
GND  
tpd  
tpd  
(2)  
VOH  
VCCO / 2  
VCCO / 2  
Bn, An Output  
(2)  
VOL  
(1) VCCI is the supply pin associated with the input port.  
(2) VOH and VOL are typical output voltage levels with specified RL, CL, and S1.  
3. Propagation Delay  
18  
版权 © 2018, Texas Instruments Incorporated  
SN74AXC8T245  
www.ti.com.cn  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
Parameter Measurement Information (接下页)  
VCCA  
OE  
VCCA / 2  
VCCA / 2  
GND  
tdis  
ten  
(3)  
VCCO  
Output(1)  
Output(2)  
VCCO / 2  
VOL + VTP  
(4)  
VOL  
(4)  
VOH  
VOH - VTP  
VCCO / 2  
GND  
(1) Output waveform on the condition that input is driven to a valid Logic Low.  
(2) Output waveform on the condition that input is driven to a valid Logic High.  
(3) VCCO is the supply pin associated with the output port.  
(4) VOH and VOL are typical output voltage levels with specified RL, CL, and S1.  
4. Enable Time And Disable Time  
版权 © 2018, Texas Instruments Incorporated  
19  
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN74AXC8T245 device is an 8-bit, dual-supply non-inverting transceiver with bidirectional voltage level  
translation. The I/O pins labeled with A and the control pins (DIR1, DIR2, and OE) are supported by VCCA, and  
the I/O pins labeled with B are supported by VCCB. Both the A port and the B port are able to accept I/O voltages  
ranging from 0.65 V to 3.6 V.  
8.2 Functional Block Diagram  
OE  
VCCA  
Control Block To Enable or  
Disable Outputs (Note: Inputs  
on each buffer are always  
DIR1  
VCCB  
enabled)  
DIR2  
GND  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
20  
版权 © 2018, Texas Instruments Incorporated  
SN74AXC8T245  
www.ti.com.cn  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
8.3 Feature Description  
8.3.1 Up-Translation and Down-Translation From 0.65 V to 3.6 V  
Both supply pins are configured from 0.65 V to 3.6 V, which makes the device suitable for translating between  
any of the low voltage nodes (0.7 V, 0.8 V, 0.9 V, 1.2 V, 1.8 V, 2.5 V, and 3.3 V).  
8.3.2 Multiple Direction Control Pins  
Two control pins are used to configure the 8 data I/Os. I/O channels 1 through 4 are grouped together and I/O  
channels 5 through 8 are banked together. The benefit of this is to permit simultaneous up-translation and down-  
translation within one device. This eliminates the need for multiple devices, where each device can only provide  
up-translation or down-translation sequentially. Simultaneous up and down translation is supported when both  
VCCA and VCCB are at least 1.40 V.  
8.3.3 Ioff Supports Partial-Power-Down Mode Operation  
This feature is to limit the leakage current of an I/O pin being driven to a voltage as large as 3.6 V while having  
its corresponding power supply rail powered down. This is represented by the Ioff parameter in the Electrical  
Characteristics table.  
8.4 Device Functional Modes  
All control inputs are referenced to VCCA and must be driven to a valid Logic High or Logic Low (that is, not  
floating) to assure proper device operation and to prevent excessive power consumption. 1 summarizes the  
possible modes of device operation based on the configuration of the control inputs.  
1. Function Table(1)  
CONTROL INPUTS  
Signal Direction  
OE  
H
L
DIR1  
DIR2  
Bits 1:4  
Bits 5:8  
X
L
X
L
Disabled (Hi-Z)  
B to A  
L
L
H
L
B to A  
A to B  
A to B  
B to A  
L
H
H
A to B  
L
H
(1) Input circuits of the data I/Os are always active and must be driven to a valid logic level.  
版权 © 2018, Texas Instruments Incorporated  
21  
 
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The SN74AXC8T245 device can be used in level-translation applications for interfacing devices or systems  
operating at different voltage nodes. 5 depicts an application in which the SN74AXC8T245 device is up-  
translating a 0.7 V input to a 3.3 V output to interface between a system controller and a peripheral device.  
9.2 Typical Application  
0.7 V  
3.3 V  
0.1 µF  
0.1 µF  
10  
kΩ  
10  
kΩ  
VCCA  
VCCB  
OE  
DIR1  
DIR2  
GND  
10  
kΩ  
Controller  
SN74AXC8T245  
Peripheral  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
5. Typical Application Schematic  
22  
版权 © 2018, Texas Instruments Incorporated  
 
SN74AXC8T245  
www.ti.com.cn  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
Typical Application (接下页)  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 2.  
2. Design Parameters  
DESIGN PARAMETERS  
Input voltage range  
EXAMPLE VALUE  
0.65 V to 3.6 V  
0.65 V to 3.6 V  
Output voltage range  
9.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Use the supply voltage of the device that is driving the SN74AXC8T245 device to determine the input  
voltage range. For a valid logic high the value must exceed the VIH of the input port. For a valid logic low  
the value must be less than the VIL of the input port.  
Output voltage range  
Use the supply voltage of the device that the SN74AXC8T245 device is driving to determine the output  
voltage range.  
9.2.3 Application Curve  
6. Translation Up (0.7 V to 3.3 V) at 2.5 MHz  
版权 © 2018, Texas Instruments Incorporated  
23  
 
SN74AXC8T245  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
www.ti.com.cn  
10 Power Supply Recommendations  
Always apply a ground reference to the GND pins first. However, there are no additional requirements for power  
supply sequencing.  
This device was designed with various power supply sequencing methods in mind to help prevent unintended  
triggering of downstream devices. For more information regarding the power up glitch performance of the AXC  
family of level translators, see the Power Sequencing for AXC Family of Devices application report.  
11 Layout  
11.1 Layout Guidelines  
To assure reliability of the device, follow common printed-circuit board layout guidelines.  
Use bypass capacitors on power supplies.  
Use short trace lengths to avoid excessive loading.  
Place pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of  
signals depending on the system requirements.  
11.2 Layout Example  
LEGEND  
Polygonal Copper Pour  
VIA to Power Plane (Inner Layer)  
VIA to GND Plane (Inner Layer)  
Bypass Capacitor  
VCCA  
Bypass  
Capacitor  
1
2
3
4
5
6
7
8
9
VCCA  
DIR1  
A1  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCCB  
VCCB  
OE  
B1  
From Source  
From Source  
From Source  
From Source  
From Source  
From Source  
From Source  
From Source  
To Destination  
A2  
To Destination  
To Destination  
A3  
B2  
A4  
B3  
SN74AXC8T245  
(PW Package)  
To Destination  
To Destination  
A5  
B4  
A6  
B5  
To Destination  
To Destination  
A7  
B6  
10  
11  
12  
A8  
B7  
To Destination  
DIR2  
GND  
B8  
GND  
7. SN74AXC8T245 Device Layout Example  
24  
版权 © 2018, Texas Instruments Incorporated  
SN74AXC8T245  
www.ti.com.cn  
ZHCSHG0B MARCH 2018REVISED AUGUST 2018  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《慢速或浮点 CMOS 输入的影响》应用报告  
德州仪器 (TI)AXC 系列器件电源定序》 应用报告  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74AXC8T245PWR  
SN74AXC8T245RHLR  
SN74AXC8T245RJWR  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
VQFN  
UQFN  
PW  
RHL  
RJW  
24  
24  
24  
2000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
AX8T245  
NIPDAU  
AX8T245  
AX8T245  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN74AXC8T245PWR  
SN74AXC8T245RHLR  
SN74AXC8T245RJWR  
TSSOP  
VQFN  
UQFN  
PW  
RHL  
RJW  
24  
24  
24  
2000  
3000  
3000  
330.0  
330.0  
177.8  
16.4  
12.4  
12.4  
6.95  
3.8  
8.3  
5.8  
1.6  
1.2  
8.0  
8.0  
4.0  
16.0  
12.0  
12.0  
Q1  
Q1  
Q1  
2.21  
4.22  
0.81  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN74AXC8T245PWR  
SN74AXC8T245RHLR  
SN74AXC8T245RJWR  
TSSOP  
VQFN  
UQFN  
PW  
RHL  
RJW  
24  
24  
24  
2000  
3000  
3000  
356.0  
367.0  
183.0  
356.0  
367.0  
183.0  
35.0  
35.0  
20.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0024A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
22X 0.65  
24  
1
2X  
7.15  
7.9  
7.7  
NOTE 3  
12  
B
13  
0.30  
24X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
0.25  
GAGE PLANE  
0.15  
0.05  
(0.15) TYP  
SEE DETAIL A  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
4220208/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0024A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
24X (1.5)  
(R0.05) TYP  
24  
1
24X (0.45)  
22X (0.65)  
SYMM  
12  
13  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220208/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0024A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
24X (1.5)  
SYMM  
(R0.05) TYP  
24  
1
24X (0.45)  
22X (0.65)  
SYMM  
12  
13  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220208/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RHL0024A  
PLASTIC QUAD FLATPACK- NO LEAD  
A
3.6  
3.4  
B
PIN 1 INDEX AREA  
5.6  
5.4  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.05±0.1  
2X 1.5  
SYMM  
0.5  
0.3  
24X  
(0.1) TYP  
13  
12  
18X 0.5  
11  
14  
21  
SYMM  
2X  
4.05±0.1  
4.5  
23  
2
0.30  
24X  
0.18  
0.1  
0.05  
24  
1
PIN 1 ID  
(OPTIONAL)  
C A B  
C
4X (0.2)  
2X (0.55)  
4225250/A 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RHL0024A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
(2.05)  
2X (1.5)  
SYMM  
1
24  
24X (0.6)  
24X (0.24)  
2X (0.4)  
23  
2
18X (0.5)  
2X (1.105)  
6X (0.67)  
(4.05)  
25  
SYMM  
4.6  
4.4  
(5.3)  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
(Ø 0.2) VIA  
TYP  
(R0.05) TYP  
11  
14  
13  
12  
4X  
(0.775)  
4X (0.2)  
2X (0.55)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 18X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225250/A 09/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RHL0024A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
(2.05)  
2X (1.5)  
SYMM  
SOLDER MASK EDGE  
TYP  
1
24  
24X (0.6)  
24X (0.24)  
23  
2
18X (0.5)  
25  
SYMM  
4.6  
4.4  
(5.3)  
4X  
(1.34)  
METAL TYP  
(R0.05) TYP  
11  
14  
13  
12  
2X (0.84)  
6X (0.56)  
4X (0.2)  
2X (0.55)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
80% PRINTED COVERAGE BY AREA  
SCALE: 18X  
4225250/A 09/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
RJW 24  
2 x 4, 0.4 mm pitch  
UQFN - 0.55 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4228367/A  
www.ti.com  
PACKAGE OUTLINE  
RJW0024A  
UQFN - 0.55 mm max height  
SCALE 4.300  
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.55 MAX  
SEATING PLANE  
0.05 C  
0.05  
0.00  
2X 0.4  
(0.1) TYP  
11  
12  
10  
0.6  
0.5  
13  
4X  
SYMM  
2X  
3.6  
1
22  
24  
8X  
23  
0.25  
0.15  
20X 0.4  
24X  
SYMM  
0.1  
C A B  
C
0.85  
0.75  
12X  
0.05  
0.55  
0.45  
4223932/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RJW0024A  
UQFN - 0.55 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
24  
12X 1  
8X (0.7)  
23  
1
22  
24X (0.2)  
20X (0.4)  
SYMM  
(3.65)  
(R0.05) TYP  
13  
10  
(4X 0.75)  
11  
(1.4)  
12  
(1.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.0375 MAX  
ALL AROUND  
0.0375 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL  
UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223932/B 04/2018  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RJW0024A  
UQFN - 0.55 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
24  
23  
12X 0.95  
8X  
(0.65)  
1
22  
24X (0.2)  
20X (0.4)  
SYMM  
(3.7)  
(R0.05) TYP  
EXPOSED METAL  
TYP  
13  
10  
4X (0.7)  
11  
(1.45)  
12  
(1.75)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICKNESS  
SCALE: 25X  
4223932/B 04/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SN74AXC8T245QPWRQ1

具有可配置电压转换和三态输出的汽车类 8 位双电源总线收发器 | PW | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74AXC8T245QRGYQ1

SN74AXC8T245-Q1 Automotive 8-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and Tri-State Outputs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74AXC8T245RHL-Q1

SN74AXC8T245-Q1 Automotive 8-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and Tri-State Outputs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74AXC8T245RHLR

8 位双电源总线收发器 | RHL | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74AXC8T245RJWR

8 位双电源总线收发器 | RJW | 24 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74AXC8T245WRGY-Q1

SN74AXC8T245-Q1 Automotive 8-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and Tri-State Outputs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74AXCH1T45

单位双电源总线收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74AXCH1T45DBVR

单位双电源总线收发器 | DBV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74AXCH1T45DCKR

单位双电源总线收发器 | DCK | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74AXCH1T45DRY2

单位双电源总线收发器 | DRY | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74AXCH1T45DRYR

单位双电源总线收发器 | DRY | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74AXCH1T45DTQR

单位双电源总线收发器 | DTQ | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI