SN74AXCH4T245PWR [TI]

4 位双电源总线收发器 | PW | 16 | -40 to 125;
SN74AXCH4T245PWR
型号: SN74AXCH4T245PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4 位双电源总线收发器 | PW | 16 | -40 to 125

总线收发器
文件: 总39页 (文件大小:988K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
具有可配置电压转换、三态输出和总线保持输入的  
SN74AXCH4T245 四位总线收发器  
1 特性  
有源总线保持电路会将未使用或未驱动的输入保持在有  
效逻辑状态。不建议在总线保持电路上使用上拉或下拉  
电阻器。如果 VCCA VCCB 连上电源,则总线保持电  
路分别在 A B 输入端口上始终保持工作状态,与方  
向控制或输出使能引脚的状态无关。  
1
完全可配置的双电源轨设计可允许各个端口在  
0.65V 3.6V 的电源电压范围内运行  
总线保持数据输入消除了对外部上拉或下拉电阻器  
的需求  
工作温度范围 -40°C +125°C  
多向控制引脚,支持同步升降转换  
无干扰电源定序  
为了确保电平转换器 I/O 在加电或断电期间的高阻抗状  
态,xOE 引脚应通过一个上拉电阻器连接至 VCCA  
1.8V 转换到 3.3V 时,支持高达 380Mbps 的转  
换速率  
该器件完全 适用于 使用 Ioff 电流的局部掉电应用。当  
器件掉电时,Ioff 保护电路可确保不从输入/输出或偏置  
到特定电压的组合 I/O 获取或向其提供多余电流。  
VCC 隔离特性  
Ioff 支持局部断电模式运行  
VCC 隔离特性可确保当 VCCA VCCB 低于 100mV  
兼容 AVC 系列电平转换器  
时,所有 I/O 端口均禁用其输出并进入高阻抗状态。  
闩锁性能超过 100mA,符合 JESD 78 II 类规范  
静电放电 (ESD) 保护性能超过 JESD 22 规范要求  
无干扰电源定序使电源轨能以任何顺序打开或关断,从  
而提供强大的电源定序性能。  
8000V 人体放电模型  
1000V 充电器件模型  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
5.00mm x 4.40mm  
2.60mm x 1.80mm  
2 应用  
SN74AXCH4T245PW TSSOP (16)  
SN74AXCH4T245RSV UQFN (16)  
企业与通信  
工业  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
个人电子产品  
无线基础设施  
楼宇自动化  
功能方框图  
One of Two Transceiver Pairs  
3 说明  
VCCA  
VCCB  
SN74AXCH4T245 是一款使用两个独立可配置电源轨  
的四位同相总线收发器。VCCA VCCB 电源电压低至  
0.65V 时,该器件可正常工作。A 端口用于跟踪  
xDIR  
xOE  
V
CCA,该端口可支持 0.65V 3.6V 范围内的任何电  
Bus-Hold  
源电压。B 端口用于跟踪 VCCB,该端口可支持 0.65V  
3.6V 范围内的任何电源电压。SN74AXCH4T245  
器件与单电源系统兼容。  
xB1  
xB2  
xA1  
xA2  
Bus-Hold  
SN74AXCH4T245 器件旨在实现数据总线间的异步通  
信,根据方向控制输入(1DIR 2DIR)的逻辑电  
平,将数据从 A 总线传输至 B 总线,或将数据从 B 总  
线传输至 A 总线。输出使能输入(1OE 2OE)可用  
于禁用输出,从而有效隔离总线。所有控制引脚  
xDIR xOE)以 VCCA 为基准。  
Bus-Hold  
Bus-Hold  
Note: Bus-hold circuits are only present for data inputs, not control inputs  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCES878  
 
 
 
 
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
目录  
7.1 Load Circuit and Voltage Waveforms ..................... 19  
Detailed Description ............................................ 21  
8.1 Overview ................................................................. 21  
8.2 Functional Block Diagram ....................................... 21  
8.3 Feature Description................................................. 21  
8.4 Device Functional Modes........................................ 23  
Application and Implementation ........................ 24  
9.1 Application Information............................................ 24  
9.2 Typical Application ................................................. 24  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics, VCCA = 0.7 ± 0.05 V........ 8  
6.7 Switching Characteristics, VCCA = 0.8 ± 0.04 V........ 9  
6.8 Switching Characteristics, VCCA = 0.9 ± 0.045 V.... 10  
6.9 Switching Characteristics, VCCA = 1.2 ± 0.1 V........ 11  
6.10 Switching Characteristics, VCCA = 1.5 ± 0.1 V...... 12  
6.11 Switching Characteristics, VCCA = 1.8 ± 0.15 V.... 13  
6.12 Switching Characteristics, VCCA = 2.5 ± 0.2 V...... 14  
6.13 Switching Characteristics, VCCA = 3.3 ± 0.3 V...... 15  
6.14 Operating Characteristics: TA = 25°C ................... 16  
6.15 Typical Characteristics.......................................... 18  
Parameter Measurement Information ................ 19  
10 Power Supply Recommendations ..................... 26  
11 Layout................................................................... 26  
11.1 Layout Guidelines ................................................. 26  
11.2 Layout Example .................................................... 26  
12 器件和文档支持 ..................................................... 27  
12.1 相关文档ꢀ ........................................................... 27  
12.2 接收文档更新通知 ................................................. 27  
12.3 社区资源................................................................ 27  
12.4 ....................................................................... 27  
12.5 静电放电警告......................................................... 27  
12.6 术语表 ................................................................... 27  
13 机械、封装和可订购信息....................................... 28  
7
4 修订历史记录  
日期  
修订版本  
说明  
2019 3 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
5 Pin Configuration and Functions  
PW Package  
16-Pin TSSOP  
Top View  
RSV Package  
16-Pin UQFN  
Transparent Top View  
VCCA  
1DIR  
2DIR  
1A1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCCB  
1OE  
2OE  
1B1  
1B2  
2B1  
2B2  
GND  
16 15 14 13  
1
2
3
4
12  
11  
10  
9
2B2  
GND  
GND  
2A2  
1OE  
VCCB  
1A2  
VCCA  
2A1  
1DIR  
2A2  
GND  
5
6
7
8
Pin Functions  
PIN  
NO.  
TYPE  
DESCRIPTION  
NAME  
PW  
4
RSV  
6
1A1  
1A2  
1B1  
1B2  
1DIR  
I/O  
I/O  
I/O  
I/O  
I
Input/output 1A1. Referenced to VCCA  
Input/output 1A2. Referenced to VCCA  
Input/output 1B1. Referenced to VCCB  
Input/output 1B2. Referenced to VCCB  
Direction-control input for ‘1’ ports  
.
.
.
.
5
7
13  
12  
2
15  
14  
4
Tri-state output-mode enable. Pull OE high to place ‘1’ outputs in tri-state  
mode. Referenced to VCCA  
1OE  
15  
1
I
.
2A1  
2A2  
2B1  
2B2  
2DIR  
6
7
8
9
I/O  
I/O  
I/O  
I/O  
I
Input/output 2A1. Referenced to VCCA  
Input/output 2A2. Referenced to VCCA  
Input/output 2B1. Referenced to VCCB  
Input/output 2B2. Referenced to VCCB  
Direction-control input for ‘2’ ports  
.
.
.
.
11  
10  
3
13  
12  
5
Tri-state output-mode enable. Pull OE high to place ‘2’ outputs in tri-state  
2OE  
14  
16  
I
mode. Referenced to VCCA  
.
GND  
VCCA  
VCCB  
8, 9  
1
10, 11  
Ground  
3
2
A-port power supply voltage. 0.65 V VCCA 3.6 V  
B-port power supply voltage. 0.65 V VCCB 3.6 V  
16  
Copyright © 2019, Texas Instruments Incorporated  
3
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
UNIT  
MIN  
MAX  
S
VCCA Supply voltage A  
VCCB Supply voltage B  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
4.2  
4.2  
4.2  
4.2  
4.2  
4.2  
4.2  
V
V
I/O Ports (A Port)  
I/O Ports (B Port)  
Control Inputs  
A Port  
VI  
Input Voltage(2)  
V
VO  
VO  
Voltage applied to any output in the high-impedance or power-off state(2)  
Voltage applied to any output in the high or low state(2)(3)  
V
V
B Port  
A Port  
–0.5 VCCA + 0.2  
–0.5 VCCB + 0.2  
–50  
B Port  
IIK  
IOK  
IO  
Input clamp current  
VI < 0  
mA  
mA  
Output clamp current  
VO < 0  
–50  
Continuous output current  
Continuous current through VCC or GND  
Junction Temperature  
–50  
50 mA  
–100  
100 mA  
Tj  
150  
150  
°C  
°C  
Tstg  
Storage temperature  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current rating is observed.  
6.2 ESD Ratings  
VALUE  
±8000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2019, Texas Instruments Incorporated  
 
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
MIN  
0.65  
MAX UNIT  
VCCA  
VCCB  
Supply voltage A  
Supply voltage B  
3.6  
3.6  
V
V
0.65  
VCCI = 0.65 V - 0.75 V  
VCCI = 0.76 V - 1 V  
VCCI = 1.1 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3 V - 3.6 V  
VCCI x 0.70  
VCCI x 0.70  
VCCI x 0.65  
1.6  
Data Inputs  
VCCI x 0.65  
VCCA x 0.70  
VCCA x 0.70  
VCCA x 0.65  
1.6  
VIH  
High-level input voltage  
VCCA = 0.65 V - 0.75 V  
VCCA = 0.76 V - 1 V  
VCCA = 1.1 V - 1.95 V  
VCCA = 2.3 V - 2.7 V  
VCCA = 3 V - 3.6 V  
VCCI = 0.65 V - 0.75 V  
VCCI = 0.76 V - 1 V  
VCCI = 1.1 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3 V - 3.6 V  
Control Inputs(xDIR, xOE)  
Referenced to VCCA  
VCCA x 0.65  
VCCI x 0.30  
VCCI x 0.30  
VCCI x 0.35  
0.7  
Data Inputs  
0.8  
VIL  
Low-level input voltage  
V
VCCA = 0.65 V - 0.75 V  
VCCA = 0.76 V - 1 V  
VCCA = 1.1 V - 1.95 V  
VCCA = 2.3 V - 2.7 V  
VCCA = 3 V - 3.6 V  
VCCA x 0.30  
VCCA x 0.30  
VCCA x 0.35  
0.7  
Control Inputs(xDIR, xOE)  
Referenced to VCCA  
0.8  
(3)  
VI  
Input voltage  
0
0
0
3.6  
V
V
Active State  
Tri-State  
VCCO  
VO  
Output voltage  
3.6  
Δt/Δv(2) Input transition rise and fall time  
10 ns/V  
125 °C  
TA Operating free-air temperature  
–40  
(1) VCCI is the VCC associated with the input port.  
(2) VCCO is the VCC associated with the output port.  
(3) All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,  
Implications of Slow or Floating CMOS Inputs, SCBA004.  
6.4 Thermal Information  
SN74AXCH4T245  
THERMAL METRIC(1)  
PW (TSSOP)  
16 PINS  
126.9  
RSV (UQFN)  
16 PINS  
130.1  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
49.3  
70.3  
74.3  
57.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
8.1  
4.6  
ψJB  
73.4  
55.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2019, Texas Instruments Incorporated  
5
 
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
Operating free-air temperature (TA)  
-40°C to 85°C -40°C to 125°C  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
UNIT  
MIN TYP(3)  
MAX  
MIN TYP(3)  
MAX  
VCCO  
– 0.1  
VCCO  
– 0.1  
IOH = -100 µA  
0.7 V - 3.6 V 0.7 V - 3.6 V  
IOH = -50 µA  
IOH = -200 µA  
IOH = -500 µA  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.55  
0.58  
0.65  
0.85  
1.05  
1.2  
0.55  
0.58  
0.65  
0.85  
1.05  
1.2  
High-level  
output  
voltage  
VOH  
VI = VIH  
V
IOH = -3 mA  
IOH = -6 mA  
IOH = -8 mA  
IOH = -9 mA  
IOH = -12 mA  
IOL = 100 µA  
IOL = 50 µA  
IOL = 200 µA  
IOL = 500 µA  
VI = VIL IOL = 3 mA  
IOL = 6 mA  
1.75  
2.3  
1.75  
2.3  
0.7 V - 3.6 V 0.7 V - 3.6 V  
0.1  
0.1  
0.1  
0.1  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.18  
0.2  
0.18  
0.2  
Low-level  
output  
voltage  
VOL  
0.25  
0.35  
0.45  
0.55  
0.7  
0.25  
0.35  
0.45  
0.55  
0.7  
V
IOL = 8 mA  
IOL = 9 mA  
IOL = 12 mA  
VI = 0.20 V  
VI = 0.23 V  
VI = 0.26 V  
VI = 0.39 V  
VI = 0.49 V  
VI = 0.58 V  
VI = 0.7 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
4
8
4
7
10  
10  
Bus-hold low  
sustaining  
current (Port  
20  
20  
IBHL  
µA  
40  
30  
A or Port B)  
(4)  
55  
45  
90  
80  
VI = 0.8 V  
145  
–4  
135  
–4  
VI = 0.20 V  
VI = 0.23 V  
VI = 0.26 V  
VI = 0.39 V  
VI = 0.49 V  
VI = 0.58 V  
VI = 0.7 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
–8  
–7  
Bus-hold  
high  
sustaining  
–10  
–20  
–40  
–55  
–90  
–145  
–10  
–20  
–30  
–45  
–80  
–135  
IBHH  
µA  
current (Port  
A or Port B)  
(5)  
VI = 0.8 V  
(1) VCCI is the VCC associated with the input port.  
(2) VCCO is the VCC associated with the output port.  
(3) All typical data is taken at 25°C.  
(4) The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND  
and then raising it to VIL max.  
(5) The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to  
VCC and then lowering it to VIH min.  
6
Copyright © 2019, Texas Instruments Incorporated  
 
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted) (1)(2)  
Operating free-air temperature (TA)  
-40°C to 85°C -40°C to 125°C  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
UNIT  
MIN TYP(3)  
MAX  
MIN TYP(3)  
MAX  
0.75 V  
0.75 V  
40  
40  
0.84 V  
0.95 V  
1.3 V  
0.84 V  
0.95 V  
1.3 V  
50  
50  
65  
65  
Bus-hold low  
overdrive  
IBHLO current (Port VI = 0 to VCC  
105  
105  
µA  
1.6 V  
1.6 V  
150  
150  
A or Port B)  
(6)  
1.95 V  
2.7 V  
1.95 V  
2.7 V  
205  
205  
335  
335  
3.6 V  
3.6 V  
480  
480  
0.75 V  
0.84 V  
0.95 V  
1.3 V  
0.75 V  
0.84 V  
0.95 V  
1.3 V  
–40  
–40  
–50  
–50  
Bus-hold  
high  
overdrive  
–65  
–65  
–105  
–150  
–205  
–335  
–480  
–105  
–150  
–205  
–335  
–480  
IBHHO  
VI = 0 to VCC  
µA  
current (Port  
1.6 V  
1.6 V  
A or Port B)  
(7)  
1.95 V  
2.7 V  
1.95 V  
2.7 V  
3.6 V  
3.6 V  
Control inputs (xDIR,  
xOE): VI = VCCA or GND  
0.65 V- 3.6 V 0.65 V- 3.6 V  
0.65 V- 3.6 V 0.65 V- 3.6 V  
–0.5  
–4  
0.5  
4
–1  
–8  
1
8
µA  
µA  
Input leakage  
current  
II  
Data Inputs (xAx, xBx)  
VI = VCCI or GND  
A Port: VI or VO = 0 V -  
3.6 V  
0 V  
0 V - 3.6 V  
0 V  
–8  
8
–12  
–12  
12  
12  
Partial power  
down current  
Ioff  
µA  
B Port: VI or VO = 0 V -  
3.6 V  
0 V - 3.6 V  
–8  
8
A or B Port  
VI = VCCI or GND, VO  
VCCO or GND, OE = VIH  
Tri-state  
output  
current  
IOZ  
3.6 V  
3.6 V  
–4  
–2  
4
–8  
8
µA  
µA  
=
(8)  
0.65 V- 3.6 V 0.65 V- 3.6 V  
13  
26  
VI =  
VCCA supply  
current  
ICCA  
VCCI or IO = 0  
GND  
0 V  
3.6 V  
0 V  
–12  
3.6 V  
8
13  
8
16  
26  
16  
0.65 V- 3.6 V 0.65 V- 3.6 V  
VI =  
VCCB supply  
current  
ICCB  
VCCI or IO = 0  
GND  
0 V  
3.6 V  
0 V  
µA  
3.6 V  
–2  
–12  
Combined  
supply  
current  
VI =  
ICCA  
ICCB  
+
VCCI or IO = 0  
GND  
0.65 V- 3.6 V 0.65 V- 3.6 V  
20  
40  
µA  
pF  
pF  
Control Input  
Capacitance  
Ci  
VI = 3.3 V or GND  
3.3 V  
3.3 V  
3.3 V  
4.5  
7.4  
4.5  
7.4  
OE = VCCA, VO = 1.65V  
DC +1 MHz -16 dBm sine 3.3 V  
wave  
Data I/O  
Capacitance  
Cio  
(6) An external driver must source at least IBHLO to switch this node from low to high.  
(7) An external driver must sink at least IBHHO to switch this node from high to low.  
(8) For I/O ports, the parameter IOZ includes the input leakage current.  
Copyright © 2019, Texas Instruments Incorporated  
7
 
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
6.6 Switching Characteristics, VCCA = 0.7 ± 0.05 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
161  
161  
161  
161  
159  
159  
158  
158  
243  
243  
292  
292  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
109  
109  
134  
134  
159  
159  
122  
122  
243  
243  
192  
192  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
78  
78  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
41  
41  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
38  
38  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
41  
41  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
68  
68  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
181  
181  
10  
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
112  
112  
159  
159  
102  
102  
243  
243  
134  
134  
59  
22  
15  
11  
59  
22  
16  
11  
10  
159  
159  
55  
159  
159  
54  
159  
159  
56  
159  
159  
65  
159  
159  
125  
125  
243  
243  
148  
148  
OE  
OE  
OE  
OE  
tdis Disable time  
ns  
ns  
55  
54  
56  
65  
243  
243  
87  
243  
243  
73  
243  
243  
69  
243  
243  
70  
ten Enable time  
88  
74  
69  
70  
8
Copyright © 2019, Texas Instruments Incorporated  
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
6.7 Switching Characteristics, VCCA = 0.8 ± 0.04 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
134  
134  
109  
109  
110  
110  
147  
147  
143  
143  
253  
253  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
90  
90  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
64  
64  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
30  
30  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
24  
24  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
23  
23  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
25  
25  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
34  
34  
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
90  
72  
39  
22  
15  
11  
10  
90  
72  
39  
22  
15  
11  
10  
110  
110  
111  
111  
143  
143  
164  
164  
110  
110  
91  
110  
110  
42  
110  
110  
36  
110  
110  
35  
110  
110  
37  
110  
110  
47  
OE  
OE  
OE  
OE  
tdis Disable time  
ns  
ns  
91  
42  
36  
35  
37  
47  
143  
143  
117  
117  
143  
143  
71  
143  
143  
57  
143  
143  
52  
143  
143  
47  
143  
143  
53  
ten Enable time  
73  
58  
53  
48  
53  
Copyright © 2019, Texas Instruments Incorporated  
9
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
6.8 Switching Characteristics, VCCA = 0.9 ± 0.045 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
112  
112  
78  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
72  
72  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
54  
54  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
24  
24  
27  
27  
81  
82  
36  
37  
84  
84  
63  
65  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
19  
19  
19  
19  
81  
82  
29  
30  
84  
84  
48  
50  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
17  
17  
14  
14  
81  
82  
27  
28  
84  
84  
43  
45  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
16  
16  
10  
10  
81  
82  
26  
26  
84  
84  
37  
39  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
19  
19  
10  
10  
81  
82  
30  
30  
84  
84  
38  
39  
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
64  
54  
78  
64  
54  
81  
81  
81  
OE  
OE  
OE  
OE  
82  
82  
82  
tdis Disable time  
ns  
ns  
141  
141  
84  
106  
106  
84  
85  
85  
84  
84  
84  
84  
ten Enable time  
229  
229  
149  
149  
107  
107  
10  
Copyright © 2019, Texas Instruments Incorporated  
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
6.9 Switching Characteristics, VCCA = 1.2 ± 0.1 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
60  
60  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
39  
39  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
27  
27  
24  
24  
28  
30  
79  
80  
37  
39  
77  
78  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
15  
15  
15  
15  
28  
30  
29  
31  
37  
39  
51  
53  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
12  
11  
11  
28  
30  
22  
23  
37  
39  
37  
39  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
9
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
41  
30  
7
7
41  
30  
9
7
7
28  
28  
28  
30  
20  
21  
37  
39  
31  
34  
28  
30  
17  
18  
37  
39  
25  
27  
28  
30  
17  
18  
37  
39  
23  
24  
OE  
OE  
OE  
OE  
30  
30  
tdis Disable time  
ns  
ns  
133  
134  
37  
100  
100  
37  
39  
39  
ten Enable time  
168  
168  
109  
109  
Copyright © 2019, Texas Instruments Incorporated  
11  
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
6.10 Switching Characteristics, VCCA = 1.5 ± 0.1 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
22  
22  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
22  
22  
24  
24  
19  
21  
98  
98  
23  
25  
84  
84  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
19  
19  
19  
19  
19  
21  
78  
78  
23  
25  
67  
68  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
11  
11  
11  
19  
21  
27  
29  
23  
25  
43  
45  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
7
7
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
38  
9
8
5
5
38  
9
8
6
5
19  
19  
21  
20  
21  
23  
25  
31  
34  
19  
21  
18  
19  
23  
25  
26  
29  
19  
21  
14  
15  
23  
25  
20  
22  
19  
21  
14  
15  
23  
25  
18  
19  
OE  
OE  
OE  
OE  
21  
tdis Disable time  
ns  
ns  
131  
132  
23  
25  
ten Enable time  
109  
109  
12  
Copyright © 2019, Texas Instruments Incorporated  
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
6.11 Switching Characteristics, VCCA = 1.8 ± 0.15 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
15  
16  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
15  
15  
23  
23  
17  
18  
98  
98  
17  
19  
73  
75  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
14  
14  
17  
17  
17  
18  
77  
77  
17  
19  
60  
62  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
7
7
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
41  
10  
10  
17  
18  
27  
28  
17  
19  
38  
41  
8
7
5
4
41  
8
7
5
4
17  
17  
18  
19  
21  
17  
19  
28  
31  
17  
18  
17  
18  
17  
19  
24  
26  
17  
18  
13  
14  
17  
19  
19  
20  
17  
18  
13  
14  
17  
19  
16  
18  
OE  
OE  
OE  
OE  
18  
tdis Disable time  
ns  
ns  
129  
131  
17  
19  
ten Enable time  
102  
102  
Copyright © 2019, Texas Instruments Incorporated  
13  
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
6.12 Switching Characteristics, VCCA = 2.5 ± 0.2 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
11  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
11  
25  
25  
12  
13  
96  
96  
12  
13  
69  
70  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
17  
17  
12  
13  
76  
77  
12  
13  
54  
56  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
7
7
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
68  
8
7
6
5
4
68  
9
7
6
5
4
12  
12  
13  
26  
27  
12  
13  
33  
36  
12  
13  
18  
20  
12  
13  
24  
26  
12  
13  
16  
17  
12  
13  
20  
22  
12  
13  
12  
13  
12  
13  
16  
18  
12  
13  
12  
13  
12  
13  
14  
15  
OE  
OE  
OE  
OE  
13  
tdis Disable time  
ns  
ns  
128  
129  
12  
13  
ten Enable time  
120  
120  
14  
Copyright © 2019, Texas Instruments Incorporated  
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
6.13 Switching Characteristics, VCCA = 3.3 ± 0.3 V  
See Figure 5 and Table 1 for test circuit and loading. See Figure 6, Figure 7, and Figure 8 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Condtions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
34  
34  
11  
12  
96  
97  
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
19  
19  
11  
12  
76  
77  
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
7
7
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
4
4
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
182  
182  
11  
9
6
5
5
4
9
6
6
5
4
11  
12  
26  
27  
9
11  
12  
18  
19  
9
11  
12  
16  
17  
9
11  
12  
12  
13  
9
11  
12  
11  
12  
9
OE  
OE  
OE  
OE  
12  
tdis Disable time  
ns  
ns  
142  
142  
9
11  
11  
82  
82  
11  
57  
58  
11  
33  
35  
11  
22  
24  
11  
18  
20  
11  
14  
16  
11  
13  
14  
ten Enable time  
194  
194  
Copyright © 2019, Texas Instruments Incorporated  
15  
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
MAX UNIT  
6.14 Operating Characteristics: TA = 25°C  
PARAMETER  
TEST CONDITIONS  
VCCA  
0.7 V  
VCCB  
0.7 V  
MIN  
TYP  
2.2  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
2.3  
2.3  
Power Dissipation Capacitance  
per transceiver (A to B: outputs  
enabled)  
2.3  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
pF  
pF  
pF  
pF  
2.2  
2.2  
2.5  
2.6  
1.5  
1.7  
1.7  
Power Dissipation Capacitance  
per transceiver (A to B: outputs  
disabled)  
1.7  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
1.5  
1.5  
1.8  
2.1  
CpdA  
12.6  
12.4  
12.4  
12.8  
13.3  
14.6  
18.0  
21.1  
1.1  
Power Dissipation Capacitance  
per transceiver (B to A: outputs  
enabled)  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
1.1  
1.0  
Power Dissipation Capacitance  
per transceiver (B to A: outputs  
disabled)  
1.0  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
1.0  
0.9  
0.9  
0.9  
16  
Copyright © 2019, Texas Instruments Incorporated  
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
Operating Characteristics: TA = 25°C (continued)  
PARAMETER  
TEST CONDITIONS  
VCCA  
0.7 V  
VCCB  
0.7 V  
MIN  
TYP  
MAX UNIT  
12.6  
12.4  
12.4  
12.8  
13.3  
14.6  
17.8  
21.0  
1.1  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
Power Dissipation Capacitance  
per transceiver (A to B: outputs  
enabled)  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
pF  
1.1  
1.0  
Power Dissipation Capacitance  
per transceiver (A to B: outputs  
disabled)  
1.0  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
pF  
pF  
pF  
1.0  
0.9  
0.9  
0.9  
CpdB  
2.2  
2.2  
2.2  
Power Dissipation Capacitance  
per transceiver (B to A: outputs  
enabled)  
2.0  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
2.0  
1.9  
2.0  
2.6  
1.6  
1.5  
1.6  
Power Dissipation Capacitance  
per transceiver (B to A: outputs  
disabled)  
1.4  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
1.3  
1.2  
1.4  
1.9  
版权 © 2019, Texas Instruments Incorporated  
17  
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
6.15 Typical Characteristics  
3.4  
3.2  
3
1.25  
1.2  
VCC = 1.8V  
VCC = 2.5V  
VCC = 3.3V  
1.15  
1.1  
1.05  
1
2.8  
2.6  
2.4  
2.2  
2
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
1.8  
1.6  
1.4  
0.65  
0.6  
VCC = 0.7V  
VCC = 1.2V  
0.55  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IOH (mA)  
IOH (mA)  
D001  
D001  
1. Typical (TA=25°C) Output High Voltage (VOH) vs Source  
Current (IOH  
2. Typical (TA=25°C) Output High Voltage (VOH) vs Source  
Current (IOH  
)
)
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
220  
200  
180  
160  
140  
120  
100  
80  
60  
40  
VCC = 1.8V  
VCC = 2.5V  
VCC = 3.3V  
VCC = 0.7V  
VCC = 1.2V  
20  
0
-50  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IOL (mA)  
IOL (mA)  
D001  
D001  
3. Typical (TA=25°C) Output High Voltage (VOL) vs Sink  
Current (IOL  
4. Typical (TA=25°C) Output High Voltage (VOL) vs Sink  
Current (IOL  
)
)
18  
版权 © 2019, Texas Instruments Incorporated  
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
7 Parameter Measurement Information  
7.1 Load Circuit and Voltage Waveforms  
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:  
f = 1 MHz  
ZO = 50 Ω  
dv/dt 1 ns/V  
Measurement Point  
2 x VCCO  
Open  
S1  
RL  
Output Pin  
Under Test  
GND  
(1)  
CL  
RL  
(1) CL includes probe and jig capacitance.  
5. Load Circuit  
1. Load Circuit Conditions  
Parameter  
VCCO  
RL  
CL  
S1  
VTP  
N/A  
N/A  
Δt/Δv Input transition rise or fall rate  
0.65 V – 3.6 V  
1.1 V – 3.6 V  
1 MΩ  
2 kΩ  
15 pF  
15 pF  
Open  
Open  
tpd Propagation (delay) time  
0.65 V – 0.95  
V
20 kΩ  
15 pF  
Open  
N/A  
3 V – 3.6 V  
1.65 V – 2.7 V  
1.1 V – 1.6 V  
2 kΩ  
2 kΩ  
2 kΩ  
15 pF  
15 pF  
15 pF  
2 × VCCO  
2 × VCCO  
2 × VCCO  
0.3 V  
0.15 V  
0.1 V  
ten, tdis Enable time, disable time  
0.65 V – 0.95  
V
20 kΩ  
15 pF  
2 × VCCO  
0.1 V  
3 V – 3.6 V  
1.65 V – 2.7 V  
1.1 V – 1.6 V  
2 kΩ  
2 kΩ  
2 kΩ  
15 pF  
15 pF  
15 pF  
GND  
GND  
GND  
0.3 V  
0.15 V  
0.1 V  
ten, tdis Enable time, disable time  
0.65 V – 0.95  
V
20 kΩ  
15 pF  
GND  
0.1 V  
(1)  
VCCI  
(1)  
VCCI  
Input A, B  
100 kHz  
VCCI / 2  
VCCI / 2  
Input A, B  
500 ps/V œ 10 ns/V  
0 V  
VOH  
0 V  
VOH  
(2)  
tpd  
tpd  
(2)  
Output B, A  
Ensure Monotonic  
Rising and Falling Edge  
(2)  
Output B, A  
VCCI / 2  
VCCI / 2  
VOL  
(2)  
VOL  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur with  
specified RL, CL, and S1  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur with  
specified RL, CL, and S1  
7. Input Transition Rise or Fall Rate  
6. Propagation Delay  
版权 © 2019, Texas Instruments Incorporated  
19  
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
VCCA  
GND  
OE  
VCCA / 2  
VCCA / 2  
tdis  
ten  
(3)  
VCCO  
Output(1)  
Output(2)  
VCCO / 2  
VOL + VTP  
(4)  
VOL  
(4)  
VOH  
VOH - VTP  
VCCO / 2  
GND  
(1) Output waveform on the condition that input is driven to a valid Logic Low.  
(2) Output waveform on the condition that input is driven to a valid Logic High.  
(3) VCCO is the supply pin associated with the output port.  
(4) VOH and VOL are typical output voltage levels with specified RL, CL, and S1.  
8. Enable Time and Disable Time  
20  
版权 © 2019, Texas Instruments Incorporated  
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
8 Detailed Description  
8.1 Overview  
The SN74AXCH4T245 is a 4-bit, dual-supply noninverting bidirectional voltage level translation device with bus-  
hold inputs. xAx pins and control pins (1DIR, 2DIR, 1OE, and 2OE) are reference to VCCA logic levels, and xBx  
pins are referenced to VCCB logic levels. The A port is able to accept I/O voltages ranging from 0.65 V to 3.6 V,  
while the B port can accept I/O voltages from 0.65 V to 3.6 V. A high on DIR allows data transmission from A to  
B and a low on DIR allows data transmission from B to A when OE is set to low. When OE is set to high, both  
xAx and xBx pins are in the high-impedance state. See Device Functional Modes for a summary of the operation  
of the control logic.  
8.2 Functional Block Diagram  
One of Two Transceiver Pairs  
VCCA  
VCCB  
xDIR  
xOE  
Bus-Hold  
xB1  
xB2  
xA1  
xA2  
Bus-Hold  
Bus-Hold  
Bus-Hold  
Note: Bus-hold circuits are only present for data inputs, not control inputs  
8.3 Feature Description  
8.3.1 Standard CMOS Inputs  
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input  
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum  
input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the  
Electrical Characteristics, using Ohm's law (R = V ÷ I).  
Signals applied to the inputs need to have fast edge rates, as defined by Δt/Δv in Recommended Operating  
Conditions to avoid excessive current consumption and oscillations. If a slow or noisy input signal is required, a  
device with a Schmitt-trigger input should be used to condition the input signal prior to the standard CMOS input.  
8.3.2 Balanced High-Drive CMOS Push-Pull Outputs  
A balanced output allows the device to sink and source similar currents. The high drive capability of this device  
creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.  
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without  
being damaged. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at  
all times.  
版权 © 2019, Texas Instruments Incorporated  
21  
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
Feature Description (接下页)  
8.3.3 Partial Power Down (Ioff  
)
The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting  
current backflow into the device. The maximum leakage into or out of any input or output pin on the device is  
specified by Ioff in the Electrical Characteristics.  
8.3.4 VCC Isolation  
The inputs and outputs for this device enter a high-impedance state when either supply is <100mV.  
8.3.5 Over-voltage Tolerant Inputs  
Input signals to this device can be driven above the supply voltage so long as they remain below the maximum  
input voltage value specified in the Recommended Operating Conditions.  
8.3.6 Glitch-free Power Supply Sequencing  
Either supply rail may be powered on or off in any order without producing a glitch on the I/Os (that is, where the  
output erroneously transitions to VCC when it should be held low). Glitches of this nature can be misinterpreted  
by a peripheral as a valid data bit, which could trigger a false device reset of the peripheral, a false device  
configuration of the peripheral, or even a false data initialization by the peripheral. For more information  
regarding the power up glitch performance of the AXC family of level translators, see the Glitch Free Power  
Sequencing With AXC Level Translators application report  
8.3.7 Negative Clamping Diodes  
The inputs and outputs to this device have negative clamping diodes as depicted in 9.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can  
cause damage to the device. The input negative-voltage and output voltage ratings  
may be exceeded if the input and output clamp-current ratings are observed.  
VCC  
Device  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
9. Electrical Placement of Clamping Diodes for Each Input and Output  
8.3.8 Fully Configurable Dual-Rail Design  
Both the VCCA and VCCB pins can be supplied at any voltage from 0.65 V to 3.6 V, making the device suitable for  
translating between any of the voltage nodes (0.7 V, 0.8 V, 0.9 V, 1.2 V, 1.8 V, 2.5 V and 3.3 V).  
8.3.9 Supports High-Speed Translation  
The SN74AXCH4T245 device can support high data-rate applications. The translated signal data rate can be up  
to 380 Mbps when the signal is translated from 1.8 V to 3.3 V.  
22  
版权 © 2019, Texas Instruments Incorporated  
 
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
Feature Description (接下页)  
8.3.10 Bus-Hold Data Inputs  
Each data input on this device includes a weak latch that maintains a valid logic level on the input. The state of  
these latches is unknown at startup and remains unknown until the input has been forced to a valid high or low  
state. After data has been sent through a channel, the latch then maintains the previous state on the input if the  
line is left floating. It is not recommended to use pull-up or pull-down resistors together with a bus-hold input, as  
it may cause undefined inputs to occur which leads to excessive current consumption.  
Bus-hold data inputs prevent floating inputs on this device. The Implications of Slow or Floating CMOS Inputs  
application report explains the problems associated with leaving CMOS inputs floating.  
These latches remain active at all times, independent of all control signals such as direction control or output  
enable.  
The Bus-Hold Circuit application report has additional details regarding bus-hold inputs.  
Input  
Logic  
Output  
Bus-Hold Latch  
10. Simplified Schematic For Device With Bus-Hold Data Inputs  
8.4 Device Functional Modes  
2. Function Table  
(Each 2-Bit Section)(1)(2)  
CONTROL INPUTS  
Port Status  
OPERATION  
OE  
L
DIR  
L
A PORT  
Output (Enabled)  
Input (Hi-Z)  
B PORT  
Input (Hi-Z)  
B data to A bus  
A data to B bus  
Isolation  
L
H
Output (Enabled)  
Input (Hi-Z)  
H
X
Input (Hi-Z)  
(1) Input circuits of the data I/Os are always active.  
(2) Bus-hold circuits of the data I/Os are always active, independent of the state of the control inputs.  
版权 © 2019, Texas Instruments Incorporated  
23  
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The SN74AXCH4T245 device can be used in level-translation applications for interfacing devices or systems  
operating at different interface voltages with one another. The SN74AXCH4T245 device is ideal for use in  
applications where a push-pull driver is connected to the data I/Os. The max data rate can be up to 380 Mbps  
when device translates a signal from 1.8 V to 3.3 V.  
One example application is shown in 11, where the SN74AXCH4T245 device is used to translate a low  
voltage UART signal from an SoC to a higher voltage signal which properly drive the inputs of the bluetooth  
module, and vice versa.  
9.2 Typical Application  
Pullup Resistors keep device disabled  
during power up. OE inputs may also  
be tied to GND to keep device enabled  
0.7 V  
3.3 V  
0.1 µF  
0.1 µF  
VCCA  
VCCB  
1DIR  
2DIR  
1OE  
GPIO1  
Bluetooth  
Module  
GPIO2  
TX  
SN74AXCH4T245  
SoC  
2OE  
1A1  
1A2  
2A1  
2A2  
RX  
1B1  
CTS  
TX  
RTS  
RX  
1B2  
2B1  
2B2  
RTS  
CTS  
GND  
11. UART Interface Application  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 3.  
3. Design Parameters  
DESIGN PARAMETERS  
Input voltage range  
EXAMPLE VALUES  
0.65 V to 3.6 V  
Output voltage range  
0.65 V to 3.6 V  
24  
版权 © 2019, Texas Instruments Incorporated  
 
 
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
9.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Use the supply voltage of the device that is driving the SN74AXCH4T245 device to determine the input  
voltage range. For a valid logic-high, the value must exceed the high-level input voltage (VIH) of the input  
port. For a valid logic low the value must be less than the low-level input voltage (VIL) of the input port.  
Output voltage range  
Use the supply voltage of the device that the SN74AXCH4T245 device is driving to determine the output  
voltage range.  
9.2.3 Application Curve  
12. Up Translation at 2.5 MHz (0.7 V to 3.3 V)  
版权 © 2019, Texas Instruments Incorporated  
25  
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
Always apply a ground reference to the GND pins first. This device is designed for glitch free power sequencing  
without any supply sequencing requirements such as ramp order or ramp rate.  
This device was designed with various power supply sequencing methods in mind to help prevent unintended  
triggering of downstream devices. For more information regarding the power up glitch performance of the AXC  
family of level translators, see the Glitch Free Power Sequencing With AXC Level Translators application report  
11 Layout  
11.1 Layout Guidelines  
To ensure reliability of the device, following common printed-circuit board layout guidelines are recommended:  
Use bypass capacitors on the power supply pins and place them as close to the device as possible.  
Use short trace lengths to avoid excessive loading.  
Do not use pullup or pulldown resistors on data inputs for devices with bus-hold circuits.  
11.2 Layout Example  
Legend  
Via to VCCA  
Via to VCCB  
A
B
G
Via to GND  
Copper Traces  
SN74AXCH4T245PW  
0.1µF  
0.1µF  
A
G
B
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCCA  
1DIR  
2DIR  
1A1  
VCCB  
1OE  
2OE  
1B1  
1B2  
2B1  
2B2  
GND  
RX to Module  
TX from SoC  
RTS from SoC  
RX to SoC  
G
G
CTS to Module  
TX from Module  
RTS from Module  
1A2  
2A1  
CTS to SoC  
2A2  
GND  
G
G
26  
版权 © 2019, Texas Instruments Incorporated  
SN74AXCH4T245  
www.ti.com.cn  
ZHCSJI7 MARCH 2019  
12 器件和文档支持  
12.1 相关文档ꢀ  
请参阅如下相关文档:  
德州仪器 (TI)《慢速或浮点 CMOS 输入的影响》应用报告  
德州仪器 (TI)AXC 系列器件电源定序》 应用报告  
德州仪器 (TI)《利用总线保持电路避免浮点输入系统注意事项》应用报告  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2019, Texas Instruments Incorporated  
27  
SN74AXCH4T245  
ZHCSJI7 MARCH 2019  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
28  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74AXCH4T245PWR  
SN74AXCH4T245RSVR  
ACTIVE  
ACTIVE  
TSSOP  
UQFN  
PW  
16  
16  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
S4TH245  
1U7R  
RSV  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN74AXCH4T245PWR TSSOP  
SN74AXCH4T245RSVR UQFN  
PW  
16  
16  
2000  
3000  
330.0  
178.0  
12.4  
13.5  
6.9  
2.1  
5.6  
2.9  
1.6  
8.0  
4.0  
12.0  
12.0  
Q1  
Q1  
RSV  
0.75  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN74AXCH4T245PWR  
SN74AXCH4T245RSVR  
TSSOP  
UQFN  
PW  
16  
16  
2000  
3000  
356.0  
189.0  
356.0  
185.0  
35.0  
36.0  
RSV  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RSV0016A  
UQFN - 0.55 mm max height  
S
C
A
L
E
5
.
0
0
0
ULTRA THIN QUAD FLATPACK - NO LEAD  
1.85  
1.75  
A
B
PIN 1 INDEX AREA  
2.65  
2.55  
C
0.55  
0.45  
SEATING PLANE  
0.05 C  
0.05  
0.00  
2X 1.2  
SYMM  
(0.13) TYP  
5
8
0.45  
0.35  
15X  
4
9
SYMM  
2X 1.2  
12X 0.4  
1
0.25  
16X  
12  
0.15  
0.07  
0.05  
C A B  
13  
16  
0.55  
0.45  
PIN 1 ID  
(45° X 0.1)  
4220314/C 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
SYMM  
(0.7)  
16  
SEE SOLDER MASK  
DETAIL  
13  
12  
16X (0.2)  
1
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
9
4
15X (0.6)  
5
8
(1.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220314/C 02/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
(0.7)  
16  
13  
16X (0.2)  
1
12  
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
4
9
15X (0.6)  
5
8
SYMM  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 25X  
4220314/C 02/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN74AXCH4T245RSVR

4 位双电源总线收发器 | RSV | 16 | -40 to 125
TI

SN74AXCH8T245

8 位双电源总线收发器
TI

SN74AXCH8T245PWR

8 位双电源总线收发器 | PW | 24 | -40 to 125
TI

SN74AXCH8T245RHLR

8 位双电源总线收发器 | RHL | 24 | -40 to 125
TI

SN74BC646NT

IC,BUS TRANSCEIVER,SINGLE,8-BIT,BICMOS,DIP,24PIN,PLASTIC
TI

SN74BCT

Pocket Data Book
TI

SN74BCT125A

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI

SN74BCT125AD

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI

SN74BCT125ADE4

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI

SN74BCT125ADG4

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI

SN74BCT125ADR

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI

SN74BCT125ADRE4

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI