SN74AXCH1T45DTQR [TI]

单位双电源总线收发器 | DTQ | 6 | -40 to 125;
SN74AXCH1T45DTQR
型号: SN74AXCH1T45DTQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单位双电源总线收发器 | DTQ | 6 | -40 to 125

逻辑集成电路 总线收发器
文件: 总43页 (文件大小:2588K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
具有可配置电压转换、三态输出和总线保持输入的  
SN74AXCH1T45 1 位双电源总线收发器  
DIR 引脚决定信号传播的方向。DIR 引脚配置为高电平  
1 特性  
信号转换由端口 A 流向端口 BDIR 配置为低电  
平时则由端B 流向端ADIR 引脚VCCA 为基  
这意味着它的逻辑高电平和逻辑低电平阈值跟踪  
• 完全可配置的双电源轨设计可允许各个端口在  
0.65V 3.6V 的电源电压范围内运行  
• 工作温度40°C +125°C  
• 无干扰电源定序  
V
CCA 电压。  
有源总线保持电路会将未使用或未驱动的输入保持在有  
效逻辑状态。不建议在总线保持电路上使用上拉或下拉  
电阻器。如果 VCCA VCCB 连上电源则总线保持电  
路分别在 A 端口或 B 端口上始终保持工作状态与方  
向控制引脚的状态无关。  
• 总线保持数据输入消除了对外部上拉或下拉电阻的  
需求  
• 最大静态电(ICCA + ICCB) 10µA85°C)  
16µA125°C)  
1.8V 转换3.3 V 支持高500Mbps 的转  
换速率  
VCC 隔离特性  
该器件完全符合使用 Ioff 电流的部分断电应用的规范要  
求。当器件断电时Ioff 保护电路可确保不从输入、输  
出或偏置到特定电压的组I/O 获取多余电流也不向  
其提供多余电流。  
– 如果任何一VCC 输入低100mV则所有  
I/O 输出均禁用且处于高阻抗状态  
Ioff 支持局部关断模式运行  
• 闩锁性能超100mAJESD 78 II 类规范的  
要求  
VCC 隔离特性可确保当 VCCA VCCB 低于 100mV  
I/O 端口均禁用其输出并进入高阻态。  
无干扰电源时序使电源轨能以任何顺序打开或关断从  
而提供强大的电源时序性能。  
ESD 保护性能超JESD 22 规范要求  
8000V 人体放电模型  
1000V 充电器件模型  
器件信息  
封装(1)  
封装尺寸标称值)  
2.90mm × 1.60mm  
2.00mm × 1.25mm  
1.00mm x 0.80mm  
1.40mm x 1.00mm  
器件型号  
2 应用  
SN74AXCH1T45DBV  
SN74AXCH1T45DCK  
SN74AXCH1T45DTQ  
SN74AXCH1T45DRY  
SOT-23 (6)  
SC70 (6)  
X2SON (6)  
SON (6)  
• 个人电子产品  
• 企业与通信  
• 无线基础设施  
• 楼宇自动化  
• 电子销售终端  
• 企业级固态硬盘  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
3 说明  
VCCA  
VCCB  
SN74AXCH1T45 是一款采用两个独立可配置电源轨的  
单比特位同相总线收发器。VCCA VCCB 电源电压低  
0.65V 该器件可正常工作。A 端口用于跟踪  
VCCA该端口可支持 0.65V 3.6V 范围内的任何电  
源电压。B 口用于跟踪 VCCB端口也可支持  
0.65V 3.6V 围内的任何电源电压。此外,  
SN74AXCH1T45 还与单电源系统兼容。  
DIR  
A
Bus-Hold  
B
Bus-Hold  
功能方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCES883  
 
 
 
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................18  
8.4 Device Functional Modes..........................................20  
9 Application and Implementation..................................21  
9.1 Application Information............................................. 21  
9.2 Typical Applications.................................................. 21  
10 Power Supply Recommendations..............................24  
11 Layout...........................................................................24  
11.1 Layout Guidelines................................................... 24  
11.2 Layout Example...................................................... 24  
12 Device and Documentation Support..........................25  
12.1 Documentation Support.......................................... 25  
12.2 接收文档更新通知................................................... 25  
12.3 支持资源..................................................................25  
12.4 Trademarks.............................................................25  
12.5 静电放电警告.......................................................... 25  
12.6 术语表..................................................................... 25  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Operating Characteristics: TA = 25°C....................... 13  
6.7 Typical Characteristics..............................................14  
7 Parameter Measurement Information..........................16  
7.1 Load Circuit and Voltage Waveforms........................16  
8 Detailed Description......................................................18  
8.1 Overview...................................................................18  
8.2 Functional Block Diagram.........................................18  
Information.................................................................... 26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (June 2020) to Revision C (September 2020)  
Page  
Updated ICCA, ICCB, and ICCA + ICCB to reflect updated performance of device..................................................6  
Changes from Revision A (January 2019) to Revision B (June 2020)  
Page  
• 向器件信表添加DRY 封装选项...................................................................................................................1  
Added pinout drawing for DRY package.............................................................................................................3  
Changes from Revision * (December 2018) to Revision A (January 2019)  
Page  
• 向器件信表添加DBV DTQ 封装选项..................................................................................................... 1  
• 更新了修订历史记部分................................................................................................................................... 1  
Added pinout drawings for DBV and DTQ packages .........................................................................................3  
Added DRY package to Pin Configurations........................................................................................................3  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
VCCA  
GND  
A
VCCB  
DIR  
B
1
2
3
6
5
4
VCCA  
1
2
3
6
5
4
VCCB  
DIR  
B
GND  
A
5-2. DCK Package 6-Pin SC70 Top View  
5-1. DBV Package 6-Pin SOT-23 Top View  
VCCA  
GND  
A
1
6
VCCB  
DIR  
B
1
2
3
6
5
4
VCCA  
GND  
A
VCCB  
DIR  
B
2
5
3
4
5-4. DRY Package 6-Pin SON Transparent Top  
5-3. DTQ Package 6-Pin X2SON Transparent Top  
View  
View  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
VCCA  
GND  
A
A-port supply voltage. 0.65 V VCCA 3.6 V.  
2
Ground  
I/O  
I/O  
I
3
Input/output A. This pin is referenced to VCCA  
Input/output B. This pin is referenced to VCCB  
Direction control signal. See for functionality.  
.
.
4
B
5
DIR  
VCCB  
6
B-port supply voltage. 0.65 V VCCB 3.6 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74AXCH1T45  
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
50  
MAX UNIT  
VCCA Supply voltage A  
VCCB Supply voltage B  
4.2  
4.2  
V
V
I/O Ports (A Port)  
I/O Ports (B Port)  
Control Inputs  
A Port  
4.2  
VI  
Input Voltage(2)  
4.2  
V
4.2  
4.2  
VO  
VO  
Voltage applied to any output in the high-impedance or power-off state(2)  
Voltage applied to any output in the high or low state(2) (3)  
V
V
B Port  
4.2  
A Port  
VCCA + 0.2  
VCCB + 0.2  
B Port  
IIK  
IOK  
IO  
Input clamp current  
VI < 0  
mA  
mA  
Output clamp current  
VO < 0  
50  
Continuous output current  
Continuous current through VCC or GND  
Junction Temperature  
50 mA  
100 mA  
150 °C  
150 °C  
50  
100  
Tj  
Tstg  
Storage temperature  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current rating is observed.  
6.2 ESD Ratings  
VALUE  
±8000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
 
 
 
 
 
 
 
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1) (2) (3)  
MIN  
0.65  
MAX UNIT  
VCCA  
VCCB  
Supply voltage A  
Supply voltage B  
3.6  
3.6  
V
V
0.65  
VCCI = 0.65 V - 0.75 V  
VCCI = 0.76 V - 1 V  
VCCI = 1.1 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3 V - 3.6 V  
VCCI x 0.70  
VCCI x 0.70  
VCCI x 0.65  
1.6  
Data Inputs  
2
VIH  
High-level input voltage  
V
VCCA = 0.65 V - 0.75 V  
VCCA = 0.76 V - 1 V  
VCCA = 1.1 V - 1.95 V  
VCCA = 2.3 V - 2.7 V  
VCCA = 3 V - 3.6 V  
VCCI = 0.65 V - 0.75 V  
VCCI = 0.76 V - 1 V  
VCCI = 1.1 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3 V - 3.6 V  
VCCA x 0.70  
VCCA x 0.70  
VCCA x 0.65  
1.6  
Control Input (DIR)  
Referenced to VCCA  
2
VCCI x 0.30  
VCCI x 0.30  
VCCI x 0.35  
0.7  
Data Inputs  
0.8  
VIL  
Low-level input voltage  
V
VCCA = 0.65 V - 0.75 V  
VCCA = 0.76 V - 1 V  
VCCA = 1.1 V - 1.95 V  
VCCA = 2.3 V - 2.7 V  
VCCA = 3 V - 3.6 V  
VCCA x 0.30  
VCCA x 0.30  
VCCA x 0.35  
0.7  
Control Input (DIR)  
Referenced to VCCA  
0.8  
VI  
Input voltage (3)  
Output voltage  
0
0
0
3.6  
V
V
Active State  
Tri-State  
VCCO  
VO  
3.6  
Input transition rate  
100 ns/V  
125 °C  
Δt/Δv  
TA  
Operating free-air temperature  
40  
(1) VCCI is the VCC associated with the input port.  
(2) VCCO is the VCC associated with the output port.  
(3) All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,  
Implications of Slow or Floating CMOS Inputs.  
6.4 Thermal Information  
SN74AXCH1T45  
DBV  
(SOT-23)  
DTQ  
(X2SON)  
THERMAL METRIC(1)  
DCK (SC70)  
DRY (SON)  
UNIT  
6 PINS  
6 PINS  
6 PINS  
6 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
214.0  
223.9  
327.8  
308.3  
°C/W  
°C/W  
Rθ  
151.8  
150.9  
194.9  
206.4  
JC(top)  
RθJB  
ψJT  
Junction-to-board thermal resistance  
93.6  
78.1  
93.4  
75.3  
58.2  
75.0  
248.4  
24.1  
181.7  
42.6  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
247.6  
180.8  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74AXCH1T45  
 
 
 
 
 
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted) (1) (2)  
Operating free-air temperature (TA)  
UNI  
T
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
40°C to 85°C  
40°C to 125°C  
MIN TYP(3) MAX  
MIN  
TYP MAX  
VCCO  
0.1  
VCCO  
0.1  
0.7 V - 3.6 V 0.7 V - 3.6 V  
IOH = 100 µA  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.55  
0.58  
0.65  
0.85  
1.05  
1.2  
0.55  
0.58  
0.65  
0.85  
1.05  
1.2  
IOH = 50 µA  
IOH = 200 µA  
IOH = 500 µA  
High-level  
output voltage  
VOH  
VI = VIH  
V
IOH = 3 mA  
IOH = 6 mA  
IOH = 8 mA  
IOH = 9 mA  
IOH = 12 mA  
IOL = 100 µA  
IOL = 50 µA  
IOL = 200 µA  
IOL = 500 µA  
IOL = 3 mA  
1.75  
2.3  
1.75  
2.3  
0.7 V - 3.6 V 0.7 V - 3.6 V  
0.1  
0.1  
0.1  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.1  
0.18  
0.2  
0.18  
0.2  
Low-level  
output voltage  
VOL  
VI = VIL  
0.25  
0.35  
0.45  
0.55  
0.7  
0.25  
0.35  
0.45  
0.55  
0.7  
V
IOL = 6 mA  
IOL = 8 mA  
IOL = 9 mA  
IOL = 12 mA  
VI = 0.20 V  
VI = 0.23 V  
VI = 0.26 V  
VI = 0.39 V  
VI = 0.49 V  
VI = 0.58 V  
VI = 0.7 V  
VI = 0.8 V  
VI = 0.45 V  
VI = 0.53 V  
VI = 0.59 V  
VI = 0.71 V  
VI = 0.91 V  
VI = 1.07 V  
VI = 1.6 V  
VI = 2.0 V  
0.65 V  
0.65 V  
4
4
7
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
8
10  
10  
Bus-hold low  
sustaining  
current (4)  
20  
20  
IBHL  
µA  
40  
30  
55  
45  
90  
80  
145  
4  
8  
10  
20  
40  
55  
90  
145  
135  
4  
7  
10  
20  
30  
45  
80  
135  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
Bus-hold high  
sustaining  
IBHH  
µA  
current (5)  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted) (1) (2)  
Operating free-air temperature (TA)  
UNI  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
40°C to 85°C  
40°C to 125°C  
T
MIN TYP(3) MAX  
MIN  
40  
TYP MAX  
0.75 V  
0.84 V  
0.95 V  
1.3 V  
0.75 V  
0.84 V  
0.95 V  
1.3 V  
40  
50  
50  
65  
65  
Bus-hold low  
IBHLO overdrive  
current (6)  
105  
105  
VI = 0 to VCC  
µA  
1.6 V  
1.6 V  
150  
150  
1.95 V  
2.7 V  
1.95 V  
2.7 V  
205  
205  
335  
335  
3.6 V  
3.6 V  
480  
480  
0.75 V  
0.84 V  
0.95 V  
1.3 V  
0.75 V  
0.84 V  
0.95 V  
1.3 V  
40  
50  
65  
105  
150  
205  
335  
480  
40  
50  
65  
105  
150  
205  
335  
480  
Bus-hold high  
IBHHO overdrive  
current (7)  
VI = 0 to VCC  
µA  
1.6 V  
1.6 V  
1.95 V  
2.7 V  
1.95 V  
2.7 V  
3.6 V  
3.6 V  
Control input (DIR): VI =  
VCCA or GND  
0.65 V - 3.6 V 0.65 V - 3.6 V  
0.65 V - 3.6 V 0.65 V - 3.6 V  
0.5  
4
1
8
0.5  
4  
1  
8  
Input leakage  
current  
II  
µA  
A or B Port: Vi = VCCI or  
GND  
0 V  
0 V - 3.6 V  
0 V  
8
8
8
12  
12  
12  
8  
8  
12  
12  
Partial power A or B Port: Vi or Vo = 0 V -  
down current 3.6 V  
Ioff  
µA  
µA  
0 V - 3.6 V  
0.65 V - 3.6 V 0.65 V - 3.6 V  
VCCA supply  
current  
VI = VCCI  
or GND  
ICCA  
IO = 0  
0 V  
3.6 V  
0 V  
2  
8  
3.6 V  
2
8
2
8
12  
8
0.65 V - 3.6 V 0.65 V - 3.6 V  
VCCB supply  
current  
VI = VCCI  
or GND  
0 V  
3.6 V  
0 V  
ICCB  
IO = 0  
IO = 0  
µA  
3.6 V  
2  
8  
ICCA  
ICCB  
+
Combined  
supply current or GND  
VI = VCCI  
0.65 V - 3.6 V 0.65 V - 3.6 V  
10  
16 µA  
pF  
Control input  
capacitance  
Ci  
VI = 3.3 V or GND  
3.3 V  
3.3 V  
3.3 V  
0 V  
4.3  
7.4  
4.3  
7.4  
Data I/O  
capacitance,  
A Port  
VO = 1.65 V DC +1 MHz -16  
dBm sine wave  
Cio  
pF  
pF  
Data I/O  
capacitance,  
B Port  
VO = 1.65 V DC +1 MHz -16  
dBm sine wave  
Cio  
0 V  
3.3 V  
7.4  
7.4  
(1) VCCI is the VCC associated with the input port.  
(2) VCCO is the VCC associated with the output port.  
(3) All typical data is taken at 25°C.  
(4) The bus-hold circuit can sink at least the minimum low sustaining current at VIL(MAX). IBHL should be measured after lowering VI to  
GND and then raising it to VIL(MAX).  
(5) The bus-hold circuit can source at least the minimum high sustaining current at VIH(MIN). IBHH should be measured after raising VI to  
VCC and then lowering it to VIH(MIN).  
(6) An external driver must source at least IBHLO to switch this node from low to high.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74AXCH1T45  
 
 
 
 
 
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
(7) An external driver must sink at least IBHHO to switch this node from high to low.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6-1. Switching Characteristics, VCCA = 0.7 V  
40°C to  
85°C  
0.5 181  
0.5 181  
0.5 181  
0.5 181  
0.5 152  
0.5 152  
0.5 170  
0.5 170  
0.5 343  
0.5 343  
0.5 326  
0.5 326  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
119  
119  
162  
162  
152  
152  
127  
127  
278  
278  
257  
257  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
85  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
51  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
49  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
52  
52  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
65  
65  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
152  
152  
88  
A
B
A
A
B
A
B
40°C to  
125°C  
85  
51  
49  
Propagation  
delay  
tpd  
ns  
ns  
ns  
40°C to  
85°C  
136  
136  
152  
152  
102  
102  
231  
231  
222  
222  
96  
91  
89  
88  
B
40°C to  
125°C  
96  
91  
89  
88  
88  
40°C to  
85°C  
152  
152  
48  
152  
152  
42  
152  
152  
46  
152  
152  
58  
152  
152  
108  
108  
193  
193  
277  
277  
DIR  
DIR  
DIR  
DIR  
40°C to  
125°C  
tdis Disable time  
40°C to  
85°C  
40°C to  
125°C  
48  
42  
46  
58  
40°C to  
85°C  
141  
141  
194  
194  
132  
132  
191  
191  
134  
134  
191  
191  
144  
144  
197  
197  
40°C to  
125°C  
ten Enable time  
40°C to  
85°C  
40°C to  
125°C  
6-2. Switching Characteristics, VCCA = 0.8 V  
40°C to  
85°C  
0.5 162  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
98  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
65  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
33  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
28  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
26  
26  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
27  
27  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
37  
37  
A
B
A
A
B
A
B
40°C to  
125°C  
0.5 162  
98  
65  
33  
28  
Propagation  
delay  
tpd  
ns  
ns  
ns  
40°C to  
85°C  
0.5  
0.5  
119  
119  
98  
81  
54  
45  
44  
43  
42  
B
40°C to  
125°C  
98  
81  
54  
45  
44  
43  
42  
40°C to  
85°C  
0.5 107  
0.5 107  
0.5 160  
0.5 160  
0.5 268  
0.5 268  
0.5 257  
0.5 257  
107  
107  
117  
117  
205  
205  
194  
194  
107  
107  
90  
107  
107  
39  
107  
107  
31  
107  
107  
29  
107  
107  
29  
107  
107  
37  
DIR  
DIR  
DIR  
DIR  
40°C to  
125°C  
tdis Disable time  
40°C to  
85°C  
40°C to  
125°C  
90  
39  
31  
29  
29  
37  
40°C to  
85°C  
165  
165  
161  
161  
90  
74  
71  
70  
77  
40°C to  
125°C  
90  
74  
71  
70  
77  
ten Enable time  
40°C to  
85°C  
130  
130  
125  
125  
126  
126  
125  
125  
132  
132  
40°C to  
125°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74AXCH1T45  
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6-3. Switching Characteristics, VCCA = 0.9 V  
40°C to  
85°C  
0.5 135  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
81  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
54  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
24  
24  
41  
41  
79  
79  
34  
34  
71  
71  
96  
96  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
18  
18  
30  
30  
79  
79  
27  
27  
53  
53  
91  
91  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
17  
17  
26  
26  
79  
79  
25  
25  
48  
48  
89  
89  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
15  
15  
23  
23  
79  
79  
21  
21  
42  
42  
89  
89  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
18  
18  
23  
23  
79  
79  
23  
23  
44  
44  
92  
92  
A
B
A
A
B
A
B
40°C to  
125°C  
0.5 135  
81  
54  
Propagation  
delay  
tpd  
ns  
ns  
ns  
40°C to  
85°C  
0.5  
0.5  
0.5  
0.5  
86  
86  
79  
79  
65  
54  
B
40°C to  
125°C  
65  
54  
40°C to  
85°C  
79  
79  
DIR  
DIR  
DIR  
DIR  
40°C to  
125°C  
79  
79  
tdis Disable time  
40°C to  
85°C  
0.5 154  
0.5 154  
0.5 227  
0.5 227  
0.5 206  
0.5 206  
111  
111  
166  
166  
152  
152  
85  
40°C to  
125°C  
85  
40°C to  
85°C  
131  
131  
125  
125  
40°C to  
125°C  
ten Enable time  
40°C to  
85°C  
40°C to  
125°C  
6-4. Switching Characteristics, VCCA = 1.2 V  
40°C to  
85°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
95  
95  
51  
51  
28  
28  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
54  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
41  
41  
24  
24  
28  
28  
78  
78  
96  
96  
61  
61  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
16  
16  
16  
16  
28  
28  
30  
30  
43  
43  
41  
41  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
11  
13  
13  
28  
28  
23  
23  
34  
34  
37  
37  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
8
A
B
A
A
B
A
B
40°C to  
125°C  
54  
Propagation  
delay  
tpd  
ns  
ns  
ns  
40°C to  
85°C  
33  
11  
11  
28  
28  
20  
20  
30  
30  
36  
36  
8
8
B
40°C to  
125°C  
33  
8
8
40°C to  
85°C  
28  
28  
28  
16  
16  
23  
23  
35  
35  
28  
28  
16  
16  
22  
22  
35  
35  
DIR  
DIR  
DIR  
DIR  
40°C to  
125°C  
28  
tdis Disable time  
40°C to  
85°C  
0.5 148  
0.5 148  
0.5 191  
0.5 191  
105  
105  
129  
129  
75  
40°C to  
125°C  
40°C to  
85°C  
40°C to  
125°C  
ten Enable time  
40°C to  
85°C  
0.5  
0.5  
116  
116  
40°C to  
125°C  
75  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6-5. Switching Characteristics, VCCA = 1.5 V  
40°C to  
85°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
91  
91  
49  
49  
20  
20  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
45  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
30  
30  
18  
18  
20  
20  
76  
76  
89  
89  
43  
43  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
13  
13  
11  
11  
20  
20  
28  
28  
38  
38  
31  
31  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
A
B
A
A
B
A
B
40°C to  
125°C  
45  
9
Propagation  
delay  
tpd  
ns  
ns  
ns  
40°C to  
85°C  
28  
9
8
6
5
B
40°C to  
125°C  
28  
9
8
6
5
40°C to  
85°C  
20  
20  
20  
21  
21  
29  
29  
28  
28  
20  
20  
19  
19  
26  
26  
27  
27  
20  
20  
15  
15  
20  
20  
25  
25  
20  
20  
14  
14  
18  
18  
25  
25  
DIR  
DIR  
DIR  
DIR  
40°C to  
125°C  
20  
tdis Disable time  
40°C to  
85°C  
0.5 146  
0.5 146  
0.5 186  
0.5 186  
0.5 104  
0.5 104  
103  
103  
124  
124  
58  
40°C to  
125°C  
40°C to  
85°C  
40°C to  
125°C  
ten Enable time  
40°C to  
85°C  
40°C to  
125°C  
58  
6-6. Switching Characteristics, VCCA = 1.8 V  
40°C to  
85°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
89  
89  
52  
52  
17  
17  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
44  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
26  
26  
17  
17  
17  
17  
76  
76  
86  
86  
37  
37  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
11  
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
7
7
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
A
B
A
A
B
A
B
40°C to  
125°C  
44  
8
Propagation  
delay  
tpd  
ns  
ns  
ns  
40°C to  
85°C  
26  
8
7
6
5
B
40°C to  
125°C  
26  
9
8
7
6
5
40°C to  
85°C  
17  
17  
17  
27  
27  
35  
35  
27  
27  
17  
17  
20  
20  
27  
27  
25  
25  
17  
17  
18  
18  
24  
24  
24  
24  
17  
17  
14  
14  
19  
19  
22  
22  
17  
17  
13  
13  
17  
17  
22  
22  
DIR  
DIR  
DIR  
DIR  
40°C to  
125°C  
17  
tdis Disable time  
40°C to  
85°C  
0.5 147  
0.5 147  
0.5 185  
0.5 185  
0.5 100  
0.5 100  
103  
103  
122  
122  
54  
40°C to  
125°C  
40°C to  
85°C  
40°C to  
125°C  
ten Enable time  
40°C to  
85°C  
40°C to  
125°C  
54  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74AXCH1T45  
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6-7. Switching Characteristics, VCCA = 2.5 V  
40°C to  
85°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
88  
88  
65  
65  
13  
13  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
42  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
23  
23  
15  
15  
13  
13  
75  
75  
85  
85  
31  
31  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
A
B
A
A
B
A
B
40°C to  
125°C  
42  
8
6
Propagation  
delay  
tpd  
ns  
ns  
ns  
40°C to  
85°C  
27  
8
6
6
5
4
B
40°C to  
125°C  
27  
8
6
6
5
4
40°C to  
85°C  
13  
13  
13  
27  
27  
33  
33  
20  
20  
13  
13  
19  
19  
25  
25  
18  
18  
13  
13  
17  
17  
22  
22  
17  
17  
13  
13  
13  
13  
17  
17  
17  
17  
13  
13  
12  
12  
16  
16  
17  
17  
DIR  
DIR  
DIR  
DIR  
40°C to  
125°C  
13  
tdis Disable time  
40°C to  
85°C  
0.5 146  
0.5 146  
0.5 191  
0.5 191  
102  
102  
122  
122  
50  
40°C to  
125°C  
40°C to  
85°C  
40°C to  
125°C  
ten Enable time  
40°C to  
85°C  
0.5  
0.5  
95  
95  
40°C to  
125°C  
50  
6-8. Switching Characteristics, VCCA = 3.3 V  
40°C to  
85°C  
0.5  
87  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
42  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
23  
23  
18  
18  
12  
12  
75  
75  
88  
88  
30  
30  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
4
4
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
4
4
A
B
A
A
B
A
B
40°C to  
125°C  
0.5  
87  
42  
8
5
Propagation  
delay  
tpd  
ns  
ns  
ns  
40°C to  
85°C  
0.5 154  
0.5 154  
37  
8
6
5
5
4
B
40°C to  
125°C  
37  
8
6
5
5
4
40°C to  
85°C  
0.5  
0.5  
12  
12  
12  
12  
12  
26  
26  
34  
34  
18  
18  
12  
12  
19  
19  
24  
24  
16  
16  
12  
12  
17  
17  
21  
21  
16  
16  
12  
12  
13  
13  
17  
17  
15  
15  
12  
12  
12  
12  
16  
16  
15  
15  
DIR  
DIR  
DIR  
DIR  
40°C to  
125°C  
12  
tdis Disable time  
40°C to  
85°C  
0.5 147  
0.5 147  
0.5 275  
0.5 275  
102  
102  
129  
129  
49  
40°C to  
125°C  
40°C to  
85°C  
40°C to  
125°C  
ten Enable time  
40°C to  
85°C  
0.5  
0.5  
94  
94  
40°C to  
125°C  
49  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6.6 Operating Characteristics: TA = 25°C  
PARAMETER  
TEST CONDITIONS  
VCCA  
0.7 V  
VCCB  
0.7 V  
MIN  
TYP  
2.0  
2.0  
2.0  
2.0  
1.9  
2.0  
2.4  
3.0  
12  
MAX UNIT  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
Power Dissipation Capacitance  
per transceiver (A to B: outputs  
enabled)  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
pF  
CpdA  
12  
12  
Power Dissipation Capacitance  
per transceiver (B to A: outputs  
enabled)  
12  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
pF  
pF  
pF  
13  
13  
17  
21  
12  
12  
12  
Power Dissipation Capacitance  
per transceiver (A to B: outputs  
enabled)  
12  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
13  
13  
17  
21  
CpdB  
2.1  
2.2  
2.2  
2.2  
2.3  
2.3  
2.6  
3.3  
Power Dissipation Capacitance  
per transceiver (B to A: outputs  
enabled)  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74AXCH1T45  
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6.7 Typical Characteristics  
50  
45  
40  
35  
30  
25  
20  
15  
10  
CL = 45 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
CL = 45 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
45  
40  
35  
30  
25  
20  
15  
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply B (V)  
2.4  
2.7  
3
3.3  
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply B (V)  
2.4  
2.7  
3
3.3  
D016  
D001  
TA = 25°C VCCA = 0.7 V  
TA = 25°C VCCA = 0.8 V  
6-1. Typical Propagation Delay of Low-to-High  
6-2. Typical Propagation Delay of Low-to-High  
(A to B) vs Load Capacitance  
(A to B) vs Load Capacitance  
40  
30  
CL = 45 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
CL = 45 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
27  
24  
21  
18  
15  
12  
9
35  
30  
25  
20  
15  
10  
5
6
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply B (V)  
2.4  
2.7  
3
3.3  
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply B (V)  
2.4  
2.7  
3
3.3  
D002  
D003  
TA = 25°C VCCA = 0.9 V  
TA = 25°C VCCA = 1.2 V  
6-3. Typical Propagation Delay of Low-to-High  
6-4. Typical Propagation Delay of Low-to-High  
(A to B) vs Load Capacitance  
(A to B) vs Load Capacitance  
30  
27  
CL = 45 pF  
CL = 45 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
27  
24  
21  
18  
15  
12  
9
24  
21  
18  
15  
12  
9
6
6
3
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply B (V)  
2.4  
2.7  
3
3.3  
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply B (V)  
2.4  
2.7  
3
3.3  
D004  
D005  
TA = 25°C VCCA = 1.5 V  
TA = 25°C VCCA = 1.8 V  
6-5. Typical Propagation Delay of Low-to-High  
6-6. Typical Propagation Delay of Low-to-High  
(A to B) vs Load Capacitance  
(A to B) vs Load Capacitance  
27  
27  
CL = 45 pF  
CL = 45 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
24  
21  
18  
15  
12  
9
24  
21  
18  
15  
12  
9
6
6
3
3
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply B (V)  
2.4  
2.7  
3
3.3  
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply B (V)  
2.4  
2.7  
3
3.3  
D007  
D006  
TA = 25°C VCCA = 3.3 V  
TA = 25°C VCCA = 2.5 V  
6-7. Typical Propagation Delay of Low-to-High  
6-8. Typical Propagation Delay of Low-to-High  
(A to B) vs Load Capacitance  
(A to B) vs Load Capacitance  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
50  
45  
40  
35  
30  
25  
20  
15  
40  
CL = 45 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
CL = 45 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
35  
30  
25  
20  
15  
10  
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply A (V)  
2.4  
2.7  
3
3.3  
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply A (V)  
2.4  
2.7  
3
3.3  
D008  
D009  
TA = 25°C VCCA = 0.7 V  
TA = 25°C VCCA = 0.8 V  
6-9. Typical Propagation Delay of Low-to-High 6-10. Typical Propagation Delay of Low-to-High  
(B to A) vs Load Capacitance  
(B to A) vs Load Capacitance  
36  
27.5  
CL = 45 pF  
CL = 45 pF  
33  
30  
27  
24  
21  
18  
15  
12  
9
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
25  
22.5  
20  
17.5  
15  
12.5  
10  
7.5  
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply A (V)  
2.4  
2.7  
3
3.3  
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply A (V)  
2.4  
2.7  
3
3.3  
D010  
D011  
TA = 25°C VCCA = 0.9 V  
TA = 25°C VCCA = 1.2 V  
6-11. Typical Propagation Delay of Low-to-High 6-12. Typical Propagation Delay of Low-to-High  
(B to A) vs Load Capacitance  
(B to A) vs Load Capacitance  
30  
25  
CL = 45 pF  
CL = 45 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
27  
24  
21  
18  
15  
12  
9
22.5  
20  
17.5  
15  
12.5  
10  
7.5  
5
6
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply A (V)  
2.4  
2.7  
3
3.3  
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply A (V)  
2.4  
2.7  
3
3.3  
D012  
D013  
TA = 25°C VCCA = 1.5 V  
TA = 25°C  
VCCA = 1.8 V  
6-13. Typical Propagation Delay of Low-to-High 6-14. Typical Propagation Delay of Low-to-High  
(B to A) vs Load Capacitance  
(B to A) vs Load Capacitance  
30  
30  
CL = 45 pF  
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
CL = 45 pF  
27  
24  
21  
18  
15  
12  
9
CL = 62 pF  
CL = 79 pF  
CL = 105 pF  
CL = 123 pF  
25  
20  
15  
10  
5
6
3
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply A (V)  
2.4  
2.7  
3
3.3  
0.6  
0.9  
1.2  
1.5  
1.8 2.1  
Supply A (V)  
2.4  
2.7  
3
3.3  
D014  
D015  
TA = 25°C VCCA = 2.5 V  
TA = 25°C VCCA = 3.3 V  
6-15. Typical Propagation Delay of Low-to-High 6-16. Typical Propagation Delay of Low-to-High  
(B to A) vs Load Capacitance (B to A) vs Load Capacitance  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN74AXCH1T45  
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Load Circuit and Voltage Waveforms  
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:  
f = 1 MHz  
ZO = 50 Ω  
dv/dt 1 ns/V  
Measurement Point  
2 x VCCO  
Open  
GND  
S1  
RL  
Output Pin  
Under Test  
(1)  
CL  
RL  
A. CL includes probe and jig capacitance.  
7-1. Load Circuit  
7-1. Load Circuit Conditions  
Parameter  
VCCO  
RL  
CL  
S1  
VTP  
N/A  
N/A  
N/A  
Δt/  
Δv  
Input transition rise or fall rate  
15 pF  
15 pF  
15 pF  
Open  
Open  
Open  
0.65 V 3.6 V  
1.1 V 3.6 V  
1 MΩ  
2 kΩ  
20 kΩ  
tpd  
Propagation (delay) time  
0.65 V 0.95  
V
15 pF  
15 pF  
15 pF  
2 × VCCO  
2 × VCCO  
2 × VCCO  
0.3 V  
0.15 V  
0.1 V  
3 V 3.6 V  
1.65 V 2.7 V  
1.1 V 1.6 V  
2 kΩ  
2 kΩ  
2 kΩ  
ten, tdis Enable time, disable time  
0.65 V 0.95  
15 pF  
2 × VCCO  
0.1 V  
20 kΩ  
V
15 pF  
15 pF  
15 pF  
GND  
GND  
GND  
0.3 V  
0.15 V  
0.1 V  
3 V 3.6 V  
1.65 V 2.7 V  
1.1 V 1.6 V  
2 kΩ  
2 kΩ  
2 kΩ  
ten, tdis Enable time, disable time  
0.65 V 0.95  
15 pF  
GND  
0.1 V  
20 kΩ  
V
(1)  
VCCI  
(1)  
VCCI  
Input A, B  
100 kHz  
VCCI / 2  
VCCI / 2  
Input A, B  
500 ps/V œ 100 ns/V  
0 V  
VOH  
0 V  
VOH  
(2)  
tpd  
tpd  
(2)  
Output B, A  
Ensure Monotonic  
Rising and Falling Edge  
(2)  
VOL  
Output B, A  
VCCI / 2  
VCCI / 2  
(2)  
VOL  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur  
with specified RL, CL, and S1  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur  
with specified RL, CL, and S1  
7-3. Input Transition Rise or Fall Rate  
7-2. Propagation Delay  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
 
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
VCCA  
VCCA / 2  
DIR  
VCCA / 2  
GND  
(1)  
ten  
(5)  
VCCO  
Output A(2)  
Output A(3)  
VCCO / 2  
VOL + VTP  
(6)  
VOL  
tdis  
(6)  
VOH  
VOH - VTP  
VCCO / 2  
GND  
(1)  
ten  
(5)  
VCCO  
Output B(2)  
Output B(3)  
VCCO / 2  
VOL + VTP  
(6)  
VOL  
tdis  
(6)  
VOH  
VOH - VTP  
VCCO / 2  
GND  
1. Illustrative purposes only. Enable Time is a calculation as described in the data sheet.  
2. Output waveform on the condition that input is driven to a valid Logic Low.  
3. Output waveform on the condition that input is driven to a valid Logic High.  
4. VCCI is the supply pin associated with the input port  
5. VCCO is the supply pin associated with the output port.  
6. VOH and VOL are typical output voltage levels that occur with specified RL, CL, and S1  
7-4. Disable and Enable Time  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN74AXCH1T45  
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN74AXCH1T45 is single-bit, dual-supply, noninverting voltage level translator. Pin A and the direction  
control pin are referenced to VCCA logic levels and pin B is referenced to VCCB logic levels, as depicted in . The A  
port can accept I/O voltages ranging from 0.65 V to 3.6 V, and the B port can accept I/O voltages from 0.65 V to  
3.6 V. A logic high on the DIR pin enables data transmission from A to B and a logic low on the DIR pin enables  
data transmission from B to A.  
8.2 Functional Block Diagram  
VCCA  
VCCB  
DIR  
A
Bus-Hold  
B
Bus-Hold  
8-1. Functional Block Diagram  
8.3 Feature Description  
8.3.1 Standard CMOS Inputs  
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input  
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum  
input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the  
Electrical Characteristics, using ohm's law (R = V ÷ I).  
Signals applied to the inputs need to have fast edge rates, as defined by Δt/Δv in Recommended Operating  
Conditions to avoid excessive current consumption and oscillations. If a slow or noisy input signal is required, a  
device with a Schmitt-trigger input should be used to condition the input signal prior to the standard CMOS input.  
8.3.2 Balanced High-Drive CMOS Push-Pull Outputs  
A balanced output allows the device to sink and source similar currents. The high drive capability of this device  
creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.  
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without  
being damaged. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at  
all times.  
8.3.3 Partial Power Down (Ioff  
)
The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting  
current backflow into the device. The maximum leakage into or out of any input or output pin on the device is  
specified by Ioff in the Electrical Characteristics.  
8.3.4 VCC Isolation  
The inputs and outputs for this device enter a high-impedance state when either supply is <100mV.  
8.3.5 Over-voltage Tolerant Inputs  
Input signals to this device can be driven above the supply voltage so long as they remain below the maximum  
input voltage value specified in the Recommended Operating Conditions.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
 
 
 
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8.3.6 Negative Clamping Diodes  
The inputs and outputs to this device have negative clamping diodes as depicted in 8-2.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to  
the device. The input negative-voltage and output voltage ratings may be exceeded if the input and  
output clamp-current ratings are observed.  
VCC  
Device  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
8-2. Electrical Placement of Clamping Diodes for Each Input and Output  
8.3.7 Fully Configurable Dual-Rail Design  
Both the VCCA and VCCB pins can be supplied at any voltage from 0.65 V to 3.6 V, making the device suitable for  
translating between any of the voltage nodes (0.7 V, 0.8 V, 0.9 V, 1.2 V, 1.8 V, 2.5 V and 3.3 V).  
8.3.8 Supports High-Speed Translation  
The SN74AXCH1T45 device can support high data-rate applications. The translated signal data rate can be up  
to 500 Mbps when the signal is translated from 1.8 V to 3.3 V.  
8.3.9 Bus-Hold Data Inputs  
Each data input on this device includes a weak latch that maintains a valid logic level on the input. The state of  
these latches is unknown at startup and remains unknown until the input has been forced to a valid high or low  
state. After data has been sent through a channel, the latch then maintains the previous state on the input if the  
line is left floating. It is not recommended to use pull-up or pull-down resistors together with a bus-hold input, as  
it may cause undefined inputs to occur which leads to excessive current consumption.  
Bus-hold data inputs prevent floating inputs on this device. The Implications of Slow or Floating CMOS Inputs  
application report explains the problems associated with leaving CMOS inputs floating.  
These latches remain active at all times, independent of all control signals such as direction control or output  
enable.  
The Bus-Hold Circuit application report has additional details regarding bus-hold inputs.  
Input  
Logic  
Output  
Bus-Hold Latch  
8-3. Simplified Schematic For Device With Bus-Hold Data Inputs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN74AXCH1T45  
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8.4 Device Functional Modes  
8-1 lists the device functions for the DIR input.  
8-1. Function Table  
INPUT(1)  
DIR  
OPERATION  
L
B data to A bus  
A data to B bus  
H
(1) Input circuits of the data I/Os always are active.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
 
 
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The SN74AXCH1T45 device can be used in level-translation applications for interfacing devices or systems with  
one another when they are operating at different interface voltages. The maximum data rate can be up to 500  
Mbps when the device translate signals from 1.8 V to 3.3 V.  
9.1.1 Enable Times  
Calculate the enable times for the SN74AXC1T45 using the following formulas:  
tA_en (DIR to A) = tdis (DIR to B) + tpd (B to A)  
tB_en (DIR to B) = tdis (DIR to A) + tpd (A to B)  
(1)  
(2)  
In a bidirectional application, these enable times provide the maximum delay time from the time the DIR bit is  
switched until an output is expected. For example, if the SN74AXCH1T45 initially is transmitting from A to B,  
then the DIR bit is switched; the B port of the device must be disabled (tdis) before presenting it with an input.  
After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the  
specified propagation delay (tpd). To avoid bus contention care should be taken to not apply an input signal prior  
to the output port being disabled (tdis max).  
9.2 Typical Applications  
9.2.1 Interrupt Request Application  
9-1 shows an example of the SN74AXCH1T45 being used in an application where a system controller flags  
an interrupt request (IRQ) to the CPU. The system controller determines the direction of the IRQ line to either  
flag an interrupt to the CPU or allow the CPU to drive data on the line. In this application the controller is  
operating at 3.3 V while the CPU can be operating as low as 0.65 V.  
The SN74AXCH1T45 device is used to ensure that these devices can communicate at the appropriate voltage  
levels. Because the SN74AXCH1T45 does not have an output-enable ( OE) pin, the system designer should  
take precautions to avoid bus contention between the CPU and controller when changing directions.  
0.7 V  
3.3 V  
0.1 µF  
0.1 µF  
VCCA  
VCCB  
IRQ  
Data  
IRQ  
Data  
CPU  
Controller  
B
SN74AXCH1T45  
GND  
A
IRQ  
Direction  
DIR  
9-1. Interrupt Request Application  
9.2.1.1 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
DESIGN PARAMETERS  
EXAMPLE VALUES  
Input voltage range  
0.65 V to 3.6 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN74AXCH1T45  
 
 
 
 
 
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
9-1. Design Parameters (continued)  
DESIGN PARAMETERS  
EXAMPLE VALUES  
Output voltage range  
0.65 V to 3.6 V  
9.2.1.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Use the supply voltage of the device that is driving the SN74AXCH1T45 device to determine the input  
voltage range. For a valid logic-high, the value must exceed the high-level input voltage (VIH) of the input  
port. For a valid logic low the value must be less than the low-level input voltage (VIL) of the input port.  
Output voltage range  
Use the supply voltage of the device that the SN74AXCH1T45 device is driving to determine the output  
voltage range.  
9.2.1.3 Application Curve  
9-2. Up Translation at 2.5 MHz (0.7 V to 3.3 V)  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
9.2.2 Universal Asynchronous Receiver-Transmitter (UART) Interface Application  
9-3 shows the SN74AXCH1T45 being used for the two-bit UART interface application. One SN74AXCH1T45  
device is used to level shift the voltage and drive the TX from the processor to the GPS Module while a second  
SN74AXCH1T45 device is used to drive the TX Data line from the GPS Module to the Processor. Devices with  
bus-hold inputs remove the requirement for external pullup resistors to maintain a valid logic level at the input.  
0.7 V  
3.3 V  
0.1 µF  
0.1 µF  
VCCA  
VCCB  
RX  
TX  
B
SN74AXCH1T45  
GND  
A
DIR  
0.1 µF  
0.1 µF  
Processor  
GPS Module  
VCCA  
VCCB  
TX  
RX  
B
SN74AXCH1T45  
GND  
A
DIR  
9-3. UART Interface Application  
9.2.2.1 Design Requirements  
Refer to Design Requirements.  
9.2.2.2 Detailed Design Procedure  
Refer to Detailed Design Procedure.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN74AXCH1T45  
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
Always apply a ground reference to the GND pins first. This device is designed for glitch free power sequencing  
without any supply sequencing requirements such as ramp order or ramp rate.  
This device was designed with various power supply sequencing methods in mind to help prevent unintended  
triggering of downstream devices. For more information regarding the power up glitch performance of the AXC  
family of level translators, see the Power Sequencing for AXC Family of Devices application report  
11 Layout  
11.1 Layout Guidelines  
To ensure reliability of the device, following common printed-circuit board layout guidelines are recommended:  
Use bypass capacitors on the power supply pins and place them as close to the device as possible.  
Use short trace lengths to avoid excessive loading.  
11.2 Layout Example  
LEGEND  
Polygonal Copper Pour  
VIA to Power Plane  
VIA to GND Plane (Inner Layer)  
VCCB  
VCCA  
6
5
4
1
2
3
VCCA  
GND  
A
VCCB  
DIR  
B
VCCA  
From Controller  
To System  
11-1. PCB Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
 
 
 
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
For related documentation see the following:  
Texas Instruments, Evaluate SN74AXC1T45DRL Using a Generic EVM application report  
Texas Instruments, System Considerations For Using Bus-hold Circuits To Avoid Floating Inputsapplication  
report  
Texas Instruments, Power Sequencing for the AXC Family of Devices application report  
Texas Instruments, Implications of Slow or Floating CMOS Inputs application report  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E中文支持论坛是工程师的重要参考资料可直接从专家处获得快速、经过验证的解答和设计帮助。搜索  
现有解答或提出自己的问题获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 使用条款。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN74AXCH1T45  
 
 
 
 
 
 
 
SN74AXCH1T45  
ZHCSJ32C DECEMBER 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: SN74AXCH1T45  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74AXCH1T45DBVR  
SN74AXCH1T45DCKR  
SN74AXCH1T45DRY2  
SN74AXCH1T45DRYR  
SN74AXCH1T45DTQR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
SON  
DBV  
DCK  
DRY  
DRY  
DTQ  
6
6
6
6
6
3000 RoHS & Green  
3000 RoHS & Green  
5000 RoHS & Green  
5000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1PNL  
1CC  
IR  
SN  
NIPDAU  
NIPDAU  
NIPDAU  
SON  
II  
X2SON  
DM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN74AXCH1T45DBVR SOT-23  
DBV  
DCK  
DRY  
DRY  
DTQ  
6
6
6
6
6
3000  
3000  
5000  
5000  
3000  
180.0  
178.0  
180.0  
180.0  
180.0  
8.4  
9.0  
9.5  
9.5  
9.5  
3.2  
2.4  
3.2  
2.5  
1.4  
1.2  
4.0  
4.0  
4.0  
4.0  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q1  
Q2  
SN74AXCH1T45DCKR  
SN74AXCH1T45DRY2  
SN74AXCH1T45DRYR  
SC70  
SON  
SON  
1.6  
1.15  
1.65  
1.13  
0.68  
0.7  
1.2  
SN74AXCH1T45DTQR X2SON  
0.94  
0.5  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN74AXCH1T45DBVR  
SN74AXCH1T45DCKR  
SN74AXCH1T45DRY2  
SN74AXCH1T45DRYR  
SN74AXCH1T45DTQR  
SOT-23  
SC70  
SON  
DBV  
DCK  
DRY  
DRY  
DTQ  
6
6
6
6
6
3000  
3000  
5000  
5000  
3000  
210.0  
180.0  
189.0  
189.0  
189.0  
185.0  
180.0  
185.0  
185.0  
185.0  
35.0  
18.0  
36.0  
36.0  
36.0  
SON  
X2SON  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DTQ0006A  
X2SON - 0.4 mm max height  
S
C
A
L
E
1
2
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
PIN 1 INDEX AREA  
0.85  
0.75  
0.40 MAX  
(0.1) TYP  
C
SEATING PLANE  
0.05 C  
(0.1)  
2X 0.6  
0.4  
0.05  
0.00  
(0.027) TYP  
3
4
PKG  
+0.05  
-0.03  
0.25  
TYP  
2
5
(0.08)  
0.25  
4X  
0.17  
1
6
PIN 1 ID  
(OPTIONAL)  
NOTE 5  
PKG  
0.30  
4X  
0.22  
0.1  
0.05  
C A B  
C
4224056/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pads must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
4. The size and shape of this feature may vary.  
5. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DTQ0006A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
0.05 MIN  
ALL AROUND  
TYP  
SOLDER MASK OPEING  
TYP  
SYMM  
4X (0.25)  
6
(0.25)  
TYP  
1
4X (0.4)  
SYMM  
(0.8)  
2
5
(0.2) TYP  
EXPOSED METAL  
CLEARANCE  
METAL UNDER  
SOLDER MASK  
TYP  
3
4
(0.2)  
TYP  
(0.027) TYP  
(R0.05) TYP  
(0.4)  
(0.6)  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE:50X  
4224056/A 11/2017  
NOTES: (continued)  
6. This package is designed to be soldered to a thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
7. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DTQ0006A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
4X (0.25)  
SYMM  
(0.027) TYP  
(0.279)  
TYP  
6
1
4X (0.4)  
SYMM  
(0.8)  
5
2
(0.2) TYP  
SOLDER MASK  
EDGE, 2X  
3
METAL UNDER  
SOLDER MASK  
TYP  
4
(0.2)  
TYP  
(R0.05) TYP  
(0.21)  
(0.367)  
4X (0.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.07 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:50X  
4224056/A 11/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DRY 6  
USON - 0.6 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4207181/G  
PACKAGE OUTLINE  
DRY0006A  
USON - 0.6 mm max height  
S
C
A
L
E
8
.
5
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
PIN 1 INDEX AREA  
1.5  
1.4  
C
0.6 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3X 0.6  
SYMM  
(0.127) TYP  
(0.05) TYP  
3
4
4X  
0.5  
SYMM  
2X  
1
6
1
0.25  
6X  
0.15  
0.4  
0.3  
0.1  
C A B  
C
0.05  
PIN 1 ID  
(OPTIONAL)  
0.35  
0.25  
5X  
4222894/A 01/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRY0006A  
USON - 0.6 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
(0.35)  
5X (0.3)  
6
1
6X (0.2)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(0.6)  
LAND PATTERN EXAMPLE  
1:1 RATIO WITH PKG SOLDER PADS  
EXPOSED METAL SHOWN  
SCALE:40X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
EXPOSED  
EXPOSED  
METAL  
METAL  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222894/A 01/2018  
NOTES: (continued)  
3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRY0006A  
USON - 0.6 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
(0.35)  
5X (0.3)  
1
6
6X (0.2)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(0.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1 mm THICK STENCIL  
SCALE:40X  
4222894/A 01/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN74AXCH2T45

具有总线保持电流的 2 位 0.65V 至 3.6V AXC 双电源总线收发器
TI

SN74AXCH2T45DCUR

具有总线保持电流的 2 位 0.65V 至 3.6V AXC 双电源总线收发器 | DCU | 8 | -40 to 125
TI

SN74AXCH2T45DTMR

具有总线保持电流的 2 位 0.65V 至 3.6V AXC 双电源总线收发器 | DTM | 8 | -40 to 125
TI

SN74AXCH4T245

4 位双电源总线收发器
TI

SN74AXCH4T245PWR

4 位双电源总线收发器 | PW | 16 | -40 to 125
TI

SN74AXCH4T245RSVR

4 位双电源总线收发器 | RSV | 16 | -40 to 125
TI

SN74AXCH8T245

8 位双电源总线收发器
TI

SN74AXCH8T245PWR

8 位双电源总线收发器 | PW | 24 | -40 to 125
TI

SN74AXCH8T245RHLR

8 位双电源总线收发器 | RHL | 24 | -40 to 125
TI

SN74BC646NT

IC,BUS TRANSCEIVER,SINGLE,8-BIT,BICMOS,DIP,24PIN,PLASTIC
TI

SN74BCT

Pocket Data Book
TI

SN74BCT125A

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI