SN74LVC1GX04DBVR [TI]

CRYSTAL OSCILLATOR DRIVER; 晶体振荡器驱动器
SN74LVC1GX04DBVR
型号: SN74LVC1GX04DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

CRYSTAL OSCILLATOR DRIVER
晶体振荡器驱动器

振荡器 晶体振荡器 驱动器 栅极 触发器 逻辑集成电路 光电二极管 PC
文件: 总13页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢃ  
ꢆꢋꢌꢀ ꢍꢎꢄ ꢏ ꢀꢆꢐ ꢄꢄ ꢎꢍꢏꢋ ꢑ ꢋꢐ ꢅ ꢒꢋ  
SCES581 − JULY 2004  
DBV OR DCK PACKAGE  
(TOP VIEW)  
D
Available in Texas Instruments NanoStar  
and NanoFreePackages  
D
D
D
Supports 5-V V  
Operation  
CC  
1
2
3
6
5
4
NC  
GND  
X1  
Y
V
X2  
Inputs Accept Voltages to 5.5 V  
CC  
One Unbuffered Inverter (SN74LVC1GU04)  
and One Buffered Inverter (SN74LVC1G04)  
NC − No internal connection  
D
Suitable for Commonly Used Clock  
Frequencies:  
− 15 kHz, 3.58 MHz, 4.43 MHz, 13 MHz,  
25 MHz, 26 MHz, 27 MHz, 28 MHz  
YEP OR YZP PACKAGE  
(BOTTOM VIEW)  
3 4  
2 5  
1 6  
X1  
GND  
DNU  
X2  
D
D
D
D
Max t of 2.4 ns at 3.3 V  
pd  
Low Power Consumption, 10-µA Max I  
V
Y
CC  
CC  
24-mA Output Drive at 3.3 V  
DNU − Do not use  
I
Supports Partial-Power-Down Mode  
off  
Operation  
D
D
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
ESD Protection Exceeds JESD 22  
− 2000-V Human-Body Model (A114-A)  
− 200-V Machine Model (A115-A)  
− 1000-V Charged-Device Model (C101)  
description/ordering information  
The SN74LVC1GX04 is designed for 1.65-V to 5.5-V V  
operation. This device incorporates the  
CC  
SN74LVC1GU04 (inverter with unbuffered output) and the SN74LVC1G04 (inverter) functions into a single  
device. The LVC1GX04 is optimized for use in crystal oscillator applications.  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
T
A
PACKAGE  
NanoStar− WCSP (DSBGA)  
0.23-mm Large Bump − YEP  
SN74LVC1GX04YEPR  
SN74LVC1GX04YZPR  
Reel of 3000  
_ _ _ _  
NanoFree− WCSP (DSBGA)  
0.23-mm Large Bump − YZP (Pb-free)  
−40°C to 85°C  
Reel of 3000  
Reel of 250  
Reel of 3000  
SN74LVC1GX04DBVR  
SN74LVC1GX04DBVT  
SN74LVC1GX04DCKR  
SOT (SOT-23) − DBV  
CX4_  
D2_  
SOT (SC-70) − DCK  
Reel of 250  
SN74LVC1GX04DCKT  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/sc/package.  
DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.  
YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one  
following character to designate the assembly/test site. Pin  
1 identifier indicates solder-bump composition  
(1 = SnPb, = Pb-free).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
NanoStar and NanoFree are trademarks of Texas Instruments.  
ꢍꢠ  
Copyright 2004, Texas Instruments Incorporated  
ꢜ ꢠ ꢝ ꢜꢕ ꢖꢪ ꢘꢗ ꢛ ꢣꢣ ꢡꢛ ꢙ ꢛ ꢚ ꢠ ꢜ ꢠ ꢙ ꢝ ꢥ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈꢉꢊ ꢃ  
ꢆ ꢋꢌꢀ ꢍꢎ ꢄ ꢏꢀꢆ ꢐ ꢄꢄ ꢎꢍꢏ ꢋ ꢑꢋ ꢐ ꢅꢒ ꢋ  
SCES581 − JULY 2004  
description/ordering information (continued)  
The X1 and X2 can be connected to a crystal or resonator in oscillator applications. The device provides an  
additional buffered inverter (Y) for signal conditioning (see Figure 3). The additional buffered inverter improves  
the signal quality of the crystal oscillator output by making it rail to rail.  
NanoStarand NanoFreepackage technology is a major breakthrough in IC packaging concepts, using the  
die as the package.  
This device is fully specified for partial-power-down applications using I (Y output only). The I circuitry  
off  
off  
disables the outputs, preventing damaging current backflow through the device when it is powered down.  
FUNCTION TABLE  
OUTPUTS  
INPUT  
X1  
X2  
L
Y
H
L
H
L
H
logic diagram (positive logic)  
6
4
Y
3
X1  
X2  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6.5 V  
CC  
Input voltage range, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6.5 V  
I
Voltage range applied to Y output in the high-impedance or power-off state, V  
O
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 6.5 V  
Voltage range applied to any output in the high or low state, V  
O
(see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
+ 0.5 V  
CC  
Input clamp current, I (V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
(V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
Continuous output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
IK  
I
Output clamp current, I  
OK  
O
O
Continuous current through V  
or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
CC  
Package thermal impedance, θ (see Note 3): DBV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165°C/W  
JA  
DCK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259°C/W  
YEP/YZP package . . . . . . . . . . . . . . . . . . . . . . . . . . . 123°C/W  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Storage temperature range, T  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
2. The value of V is provided in the recommended operating conditions table.  
CC  
3. The package thermal impedance is calculated in accordance with JESD 51-7.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢃ  
ꢆꢋꢌꢀ ꢍꢎꢄ ꢏ ꢀꢆꢐ ꢄꢄ ꢎꢍꢏ ꢋ ꢑ ꢋꢐ ꢅ ꢒꢋ  
SCES581 − JULY 2004  
recommended operating conditions (see Note 4)  
MIN  
1.65  
1.5  
2
MAX  
UNIT  
Operating  
5.5  
Data retention only  
V
CC  
Supply voltage  
V
Crystal oscillator use  
V
V
V
High-level input voltage  
Low-level input voltage  
Input voltage  
V
V
= 1.65 V to 5.5 V  
= 1.65 V to 5.5 V  
0.75 × V  
CC  
V
V
V
IH  
IL  
I
CC  
0.25 × V  
CC  
CC  
0
0
0
5.5  
X2, Y  
Y output only, Power-down mode, V  
V
CC  
5.5  
V
O
Output voltage  
V
= 0 V  
CC  
V
V
= 1.65 V  
= 2.3 V  
−4  
−8  
CC  
CC  
−16  
−24  
−32  
4
I
High-level output current  
mA  
OH  
V
= 3 V  
CC  
V
CC  
V
CC  
V
CC  
= 4.5 V  
= 1.65 V  
= 2.3 V  
8
16  
24  
32  
20  
10  
10  
85  
I
Low-level output current  
mA  
OL  
V
= 3 V  
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 4.5 V  
= 1.8 V 0.15 V, 2.5 V 0.2 V  
= 3.3 V 0.3 V  
= 5 V 0.5 V  
t/v Input transition rise or fall rate  
ns/V  
T
Operating free-air temperature  
−40  
°C  
A
NOTE 4: All unused inputs of the device must be held at V  
or GND to ensure proper device operation. Refer to the TI application report,  
CC  
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈꢉꢊ ꢃ  
ꢆ ꢋꢌꢀ ꢍꢎ ꢄ ꢏꢀꢆ ꢐ ꢄꢄ ꢎꢍꢏ ꢋ ꢑꢋ ꢐ ꢅꢒ ꢋ  
SCES581 − JULY 2004  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
TYP  
PARAMETER  
TEST CONDITIONS  
V
MIN  
V − 0.1  
CC  
MAX  
UNIT  
CC  
I
I
I
I
I
= −100 mA  
= −4 mA  
1.65 V to 5.5 V  
1.65 V  
OH  
OH  
OH  
OH  
OH  
1.2  
1.9  
2.4  
2.3  
= −8 mA  
2.3 V  
V
OH  
V = 5.5 V or GND  
I
V
= −16 mA  
= −24 mA  
3 V  
4.5 V  
1.65 V to 5.5 V  
1.65 V  
3.8  
I
I
I
I
I
I
= −32 mA  
= 100 mA  
= 4 mA  
OH  
OL  
OL  
OL  
OL  
OL  
0.1  
0.45  
0.3  
= 8 mA  
2.3 V  
V
OL  
V = 5.5 V or GND  
I
V
= 16 mA  
= 24 mA  
0.4  
3 V  
0.55  
4.5 V  
0 to 5.5 V  
0
0.55  
5
I
= 32 mA  
OL  
I
I
I
X1 input  
X1, Y  
V = 5.5 V or GND  
mA  
mA  
mA  
pF  
I
I
V or V = 5.5 V  
10  
10  
off  
I
O
V = 5.5 V or GND,  
I = 0  
O
1.65 V to 5.5 V  
3.3 V  
CC  
I
C
V = V  
or GND  
= 3.3 V, T = 25°C.  
7
i
I
CC  
All typical values are at V  
CC  
A
switching characteristics over recommended operating free-air temperature range, C = 15 pF  
L
(unless otherwise noted) (see Figure 1)  
V
= 1.8 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
V
= 5 V  
CC  
0.15 V  
CC  
CC  
CC  
0.5 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN MAX  
MIN MAX  
MIN MAX  
MIN MAX  
1
4
0.8  
2.2  
2.6  
6
0.6  
2
2.4  
5
0.5  
1.5  
2
X2  
t
pd  
X1  
ns  
Y
3.5  
10  
3.5  
X2 − no external load  
switching characteristics over recommended operating free-air temperature range, C = 30 pF or  
L
50 pF (unless otherwise noted) (see Figure 2)  
V
= 1.8 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
V
= 5 V  
CC  
0.15 V  
CC  
CC  
CC  
0.5 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN MAX  
MIN MAX  
MIN MAX  
MIN MAX  
1.1  
3.8  
7
0.8  
2
4
0.8  
2
3.7  
7.8  
0.8  
2
3
5
ns  
ns  
X2  
t
pd  
X1  
Y
18  
7.4  
X2 − no external load  
operating characteristics, T = 25°C  
A
V
CC  
= 1.8 V  
V
CC  
= 2.5 V  
V
CC  
= 3.3 V  
V
= 5 V  
CC  
TYP  
35  
PARAMETER  
TEST CONDITIONS  
UNIT  
TYP  
22  
TYP  
22  
TYP  
24  
C
Power dissipation capacitance  
f = 10 MHz  
pF  
pd  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢃ  
ꢆꢋꢌꢀ  
ꢍꢎ  
ꢀꢆ  
ꢄꢄ  
SCES581 − JULY 2004  
PARAMETER MEASUREMENT INFORMATION  
V
LOAD  
Open  
S1  
R
L
From Output  
Under Test  
TEST  
S1  
Open  
GND  
t
t
/t  
PLH PHL  
/t  
C
L
t
V
R
PLZ PZL  
LOAD  
GND  
L
(see Note A)  
/t  
PHZ PZH  
LOAD CIRCUIT  
INPUTS  
V
CC  
V
M
V
C
R
L
V
LOAD  
L
V
I
t /t  
r f  
1.8 V 0.15 V  
2.5 V 0.2 V  
3.3 V 0.3 V  
5 V 0.5 V  
V
V
2 ns  
2 ns  
2.5 ns  
2.5 ns  
V
V
/2  
/2  
2 × V  
2 × V  
6 V  
2 × V  
CC  
15 pF  
15 pF  
15 pF  
15 pF  
1 MΩ  
1 MΩ  
1 MΩ  
1 MΩ  
0.15 V  
0.15 V  
0.3 V  
CC  
CC  
CC  
CC  
CC  
CC  
3 V  
1.5 V  
/2  
V
CC  
V
CC  
0.3 V  
V
I
Timing Input  
Data Input  
V
M
0 V  
t
w
t
t
su  
h
V
I
V
I
Input  
V
M
V
M
V
M
V
M
0 V  
0 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
V
I
V
I
Output  
Control  
V
M
V
M
Input  
V
M
V
M
0 V  
V
0 V  
t
t
t
t
t
PHL  
PZL  
PLZ  
+ V  
PLH  
PHL  
Output  
Waveform 1  
V
/2  
OH  
LOAD  
V
V
V
M
Output  
M
V
V
M
S1 at V  
(see Note B)  
V
LOAD  
OL  
V
OL  
V
OL  
t
PLH  
t
t
PZH  
PHZ  
− V  
Output  
Waveform 2  
S1 at GND  
V
V
OH  
V
OH  
V
V
M
OH  
M
Output  
M
0 V  
OL  
(see Note B)  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
NOTES: A. includes probe and jig capacitance.  
C
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 .  
O
D. The outputs are measured one at a time, with one transition per measurement.  
E.  
F.  
G.  
t
t
t
and t  
and t  
and t  
PHL  
are the same as t  
.
dis  
PLZ  
PZL  
PLH  
PHZ  
PZH  
are the same as t  
.
en  
are the same as t .  
pd  
H. All parameters and waveforms are not applicable to all devices.  
Figure 1. Load Circuit and Voltage Waveforms  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈꢉꢊ ꢃ  
ꢄꢄ  
ꢎꢍꢏ  
ꢑꢋ  
ꢅꢒ  
SCES581 − JULY 2004  
PARAMETER MEASUREMENT INFORMATION  
V
LOAD  
Open  
S1  
R
L
From Output  
Under Test  
TEST  
S1  
GND  
t
t
/t  
Open  
PLH PHL  
/t  
C
L
t
V
R
PLZ PZL  
LOAD  
GND  
L
(see Note A)  
/t  
PHZ PZH  
LOAD CIRCUIT  
INPUTS  
V
CC  
V
M
V
C
R
L
V
LOAD  
L
V
I
t /t  
r f  
1.8 V 0.15 V  
2.5 V 0.2 V  
3.3 V 0.3 V  
5 V 0.5 V  
V
V
2 ns  
2 ns  
2.5 ns  
2.5 ns  
V
V
/2  
/2  
2 × V  
2 × V  
6 V  
2 × V  
CC  
30 pF  
30 pF  
50 pF  
50 pF  
1 kΩ  
500 Ω  
500 Ω  
500 Ω  
0.15 V  
0.15 V  
0.3 V  
CC  
CC  
CC  
CC  
CC  
CC  
3 V  
1.5 V  
/2  
V
CC  
V
CC  
0.3 V  
V
I
Timing Input  
Data Input  
V
M
0 V  
t
w
t
t
su  
h
V
I
V
I
Input  
V
M
V
M
V
M
V
M
0 V  
0 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
V
I
V
I
Output  
Control  
V
M
V
M
Input  
V
M
V
M
0 V  
V
0 V  
t
t
t
t
t
PHL  
PZL  
PLZ  
+ V  
PLH  
PHL  
Output  
Waveform 1  
V
/2  
OH  
LOAD  
V
V
V
M
Output  
M
V
V
M
S1 at V  
(see Note B)  
V
LOAD  
OL  
V
OL  
V
OL  
t
PLH  
t
t
PZH  
PHZ  
− V  
Output  
Waveform 2  
S1 at GND  
V
V
OH  
V
OH  
V
V
M
OH  
M
Output  
M
0 V  
OL  
(see Note B)  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
NOTES: A. includes probe and jig capacitance.  
C
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 .  
O
D. The outputs are measured one at a time, with one transition per measurement.  
E.  
F.  
G.  
t
t
t
and t  
and t  
and t  
PHL  
are the same as t  
.
dis  
PLZ  
PZL  
PLH  
PHZ  
PZH  
are the same as t  
.
en  
are the same as t .  
pd  
H. All parameters and waveforms are not applicable to all devices.  
Figure 2. Load Circuit and Voltage Waveforms  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢃ  
ꢆꢋꢌꢀ ꢍꢎꢄ ꢏ ꢀꢆꢐ ꢄꢄ ꢎꢍꢏ ꢋ ꢑ ꢋꢐ ꢅ ꢒꢋ  
SCES581 − JULY 2004  
APPLICATION INFORMATION  
Figure 3 shows a typical application of the SN74LVC1X04 in a Pierce oscillator circuit. The buffered inverter  
(SN74LVC1G04 portion) produces a rail-to-rail voltage waveform. The recommended load for the crystal shown in  
this example is 16 pF. The value of the recommended load (C ) can be found in the crystal manufacturer’s data sheet.  
L
C C  
1
2
Values of C and C are chosen so that  
and C C . R is the current-limiting resistor and the value  
1 2 s  
C
+
1
2
L
C ) C  
2
1
depends on the maximum power dissipation of the crystal. Generally, the recommended value of R is specified in  
s
the crystal manufacturer’s data sheet and, usually, this value is approximately equal to the reactance of C at  
2
resonance frequency, i.e., R + X . R is the feedback resistor that is used to bias the inverter in the linear region  
F
s
C
2
of operation. Usually, the value is chosen to be within 1 Mto 10 M.  
SN74LVC1GU04  
Portion  
SN74LVC1G04  
Portion  
Y
X2  
X1  
C
LOAD  
R
LOAD  
R
2.2 MΩ  
F
R
1 kΩ  
s
C
16 pF  
L
C
32 pF  
C 32 pF  
2
1
a) Logic Diagram View  
Figure 3. Oscillator Circuit  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈꢉꢊ ꢃ  
ꢆ ꢋꢌꢀ ꢍꢎ ꢄ ꢏꢀꢆ ꢐ ꢄꢄ ꢎꢍꢏ ꢋ ꢑꢋ ꢐ ꢅꢒ ꢋ  
SCES581 − JULY 2004  
APPLICATION INFORMATION  
6
Y
1
NC  
C
R
LOAD  
LOAD  
2
5
4
GND  
V
CC  
X1  
X2  
3
R
2.2 MΩ  
F
R
C
1 kΩ  
s
2
C
= 16 pF  
L
C
32 pF  
32 pF  
1
b) Oscillator Circuit in DBV or DCK Pinout  
Figure 3. Oscillator Circuit (Continued)  
practical design tips  
D
The open-loop gain of the unbuffered inverter decreases as power-supply voltage decreases. This  
decreases the closed-loop gain of the oscillator circuit. The value of R can be decreased to increase the  
s
closed-loop gain, while maintaining the power dissipation of the crystal within the maximum limit.  
R and C form a low-pass filter and reduce spurious oscillations. Component values can be adjusted,  
D
D
D
s
2
based on the desired cutoff frequency.  
C can be increased over C to increase the phase shift and help in start-up of the oscillator. Increasing C  
2
2
1
may affect the duty cycle of the output voltage.  
At high frequency, phase shift due to R becomes significant. In this case, R can be replaced by a capacitor  
s
s
to reduce the phase shift.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢃ  
ꢆꢋꢌꢀ ꢍꢎꢄ ꢏ ꢀꢆꢐ ꢄꢄ ꢎꢍꢏ ꢋ ꢑ ꢋꢐ ꢅ ꢒꢋ  
SCES581 − JULY 2004  
APPLICATION INFORMATION  
testing  
After the selection of proper component values, the oscillator circuit should be tested using these components.  
To ensure that the oscillator circuit performs within the recommended operating conditions, follow these steps:  
1. Without a crystal, the oscillator circuit should not oscillate. To check this, the crystal can be replaced by its  
equivalent parallel-resonant resistance.  
2. When the power-supply voltage drops, the closed-loop gain of the oscillator circuit reduces. Ensure that the  
circuit oscillates at the appropriate frequency at the lowest V  
and highest V  
.
CC  
CC  
3. Ensure that the duty cycle, start-up time, and frequency drift over time is within the system requirements.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPDS114 – FEBRUARY 2002  
DCK (R-PDSO-G6)  
PLASTIC SMALL-OUTLINE PACKAGE  
0,30  
0,15  
M
0,10  
0,65  
6
4
0,13 NOM  
1,40 2,40  
1,10 1,80  
1
3
Gage Plane  
2,15  
1,85  
0,15  
0°–8°  
0,46  
0,26  
Seating Plane  
0,10  
1,10  
0,80  
0,10  
0,00  
4093553-3/D 01/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-203  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SN74LVC1GX04DBVT

CRYSTAL OSCILLATOR DRIVER
TI

SN74LVC1GX04DCKR

CRYSTAL OSCILLATOR DRIVER
TI

SN74LVC1GX04DCKT

CRYSTAL OSCILLATOR DRIVER
TI

SN74LVC1GX04DRLR

CRYSTAL OSCILLATOR DRIVER
TI

SN74LVC1GX04YEPR

CRYSTAL OSCILLATOR DRIVER
TI

SN74LVC1GX04YZPR

CRYSTAL OSCILLATOR DRIVER
TI

SN74LVC1GX04_06

CRYSTAL OSCILLATOR DRIVER
TI

SN74LVC1GX04_15

Crystal Oscillator Driver
TI

SN74LVC1T45

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45-EP

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45-Q1

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74LVC1T45DBVR

SINGLE-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI