SN74HCS573RKSR [TI]

具有三态输出和施密特触发器输入的八路透明 D 类锁存器 | RKS | 20 | -40 to 125;
SN74HCS573RKSR
型号: SN74HCS573RKSR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有三态输出和施密特触发器输入的八路透明 D 类锁存器 | RKS | 20 | -40 to 125

触发器 锁存器
文件: 总26页 (文件大小:1752K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
具有施密特触发输入、三态输出和直通引脚排列SN74HCS573 八路透D  
类锁存器  
1 特性  
3 说明  
• 宽工作电压范围2V 6V  
• 施密特触发输入可实现慢速或高噪声输入信号  
• 低功耗  
SN74HCS573 包含八路 D 类锁存器所有输入均包括施  
密特触发架构。所有通道共享锁存器使能 (LE) 输入和  
输出使能 (OE) 输入。此器件具有直通引脚排列便于  
进行总线布线。  
ICC 典型值100nA  
– 输入漏电流典型值±100nA  
• 电压6V 输出驱动±7.8mA  
• 更宽泛的工作环境温度范围40°C +125°C,  
TA  
器件信息  
封装(1)  
器件型号  
封装尺寸标称值)  
RKS (VQFN,  
20)  
4.50 mm × 2.50 mm  
SN74HCS573  
2 应用  
DGS (VSSOP, 5.10 mm × 3.00 mm  
20)  
• 并行数据存储  
• 数字总线缓冲器  
(1) 如需了解所有可用封装请见数据表末尾的可订购产品附录。  
Supports Slow Inputs  
Low Power  
Noise Rejection  
Input Voltage  
Waveforms  
Time  
Input Voltage  
Time  
Standard  
CMOS Input  
Response  
Waveforms  
Time  
Time  
Input Voltage  
Schmitt-trigger  
CMOS Input  
Response  
Waveforms  
Time  
Time  
Input Voltage  
施密特触发输入的优势  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCLS876  
 
 
 
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram...........................................9  
8.3 Feature Description.....................................................9  
8.4 Device Functional Modes..........................................10  
9 Application and Implementation.................................. 11  
9.1 Application Information..............................................11  
9.2 Typical Application.................................................... 11  
10 Power Supply Recommendations..............................14  
11 Layout...........................................................................14  
11.1 Layout Guidelines................................................... 14  
11.2 Layout Example...................................................... 14  
12 Device and Documentation Support..........................15  
12.1 Documentation Support.......................................... 15  
12.2 接收文档更新通知................................................... 15  
12.3 支持资源..................................................................15  
12.4 Trademarks.............................................................15  
12.5 Electrostatic Discharge Caution..............................15  
12.6 术语表..................................................................... 15  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Timing Characteristics ................................................5  
6.7 Switching Characteristics ...........................................6  
6.8 Operating Characteristics .......................................... 6  
6.9 Typical Characteristics................................................7  
7 Parameter Measurement Information............................8  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
Information.................................................................... 16  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (October 2021) to Revision A (December 2022)  
Page  
• 将“应用信息”更改为“量产数据”.................................................................................................................. 1  
Added DGS (SSOP) Package Information......................................................................................................... 3  
Added DGS package Thermal Information.........................................................................................................4  
Updated the Detailed Design Procedure section..............................................................................................13  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN74HCS573  
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
OE  
VCC  
OE  
1
20  
VCC  
20  
1
1D  
2D  
3D  
4D  
5D  
6D  
7D  
8D  
2
3
4
5
6
7
8
9
19  
18  
1Q  
2Q  
1D  
2D  
2
3
19  
18  
1Q  
2Q  
3D  
4D  
5D  
6D  
4
5
6
7
17  
16  
3Q  
4Q  
5Q  
17 3Q  
16  
15  
4Q  
5Q  
15  
14  
PAD  
6Q  
14 6Q  
7Q  
12 8Q  
13  
12  
11  
7D  
8D  
8
9
7Q  
8Q  
13  
GND  
10  
LE  
11  
10  
GND  
LE  
5-1. DGS Package  
20-Pin VSSOP  
Top View  
5-2. RKS Package  
20-Pin VQFN  
Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
OE  
D1  
NO.  
1
2
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output enable for all channels, active low  
Input for channel 1  
Input for channel 2  
Input for channel 3  
Input for channel 4  
Input for channel 5  
Input for channel 6  
Input for channel 7  
Input for channel 8  
Ground  
D2  
3
D3  
4
D4  
5
D5  
6
D6  
7
D7  
8
D8  
9
GND  
LE  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Input  
Latch enable  
Q8  
Q7  
Q6  
Q5  
Q4  
Q3  
Q2  
Q1  
VCC  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output for channel 8  
Output for channel 7  
Output for channel 6  
Output for channel 5  
Output for channel 4  
Output for channel 3  
Output for channel 2  
Output for channel 1  
Postive supply  
The thermal pad can be connect to GND or left floating. Do not connect to any other signal  
or supply.  
Thermal Pad  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74HCS573  
 
 
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
VCC  
IIK  
Supply voltage  
7
±20  
±20  
±35  
±70  
150  
150  
0.5  
Input clamp current(2)  
VI < 0 or VI > VCC  
VO < 0 or VO > VCC  
VO = 0 to VCC  
mA  
mA  
mA  
mA  
°C  
IOK  
IO  
Output clamp current(2)  
Continuous output current  
Continuous current through VCC or GND  
Junction temperature  
ICC  
TJ  
Tstg  
Storage temperature  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/  
JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per ANSI/ESDA/  
JEDEC JS-002(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2
NOM  
MAX  
6
UNIT  
V
VCC  
VI  
Supply voltage  
Input voltage  
0
VCC  
VCC  
125  
V
VO  
TA  
Output voltage  
Ambient temperature  
0
V
°C  
40  
6.4 Thermal Information  
SN74HCS573  
THERMAL METRIC(1)  
RKS (VQFN)  
20 PINS  
83.2  
DGS (VSSOP)  
20 PINS  
130.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
82.6  
68.7  
57.4  
85.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
14.5  
10.5  
ΨJT  
56.4  
85.0  
ΨJB  
RθJC(bot)  
40.0  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN74HCS573  
 
 
 
 
 
 
 
 
 
 
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range; typical values measured at TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.7  
1.7  
2.1  
0.3  
0.9  
1.2  
0.2  
0.4  
0.6  
TYP  
MAX UNIT  
2 V  
1.5  
VT+  
Positive switching threshold  
4.5 V  
6 V  
3.15  
4.2  
1
V
V
V
V
V
2 V  
VT-  
Negative switching threshold  
Hysteresis (VT+ - VT-)  
4.5 V  
6 V  
2.2  
3
2 V  
1
4.5 V  
6 V  
1.4  
1.6  
ΔVT  
VOH  
VOL  
IOH = -20 µA  
2 V to 6 V  
4.5 V  
6 V  
VCC 0.1 VCC 0.002  
High-level output voltage  
Low-level output voltage  
VI = VIH or VIL  
IOH = -6 mA  
IOH = -7.8 mA  
4
4.3  
5.75  
0.002  
0.18  
0.22  
±100  
0.1  
5.4  
IOL = 20 µA  
2 V to 6 V  
4.5 V  
6 V  
0.1  
0.3  
VI = VIH or VIL IOL = 6 mA  
IOL = 7.8 mA  
0.33  
II  
Input leakage current  
Supply current  
VI = VCC or 0  
6 V  
±1000 nA  
ICC  
Ci  
VI = VCC or 0, IO = 0  
6 V  
2
5
µA  
pF  
Input capacitance  
2 V to 6 V  
6.6 Timing Characteristics  
over operating free-air temperature range (unless otherwise noted), CL = 50 pF  
PARAMETER  
CONDITION  
VCC  
MIN  
MAX  
UNIT  
2 V  
12  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw  
tsu  
th  
Pulse duration  
LE high  
4.5 V  
6 V  
6
2 V  
18  
6
Setup time  
4.5 V  
6 V  
Data before LE↓  
6
2 V  
0
4.5 V  
6 V  
0
Hold time, Data before LE↓  
0
OE  
LE  
xD  
xQ  
6-1. Timing diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74HCS573  
 
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Switching Characteristics  
over operating free-air temperature range; typical values measured at TA = 25°C (unless otherwise noted). See Parameter  
Measurement Information. CL = 50 pF.  
PARAMETER  
FROM (INPUT)  
TO (OUTPUT)  
VCC  
2 V  
MIN  
TYP  
14.6  
7.7  
7.4  
24.5  
9.9  
9.6  
24.5  
9.9  
9.6  
15  
MAX UNIT  
19.4  
tt  
Transition-time  
Any Q  
4.5 V  
6 V  
9.6  
10.4  
33  
14  
11  
ns  
2 V  
D
Q
4.5 V  
6 V  
tpd  
Propogation delay  
ns  
2 V  
33  
14  
11  
LE  
Any Q  
Any Q  
4.5 V  
6 V  
2 V  
44  
22  
18  
30  
20  
19  
ten  
Enable time  
Disable time  
OE  
OE  
4.5 V  
6 V  
7
ns  
ns  
6
Any Q  
Any Q  
Any Q  
2 V  
12  
tdis  
4.5 V  
6 V  
9
8
6.8 Operating Characteristics  
over operating free-air temperature range; typical values measured at TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Cpd  
Power dissipation capacitance per gate  
No load  
20  
pF  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74HCS573  
 
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
6.9 Typical Characteristics  
TA = 25°C  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
70  
65  
60  
55  
50  
45  
40  
35  
30  
VCC = 2 V  
VCC = 3.3 V  
VCC = 4.5 V  
VCC = 6 V  
VCC = 2 V  
VCC = 3.3 V  
VCC = 4.5 V  
VCC = 6 V  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Sink Current (mA)  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Source Current (mA)  
6-2. Output Driver Resistance in LOW State  
6-3. Output Driver Resistance in HIGH State  
0.2  
0.65  
VCC = 2 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 4.5 V  
0.6  
0.18  
0.16  
0.55  
VCC = 5 V  
0.5  
VCC = 6 V  
0.14  
0.12  
0.1  
0.45  
0.4  
0.35  
0.3  
0.08  
0.06  
0.04  
0.02  
0
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VI œ Input Voltage (V)  
VI œ Input Voltage (V)  
6-4. Supply Current Across Input Voltage, 2-,  
6-5. Supply Current Across Input Voltage, 4.5-,  
2.5-, and 3.3-V Supply  
5-, and 6-V Supply  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74HCS573  
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators  
having the following characteristics: PRR 1 MHz, ZO = 50 , tt < 2.5 ns.  
For clock inputs, fmax is measured when the input duty cycle is 50%.  
The outputs are measured one at a time with one input transition per measurement.  
tw  
VCC  
Test  
Point  
VCC  
0 V  
S1  
S2  
Input  
50%  
50%  
RL  
From Output  
Under Test  
7-2. Voltage Waveforms, Pulse Duration  
(1)  
CL  
(1) CL includes probe and test-fixture capacitance.  
7-1. Load Circuit for 3-State Outputs  
VCC  
VCC  
Clock  
Input  
50%  
th  
Input  
Output  
Output  
50%  
50%  
0 V  
VCC  
0 V  
0 V  
VOH  
VOL  
VOH  
VOL  
(1)  
(1)  
tPLH  
tPHL  
tsu  
Data  
Input  
50%  
50%  
50%  
50%  
(1)  
(1)  
tPHL  
tPLH  
7-3. Voltage Waveforms, Setup and Hold Times  
50%  
50%  
(1) The greater between tPLH and tPHL is the same as tpd  
.
7-4. Voltage Waveforms Propagation Delays  
VCC  
VCC  
90%  
10%  
90%  
Output  
Control  
50%  
50%  
Input  
10%  
tf(1)  
0 V  
0 V  
VOH  
VOL  
tr(1)  
(3)  
(4)  
tPZL  
tPLZ  
≈ VCC  
90%  
10%  
90%  
Output  
Waveform 1  
(1)  
S1 at VLOAD  
50%  
Output  
10%  
10%  
tf(1)  
VOL  
tr(1)  
(3)  
(4)  
tPZH  
tPHZ  
(1) The greater between tr and tf is the same as tt.  
VOH  
Output  
Waveform 2  
S1 at GND(2)  
7-6. Voltage Waveforms, Input and Output  
90%  
50%  
Transition Times  
0 V  
7-5. Voltage Waveforms Propagation Delays  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN74HCS573  
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN74HCS573 contains eight D-type latches. All inputs include Schmitt-trigger architecture. All channels  
share a latch enable (LE) and output enable (OE) input.  
When the latch is enabled (LE is high), data is allowed to pass through from the D inputs to the Q outputs.  
When the latch is disabled (LE is low), the Q outputs hold the last state they had regardless of changes at the D  
inputs.  
If the latch enable (LE) input is held low during startup, the output state of all channels is unknown until the latch  
enable (LE) input is driven high with valid input signals at all data (D) inputs.  
When the outputs are enabled (OE is low), the outputs are actively driving low or high.  
When the outputs are disabled (OE is high), the outputs are set into the high-impedance state.  
The active low output enable (OE) does not have any impact on the stored state in the latches.  
8.2 Functional Block Diagram  
Shared Control Logic  
OE  
LE  
LE  
xD  
D
Q
xQ  
One of Eight D-Type Latches  
8.3 Feature Description  
8.3.1 Balanced CMOS 3-State Outputs  
This device includes balanced CMOS 3-State outputs. The three states that these outputs can be in are driving  
high, driving low, and high impedance. The term "balanced" indicates that the device can sink and source similar  
currents. The drive capability of this device may create fast edges into light loads so routing and load conditions  
should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger  
currents than the device can sustain without being damaged. It is important for the output power of the device to  
be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the Absolute  
Maximum Ratings must be followed at all times.  
When placed into the high-impedance mode, the output will neither source nor sink current, with the exception of  
minor leakage current as defined in the Electrical Characteristics table. In the high-impedance state, the output  
voltage is not controlled by the device and is dependent on external factors. If no other drivers are connected to  
the node, then this is known as a floating node and the voltage is unknown. A pull-up or pull-down resistor can  
be connected to the output to provide a known voltage at the output while it is in the high-impedance state. The  
value of the resistor will depend on multiple factors, including parasitic capacitance and power consumption  
limitations. Typically, a 10 kΩresistor can be used to meet these requirements.  
Unused 3-state CMOS outputs should be left disconnected.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74HCS573  
 
 
 
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.2 CMOS Schmitt-Trigger Inputs  
This device includes inputs with the Schmitt-trigger architecture. These inputs are high impedance and are  
typically modeled as a resistor in parallel with the input capacitance given in the Electrical Characteristics table  
from the input to ground. The worst case resistance is calculated with the maximum input voltage, given in the  
Absolute Maximum Ratings table, and the maximum input leakage current, given in the Electrical Characteristics  
table, using Ohm's law (R = V ÷ I).  
The Schmitt-trigger input architecture provides hysteresis as defined by ΔVT in the Electrical Characteristics  
table, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much  
slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the  
inputs with slow transitioning signals will increase dynamic current consumption of the device. For additional  
information regarding Schmitt-trigger inputs, please see Understanding Schmitt Triggers.  
8.3.3 Clamp Diode Structure  
The inputs and outputs to this device have both positive and negative clamping diodes as depicted in Electrical  
Placement of Clamping Diodes for Each Input and Output.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to  
the device. The input and output voltage ratings may be exceeded if the input and output clamp-  
current ratings are observed.  
VCC  
Device  
+IIK  
+IOK  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
8-1. Electrical Placement of Clamping Diodes for Each Input and Output  
8.4 Device Functional Modes  
8-1. Function Table  
INPUTS(1)  
OUTPUT(2)  
OE  
L
LE  
H
H
L
D
L
Q
L
L
H
X
X
H
(3)  
L
Q0  
H
X
Z
(1) L = input low, H = input high, = input transitioning from low to  
high, = input transitioning from high to low, X = don't care  
(2) L = output low, H = output high, Q0 = previous state, Z = high  
impedance  
(3) At startup, Q0 is unknown  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN74HCS573  
 
 
 
 
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
In this application, the SN74HCS573 is used to control an 8-bit data bus.  
Outputs can be held in the high-impedance state, held in the last known state, or change together with the data  
inputs, depending on the control inputs at LE and OE coming from the bus controller.  
9.2 Typical Application  
1D  
2D  
3D  
4D  
5D  
6D  
7D  
8D  
1Q  
2Q  
3Q  
4Q  
5Q  
6Q  
7Q  
8Q  
Input Data Bus  
Bus Controller  
Output Data Bus  
LE  
OE  
9-1. Typical application block diagram  
9.2.1 Design Requirements  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74HCS573  
 
 
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
9.2.1.1 Power Considerations  
Ensure the desired supply voltage is within the range specified in the Recommended Operating Conditions. The  
supply voltage sets the device's electrical characteristics as described in the Electrical Characteristics section.  
The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all  
outputs of the SN74HCS573 plus the maximum static supply current, ICC, listed in the Electrical Characteristics,  
and any transient current required for switching. The logic device can only source as much current that is  
provided by the positive supply source. Be sure to not exceed the maximum total current through VCC listed in  
the Absolute Maximum Ratings.  
The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the  
SN74HCS573 plus the maximum supply current, ICC, listed in the Electrical Characteristics, and any transient  
current required for switching. The logic device can only sink as much current that can be sunk into its ground  
connection. Be sure to not exceed the maximum total current through GND listed in the Absolute Maximum  
Ratings.  
The SN74HCS573 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all of  
the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to exceed  
50 pF.  
The SN74HCS573 can drive a load with total resistance described by RL VO / IO, with the output voltage and  
current defined in the Electrical Characteristics table with VOH and VOL. When outputting in the HIGH state, the  
output voltage in the equation is defined as the difference between the measured output voltage and the supply  
voltage at the VCC pin.  
Total power consumption can be calculated using the information provided in CMOS Power Consumption and  
Cpd Calculation.  
Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear  
and Logic (SLL) Packages and Devices.  
CAUTION  
The maximum junction temperature, TJ(max) listed in the Absolute Maximum Ratings, is an additional  
limitation to prevent damage to the device. Do not violate any values listed in the Absolute Maximum  
Ratings. These limits are provided to prevent damage to the device.  
9.2.1.2 Input Considerations  
Input signals must cross Vt-(min) to be considered a logic LOW, and Vt+(max) to be considered a logic HIGH. Do  
not exceed the maximum input voltage range found in the Absolute Maximum Ratings.  
Unused inputs must be terminated to either VCC or ground. The unused inputs can be directly terminated if the  
input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input will be used  
sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used  
for a default state of LOW. The drive current of the controller, leakage current into the SN74HCS573 (as  
specified in the Electrical Characteristics), and the desired input transition rate limits the resistor size. A 10-kΩ  
resistor value is often used due to these factors.  
The SN74HCS573 has no input signal transition rate requirements because it has Schmitt-trigger inputs.  
Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude  
can still cause issues. To know how much noise is too much, please refer to the ΔVT(min) in the Electrical  
Characteristics. This hysteresis value will provide the peak-to-peak limit.  
Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without  
causing huge increases in power consumption. The typical additional current caused by holding an input at a  
value other than VCC or ground is plotted in the Typical Characteristics.  
Refer to the Feature Description section for additional information regarding the inputs for this device.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN74HCS573  
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
9.2.1.3 Output Considerations  
The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will  
decrease the output voltage as specified by the VOH specification in the Electrical Characteristics. The ground  
voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output  
voltage as specified by the VOL specification in the Electrical Characteristics.  
Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected  
directly together. This can cause excessive current and damage to the device.  
Two channels within the same device with the same input signals can be connected in parallel for additional  
output drive strength.  
Unused outputs can be left floating. Do not connect outputs directly to VCC or ground.  
Refer to the Feature Description section for additional information regarding the outputs for this device.  
9.2.2 Detailed Design Procedure  
1. Add a decoupling capacitor from VCC to GND. The capacitor needs to be placed physically close to the  
device and electrically close to both the VCC and GND pins. An example layout is shown in the Layout  
section.  
2. Ensure the capacitive load at the output is 50 pF. This is not a hard limit; it will, however, ensure optimal  
performance. This can be accomplished by providing short, appropriately sized traces from the  
SN74HCS573 to one or more of the receiving devices.  
3. Ensure the resistive load at the output is larger than (VCC / IO(max)) Ω. This will ensure that the maximum  
output current from the Absolute Maximum Ratings is not violated. Most CMOS inputs have a resistive load  
measured in MΩ; much larger than the minimum calculated previously.  
4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however,  
can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd  
Calculation.  
9.2.3 Application Curve  
LE  
D1  
Q1  
9-2. Example timing diagram for one channel  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74HCS573  
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating located in the  
Recommended Operating Conditions. Each VCC terminal should have a good bypass capacitor to prevent power  
disturbance. A 0.1-μF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps  
to reject different frequencies of noise. The 0.1-μF and 1-μF capacitors are commonly used in parallel. The  
bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in  
given example layout image.  
11 Layout  
11.1 Layout Guidelines  
When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many  
cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a  
triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left  
unconnected because the undefined voltages at the outside connections result in undefined operational states.  
All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the  
input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular  
unused input depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever  
makes more sense for the logic function or is more convenient.  
11.2 Layout Example  
VCC  
GND  
Recommend GND flood fill for  
improved signal isolation, noise  
reduction, and thermal dissipation  
Bypass capacitor  
placed close to the  
device  
0.1 F  
OE  
VCC  
1
20  
19  
1D  
2D  
3D  
4D  
5D  
6D  
7D  
8D  
2
3
4
5
6
7
8
9
1Q  
2Q  
3Q  
4Q  
5Q  
6Q  
7Q  
18  
17  
16  
15  
14  
13  
Unused input  
tied to GND  
Unused output  
left floating  
GND  
12  
11  
8Q  
10  
Avoid 90°  
corners for  
signal lines  
GND  
LE  
11-1. Example layout for the SN74HCS573 in the RKS Package  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN74HCS573  
 
 
 
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, HCMOS Design Considerations application report (SCLA007)  
Texas Instruments, CMOS Power Consumption and Cpd Calculation application report (SDYA009)  
Texas Instruments, Designing With Logic application report  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN74HCS573  
 
 
 
 
 
 
 
SN74HCS573  
ZHCSP24A OCTOBER 2021 REVISED DECEMBER 2022  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN74HCS573  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74HCS573DGSR  
SN74HCS573RKSR  
ACTIVE  
ACTIVE  
VSSOP  
VQFN  
DGS  
RKS  
20  
20  
5000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
HS573  
HCS573  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2023  
OTHER QUALIFIED VERSIONS OF SN74HCS573 :  
Automotive : SN74HCS573-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN74HCS573DGSR  
SN74HCS573RKSR  
VSSOP  
VQFN  
DGS  
RKS  
20  
20  
5000  
3000  
330.0  
180.0  
16.4  
12.4  
5.4  
2.8  
5.4  
4.8  
1.45  
1.2  
8.0  
4.0  
16.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN74HCS573DGSR  
SN74HCS573RKSR  
VSSOP  
VQFN  
DGS  
RKS  
20  
20  
5000  
3000  
356.0  
210.0  
356.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RKS 20  
2.5 x 4.5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226872/A  
www.ti.com  
PACKAGE OUTLINE  
RKS0020A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
3
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
2.6  
2.4  
B
A
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 C  
C
1.0  
0.8  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1
0.1  
2X 0.5  
(0.2) TYP  
11  
10  
14X 0.5  
EXPOSED  
THERMAL PAD  
9
12  
2X  
3.5  
3
0.1  
2
19  
0.30  
0.18  
20X  
1
20  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
0.5  
0.3  
20X  
0.05  
4222490/B 02/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RKS0020A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1)  
SYMM  
1
20  
20X (0.6)  
2
19  
20X (0.24)  
(1.25)  
SYMM  
(3)  
(4.3)  
16X (0.5)  
(R0.05) TYP  
12  
9
(
0.2) VIA  
TYP  
10  
11  
(2.3)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222490/B 02/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RKS0020A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.95)  
20  
1
20X (0.6)  
2
19  
20X (0.24)  
2X (1.31)  
16X (0.5)  
SYMM  
(4.3)  
(0.76)  
METAL  
TYP  
9
12  
(R0.05) TYP  
11  
10  
SYMM  
(2.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
83% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4222490/B 02/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN74HCS574

SN74HCS574-Q1 Automotive Octal D-Type Flip-Flops with Schmitt-Trigger Inputs, 3-State Outputs, and Flow-Through Pinout
TI

SN74HCS574-Q1

SN74HCS574-Q1 Automotive Octal D-Type Flip-Flops with Schmitt-Trigger Inputs, 3-State Outputs, and Flow-Through Pinout
TI

SN74HCS574DGSR

具有三态输出和施密特触发输入的八路边沿触发 D 类触发器 | DGS | 20 | -40 to 125
TI

SN74HCS574PW-Q1

SN74HCS574-Q1 Automotive Octal D-Type Flip-Flops with Schmitt-Trigger Inputs, 3-State Outputs, and Flow-Through Pinout
TI

SN74HCS574QPWRQ1

具有三态输出的汽车类八路边沿触发式 D 类触发器 | PW | 20 | -40 to 125
TI

SN74HCS574QWRKSRQ1

具有三态输出的汽车类八路边沿触发式 D 类触发器 | RKS | 20 | -40 to 125
TI

SN74HCS574RKS

SN74HCS574 Octal D-Type Flip-Flops with Schmitt-Trigger Inputs, 3-State Outputs, and Flow-Through Pinout
TI

SN74HCS574RKSR

SN74HCS574 Octal D-Type Flip-Flops with Schmitt-Trigger Inputs, 3-State Outputs, and Flow-Through Pinout
TI

SN74HCS574WRKS-Q1

SN74HCS574-Q1 Automotive Octal D-Type Flip-Flops with Schmitt-Trigger Inputs, 3-State Outputs, and Flow-Through Pinout
TI

SN74HCS594

SN74HCS594-Q1 Automotive 8-Bit Shift Register With Schmitt-Trigger Inputs and Output Registers
TI

SN74HCS594-Q1

SN74HCS594-Q1 Automotive 8-Bit Shift Register With Schmitt-Trigger Inputs and Output Registers
TI

SN74HCS594-Q1_V01

SN74HCS594-Q1 Automotive 8-Bit Shift Register With Schmitt-Trigger Inputs and Output Registers
TI